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ABSTRACT

During incubation of chicken embryos, environmental conditions, such
as temperature, relative humidity, and CO

2
 concentration, must be

controlled to meet embryonic requirements that change during the
different phases of embryonic development. In the current review, the
effects of embryo temperature, egg weight loss, and CO

2
 concentration

on hatchability, hatchling quality, and subsequent performance are
discussed from an embryonic point of view. In addition, new insights
related to the incubation process are described.

Several studies have shown that a constant eggshell temperature
(EST) of 37.5 to 38.0°C throughout incubation results in the highest
hatchability, hatchling quality, and subsequent performance. Egg weight
loss must be between 6.5 and 14.0% of the initial egg weight, to obtain
an adequate air cell size before the embryo internally pips. An increased
CO

2
 concentration during the developmental phase of incubation (first

10 days) can accelerate embryonic development and hatchability, but
the physiological mechanisms of this acceleration are not completely
understood. Effects of ar increased CO

2
 concentration during late

incubation also need further investigation.
The preincubation warming profile, thermal manipulation, and in ovo

feeding are new insights related to the incubation process and show
that the optimal situation for the embryo during incubation highly
depends on the conditions of the eggs before (storage duration) and
during incubation (environmental conditions) and on the conditions of
the chickens after hatching (environmental temperature).

INTRODUCTION

During the last century, the poultry industry underwent many changes
that also affected the incubation industry. Due to the intensification of
poultry production, the brooding hen was first replaced by a small still-
air incubator and then by a forced-draught incubator. The forced-
draught incubator was used as a multi-stage system in which eggs of
different ages were present in the incubator at the same time. Since
the early nineties, it has been recognized that multi-stage incubators
do not completely fulfill the embryonic requirements and do not optimize
hatchling quality (Hill, 2000). Therefore, single-stage incubation was
introduced, in which only eggs of one age are incubated in an incubator.
In a single-stage incubator, environmental conditions, such as
temperature, relative humidity, and CO

2
 concentration, can be controlled

based on the changing embryonic requirements during the different
phases of embryonic development (French, 1997; Hulet, 2007; Bennett,
2010).

Along with the changes in inc.bation technology, genetic selection
improved the growth performance of broiler chickens. Consequently,
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the production cycle time has decreased in broiler
chickens, and the incubation process of 3 weeks has
respectively become a larger part of the total chickens
lifespan (Wolanski et al., 2004; Hulet, 2007), which
emphasizes the importance of the incubation process.
The challenge of modern incubation is to understand
and fulfill the specific embryonic requirements during
the different stages of development. In the current
review, effects of embryo temperature, egg weight
loss, and CO

2
 concentration on hatchability and

hatchling quality are discussed from an embryonic point
of view. In addition, new insights related to the
incubation process are described.

INCUBATION - TEMPERATURE

Eggshell temperature
In nature, a clutch of 13 to 15 eggs is incubated by

the hen (Romanoff & Romanoff, 1949). Eggs are
exposed to the environmental conditions in the nest,
which are partly created by the attentiveness of the
hen and egg-shifting behavior (Huggins, 1941; Freeman
& Vince, 1974). Temperature is one of the most
important environmental factors during incubation
(Freeman & Vince, 1974; Decuypere & Michels, 1992;
Meijerhof, 2009). During the day, temperature in the
nest fluctuates due to changes in environmental
temperature and attentiveness of the hen (Huggins,
1941; Freeman & Vince, 1974). In addition, a
temperature gradient is present within an egg as the
bottom of the egg is in contact with the nest material
and the top is covered by the brood patch of the hen
or surrounded by the air during a recess (Freeman &
Vince, 1974; Turner, 1997). After the complete
development of the chorio-allantoic membrane around
day 12 of incubation (Tullett & Deeming, 1987), the
embryo may be able to redistribute heat by its
circulation (Turner, 1997) and regulates its
temperature within certain limits. This is further
indicated by the result that blood flow in the
chorioallantoic membrane is found to react to changes
in temperature in the last week of incubation (Holland
et al., 1998; Nichelmann & Tzschentke, 2003;
Tzschentke, 2007). In contrast to nature, there is no
temperature gradient within the egg during artificial
incubation because all the eggs are surrounded by the
same air temperature. This means that an embryo is
not able to redistribute its blood flow to optimize its
temperature, and therefore, incubator temperature is
of high importance to maintain embryo temperatures
within narrow limits.

