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Abstract Animal disease epidemics such as the foot-and-mouth disease (FMD) pose re-
current threat to countries with intensive livestock production. Efficient FMD control is
crucial in limiting the damage of FMD epidemics and securing food production. Decision
making in FMD control involves a hierarchy of decisions made at strategic, tactical, and
operational levels. These decisions are interdependent and have to be made under uncer-
tainty about future development of the epidemic. Addressing this decision problem, this
paper presents a new decision-support framework based on multi-level hierarchic Markov
processes (MLHMP). The MLHMP model simultaneously optimizes decisions at strategic,
tactical, and operational levels, using Bayesian forecasting methods to model uncertainty
and learning about the epidemic. As illustrated by the example, the framework is especially
useful in contingency planning for future FMD epidemics.
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1 Introduction

For centuries, foot-and-mouth disease (FMD) has been a “curse” haunting the livestock in-
dustry around the world (Dijkhuizen et al. 1995; Yang et al. 1999; Randolph et al. 2002).
FMD is a highly contagious viral disease affecting cattle, swine, and other cloven-hoofed
animals. Although the mortality rate is in general low, the disease causes reduced milk yield
and loss of weight. Outbreaks of FMD lead to substantial losses due to the costs of dis-
ease control, productivity losses and constraints on international meat and livestock trade
(Paarberg and Lee 1998; Mahul and Durand 2000). The 2001 FMD epidemics in Europe ex-
hibited their devastating impact on the economy and the society. In the United Kingdom the
losses to agriculture and government amounted to about 4.5 billion Euro (Thompson et al.
2002). In the Netherlands, the economic damage was estimated to be around 1 billion Euro
(Huirne et al. 2002). In the aftermath of these outbreaks, the decisions on control strategies
raised heated debates (Anderson 2002; Cuijpers and Osinga 2002). The importance of deci-
sion making in managing FMD epidemics has attracted keen attention both in practice and
in research.

A characteristic feature of decision making in FMD control is the uncertainty about cur-
rent disease status and future epidemic development. Since the disease can only be detected
(by clinical symptoms or serological tests) after the infection has taken place for sometime
(incubation period), some infected animals can remain infectious without being detected,
causing further spread of the disease. The number of these undetected but infectious herds is
typically unknown to the decision maker at the time when FMD is detected. Even when these
infectious herds were known, future spread of the disease is still uncertain due to variation
in animals and randomness in the disease spread process (Keeling and Grenfell 2000).

Uncertainty about FMD spread imposes severe difficulty on the choice of control mea-
sures. In the EU, governments of member states are obliged to control FMD according to
relevant regulations and international trade agreements (European Union 2003). The EU di-
rectives, while mandating a minimal set of control measures, leave it to the government of
member states to decide whether additional measures should be taken to enhance the ef-
fectiveness of control. Additional measures such as pre-emptive culling (PC) or emergency
vaccination (EV) incur considerable upfront costs. Ideally, these measures should only be
taken when their estimated benefits (resulting from the increased effectiveness of control)
should at least offset their costs. Unfortunately, while the upfront costs are quite certain
and irreversible, the benefits estimated ex ante are quite uncertain, which implies that the
benefits ex post can significantly differ from the benefit estimated ex ante. Decisions on the
additional measures must therefore deal with these uncertainties and the irreversibility of
control measures (Mahul and Durand 2000).

Since an epidemic develops over time, decision making in FMD control is a sequential
process in which control measures are adapted according to real-time development of the
epidemic, i.e., a series of decisions will be made during the epidemic. Choice of additional
control measures is therefore seldom a once-for-all or now-or-never decision, but must be
dynamically considered and take into account the impact of early decisions on later decisions
and the possibility of learning during the epidemic (Ge et al. 2005). The flexible timing of
additional measures generates an infinite number of possible control strategies, bringing
formidable complexities into decision making.

From a decision making point of view, managing FMD entails a hierarchy of interde-
pendent decisions at three levels: strategic decisions, tactical decisions, and operational
decisions (DEFRA 2004). Given the uncertainties and complexities, lessons learned from
previous epidemics highlighted the strong need for a decision support framework which can



Ann Oper Res

be used to integrate information and knowledge about FMD control and guide further re-
search (Anderson 2002). The objective of this study is to present such a decision support
framework.

