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Introduction 

Accounting for energy balance (EB) in selection programs has been complicated, since 
measuring feed intake in progeny testing schemes is not practical. Currently, much attention 
has been placed on the implementation of genomic selection in animal breeding schemes. 
Genomic selection uses genomic information to predict and select animals based on their 
direct genomic values (DGV), predicted directly from SNP information, or their genomically 
enhanced breeding values (GEBV) which are calculated by blending the DGV with 
conventional proofs. Genomic prediction simultaneously estimates the marker effects and 
creates an equation to predict DGV for genotyped selection candidates, including (young) 
animals that do not have phenotypic records. The recent implementation of genomic 
selection has been shown to increase both selection accuracy and genetic gain over 
traditional selection methods (Hayes et al. (2009)). In this study, we examined whether 
genomic prediction could be used to estimate DGV for EB using a small Dutch experimental 
farm data set. Our objective was to demonstrate the genetic basis of EB and the potential use 
of genomic selection to facilitate inclusion of EB in selection programs. 

Material and methods 
Available data. Data on 613 Holstein-Friesian heifers born between 1990 and 1997 were 
collected during the first 15 wk of lactation. All cows were fed ad libitum. Live weight, feed 
intake, and milk yield were measured on 565 animals. Feed intake was recorded daily using 
automated feed intake units. Live weight and milk yield were recorded once a week. Energy 
balance (MJ/d) was calculated using the method described in Veerkamp et al. (2000) as the 
difference between energy intake and the calculated energy requirements for milk, fat and 
protein yields, and maintenance costs as a function of live weight. Energy balance values 
across wk 2 to 15 were averaged to give an overall EB phenotype. More comprehensive 
details on the data used can be found in Veerkamp et al. (2000). Raw EB phenotypes were 
pre-adjusted for year-season of calving and age at calving (linear, quadratic) using ASReml 
(Gilmour et al. (2006)), since their inclusion was not feasible in the final model due to 
software limitations. The residuals from this analysis were used as the EB phenotypes for the 
prediction of the breeding values.   
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From the 613 heifers, 588 had known pedigree and these were genotyped using the Illumina 
50K SNP panel (54,001 SNP in total). The quality control criteria for selecting the final set 
of SNP were; a call rate of over 90%, a GenCall score >0.2 and a GenTrain score >0.55, a 
minor allele frequency of >2.5% and a lack of deviation from Hardy Weinberg equilibrium, 
χ2<600 (Wiggans et al., 2009). Animals with greater than 5% missing SNP genotypes were 
removed. Non-Mendelian error checks identified genotypes of daughters that were 
inconsistent with their dams. After all editing steps, in total, 43,011 SNP and 548 animals 
were retained. Of these 548 animals, 527 had phenotypes for EB. 
 
Statistical analyses. Two models using Gibbs sampling were applied to estimate additive 
breeding values. One model included the available SNP information, resulting in a DGV for 
each animal. The second model used was a simple additive polygenic model, where the EBV 
calculated by this model were the estimated polygenic effect for each animal. Both models 
were run for 10,000 iterations to ensure convergence with the first 1000 iterations used as 
burn in. A 10-fold cross validation approach was carried out, such that the data was 
randomly partitioned into 10 subsets. Each subset was retained once as the validation dataset 
and the remaining 9 sets were used to predict the GEBV of those animals in the validation 
set. The model described in Calus et al. (2008) was used to predict the GEBV. The GEBV 
were calculated as the sum of the estimated SNP effects and the polygenic effect. The same 
data subsets and approach were used with a simple polygenic model excluding the SNP 
information for comparison. The GEBV were assessed using accuracy gyr )  of the predicted 

GEBV ( g
)

) when compared with the phenotypes (y) and thus the 2
gyr ) . The accuracy of 

selection ( ggr ) ) when comparing the true breeding values (g) and GEBV has been reported to 

be a function of the heritability, the number of phenotypic records and the number of 
effective QTL (Daetwyler et al. (2008)). This function was adapted for use with the accuracy 
when comparing phenotypes and GEBV. 

