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Abstract 
Fe deficiency chlorosis is a nutritional disorder in plants that reduces crop yields both 

quantitatively and qualitatively, and causes large economic losses. It occurs world-wide, 

predominantly in plants grown on calcareous soils, as a result of a limited bioavailability of 

Fe, related to the poor solubility of Fe at high soil-pH (7 - 8.5). Fe fertilizers based on 

FeEDDHA (iron ethylene diamine-N,N'-bis(hydroxy phenyl acetic acid)) chelates are among 

the most efficient in preventing and remedying Fe deficiency in soil-grown plants. FeEDDHA 

fertilizers comprise a mixture of FeEDDHA components which can be divided into racemic 

o,o-FeEDDHA, meso o,o-FeEDDHA, o,p-FeEDDHA and rest-FeEDDHA. Both the 

composition of FeEDDHA fertilizers and the properties of the FeEDDHA components differ 

considerably. In this thesis the fate and effectiveness of FeEDDHA chelates in soil-plant 

systems were examined, to facilitate a more efficient use of FeEDDHA fertilizer. 

 

First, FeEDDHA components were screened with regard to their reactivity towards soil 

reactive compounds. Upon interaction with soils, the o,o-FeEDDHA isomers remained mostly 

in solution, while o,p-FeEDDHA and rest-FeEDDHA were largely removed. The dominant 

reactive soil compound controlling the remaining concentration differed per FeEDDHA 

component. 

FeEDDHA-facilitated Fe uptake by plants was examined in three pot trials studies with 

soybean grown on calcareous soils. In the first pot trial, the effectiveness of FeEDDHA 

components was examined by applying FeEDDHA treatments of equal Fe dosage, but 

differing in composition. On soils, in which plants of the blank treatment became chlorotic, Fe 

uptake proved a function of the Fe concentration in soil solution, which in turn was a function 

of the amount of o,o-FeEDDHA applied. In a second pot trial, FeEDDHA-facilitated Fe 

uptake was examined in relation to the concentration behaviour of the FeEDDHA components. 

After an initial concentration drop due to adsorption, the soil solution concentration of both 

racemic and meso o,o-FeEDDHA gradually declined. For meso o,o-FeEDDHA the decline 

was exponential and largely unrelated to Fe uptake by plants; for racemic o,o-FeEDDHA the 

decline was slower and largely related to Fe uptake, which was highest in the progressed 

vegetative stage and the reproductive growth-stage. In a third pot trial the effectiveness of 

FeEDDHA components was assessed in relation to the moment of application; at t=0 and in 

the aforementioned two growth stages. o,p-FeEDDHA application did not significantly 

increase Fe uptake in any growth stage. Both racemic and meso o,o-FeEDDHA did contribute 

to Fe uptake, approximately to the same extent. The moment of application significantly 

affected yield and residual pore water concentration of the FeEDDHA components, but not Fe 

uptake, demonstrating the elevated Fe uptake efficiency of chlorotic plants. 

 

Processes potentially causing a (plant-independent) gradual decline in FeEDDHA component 

concentrations were further examined. The biodegradability of EDDHA chelates was 

examined in a soil incubation experiment. It was concluded that biodegradation does not 

significantly compromise the performance of FeEDDHA components. The potential impact of 

Cu displacing Fe from o,o-FeEDDHA was explored by means of mechanistic multi-surface 



modeling and batch interaction experiments with soil and goethite suspensions. Model 

predictions indicate that, under equilibrium conditions, a fraction of the o,o-EDDHA ligands 

in soil solution can be chelated to Cu, in particular of meso o,o-EDDHA. Batch experiments 

demonstrated that o,o-CuEDDHA has a high affinity for the soil solid phase, which greatly 

enhances the potential impact from Cu competition. The displacement reaction could be 

reproduced in goethite suspensions, proving it is not kinetically inhibited. The effect of soil 

parameters on the rate at which the displacement reaction decreases the FeEDDHA solution 

concentration, was examined in goethite suspensions. The rate of decline depends on the 

available reactive surface area as well as on the FeEDDHA and Cu loading. Soil factors 

decreasing FeEDDHA adsorption (high ionic strength, adsorption of organic matter onto the 

reactive surface, monovalent instead of divalent cations in the electrolyte, etc) decrease the 

rate of decline in FeEDDHA concentration. For meso o,o-FeEDDHA, the rate equation of the 

displacement reaction could be simplified and solved for soil conditions, to an exponential 

decay function in meso o,o-FeEDDHA concentration – corresponding with observations in the 

second pot trial. 

The hypothetical shuttle mechanism, in which the ligand is “recycled” by chelating and 

mobilizing Fe from the soil after delivering Fe at the root surface, was considered for EDDHA 

ligands. In batch experiments, it was demonstrated that, if the efficiency of the mechanism is 

determined by metal availability in the bulk soil, it is heavily compromised by complexation 

of competing cations, in particular Cu. Experimental support for the shuttle mechanism was 

found in data from the pot trial experiments, demonstrating specific metal mobilization upon 

FeEDDHA-facilitated Fe uptake by plants. 

In conclusion a conceptual model for the behaviour of FeEDDHA components in soil-plant 

systems was composed. The essence of the model consists of three processes: 1) FeEDDHA 

adsorption, 2) Fe displacement from FeEDDHA by Cu on a soil reactive surface, followed by 

release of CuEDDHA into soil solution, and 3) re-adsorption of CuEDDHA. The effectiveness 

of FeEDDHA components in soil application is largely determined by their ability to remain in 

solution. A limited affinity for the soil solid phase and a high (relative) affinity for Fe proved 

essential in this respect. Clay content, Fe(hydr)oxide content and Cu content were identified as 

soil characteristics substantially compromising the effectiveness of FeEDDHA components. 
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“I long to learn the things that are, 

  and comprehend their nature, 

  and know God. 

  This is, I said, what I desire to hear.” 

  

Excerpt from: 

Corpus Hermeticum I: “Pimander” 

(translation by G.R.S. Mead (1863 - 1933)) 
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Problem outline 

Iron (Fe) is an essential micronutrient for plants, humans and other animals. An adequate 

uptake of Fe is needed to ensure proper growth and development, as well as good health of 

organisms (Marschner, 1995; Vasconcelos and Grusak, 2007). When provided with 

insufficient quantities of Fe, organisms will suffer from Fe deficiency symptoms. 

Fe deficiency is a worldwide problem in crop production, affecting yield both qualitatively 

and quantitatively (Mortvedt, 1991); plants do not reach their full growth potential, and the 

nutritional value is compromised, leading to economic losses and limitations in crop selection 

(Chaney, 1984). In extreme cases, Fe deficiency may result in complete crop failure (Chen and 

Barak, 1982). The list of plant species affected is vast and includes apple, citrus, grapevine, 

peanut, soybean, sorghum and dryland rice (Marschner, 1995). 

Fe deficiency is typically found in crops grown on calcareous or alkaline soils, in arid and 

semi-arid regions of the world; these soils cover over 30% of the earths’ land surface (Figure 

1.1) (Alvarez-Fernandez, et al., 2006; Chen and Barak, 1982; Hansen, et al., 2006; Mortvedt, 

1991). Fe is abundantly present in all soils including calcareous ones; in mineral soils the 

average Fe content amounts approximately 2% (20,000 µg/g) (Marschner, 1995; Mengel and 

Kirkby, 2001). Most agricultural crops require less than 0.5 µg/g in the plough layer (Lindsay, 

1974). The occurrence of Fe deficiency in plants grown on calcareous soils, despite the 

excessive soil-Fe pool, is caused by the limited bioavailability of Fe in such soils. 

Soil application of synthetic Fe chelates, principally FeEDDHA (and derivatives) increases the 

bioavailability of Fe and is very successful in treating Fe deficiency (Chen and Barak, 1982). 

However, because treatment with this type of Fe fertilizers is expensive, they are only applied 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Global pH-map of the top soil (0-30 cm); red indicates pH < 5.5; yellow indicates 5.5 < pH 

< 7.3; green indicates pH > 7.3. Calcareous soils are to be found in the green areas. Source: ISRIC, 

1995, derived from the WISE- database. 
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to high value crops (Hansen, et al., 2006; Lucena, 2006). A more efficient application of more 

effective FeEDDHA fertilizer products would reduce the costs of FeEDDHA treatment. As a 

result, FeEDDHA application might also become feasible for more crops. To realize a more 

efficient use of FeEDDHA fertilizer, the fate and effectiveness of FeEDDHA chelates in the 

soil-plant system need to be better understood. This thesis aims to contribute to this 

understanding.  

 

 

Fe in plants 

 

Functions 

The Fe content of green plant tissue is in the order of 50-100 mg per kg dry weight (Mengel 

and Kirkby, 2001). Therefore, Fe is among the most prevalent micronutrients in plants (Bauer 

and Hell, 2006). Fe is involved in a large number of metabolic processes, including 

photosynthesis, cell respiration, etc. In green leaves approximately 80% of the Fe is localized 

in the chloroplasts, regardless of the Fe nutritional status. The tendency of Fe to form chelates 

and its ability to undergo reversible oxidation-reduction reactions are two important 

characteristics underlying its numerous physiological effects (Marschner, 1995; Mengel and 

Kirkby, 2001). 

Two important groups of Fe containing proteins can be distinguished: heme-proteins and  

iron-sulfur proteins. Heme-proteins contain Fe-porphyrin as a prosthetic group and include the 

cytochromes, catalase and peroxidases and leghemoglobin. In iron-sulfur proteins Fe is 

coordinated to the thiol group of cysteine, to inorganic sulfur, or to both; this group of proteins 

includes ferredoxin, isoenzymes of superoxide dismutase and aconitase (Marschner, 1995). 

Fe also plays a catalytic role in the biosynthesis of chlorophyll in several reaction steps; it is 

not incorporated into the chlorophyll structure itself. The rate of δ-aminolevulinic acid (ALA) 

formation, the common precursor of chlorophyll and heme synthesis, is controlled by Fe 

(Pushnik and Miller, 1989). Fe is also required for the formation of protoporphyrinogen from 

coproporphyrinogen (Machold and Stephan, 1969), and for the formation of 

protochlorophylide from Mg-protoporphyrin (Spiller, et al., 1982).  

 

Uptake and translocation 

To ensure adequate Fe acquisition from soil and avoid excess Fe in the cells, the uptake, 

distribution and storage of Fe are tightly regulated in plants. Plants face two major challenges 

in this respect. First, the solubility of Fe is limited within the physiological pH range, but Fe 

precipitation inside plant cells needs to be prevented. Secondly, Fe needs to be shielded to 

prevent it from contributing to oxidative stress (Hell and Stephan, 2003). In particular free Fe 

can generate hydroxyl radicals through Fenton reactions (Halliwell and Gutteridge, 1986). 

Hydroxyl radicals can damage cell components including DNA and proteins. The required 

regulation is accomplished through intricate chelation mechanisms (Hell and Stephan, 2003). 

By most plants, Fe is preferentially taken up in ferrous form. Therefore Fe(III) arriving at the 

root surface, first needs to be reduced by a membrane-bound ferric chelate reductase before 
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transport into the cytoplasm (Chaney, et al., 1972; Robinson, et al., 1999; Romheld and 

Marschner, 1983). In grasses however, Fe(III) uptake is of major importance (Romheld and 

Marschner, 1986).  

 

The transport of Fe inside the plant is presumably largely managed with three transporter 

compounds (Hell and Stephan, 2003): 

 

• Nicotianamine (NA), which forms ferrous complexes and is the principal transporter of 

Fe inside cells as well as between cells through symplastic transport (a.o. radial 

transport). 

• Citrate, which forms ferric complexes and is the principal transporter in the xylem 

(from the roots upwards), as well as in the leaf apoplast. 

• Iron transport protein (ITP), which forms ferric complexes and is the principal 

transporter in the phloem (from the leaves to the non-photosynthetic plant parts 

including roots, seeds and buds). 

 

Fe storage takes place in phytoferritin, an Fe storage protein located in plastids, with a 

capacity for storing up to 4,500 Fe atoms in a central cavity (Harrison and Arosio, 1996), and 

as Fe precipitate in the apoplasmic space between cell wall and plasma membrane, and 

possibly in the vacuoles (Briat, et al., 2006). 

 

Fe deficiency 

 

Symptoms 

Fe deficiency in plants typically causes chlorosis of leaf tissue because of inadequate 

chlorophyll synthesis; the leaves become pale green to yellow, often with darker coloured 

veins. In case of severe chlorosis, leaves can also become necrotic (Figure 1.2). 

Chlorophyll is imbedded in thylakoid membranes inside the chloroplast. The Fe requirements 

for the functional and structural integrity of thylakoid membranes are high. Therefore, in Fe 

deficient leaves, the content of chlorophyll containing thylakoid membrane is low (Alvarez-

Fernandez, et al., 2006; Marschner, 1995). The rate of photosynthesis decreases per unit leaf 

but not per unit chlorophyll, indicating that the photosynthetic apparatus remains intact (Terry, 

1980). Due to the reduction in photosynthetic capacity, carbon fixation by plants also becomes 

reduced, leading to slower growth rates and yield losses (Figure 1.2)  (Alvarez-Fernandez, et 

al., 2006). 

Fe chlorosis develops most strongly in young leaves, because growing plant parts (also fruits, 

buds and storage organs) have incomplete xylem structures. As a result, Fe is not directly 

transported from the roots to these sites with the highest demand, but remobilized from older 

plant parts and secondarily transported through the phloem (Grusak, et al., 1999; Zhang, et al., 

1995). It has been observed that chlorotic leaves can have comparable or even higher Fe 

contents than green leaves (the “chlorosis paradox”). This phenomenon has been attributed to  
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impaired expansion growth, leading to diminished dilution of the high Fe concentration in 

young leaves (Römheld, 2000). 

Fe deficiency also causes morphological changes in the roots: inhibition of root elongation, 

increase in diameter of apical rootzone, abundant root hair formation (Romheld and 

Marschner, 1981) and formation of rhizodermal transfer cells. 

  

 

Figure 1.2: Examples of Fe 

deficiency symptoms in 

plants. 

Upper left: chlorotic gerbera 

with characteristic darker 

veins; 

Upper right: necrosis in the 

leaves of chlorotic soybean 

plants; 

Below: reduced growth in 

chlorotic soybean plants. 
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Causes 

The occurrence of Fe deficiency in plants grown on calcareous soils is caused by a limited 

bioavailability of Fe. Two related soil characteristics are principally responsible for this low 

Fe availability: 1) the relatively high pH in calcareous soils (7 - 8.5) (Figure 1.1), and 2) the 

presence of a bicarbonate pH-buffer in soil solution (Boxma, 1972; Chaney, 1984; Lucena, 

2000; Marschner, 1995; Mengel, et al., 1984; Mengel and Kirkby, 2001). 

In order for soil-Fe to be taken up, it needs to be transported through soil solution to the root 

surface. The solubility of soil Fe(hydr)oxides is a function of pH and the type of 

Fe(hydr)oxide. The concentration of inorganic Fe species in solution reaches a minimum 

around pH 7.5 - 8.5: in the order of 10
-10
 M (Figure 1.3); the free Fe

3+
 concentration is around 

10
-21
 M (Lindsay and Schwab, 1982). For optimal growth, plants require an Fe concentration 

in soil solution in the order of 10
-6
 to 10

-5
 M (Marschner, 1995). Complexation by dissolved 

organic substances, like humic acids, fulvic acids and siderophores can increase the total Fe 

concentrations in soil solution by orders of magnitude in comparison to the inorganic Fe 

concentration (O'Conner G.A., et al., 1971), but not always sufficiently to prevent Fe 

deficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Hydrolysis species of Fe(3+) in equilibrium with soil-Fe (pKsol = 39.3; I = 0.03 M), after 

Lindsay (1979). 

 

 

The bicarbonate pH-buffer prevents plants from adapting the rhizosphere pH and causes 

impairment of Fe deficiency stress response mechanisms (except in grasses). Although the  

pH-buffer capacity of calcareous soils is largely determined by the lime content, the 

dissolution of carbonate minerals is relatively slow in comparison to bicarbonate diffusion. 
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Therefore, on the short term, the bicarbonate concentration in soil solution is more important 

for maintaining a high rhizosphere pH (Lucena, 2000). In addition to the role of bicarbonate as 

pH-buffer in soil solution, there has been much debate on bicarbonate uptake leading to Fe 

immobilization inside plants (Gruber and Kosegarten, 2002; Mengel, 1994; Nikolic and 

Romheld, 2002; Römheld, 2000). 