The framework is built upon the framework of multi-level hierarchic Markov processes
(MLHMP) in which decisions are addressed at multiple timescales and simultaneously op-
timized (Kristensen and Jørgensen 2000). MLHMP inherits the stochastic and sequential
nature of ordinary Markov decision processes (MDP) but circumvents the dimensionality
problem by exploiting the hierarchic structure of the state space and decisions. When un-
certainty exists about the state variables (e.g., when they are unobservable or partially ob-
servable), the sequential approach of MLHMP makes it possible to apply Bayesian updating
between decision epochs to model learning effects (Kristensen 1993). Primarily developed
as a decision support tool for herd management, MLHMP has been applied to decision
problems within a herd concerning (endemic) infectious diseases, where disease control de-
cisions must be made simultaneously with production and delivery decisions (Toft et al.
2005).

In this paper, we extend the MLHMP framework to epidemic control decisions that are
made beyond herd or farm level, with governments as the decision maker. Bayesian updating
techniques are applied by embedding a Poisson process with unknown parameter into the
MLHMP framework. This extends the framework as presented by Nielsen et al. (2010)
which embedded a linear state space model into a MLHMP.

We present the framework by first linking FMD control decisions to the decision
processes of MLHMP at each level, then introducing the disease spread model, and subse-
quently illustrating how to embed decisions and the disease spread model into the MLHMP
model. The MLHMP model provides a scientific representation of the decision problem and
calculates the optimal control strategy. A simple example is developed while introducing the
framework. Further empirical applications of the framework are then discussed.

2 The decision hierarchy

2.1 Modelling FMD control decisions with MLHMP

The MLHMP technique exploits the hierarchic structure of decisions and state variables in
managing a dynamic system. Technically, the essence of the MLHMP technique is to build
ordinary MDPs with shorter time horizon (called child processes) into MDPs with longer
time horizon (called parent processes). The parent process with the longest time horizon is
called the founder process, which is the main decision process in MLHMP. The hierarchy
of these decision processes corresponds naturally to decisions of strategic, tactical, and op-
erational nature in FMD control. As an example, a 3-level MLHMP structure is illustrated
in Fig. 1.

At the founder level (strategic decisions) we show one decision stage of the founder
process. The founder process can have finite or infinite time horizon. Like ordinary MDPs,
the process has states, actions and decision epochs. Unlike ordinary MDPs, an action taken
in a founder state does not cause a direct transition to a founder state in the next decision
epoch. Instead, it initiates a decision process at Child 1 level (tactical decisions), which is
a finite horizon MDP with T1 stages. Similarly, an action taken in a Child 1 state initiates a
decision process at Child 2 level (operational decisions), which is a finite horizon MDP with
T2 stages. At the lowest level (i.e. Child 2), an action does cause regular state transitions.
The use of MDPs captures the sequential and stochastic nature of the decision process at
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Fig. 1 The MLHMP representation of the hierarchic decision space

each level. The art of using MLHMP is to define decisions at the proper levels in terms of
their time horizons, states, decision stages, actions, rewards and state transitions. For FMD
control, the decisions are modelled as follows.

2.2 Strategic decisions

Strategic decisions in FMD control take the form of veterinary policies, which have long-
term impact and address states of the system that can change on the long term, but remain
unchanged during one epidemic. Typically, strategic decisions are made before an epidemic
occurs and determine the range of control options. One example of strategic decisions is
whether preventive vaccination should be used. Having made a strategic decision, the tactical
decisions are restricted. For example, if the strategic decision is “no vaccination should be
used”, there would be no need to consider a vaccination program during an epidemic.

Actions for strategic decisions are often confined by relevant legal obligations from the
national and communal government. For example, the EU had decided in 1991 to stop rou-
tine vaccination against FMD, relying on efficient control program to recover FMD-free
status in the case of FMD epidemic (Horst et al. 1999). The Council Directive 2003/85/EC
(of September 29, 2003), however, allows emergency vaccination as an additional control
measure in case of an FMD epidemic (European Union 2003).

