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octocoral Sinularia flexibilis at varying irradiances
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Abstract: Chlorophyll-a (chl-a) and carotenoid pigments of the zooxanthellate octocoral Sinularia flexibilis were analyzed
using high performance liquid chromatography following exposure to three light intensities for over 30 days. From the coral
fragments located at different light intensities, a total carotenoid of >41 µg g−1 dry weight, including peridinin, xanthophylls
(likely diadinoxanthin + diatoxanthin), and chl-a as the most abundant pigments, with minor contents of astaxantin and
β-carotene were detected. The whole content of chl-a weighed 5 µg g−1 dry weight in all coral colonies. Chl-a and carotenoids
contributed 11.2% and 88.2%, respectively, to all pigments detected, and together accounted for 99.4% of the total pigments
present. The highest contents of carotenoids and chl-a was observed in the coral grafts placed in an irradiance of 100 µmol
quanta m−2 s−1; they showed lower ratios of total carotenoids: chl-a compared to those exposed to 400 µmol quanta m−2

s−1 after >30 days of incubation. The ratios of peridinin and xanthophylls with respect to chl-a from the colonies at 400
µmol quanta m−2 s−1 were approximately double those observed at irradiances of 100 and 200 µmol quanta m−2 s−1.
Partial quantification of pigments in this study showed that the carotenoids of S. flexibilis showed a decrease at irradiances
above 100 µmol quanta m−2 s−1, with the exception of an increase in β-carotene at 200 µmol quanta m−2 s−1.
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Abbreviations: chl-a – chlorophyll-a; DW – dry weight; HPLC – high-performance liquid chromatography.

Introduction

The symbiotic soft coral Sinularia flexibilis Quoy et
Gaimard, 1883, like other symbiotic corals co-exists
with photosynthetic, endosymbiotic dinoflagellates of
the genus Symbiodinium (i.e., zooxanthellae). The zoox-
anthellae in these corals require to access to ample
light in order to provide the coral host with translo-
cated essential nutrients and photosynthetically fixed
carbon. Such corals inhabit near surface waters where
they are exposed to increased radiation. It has been
found that, in order for these photosynthetic corals
to protect themselves against deleterious effects of
extra irradiance, they have developed some adapta-
tion mechanisms such as pigment production, including
carotenoids. Carotenoids are considered to be impor-
tant photo-protective components of corals in both light
harvesting and photoprotection (as natural sunscreens:
Bandaranayake 2006). It is well-known that carotenoids
potentially originate from endosymbionts and are po-
tent antioxidants that can reduce oxygen radical dam-
age (Frank & Cogdell 1996; Mobley & Gleason 2003).
Zoxanthellae contain pigments, i.e., chl-a and c,

carotene, xanthophylls (diadinoxanthin + diatoxan-
thin), and a pigment unique to the Dinophyceae: peri-
dinin (Jeffrey & Haxo 1968; Johansen et al. 1974;
Liaaen-Jensen 1989). Peridinin has been reported

to possess anti-tumor and anti-carcinogenic activities
(Suzuki et al. 2003). The majority of xanthophylls
are involved in photo-protection the content of which
as well as of other pigments is variable, depending
on the predominant light conditions (Iglesias-Prieto &
Trench 1997). The pigment/chl-a ratios also vary be-
tween species and groups and are influenced by light
conditions (Latasa 1995; Goericke & Montoya 1998;
Nicklisch & Woitke 1999). Reported light intensities in
coral habitats normally vary from >2000 µmol quanta
m−2 s−1 on the surface with a descending pattern of 60,
20 and 4% attenuation moving downward up to a depth
of 150 m (e.g., Lesser & Farrel 2004; Rodolfo-Metalpa
et al. 2008).
Carotenoids extracted from symbiotic soft corals

(Jeffrey & Haxo 1968; Hallenstvet & Liaaen-Jensen
1979) were found to be identical with those of di-
noflagellates and ascribed to zooxanthellae symbionts.
Zooxanthellate corals are, therefore, rich in carotenoids
(Chalker & Dunlap 1981) and changes in carotenoid
concentrations may have important physiological im-
plications for the coral and the coral-algal symbio-
sis (Klepple et al. 1989). Moreover, the chlorophyll–
carotenoid interactions are a subject of biological im-
portance (Gruszecki et al. 2000). It has been found (e.g.,
Khalesi et al. 2008) that in symbiotic corals as the light
intensity increases, the contents of photosynthetic pig-
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ments as well as accessory photosynthetic pigments de-
crease.
The study of algal pigmentation in some symbiotic

corals has already been reported (Kleppel et al. 1989;
Brown et al. 2000). However, in addition to lack of data
on carotenoids of S. flexibilis, changes in intensities of
light for their effect on the photoprotective properties
of carotenoids in this octocoral have not yet been in-
vestigated. Because carotenoid content depends on en-
vironmental conditions such as irradiance, in this study
changes of chl-a and carotenoid contents of S. flexibilis
at three light intensities were investigated in laboratory
conditions.