 

A large number of additional factors can affect the bioavailability of Fe in soil (Morris, et al., 

1990), including: 

 

• Indigenous soil factors – e.g. content, mineralogy and crystallinity of soil 

Fe(hydr)oxide (particularly important for grasses), organic matter content, content and 

reactivity of the CaCO3 phase 

• Environmental factors – e.g soil water content, compaction, gas-phase composition and 

rooting volume 

• Nutritional factors – e.g. NH4/NO3 and Mn/Fe balance, and P and K fertilization  

• Microbial factors 

 

Fe stress response mechanisms 

Two plant strategies for Fe acquisition from soil under Fe deficiency stress have been 

distinguished (Marschner and Romheld, 1994; Romheld and Marschner, 1986). Strategy I is 

observed in dicotylodonous and non-graminaceous monocotylodous plants and includes 

enhanced proton release, enhanced Fe(III) reduction at the plasma membrane, and enhanced 

release of reductors/chelators (mainly phenolics). When effective, these responses enhance the 

solubilization of soil Fe and the transport of Fe into the plant. 

Strategy II is observed in graminaceous plants and involves the release of phytosiderophores – 

plant produced complexing agents, which bind and solubilize Fe from soil. Uptake of the 

Fe(III)phytosiderophore complex is mediated by a specific transporter in the plasma 

membrane of the root cells. 

 

Prevention and remediation of Fe deficiency 

When Fe stress response mechanisms of plants prove inadequate, techniques to prevent or 

remedy Fe deficiency need to be applied to avoid yield losses. Breeding and genetically 

modifying plants for a more efficient Fe uptake mechanism is a promising approach. 

Developing new cultivars should however be done carefully and requires much time. Once 

crops are in the field, application of Fe fertilizer is the most certain and efficient treatment to 

ensure that plants do not suffer from Fe deficiency. 

Fe fertilizers can be administered through trunk injection, foliar application, and soil 

application. Trunk injection is expensive and only suitable for trees. Foliar application does 

not provide full control of Fe chlorosis, but can be useful as complementary technique next to 

soil application (Alvarez-Fernandez, et al., 2004). Soil application is the most common 

technique to manage Fe deficiency in soil grown crops (Lucena, 2006). The technique is based 

on increasing the Fe concentration in soil solution. On calcareous soils, soil application of Fe 
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fertilizers based on organic Fe salts, Fe complexes of lignosulfonates, citrates, gluconates, and 

synthetic Fe chelates of limited stability (e.g. FeEDTA, FeDTPA and FeHEDTA) has limited 

or no result, because these fertilizers are not able to maintain Fe in soil solution. Only Fe 

chelates of higher stability (FeEDDHA and derivatives, with phenolic functional groups) are 

effective and provide the most efficient treatment to control Fe deficiency (Lucena, 2006). 

 

 

FeEDDHA based Fe fertilizer 

 

Chelates 

Chelates comprise a metal ion bound to a chelating agent. Chelating agents are bi- or 

multidentate complexing agents i.e. ligands with more than one functional group. The term 

chelate is derived from the Greek αί Χηλαί (~ hai chelai), which means crustacean’s claw, 

referring to the ligand clamping the metal ion, and was first used by Morgan and Drew (1920). 

Due to their ability to form stable, water-soluble complexes with di- and trivalent cations, 

chelating agents act as moderators of the solubility, mobility, bioavailability and reactivity of 

the chelated metal ion (Bucheli-Witschel and Egli, 2001). 

The complexation constant is a thermodynamic measure for the stability of a chelate. For a 

complexation reaction in which metal ion and chelating agent react in a stoichiometric ration 

of 1, the complexation constant can be described as: 

 

 

 (1) 

 

 

In soil systems containing multiple metals, the extent to which these metals are chelated under 

equilibrium conditions depends on both complexation constants and metal activities (equation 

(1)). 

 

 

FeEDDHA 

FeEDDHA is the iron(3+) complex of the chelating agent EDDHA, which is an acronym for 

ethylene diamine di(hydroxy phenyl acetic acid). EDDHA is also referred to as EHPG 

(ethylenebis-(hydroxy phenyl glycine)). This chelating agent was first synthesized by Kroll, 

introduced in 1955, but only fully described in 1957 (Kroll, 1957; Kroll, et al., 1957; Wallace, 

1966). FeEDDHA was quickly recognized as very effective in correcting Fe chlorosis under 

soil conditions, also in comparison to other chelating agents (Wallace, et al., 1955; Wallace, 

1962). The Fe
3+
 ion is bound by 2 carboxylate groups, 2 phenolate groups and 2 secondary 

amine groups in an octahedral complex of high stability with an intense red colour at neutral 

pH. The FeEDDHA complex owes its high stability in comparison to FeEDTA or FeDTPA 

complexes to the Fe-O (phenolate) bonds. On account of this high stability, EDDHA has also 

been evaluated as a model compound for the binding site in the Fe transport protein serum 
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transferrin (Gaber, et al., 1974; Patch, et al., 1983). The primary application of FeEDDHA is 

however as a fertilizer.  

 

Synthesis and stereochemistry  

Kroll (1957) first synthesized the EDDHA ligand through addition of hydrogen cyanide to the 

Schiff base from salicylaldehyde and ethylenediamine (the salen ligand), and subsequent 

acidic hydrolysis of the dinitrile in hydrochloric acid (a Strecker reaction). Because the 

application of hydrogen cyanide on an industrial scale requires extensive safety measures and 

is therefore costly, alternative pathways for the synthesis of EDDHA were sought and found 

by Petree et al. (1978) and Julien and Aymard (1989). The current synthesis pathway for 

manufacturing EDDHA on an industrial scale is a Mannich-like reaction between phenol, 

ethylenediamine and glyoxylic acid. This reaction produces a mixture of 1) positional isomers, 

2) diastereomers and 3) polycondensates, because 1) the reaction pathway allows for aromatic 

substitution in (o) ortho and (p) para position, 2) two chiral centers are introduced into the 

molecule leading to (R,R); (R,S); (S,R) and (S,S) configurations, and 3) undesired addition 

reactions take place between reactants and half products. The composition of the mixture of 

reaction products can be steered. After the reaction is terminated, an Fe salt is added to the 

reaction products to form Fe chelates 

 

Commercial FeEDDHA formulations can be operationally divided into 4 groups of 

compounds:  

 

1) racemic o,o-FeEDDHA (Figure 1.4a); referring to the (R,R) and (S,S) configurations 

of o,o-FeEDDHA (iron (3+) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) 

complex). These configurations are mirror images, but identical in most physical and 

chemical properties, including binding strength. 

2) meso o,o-FeEDDHA (Figure 1.4b); referring to the (S,R) = (R,S) configuration of  

o,o-FeEDDHA. Due to the internal mirror plane of the chelate, the (S,R) and (R,S) 

configurations are identical. 

3) o,p-FeEDDHA (Figure 1.4c); referring to the 4 configurations  of o,p-FeEDDHA (iron 

(3+) ethylene diamine-N-(2-hydroxy phenyl acetic acid)-N’-(4-hydroxy phenyl acetic 

acid) complex). The o,p-FeEDDHA configurations are not identical in physical and 

chemical properties. 

4) rest-FeEDDHA; referring to the 3 configurations of p,p-FeEDDHA (iron (3+) ethylene 

diamine-N,N'-bis(4-hydroxy phenyl acetic acid) and a variety of polycondensates and 

half products. An example of a polycondensate is depicted in Figure 1.4d. 

 

These 4 groups will be referred to as the FeEDDHA components, and the corresponding 

groups of EDDHA ligands as the EDDHA components. In commercial FeEDDHA 

formulations, the sum of the racemic and meso o,o-FeEDDHA content is referred to as the 

o,o-FeEDDHA content of the product. Generally racemic and meso o,o-FeEDDHA are 

synthesized in a ratio close to 1 
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Figure 1.4: Spatial structures of the FeEDDHA components a) racemic o,o-FeEDDHA; b) meso  

o,o-FeEDDHA; c) o,p-FeEDDHA with OH
-
 on the coordination complex; and d) rest-FeEDDHA (one 

possible polycondensate). 

 

 

Racemic and meso o,o-FeEDDHA are diastereomers; the chelated Fe is bound by the same 

functional groups, but the geometry of the chelate differs: in racemic o,o-FeEDDHA, both 

phenolic rings are in equatorial position, while in meso o,o-FeEDDHA one phenolic ring is in 

equatorial and the other in axial position (Figure 1.4a and 1.4b). Due to the difference in 

geometry the amount of strain on the bonds with Fe differs, which is reflected in a higher 

complexation constant for racemic o,o-FeEDDHA. 

The position of the hydroxyl group on the phenolic ring affects the complexation constant of 

FeEDDHA components more strongly than strain: in para-position the hydroxyl group is 

sterically inhibited from contributing to binding Fe. As a consequence, o,o-EDDHA binds  Fe 



Chapter 1 

 

22 

more strongly than o,p-EDDHA (see Table 1.1), which in turn binds Fe more strongly than 

p,p-EDDHA. Rest-FeEDDHA is a very heterogeneous group, comprising of compounds that 

vary in molecular weight, number of functional groups, etc, and hence also in complexation 

constant.  

 

 

Table 1.1: Complexation constants of FeEDDHA components. 

 

 

 

 

 

 
a 
Yunta et al. (2003b); 

b
 Yunta et al. (2003a) (I = 0.1 M (NaCl)). 

 

 

The market and regulation of FeEDDHA products 

The market size for products based on FeEDDHA or related phenolic aminocarboxylate Fe 

chelates (e.g. FeEDDHMA, FeEDDHSA), is approximately 10,000 tonnes per year, 

corresponding with a market value of around 60 million Euros. It is linked to areas of high 

soil-pH, in particular the Mediterranean area and the Middle East. The FeEDDHA market has 

oligopolistic features with three main producers Ciba Geigy, Syngenta and AkzoNobel. 

However, in recent years the market has been increasingly shifting towards monopolistic 

competition. Due to the lack of barriers, new producers (a.o. Lab Jaer, Valagro and 

Tradecorp.) have entered. The market has many consumers that perceive there are differences 

between competitors’ products besides the price, namely the composition of the product in 

terms of FeEDDHA components. This difference in composition offers producers a certain 

degree of control over the price of their FeEDDHA products. 

From the variability in composition of FeEDDHA products, and the difference in fertilizer 

value of the FeEDDHA components arose the need to ensure the quality of commercial 

FeEDDHA formulations. Several tests and methodologies have been developed to asses the 

quality of FeEDDHA products (Cantera, et al., 2002; Garcia-Marco, et al., 2003; Lucena, et 

al., 1992a; b). At present the quality of FeEDDHA products is guarded in the European 

Fertilizer Law (Regulation (EC) No. 2003/2003; amendment (EC) No. 162/2007) through the 

following parameters: (1) soluble Fe content of the product, (2) percentage of Fe chelated, and 

(3) percentages of Fe chelated by respectively o,o-EDDHA and o,p-EDDHA. Data on these 

parameters have to be indicated on the product label. FeEDDHA products should comprise at 

least 5 weight percent of water-soluble Fe, of which at least 80 percent should be chelated, and 

at least 50 percent should be chelated to either o,o- or o,p-EDDHA. To be included on the 

product label, there is a threshold value for both o,o- and o,p-EDDHA of 1 weight percent of 

chelated Fe. 

Component Log K 

racemic o,o-FeEDDHA 35.86
b 

meso o,o-FeEDDHA 34.15
b 

o,p-FeEDDHA 28.72
a 
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Analysis of FeEDDHA products 

In order to quantify the composition of FeEDDHA products, both for product information and 

law enforcement purposes, suitable protocols for analysis had to be developed. Much effort 

has been invested in the synthesis, separation, identification and quantification of FeEDDHA 

components (Alvarez-Fernandez, et al., 2007; Bailey, et al., 1981; Barak and Chen, 1987; 

Cremonini, et al., 2001; Garcia-Marco, et al., 2006b; Gomez-Gallego, et al., 2002; Hernandez-

Apaolaza, et al., 1997; Hernandez-Apaolaza, et al., 2006; Hill-Cottingham, 1962). The method 

that is currently used for quantitative analysis is the high performance liquid chromatography 

(HPLC) method laid down by the European Committee for Standardization (CEN. EN 13368-

2:2007). This method is almost identical to the ion-pair HPLC method developed by Lucena et 

al  (1996).  

 

Characterization of EDDHA components 

The properties of EDDHA components have been intensively examined, both in view of 

understanding and predicting their behaviour in agricultural systems and in evaluating their 

aptness as a model compound for transferrins. Several studies have been dedicated to 

determining protonation and metal-complexation constants of EDDHA components (Ahrland, 

et al., 1990; Anderegg and L'Eplattenier, 1964; Bannochie and Martell, 1989; Frost, et al., 

1958; Yunta, et al., 2003a; Yunta, et al., 2003b). Furthermore, the crystal structure (Bailey, et 

al., 1976; Bailey, et al., 1981; Riley, et al., 1983), the spin structure (Ainscough, et al., 1980; 

Gomez-Gallego, et al., 2006), redox properties (Gomez-Gallego, et al., 2005b; Schroder, 

1964), and spectroscopic properties (Patch, et al., 1982; 1983) of EDDHA complexes have 

been examined. FeEDDHA complexes owe their characteristic deep red colour to the 

absorption of visible light with a maximum around λ = 480 nm, typical for the Fe-phenolate 

bond.  

  

Application of FeEDDHA fertilizer  

FeEDDHA is used as Fe fertilizer both on soil and in hydroponic systems. Fe fertilizers need 

to meet different requirements for these two types of systems in order to be effective, because 

the conditions in these systems differ considerably. This study only considers FeEDDHA in 

soil application.  

As mentioned, FeEDDHA is applied to soil to increase the solubility of Fe, thereby enhancing 

its bioavailability through an increase in diffusive flux of Fe to the root. When introduced into 

soil-plant systems, FeEDDHA components participate in and are exposed to various physical, 

chemical and biological processes affecting their soil solution concentration. These processes 

include adsorption, cation competition, biological and photochemical degradation, leaching, 

complex dissociation, precipitation on the soil surface, Fe transfer to the plant and chelation of 

metals from the soil by the corresponding EDDHA components. If these processes have a 

substantial negative impact on the concentration, the effectiveness of FeEDDHA components 

becomes compromised or even negligible. 

Considerable effort has been invested in better understanding several of the aforementioned 

processes. The interaction between FeEDDHA components and soil and soil constituents has 
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been examined (Alvarez-Fernandez, et al., 2002; Cantera, et al., 2002; Garcia-Marco, et al., 

2006a; Hernandez-Apaolaza, et al., 2006; Hernandez-Apaolaza and Lucena, 2001), and so has 

Fe uptake from FeEDDHA components (Cerdan, et al., 2006; Garcia-Marco, et al., 2006a; 

Hernandez-Apaolaza, et al., 2006; Lucena and Chaney, 2006; 2007; Rojas, et al., 2008), 

leaching of FeEDDHA components (Cesco, et al., 2000; Lucena, et al., 2005), mobilization of 

Fe from Fe oxides by EDDHA ligands (Perez-Sanz and Lucena, 1995) and photochemical 

degradation of FeEDDHA components (Gomez-Gallego, et al., 2005a).  

In the aforementioned studies, these processes were generally considered separately and under 

experimental conditions quite remote from those observed in soil-plant systems. A more 

integral approach is required for determining the actual impact of individual processes on the 

effectiveness of FeEDDHA components in soil application. In this approach, soil solution 

concentrations of FeEDDHA components and Fe uptake by plants should serve as principal 

touchstones for effectiveness, and should be considered in the same system. 

 

 

Objective and approach 

The effectiveness of FeEDDHA products in mending Fe chlorosis has been proven in the 

1950s and is undisputed. However, nowadays, the composition of these products in terms of 

FeEDDHA components varies greatly. The extent to which individual FeEDDHA components 

contribute to supplying plants with Fe is unclear, in particular in soil-plant systems. 

An efficient use of FeEDDHA fertilizer, implying maximizing the benefits in terms of crop 

yield and Fe uptake by plants, while minimizing the applied FeEDDHA dosage, is desirable 

both for the applier in view of cost efficiency, and from an environmental perspective to 

minimize the input of synthetic chemicals into the environment. In practical terms efficient 

FeEDDHA application translates into applying the right fertilizer (right composition) at the 

right moment in the right quantity. This requires an advanced understanding of the processes 

affecting the residence time of FeEDDHA components in soil solution as well as of the 

effectiveness of the individual FeEDDHA components in supplying plants with Fe. This 

understanding has been lacking. 