2.3 Tactical decisions

If strategic decisions determine the range of control options for all epidemics, tactical deci-
sions concern the deployment of control options for one specific epidemic. The time horizon
of tactical decisions is shorter than one epidemic. Depending on the actual duration of the
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epidemic, one epidemic may involve a sequence of tactical decisions over time. The choice
of the time horizon of tactical decisions depends on the length of incubation period and
logistic capacity.

A tactical decision at the start of an epidemic can be, for example, whether or not to im-
plement additional control measures like pre-emptive culling (PC) or emergency vaccination
(EV), or to use the compulsory measures only (i.e., basic program (BP)), and decide at the
next decision stage whether or not to implement PC or EV. For a particular epidemic, tacti-
cal decisions are the most important decisions to be made, since the strategic decisions were
made prior to the epidemic and the operational decisions must follow tactical decisions.

2.4 Operational decisions

Operational decisions in FMD control concern the execution of the chosen tactical decisions.
Time horizon of the operational decisions is the shortest in the decision hierarchy. Condi-
tional on the tactical decision, actions considered by an operational decision is typically
whether or not to continue the tactical choice. Due to the short stage length of operational
decisions, uncertainties at operational level are lower than those at tactical and strategic
level. Since the epidemic states can be observed daily, short term prediction on the epidemic
status can be immediately checked and updated. Learning is therefore an important feature
to be modelled at the operational level.

3 Modelling FMD spread: dynamic models

The “curse” of FMD is to a large extent ascribable to the invisible spread of the virus which
brings uncertainty about epidemic development. In understanding and modelling an FMD
epidemic, a clear distinction should be made between two closely related processes, i.e. the
spread of infection, which can not be completely observed, and the spread of disease, which
is observed/detected (Green and Medley 2002).

As shown in many epidemiological models, assuming a stochastic process for the infec-
tion process, the observed spread of disease can be used to estimate the parameters for the
stochastic process (see, e.g. Meester et al. 2002; Streftaris and Gibson 2004). Since the la-
tent process is evolving, the parameters for the stochastic process will also evolve over time,
which means dynamic models are appropriate to model FMD spread (West and Harrison
1997).

3.1 Observation model and forecasting

Assume the number of new FMD detections (herds) at time t , Nt , is drawn from a Poisson
distribution with parameter λt , i.e.

p(Nt |λt ) = e−λt λ
Nt
t

Nt ! (1)

where p(Nt |.) is the conditional probability of Nt , and λt > 0 is the expectation and variance
of Nt at time t .

The parameter for the Poisson distribution, λt , determines the irreducible variability of
the observations at time t . In other words, even if this parameter is perfectly known, the
actual observation is still random at time t . If λt has to be estimated, the subjective uncer-
tainty would increase the total variability of the predicted outcome (for a good discussion
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on this issue, see Vose 2000). This subjective uncertainty can be represented as a probability
distribution of λt . Since the Gamma distribution is often used as a conjugate prior for Pois-
son distribution in Bayesian forecasting (DeGroot 1970), we therefore assume that prior to
the observation of Nt , λt is drawn from a Gamma distribution with parameters αt and βt ,
i.e., (λt |Dt−1) ∼ Gamma(αt , βt ), where Dt−1 is the information set before observing Nt , i.e.
Dt−1 = {N1, . . . ,Nt−1}. The predicted number of detection at time t , Nt , will then follow
a Gamma-Poisson distribution. Based on this distribution, the one-step forecast distribution
of Nt , p(Nt |Dt−1), can be derived from the density functions of a Gamma distribution and
a Poisson distribution as follows:

p(Nt |Dt−1) = β
αt
t

(βt + 1)(αt +Nt )Nt !
Nt∏

i=1

(αt + Nt − i). (2)

This forecast distribution is used to derive state transition probabilities, which will be ex-
plained in Sect. 4.1.