Historically, the air temperature of the incubator was
controlled and maintained between 36 and 38°C during
artificial incubation (Lundy, 1969; Decuypere et al.,
2001). Heat production increases exponentially after 9
days of incubation in chicken embryos (Lourens et al.,
2007) due to the increased metabolism of the embryos.
If air temperature is maintained between 36 and 38°C,
embryo temperature will increase throughout
incubation. Because embryo temperature is difficult to
measure without killing the embryo, eggshell
temperature (EST) is used as an indicator for embryo
temperature in practice. Eggshell temperature deviates
no more than 0.1 to 0.2°C from the embryo temperature
(Meijerhof & Van Beek, 1993; French, 1997). Several
studies have shown that a constant eggshell temperature
of 37.5 to 38.0°C throughout incubation results in the
highest hatchability and hatchling quality (Lourens et al.,
2005, 2007; Joseph et al., 2006; Leksrisompong et al.,
2007). A constant temperature of the eggshell or
embryo is the result of a balance between heat
p r o d u c t i o n  o f  t h e  e m b r y o  a n d  t h e  h e a t
transfer between the egg and the surroundings
(Meijerhof & Van Beek, 1993). Both factors will be
described below.

Embryonic heat production
The most important factors that influence embryonic

heat production are age of the breeder flock, egg size,
and stage of incubation (Tona et al., 2004; Lourens et

al., 2006; Hamidu et al., 2007; Meijerhof, 2009). Heat
production increases with age of the breeder flock,
even when it is corrected for egg sizes (O'Dea et al.,
2004, Lourens et al., 2006), and this may be related to
a larger yolk proportion in eggs of older flocks (Hamidu
et al., 2007). Due to the lower fertility and higher
embryonic mortality in old (> 50 weeks) and young
flocks (< 35 weeks; Yassin et al., 2008), total heat
production per incubator can be lower in young and
old flocks compared to prime flocks (35-50 weeks).
The stage of incubation has the largest influence on
heat production (Meijerhof, 2009). As stated earlier,
heat production increases exponentially after 9 days
of incubation in chicken embryos (Lourens et al., 2007).
Heat production reaches a plateau phase between day
15 and 18 of incubation and is approximately 140 mW
at day 18 of incubation for a 62-g egg (Dietz et al.,
1998; Lourens et al., 2006, 2007). After internal
pipping, around day 19 of incubation, embryos switch
to lung ventilation, and consequently, heat production
is almost increased twofold in broiler embryos (Rahn,
1981; Janke et al., 2004).
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Heat transfer
In addition to heat production, heat transfer also

determines embryo or eggshell temperature. Transfer
of heat from the egg to the surroundings or vice versa
is influenced by 3 factors, air temperature, air velocity,
and relative humidity (Meijerhof & Van Beek, 1993),
which will be discussed below.

To maintain an eggshell temperature around the
optimum of 37.5 to 38.0°C throughout incubation, air
temperature in the incubator must be higher than 37.5
to 38.0°C during the first days of incubation (French,
1997; Lourens et al., 2005, 2006; Yahav et al., 2009).
This is because the heat production by the embryos is
lower than the heat loss due to evaporation (Romijn
and Lokhorst, 1960). Around day 9 of incubation,
embryonic heat production becomes larger than the
heat loss due to evaporation and a gradual decrease
in air temperature is required to maintain the eggshell
temperature at 37.5 to 38.0°C (Romijn & Lokhorst,
1960; Lourens et al., 2005, 2006; Yahav et al., 2009).
The decrease in air temperature depends on factors
that influence heat production, such as breed and
breeder flock age which affects fertility rates and egg
sizes.

The second factor that has a large influence on heat
transfer is air velocity (Meijerhof & Van Beek, 1993).
Air velocity is especially important in the first few days
when eggs need to be warmed and after day 12 of
incubation when embryonic heat production increases
exponentially and needs to be removed from the eggs.
When air velocity is low, downstream eggs are cooled
less efficiently than upstream eggs, which increases
the variation in eggshell and embryo temperatures
among eggs (Elibol & Brake, 2008). A high air velocity
increases the heat transfer capacity of air and reduces
variation in eggshell and embryo temperatures.