The objective of this study was to establish the processes determining the fate of FeEDDHA 

components in soil-plant systems, and to relate these processes to the characteristics of 

FeEDDHA components, determining their effectiveness as Fe fertilizer. 

 

To achieve this objective, the following tools were used: 

 

• Pot trials – to examine FeEDDHA-facilitated Fe uptake by plants. 

• Soil interaction experiments – to examine the speciation of EDDHA ligands in soil 

systems. 

• Interaction experiments in model systems – to examine the interaction between 

EDDHA species and specific soil reactive compounds and competing cations.  

• Mechanistic multi-surface modeling – to predict the equilibrium speciation of EDDHA 

ligands under soil conditions. 
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This study has been approached as follows: 

First the constituents of FeEDDHA fertilizers were screened with regard to their reactivity 

towards soil reactive compounds and their effectiveness in supplying soil-grown plants with 

Fe. Then, the behaviour of FeEDDHA components in soil plant-systems was studied as a 

function of time and related to Fe uptake by plants. After that, the effectiveness of FeEDDHA 

components was individually assessed. Subsequently, the contribution of individual processes 

to the observed behaviour of FeEDDHA components in soil-plant system was examined. 

Finally, based on the gathered experimental data, a conceptual model was composed, for 

qualitatively describing and mechanistically explaining the fate and effectiveness of 

FeEDDHA components in soil-plant systems. 

 

 

Outline 

Chapter 2 considers the behaviour of FeEDDHA components and EDDHA ligands upon 

interaction with eight soils as a function of time, and relates the observed behaviour to soil 

properties. Interaction was examined in a batch experiment, involving FeEDDHA treatments 

consisting of mixtures of FeEDDHA components and EDDHA ligands. 

Chapter 3 investigates the relation between the composition of soil-applied FeEDDHA 

treatments and Fe uptake by plants in order to determine which FeEDDHA components are 

effective in providing plants with Fe and preventing Fe deficiency chlorosis. The effectiveness 

of the FeEDDHA components was examined in a pot trial experiment with soybean involving 

eight soils. 

Chapter 4 reports a pot trial experiment in which soybean plants grown on a calcareous soil 

received FeEDDHA treatments differing in composition and Fe dosage. The pore water 

concentration of FeEDDHA components was examined as a function of time and related to Fe 

uptake by the plants. 

Chapter 5 assesses the effectiveness of FeEDDHA components in supplying soil-grown 

plants with Fe, in relation to the growth stage in which FeEDDHA is applied. The assessment 

included the quantitatively most important FeEDDHA components: the isomers racemic  

o,o-FeEDDHA, meso o,o-FeEDDHA and o,p-FeEDDHA and was done by means of a pot trial 

study with soybean plants grown on a calcareous soil. 

Chapter 6 examines the potential impact of biodegradation on the soil solution concentrations 

of EDDHA chelates upon administration of an FeEDDHA treatment to a calcareous soil. The 

examination was done by means of a soil-incubation study involving sterilized and non-

sterilized treatments and including two conditioning regimes. 

Chapter 7 explores the potential impact of cation competition from Cu on the performance of 

o,o-FeEDDHA isomers in application on calcareous soils. Through mechanistic multi-surface 

modeling the thermodynamic basis for Fe displacement from FeEDDHA by Cu was examined. 

In a soil interaction experiment the affinity of o,o-CuEDDHA for the soil solid phase was 

studied. And also, potential kinetic inhibition of the displacement reaction was investigated in 

goethite suspensions containing FeEDDHA and Cu. 
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Chapter 8 addresses the kinetics of the reaction in which Fe is displaced from FeEDDHA by 

Cu. In a study with goethite suspensions, the influence of soil properties like Cu content, 

available Fe(hydr)oxide surface, etc on the displacement rate was examined. For the 

displacement reaction with meso o,o-FeEDDHA the rate equation was derived and the kinetic 

parameters determined. In conclusion, the rate equation was solved for soil conditions. 

Chapter 9 deals with a hypothesized mechanism of action for Fe chelates applied as fertilizer, 

in which the chelating agent partakes in a cyclic process of delivering Fe at the root surface 

and mobilizing Fe from soil. The performance of this “shuttle mechanism” was evaluated for 

FeEDDHA chelates. The effectiveness of EDDHA ligands at specifically chelating and 

mobilizing Fe from soils of low Fe availability was tested in batch experiments. Furthermore, 

data collected in the pot trials reported in Chapter 3 and 4 were examined for experimental 

support for the shuttle mechanism with FeEDDHA. 

Chapter 10 provides a conceptual model for the behaviour of FeEDDHA components in soil-

plant systems, based on a synthesis of the research presented in the previous chapters, 

supplemented with additional experimental data. Within the framework of this model, the 

effectiveness of the FeEDDHA components is considered, as well as how this effectiveness is 

affected by soil parameters. The chapter concludes with practical implications and limitations 

of the presented research, and recommendations for further research. 
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“… serving the deep red elixir.” 

 

Excerpt from the lyrics to: 

“Into the Faculty of Wonderful Secrets”  

by Tartaros / Joachim Rygg 
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Abstract 

FeEDDHA products are applied to correct Fe chlorosis in plants and consist of a mixture of 

EDDHA components chelated to Fe. In this study such mixtures have been divided into four 

(groups of) components: racemic o,o-EDDHA, meso o,o-EDDHA, o,p-EDDHA and  

rest-EDDHA. The physical and chemical properties of these components differ and 

consequently, so does their ability to deliver Fe to plants. To come to a soil-specific Fe 

fertilization recommendation, the behaviour of the EDDHA components in the soil needs to be 

understood. This behaviour has been examined in a soil interaction experiment as a function of 

time, and it has been related to soil properties.  

The FeEDDHA component fractions remaining in solution can be ranked: racemic  

o,o-FeEDDHA > meso o,o-FeEDDHA > rest-FeEDDHA > o,p-FeEDDHA, regardless of soil 

properties. The o,o-EDDHA isomers largely determine the Fe concentration in soil solution. 

Although rest-EDDHA also consists of compounds that chelate Fe more strongly than meso 

o,o-EDDHA, the latter is on average better capable of keeping Fe in solution upon interaction 

with soil. The principal adsorption surface differs per FeEDDHA component; for racemic  

o,o-FeEDDHA it is organic matter, for meso o,o-FeEDDHA, Fe(hydr)oxides, and for  

o,p-FeEDDHA, clay minerals. Cu and Al are important competing cations. Cu forms soluble 

complexes with o,p-EDDHA, and Al with meso o,o-EDDHA not chelated to Fe. Al is likely to 

affect the effectiveness of a potential shuttle effect. The tendency of o,p-FeEDDHA and rest-

FeEDDHA to be removed from solution, makes these components less effective as Fe 

fertilizer in soil application, in particular on clay soils. 
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Introduction 

Fe is an essential micronutrient for its role in the formation of chlorophyll and in various 

enzymatic processes (Marschner, 1995). Although generally present in the soil in sufficient 

quantities, Fe is not always sufficiently available to plants. A low bioavailability of Fe may 

lead to Fe chlorosis in crops. Fe chlorosis is a nutritional disorder characterized by a 

significant decrease of chlorophyll in the leaves. It reduces crop quality and depresses crop 

yields and hence causes economic losses. In particular in alkaline and calcareous soils, the 

bioavailability of Fe can be severely limited (Chaney, 1984; Mortvedt, 1991). This mainly 

results from the low solubility of Fe(hydr)oxides at high pH (Lindsay, 1979), and from the 

elevated bicarbonate concentration in the soil solution (Boxma, 1972; Mengel, et al., 1984; 

Shi, et al., 1993). Bicarbonate either impairs Fe uptake mechanisms of the plant (Marschner, 

1995; Venkatraju and Marschner, 1981) or inactivates Fe in the leaf apoplast (Mengel, 1994). 

Most alkaline and calcareous soils are found in areas of the reference soil groups calcisols and 

solonchaks which cover nearly 10 million km
2
 of the earth’s surface (FAO/AGL, 2000).

 

 

The most common practice to overcome Fe deficiency in plants is the application of synthetic 

Fe chelates (Chen and Barak, 1982). FeEDDHA (iron (3+) ethylene diamine-N,N'-bis(hydroxy 

phenylacetic acid)) is among the most effective Fe fertilizers on neutral and alkaline soils 

(Lucena, et al., 1992b; Papastylianou, 1990; Reed, et al., 1988). Its agronomical performance 

has been intensively studied since the 1950s (Hill-Cottingham and Lloyd-Jones, 1958; Kroll, 

1957; Wallace, et al., 1955). Several studies have been dedicated to the determination and the 

quantification of FeEDDHA (Barak and Chen, 1987; Hernandez-Apaolaza, et al., 1997; 

Lucena, et al., 1996).  

The synthesis pathway applied for manufacturing commercial FeEDDHA formulations is a 

Mannich-like reaction between phenol, ethylene diamine and glyoxylic acid (Julien and 

Aymard, 1989; Petree, et al., 1978). The reaction produces a mixture of (1) positional isomers, 

(2) diastereomers and (3) polycondensates. This is because: (1) the reaction pathway allows 

for aromatic substitution in both ortho (o) and para (p) position, (2) two chiral centres are 

introduced into the molecule, leading to (R,R), (R,S), (S,R) and (S,S) enantiomers and  

(3) undesired addition reactions take place between reactants and half products (Cremonini, et 

al., 2001). 

Throughout this paper, the EDDHA synthesis products are divided into four groups, labelled 

as follows: (1) racemic o,o-EDDHA (referring to the (R,R) and (S,S) o,o-EDDHA (ethylene 

diamine-N,N'-bis(2-hydroxy phenyl acetic acid)) enantiomers; the enantiomers are mirror 

images, differing in the direction they deviate polarized light, but identical in binding 

strength), (2) meso o,o-EDDHA (referring to the (R,S) = (S,R) enantiomer; due to the internal 

mirror plane of the molecule, the (R,S) and (S,R) configurations are identical (Bailey, et al., 

1981; Hill-Cottingham, 1962; Ryskievich and Boka, 1962)), (3) o,p-EDDHA (referring to the 

four o,p-EDDHA (ethylene diamine-N-(2-hydroxy phenyl acetic acid)-N’-(4-hydroxy phenyl 

acetic acid)) enantiomers) and  (4) rest-EDDHA (referring to the 3 p,p-EDDHA (ethylene 

diamine-N,N'-bis(4-hydroxy phenyl acetic acid) enantiomers and a variety of polycondensates 
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and half-products (Cremonini, et al., 2001; Hernandez-Apaolaza, et al., 2006)). In general 

these four groups are referred to as EDDHA components. 

 

Because the physical and chemical properties of these EDDHA components differ, so does 

their ability to bind Fe and deliver it to the plant. Binding strength parameters such as 

protonation constants and complexation constants for Fe and several other metals have been 

determined for the most important EDDHA components (Ahrland, et al., 1990; Bannochie and 

Martell, 1989; Frost, et al., 1958; Yunta, et al., 2003a; Yunta, et al., 2003b). 

The compositions of commercially available FeEDDHA formulations differ, and therefore the 

need for a quality parameter arose. Several parameters have been proposed (Hernandez-

Apaolaza, et al., 1995; Lucena, et al., 1992a; b). At present, the quality aspect is assured in the 

European Fertilizer Law (Regulation (EC) No. 2003/2003; amendment (EC) No. 162/2007) 

through three parameters: (1) soluble Fe content of the product, (2) percentage of Fe chelated, 

and (3) percentages of Fe chelated by respectively o,o-EDDHA and o,p-EDDHA. The  

o,o-EDDHA isomers are supposedly the strongest chelating agents present in FeEDDHA 

products (Table 1.1) (Hernandez-Apaolaza, et al., 2006; Yunta, et al., 2003a; Yunta, et al., 

2003c). Commercial FeEDDHA formulations tend to contain significant amounts of EDDHA 

components other than o,o-EDDHA that are not chelated to Fe. 

 The characteristics of an Fe chelate that determine its effectiveness in agronomic practice are: 

(1) its ability to remain in solution, (2) its susceptibility to competition from other metal ions, 

(3) its ability to deliver Fe to the plant, and (4) its selectivity to pick up Fe from the soil, either 

after having delivered an Fe ion to the plant (shuttle effect) or upon initial contact with the soil 

(Lucena, 2003). In the case of soil application of Fe chelates, at least three out of four of these 

features are co-determined by the characteristics of the soil.  

 

To improve the understanding on the interaction of FeEDDHA components with soil and soil 

constituents, several studies have been done (Alvarez-Fernandez, et al., 1997; Alvarez-

Fernandez, et al., 2002; Cantera, et al., 2002; Garcia-Marco, et al., 2006; Garcia-Mina, et al., 

2003; Hernandez-Apaolaza, et al., 2006; Hernandez-Apaolaza and Lucena, 2001; Siebner-

Freibach, et al., 2004). Soil organic matter (acid peat) and Fe(hydr)oxides (ferrihydrite) have 

been identified as the most reactive, and calcium carbonate and clay (Ca-montmorillonite) as 

less reactive soil constituents with respect to FeEDDHA sorption (Alvarez-Fernandez, et al., 

1997; Alvarez-Fernandez, et al., 2002). Meso o,o-FeEDDHA was found to be more 

susceptible to sorption than racemic o,o-FeEDDHA (Alvarez-Fernandez, et al., 2002; 

Hernandez-Apaolaza and Lucena, 2001). The speciation of certain metals other than Fe is also 

affected from soil application of dissolved FeEDDHA products: Cu and Mn have been 

reported to go into solution. (Alvarez-Fernandez, et al., 1997; Alvarez-Fernandez, et al., 2002; 

de Kreij, 1998; Gil-Ortiz and Bautista-Carrascosa, 2004). Whether this is the result of Fe 

displacement or of complexation by chelating compounds initially not chelating Fe has not 

been cleared up. o,p-EDDHA not chelated to Fe has been reported to dissolve Cu from soils 

(Garcia-Marco, et al., 2006). 
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Up until now, interaction studies with EDDHA components have mainly focused on isolated 

and synthesized soil constituents, while actual soils have been largely approached as black 

boxes. In this study a novel approach was followed, in which the influence of reactive soil 

constituents and competing cations on EDDHA component behaviour was examined within 

the soil system itself. An understanding of this issue is crucial to come to an adequate, soil 

specific Fe fertilization recommendation. 

 

The aim of this research was (1) to examine EDDHA component behaviour upon interaction 

with soils as a function of time, and (2) to relate this behaviour to soil properties. More 

specifically, an attempt was made to pinpoint per component which reactive surfaces and 

competing cations are dominant in determining their behaviour upon interaction with soil. 

Because o,p-EDDHA and rest-EDDHA are present in commercial formulations both chelated 

to and non-chelated to Fe, this distinction was also included in this study.  

An experiment was done in which a number of soils were allowed to interact with a number of 

FeEDDHA solutions. The FeEDDHA solutions differed in (1) EDDHA component 

composition, primarily the o,o-EDDHA content, and (2) the degree to which the chelating 

capacity of the EDDHA solutions was saturated with Fe. The aqueous phase was examined as 

a function of time. 

 

 

Materials and Methods 

 

Soils 

Soils were collected from seven sites, located in Italy (Bologna), Spain (Xeraco and 

Santomera), Saudi Arabia (Nadec and Hofuf) and the Netherlands (Droevendaal and Herveld). 

The soils are named after the location of collection. The sites were selected so that there were 

ranges in soil properties and constituents reported to interact with FeEDDHA components 

(Alvarez-Fernandez, et al., 1997). Four clay soils and four sandy soils were included. At all 

sites the top layer (0 – 20 cm) was sampled. From one site (Xeraco, Spain), soil from both the 

top layer and the layer directly underneath (20 - 40 cm) was collected separately. The top layer 

is relatively rich in organic material. In crops grown at the sites in Spain, Italy and Saudi 

Arabia, Fe chlorosis was manifest. The two Dutch sites were included to extend the ranges of 

potentially relevant soil characteristics. Pre-treatment consisted of drying (40 °C) and sieving 

(2 mm). The chemical and textural properties of the soils were analysed, the prime results of 

which are presented in Table 2.1.  

 

Experimental solutions 

Seven FeEDDHA solutions and a blank were used in the interaction experiment. The 

FeEDDHA solutions were prepared from three sodium-EDDHA stock solutions and solid  

o,o-H4EDDHA (99% pure). The stock solutions were synthesized through the aforementioned 

Mannich-like reaction (Petree, et al., 1978) and differed in o,o-EDDHA-content:  

approximately 20%, 40% and 60% on an ethylene diamine input basis. Out of each stock  



Table 2.1: Soil characteristics. 