3.2 Epidemic progression and learning

At any time t , the estimation on λt is based of the information set Dt = {N1, . . . ,Nt }. To effi-
ciently summarize the information on past observations, we use the exponentially weighted
moving average (EWMA) of previous numbers of detections as a proxy for the observed
level of epidemic (Montgomery 2005). The EWMA is the statistic

Jt = γNt + (1 − γ )Jt−1 (3)

where γ (0 ≺ γ ≺ 1) is a weighting factor showing the relative importance of historical
data to current data in forecasting. In practice, the appropriate γ is chosen to minimize the
forecast error. Denote this statistic as infection index (Jt ), it would be reasonable to assume
that the number of detections at time t depends on the infection index at time t − 1. Suppose
the relationship can be described as:

E(Nt |Dt−1) = λt = Jt−1θt . (4)

Further assume that the effect of control action a at time t can be estimated as a reduction
factor δa

t (0 ≤ δa
t ≤ 1) on the latent variable θt and as a result:

E(Nt) = λt = Ftθt = δa
t Jt−1θt . (5)

The latent variable θt can be interpreted as a growth potential of the epidemic, which is a
property of the virus. If the property of the FMD virus does not change during the epidemic,
the evolution of θt can be described with a constant model, i.e.:

θt = θt−1. (6)

An important consideration to use dynamic models is that they provide a sound mechanism
to model uncertainty and learning through Bayesian updating. Suppose at time t , uncertainty
of the unobservable variable θt before observing Nt can be described as a partly specified
distribution [mt,Ct ], where mt and Ct are the first and second moment. This distribution
is the prior distribution for θt . After observing Nt , the posterior distribution for θt can be
calculated according to the updating procedure for this type of dynamic generalized linear
models (DGLM) described in West and Harrison (1997).
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Table 1 Information about decisions and states in the example MLHMP model

MLHMP
level

Decision
level

Time
horizon

Stage length State variable(s) Level-specific action(s)

Founder Strategic Infinite Maximal length
of an epidemic
(= T1 × T2 days)

Epidemic situation
(2 levels, i.e., with or
without epidemic)

1. No control action
2. Start control programs

Child 1 Tactical T1 periods One period 1. Jt (5 levels ) 1. Basic program only (BP)

(T1 = 10) (= T2 days) 2. mt (5 levels) 2. Basic program +
Emergency vaccination
(EV)

3. Ct (5 levels) 3. Basic program +
Pre-emptive culling (PC)

Child 2 Operational T2 days
(T2 = 10)

1 day Same as Child 1
level

1. Start or continue the
program chosen (Start)

2. Stop the chosen
program (Stop)

3. Stop all control
programs (End)

4 The MLHMP model

The FMD spread model represents the key knowledge and uncertainty of the decision-maker
about the disease and the effects of control measures. Such a model is needed to define state
variables and derive state transition probabilities for the MLHMP model. The choice of
states, actions and rewards depends on the specific questions to be answered by the model.
Accordingly, the MLHMP model can be specified in different ways. In this session we de-
scribe the specification of the MLHMP-parameters for the relevant decisions and illustrate
it with the example. Information about the state actions and state length of the MLHMP
example is listed in Table 1.

4.1 States and state transitions

The choice of state variables and states depends on the strategic decisions to be considered.
At the strategic level, overall disease status is an obvious state variable of which states can
be defined as: FMD-free, FMD epidemic, and FMD-endemic. Social-economic variables
can be used as state variables as well due to their impact on the social-economic conse-
quences of FMD control. To simplify the illustration, we considered only one state variable
at the strategic level with two states: FMD epidemic and FMD-free. Possible actions at the
strategic level are start control programs and take no control action.

Practice shows that decision support is mostly needed for tactical decisions since strategic
decisions are to a great extent confined by legal framework and have less states and actions.
At tactical and operational levels (Child 1 and Child 2), decisions involve more states and
actions and the actions need to be fine-tuned to the states. For the example, a state at decision
stage t is defined by the value of the following three state variables: the current infection
index Jt ; the posterior mean, mt , of the underlying parameter θt ; and the posterior variance,
Ct , of the underlying parameter θt . We denote i = (Jit ,mit ,Cit )for state i when convenient.
A state describes therefore both observed epidemic status (Jt ), expected epidemic growth
(mt ), and the uncertainty about the growth (Ct ).
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At the founder level of an MLHMP model, state transition probabilities are often spec-
ified. At other parent levels, the transition probabilities are calculated from correspond-
ing child processes as described by Kristensen and Jørgensen (2000). At the lowest child
level (i.e., Child 2), transition probabilities are calculated from the epidemic spread model.
Denote pa

ij (t) as the transition probability from state i = (Jit ,mit ,Cit ) at stage t to state
j = (Jj,t+1,mj,t+1,Cj,t+1) at stage t + 1. For given Jit and Jj,t+1, let M(Jit,Jj,t+1) denote
the set of values of Nt+1 resulting in updating of Jit to Jj,t+1. If M(Jit,Jj,t+1) = ∅ (empty
set), pa

ij (t) = 0. Otherwise, pa
ij (t) is calculated as follows:

pa
ij (t) =

∑

k∈M(Jit ,Jj,t+1)

