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Abstract  19 

This study aims to assess several factors that influence the accuracy of the plate count technique 20 

to estimate low numbers of micro-organisms in liquid and solid food. Concentrations around 10 21 

CFU/ml or 100 CFU/g in the original sample, which can still be enumerated with the plate count 22 

technique, are considered as low numbers. The impact of low plate counts, technical errors, 23 

heterogeneity of contamination and singular versus duplicate plating were studied. Batches of 24 

liquid and powdered milk were artificially contaminated with various amounts of Cronobacter 25 

sakazakii strain ATCC 29544 to create batches with accurately known levels of contamination. 26 

After thoroughly mixing, these batches were extensively sampled and plated in duplicate. The 27 

coefficient of variation (CV) was calculated for samples from both batches of liquid and 28 

powdered product as a measure of the dispersion within the samples. The impact of technical 29 

errors and low plate counts were determined theoretically, experimentally, as well as with Monte 30 

Carlo simulations. CV-values for samples of liquid milk batches were found to be similar to their 31 

theoretical CV-values established by assuming Poisson distribution of the plate counts. However, 32 

CV-values of samples of powdered milk batches were approximately five times higher than their 33 

theoretical CV-values. In particular, powdered milk samples with low numbers of Cronobacter 34 

spp. showed much more dispersion than expected which was likely due to heterogeneity. The 35 

impact of technical errors was found to be less prominent than that of low plate counts or of 36 

heterogeneity. Considering the impact of low plate counts on accuracy, it would be advisable to 37 

keep to a lower limit for plate counts of  25 colonies/plate rather than to the currently advocated 38 

10 colonies/plate. For a powdered product with a heterogeneous contamination, it is more 39 

accurate to use 10 plates for 10 individual samples than to use the same 10 plates for 5 samples 40 

plated in duplicate. 41 
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 42 

1. Introduction  43 

In food microbiology, plate counting is a longstanding and widely used enumeration method 44 

to estimate the number of viable micro-organisms in food samples based on the assumption that 45 

the micro-organisms are homogeneously distributed within foods. Assuming that all cells are 46 

spatially separated, each viable micro-organism is expected to form one colony on an agar plate 47 

provided that the medium, the temperature, the oxygen conditions and the incubation period are 48 

suitable for potential recovery and growth. The number of colony forming units (CFU) per gram 49 

or milliliter of sample is calculated from the plate counts, the dilution factor and the plated 50 

volume.  51 

The counting range of the acceptable number of colonies per plate has been reported early on 52 

as a factor affecting the accuracy of the plate counting method and recommendations for suitable 53 

counting ranges have been published accordingly. A range of 30-500 colonies per plate has been 54 

recommended by Breed and Dotterer (1916) in their proposal to revise the standard methods of 55 

milk analysis. This original recommendation has later been amended to a range of 30-300 56 

colonies per plate, which has found wide acceptance (Adams and Moss, 2008 ; Sutton, 2006). An 57 

optimum counting range of 25-250 colonies per plate for a 10-fold dilution series of raw milk has 58 

been recommended by Tomasiewicz et al. (1980). A range of 15-300 for non-selective plates has 59 

been prescribed in ISO standard 4833 (ISO, 2003). Most recently, the lower limit of the 60 

acceptable counting range was decreased to 10 in ISO standard 7218 (ISO, 2007). Over the years, 61 

the number of replicate plates advised for enumeration reduced from triplicate (Breed and 62 

Dotterrer,1916; Tomasiewicz et al., 1980), over duplicate (ISO, 2003), to singular plating for at 63 

least two successive dilutions (ISO, 2007). As the number of replicate plates directly affects the 64 

volume and the total number counted, this factor also impacts the accuracy of the plating method. 65 
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 Regarding the dilution factor and the plated volume used to calculate the number of 66 

micro-organisms in a sample (expressed as CFU/g or CFU/mL), pipet volume and sample weight 67 

can both be assumed to be normally distributed and to be characterised by a mean and standard 68 

deviation. However, plate counts vary according to a Poisson distribution as Fischer et al. (1922) 69 

showed for replicate plates of soil samples and Wilson (1935) showed for plate counts of milk 70 

samples. Because the standard deviation of a Poisson distribution is equal to the square root of 71 

the mean of the distribution, the count itself is a measure of the precision of the method. Plate 72 

count data will always be more variable than the variability resulting only from sampling 73 

homogeneously distributed micro-organisms (Cowell and Morisetti,1969). Therefore, variability 74 

in the colony count on plates enables one to calculate the limiting precision of counts. The 75 

limiting precision caused by the Poisson distribution error can be expressed by the coefficient of 76 

variation (CV). CV-values have been shown to increase for lower plate counts (Cowell and 77 

Morisetti, 1969;  Jarvis, 2008). Additionally to the Poisson distribution error, the error in 78 

counting the actual colonies on plates can be assumed to be normally distributed.  79 

Understanding the various factors that impact on accuracy of the plating method is 80 

important to confidently assess numbers of micro-organisms in foods. Since the microbial 81 

distribution in foods is inherently heterogeneous (Corry et al., 2007; ICMSF, 2002), and  82 

hazardous micro-organisms generally are present in low numbers, both heterogeneity and low 83 

numbers will influence the enumeration of micro-organisms. Plate counts from rather 84 

homogeneous products have been studied in quite good detail. However, plate counts from 85 

heterogeneous products such as solid and powdered foods have received less attention.  86 

Therefore, this study systematically determined the impact of three factors on the 87 

accuracy of the plating method when estimating low numbers of Cronobacter sakazakii strain 88 