 

a
 ISO/DIS 10390 Soil Quality – Determination of pH 
b 
Walinga et al. (1992) 

c
 Houba et al. (1997)

 

d
 ISO 10693, Soil Quality – Determination of carbonate content, volumetric method 
e 
ISO/DIS 11260 Soil Quality – Determination of cation exchange capacity and base saturation – method using barium chloride solution

 

f
 Houba et al. (2000) 
g
 Schwertmann (1964) 
h
 Linday and Norvell (1978) and Quevauvillier et al. (1996) 

 
       

0.01 M 
CaCl2 

 
Oxalate-

extraction
g
 

 DTPA-extraction
h
 

Soil (origin) Country 
Soil 
class. 

pH-
CaCl2

a SOC
b 

Clay
c 

CaCO3
d 

CEC
e 

DOC
f 

 Fe
 

Al  Fe Mn Cu Zn Co Ni 

    (g kg
-1
) (g kg

-1
) (g kg

-1
) 

(cmol 
eq kg

-1
) 
(mg kg

-1
)  (g kg

-1
) (g kg

-1
)  (mg kg

-1
) 

Bologna IT entisol 7.9 8.7 230 140 17 53  1.54 0.46  18 8.6 2.8 0.6 0.0 0.7 

Xeraco top  ES entisol 7.8 43.7 100 420 33 234  1.68 0.78  82 3.8 1.1 7.1 0.0 0.5 

Xeraco lower ES entisol 7.8 13.7 360 150 30 78  0.90 1.74  10.5 5.3 3.0 6.7 0.0 0.2 

Santomera ES entisol 8.0 5.4 260 520 10.3 30  0.30 0.44  3.5 4.6 4.1 0.9 0.0 0.2 

Nadec SA aridisol 8.1 8.7 70 140 5.5 93  0.13 0.18  2.1 5.7 0.1 0.5 0.0 0.1 

Hofuf SA aridisol 7.9 7.1 40 60 3.5 53  0.19 0.08  6.7 3.8 2.3 5.0 0.0 0.1 

Droevendaal NL spodosol 6.5 15.2 40 0 3.3 54  1.68 1.40  60 1.5 1.1 1.8 0.0 0.1 

Herveld NL spodosol 7.2 15.2 260 30 24 139  2.33 0.68  31 21.5 5.3 10.8 0.0 0.8 
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solution, two experimental solutions were prepared through the addition of different amounts 

of FeCl3*6H2O. To the first solution an amount of Fe was added, equal to the molar equivalent 

of o,o-EDDHA. This solution was given the P-suffix for “Partly chelating Fe”. To the second 

solution an amount of Fe was added, 5% in excess based on a 1:1 stoichiometry between Fe 

and ethylene diamine. This solution was given the F-suffix for “Fully chelating Fe”.  The pH 

was raised to 7 (± 0.5) and the solutions were left over-night in the dark in order for excess Fe 

to precipitate as (hydr)oxides. The experimental solution from solid o,o-H4EDDHA was 

prepared as described by Alvarez-Fernandez et al. (2002). The following day, the solutions 

were filtered through a 0.45 µm nitrocellulose micropore filter (Schleicher & Schuell, ref-no: 

10401114). After filtration the solutions were further diluted. The final experimental solutions 

had a total chelating capacity in between an equivalent of 12 and 15 mg l
-1
 Fe (see Figure 

2.1b). The solutions were named after their o,o-EDDHA content (o,o20%; o,o40%, o,o60% 

and o,o100%) and their degree of chelation (P or F). 

In order to impose ionic strength, CaCl2 was added, so that the final solutions including the 

blank had a 0.01M CaCl2 concentration. The composition of the experimental solutions was 

analysed by ICP-AES, ICP-MS and HPLC analysis at t=0 and at the different sampling 

moments, as described under sampling and measurement. Prior to analysis the samples were 

filtered through a 0.45 µm cellulose acetate micro pore filter (Schleicher & Schuell, ref no: 

10462650). To avoid contamination, the preparation of experimental solutions and dilution of 

samples for measurement was done with analytical grade chemicals and ultra pure water. 

 

Soil-FeEDDHA interaction studies 

The selected soils were allowed to interact with the experimental solutions in a soil-solution 

ratio of 1:1 (w/v) for respectively 1, 2, 4 and 6 weeks in 50 ml polypropylene test tubes 

(Greiner bio-one, Cat No 210296). The tubes were placed in an end-over-end shaker, rotating 

at 18 rpm in absence of light. Room temperature was kept at 20 (± 1) °C. To avoid drastic 

changes in redox conditions throughout the experiment, the tubes were taken out of the shaker, 

opened for 30 minutes every three to four days. The experiment was carried out in triplicates. 

Control treatments with the experimental solutions without soil were included for t=0 and the 

four interaction times. 

 

Sampling and measurement 

After interaction, the samples were centrifuged for 15 minutes at 3000 rpm. The pH and EC of 

the supernatant were measured. Subsequently the supernatant was filtered over a 0.45 µm 

cellulose acetate micro pore filter (Schleicher & Schuell, ref no: 10462650). The filtrate was 

further analyzed. Fe, Ca and Mg concentrations were measured by ICP-AES (Varian, Vista 

Pro); Cu, Al, Mn, Zn, Ni and Co concentrations were measured by ICP-MS (Perkin Elmer, 

ELAN 6000. The samples were acidified with nitric acid before analysis. FeEDDHA 

components were separated through high-performance liquid chromatography (HPLC). HPLC 

was performed on a Waters HPLC system consisting of a Waters 600E Multisolvent Delivery 

System, an Alltech online degasser, a Waters 717plus Autosampler, a Waters 2487 Dual 

Wavelength Absorbance Detector and Millennium32 software. A Waters Spherisorb ODS2 
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cartridge, dp = 5 µm, 250x4.6 mm with guard column was used. The injection volume was 20 

µl and the flow rate was 1 mL min
-1
. Detection was done at 277 nm. The mobile phase was 

prepared by mixing 915 ml of a filtered formate buffer (0.015 M sodium formate adjusted to 

pH = 3.0 with HCl) with 85 ml of acetonitrile. The concentrations of Fe chelated by racemic 

o,o-EDDHA, meso o,o-EDDHA and o,p-EDDHA were determined using an external 

calibration method. The Fe concentration chelated by rest-EDDHA was calculated by 

subtracting the Fe concentrations chelated by the other three components and the Fe 

concentration in the blank from the total Fe concentration as measured by ICP-AES.  

 

 

Results and Discussion 

 

Experimental solutions 

Figure 2.1a depicts the HPLC chromatogram of the 60%o,oF experimental solution. It 

illustrates that the peaks were clearly separated. The two o,p-EDDHA peaks were not 

calibrated separately, but combined. In chromatograms of soil interaction samples a drift in 

elution time was observed but the peaks remained readily identifiable. Peaks resulting from 

dissolved organic carbon (DOC) did not interfere disturbingly for integrating the FeEDDHA 

component peaks. From this and similar chromatograms, the composition of the experimental 

solutions was determined. 

In Figure 2.1b the Fe concentrations of the experimental solutions are presented, specified per 

FeEDDHA component. All experimental solutions with the F-suffix were expected to have Fe 

concentrations of 15 mg l
-1
 Fe. A deviation was observed, increasing with decreasing  

o,o-EDDHA content. This observation might be explained from the following 3 factors: First, 

the Fe addition was based on a 1:1 stoichiometry between Fe and ethylene diamine. However, 

polycondensates may contain more than one ethylene diamine group, but may not be able to 

bind equally more Fe. Solutions containing more polycondensates will therefore have an  

over-all stoichiometric ratio of ethylene diamine to Fe, further from 1. Secondly, the relatively 

large Fe chelating polycondensates might be more susceptible to sorption to Fe(hydr)oxides 

formed from excess Fe. The Fe(hydr)oxides and adsorbed complexes are removed from the 

experimental solutions through filtration. Thirdly, the addition of CaCl2 might lead to 

precipitation and competition effects. Where o,o- and o,p-FeEDDHA concentrations are 

hardly affected by Ca, rest-FeEDDHA concentrations might be. 

In the experimental solutions with the P-suffix, all o,o-EDDHA was expected to chelate Fe, 

due to its high complexation constants (Table 1.1). The compositions in Figure 2.1b however 

show, that not all meso-o,o-EDDHA is chelating Fe and a significant amount of Fe is being 

chelated by rest-EDDHA. This is most evident in the 20%o,oP solution. Since p,p-EDDHA 

binds Fe much less strongly than meso o,o-EDDHA, polycondensates must be responsible for 

chelating Fe. This demonstrates that there are polycondensates in commercial FeEDDHA 

formulations that form Fe complexes of higher chemical stability than meso o,o-FeEDDHA. 

Hernandez-Apaolaza et al. (2006) recently found that rest-FeEDDHA complexes remain in 
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Figure 2.1: a) The HPLC chromatogram for the 60%o,oF experimental solution. o,p-FeEDDHA elutes 

in two sets of two enantiomers o,p1,2 and o,p3,4; b) Composition of the experimental solutions before 

interaction with soil. The concentrations of the FeEDDHA components are expressed in terms of Fe 

concentration chelated by a particular component. All solutions had a 0.01 M CaCl2 background and 

pH 6-7. 

 

 

solution over a smaller pH range than o,o-FeEDDHA and concluded from that that  

rest-FeEDDHA complexes are less stable. The findings from this study contradict this 

conclusion. Possibly, these polycondensates have racemic o,o-EDDHA resembling segments 

enabling them to bind Fe this strong. The higher chemical stability of such complexes 

compared to meso o,o-FeEDDHA does not necessarily imply a higher stability in solution in 
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the presence of reactive surfaces. The stability of the various EDDHA components in solution 

upon interaction with soil will be discussed further on. 

 

Soil-EDDHA-interaction 

The results from the interaction experiment are presented and discussed in the following four 

sections: 1) Fe and FeEDDHA component concentrations as a function of time; 2) Reactive 

surfaces, dealing with the relation between FeEDDHA component concentrations and the 

contents of reactive surface compounds in the soil; 3) Degree of chelation, dealing with the 

difference in Fe and FeEDDHA component concentrations between F- and P-treatments; and 

4) Competing cations, dealing with the effect of EDDHA treatments on the concentrations of 

competing cations. 

  

Fe and FeEDDHA component concentrations as a function of time  

Fe – The observed changes in Fe concentration over time for the different treatments were 

similar for all soils. The effects of treatment are illustrated for the Bologna soil in Figure 2.2a. 

(Results for Santomera soil, Nadec soil and Hofuf soil are presented in the Appendix; Figure 

A2.1). The measured Fe concentrations can be fully attributed to the addition of EDDHA, 

because the Fe concentration in the blank-treatment was below the detection limit of the  

ICP-AES (11 µg l
-1
 Fe). 

The Fe concentrations in the F-treatments decreased strongly within the first week and were 

relatively constant afterwards, whereas the Fe concentrations in the P-treatments were 

relatively constant from the beginning onward. After one week, the differences in Fe 

concentration between the P- and F-treatment of the same o,o-EDDHA content had become 

small relative to the differences between the treatments with different o,o-EDDHA contents. 

Hence, the o,o-EDDHA content of the experimental solution largely determines how much Fe 

remains in solution during interaction.  

The initial decrease in Fe concentration in the F-treatments is caused by EDDHA components, 

which form Fe complexes in plain solutions, but either adsorb, precipitate or have Fe displaced 

by a competing cation when interacting with soil. Cantera et al. (2002) and Garcia-Mina et al. 

(2003) found a similar strong decrease in Fe concentration as observed in the F-treatments for 

a number of FeEDDHA products, already within the first day. 

Except in two sandy soils (Hofuf and Droevendaal), the EDDHA components in the  

P-treatments that initially do not chelate Fe, do not establish a net increase in Fe concentration 

upon interaction with soils. To determine whether Fe is in fact chelated by the same EDDHA 

components before and after soil interaction requires HPLC analyses. 

 

FeEDDHA components - The overall Fe concentration is the resultant of the contributions of 

the individual FeEDDHA components. In Figure 2.2b the fractions of these FeEDDHA 

components remaining in solution ([FeEDDHA]t=t/[FeEDDHA]t=0) are plotted as a function of 

time for the 60%o,oF treatment interacting with Bologna soil (Results for Santomera soil, 

Nadec soil and Hofuf soil are presented in the Appendix; Figure A2.2.) After one week, 
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Figure 2.2: a) Fe concentration as a function of time upon interaction of the experimental solutions with 

Bologna soil. Concentrations at t=0 are prior to soil interaction; b) Fraction of the FeEDDHA 

components remaining in solution as a function of time upon interaction of the 60%o,oF treatment with 

Bologna soil. The lines in between t=0 and t=1 week are dashed, because the data do not show how 

quickly the decrease in concentration took place within the first week. Error bars indicate standard 

deviations. 

 

 

o,p-FeEDDHA had disappeared from solution almost completely and the rest-FeEDDHA 

concentration had strongly decreased (a remaining fraction of 0.21). Both o,o-FeEDDHA 

isomers remained in solution to a much larger extent. In accordance with other adsorption and 

soil interaction studies, the racemic o,o-FeEDDHA concentration is most constant, hardly 

displaying any decrease (Alvarez-Fernandez, et al., 2002; Cantera, et al., 2002; Hernandez-
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Apaolaza and Lucena, 2001). The meso o,o-FeEDDHA concentration showed some initial 

decrease in concentration. From one to six weeks of soil interaction, the FeEDDHA 

component concentrations remained largely constant, except for meso o,o-FeEDDHA. Its 

remaining fraction declined from 0.91 to 0.75. Similar observations were found for the other 

soils. 

After 6 weeks of interaction with the different soils, the remaining fractions of the FeEDDHA 

components in the 60%o,oF treatment ranged from 0.85 to 1.04 for racemic o,o-FeEDDHA, 

from 0.58 to 0.94 for meso o,o-FeEDDHA, from 0.11 to 0.42 for rest-FeEDDHA and from  

0 to 0.16 for o,p-FeEDDHA. For all F-treatments, similar trends in remaining fractions were 

found. The remaining fractions can be ranked as follows for all soils: racemic o,o-FeEDDHA 

> meso o,o-FeEDDHA > rest-FeEDDHA > o,p-FeEDDHA. It should be added that  

rest-EDDHA consists of a variety of compounds, some of which are able to maintain Fe in 

solution better than o,p-EDDHA, while others are not. The composition of the rest-EDDHA 

fraction differs between treatments with different o,o-content. The average chain length of the 

polycondensates increases with increasing rest-EDDHA fraction in the experimental solutions. 

This complicates the comparison of the rest-FeEDDHA concentration between treatments with 

different o,o-contents. 

In the P-treatments an increase in meso o,o-FeEDDHA concentration and a decrease in  

rest-FeEDDHA concentration were found, compared to the experimental solutions. The 

increase in meso o,o-FeEDDHA was largest in the 20%o,oP-treatment, amounting 0.45 to 1.00 

mg l
-1
 Fe for the different soils. Apparently the stability of the meso o,o-FeEDDHA complex 

is lower, but its ability to keep Fe in solution during interaction with soil is larger. Whether 

meso o,o-EDDHA chelated native Fe or Fe initial chelated by rest-FeEDDHA remains 

unclear. 

 

Reactive surfaces 

The chemical properties and sorption behaviour of the FeEDDHA components differ. 

Therefore it was expected that different soil constituents might play a dominant role in their 

sorption behaviour. Relations were studied between the contents of reactive soil constituents 

and FeEDDHA component concentrations. 