Material and methods

Corals and experimental conditions
Colonies of the octocoral Sinularia flexibilis were obtained
from the Burger’s Zoo, Arnhem, the Netherlands. These
corals all originate from one stock and are, therefore, all ge-
netically clones. These parent colonies were transferred to
the laboratory and placed in a main stocking tank (Eco-deco
systems, Dymico-Model 1000) containing ∼1300 L saltwa-
ter, made of Instant Ocean, at 34‰ ± 0.4 salinity, 25.8 ±
0.2◦C, for rearing the coral stock. The tank was equipped
with one VHOHalide, 10,000 HQI lamps (AquaMedic aqua-
light 400, Aquaria Veldhuis, Enschede, the Netherlands) ad-
justed for 12 h light: 12 h dark photoperiod. Cultures of S.
flexibilis were grown in the laboratory to estimate the influ-
ence of light conditions on the pigment content as well as
pigment/chl-a ratios. To do this, pieces of the coral (nubbins
or fragments of 5–7 cm) were cut, fixed on PVC platelets,
and attached to the substrate within 1–2 weeks. These nub-
bins were placed in three experimental tanks (n = 5 nubbins
per tank) located on the main stocking tank. Each experi-
mental tank exposed to approximate light intensities of 100,
200 and 400 µmol quanta m−2 s−1 measured as photon flux
density (PFD) using an underwater photo sensor (LI-COR,
Li250 Light meter). The required light intensity was pro-
vided through adjusting the distance of the colonies inside
the tanks from the light source. The water in the experimen-
tal tanks was circulated through the main stocking tank;
therefore, all three tanks had similar environmental condi-
tions except in light intensity. The water flow, which is a
vital factor for this coral (Khalesi et al. 2007) was created
by air tubes in the experimental tanks. The water veloc-
ity was measured by a thermistor to ensure having almost
identical water velocities around the microcolonies. The ex-
perimental coral colonies were incubated in the tanks for
over 30 days, during which their response and development
was monitored.

Pigment extraction and quantification
After the incubation period, the coral samples from each
tank were separately collected, washed with filtered sea wa-
ter, and their wet weight was determined by weighing dry-
blotted samples. Each group (treatment) was then freeze-
dried for dry weight determination. The groups were crushed
and extracted separately according to Kinzie (1993) using
chilled methanol: tetrahydrafuran (80 : 20 vol : vol) as the
solvent at 4◦C overnight. This solvent is efficient in extract-
ing both chl-a and more polar pigments (such as xantho-
phylls) and has been recommended for extracting pigments
from coral endosymbionts (Chalker & Dunlap 1981). The

separate extracts were centrifuged and aliquots of the su-
pernatant from the extracts of each colony (treatment) were
qualified using a spectrophotometer (Spectronic 20 Genesys,
USA). The solvent from each extracted colony was then
dried separately using N gas flow, followed by storing at
−20◦C for later quantification of pigments. The HPLC pro-
cedure was based on Fraser et al. (2000), done at The PRI,
Wageningen University, the Netherlands. Pigments were
characterized by their retention time and spectral charac-
teristics, compared to those found in the literature (Fraga
et al. 1995; Jeffrey & Wright 1997; de Oliveira-Proenca et
al. 2001). The pigments concentrations calculated using the
equations of Jeffrey & Humphrey (1975), normalized to the
dry weights of the coral fragments.