ATCC 29544 in liquid milk as compared to powdered milk: 1) the number of colonies on plates, 89 
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2) heterogeneity of the food product and 3) technical errors caused by pipetting, weighing and 90 

counting. As the overall accuracy of the plate count technique is extensively discussed in  the 91 

review of Corry et al. (2007), our study expands on this and previous investigations by also 92 

taking microbiological heterogeneity into account and determining the impact of technical errors, 93 

low numbers of micro-organisms as well as singular versus duplicate plating. The accuracy of the 94 

plating was investigated theoretically, experimentally and using Monte Carlo simulations. The 95 

impact of low numbers was determined by repeating the experiment for different numbers of the 96 

C. sakazakii in liquid and powdered milk, taking a large series of samples in each experiment and 97 

keeping all other conditions constant.  98 

 99 

2. Materials and methods 100 

2.1 Defining accuracy 101 

According to ISO standard 5725-1 (ISO, 1994), the accuracy of measurement methods and results 102 

depends on both trueness and precision. Trueness is defined as the closeness of agreement 103 

between the average value obtained from a large series of test results and an accepted reference 104 

value. If an accepted reference value is not available, the expected measurable quantity may be 105 

used as the reference for comparison of test results. Precision is defined as the closeness of 106 

agreement between independent test results obtained under stipulated conditions. The precision of 107 

a measurement method is indicated by the reading error of a measurement or the standard 108 

deviation of a series of measurements. The accuracy in directly measured quantities such as 109 

sample weight, dilution volume, and plated volume will propagate in the final enumeration value 110 

(the number of micro-organisms in a sample, expressed as CFU/g or CFU/mL). 111 

 112 
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2.2 Calculating the number of micro-organisms in the original sample (N) from plate 113 

counts. 114 

The number of micro-organisms in the original sample (N) can be calculated from the plate count, 115 

the volume plated, and the dilution factor (ISO, 2007): 116 

dV

C
N

⋅⋅
= ∑

1.1plate

      (1) 117 

with  N: number of colony forming units per milliliter (CFU/mL) or gram (CFU/g), ΣC: sum of 118 

the colonies counted on two plates retained from two successive dilutions, at least one of which 119 

contains a minimum of 10 colonies, Vplate: plated volume (mL), and d: dilution factor 120 

corresponding to the first dilution retained; d is 1 when an undiluted liquid sample is plated.  121 

For low numbers of micro-organisms in a solid or powdered sample, the 10-1 dilution will be 122 

used instead of successive dilutions. Based on this one dilution, Equation 1 results in  123 

dV

C
N

⋅
=

plate

       (2) 124 

with C: counted colonies on a plate.  125 

Assuming 1 g = 1 mL for a solid or powdered sample, the dilution factor is the ratio between the 126 

sample volume and the sample volume plus the dilution volume:  127 

dilVS

S
d

+
=        (3) 128 

with Vdil: dilution volume (mL) and S: sample volume (mL) or weight (g). For low numbers of 129 

micro-organisms in the original sample,  combining equation 2 and 3 results in:  130 

S

VS

V

C
N

)( dil

plate

+
⋅=       (4) 131 

 132 
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2.3 Using error propagation to assess the impact of technical errors on N 133 

The precision errors in the directly measured quantities C, Vplate, Vdil, and S, will propagate to an 134 

error in the resulting N. For each measured quantity, the precision error is expressed in the 135 

standard deviation:Cσ , 
plateVσ ,

dilVσ and Sσ . The standard deviation in the plated volume (
plateVσ ) 136 

has been determined by weighing 30 plated volumes with an analytical balance (Sartorius, 137 

Göttingen, Germany). The standard deviations in the dilution volume (
dilVσ ) and in the sample S 138 

from liquid milk ( liquidSσ ) or powdered milk ( powderSσ ) were determined in the same way. If the 139 

error in C is only determined by counting, the standard deviation Cσ  can be derived from a count 140 

error of 5% (Peeler et al., 1982). Assuming normally distributed count data, and given a mean 141 

value of µ, a maximal count error of 5% results in Cσ = 5/3 % of µ as 99% of normally 142 

distributed data are within the interval σµ 3± .  143 

For independent random errors, the propagation of the precision error was calculated 144 

using two rules (Taylor, 1982): the error (δq) in the result of an addition or subtraction (Eq. 5) 145 

and the relative error (
q

qδ
) in the result of a multiplication or division (Eq. 6). 146 

Rule 1: If  yxq +=  or yxq −=  then 22 yxq δδδ +=        (5) 147 

Rule 2: If  yxq ⋅=  or 
y

x
q =  then

22









+







=
y

y

x

x

q

q δδδ
  (6) 148 

Using these two rules and N from Eq. 4, the relative error of N can be described as:  149 
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 (7) 150 
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 151 

2.4 Simulating the error in N with Monte Carlo analysis 152 

The distribution of N was simulated using Monte Carlo analysis using @Risk 5.0 (Palisade 153 

Corporation) performing 10,000 iterations by Latin Hypercube sampling with random seed 154 

generation.  N was simulated in three different distribution scenarios for C using Eq. 4, in which 155 

Vplate,  Vdil, and S were assumed to be normally distributed with standard deviations as determined 156 

experimentally. The error in C varied in the three scenarios as follows: 1) C normally distributed 157 

with a count error of 5%, 2) C Poisson distributed, and 3) C Poisson distributed and having an 158 

additional normally distributed count error of 5%. The sensitivity of the output variable N to the 159 

input variables C, Vplate, Vdil, and S was analysed with a tornado chart. 160 

  161 

2.5 Enumerating the micro-organism in liquid milk 162 

2.5.1 Preparing the bacterial suspension to inoculate the milk  163 

A full grown culture of C. sakazakii strain ATCC 29544 in 100 mL brain heart infusion (BHI) 164 

broth (Beckton Dickinson and Co., Le Point du Claix, France) was stored frozen (-80 ºC) with 165 