 

Racemic o,o FeEDDHA – In Figure 2.3, the racemic o,o-FeEDDHA concentrations are 

shown as a function of time for the 60%o,oF treatment interaction with all soils. The 

concentrations hardly decrease over time. This complicates the interpretation of which soil 

characteristics affect the racemic o,o-FeEDDHA concentration. The soil that stands out, in that 

relatively much of racemic o,o-FeEDDHA is removed from solution is the Xeraco top soil 

(Figure 2.3). The distinctive feature of this soil is its relatively high organic matter content 

(Table 2.1). Alvarez-Fernandez et al. (1997; 2002) and Hernandez-Apaolaza and Lucena 

(2001) pointed out that organic matter might be an important reactive soil constituent with 

respect to o,o-FeEDDHA sorption. However, the overall sorption of racemic o,o-FeEDDHA 

remains small; approximately 15% after 6 weeks at an organic matter content of 9%. 
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At pH 7-8 organic matter is substantially negatively charged. As a consequence, there is an 

electrostatic repulsion between the deprotonated carboxylate groups of soil organic mater and 

the negatively charged racemic o,o-FeEDDHA complexes. Adsorption to organic matter might 

be established through bridging mechanisms with di- or trivalent cations. Such mechanisms 

have been reported for linking functional groups within and between DOC molecules. Van der 

Waals interaction between the uncharged areas of organic matter and the aromatic rings of the 

complex might also play a role (Stevenson, 1994). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Fe concentration chelated by racemic o,o-EDDHA as a function of time upon interaction of 

the 60%o,oF treatment with all soils. Concentrations at t=0 are prior to soil interaction. Error bars 

indicate standard deviations. Open symbols represent sandy soils, closed symbols represent clay soils. 

 

 

Meso o,o-FeEDDHA – The extent to which meso o,o-FeEDDHA is removed from solution 
appears to be related to the amount of reactive Fe (oxalate extractable Fe) present in the soil 

(Figure 2.4). This suggests adsorption of meso o,o-FeEDDHA to reactive Fe(hydr)oxides. The 

data point for Droevendaal soil does not match the trend line. An explanation for this might be 

sought in the deviating pH of the soil.  

The potential relevance of Fe(hydr)oxides with respect to FeEDDHA sorption in soils has 

already been outlined by Alvarez-Fernandez et al. (1997; 2002) and Hernandez-Apaolaza and 

Lucena (2001). Fe(hydr)oxides have positively charged surface groups and a net positively 

charged surface at pH values below the pristine point of zero charge (7.9 - 8.2 for hydrous 

ferric oxide (HFO) (Dzombak and Morel, 1990); 9.2 - 9.3 for goethite (Filius, et al., 1997)). 

The electrostatic attraction between the negatively charged meso o,o-FeEDDHA complex and 

a positively charged Fe(hydr)oxide surface will enhance sorption. 

Why adsorption of meso o,o-FeDDHA to Fe(hydr)oxides is stronger than of racemic  

o,o-FeEDDHA is not clear. Both complexes have the same charge. More adsorption of the 
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isomer with the lower stability constant could indicate the breaking of chemical bonds to 

establish sorption (Hernandez-Apaolaza and Lucena, 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Fe concentration chelated by meso o,o-EDDHA after 4 weeks of interaction between the 

100%o,oF treatment and all soil, as a function of the reactive Fe content of the soils. Standard 

deviations fall within the data points. Open symbols represent sandy soils, closed symbols represent 

clay soils. The encircled data point was not included for calculating the linear relation. 

 

 

o,p-FeEDDHA – In Figure 2.5, the o,p-FeEDDHA concentrations after one week of 

interaction between the 60%o,oF treatment and all soils are plotted against the contents of 

reactive constituents of the respective soils. No relations were found with reactive Fe  

(Figure 2.5a), soil organic carbon (Figure 2.5b) and CaCO3 (Figure 2.5c). However, a relation 

between o,p-FeEDDHA concentration and clay content is evident: an increase in clay content 

leads to a decrease in o,p-FeEDDHA concentration in solution (Figure 2.5d). An effect of soil 

texture on Fe concentration upon interaction of commercial FeEDDHA formulations with soil 

has been reported by Gil-Ortiz and Bautista-Carrascosa (2004). o,p-FeEDDHA is always 

present in commercial formulations (Garcia-Marco, et al., 2006) and its tendency to adsorb to 

clay minerals can explain Gil-Ortiz and Bautista-Carrascosa’s observation. 

Adsorption of o,p-FeEDDHA to clay minerals is counter-intuitive because both have an 

overall negative charge and the two repel each other. A bridging mechanism with Ca has been 

suggested to bind FeEDDHA complexes to clay surfaces (Wallace and Wallace, 1992). A 

similar mechanism has been demonstrated for the adsorption of DOC to clay (Muneer and 

Oades, 1989). The sixth position on the coordination complex of Fe chelated by o,p-EDDHA 

is not occupied by a phenolic hydroxyl group of the chelating agent, but, depending on pH, by 

either a separate hydroxide anion or a water molecule (Yunta, et al., 2003a) (Figure 1.4c). This 

hydroxide anion or water molecule may play a central role in the adsorption behaviour, 
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because it is displaced relatively easily and may hence facilitate binding to a negatively 

charged surface group on a clay-edge or it may act as a bridge between complex and surface.  

Another explanation for the enhanced removal of o,p-FeEDDHA in clay soils could be that 

these soils generally contain more competing cations like Cu that might replace Fe from the 

o,p-FeEDDHA complex. Competition effects will be further discussed in a following section. 

In this study, the soil with the highest organic matter content, Xeraco top soil, sorbed most 

racemic o,o-FeEDDHA, but did preserve a remaining o,p-FeEDDHA fraction of 0.05 over 6 

weeks, while in clay soils all o,p-FeEDDHA was removed from solution. There are several 

possible explanations for this. First, organic matter may be less specific in its affinity for the 

  

 

Figure 2.5: Fe concentration chelated by o,p-EDDHA as a function of the reactive soil constituent 

contents of the soils - a) reactive Fe; b) organic carbon; c) calcium carbonate; and d) clay. Open 

symbols represent sandy soils, closed symbols represent clay soils. 
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different FeEDDHA components, because sorption may be partly based on the interaction 

between the non-polar sections of both soil organic matter molecules and the EDDHA 

complexes. Secondly, organic matter is a source of DOC. DOC might act as a competitor for 

adsorption sites on clay minerals, which are shown to provide the key adsorption surface for 

o,p-FeEDDHA. 

In literature the role of organic matter with respect to sorption of FeEDDHA seems to be 

overestimated. Alvarez-Fernandez et al.(1997; 2002), and Hernandez-Apaolaza and Lucena 

(2001) have shown substantial degrees of sorption by peat over a wide pH range; this however 

is not representative for the soils where FeEDDHA products are actually applied, which have a 

much lower organic matter content.  

 

Rest-FeEDDHA – Due to the varying composition of the rest-FeEDDHA fraction among the 

experimental solutions, unambiguous comments on the adsorption behaviour of  

rest-FeEDDHA are not possible. For all treatments containing rest-FeEDDHA, the largest 

fraction remained in solution upon interaction with soils with the least clay: Droevendaal and 

Hofuf (data not shown), again supporting Gil-Ortiz’s and Bautista-Carrascosa’s observations 

with respect to soil texture (2004). 

 

Degree of chelation 

Figure 2.2a shows that differences in Fe concentration were found between the P- and  

F-treatments of the same EDDHA component composition. This was most evident for the 

20%o,o treatments. For all EDDHA component compositions, the Fe concentrations in the 

 P-treatments were lower. The differences in Fe concentration varied per soil and after one 

week they ranged from 0.18 to 1.07 mg l
-1
 Fe for Xeraco top soil and Nadec soil respectively. 

For Nadec soil the difference of 1.07 mg l
-1
 Fe amounted to little over a third of the Fe 

concentration of the P-treatment after interaction (2.98 mg l
-1
 Fe). The most obvious 

explanation for the difference in Fe concentration is the following: in the P-treatments 

EDDHA molecules are not able to pick up Fe, either from the soil or from adsorbed 

FeEDDHA complexes, to such an extent that the same Fe concentration is reached as in the 

corresponding F-treatments. The difference in Fe concentration between the P- and  

F-treatments should then be a function of the Fe availability of the soils. Figure 2.6a, in which 

the difference in Fe concentration is presented as a function of the Fe availability parameter 

diethylene triamine penta acetic acid (DTPA)-extractable Fe (DTPA-Fe) confirms this 

relation: with increasing DTPA-Fe, the difference in measured Fe concentration between the 

P- and F-treatment becomes smaller. At low DTPA-Fe, the relative decrease is largest and the 

slope becomes gradually less steep with increasing DTPA-Fe.  

The differences in Fe concentration have been examined in terms of EDDHA components. For 

Nadec, Bologna and Xeraco top soil (encircled in Figure 2.6a), these differences are specified 

in Figure 2.6b. Generally, the largest contribution is from meso o,o-FeEDDHA, followed by 

rest-FeEDDHA .This large contribution of meso o,o-FeEDDHA is remarkable in view of its 

high complexation constant (Table 1.1). The amount of DTPA-Fe suffices in all soils to have 

all meso o,o-EDDHA in the P-treatment chelate Fe. Apparently a lasting kinetic effect is 
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Figure 2.6: a) Difference in Fe concentration between the fully (F) and partly (P) chelating 20%o,o 

treatments after 1 week of interaction with soils, as a function of the DTPA-extractable Fe content of 

the soils. Open symbols represent sandy soils, closed symbols represent clay soils. Error bars indicate 

standard deviations; b) Difference in Fe concentration between the fully (F) and partly (P) chelating 

20%o,o treatments after 1 week, specified per FeEDDHA component. 

 

 

limiting the ability of meso o,o-EDDHA to chelate Fe from the soil. With commercial 

FeEDDHA formulations this is not a direct concern, because all o,o-EDDHA tends to be 

chelated to Fe. When however Fe has been delivered to the plant and EDDHA returns into 

solution to chelate a new Fe-ion (the shuttle effect), it becomes of relevance. 

 

Competing cations 

The effects of EDDHA-treatments on Cu and Al concentrations are discussed here in more 

detail. Findings on other cations are briefly commented on afterwards. 

 

Cu - In several studies, elevated Cu concentrations were found due to the addition of 

commercial FeEDDHA formulations. Addition of an o,o-FeEDDHA standard solution 

however, hardly led to an increase in Cu concentration (Alvarez-Fernandez, et al., 1997; 

Alvarez-Fernandez, et al., 2002). Therefore one of the other components must be responsible 

for the increase in Cu concentration. In Figure 2.7, the Cu concentrations are presented as a 

function of time for all treatments interacting with Santomera soil. Hardly any increase in Cu 

concentration was observed for the 100%o,oF treatment, compared to the blank treatment (up 

to 0.06 mg l
-1
 Cu). Increased Cu concentrations, up to approximately 1.9 mg l

-1
 Cu after 1 

week, were observed in all other treatments. The data shown in Figure 2.7 have 3 important 

implications. 
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Figure 2.7: Cu concentration as a function of time upon interaction of all treatments with Santomera 

soil. Concentrations at t=0 are prior to soil interaction. 

 

 

First, it is irrelevant if the EDDHA component responsible for Cu solubilization initially 

chelates Fe or not; there is hardly any difference in Cu concentration between corresponding 

P- and F-treatments interacting with soil. Because Cu concentrations are about equal for  

P- and F-treatments, there is no lag time and the displacement of Fe from the FeEDDHA 

complex can not be the time determining step in Cu solubilization. 

Secondly, o,p-EDDHA determines the extent of Cu solubilization. The ability of o,p-EDDHA 

to dissolve Cu from the soil has been reported by Garcia-Marco et al. (2006). For the six 

treatments in this study containing o,p-EDDHA (20%o,o; 40%o,o and 60%o,o; both F and P), 

o,p-EDDHA was the only EDDHA component of which the initial concentrations were 

approximately the same (Figure 2.1b). The Cu concentrations after interaction with soil were 

also approximately the same for these treatments, for all four interaction times (Figure 2.7). A 

similar effect of treatment was found for all eight soils. The Cu concentrations varied between 

the soils ranging from 0.06 to 1.93 mg l
-1
 Cu after one week, amongst others due to differences 

in Cu availability. The treatments containing o,p-EDDHA gave equal Cu concentrations, 

regardless if DTPA-extractable Cu exceeded the amount of o,p-EDDHA added (in the case of 

Santomera and Herveld; Cu-DTPA amounted 4.13 and 5.30 mg kg
-1
 Cu respectively), or not 

(in the case of the remaining soils). This advocates that Cu is not just preferentially, but 

exclusively dissolved through complexation by o,p-EDDHA.  

Thirdly, Cu concentrations decrease over time for all treatments containing o,p-EDDHA, in all 

soils except for Hofuf soil. Adsorption of o,p-CuEDDHA seems the most likely cause, 

because no other trace metal concentrations increase and competition with Ca and Mg is 

unlikely. The fact that Hofuf soil has low reactive surface contents, and in particular the lowest 
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clay content, supports the adsorption hypothesis, but e.g. degradation can not be excluded. 

However, ion adsorption equilibria are generally reached within a few days in the soil and in 

between week 4 and 6, Cu concentrations still decrease by 25 to 70% for the soils other than 

Hofuf and Droevendaal. Parallel occurring processes like Cu complexation/solubilization, and 

slow adsorption kinetics may extend the time required to reach equilibrium. Further research is 

needed to resolve the adsorption and exchange mechanism of metal-EDDHA complexes. 

 
Al – Al had not yet been reported as a competing cation, potentially affecting the performance 

of FeEDDHA products. The data in Figure 2.8a show the Al concentrations as a function of 

time for all treatments interacting with Nadec soil. The Al concentrations of the F-treatments 

do not differ from those in the blank treatment. The Al concentrations in the P-treatments are 

however higher, increasing with increasing concentration of EDDHA components not 

chelating Fe. Contrary to other competing cations, the Al concentrations are constant over 

time, at least up until and including 4 weeks of interaction. In week 6, an increase in Al 

concentration was observed. Similar results were observed for the other soils. These results 

imply that Al does not displace Fe from FeEDDHA complexes. However, when EDDHA, not 

chelated to Fe, is brought into contact with soil, it can form AlEDDHA complexes. In turn, Fe 

does not displace Al from AlEDDHA complexes.  

The observed trends in Al concentrations exclude racemic o,o-EDDHA and o,p-EDDHA as Al 

complexing EDDHA component. Further examination of the data shows that meso  

o,o-EDDHA is the dominant EDDHA component chelating Al, for two reasons. First, when 

considering the 20%o,o P- and F-treatments for all soils, the differences in Al concentration 

correlate better with the differences in meso o,o-FeEDDHA concentration (-0.95) than with 

the differences in rest-FeEDDHA concentration (-0.57). Secondly, the differences in  

rest-FeEDDHA concentration between the 20%o,o P- and F-treatment are not for all soils 

large enough to account for the increase in Al concentration, whereas the differences in meso 

o,o-FeEDDHA are. Complexation of Al is to a large extent able to explain the differences in 

Fe concentration observed in the degree of chelation section.  

In this study it was found that meso o,o-EDDHA is able to dissolve both Fe and Al from the 

soil. As a consequence Fe and Al compete for meso o,o-EDDHA. Because neither drives off 

the other from the complex within the time span examined, a relation between relative 

availabilities and concentrations is expected. Relative availability can be expressed as a ratio 

of two availability parameters. The oxalate extractable fractions of Al and Fe were used as 

availability parameters. The expected relation was found and is displayed in Figure 2.8b: an 

increased relative availability of Al results in higher Al concentrations in solution. Hence, in 

soil application Al complexation may cause the alleged shuttle effect to become partly 

impeded. The impeding effect will be stronger with increasing relative availability of Al. 

 

Other cations - The remaining trace metals measured (Zn, Mn, Ni and Co) were generally 

present in solution in lower concentrations than Al and Cu. When elevated concentrations 

were found as a result of EDDHA-treatments, this effect diminished over time, like in the case 

of Cu, except in Hofuf soil for Ni and Co. Elevated Zn concentrations were only found in 
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Figure 2.8: a) Al concentration as a function of time upon interaction of all treatments with Nadec soil. 

Concentrations at t=0 are prior to soil interaction. The lines in between t=0 and t=1 week are dashed, 

because the data do not show how quickly the increase in Al concentration took place within the first 

week; b) Al concentration after 1 week of interaction between the 20%o,oP treatment and all soils, 

corrected for the Al concentration in the blank treatment, as a function of the ratio between the reactive 

Fe and the reactive Al content of the soils. Open symbols represent sandy soils, closed symbols 

represent clay soils. Error bars indicate standard deviations. 

 

 

Hofuf soil (up to 160 µg l
-1
 Zn after 1 week) and elevated Mn concentration were found in 4 

soils (up to 80 µg l
-1
 Mn after 1 week). Elevated Co and Ni concentrations were found in all 

soils (up to 52 µg l
-1
 Co and 150 µg l

-1
 Ni respectively). Co and Ni were generally present in 



The behaviour of EDDHA components as influenced by soil properties 

 

49 

higher concentrations than Zn and Mn as a result of the EDDHA treatments. Even if only to a 

small extent (5.3 µg l
-1
 Co), unlike Al, Ni, Zn and Mn, Co was able to displace Fe from  

o,o-FeEDDHA in the 100%o,oF treatment. 