The last factor that influences heat transfer is relative
humidity. Humid air transfers heat better than dry air,
and gas sealed incubators use this concept to transfer
heat to the eggs and create a more uniform
environment at the start of the incubation process. By
closing the damper of the incubator, moisture loss of
the eggs increases the relative humidity inside the
incubator (~80%). Since heat transfer is higher to
humid air than to dry air, this decreases variation in
temperatures and therefore variation in embryonic
development. It needs to be emphasized that increasing
relative humidity with the humidifier in the incubator
does not have the same effect as closing the damper.
Water sprayed in the incubator needs to be
evaporated, and this occurs on eggs situated near the

humidifier. As a result, eggs close to the humidifier are
cooled more than the other eggs, which increases the
variation in eggshell and embryo temperatures and
embryonic development among eggs (Meijerhof,
2009). Although a high relative humidity level can
increase the heat transfer capacity of the air, the
method used to increase the relative humidity in the
incubator determines the effects on hatchability and
hatchling quality.

Single-stage and multi-stage incubation
A constant eggshell temperature throughout

incubation can only be achieved by single-stage
incubation because incubator settings can be adjusted
to compensate for increasing heat production by
embryos. During multi-stage incubation, heat produced
by the older embryos is used to warm the younger
embryos. The advantage of multi-stage incubation is
that it is energy efficient, but the disadvantage is that
only one climate can be maintained in the incubator
because temperature and ventilation rate are fixed
throughout incubation. Consequently, eggshell
temperatures are maintained below the optimum of
37.5 to 38.0°C for eggs during the first week of
incubation and above the optimum in eggs during the
last week of incubation (Hulet, 2007). Lourens et al.
(2005, 2007) showed that any deviation from an EST
of 37.5 to 38.0°C could significantly reduce hatchability
and hatchling quality.

In both multi- and single-stage incubation,
overheating the embryos at the end of incubation
occurs because the fixed temperature is too high or
because the cooling capacity or air velocity within the
incubator is insufficient (French, 1997; Hulet, 2007).
Consequently, hatchability can be decreased (Lourens
et al., 2005, 2007), which can be related to a higher
incidence of malpositions such as head between legs
and head over wing (French, 2000). Further indications
of overheating at the end of incubation are reduced
hatchling development indicated by a lower yolk-free
body mass, a larger residual yolk, a shorter hatchling
length, and a poorer navel condition compared to
chickens that were incubated at a normal EST (Lourens
et al., 2005, 2007; Leksrisompong et al., 2007; Piestun
et al., 2009). The reason for this decrease in hatchling
development due to high incubation temperatures may
be the reduction in incubation duration, and
consequently, the reduction in time for development
(Lourens et al., 2007). In addition, Molenaar et al.
(2009) found that the lower development at hatch at
high temperatures might be related to the use of egg
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protein as an energy source that resulted in lower
protein deposition in the embryo from the utilized
nutrients from the egg.

Overheating of embryos at the end of incubation
decreases development at hatch and can have a
negative effect on subsequent performance. Lourens
et al. (2005) and Joseph et al. (2006) found up to 20 g
(13%) lower body weight at 1 week of age in chickens
incubated at high (38.9-39.5°C) temperatures relative
to those incubated at normal (37.8°C) eggshell
temperatures in the last week or last 2 days of
incubation, respectively. The difference in body weight
disappeared at marketing age in the study of Joseph
et al. (2006), and this may be due to compensatory
growth or to the relative short exposure of only 2 days
to high temperatures at the end of incubation.
Leksrisompong et al. (2009) found a negative effect of
high temperatures (≥ 39.0°C) from day 17 of incubation
until hatching on body weight up to 21 days of age.
Body weights of chickens were 54 g (7%) lower at 3
weeks of age after high (≥ 39.0°C) EST compared with
normal (± 37.5°C) EST treatment. A decrease in
performance due to high EST may be related to the
impaired hatchling development related with the earlier
hatch time. In addition, chickens spend more time in
the hatcher because of the earlier hatch time and are
more dehydrated than chickens incubated at a normal
temperature (Romanoff, 1936; Wyatt et al., 1985).
Several studies have shown that a delay in feed and
water supply posthatch has a negative effect on
subsequent performance (Wyatt et al., 1985; Pinchasov
& Noy, 1993; Noy & Sklan, 1999; Careghi et al., 2005).