30% glycerol (87%, Fluka-Analytical GmbH, Buchs, Switzerland). A loopful (1 µL) of this 166 

culture was inoculated into 100 mL BHI and grown for 22 h at 37°C. From the resulting BHI 167 

suspension containing 1.1x1010 CFU/mL, 10-2, 10-3 and 10-4 dilutions were made using peptone 168 

physiological salt (PPS; 8.5 g NaCl/L and 1 g peptone/L; Oxoid, Basingstoke, England).  169 

2.5.2 Inoculating, sampling, and plating 170 

Commercially sterilised milk obtained from local retail was inoculated with different volumes to 171 

obtain 1 L batches of milk with different numbers of C. sakazakii aiming at 4x102, 7x102, 1x103, 172 

3x103, 5x103, 1x104, 2.x104 CFU/mL. While each batch was being thoroughly stirred, 30 samples 173 

of 0.5 mL were taken with a pipette. Each sample was diluted in 4.5 mL PPS and 0.1 mL was 174 
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plated in duplicate on Trypton Soy Agar plates (TSA; Oxoid, Basingstoke, England) with a spiral 175 

plater (Eddy Jet; IUL Instruments, I.K.S., Leerdam, The Netherlands). The TSA plates were 176 

incubated overnight at 37°C and the numbers of colonies on each plate counted manually. The 177 

detection limit of the enumeration method was 1.7 log CFU/mL (50 CFU/mL). A concentration 178 

of 50 CFU/mL in a sample can be detected by plating 0.2 mL of a 10-1 dilution.   179 

 180 

2.6 Enumerating the micro-organism in powdered milk  181 

2.6.1 Preparing the bacterial suspension to spike the powder 182 

A loopful (1 µL) of the C. sakazakii strain ATCC 29544 culture stored frozen was inoculated into 183 

100 mL BHI and grown for 22 h at 37 °C. To harvest the cells, the BHI suspension was 184 

centrifuged 10 min at 20 °C at 1725 g (Eppendorf AG, Hamburg, Germany).  C. sakazakii cells 185 

were washed in 40 ml PPS and centrifuged  10 min at 20 °C at 1725 g twice and subsequently 186 

suspended in 10 mL PPS.  187 

2.6.2 Spiking the powdered milk  188 

Powdered infant formula (PIF) obtained from local retail was artificially contaminated as follows.  189 

C. sakazakii cells suspended in PPS were sprayed three times with a perfume sprayer (designed 190 

by Gérard Brinard, DA Drogisterij, Leusden, The Netherlands) over a flat layer of 20g PIF.  The 191 

powder was stirred well and again sprayed three times. The contaminated powder was stored in a 192 

desiccator with saturated lithium chloride (VWR international, Fontenay sous Bois, France) at 193 

20°C to maintain a water activity of 0.11. After 3 days, the contaminated powder contained 194 

between 106 and 107 CFU/g (data not shown).  195 

2.6.3 Mixing, sampling and plating 196 

Small amounts (0.15, 0.3, 1, 2 and 3 g) of the contaminated powder (1.93x106 CFU/g, measured 197 

at the day of mixing and sampling) were mixed into batches of 1 kg PIF for 1 h with a 3-198 
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dimensional powder mixer (Willy A. Bachofen AG Maschinenfabrik, Basel, Switzerland) with a 199 

rotational speed of 56 rpm. After thorough mixing, each batch of PIF was separately poured into 200 

a stainless steel box (60 cm x 30 cm x 10 cm). A plasticized grid (Gamma, Leusden, The 201 

Netherlands) was placed on top of the box to visually divide the box into 72 square sections of 5 202 

x 5 cm2 allowing for systematic sampling of the powder. Two samples of 0.5 g were drawn from 203 

each section, resulting in 144 samples. Each sample was suspended in 4.5 mL PPS and 0.1 mL of 204 

the suspension was plated in duplicate onto TSA plates. After overnight incubation at 37 ˚C, the 205 

number of colonies per plate was counted. The lower detection limit was 1.7 log CFU/g. 206 

 207 

2.7 Assessing the expected number of micro-organisms in a batch of  powdered or liquid 208 

milk as the reference number. 209 

Since the amount of spiked powder (with a C. sakazakii concentration of 1.93x106 CFU/g) mixed 210 

into the batch of PIF is known, the expected number of micro-organisms in a batch can be 211 

calculated. For instance, mixing 3g of spiked powder into 1 kg PIF will result in an expected 212 

concentration of 3.76 log CFU/g  This expected number can be used as a reference. In the same 213 

way, the expected number of micro-organisms in milk can be calculated as the number of micro-214 

organisms in the suspension (with a C. sakazakii concentration of 1.1x1010 CFU/mL), the dilution 215 

factor and the volume mixed into 1 L milk are known. The expected concentration for the highest 216 

level of contaminant in liquid milk is 4.34 log CFU/mL.  217 

 If the micro-organisms are log-normally distributed within a batch, the log counts of the 218 

samples and the variance between the log counts will also give an estimation of the number of 219 

micro-organisms in the batch. According to Rahman (1968), the arithmetic mean C  is related to 220 

the geometric mean Clog  as follows: 221 
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2
log10ln5.0log)log( CCC σ⋅⋅+=     (8) 222 

with: Clog  the mean of the log counts of the samples, and 2
logCσ the variance of the log counts of 223 

the samples. 224 

 225 

2.8 Preparing representations of variability between sample results  226 

Since the location in the box of the samples drawn from the powdered milk was known, the 227 