 

 

Conclusion 

The results from this study have shown that regardless of soil properties, the o,o-fraction of the 

FeEDDHA treatment largely determines how much Fe remains in solution upon interaction 

with soil. The fractions of the EDDHA components that remain in solution can be ranked as 

follows: racemic o,o-FeEDDHA > meso o,o-FeEDDHA > rest-FeEDDHA > o,p-FeEDDHA. 

FeEDDHA component concentrations were relatively constant from week 1 to 6 of the 

interaction experiment. Although rest-EDDHA also consists of compounds that chelate Fe 

more strongly than meso o,o-EDDHA, the latter is on average better capable of keeping Fe in 

solution upon interaction with soil. The principal adsorption surface in the soil differs per 

FeEDDHA component. For racemic o,o-FeEDDHA it is organic matter, for meso  

o,o-FeEDDHA, Fe(hydr)oxides, and for o,p-FeEDDHA, clay minerals. For rest-FeEDDHA no 

single surface has been identified, but the clay fraction seems to be of relevance.  

The difference in Fe concentration between corresponding Partly and Fully chelating 

treatments interacting with soil, is dependent on the Fe availability of the soil. This difference 

can largely be attributed to a difference in meso-FeEDDHA and to a lesser extent rest-

FeEDDHA concentration. When meso o,o-EDDHA, not chelated to Fe, is brought into contact 

with soil, it will not exclusively form complexes with Fe but also with Al. The fact that meso 

o,o-EDDHA can chelate Al from the soil, while Fe does not displace Al from the  

EDDHA-complex, has implications for the effectiveness of a possible shuttle mechanism. 

Concentrations of other chelated trace elements (Cu, Zn, Mn, Ni and Co) generally decreased 

during the experiment. In terms of concentration, Cu is by far the most important competing 

cation. Cu is practically exclusively chelated by o,p-EDDHA. Cu was dissolved, regardless if 

o,p-EDDHA was initially chelating Fe or not.  

The tendency of o,p-FeEDDHA and rest-FeEDDHA to be removed from solution and the 

tendency of o,p-FeEDDHA to exchange Fe for Cu, make these FeEDDHA components less 

effective as Fe fertilizer in soil application, in particular on clay soils. The agronomic value of 

the different FeEDDHA components however depends on more factors than their ability to 

preserve Fe in solution. Additional studies involving plants are needed to comment on this. 
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Appendix 

 
 

Figure A2.1 (p. 51): Fe concentration as a function of time for all treatments interacting with  

a) Santomera soil, b) Nadec soil, and c) Hofuf soil. Concentrations at t=0 are prior to soil interaction. 

The lines in between the initial concentration and the concentration after 1 week are dashed, because 

the data do not show how quickly the decrease in concentration took place within the first week. Error 

bars indicate standard deviations. 

 

 

Figure A2.2 (p. 52): Fractions of the FeEDDHA isomers remaining in solution as a function of time for 

the 60%o,oF treatment interacting with a) Santomera soil, b) Nadec soil, and c) Hofuf soil. The lines in 

between t=0 and t=1 week are dashed, because the data do not show how quickly the decrease in 

concentration took place within the first week. Error bars indicate standard deviations. 
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“Water, water everywhere,  

  and all the boards did shrink; 

  water, water everywhere, 

  nor any drop to drink.”  

 

Excerpt from: 

“The Rime of the Ancient Mariner”  

S.T. Coleridge (1772 - 1834) 
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Abstract 

The application of FeEDDHA products is the most common practice to prevent and remedy Fe 

chlorosis in crops grown on calcareous soils. These products consist of a mixture of EDDHA 

components chelated to Fe. In this study such mixtures have been divided into four (groups of) 

components: racemic o,o-EDDHA, meso o,o-EDDHA, o,p-EDDHA and rest-EDDHA. 

Because the physical and chemical properties of these components differ, so does their 

effectiveness in delivering Fe to the plant. This effectiveness has not yet been examined in soil 

application, but needs to be understood to come to an adequate Fe fertilization 

recommendation. In this study the influence of composition of FeEDDHA treatments on Fe 

uptake by soybean plants (Glycine max (L.) Merr. cv. Mycogen 5072) grown on calcareous 

soils was examined in two pot trials involving eight soils. The FeEDDHA treatments were 

equal in Fe dose but differed in o,o-FeEDDHA content, and were applied prior to the set in of 

chlorosis.  

The o,o-FeEDDHA content largely determined the Fe concentration in the pore water. In turn, 

in soils that induced chlorosis, the Fe concentration in the pore water determined the Fe 

uptake. The relationship between Fe concentration and Fe uptake is non-linear: initially Fe 

uptake increases strongly with increasing Fe concentration, but the slope flattens and a plateau 

is reached. FeEDDHA treatments increased both yield (up to 30%) and Fe content of the plant 

tissue (up to 50%). From FeEDDHA products with a higher o,o-FeEDDHA content, a smaller 

Fe dose is required to obtain the same results in terms of yield and Fe nutritional value. 
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Introduction 

Fe deficiency chlorosis is a nutritional disorder characterized by a significant decrease of 

chlorophyll in the leaves, often observed in plants grown on alkaline and calcareous soils. It 

decreases crop yield both quantitatively and qualitatively, resulting in economic losses 

(Chaney, 1984; Mortvedt, 1991).  A large number of soil factors, including high soil moisture 

content,  poor aeration, extreme temperatures, high phosphate content have been reported to 

induce or enhance Fe chlorosis (Wallace and Lunt, 1960). High pH and elevated bicarbonate 

concentrations are generally found to be the most critical factors (Boxma, 1972; Mengel, et 

al., 1984; Shi, et al., 1993). The low solubility of Fe(hydr)oxides at high pH leads to a low 

bioavailability of Fe in soil solution (Lindsay, 1979) and bicarbonate either impairs Fe uptake 

(Marschner, 1995; Venkatraju and Marschner, 1981) or inactivates Fe in the leaf apoplast 

(Mengel, 1994). 

 

Synthetic Fe chelates are applied to avoid or to mend Fe chlorosis. These chelates increase Fe 

solubility and function as a transporter through solution to the plant. FeEDDHA (iron (3+) 

ethylene diamine-N,N’-bis(hydroxy phenyl acetic acid)) is among the most effective synthetic 

Fe chelates under neutral and alkaline soil conditions (Lucena, et al., 1992; Papastylianou, 

1990; Reed, et al., 1988). Commercial FeEDDHA formulations consist of a mixture of 

positional isomers, diastereomers and polycondensates. In this study such mixtures have been 

divided into 4 groups: 1) racemic o,o-FeEDDHA (iron (3+) (R,R) and (S,S) ethylene diamine-

N,N'-bis(2-hydroxy phenyl acetic acid) complexes), 2) meso o,o-FeEDDHA (iron (3+) (R,S) 

= (S,R) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex), 3) o,p-FeEDDHA 

(iron (3+) ethylene diamine-N-(2-hydroxy phenyl acetic acid)-N’-(4-hydroxy phenyl acetic 

acid) complexes), and 4) rest-FeEDDHA (largely consisting of polycondensates). In general 

these four groups are referred to as FeEDDHA components. The chemical properties of these 

FeEDDHA components, including their protonation and complexation constants differ 

strongly (Ahrland, et al., 1990; Bannochie and Martell, 1989; Frost, et al., 1958; Yunta, et al., 

2003a; Yunta, et al., 2003b). As a result, so does their ability to preserve Fe in solution and 

deliver it to the plant. 

 

The composition of commercial FeEDDHA formulations on the market varies largely 

(Garcia-Marco, et al., 2003). Therefore product quality needs to be guarded. At present the 

quality aspect is assured in the European fertilizer law (Regulation (EC) No. 2003/2003; 

amendment (EC) No. 162/2007) through the following parameters: (1) soluble Fe content of 

the product, (2) percentage of Fe chelated, and (3) percentages of Fe chelated by o,o-EDDHA 

and o,p-EDDHA.  

In view of the large variation in composition of FeEDDHA products, it is crucial to have an 

understanding of the effectiveness of the individual FeEDDHA components in order to come 

to an adequate Fe fertilization recommendation. This effectiveness is determined by the 

following characteristics: 1) the ability to remain in solution, 2) the susceptibility to 

competition from other metal ions, 3) the ability to deliver Fe to the plant, and 4) the 
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selectivity of the corresponding EDDHA component to pick up Fe from the soil (Lucena, 

2003).  

The first two characteristics have been addressed in a number of interaction studies with soil 

and soil constituents (Alvarez-Fernandez, et al., 1997; Alvarez-Fernandez, et al., 2002; 

Garcia-Marco, et al., 2006; Hernandez-Apaolaza, et al., 2006; Hernandez-Apaolaza and 

Lucena, 2001; Schenkeveld, et al., 2007). These studies have shown that the o,o-FeEDDHA 

isomers are best capable to preserve Fe in soil solution. In particular in clay soils,  

o,p-FeEDDHA and rest-FeEDDHA are largely removed from solution. The reactive soil 

compounds that determine the adsorption behaviour of the FeEDDHA isomers are: soil 

organic matter, Fe(hydr)oxides and clay minerals. The soil compound dominating the 

adsorption behaviour differs per FeEDDHA component. With regards to competition, Cu is 

the principal competing cation affecting the performance of commercial FeEDDHA 

formulations in alkaline soils, particularly reducing the effectiveness of o,p-FeEDDHA due to 

displacement of Fe by Cu. 

The third characteristic, the ability of FeEDDHA to deliver Fe to the plant, has been studied 

since the 1950s, both in nutrient solution and in soil-plant systems. Often this was done in 

comparative studies with other Fe fertilizers (Alvarez-Fernandez, et al., 2005; Hernandez-

Apaolaza, et al., 1995; Reed, et al., 1988; Wallace, et al., 1955; Wallace and Wallace, 1983). 

The effectiveness of the individual FeEDDHA components in delivering Fe to the plant has 

however received little attention up until now. A number of recent studies have addressed this 

issue for plants grown in nutrient solutions. It was found that in hydroponics o,p-FeEDDHA 

offers a more effective remedy to Fe chlorosis in soybean, than o,o-FeEDDHA (Garcia-

Marco, et al., 2006), and that both are more effective than synthesis byproducts (referred to as 

rest-FeEDDHA in this study) (Hernandez-Apaolaza, et al., 2006). Furthermore, meso  

o,o-FeEDDHA has been claimed to be more effective in mending chlorosis in strategy 1 

plants than racemic o,o-FeEDDHA (Cerdan, et al., 2006).  

 

The effectiveness of FeEDDHA components regarding Fe uptake by plants grown on soil has 

not previously been examined. Because adsorption and cation competition are more dominant 

processes in soil systems than in nutrient solutions, the order of effectiveness of FeEDDHA 

components may well be different. In order to relate to agricultural practice and to European 

regulation, the effectiveness of FeEDDHA treatments in soil application has been addressed in 

this study by applying mixtures of FeEDDHA components, rather than isolated FeEDDHA 

components. The aim of this research was: 1) to examine the influence of composition of 

FeEDDHA treatments on Fe uptake by plants grown on calcareous soils, and 2) to gain insight 

in the effectiveness of the individual FeEDDHA components as Fe fertilizer in soil 

application.  

A pot trial involving eight soils was conducted in which soybean plants were offered Fe 

through FeEDDHA treatments prior to the set in of chlorosis. The treatments were similar in 

Fe concentration, but differed in composition of EDDHA components chelating the Fe. In 

particular the o,o-FeEDDHA content (i.e. the amount of Fe chelated by the two o,o-EDDHA 

components) varied among the treatments. 
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Materials and methods 

 

Soils 

Soils were collected from seven sites, located in Italy (Bologna), Spain (Xeraco and 

Santomera), Saudi Arabia (Nadec and Hofuf) and the Netherlands (Droevendaal and Herveld). 

The soils are named after the location of collection. The sites were selected so that there were 

ranges in soil properties and constituents reported to interact with FeEDDHA components 

(Alvarez-Fernandez, et al., 1997). Four clay soils and four sandy soils were included. At all 

sites, the top layer (0 – 20 cm) was sampled. From one site (Xeraco, Spain), soil material from 

both the top layer (Xeraco T) and the layer directly underneath (20 - 40 cm) (Xeraco L) were 

sampled separately. The top layer is relatively rich in organic material. In crops grown at the 

sites in Spain, Italy and Saudi Arabia, Fe chlorosis was manifest. The two Dutch sites were 

included as reference soils. Pre-treatment consisted of air drying and sieving (1 cm). Relevant 

soil characteristics are presented in Table 3.1.   

 

FeEDDHA solutions 

The FeEDDHA solutions were prepared from three sodium-EDDHA stock solutions and solid 

o,o-H4EDDHA (99% pure). The stock solutions were synthesized through a Mannich-like 

reaction between phenol, ethylene diamine and glyoxylic acid (Petree, et al., 1978), and 

differed in o,o-EDDHA content (i,e. the sum of racemic and meso o,o-EDDHA content): 

approximately 16%, 34% and 49% on an ethylene diamine input basis. The experimental 

solutions were prepared as described by Alvarez-Fernandez et al. (2002). Fe was added as 

FeCl3.6H2O in a 5% excess based on a 1:1 stoichiometry between Fe and ethylene diamine. 

The pH was raised to 7 (± 0.5) and the solutions were left over-night in the dark, in order for 

excess Fe to precipitate as hydroxides. The following day, the solutions were filtered over a 

0.45 µm nitro cellulose micro pore filter (Schleicher & Schuell, ref-no: 10401114) and further 

diluted for application in the pot trial. The composition of the experimental solutions was 

analysed through combined ICP-AES, ICP-MS and HPLC analysis at time t=0.  

 

Pot trial 

Two pot experiments were done simultaneously from March until May 2005. In pot 

experiment 1 with a runtime of eight weeks, six treatments were included for all soils (Table 

3.2): a treatment with plants without FeEDDHA addition (blank); four treatments with plants 

and FeEDDHA (16%o,o; 34%o,o; 49%o,o and  99%o,o with plants); and an FeEDDHA 

treatment without plants (34%o,o without plants). The FeEDDHA treatments were similar in 

Fe concentration but differed in composition in terms of FeEDDHA components.  

In pot experiment 2, with a run-time of three weeks, only the Santomera soil was used. The 

same treatments were applied as in pot trial 1 except for the 34%o,o treatments with and 

without plants. 



Table 3.1: Soil characteristics. 

a 
Walinga et al. (1992) 

b
 Houba et al. (1997)

 

c
 ISO 10693, Soil Quality – Determination of carbonate content, volumetric method

 

d
 Schwertmann (1964) 
e
 Linday and Norvell (1978) and Quevauvillier et al. (1996) 

 

 

        Oxalate
d 
 DTPA-extraction

e
  Blank treatment 

Soil (origin) Country Region 
Soil 

classification 

Water 
holding 
capacity 

SOC
a 

Clay
b 

CaCO3
c 

Fe
 

 Fe Mn  
pH-pore 
water

 

DOC 
pore 
water

 

    (g kg
-1
) (g kg

-1
) (g kg

-1
) (g kg

-1
) (g kg

-1
)  (mg kg

-1
) (mg kg

-1
)   (mg l

-1
) 

Santomera ES Murcia entisol 320 5.4 260 520 0.30  3.5 4.57  7.8 37 

Xeraco L ES Valencia entisol 350 13.7 360 150 0.90  10.5 5.33  7.7 36 

Bologna IT Bologna entisol 560 8.7 230 140 1.54  18.6 8.63  8.0 39 

Nadec SA Near Persian Gulf aridisol 190 8.7 70 140 0.13  2.1 5.67  7.5 82 

Hofuf SA Near Persian Gulf aridisol 180 7.1 40 60 0.19  6.7 3.80  7.3 153 

Xeraco T ES Valencia entisol 330 43.7 100 420 1.68  82.2 3.77  7.6 138 

Droevendaal NL Gelderland spodosol 260 15.2 40 0 1.68  60.0 1.50  5.1 84 

Herveld NL Gelderland spodosol 360 15.2 260 30 2.33  30.5 21.5  6.0 150 
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Table 3.2: Composition of the FeEDDHA treatments expressed as pore water concentrations at t=0. 