β
αt+1
t+1

(βt+1 + 1)(αt+1+k)k!
k∏

n=1

(αt+1 + k − n) (cf. (2)) (7)

if mj,t+1 and Cj,t+1 conform the calculated posterior distribution of θt+1, otherwise
pa

ij (t) = 0.
The three state variables Jt , Mt , and Ct are continuous variables. To derive finite states

needed for the MLHMP model they need to be discretized into intervals. The appropriate
number and range of the intervals should be chosen based on the desired precision of the
optimal strategy and the sensitivity of the optimal strategy to the state variables. The more
sensitive the optimal strategy is to the state variables, the more intervals the state variable
should be discretized. For simplicity, we have discretized all three state variables into 5
levels only.

4.2 Actions and rewards

The actions at different decision levels are shown in Table 1. The rewards (costs) of actions
must be defined according to the objective(s) of the decision maker. It is worth noting that
different objectives can lead to different “optimal” strategies. To provide decision support,
it is important to clearly state the decision objective and let the objective guide the selection
of state variables.

For the example, it is supposed that the objective of the government is to minimize the
total direct control costs. In this case, the reward is in the form of costs (or negative rewards).
Direct costs in this case are labour and material costs incurred by the control programs as
well as compensations paid to the affected parties. Other objective can be to minimize the
sum of direct control costs and export losses to the livestock section (Tomassen et al. 2002).
Since the pre-emptive culling of healthy animals can cause psychological damage to the
society, minimizing the number of healthy animals slaughtered can be an objective as well.

In general, direct costs of FMD control depend on the number of herds detected. Denote
Ua(Nt) as the reward (cost) function for action a when the number of new detection is Nt .
The form and parameters for the function Ua(.) can usually be specified based on economic
analyses. The expected reward for state i of Child 2 level if action a is taken at stage t , ra

i (t),
is then:

ra
i (t) = E[Ua(Nt+1)|Dt, i, a] =

∞∑

Nt+1=0

Ua(Nt+1)P (Nt+1|Dt, i, a). (8)

Since the probability is calculated as (2), this becomes:

ra
i (t) =

∞∑

Nt+1=0

Ua(Nt+1)
β

αt+1
t+1

(βt+1 + 1)(αt+1+Nt+1)Nt+1!
Nt+1∏

n=1

(αt+1 + Nt+1 − n). (9)
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Table 2 Parameters and values used in the example MLHMP model

Parameter Interpretation Example value

γ Weighting factor for the infection index 0.11

δ1 The reduction ratio for basic program 0.40

δ2 The reduction ratio for preemptive culling 0.20

δ3 The reduction ratio for emergency vaccination 0.30

Jmax Lower bound for the highest level of Jt 0.15

Jmin Upper bound for the lowest level of Jt 3.0

mmax Lower bound for the highest level of mt 5.0

mmin Upper bound for the lowest level of mt 1.0

Cmax Lower bound for the highest level of Ct 1.5

Cmin Upper bound for the lowest level of Ct 0.2

C0 Basic epidemic costs per day during the epidemic 4,300 k€
CBP Additional costs of basic program per newly detected herd 100 k€
CPC Additional costs of preemptive culling per newly detected herd 6,500 k€
CEV Additional costs of emergency vaccination per newly detected herd 400 k€

The rewards at the founder level are calculated from the child levels as described in Kris-
tensen and Jørgensen (2000). To simplify the illustration, we specify Ua(Nt) = C0 + CaNt ,
where C0 are the fixed costs of epidemic control (for all control programs), and Ca is the
additional costs per detected cases should program a be implemented. This specification
gives ra

i (t) = E[Ua(Nt+1)] = Ua[E(Nt+1)], which simplifies the calculation of ra
i (t) since

E(Nt+1) can be derived directly from (5). The parameters used for the example are listed in
Table 2.