sampling data for the powdered milk can be  represented as a function of the sampling location 228 

using MATLAB® 7.8.0 , R2009a (The MathWorksTM, Natick, Massachusetts). The sampling data 229 

for both liquid and powdered milk were displayed as an empirical cumulative distribution 230 

function (ecdf). Calculations were performed in Microsoft Excel 2003. 231 

 232 

2.9 Using the coefficient of variation (CV) to assess the Poisson distribution error  233 

The dispersion of data points around the mean in data series is commonly quantified by variance, 234 

standard deviation, or coefficient of variation (CV).  Since the CV is the standard deviation 235 

divided by the mean, this scaled measure compares the degree of variation in situations where 236 

means differ. For plate counts, CV is:   237 

%100C ⋅=
C

CV
σ

       (9) 238 

with C being the mean colony count per plate of a sample. If the number of colonies on a plate 239 

follows a Poisson distribution, the standard deviation will be equal to the square root of the mean 240 

of the counts ( C=Cσ ), which leads to: 241 

%100
1 ⋅=
C

CV       (10) 242 
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3. Results 243 

3.1 The relative error
N

Nσ
 calculated with error propagation 244 

The various measured quantities (i.e. plated volume, dilution volume, and sample weight/volume) 245 

that affect the error in the final enumeration value N (the number of micro-organisms in a sample, 246 

expressed as CFU/g or CFU/mL) were determined individually and are shown in Table 1 in terms 247 

of  mean (x ) measure values, standard deviations (s)  and precision errors ( xs / ) . The 248 

theoretical relative error 
N

Nσ
for liquid and powdered milk can then be calculated with Eq. 7 249 

using the individual standard deviations 
plateVσ ,

dilVσ and Sσ from Table 1 and assuming a normally 250 

distributed count error (scenario 1) with Cσ = 5/3 %. From this it follows that the relative error 251 

N
Nσ

 for liquid milk is:  252 

( ) ( ) ( ) %03.3%915.0%55.1%77.1%)67.1( 2222 =+++=
N

Nσ
  (11) 253 

For powdered milk the relative error is: 254 

( ) ( ) ( ) %85.3%944.0%83.2%77.1%)67.1( 2222 =+++=
N

Nσ
 (12) 255 

In these equations, every precision error contributes to the relative error 
N

Nσ
. Since the precision 256 

errors are squared, the larger precision errors have a proportionally large impact on the relative 257 

error in the final enumeration value. As proposed by Taylor (1982), if one of the errors is 5 times 258 

any of the other errors, then its square is 25 times that of the others and the other errors can be 259 

ignored. Assuming that the counts on plates are Poisson distributed (scenario 2), the relative error 260 
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in the counted number of colonies on plates 
C

Cσ
will increase for lower counts.  For example, for 261 

a colony count of 300, the relative error is 5.77% ( 300300 ); for liquid milk, this will result in: 262 

( ) ( ) ( ) %30.6%915.0%55.1%77.1%)77.5( 2222 =+++=
N

Nσ
 (13) 263 

If the count is 25, the relative error 
C

Cσ
is 20.0%, which will result in: 264 

( ) ( ) ( ) %2.20%915.0%55.1%77.1%)0.20( 2222 =+++=
N

Nσ
 (14) 265 

If the count is 10, the relative error 
C

Cσ
 is 31.6%, which will result in: 266 

( ) ( ) ( ) %7.31%915.0%55.1%77.1%)6.31( 2222 =+++=
N

Nσ
 (15) 267 

The relative errors 
plate

plate

V

Vσ
,

dil

dil

V
Vσ

and
S

Sσ
are independent of the colony counts on plates, but the 268 

relative error 
C

Cσ
 increases greatly for lower colony counts. Using the error propagation 269 

approach therefore shows that the Poisson distributed count error greatly determines  
N

Nσ
. Even 270 

for high plate counts (Eq.13), precision errors contribute little to the error in the enumeration 271 

value and thus the precision errors do not need to be considered in establishing the higher limit of 272 

the counting range. Comparing equations 14 and 15 shows that changing from a lower limit of 273 

the counting range of 10 to 25 colonies/plate, would reduce the Poisson distribution error from 274 

32% to 20% and thus improve accuracy of the plating method. 275 

 276 
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3.2 The relative error 
N

Nσ
, simulated with Monte Carlo  277 

The relative error 
N

Nσ
was simulated using Monte Carlo analysis for colony counts between 5 278 

and 300 for three different scenarios as compared to the theoretical CV, shown as the solid line in 279 

Figure 1. From this it is evident that the dispersion of the plate count data (also called Poisson 280 

distribution error) increases very significantly for the lower counts. The colony counts 10, 15, 25, 281 

and 30 were chosen because they were previously advocated as possible lower plate count 282 

boundaries. For both liquid and powdered milk, the relative errors 
N

Nσ
are presented as CV-283 

values in Table 2. For liquid milk, the relative errors are presented as CV-values in Figure 1. 284 

 In scenario 1, all input variables Vplate,   Vdil, S, and C were assumed to be normally 285 

distributed. For all colony counts, this resulted in a normally distributed N with a CV-value of 2.9 286 

for liquid milk. For powdered milk, the CV-value was 3.6. These CV-values correspond well to 287 

the relative errors in 
N

Nσ
(liquid milk 3.03, powdered milk 3.85) calculated with the error 288 

propagation. According to sensitivity analysis, the input variables ranked as Vplate, C,  S and Vdil 289 

determined N (data not shown). 290 

 In scenario 2, the input variables Vplate,   Vdil, and S were assumed to be normally 291 

distributed while C was Poisson distributed. The input variable C significantly determined N as 292 

shown in Table 2 and according to the sensitivity analysis (data not shown). The relative error 293 