Treatment racemic o,o-
FeEDDHA 
(mg l

-1
 Fe) 

meso o,o-
FeEDDHA 
(mg l

-1
 Fe) 

o,p-
FeEDDHA 
(mg l

-1
 Fe) 

rest-
FeEDDHA 
(mg l

-1
 Fe) 

total Fe 
 

(mg l
-1
 Fe) 

blank with plants 0 0 0 0 0 

16%o,o with plants 0.58 (8%) 0.61 (8%) 1.15 (16%) 5.02 (68%) 7.36 

34%o,o with plants 1.07 (16%) 1.24 (18%) 1.26 (19%) 3.14 (47%) 6.71 

34%o,o without plants 1.07 (16%) 1.24 (18%) 1.26 (19%) 3.14 (47%) 6.71 

49%o,o with plants 1.69 (22%) 2.03 (27%) 1.31 (18%) 2.50 (33%) 7.53 

99%o,o with plants 3.44 (48%) 3.64 (51%) 0.00 (0%) 0.10 (1%) 7.18 

 

 

The pot experiments were carried out in a greenhouse with 7 liter Mitscherlich pots in 

triplicates. Pots, bottom plates and related materials were cleaned with 0.01 M HCl prior to 

usage. The inside of the pots was covered with polyethylene sacks with tiny holes, allowing 

for aeration. 6 kg of soil was thoroughly and successively mixed with a number of nutrient 

solutions. Per pot 40 mmol NH4NO3, 25 mmol K2HPO4, 20 mmol CaCl2, 10 mmol MgSO4, 

0.5 mmol H3BO3 and 3.75 µmol (NH4)6Mo7O24 was added. In the treatments including 

FeEDDHA addition, an amount of FeEDDHA solution was added, corresponding to a soil 

solution concentration at t=0 of 7 mg l
-1
 Fe (i.e. 0.13 mM Fe). The moisture content was made 

up to 50% of the water holding capacity of the individual soils (Table 3.1) with demineralized 

water. After the nutrients had been added, the soil was put into the pot.  

The plant species grown in the pot trial was soybean (Glycine max (L.) Merr.). There is much 

experience with soybean in Fe chlorosis research; in nutrient solutions, in pot cultures and in 

the field (Garcia-Marco, et al., 2006; Goos, et al., 2004; Goos and Johnson, 2000; Heitholt, et 

al., 2003; Wallace and Cha, 1986). Seeds of the Fe chlorosis susceptible cultivar Mycogen 

5072 were germinated on quartz sand with demineralised water. After five days eight 

seedlings were transferred to each pot, which had been filled with soil one day prior to the 

transfer. The pots were positioned on tables, grouped per soil, and were rotated on a daily 

basis. Every day the pots received an amount of demineralized water equal to the weight loss 

due to evapo-transpiration. At later growth stages the plant weight was compensated for in 

this respect. Until mid April, additional light was given with 400 Watt HPI lamps for 16 hours 

per day. The lamps were hanging 1 m above the pots. The temperature in the greenhouse was 

kept above 20 °C. 

Micronutrients other than Fe were administered through foliar application, to ascertain that no 

deficiencies other than Fe deficiency would arise. The foliar spray consisted of 1.7 mM B; 

0.20 mM Cu; 0.82 mM Mn; 0.27 mM Zn and 0.04 mM Mo. Cu, Zn and Mn were applied as 

dissolved EDTA salts, B as sodium tetraborate and Mo as ammonium molybdate. 1 ml l
-1
 

Agral was added as a wetting agent. Spraying was done on a weekly basis starting 3 weeks 

after plant transfer to the pots. The week before harvest, foliar spraying was omitted. After 

four weeks in pot experiment 1, the pots with Nadec and Hofuf soil were thinned out to five 

and four plants respectively, because of severe differences in plant development due to salt 

stress. 
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Sampling and measurement 

  

SPAD-measurement  

SPAD-indices give an indication of the relative chlorophyll content of leaves and are a widely 

used tool in the research on Fe chlorosis (Alvarez-Fernandez, et al., 2005; Alvarez Fernandez, 

et al., 2004; Banuls, et al., 2003). SPAD-measurements were done with a Minolta–502 SPAD-

meter every two weeks including the day before harves,t to compare the chlorophyll content 

of leaves from different treatments. Per pot, SPAD-indices were measured for two youngest 

leaves and for two leaves from the second youngest trifoliate of every second plant. 

Measurement was done at the middle section of the leaf, midway between the central vein and 

the leaf edge. If a leaflet was necrotic or too small to analyze, no value was recorded. The 

SPAD-indices for youngest and second youngest trifoliate were averaged separately per pot. 

A calibration experiment was done in which chlorophyll a + b was extracted with acetone 

from fresh leaves of plants three weeks of age. A linear relation between chlorophyll content 

and SPAD-index was found within the range of SPAD-indices measured (SPAD-indices 

ranged from 20 to 37; n = 4; R
2
 = 0.98; Calibration data are presented in the Appendix). 

 

Yield 

At harvest, 16 of the youngest trifoliate leaves per pot were collected separately. The 

(remaining) shoots were cut off right above the soil surface. A 1 kg mixed subsample was 

taken from the soil, from which roots were collected manually. The soil subsample was stored 

overnight at 4 °C. The roots from the remaining soil were collected by rinsing out over a  

1 mm sieve. Plant parts (youngest leaves, shoot and roots) were washed with demineralized 

water and dried at 70 °C. After 48 hours, the plant parts were weighed (dry weight). 

 

Mineral analysis of plant tissue 

The mineral contents of the plant parts were determined through microwave digestion with 

nitric acid, fluoric acid and hydrogen peroxide (Novozamsky, et al., 1996). Al, Cu, Fe, Mn 

and Zn concentrations were measured by ICP-AES (Varian, Vista Pro). 

 

Pore water analyses 

Pore water was collected from the soil subsamples by centrifugation at 7,443 g (7,000 rpm) 

for 15 minutes (Sorvall RC 5C plus) in Delrin (polyacetal) cylindrical 2 compartment 

containers, the day after harvest. The centrifugate was led from the soil containing 

compartment (about 150 cm
3
) over a 0.45 µm nitro cellulose micro pore filter (Schleicher & 

Schuell, ref-no: 10401114) into a soil solution collection compartment (about 40 cm
3
). Electro 

conductivity (EC) and pH were measured directly after collection. Dissolved organic carbon 

(DOC) concentrations were determined by subtracting the inorganic carbon from the total 

carbon as measured by the Shimadzu 5050A in accordance with EN1484. Fe, Ca and Mg 

concentrations were measured by ICP-AES (Varian, Vista Pro); Cu, Al, Mn, Zn, Ni and Co 

concentrations were measured by ICP-MS (Perkin Elmer, ELAN 6000). Samples were 

acidified with nitric acid before ICP-measurement.  
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FeEDDHA component concentrations were determined after separation through high-

performance liquid chromatography (HPLC) as described in Schenkeveld et al. (2007). The Fe 

concentration chelated by rest-EDDHA was calculated by subtracting the Fe concentrations 

chelated by the other three FeEDDHA components and the Fe concentration in the blank 

treatment from the total Fe concentration as measured by ICP-AES.  

To avoid contamination, preparation of the experimental solutions and dilution of samples for 

measurement was done with analytical grade chemicals and ultra pure water. 

 

 

Results and Discussion 

 

Chlorosis 

Chlorosis was established through comparison of SPAD-indices of the youngest leaves 

between the treatment without FeEDDHA addition (blank treatment) and the treatment with 

the highest SPAD-index (99%o,o treatment), for each soil individually. If the ratio of the two 

deviated from 1 (α = 0.05), the blank was labeled chlorotic. In Table 3.3, the ratios for the 

SPAD-measurements after 2 weeks are presented. Chlorosis was found in plants grown on 

Santomera, Xeraco L, Bologna and Droevendaal soil. No chlorosis was expected on the 

reference soil from Droevendaal. Compared to other soils the initial plant growth was very 

rapid on the Droevendaal soil, which may have caused some temporal Fe shortage in the blank 

treatment. Although chlorosis was observed on more soils in the field, a direct comparison 

between field observations and pot trial data is not sound because root densities in pots are 

generally much higher than in the field, resulting in increased rhizosphere effects, which may 

enhance Fe availability (Marschner, et al., 1989). Furthermore, bicarbonate-rich or brackish 

water is generally used for irrigation in the field instead of demineralized water. The use of 

demineralized water causes a temporal drop in pH and bicarbonate concentration, thereby 

complicating the induction of chlorosis. Also the exposure to environmental stress factors is 

much higher in the field, making plants more susceptible to chlorosis (Morris, et al., 1990). 

 

 

Table 3.3: SPAD-index ratios of the youngest leaves after 2 weeks. Standard deviations are indicated 

between parentheses. 

 

 

 

 

 

 

 

 
 

* SPAD-index ratio is calculated: SPAD-index of the blank treatment divided by SPAD-index of the 99%o,o 

treatment. 

Soil SPAD-index ratio
* 

Santomera 0.71 (0.02) 

Xeraco L 0.87 (0.05) 

Bologna 0.93 (0.02) 

Nadec 0.96 (0.06) 

Hofuf 0.94 (0.06) 

Xeraco T 1.01 (0.03) 

Droevendaal 0.95 (0.02) 

Herveld 0.97 (0.04) 
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In Figure 3.1 the degree of chlorosis in the blanks is presented as a function of time for 

Santomera soil, Xeraco L soil and Bologna soil. The data show that the degree of chlorosis 

diminishes over time until eventually SPAD-indices do no longer significantly differ. On 

Bologna soil, chlorosis was only observed in the measurement after 2 weeks, on Xeraco L soil 

up until and including 4 weeks, and on Santomera soil up until and including 6 weeks. The 

disappearance of chlorosis might result from an increased ability to take up soil native Fe 

through an ongoing development of the plant’s roots system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Development of chlorosis in soybean over time for the three soils on which chlorosis was 

induced. Error bars indicate standard deviations. 

 

 

An attempt was made to link the occurrence of chlorosis to soil characteristics (see Table 3.1). 

From the soils on which chlorosis was observed in the field, all clay soils also induced 

chlorosis in pot experiment 1, while all sandy soils did not. This observation is not in 

agreement with the study by Morris et al. (1990) who found a positive correlation between 

clay content and chlorophyll concentration in soybeans grown on calcareous soils. A second 

distinctive feature is the DOC concentration in the pore water of the blank treatment, which 

was much lower for the soils on which the plants turned chlorotic (36 - 39 mg l
-1
 C), than for 

the soils on which the plants did not (82 - 153 mg l
-1
 C). Alike EDDHA, DOC may act as a 

carrier for Fe through soil solution and deliver Fe to the plant (Cesco, et al., 2002; Cesco, et 

al., 2000). If the DOC concentration is low, the Fe flux towards the plant may become 

insufficient to meet the requirements of the crop (Pandeya, et al., 1998). Furthermore, DOC 

has been reported to enhance root growth and induce changes in the root plasma membrane in 

favour of ion uptake (Canellas, et al., 2002; Pinton, et al., 1997). Both factors could also 

contribute to increased Fe uptake at higher DOC concentrations. Fe availability parameters 

(diethylene triamine penta acetic acid (DTPA)- and oxalate extractable Fe) do not offer a 
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primary explanation for the incidence of chlorosis in the blank treatments. However, for the 

clay soils which did induce chlorosis, both severity and duration of chlorosis increased with 

decreasing DTPA- and oxalate extractable Fe. 

 

The interaction between FeEDDHA components and soil 

Through the 34%o,o treatment without plants the interaction between FeEDDHA components 

and soil was examined without the interference of plant responses. The Fe concentrations 

measured in the pore water of this treatment after 8 weeks are presented in Table 3.4 for all 

soils. To demonstrate that almost all Fe is present as FeEDDHA complexes (except in 

Droevendaal soil), the Fe concentrations in the pore water of the blank treatment with plant 

are included as well. Even in absence of plants the Fe concentration in the pore water had 

strongly declined after 8 weeks, from an initial 6.74 mg l
-1 
Fe  to 0.50 – 1.09 mg l

-1 
Fe; a 

reduction of 84 to 92%.  

 

 

Table 3.4: Fe concentrations in the pore water after 8 weeks for the blank treatment with plants and 

the 34%o,o treatments with and without plants. Standard deviations are indicated between 

parentheses. 

Soil Blank with plant 34%o,o without plant 34%o,o  with plant 

 [Fe] (mg l
-1
 Fe) [Fe] (mg l

-1
 Fe) [Fe] (mg l

-1
 Fe) 

Santomera 0.00 (0.00) 0.70 (0.00) 0.40 (0.05) 

Xeraco L 0.00 (0.00) 0.58 (0.08) 0.25 (0.00) 

Bologna 0.02 (0.03) 1.08 (0.23) 0.62 (0.08) 

Nadec 0.00 (0.00) 0.73 (0.06) 0.60 (0.00) 

Hofuf 0.00 (0.00) 0.87 (0.12) 0.83 (0.15) 

Xeraco T 0.05 (0.00) 0.50 (0.09) 0.65 (0.05) 

Droevendaal 0.18 (0.03) 0.58 (0.06) 0.70 (0.05) 

Herveld 0.07 (0.03) 0.62 (0.26) 0.52 (0.03) 

 

 

In Table 3.5 the relative contributions of the different FeEDDHA components to the total 

dissolved Fe concentration are presented, both before and after 8 weeks of interaction with 

soil. In general, interaction with soil causes a strong increase in racemic o,o-FeEDDHA 

fraction in the pore water. The meso o,o-FeEDDHA fraction may either increase or decrease, 

depending on the soil. o,p-FeEDDHA is practically removed from solution resulting in 

negligible relative contributions in all soils. The relative contribution of rest-FeEDDHA 

decreases in all soils, the extent being strongly soil dependant. With exception of the two 

Dutch soils, the sum of racemic and meso o,o-FeEDDHA accounts for at least 75% of the Fe 

in solution after 8 weeks. 

In the last column, the remaining fractions of the FeEDDHA components in soil solution after 

soil interaction are listed. The remaining fraction of an FeEDDHA component is calculated by 

dividing its concentration at t=t by its concentration at t=0.  The sequence in remaining 

fractions is identical to the one found in a batch interaction experiment: racemic  
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o,o-FeEDDHA > meso o,o-FeEDDHA > rest-FeEDDHA > o,p-FeDDHA (Schenkeveld, et al., 

2007). The remaining fractions in the pot experiment are however much lower than in the 

batch experiment. This can be explained from the higher soil-solution ratios in the pots, 

resulting in larger reactive surface areas per unit solution and thus leading to larger 

FeEDDHA component fractions adsorbing. Furthermore, it was observed that the soil surface 

had become red-stained, bearing witness to FeEDDHA surface precipitation due to water 

transport from lower parts of the pot to the surface with concentration through evaporation.  

This phenomenon contributes to a decrease in remaining fractions and was also observed in 

FeEDDHA treatments with plants. No significant relations between FeEDDHA component 

concentrations in the pore water and soil reactive surfaces were found. This probably results 

from the differences in soil-solution ratio between the soils.  

 

 

Table 3.5: FeEDDHA component fractions in the 34%o,o treatment without plants, at t=0 and at t=8 

weeks. 

Fraction of total dissolved Fe 
[Fe]component/[Fe]total FeEDDHA component 

at t=0 at t=8 weeks 

Remaining fraction 
[Fe]t=8 weeks/[Fe]t=0 

racemic o,o-FeEDDHA 0.16 0.46 – 0.75 0.25 – 0.55 

meso o,o-FeEDDHA 0.18 0.01 – 0.37 0.01 – 0.26 

o,p-FeEDDHA 0.19 0 – 0.04 0.00 – 0.03 

rest-FeEDDHA 0.47 0 – 0.30 0.00 – 0.06 

 

 

FeEDDHA treatments with plants 

 

Fe and FeEDDHA components in the pore water 

Also in the treatments with plants, the Fe concentration in solution is largely determined by 

the o,o-FeEDDHA isomers. Linear relations were found between Fe concentration in the pore 

water after 8 weeks and o,o-FeEDDHA content of the treatments, as exemplified for the 

Santomera soil in Figure 3.2. The figure shows that, for this soil, total Fe in solution is 

basically the sum of Fe chelated by racemic o,o-EDDHA and meso o,o-EDDHA. The 

concentrations of both isomers increase linearly with increasing o,o-FeEDDHA content of the 

treatment. As a consequence, the concentration ratio of racemic o,o-FeEDDHA and meso  

o,o-FeEDDHA is approximately the same for all  treatments, ranging from 3.0 to 3.9.  