In contrast to the other studies, Hulet et al. (2007)
found a positive result from an EST of 38.6°C during
late incubation on body weights at slaughter age.
Chickens incubated at an EST of 38.6°C from day 16
of incubation onward had a higher body weight at day
44 compared with incubation at an EST of 37.5°C or
39.7°C. This positive effect of the high EST may be
influenced by the environmental temperatures that the
chickens experienced during the grow out period. High
ESTs during incubation can improve the thermotolerance
of broiler chickens (Yahav et al., 2004a,b; Piestun et al.,
2008a,b; Yalçin et al., 2008, 2010), and this may have
improved their ability to cope with relatively high
temperatures during the grow out period and maintain
growth (Yalçin et al., 2010). The highest EST of 39.7°C
in the study of Hulet et al. (2007) did not improve
subsequent performance, but this temperature may
have greatly impaired development.

In conclusion, eggshell temperatures can be

maintained between 37.5 and 38.0°C throughout
incubation in a single-stage incubator, which appears
to result in the highest hatchability, hatchling quality,
and subsequent performance. In a multi-stage
incubator, it is not possible to maintain a constant
eggshell temperature, and embryos are too cold in the
first week and too hot in the last week of incubation.
In both single- and multi-stage incubation, there is a
risk of overheating the embryos at the end of
incubation, which can negatively affect hatchability,
hatchling quality, and subsequent performance.

INCUBATION - EGG WEIGHT LOSS

Water and gases are exchanged through the
eggshell during both artificial and natural incubation.
The amount of water and gases exchanged through
the eggshell is a result of eggshell characteristics and
a pressure difference between the egg and the
surrounding (Walsberg, 1980; Vleck, 1991). The total
amount of water inside the egg during embryonic
development is a function of two processes (Davis et

al., 1988). Firstly, an egg loses water by diffusion
(Paganelli, 1980). Secondly, the oxidation of yolk lipids
produces metabolic water that is added to the total
volume of the egg (Ar & Rahn, 1980). One reason for
egg weight loss is to create an adequate air cell size
inside the egg. This air cell must be large enough at
internal pipping for lung ventilation to begin (Ar & Rahn,
1980). Within a batch of eggs, individual egg weight
losses are variable due to variations in egg sizes
(Marshall & Cruickshank, 1938) and eggshell
conductance (Bryant & Sharp, 1934; Fromm, 1959).
Visschedijk et al. (1985) showed that the coefficient of
variation of eggshell conductivity within a batch of eggs
was 22%, a much higher variation than observed for
egg weight.

Hays & Spear (1951) showed that chickens were
able to hatch when egg weight loss was between 6.5
and 12% before external pipping occurred. Hulet et

al. (1987) showed that hatchability and poult livability
was optimal when turkey eggs lost between 9.5 to
11.5% of their egg weight. Meir & Ar (1987) concluded
that hatchability was optimal when turkey egg weight
loss was between 10 to 14%. In addition, Ar & Rahn
(1980) stated that the average egg weight loss should
be between 12 to 14% to obtain the highest
hatchability of chicken eggs. When eggs lose less than
6.5% of their egg weight before internal pipping
occurs, the size of the air cell is not adequate for lung
ventilation to begin. On the other hand, when the
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average egg weight loss increases above 14%, the
risk for dehydration increases. As a result, embryos may
die, or hatched chickens are small and dehydrated
(Tullett & Burton, 1982). Because the variation in
eggshell conductivity is high, there cannot be one
optimal percentage of egg weight loss, but there is an
optimal range of egg weight loss. As long as the egg
weight loss of the majority of eggs is between the
optimal range, hatchability and hatchling quality will
be maximized. It appears that egg weight loss must be
between 6.5 and 14.0% of the initial egg weight to
obtain an adequate air cell size before the embryo
internally pips.

Because the main reason for egg weight loss is to
reach an adequate size of the air cell for lung ventilation
to begin, it is probably not important at which moment
during incubation the egg loses its weight as long as
the air cell reaches an adequate size before the embryo
internally pips. Relative humidity within an incubator
can be used to change egg weight loss. A high relative
humidity towards hatching time will be necessary if
eggs evaporated a sufficient amount of water
previously but will be detrimental if the relative humidity
was high previously during incubation and no
substantial amount of water was lost (Robertson, 1961).

Some authors found an effect of relative humidity
on early embryonic mortality and hatching time, which
suggests that egg weight loss does not only affect size
of the air cell but also affects embryonic development
before the size of the air cell plays a crucial role.
Robertson (1961) showed that high relative humidity
(75-80%) increased mortality during the first 10 days
of incubation. The reason for this is unknown, but a
high relative humidity during the early period of
incubation may disrupt or retard embryonic growth and
development due to the disturbance of the organizing
centers or some other unknown deep-set physiological
mechanisms (Robertson, 1961) or due to reduced gas
exchange (Peebles et al., 1987).