N
Nσ

was slightly higher than the theoretical Poisson distribution error.  294 
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In scenario 3, C was assumed to be Poisson distributed with an additional count error of 295 

5%, which also resulted in a strong relationship between N and C. The error in N was slightly 296 

higher than if C was only Poisson distributed.  297 

  298 

3.3 The sampling data of liquid milk  299 

Using the experimental ecdf-curve established at the highest inoculum level (2x104 CFU/mL) as 300 

the reference and assuming an identical variability at lower inoculum levels, predictions were 301 

made of the ecdf-curves for the lower inoculum levels evaluated (i.e. 4x102, 7x102, 1x103, 3x103, 302 

5x103, and 1x104 CFU/mL). Predicted ecdf-curves are displayed as lines in Figure 2a and can be 303 

compared with the experimental ecdf-curves for the individual batches which are displayed as 304 

symbols. Although for low concentrations the variability is slightly higher than the predicted 305 

lines, experimental and predicted ecdf-curves match well.  306 

 307 

3.4 The sampling data of powdered milk  308 

Also for the contaminated milk powder, ecdf-curves were predicted for various levels of the 309 

micro-organism evaluated using the ecdf-curve derived from experimental data for the most 310 

highly contaminated batch as the reference and assuming the same variability for all levels. The 311 

reference batch contained 3 g of spiked powder, while the other four batches contained 0.15, 312 

0.30, 1, and 2 g of spiked powder. Figure 2b shows the various predicted ecdf-curves as lines, 313 

while the experimental ecdf-curves are displayed as symbols. Because all batches were very 314 

thoroughly mixed using 3-D mixing equipment, it was expected that the contaminant would have 315 

been well distributed throughout the sample and that even for low contamination levels samples 316 

would mostly be above the detection limit (1.7 log CFU/g). However, as can be seen from Fig 2b, 317 

for the lowest three contamination levels there were rather many samples below detection limit. 318 
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The percentages of samples below the detection limit were 39%, 50%, 14% and 2% for the 319 

batches mixed with 0.15 g, 0.30 g, 1 g and 2 g, respectively.  320 

 The ecdf-curves derived from the reference at the highest concentration level run 321 

comparably steep, but less steep than the ecdf-curves found for liquid milk. It can be clearly seen 322 

that experimental ecdf data deviate very considerably from the predicted ecdf-curves for all 323 

contamination levels and mostly so for the lowest levels of contamination.  324 

 The experimental ecdf-curve for the batch spiked with 0.15 g contaminated milk powder 325 

showed two outliers, namely at 4.6 and 5.2 log CFU/g. For both outliers, one of the plate counts 326 

was above 100 colonies whereas the other had a colony count of zero. Such a large difference in 327 

colony count may have been caused by clumping of cells in the 10-1 dilution, with clumps not 328 

dissolving after vortexing. These two outliers have not been taken into account in further 329 

calculations.  330 

 The samples of the batch mixed with 3 g of spiked powder had a mean ( Clog ) of 3.57 log 331 

CFU/g and a standard deviation (slogC) of 0.36 log CFU/g. Assuming log-normally distributed 332 

micro-organisms and using Eq. 8, this resulted in an arithmetic mean ( )log(C ) of 3.73 log 333 

CFU/g, which is close to the reference concentration of 3.76 log CFU/g.   334 

 In Figure 3 the sampling data of powdered milk for the 5 levels of contamination 335 

investigated are displayed as 3-dimensional graphs. The mean concentration of the duplicate 336 

samples drawn from each section in the box with milk powder is displayed. Comparing the 337 

graphs, it can be seen that the surface plot is positioned higher in terms of mean concentration 338 

with increasing contamination level but also that there is an apparent relationship between the 339 

level of contamination of the powdered milk batch and the smoothness of the surface plot. The 340 

higher the contamination level (going from Graph 3a to 3d) the smoother the surface plot, which 341 
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indicates that there is an increasingly smaller variability between the samples. The experimental 342 

data  for batches spiked with 0.15 g and 0.30 g contaminated powder in particular resulted in 343 

very erratic surface plots, with some sections characterised by very high counts, whereas in others 344 

no contamination could be detected at all. 345 

 346 

3.5 The Poisson distribution error of liquid and powdered milk samples  347 

Figure 4 shows the Poisson distribution error of the liquid and powdered milk samples expressed 348 

as the coefficient of variation and its relationship to the mean colony count of the samples per 349 

batch. The CV-values of the samples from liquid milk are very well in line with the curve of 350 

theoretical CV-value that has been established assuming a Poisson distribution. Moreover, fitting 351 

the plate counts of the samples per batch to a Poisson distribution with χ2 as a criterion, also 352 

confirms that plate counts are Poisson distributed. As compared to the curve of theoretical CV-353 

values for liquid milk, CV-values of samples from powdered milk were always much higher. 354 

They coincided relatively well with a curve of theoretical CV-values established by multiplying 355 

values five times.  356 

 For both liquid and powdered milk samples the coefficient of variation increases for low 357 

plate counts. Increasing the lower limit of the counting range from 10 to 25 will reduce the CV   358 

for liquid milk from 32% to 20% (reduction of the Poisson distribution error) and for powdered 359 

milk from 160% to 100% (reduction of the Poisson distribution error times five). 360 