4.3 Results

Optimization of a MLHMP model generates optimal control strategy for the chosen opti-
mality criterion. The optimal control strategy consists of decision rules for all possible states
which assign the optimal action to each state. The decisions at the strategic level are straight-
forward: start control when there is FMD epidemic and no control action is taken otherwise.
At operational level, the decision to stop the control program is assigned to the state with
lowest level of Jt (i.e., the epidemic is considered to be over), otherwise the tactical choice
will be carried out.

As mentioned in Sect. 2, tactical decisions are most important for the control of a par-
ticular epidemic which need to be fine-tuned to the states. A fraction of the optimal tactical
decisions for the example is shown in Table 3. Table 3 shows that initial choice of the tactical
decision (Period 1) varies in different states. For many states, it is optimal to start with the
basic program (BP) only. Choices of control programs at later stages depend on to which
state the current state will make a transition. For example, the initial choice for Child 1 state
No. 27 is to use BP. In Period 2, if the epidemic goes to state No. 6, emergency vaccination
(EV) should be used. And if the epidemic goes to state No. 39, pre-emptive culling (PC)
should be used.

Since the state transitions are probabilistic, it is not certain in Period 1 which state the
epidemic will enter in Period 2. However, for each possible state, the optimal action to be
taken is known in Period 1. The same holds for decisions at later stages. The results of the
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MLHMP model constitute a contingency plan for all possible scenarios of the epidemic (as
described by the states). The contingency plan provides guideline for FMD control which
ensures that the expected costs of FMD control is minimized if the strategy is followed.

The optimization of the MLHMP model calculates in fact expected costs of all possible
strategies to find the optimal strategy. This means that expected costs of both the optimal
strategy and the sub-optimal strategies (optimal action is not used) are available. Difference
in these results indicates the risk of using sub-optimal control strategies and the robustness
of the optimal strategy. For example, using the costs given in Table 2 we can calculate that
using the suboptimal action PC in state No. 27 (Period 1) instead of BP would increase
the total costs by about 66 million €. This means that postponing using additional control
measures such as PC in the first period can avoid unnecessary control costs.

5 Discussion

The decision support framework presented above provides a sound theoretical basis to deal
with uncertainties, learning, and hierarchic decisions in the dynamic decision making of
FMD control. The example demonstrates the potential of the framework for empirical appli-
cation. In particular, the results of the MLHMP model constitute a contingency plan which
can be used to be prepared for future epidemics.

Empirical application of the framework means obtaining realistic MLHMP parameters
(decision parameters, epidemiological parameters, and economic parameters) and using the
MLHMP model for contingency planning. This section addresses these issues.

5.1 Model parameters

Most information listed in Table 1 can be determined by consulting relevant policy docu-
ments such as the contingency plans. The number of levels for each state variable should be
chosen to balance the practical need and computational convenience. Since the state vari-
ables are defined on a continuous scale, discretization will always violate the embedded state
space model to a certain extent. To approximate the continuous scale of the state variables,
more levels are in general preferred to less. However, more levels will increase the state
space explosively and might lead to computational infeasibility. Sensitivity analysis may be
carried out to select the appropriate number of levels based on their impact on the optimal
policy.

Parameters such as listed in Table 2 need additional epidemic and economic modelling,
using information from past epidemics, experimental data and simulated epidemics (see
e.g., Ge et al. 2010). A large variety of economic and epidemiological models and methods
can be used for this purpose. For example, realistic epidemics in the Netherlands can be
simulated with the spatial stochastic simulation model InterFMD, using farm census data
(see e.g. Velthuis and Mourits 2007).

Considering the importance of the parameters of the disease spread model when defining
states and calculate state transition probabilities, methods to estimate these parameters are
worth describing. The weighing factor γ and initial moments for θ0 i.e. {m0,C0}, can be
estimated as follows.

Step 1. Start the infection and detection process in the simulation model with one farm
(randomly drawn from all susceptible herds) as the index case (first infected case).
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Step 2. When the first case is detected, the time is recorded as time 1 of the epidemic. Note
the number of detected herd on this day as N1 (i.e. N1 = 1) and the number of
infected but undetected herds as I0. Also note the number of detected herds after
this day as N2, . . . ,NT , where T is the maximal duration of an epidemic.