Reinhart & Hurnik (1984) decreased hatching time
by lowering incubator relative humidity from 57% to
45% between days 3 and 18 of incubation. Peebles et

al. (1987) suggested that lowering relative humidity
might have shorteneds hatching time by promoting the
loss of extra metabolic water associated with an
increased metabolic rate. However, because air with
a low relative humidity has less heat transfer capacity,
embryo temperatures may have increased due to the
low relative humidity, and this may have caused the
shorter hatching time as well.

The difficulty in interpreting results of experiments

in which relative humidity is varied during incubation is
that embryo temperature is often not kept at the same
level in the different treatments. Changes in relative
humidity not only affect egg weight loss but also affect
the heat transfer capacity of the air and consequently
embryo temperatures. The effect on embryo
temperatures can cause changes in embryonic
development, which is not a direct result of the change
in relative humidity. Kosin (1964) stated that air velocity,
ventilation rate, machine temperature, and the pattern
of air distribution within the incubator depend on the
incubator design, and all of these factors affect the
percentage of relative humidity in the incubator.
Consequently, the effect of a particular level of relative
humidity on hatchability depends on incubator design,
and therefore, results of different experiments are
difficult to compare.

The effect of egg weight loss on hatchling quality
has not been investigated extensively. Bruzual et al.
(2000a) showed that hatchling weight increased when
the percentage of relative humidity during incubation
was increased (39.4 g, 40.2 g, and 41.2 g when relative
humidity was 43%, 53%, and 63%, respectively).
Hatching time was not affected by the percentage of
relative humidity during incubation in this study. Hamdy
et al. (1991) showed that the body weight of chickens
was 0.7 g higher when eggs were incubated at a
relative humidity of 55% compared to 45%. Excess
water is probably incorporated into the tissue of the
chicken (Davis et al., 1988), but in studies by Hamdy et

al. (1991), Swann & Brake (1990b), and Bruzual et al.
(2000a), this extra water was rapidly lost after hatching.
As a result, no difference in body weight was observed
at pull time (Bruzual et al., 2000a), and this suggests
that the period and conditions between hatch and
arrival at the farm affect hatchling quality more than
the relative humidity during incubation. Reinhart &
Hurnik (1984), Burton & Tullett (1985a), and Swann &
Brake (1990a) showed that extra water is not only left
in the tissue of the chickens but also in the eggshell or
eggshell membranes, and it is possible that this had a
negative effect on gas exchange through the eggshell
during the last part of incubation.

The relative humidity during incubation may have
an effect on later performance, but this also has not
been extensively investigated. Bruzual et al. (2000b)
suggested that chickens of a young breeder flock
incubated at a relative humidity level of 43% were
more sensitive to sub-optimal brooding conditions than
chickens of a young breeder flock incubated at relative
humidities of 53 and 63%, but the reason for this
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difference was not given. Hamdy et al. (1991) showed
that chickens that hatched from eggs incubated at 45%
relative humidity could better cope with high
temperatures during transport than chickens that
hatched from eggs incubated at 55% relative humidity.
The reason for this difference is unclear, but the
chickens in the 45% relative humidity treatment may
have produced less heat than the other chickens
(Hamdy et al., 1991).

It appears that egg weight loss has no detrimental
effect on hatchability as long as the majority of eggs
lose between 6.5 and 14.0% of their initial egg weight
before the embryo internally pips. The time and
conditions between hatch and arrival at the farm
probably have a more pronounced effect on hatchling
quality and on later performance than the relative
humidity during the embryonic phase of incubation.

INCUBATION - CO2 CONCENTRATION

In natural incubation, the CO
2
 concentration is

reported to increase from 0.05 to 0.90% within the
nest during incubation due to the increase in embryonic
development (Burke, 1925). Consequently, the O

2

concentration declines from 20.9 to 20.3% (Walsberg,
1980). However, gas concentrations are not fixed
during incubation because the nest is also ventilated
(Chattock, 1925; Rahn et al., 1977). In artificial
incubation, the CO

2
 concentration in a multi-stage

incubator is around 0.30% throughout incubation
(Gildersleeve & Boeschen, 1983). The CO

2

concentration in a single-stage incubator is around
0.05% at the onset of incubation and gradually
increases during incubation due to the CO

2
 production

of the embryos (Gildersleeve & Boeschen, 1983).
Maximal CO

2
 concentration in the incubator depends

on the number of fertile eggs and ventilation rate but
does not normally exceed 0.50% (Onagbesan et al.,
2007).