 361 

3.6 The difference in concentration based on singular or duplicate plating  362 

Two methods, singular and duplicate plating, to enumerate the contaminating micro-organisms 363 

were evaluated. Figure 5 shows the concentration of the same sample singular plated versus 364 

duplicate plated assessed for liquid milk (Fig. 5a) and powdered milk (Fig. 5b). All plate counts 365 
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of liquid milk contained more than 1 colony per plate. For powdered milk, at the lowest 366 

contamination levels one of the duplicate plates contained zero colonies, resulting in series of 367 

data points laying in horizontal lines. In both figures, the vertical line at a reference concentration 368 

of 3 log CFU/mL (or 3 log CFU/g) corresponds to 10 colonies per plate, which is the currently 369 

advocated lower limit of the plate counting range (ISO, 2007). From the reference level upward, 370 

for both liquid and powdered milk, concentrations determined by both methods coincided well; 371 

the data points were close to the line of equality (y = x), which is according to Bland and Altman 372 

(1986)  the criterion for a perfect agreement between two methods. Below the reference 373 

concentration, however, the distance of data points to the line of equality increased, which 374 

resulted in a clear difference between the two methods especially in the case of powdered milk. 375 

 376 

3.7 The impact of samples taken and singular or duplicate plating related to heterogeneity 377 

The impact of samples taken and singular or duplicate plating in relation to heterogeneity was 378 

investigated. Using Monte Carlo simulations, it was evaluated whether it would be better to take 379 

10 samples and plate them singularly, or to take 5 samples and plate them in duplicate. Two 380 

powdered milk batches characterised by a different level of heterogeneous distribution of the 381 

contaminant were investigated. The levels of the contaminant were either 0.15 or 3 g of spiked 382 

milk powder per 1 kg batch of milk powder. The spiked powder was mixed into each batch, with 383 

the lower contamination level representing the more heterogeneous distribution (Fig 3a) and the 384 

higher contamination level representing the more homogeneous distribution (Fig. 3e).  385 

 The data of the homogeneous and heterogeneous powder were re-sampled in silico 386 

(Bootstrap @Risk, 10.000 simulations) by drawing 5 samples plated in duplicate and 10 samples 387 

plated singularly. Figure 6 represents the distribution of the mean concentrations of the log counts 388 

calculated from 5 samples (duplicate) and 10 samples (singular) drawn from homogeneous data 389 
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(Fig. 6a) and heterogeneous data (Fig. 6b). Re-sampling the data of the homogeneous powder 390 

resulted in no significant difference between the means of the log counts from 5 samples plated in 391 

duplicate or 10 samples plated singularly. The mean values as well as the standard deviation 392 

values matched closely. However, re-sampling the data of the heterogeneous powder resulted for 393 

5 samples plated in duplicate in a significantly smaller mean and a larger standard deviation, than 394 

for 10 samples plated singularly.  395 

 396 

4. Discussion 397 

This study sets out to determine the relative importance of low plate counts, technical errors, 398 

heterogeneity in the distribution of micro-organisms, and singular or duplicate plating as factors 399 

influencing accuracy of the plating method for microbiological contaminants in liquid and solid 400 

food.  401 

Using an error propagation approach, Monte Carlo analysis simulation, as well as 402 

generation of experimental data, it was consistently found that low plate counts largely determine 403 

the plate count accuracy for samples of liquid and powdered milk. It was furthermore observed 404 

that, as compared to the Poisson distributed error in the number of colonies counted on plates, 405 

technical errors can be neglected as factors influencing accuracy of the plating method when 406 

technical practices are under control. The experimentally determined technical errors were found 407 

to be comparable with the errors (1.1% for pipetting sample or diluent fluid) as quantified by 408 

Voss et al. (2000), who concluded that counting errors had a much larger effect than pipetting 409 

errors. The impact of colony counts has also been indicated by Augustin and Carlier (2006), 410 

whereas Forster (2009) has emphasised that low plate counts (i.e. counts < 20) are a major 411 

contributor to uncertainty. 412 
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 The impact of heterogeneity in the distribution of a contaminant on accuracy of the plate 413 

count technique has not been studied before and forms a specific aspect of the current work. 414 

Heterogeneity was investigated by comparing this accuracy for known contamination levels in 415 

liquid (with micro-organisms assumed to be rather homogeneously distributed and Poisson 416 

distributed) and in powdered milk (with micro-organisms being rather heterogeneously 417 

distributed). By comparing the data obtained for liquid and powdered milk, it was observed that 418 

heterogeneity greatly impacts the accuracy of the plating method. That micro-organisms are 419 

indeed homogeneously distributed in liquid milk, was confirmed experimentally by the steep 420 

ecdf-curves obtained. These showed only a small variation between the samples and the CV-421 

values for mean colony counts of the samples per batch. The CV-values found through sampling 422 

furthermore matched the theoretical CV-values assuming a Poisson distribution. Since the plate 423 

count of the samples from liquid milk fitted the Poisson distribution, and CV-values were 424 

consistent with Poisson distribution, distribution of the contaminant was homogeneous in liquid 425 

milk. However, the investigations with powdered milk showed a much larger variation in 426 

enumeration outcomes due to heterogeneity. It was found that CV-values generated 427 

experimentally aligned well to a theoretical CV-values curve positioned five times higher than the 428 

theoretical CV-values curve that has been established assuming a Poisson distribution.  429 