Results and discussion

Photosynthetic pigments
Main photosynthetic pigments found in the colonies of
S. flexibilis were: the porphyrins chl-a with its isomers,
and the carotenoids peridinin, xanthopylls (likely di-
adinaxanthin, diatoxanthin and dinoxanthin), astaxan-
thin, and β-carotene (Table 1). Total content of the
carotenoid pigments was >41 µg g−1 DW at all light
intensities. Chl-a content of all coral colonies totally
weighed 5 µg g−1 DW. Chl-a and carotenoids con-
tributed with 11.2% and 88.2%, respectively, to all pig-
ments detected, and together accounted for >99% of
all pigments present. A proportion of >95% was re-
ported for all pigments found in four species of sym-
biotic hard corals (Fang et al. 1995). Other uniden-
tified minor peaks present in S. flexibilis likely con-
sisted of dinoxanthin and isomers of chlorophylls and
carotenoids, as by-products of extraction and storage
(Jeffery & Wright 1997).
The highest total carotenoids content of 19 µg g−1

DW was found in the colonies located at a light inten-
sity of 100 µmol quanta m−2 s−1. The coral colonies
settled at irradiances of 200 and 400 µmol quanta m−2

s−1 were almost similar in amounts of peridinin (9 and
10 µg g−1 DW) and xanthophylls (1.5 µg g−1 DW).
Astaxanthin and β-carotene contents were very low
(1 µg g−1 DW) and seemed unrelated to increased light
intensity; they were two times at 100 than at 400 µmol
quanta m−2 s−1 (Table 1). The minor amounts of both
astaxanthin and β-carotene are common in brownish
cnidarians (Borneman 1997) such as S. flexibilis. β-
carotene represented 1.1% of all carotenoids; this is
similar to 1% detected in eight Alcyonian soft corals
(Hallenstvet & Liaaen-Jensen 1979). Astaxanthin ac-
counted for 1.6% of total carotenoids detected inS. flex-
ibilis, which is higher than 0.3% of total carotenoids
found in free dinoflagellates (Johansen et al. 1974).
The high percentage of peridinin (82%) is close to
85.5% reported by Johansen et al. (1974) in free di-
noflagellates, and lies in the range of 70–88% in eight
soft corals reported by Hallenstvet & Liaaen-Jensen
(1979). The carotenoids totally comprised 0.0024%
of the freeze-dried coral material, which is compara-
ble to 0.003–0.009% of lyophilized soft corals repre-
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Table 1. Contents and ratios of pigments per unit dry weight of S. flexibilis colonies at three irradiances.

Pigments (µg g−1 DW)
Irradiance

(µmol quanta m−2 s−1)Chl-a Total carot. Carot./chl-a Chl-a/ carot. Perid. Xanth. β-carot. Astax. WT (g)

100 3 19 6.5 0.15 15 3 0.4 0.3 0.5
200 1.6 11 7 1.14 9 1.5 0.6 0.24 0.65
400 0.8 11.7 15 0.07 10 1.5 0.1 0.14 0.5

Fig. 1A. Sinularia flexibilis. HPLC chromatograms of pigments extracted from the colonies of S. flexibilis kept under different regimes
of irradiance for >30 days. The multiple lines show partial pigment concentrations at each light treatment (100, 200, and 400 µmol
quanta m−2 s−1). Pigment identities are: (1) Xanthoplylls; (2) Astaxanthin; (3) Chlorophyll-like compound; (4) Peridinin; (5, 6, 8)
possibly carotenoids; (7) Chl-a; (9, 10) Chl-a isomeres; (11) possibly chlorophyll; (12) Chlorophyll-like compound; (13) β-carotene.

sented by Hallenstvet & Liaaen-Jensen (1979). This
may suggest species-specificity of carotenoid contents
in corals.

Effect of light intensity
Quantitative results from HPLC (Fig. 1) on the
amount of both the pigments (peridinin, chl-a) and
carotenoids [β-carotene and certain photoprotecting
xanthophylls in smaller quantities (likely diadinoxan-
thin+diatoxanthin)] showed to be different among the
treatments. It appears that increased irradiance caused
a descending pattern in the concentration of chl-a con-
tents after the >30–d experiment, especially between
the colonies at 100 and 400 µmol quanta m−2s−1