Sensitivity of the embryo to CO
2
 concentrations

during early incubation
Sensitivity of embryos to CO

2
 appears to change

with embryonic age. During the first 4 days of
incubation, the CO

2
 concentration can increase up to

1% without affecting hatchability (Taylor et al., 1956).
Between days 5 and 8 of incubation, embryos can
survive CO

2
 concentrations up to 3% (Taylor &

Kreutziger, 1965). The increase in tolerance of the
embryo for high CO

2
 concentrations after day 4 of

incubation may be caused by the establishment of the

respiratory system around 96 hours of incubation
(Taylor & Kreutziger, 1965). Between days 9 and 12
of incubation, which is the stage of development in
which the greatest rate of growth occurs in the extra-
embryonic membranes, embryos can survive CO

2

concentrations up to 5% (Taylor & Kreutziger, 1965).
Although the CO

2
 concentrations up to 5% do not

negatively affect hatchability, it is questionable how it
affects embryonic development.

Consequences of high CO
2
 concentrations

during early incubation
Under standard artificial incubation conditions, the

CO
2
 concentration will not increase above the

indicated tolerance levels, but several studies showed
that a gradual increase in the CO

2
 concentration to a

concentration of 0.7% or 1.5% during the first 10 days
of incubation in an air-tight incubator accelerated
embryonic development and improved hatchability (De
Smit et al., 2006, 2008). Bruggeman et al. (2007)
gradually increased CO

2
 concentration to 1.5% during

the first 10 days of incubation and also observed a
positive effect on early embryonic development but
did not find an effect on hatchability. Reasons why an
increase in CO

2
 concentration does not always improve

hatchability are unknown, but effects on hatchability
may depend on differences in genetics (De Smit et al.,
2008) or breeder flock age (Witters, 2009), which both
affect the metabolic rate of the embryo.

Another method to increase CO
2
 concentration in

the incubator is by CO
2
 injection. Sadler et al. (1954)

showed that a CO
2
 concentration of 2% to 4% during

the first 48 hours of incubation decreased albumen
pH and increased early embryonic development in
terms of body length, somite counts, and extra-
embryonic membrane development. However, Taylor
et al. (1956) found a reduction in hatchability when
eggs were incubated at these CO

2
 concentrations

during the first 48 hours of incubation. Gildersleeve &
Boeschen (1983) maintained different CO

2

concentrations by CO
2 
injection into the incubator for

different periods when turkey eggs were incubated.
A CO

2
 concentration of 0.30% during the first 10 days

increased hatchability by 5% compared to a CO
2

concentration of 0.10%. Hatchability increased due to
a decrease in embryonic mortality during the first 4
days of incubation and after day 21 of incubation.
Reijrink et al. (unpublished) investigated the effects of
high CO

2
 concentrations (between 0.7% and 0.8%

during the first 5 days of incubation by CO
2
 injection

into the incubator from the onset of incubation) when
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eggs were incubated after 15 days of storage.
Hatchability of fertile eggs decreased by 1.3%, and
embryonic development was retarded after 66 hours
of incubation.

It can be concluded that effects of a gradual
increase of the CO

2
 concentration or CO

2
 injection on

embryonic development and hatchability are variable.
CO

2 
concentrations probably affect albumen pH

(Bruggeman et al., 2007), the breakdown of the
chalaziferous membrane (Sadler et al. 1954), and the
formation of sub-embryonic fluid (Latter & Baggott,
2002). Genetics, breeder flock age, and storage
duration probably affect albumen pH, breakdown of
the chalaziferous membrane, and the formation of sub-
embryonic fluid. Therefore, the effects of CO

2

concentration on embryonic development and
hatchability vary due to differences in genetics, breeder
flock age, and storage duration. Because increased
CO

2
 concentrations do not structurally improve

hatchability, high CO
2 

concentrations during the first
part of incubation have not been extensively used in
practice.