 As the number of replicate plates affects the total number of colonies counted, this factor 430 

may also impact accuracy of the plating method. Therefore, the difference between singular and 431 

duplicate plating was investigated experimentally. Since the concentration in each sample was 432 

calculated using both methods, the difference between singular and duplicate plating could be 433 

visualized. Above 10 colonies per plate, both methods showed a strong agreement. These 434 

findings are in line with the ISO 7218 (2007), which prescribes to count plates with at least 10 435 

colonies per plate of two successive dilutions that are singularly plated. This was also supported 436 
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by Wille et al. (1996), who showed that duplicate or triplicate plating is not more accurate than 437 

singular plating provided that there are 10-50 colonies per plate. By doubling the plated volume, 438 

however, duplicate plating will increase the detection limit. By doubling the total number of 439 

colonies duplicate plating will lower the Poisson distribution error. As Wille et al. (1996) 440 

concluded, duplicate plating will heighten the confidence in the reliability of bacterial counts 441 

from single plates.  442 

 The impact of heterogeneity on the possible benefits of duplicate plating over singular 443 

plating was investigated by drawing 5 samples plated in duplicate or 10 samples plated singular. 444 

In both approaches, the same sample volume was plated. The experimental data generated for the 445 

most homogeneously contaminated milk powder (that with the highest level of spiked powder) 446 

and the most heterogeneous powder (with the lowest level of spiked powder) were re-sampled 447 

using Monte Carlo simulations. Re-sampling the homogeneous powder showed no significant 448 

difference between the means of the 5 or 10 samples. However, re-sampling the heterogeneous 449 

powder showed a significantly smaller mean and a larger standard deviation between the means. 450 

Drawing 5 samples plated in duplicate resulted in a probability of 1.1% that in all 5 samples no C. 451 

sakazakii was detected. Although a relatively small probability, such an incorrect enumeration 452 

could have hazardous consequences for consumers in case of severe pathogens. In case of 10 453 

samples plated singularly, C. sakazakii was detected in all cases, even though the same amounts 454 

of plates and dilution fluid was used.   455 

 Since the plate count technique is a simple, fast method to quantify levels of micro-456 

organisms,  it is an important tool to estimate numbers of micro-organisms in food samples to 457 

establish the microbiological quality and or safety of these foods. Many generalizing assumptions 458 

are made in the process of establishing what enumeration results would comply with quality or 459 

safe foods. A key assumption is that micro-organisms are homogeneously distributed even for 460 
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foods where this is quite improbable such as structured, semi-solid, solid and powdered foods. It 461 

is often acknowledged that the distribution of micro-organisms in food products is inherently 462 

heterogeneous (Corry et al., 2007). Nevertheless, the impact of heterogeneity between the 463 

samples on accuracy of plating method has not been systematically quantified to the degree as in 464 

the current study. To evaluate the accuracy of the plating method, sample taking is important. If 465 

the samples do not represent the microbial status of the batch of food, although the plate counts 466 

may be accurate, these plate counts will give insufficient information about the microbial status 467 

of the batch. As the experiments reported on here have confirmed, low plate counts as well as 468 

microbial heterogeneity both have an important influence on the accuracy of the plating method, 469 

and are much more prominent than technical errors. For low plate counts, increasing the lower 470 

limit of the counting range will notably increase the accuracy of the plate count technique. 471 

Because plate counts below 25 are highly dominated by the Poisson distribution error, as shown 472 

here, increasing the currently advised lower limit from 10 to at least 25 would reduce the Poisson 473 

distribution error from 32% to 20% for liquid milk and from 160% to 100% for powdered milk. 474 

For the powdered product with a heterogeneously distributed contamination, taking 10 samples 475 

plated singularly provides more accurate information about the product than 5 samples plated in 476 

duplicate. 477 

 478 



23/33  

Acknowledgements 479 

The authors would like to thank Lucas Wijnands for support with the 3-dimensional powder 480 

mixer at the Laboratory for Zoonoses and Environmental Microbiology, National Institute for 481 

Public Health and the Environment (RIVM), Bilthoven, The Netherlands. 482 

  483 

References 484 

Adams, M.R., Moss, M.O. 2008. Food microbiology. 3rd ed. Royal Society of Chemistry, 485 

Cambridge. 486 

Augustin, J.-C., Carlier, V. 2006. Lessons from the organization of a proficiency testing program 487 

in food microbiology by interlaboratory comparison: Analytical methods in use, impact of 488 

methods on bacterial counts and measurement uncertainty of bacterial counts. Food Microbiology 489 

23, 1-38. 490 

Bland, J.M., Altman, D.G. 1986. Statistical methods for assessing agreement between two 491 

methods of clinical measurement. Lancet 327, 307-310. 492 

Breed, R.S., Dotterrer, W.D. 1916. The number of colonies allowable on satisfactory agar plates. 493 

Journal of Bacteriology 1, 321-331. 494 

Corry, J.E.L., Jarvis, B., Passmore, S., Hedges, A. 2007. A critical review of measurement 495 

uncertainty in the enumeration of food micro-organisms. Food Microbiology 24, 230-253. 496 

Cowell, N.D., Morisetti, M.D. 1969. Microbiological techniques - some statistical aspects. 497 

Journal of the Science of Food and Agriculture 20, 573-579. 498 

Fisher, R.A., Thornton, H.G., Mackenzie, W.A. 1922. The accuracy of the plating method of 499 

estimating the density of bacterial populations. Annals of Applied Biology 9, 325-359. 500 

Forster, L.I. 2009. Conclusions on Measurement Uncertainty in Microbiology. Journal of AOAC 501 

International 92, 312-319. 502 



24/33  

ICMSF. 2002. Microorganisms in Foods 7: microbiological testing in food safety management. 503 

Kluwer Academic/Plenum Publishers, New York. 504 

ISO:4833. 2003. Microbiology of food and animal feeding stuffs. Horizontal method for the 505 

enumeration of microorganisms. Colony-count technique at 30 °C. International Organization for 506 

Standardization, Geneva, Switzerland. 507 

ISO:5725-1. 1994. Accuracy (trueness and precision) of measurement methods and results: 508 

general principles and definitions. International Organization for Standardization, Geneva, 509 