(Fig. 2). Chl-a (g−1 DW) was 3.75 times higher in 100
than in 400 µmol quanta m−2 s−1 and almost two times
that of the corals in 200 µmol quanta m−2 s−1. The
same effect of light intensity on chl-a content was also
found previously in S. flexibilis (Khalesi et al. 2008).
This also corroborates the general finding that in zoox-
anthellate corals, chl-a densities tend to diminish in
symbiotic dinoflagellates in response to changes in light

intensity (Hoegh-Guldberg & Smith 1989; Fitt & Cook
2001). Higher chlorophyll content at lower light levels
than at higher intensities (<100 to >200 µmol quanta
m−2 s−1), by experimentation or in the field, has been
reported in various symbiotic cnidarians (e.g., Porter
et al. 1984; Muller-Parker 1987; Verde & McCloskey
2002).
The coral samples at 100 and 200 µmol quanta m−2

s−1 showed almost similar contents of both astaxantin
and β-carotene; β-carotene was slightly higher at 200
µmol quanta m−2 s−1 (Fig. 2). Lower concentrations
of astaxantin and other zooxanthellar pigments, includ-
ing peridinin, xanthophylls, and chl-a was also reported
(Kleppel et al. 1989) in the reef coralMontastrea annu-
laris Ellis et Solander, 1786 resulting from light-induced
bleaching (loss of pigments). The observed decrease in
the total carotenoid contents at relatively high irradi-
ance (400 µmol quanta m−2 s−1) in this study agrees
with De Mora et al. (2000); it is, however, in contrast
with general assumption that carotenoids increase at
high light intensities (e.g., Demers et al. 1991; Mon-
tané et al. 1998). Exposure to artificial light intensi-
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Fig. 1B. Sinularia flexibilis. Representative chromatograms illustrating the peaks corresponding to the detected pigments in the coral
colonies.

ties (>200 µmol quanta m−2 s−1) did not induce any
changes in carotenoid levels in zooxanthellae of a sym-

biotic sea anemone (Verde & McCloskey 2002). Overall,
the contents of all detected carotenoids in S. flexibilis
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Fig. 2. Contents of detected pigments g−1 DW, determined by HPLC, in the colonies of S. flexibilis at three light intensities after over
30 days under laboratory conditions.

appeared to be comparatively lower at elevated irradi-
ances (>200 µmol quanta m−2 s−1).

Ratios of pigments
The ratio of chl-a to peridinin (0.2 : 0.2, w : w) was
relatively higher at 100 and 200 µmol quanta m−2

s−1 compared to a ratio of 0.2 : 0.1 in the corals at
400 µmol quanta m−2 s−1; this may be because rates
of photosynthesis under lower light conditions tend to
be optimized (Myers et al. 1999). The ratios of chl-a
: total carotenoids also differed between 100 and 400
µmol quanta m−2 s−1, but this ratio was almost sim-
ilar at irradiances of 100 and 200 µmol quanta m−2

s−1 (Table 1). It, therefore, seems that relatively low
and high light intensities (100 and 400 µmol quanta
m−2 s−1) had an impact on the values of the diagnos-
tic pigment/chl-a ratios, with the exception of peridinin
and xanthophylls at irradiances of 100 and 200 µmol
quanta m−2 s−1; in these light intensities, the ratios of
peridinin/chl-a (5.3 and 5.5) and xanthophylls/chl-a (1

and 0.9) were almost similar. A higher ratio of total
carotenoids/chl-amay be because of faster degradation
of chlorophyll that can be taken to suggest photopro-
tection against raised irradiances (De Mora et al. 2000).
This indicates a decrease in chl-a in favor of the photo-
protective carotenes to respond the increased irradiance
stress on the coral.

Conclusion

In conclusion, the results of this study suggest that,
for relatively short periods of time, increasing irradi-
ance does not seem to multiply either photosynthetic or
photoprotective densities in Sinularia flexibilis. Partial
quantification of carotenoids of this soft coral showed
no increase in the biosynthesis of these pigments by
elevated light intensity under experimental conditions
after 30 days. The carotenoids showed to decrease at
irradiances above 100 µmol quanta m−2s−1, except
the increase in β-carotene at 200 µmol quanta m−2
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s−1. The higher ratio of carotenoids/chl-a at relatively
high light intensity (400 µmol quanta m−2 s−1) indi-
cates that while chl-a decreased with increasing irra-
diance, the proportion of photoprotective carotenoids
remained comparatively high to reduce photodamage
to the coral. Furthermore, the higher content of peri-
dinin at relatively low light intensity (100 µmol quanta
m−2 s−1) can be taken as an irradiance in which
this species optimizes the production of peridinin as
a potential antitumor compound to be utilized for
biomedical research. Overall, it appears that S. flexi-
bilis prefers rather low light intensities to enhance the
biosynthesis of both photosynthetic and accessory pig-
ments. Because very little information is available on
the carotenoid composition of soft corals, especially un-
der enclosed situations, this study provides more in-
sights in the carotenoids composition of soft corals. Fu-
ture studies should concentrate further on this topic.
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