CO
2
 concentrations during late incubation

Due to the high metabolic rate of the embryo and
limited conductance of the eggshell (Burton & Tullett,
1985b), the O

2
 concentration in the air cell decreases

to approximately 14.2%, and the CO
2
 concentration

increases to 5.6%, at the end of incubation around
the start of the hatching process (Romijn and Roos,
1938; Visschedijk, 1968). This triggers the embryo to
pip the air cell and emerge from the egg. Even within
species, there is a large variation in eggshell
conductance (Burton & Tullett, 1985b; Visschedijk et

al., 1985), resulting in a large variation in gas exchange,
and this creates differences in hatching time. These
differences in hatching time can be further increased
among batches of eggs by differences in storage time,
egg size, breeder flock age, and incubation conditions.
The variation in hatching time within a batch of eggs is
expressed as the hatch window, the time difference
between the first and last chicken hatching. In practice,
a short hatch window is preferred to achieve a uniform
flock at pull time. To achieve a short hatch window,
the CO

2
 concentration is sometimes increased to 2%

at the onset of pipping to stimulate the chickens to
hatch (French, 2010). CO

2
 concentrations up to 7%

from day 17 of incubation onward do not have a
negative effect on hatchability (Taylor et al., 1971).
However, the effect of high (> 1 %) compared to
normal (< 0.3%) CO

2 
concentrations during the

hatching phase on hatchling quality and subsequent
performance is unclear. In general, high CO

2

concentrations stimulate embryos to start the hatching
process and may reduce the hatch window of a batch
of eggs. However, some embryos may require a longer
incubation time to maximize their development during
the incubation process, for instance due to a higher
initial egg weight. Because of the high CO

2

concentration, they are forced to hatch, and this will
probably reduce the overall hatchling quality, indicated
by a lower yolk-free body mass and shorter hatchling
length. In addition, high CO

2
 concentrations at the end

of incubation may negatively affect heart and lung
maturation (Coleman & Coleman, 1991). Effects of high
CO

2
 concentration on hatchling quality and subsequent

performance are unclear, and more (practical) research
is required to evaluate the effects of high CO

2

concentrations.

NEW INSIGHTS RELATED TO THE INCUBATION
PROCESS

Although the optimal embryo requirements
regarding temperature, relative humidity, and CO

2

concentration to obtain maximum hatchability,
hatchling quality, and subsequent performance are still
not completely known, new insights related to the
incubation process have been gained. In this chapter,
a few new insights related to the incubation process
are described. Firstly, the effect of the preincubation
warming profile on hatchability is described. Secondly,
the effects of thermal manipulation during incubation
on thermotolerance of the embryos during incubation
and the birds later in life are explained. Furthermore,
the effect of in ovo feeding during the end of incubation
on the nutritional status of the embryo at hatch and
subsequent performance is described.

Preincubation warming profile
At the onset of incubation, eggs need to be warmed

from the storage temperature to the incubation
temperature. The preincubation warming profile is the
time and pattern used to increase the internal egg
temperature from the storage temperature to the
incubation temperature. The preincubation warming
profile affects condensation on eggs at the onset of
incubation. Condensation creates an optimal
environment for bacteria to grow and increases the
risk for contaminated eggs. Therefore, condesation
should be prevented at all times. On the other hand,
the preincubation warming profile may also affect
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embryo viability. Some authors have suggested that it
is beneficial to warm eggs quickly to the incubation
temperature because prolonged exposure to
temperatures between 25 and 35°C may increase
embryonic mortality or abnormal embryonic
development (Wilson, 1991; Renema et al., 2006). On
the other hand, Hodgetts (1999) suggested that eggs
should be warmed slowly to reduce the temperature
shock to the embryo. Reijrink et al. (2010) showed
that hatchability was not affected by the
preincubation warming profile (4 or 24 hours) when
eggs were stored for 4 days. However, after storage
for 13 days, embryonic mortality during the first 2
days of incubation decreased from 17.1 to 12.7%
when eggs were warmed over 24 hours instead of 4
hours. Long-stored eggs are probably more sensitive
to the preincubation warming profile than short-
stored eggs due to the negative effect of prolonged
egg storage on embryo viability. Rhyne et al. (2009)
showed that female broilers of stored eggs (14 days)
had significantly higher body weights at 6 weeks of
age when they were warmed over 18 hours compared
to 2 hours. Body weights of the male broilers were
significantly higher when warmed over 2 hours
instead of 18 hours. The reason for this difference is
unclear.

In conclusion, hatchability and hatchling quality
appear to be affected by preincubation warming
profile, but the effect depends on storage duration
and may depend on gender.