Switzerland. 510 

ISO:7218. 2007. Microbiology of food and animal feeding stuffs - General requirements and 511 

guidance for microbiological examinations. International Organization for Standardization, 512 

Geneva, Switzerland. 513 

Jarvis, B. 2008. Statistical aspects of the microbiological examination of foods. 2 ed. Elsevier, 514 

Amsterdam, The Netherlands. 515 

Peeler, J.T., Leslie, J.E., Danielson, J.W., Messer, J.W. 1982. Replicate counting errors by 516 

analysts and bacterial colony counters. Journal of Food Protection 45, 238-240. 517 

Rahman, N.A. 1968. A course in theoretical statistics. 298-299 Griffin, London. 518 

Sutton, S. 2006. Counting colonies. Pharmaceutical Microbiology Forum Newsletter 12, 2-12. 519 

Taylor, J.R. 1982. An introduction to error analysis. The study of uncertainties in physical 520 

measurements. Oxford University Press. Mill Valley, Canada 521 

Tomasiewicz, D.M., Hotchkiss, D.K., Reinbold, G.W., Read, R.B., Hartman, P.A. 1980. The 522 

most suitable number of colonies on plates for counting. Journal of Food Protection 43, 282-286. 523 

Voss, B., J., K., Dahms, S., Weiss, H. 2000. A multinomial model for the quality control of 524 

colony counting procedures. Biometrical Journal 42, 263-278. 525 



25/33  

Wille, K.K., Vowels, B.R., Foglia, A.N., Berge, C.A., Schnell, B.M., Briese, F.W. 1996. 526 

Replicate plating: does it increase reliability? Letters in Applied Microbiology 23, 75-78. 527 

Wilson, G.S. 1935. The bacteriological grading of milk, Special report to the Medical Research 528 

Council, vol. 206. His Majesty's Stationery Office, London. 529 



26/33  

Figure captions: 530 

Fig. 1. The coefficient of variation (CV) as a function of the number of colonies on a plate. The 531 

dark line represents the theoretical CV assuming that the colonies per plate are Poisson  532 

distributed. The relative error 
N

Nσ
for samples of liquid milk was simulated for three scenarios 533 

regarding the error in colony count on plate (C) namely: 1) normally distributed with a count 534 

error of 5%,  (●), 2) Poisson distributed (♦), and 3) Poisson distributed and having an additional 535 

normally distributed count error of 5% (□).  536 

 537 

Fig. 2. Comparison between predicted and experimental ecdf-curves for (a) liquid milk and (b) 538 

powdered milk. The broken vertical line represents the detection limit of 1.7 (log CFU/mL or log 539 

CFU/g). For liquid milk, six predicted ecdf-curves are shown as lines with an indication of the 540 

Cronobacter sakazakii contamination level they were derived for from the reference (the 541 

experimental ecdf of 2x104 CFU/mL); the symbols depict the experimental ecdf-curves for the 542 

following contamination levels: (×) 4x102 , (○) 7x102 , (●)1x103 , (□) 3x103 , (∆) 5x103 , (■) 1x104 543 

, and (▲) 2x104 CFU/mL. For powdered milk, the reference experimental ecdf was established 544 

for a contamination level of 3g spiked powder per 1 batch of 1 kg (∆) 3 g; the lines show ecdf-545 

curves derived for the various contamination levels indicated in the figure; experimental ecdf 546 

(symbols) were generated with the amount of spiked powder being: (×), 0.15 g; (○), 0.3 g (●); 1 547 

g, (�); 2 g, or (∆) 3 g. 548 

 549 

Fig. 3. The mean concentration of C. sakazakii in two samples (log CFU/g) powdered milk as a 550 

function of their location in the box (x and y axes). 1 kg batches of powdered milk were 551 

thoroughly mixed with (a) 0.15, (b) 0.30, (c) 1, (d) 2, or (e) 3 g of spiked powder. 552 
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 553 

Fig. 4. Coefficient of variation (CV) as a function of the mean number of colonies of the samples 554 

per batch. The symbols represent the CV–values based on experimental values from batches of 555 

liquid milk (●)  and powdered milk powder (■).The solid line represents the curve of theoretical 556 

CV-values assuming that the mean colony count of the samples per batch are Poisson distributed. 557 

The broken line represents the curve of theoretical CV-values times 5. 558 

 559 

Fig. 5. Relationship between the concentration (log CFU/mL or log CFU/g) in the samples of (a) 560 

liquid milk and (b) powdered milk, based on enumeration using one plate per sample versus two 561 

plates per sample. Solid line: y = x. The vertical broken line indicates the concentration of 3 log 562 

CFU/mL or 3 log CFU/g, which equates to the currently advocated lower limit of the 563 

enumeration range (10 colonies per plate). 564 

 565 

Fig. 6. Comparison of two sampling strategies by re-sampling using the bootstrap method of the 566 

powdered milk sampling data (a) homogenously distributed C. sakazakii (3 g spiked powder/kg 567 

powdered milk) and  (b) heterogeneously distributed C. sakazakii (0.15 g of spiked powder/kg 568 

powdered milk). Probability distributions of the mean concentration (log CFU/g) were 569 

established by a scenario of  taking 10 samples plated singularly (black bars) or the mean of 5 570 

samples plated in duplicate (grey bars). Parameters µ and σ represent mean and standard 571 

deviation of the 10,000 simulations drawing 5 (duplicate) or 10 samples (singular) 572 
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Figure 1 573 

 574 
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Figure 2 575 
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Figure 3 577 
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Figure 4 579 
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Figure 5 581 
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Figure 6 583 
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