Results and discussion 
The model including the SNP information yielded an overall accuracy of 0.294 and thus an 

2
gyr )  of  0.086, when comparing the phenotypes and GEBV in the combined validation sets 

(Table 1). For the model excluding the SNP information with only the polygenic effect an 

overall accuracy of 0.211 and 2gyr )  of 0.044 was found.   

 
 
Table 1: Accuracies (rij) and reliabilities (r2

ij) for direct genomic values and estimated 
breeding values where y is the phenotype (energy balance), g is true breeding value and 
g
)

is the predicted breeding value 

 
gy
)r  gg

)r  2
gyr )  2

ggr )  

Direct Genomic Value (DGV)  0.294 0.516 0.086 0.265 
Estimated Breeding Values (EBV)  0.211 0.370 0.044 0.135 

 



The calculated reliability (2
ggr ) =0.265) of the model including SNP information was double 

that of the EBV produced by the polygenic model (2
ggr ) =0.135). This implied that the model 

including SNP information explained twice as much variation than the polygenic model, 
which is illustrated also by the range of the breeding values (see Figure 1a). Despite the 
limitation on available data, genomic prediction was able to produce accuracies greater than 
a traditional polygenic model. Thus the results indicated that EB can be estimated using 
genomic prediction. The low accuracy gained can be explained as a direct result of the small 
number of phenotypic records and the moderate heritability found for this trait. The 
heritability of 0.325 calculated with this data set was consistent with results of other studies 
(Huttmann et al. (2009); Veerkamp (1998)). 
 

 
Figure 1a: Histogram of direct genomic values (DGV) and estimated breeding values 
(EBV), (■) represents the EBV predicted by the polygenic model and (■) represents the 
DGV predicted by the model including the SNP information 
Figure 1b: Comparison of coefficients of the polygenic model (pedigree relationship) 
and coefficients of the model including SNP information (marker relationship) 
 
 
The pedigree check step for data quality control proved a very effectual additional measure 
to identify any animal that had an incorrectly recorded pedigree or where an animal may 
have been misidentified. It allowed checking of half-sibling and full-sibling relationships that 
is not possible using non-Mendelian checking. Figure 1b effectively illustrates the additional 
information contained in the SNP data about the relatedness of the animals. This is most 
obviously shown by the monozygotic twins that have a marker relationship of 1 but are 
recorded as full sibs in the pedigree. 
 
The model using the SNP information to predict the DGV could also be used for whole 
genome association studies. Thus, the produced posterior probabilities of SNP were 
examined to see if there were any significant associations with EB. Due to the small number 
of records and large number of SNP, the power of the association study to identify QTL was 

a b 



very low. There was no SNP with a high enough posterior probability to be confident that it 
was linked to a QTL. Despite being unable to conclusively establish QTL associated with 
EB, results of the study allowed the estimation of the number of effective QTL influencing 
EB. Given the nature and complexity of EB, the number of predicted effective QTL (472) 
was plausible. The relationships with both production and non-production traits means that 
potentially numerous genes and pathways could be involved in the variation observed in EB. 
An increase in the number of phenotypic records would also allow genome wide association 
studies for EB in dairy cattle to identify possible candidate genes affecting EB and would 
provide a better idea of the effective number of QTL. The ability to select and include EB in 
selection indexes may indirectly increase the genetic gain for fertility traits. Veerkamp et al. 
(2000) reported genetic correlations between EB and fertility (i.e. interval between calving 
and start of luteal activity) of -0.60. This moderate to high genetic correlation implies that 
genetic gain for EB should also result in improved fertility. 

Conclusions 
The use of SNP information to predict DGV is shown to explain variation between the EB of 
animals, confirming the genetic background of EB. The use of SNP information showed an 
increase in the accuracy of prediction for EB over the simple polygenic model. However, the 
extent of recording would need to be improved to increase the accuracy. In the future, 
selection for EB could be performed using genomic selection which could provide a valuable 
tool in finding a balance between production and non-production traits (e.g. fertility). 
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