Thermal manipulations
Periods of high temperatures during the incubation

period may alter the thermotolerance of broiler
chickens in a process called thermal manipulation
(Piestun et al., 2008a; Yahav et al., 2009). Thermal
manipulation is applied during the period that the
thermoregulatory center in the brain develops and
matures (e.gs., days 6 to 16 of incubation) to alter the
'setpoint' of the systems controlling thermoregulation
(Piestun et al., 2008b). Temperatures used for thermal
manipulation during incubation are around 39.5°C and
are applied for 6 to 12 hours per day (Piestun et al.,
2008a; 2009; Yahav et al., 2009; Yalçin et al., 2010).
The result of thermal manipulation during incubation
is that chickens are better able to cope with high
temperatures during the grow out period (Piestun et

al., 2008b). Therefore, benefits on performance from
thermal manipulation appear to be particularly found
when broiler chickens experience high temperatures
during the grow out period (Yalçin et al., 2010). When

chickens are raised under normal temperatures,
subsequent performance can be negatively affected
in chickens subjected to frequent short exposures to a
high incubation temperature (39.6°C for 6 hours/day
from days 10 to 18 of incubation) compared to chickens
exposed to a constant incubation temperature of
37.8°C (Yalçin et al., 2010).

Other studies (Yahav et al., 2004a,b; Collin et al.,
2005, 2007; Tona et al., 2008; Tzschentke & Halle,
2009) applied short periods of high incubation
temperatures from day 16 to 18 of incubation, when
the axis in the brain related to thermoregulation is
activated (Wise & Frye, 1973; Yahav et al., 2004a).
Most studies (Yahav et al., 2004a,b; Collin et al., 2005,
2007; Tona et al., 2008) found no negative effects on
hatchability or hatchling weight in broiler chickens and
a positive effect on short-term thermotolerance
(e.gs., up to 1 week of age). However, long-term
effects on thermotolerance (e.gs., up to 6 weeks of
age) do not appear to be influenced by thermal
manipulation between day 16 and 18 of incubation
(Collin et al., 2007; Tona et al., 2008). It can be
concluded that in the future, thermal manipulation
during incubation may be used in hot climates to
maintain performance (Yalçin et al., 2010). However,
when normal temperatures can be maintained during
the grow out period, thermal manipulation can have
a negative effect on subsequent performance (Yalçin
et al., 2010).

In ovo feeding
During in ovo feeding, an isotonic solution is injected

in the amnion of the embryo around day 18 of
incubation to improve the nutritional status of the
embryo and chicken. The injected solution contains
carbohydrates, proteins or a mixture of both. The in
ovo feed is consumed by the embryo before pipping
the air cell (Uni & Ferket, 2004). In practice, in ovo
feeding is applied when chicken embryos are
transferred from the setter to the hatcher. Hatchling
weight can increase by 5 to 6% due to in ovo feeding
(Uni et al., 2005; Foye et al., 2006). Furthermore,
immune system development, health status, muscle
development, and breast meat yield can improve due
to in ovo feeding (Uni & Ferket, 2004; Uni et al., 2005).
The effect of in ovo feeding is influenced by genetics,
age of the breeder flock, egg size, and incubation
conditions (Ferket, 2009). When incubation conditions
fulfill the embryonic requirements, effects of in ovo
feeding may be limited.
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CONCLUSIONS

Incubation temperature, egg weight loss, and CO
2

concentrations need to be controlled to fulfill the
specific embryonic requirements throughout incubation.
Embryo and eggshell temperature need to be
maintained between 37.5 and 38.0°C throughout
incubation to optimize hatchability, hatchling quality,
and subsequent performance. In a single-stage
incubator, incubation conditions can be adjusted to the
embryo requirements that change during development.
Egg weight loss must be between 6.5 and 14.0% of
the initial egg weight to obtain an adequate air cell
size before the embryo internally pips. Effects of CO

2

concentrations during early and late incubation on
hatchability, hatchling quality, and subsequent
performance are ambiguous and need further practical
and scientific investigation.

New insights related to the incubation process of
broiler chickens are the preincubation warming profile,
thermal manipulation, and in ovo feeding. These new
insights show that the optimal situation for the embryo
during incubation highly depends on the conditions of
the eggs before (storage duration) and during
incubation (environmental conditions) and the
conditions of the chickens after hatching
(environmental temperature).
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