Step 3. Repeat Step 2 for M times to get M values for I0 and M time series of {N1, . . . ,NT }.
Step 4. Calculate the mean (m0) and variance (C0) of I0 from the M time series. Since

the undetected but infected herds I0 determine the potential growth of the observed
epidemic, it can be seen as θ0 in (5) (with J0 = 1 and δ = 1). The estimates m0 and
C0 can therefore be used to calculate α0 and β0 as described in West and Harrison
(1997).

Step 5. For each time series, repeat the following procedure for multiple γ values, γ =
{0.1,0.2, . . . ,0.9}:
• Run the DGLM for each time series
• On each day, use (5) (with δ = 1) as a predictor for Nt+1

• Calculate the forecast error et = Nt+1 − ft , where ft is the predictor
• Calculate the total sum of squares of the forecast errors for all M series.

Step 6. Choose the γ minimizing the total sum of squares of the forecast errors.

The parameter δ1, δ2, and δ3 can be estimated similarly by simulating the epidemic with
the actions implemented. It should be noted that, as an optimization model, the MLHMP
framework uses highly aggregated data and parameters and ignores the detailed informa-
tion that is available when simulation models are used. For example, the spatial information
contained in the GIS data could be used to provide region-specific or even farm-special con-
trol measures. Even though the information loss caused by data aggregation is inevitable,
the impact should be investigated with sensitivity analyses by altering the level of aggre-
gation. Further methodological research is necessary to investigate how to include spatial
information in the MLHMP model.

5.2 Contingency planning

Even though FMD is a constant threat, the time and situation in which the next FMD out-
break will occur is unpredictable. To increase preparedness, it is important to carry out con-
tingency planning during “peace time”. Empirical application of the MLHMP framework
can contribute to efficient contingency planning in two ways. First, it can be used to com-
pare optimal strategies under different decision objectives by changing reward functions and
the optimization criteria. If multiple objectives exist, investigating optimal strategies under
different objectives can facilitate the weighing process in multi-criteria analysis.

The second application of the framework makes use of the feature that the solution of
a MLHMP model generates not only the optimal strategy, but also calculates results of al-
ternative strategies. These results can be used to investigate the robustness of the optimal
strategy. One way to gain insight into the robustness of the optimal strategy in particular
state is to compare the results of the optimal strategy with a suboptimal strategy which uses
alternative action in the same state, as was done with the example. Based on the Markov
chain and value functions generated by the optimization, the results from other subopti-
mal strategies can be investigated by replacing more actions from the optimal strategy and
simulate the results with the underlying Markov chain. It is worth mentioning that, given
an optimal policy, the variance of the policy can be calculated from the simulations. This
can facilitate the risk communication with respect to the possible consequences of epidemic
control.
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The theory of MLHMP and the applications described above may remain abstract for
more practical application. To make the method more accessible, a software system has
been developed by Kristensen (2003). This software, visualizing the structure of the deci-
sion model, provides a graphical interface between real-life decision problem and the corre-
sponding decision model. This feature can facilitate the communication of the contingency
plan among different stakeholders.

6 Concluding remarks

This paper presents a decision support framework which deals with the uncertainties and
complexities of decision making in controlling FMD epidemics. The decision problem in
FMD control is represented by an MLHMP model which, when calculating the optimal con-
trol strategy, takes into account the interdependency among decisions. The use of dynamic
models and Bayesian updating provides consistent treatment to uncertainties and learning
about epidemic development. By identifying the hierarchic structure of the decision com-
plex, the framework simultaneously optimizes strategic, tactical, and operational decisions.

The decision support framework offers promising perspectives for empirical applications.
As shown by the example, an important application of the framework is contingency plan-
ning for future epidemics. The MLHMP model not only generates the optimal strategy, but
also provides information on suboptimal strategies, which can be used to test the robust-
ness of the optimal strategy. Depending on the desired level of details, the models can be
extended to answer specific questions of the decision-maker. The framework we have illus-
trated is of generic nature and can be extended to other highly contagious epidemic diseases
such as classical swine fever (CSF) and avian influenza.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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