 

The 34%o,o treatments with, and without plants were compared with respect to Fe 

concentrations in the pore water after 8 weeks (see Table 3.4). The impact of plant processes, 

including Fe uptake, on the Fe concentration in soil solution is relatively small compared to 

the overall decrease in Fe concentration since t=0.  A significantly lower Fe concentration  

(α = 0.05) in the treatment with plants was only found for Santomera, Xeraco L, Bologna and 

Nadec soil. For the other soils, the Fe concentrations did not significantly differ. The soils 

with a lower Fe concentration in the treatment with plants are the same soils on which 
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chlorosis in the blank treatment was observed (Figure 3.1), with exception of the Nadec soil. 

This suggests a relation between consumption of FeEDDHA and Fe deficiency in plants. 

Although no chlorosis was observed in the blank treatment on Nadec soil, in addition to 

Santomera and Xeraco L soil, it was the only soil on which the blank treatment had a lower 

yield than the 99%o,o treatment (α = 0,05; data not shown). Reduced growth as an Fe 

deficiency symptom prior to the manifestation of chlorosis has previously been reported by 

Gruber and Kosegarten (2002). So despite the absence of chlorosis, the plants of the blank 

treatment on Nadec soil may still have been Fe deficient, resulting in FeEDDHA 

consumption. With regard to soil characteristics, Nadec is the soil next in line after 

Santomera, Xeraco L and Bologna with respect to DOC concentration in the pore water of the 

blank treatments and it has an Fe availability (DTPA/oxalate extractable Fe) comparable to 

Santomera soil. It is however not a clay soil.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Total Fe-concentration, racemic o,o-FeEDDHA concentration and meso o,o-FeEDDHA 

concentration in the pore water of Santomera soil after 8 weeks as a function of the o,o-FeEDDHA 

content of the treatments. Error bars indicate standard deviations. 

 

 

The observed differences in Fe concentration between the 34%o,o treatments with, and 

without plants may be explained in several ways.  First, FeEDDHA complexes may be taken 

up by the plant as a whole, as reported by Bienfait et al (2004) for plants grown on substrate. 

When taken up, the chelating agent EDDHA cannot participate in a shuttle mechanism; 

EDDHA cannot readily move back into soil solution to form a new FeEDDHA complex, and 

hence the Fe concentration in soil solution decreases. If this would be the only mechanism 

through which FeEDDHA delivers Fe to the plant, the observed relation between FeEDDHA 

consumption and Fe deficiency would imply that plants only utilize Fe chelated by EDDHA if 

otherwise they will grow Fe deficient. 
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Secondly, plants may take up Fe from the FeEDDHA complex, for instance through an Fe 

reduction and chelate splitting mechanism (Chaney, et al., 1972; Marschner, et al., 1989). The 

chelating agent EDDHA may move back into solution, but not be able to form a new 

FeEDDHA complex due to degradation of the chelating agent or a combined effect of a low 

Fe availability and a high availability of competing cations like Cu and Al (Schenkeveld, et 

al., 2007). This also results in a decrease in Fe concentration in the pore water. 

If however, the bioavailability of Fe in the soil is high, plants may take up Fe from 

FeEDDHA, without the Fe concentration in the pore water decreasing, due to an effective 

shuttle mechanism. In other words: the effectiveness of a possible shuttle mechanism is 

intrinsically limited by the low Fe availability of the soils on which there is a need to apply 

FeEDDHA. Further study is required to determine if these two Fe uptake mechanisms co-exist 

in soil-plant systems and to determine which one is dominant. 

 

SPAD-indices and Fe content 

The influence of the composition of FeEDDHA treatments on the degree of chlorosis is 

illustrated best when chlorosis in the blank treatment is most severe. Data from the 3-week 

experiment (experiment 2) were used for this purpose. Figure 3.3a displays the relation 

between SPAD-index of the youngest leaves and Fe concentration in the pore water. The 

shape of the curve is typical for a dose-response relation involving a micronutrient up to the 

point of inversion (Marschner, 1995): at low Fe concentrations the SPAD-index increases 

strongly with increasing Fe concentration, but the slope flattens and a plateau is reached. As 

demonstrated in Figure 3.2 the Fe concentration in the pore water is a linear function of the 

o,o-FeEDDHA content of the treatment. So until the plateau is reached, a treatment with a 

higher o,o-FeEDDHA content and an equal amount of Fe leads plants to develop a lesser 

degree of chlorosis.  

Because Fe catalyzes chlorophyll synthesis, and a SPAD-index is an indicator for chlorophyll 

content, a relation between SPAD-index and Fe content of the green plant parts was expected. 

This relation was verified with the results from the microwave digestion of the youngest 

leaves. A linear relation between SPAD-index and Fe content was found as depicted in Figure 

3.3b. Hence, Fe content and SPAD-index of the youngest leaves relate to Fe concentration in 

the pore water similarly. Because SPAD-indices are also dependent on several other factors 

like e.g. leaf thickness, they are only suitable for comparing the Fe content of leaves from 

plants of the same species, of the same age and grown under the same conditions. Therefore 

the relation found in Figure 3.3b does not have a general validity. When after 8 weeks 

chlorosis had disappeared from the plants grown on Santomera soil, the Fe content of the 

youngest leaves did no longer differ among the treatments and consequently no relation with 

Fe concentration in the pore water was found anymore (Figure 3.4a). However, the 

aforementioned dose-response relation was observed between Fe content of the shoot after 8 

weeks and Fe concentration in the pore water (Figure 3.4b). So even though the plants in the 

blank treatment managed to overgrow chlorosis, a memory effect remained in terms of Fe 

content in the shoot. Apparently, an enhanced Fe uptake results in facilitating the youngest 

leaves with sufficient Fe rather than in raising the Fe content of older leaves. The effect was 
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substantial: the Fe content of the shoot was twice as high for the 99%o,o treatment as for the 

blank treatment (respectively 60 and 31 mg kg(dw)
-1
 Fe); the 16%o,o treatment already 

increased the Fe content of the shoot by half as much as the 99%o,o treatment. 

 

 

Figure 3.3: a) SPAD-index of the youngest leaves of soybean plants grown on Santomera soil as a 

function of Fe concentration in the pore water after 3 weeks; b) Relation between SPAD-index and Fe 

content in the youngest leaves of soybean plants grown on Santomera soil after 3 weeks. Error bars 

indicate standard deviations. 

 

 

Figure 3.4: Fe content of a) the youngest leaves, and b) the shoot of soybean plants grown on 

Santomera soil as a function of Fe concentration in the pore water after 8 weeks. Error bars indicate 

standard deviations. 
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Yield 

Chlorophyll is a plant’s biomass producing unit and a reduction in chlorophyll content as a 

result of Fe deficiency was expected to lead to a reduction in yield. This effect was indeed 

observed and is illustrated in Figure 3.5a for the soils on which plants became chlorotic. The 

figure shows that, alike SPAD-index of the youngest leaves after 3 weeks (Figure 3.3a) and Fe 

content of the shoot after 8 weeks (Figure 3.4b), yield after 8 weeks increases with increasing 

Fe concentration in the pore water until a plateau is reached. The 99%o,o treatment yielded 

approximately 30% more biomass than the blank treatment on Santomera soil (29 and 22 

g(dw) per pot respectively), and approximately 20% more on Xeraco L soil (47 and 38 g(dw) 

per pot respectively). For Bologna soil the duration of chlorosis was too short to result in a 

lasting effect in terms of yield. In general, the overall biomass production on Xeraco L and 

Bologna soil was higher than on Santomera soil. This is due to soil specifics not further 

considered here. The yield of the roots of plants grown on Santomera and Xeraco L soil was 

linearly related to the yield of the shoots (R
2
 = 0.98 and 0.97 respectively; data not shown).  

 

 

Figure 3.5: a) Yield (shoot including youngest leaves) after 8 weeks as a function of Fe concentration 

in the pore water, for soybean plants grown on Xeraco L, Bologna and Santomera soil; b) Yield (shoot 

including youngest leaves) after 8 weeks as a function of SPAD-index after 3 and 4 weeks for soybean 

plants grown on Santomera soil. Error bars indicate standard deviations. 
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weeks are not presented). This is because produced biomass is an integral of photosynthesis 

intensity over time. So differences in biomass yield will grow until photosynthesis intensity is 

equal among the treatments. Photosynthesis intensity is in turn amongst others a function of 

chlorophyll content. In Figure 3.5b the yield on Santomera soil after 8 weeks is presented as a 
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function of SPAD-index after 3 weeks (pot experiment 2) and after 4 weeks (pot  

experiment 1). The observed linear relations imply, that SPAD-indices are also good relative 

predictors for (final) yield in crops grown under equal conditions. The slope of the linear trend 

line becomes steeper (β > α) over time, until there are no longer differences in SPAD-index 

among the treatments.  

 

Fe uptake 

Fe uptake is the product of yield and Fe content summarized for the different plant parts and 

corrected for the Fe initially present in the seeds. Because both yield and Fe content display 

similar trends in response to the FeEDDHA treatments, this response becomes even more 

pronounced for Fe uptake.  

In calculating Fe uptake the contribution of Fe in the roots was left out of consideration due to 

its probable overestimation and the large standard deviations within the treatments. This 

probably resulted from different amounts of apoplastic Fe and different extents of 

contamination of the roots with soil material (Strasser, et al., 1999). The latter factor is 

supported by the good correlation between the contents of Fe and the non-essential Al as 

determined in the root material (R
2
 = 0.92 and 0.77 for Santomera and Xeraco L respectively). 

The Fe initially present in the soybean seeds (0.14 ± 0.02 mg Fe per pot) could not be 

specifically attributed to either roots or shoot and was not corrected for. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Fe uptake by soybean plants (shoots including youngest leaves) grown on Xeraco L and 

Santomera soil after 8 weeks as a function of SPAD-index after 4 weeks. Error bars indicate standard 

deviations. 
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than the difference in yield (22 to 29 g(dw) per pot). The 16%o,o treatment already increased 

Fe uptake by half as much as the 99%o,o treatment. Additional Fe uptake and translocation to 

the shoot (including the youngest leaves), as a result of application of FeEDDHA treatments 

to Santomera soil, account for 7 to 15% of the Fe applied with the treatment. This corresponds 

with 15 to 44% of the Fe that was offered as o,o-FeEDDHA. Stress responses in the blank 

treatment may have resulted in a higher non-FeEDDHA mediated uptake of soil native Fe in 

the blank than in the FeEDDHA treatments. So the actual Fe uptake due to FeEDDHA may be 

higher than the additional Fe uptake.  

An attempt was made to relate Fe uptake to SPAD-indices for both Santomera and Xeraco L 

soil. SPAD-indices after 2, 4, 6 and 8 weeks were tried, as well as different averages. The 

SPAD-indices after 4 weeks gave the best linear relationships with Fe uptake, as shown in 

Figure 3.6. The R
2
 for Santomera soil (0.97) is much closer to 1 than for Xeraco L soil (0.77). 

This is probably partly due to the lesser intensity of chlorosis in the blank and the smaller 

range in SPAD indices for Xeraco L soil. These specific linear relationships cannot be 

extrapolated to data outside this experiment. The similarity in slope is based on coincidence; 

Xeraco L soil combines higher yields with a smaller difference in Fe content between the 

treatments, compared to Santomera. 

 

Effect on Mn uptake 

Since the 1950s, soil application of FeEDDHA is known to negatively affect Mn uptake in a 

large number of plant species including soybean (Ghasemi Fasaei, et al., 2003; Heenan and 

Campbell, 1983; Holmes and Brown, 1955; Moraghan, 1979). For this reason a possible effect 

of composition of FeEDDHA treatments on Mn uptake has been examined in this study. The 

effect of FeEDDHA application on the Mn concentration in soil solution is small but 

significant (α = 0.05): an increase from 10.8 to 13.2 mg l-1 Mn with increasing o,o-FeEDDHA 

content. However, in above-soil plant tissue the Mn content decreased exponentially with 

increasing o,o-FeEDDHA content of the FeEDDHA treatments (Figure 3.7a). It declined by a 

factor 4.6 (from 406 to 88 mg kg(dw)
-1
 Mn) in the youngest leaves, and by a factor 3.5 (from 

188 to 54 mg kg(dw)
-1
 Mn) in the remaining shoot. Despite this strong decrease, the plants did 

not grow Mn deficient. Mn deficiency in soybean occurs at Mn contents in the shoot of 

around 10 to 20 mg kg(dw)
-1
 Mn (Adams, et al., 2000; Reuter, et al., 1997). If the dose of  

o,o-FeEDDHA would be further increased or Mn fertilization through foliar spraying would 

be omitted, Mn deficiency could become a serious concern. The Mn content of the roots was 

lower than of the other plant parts (22 to 44 mg kg(dw)
-1
 Mn) and did not display the same 

exponential trend with o,o-FeEDDHA content of the treatment. Only the 99%o,o treatment 

had a significantly lower Mn content in the roots than the other treatments. 

Mn uptake ranged from 1.69 mg Mn in the 99%o,o treatment to 4.44 mg Mn in the blank 

treatment. Only 0.75 mg Mn per pot had been applied through foliar application, assuming a 

100% efficient use of foliar spray and an equal dose for all pots. Hence differences in Mn 

uptake should be primarily explained from root uptake. 

The decrease in Mn uptake with increasing o,o-FeEDDHA content can not be attributed to a 

decreased Mn concentration in soil solution. If Mn and Fe uptake are regulated by the same 
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Figure 3.7: a) Mn content of the youngest leaves, shoot and roots of soybean plants grown on 

Santomera soil, after 8 weeks as a function of the o,o-FeEDDHA content of the treatment; b) The 

relation between Mn and Fe content of the shoot of soybean plants grown on Santomera soil after 8 

weeks. Error bars indicate standard deviations. 

 

 

uptake sites at the root surface, FeEDDHA treatments may increase the competition with Fe 

for these sites. This competition may involve the FeEDDHA complex at the uptake site, in 

case i) Fe uptake takes place either through a reduction and chelate splitting mechanism 

(Chaney, et al., 1972; Marschner, et al., 1989), or ii) through uptake of the complex as a whole 

(Bienfait, et al., 2004). Or iii) FeEDDHA complexes may serve as a replenishing pool in 

solution, preventing Fe
3+
 depletion in the rhizosphere due to Fe uptake by the plant and slow 

dissolution kinetics of Fe hydroxides. In this case, the FeEDDHA complex needs to be 

sufficiently labile to increase Fe activity in the rhizosphere. Additional research is needed on 

the mechanisms underlying Fe uptake and Fe-Mn competition. 

The decrease in Mn content of the shoot is not equal, but proportional to the increase in Fe 

content of the shoot (Figure 3.7b); the slope of the curve indicates that an increase in Fe 

content leads to a 5 times larger decrease in Mn content. This proportionality probably 

primarily results from difference in uptake rate between Fe and Mn. 

 

 

Conclusion 

In this pot trial study, Fe chlorosis was induced in soybean plants on 3 out of 6 calcareous 

soils facing Fe chlorosis problems under field conditions. Chlorosis was only induced on the 

clay soils, which had lower DOC concentrations in the pore water (36 to 39 mg l
-1
 C) than the 
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sandy soils (82 to 153 mg l
-1
 C). The severity and duration of chlorosis correlated with Fe 

availability parameters (DTPA- and oxalate extractable Fe).  

In calcareous soils, the o,o-FeEDDHA content of the FeEDDHA treatment largely determined 

how much Fe remained in solution. o,o-FeEDDHA content and Fe concentration were linearly 

related. The sequence in remaining fractions of the FeEDDHA components corresponded to 

previous findings in batch experiment: racemic o,o-FeEDDHA > meso o,o-FeEDDHA >  

rest-FeEDDHA > o,p-FeEDDHA. In corresponding FeEDDHA treatments with and without 

plants, differences in Fe concentration in the pore water were only found for soils on which 

plants from the blank treatment exhibited Fe deficiency symptoms. 

In soils on which chlorosis was induced, the Fe concentration in soil solution determined Fe 

uptake by the plants. The relationship between Fe concentration and Fe uptake is non-linear: 

initially Fe uptake increases strongly with increasing Fe concentration, but the slope flattens 

and a plateau is reached.  

Although chlorosis in the youngest leaves had disappeared after 8 weeks on all soils on which 

it had been induced, its consequences remained in terms of reduced yield (up to 24% on 

Santomera soil), reduced Fe content in the shoot (up to 47% on Santomera soil) and reduced 

Fe uptake to the shoot (up to 60% on Santomera soil).  

Despite the fact that Mn concentrations in the pore water were hardly affected and in spite of 

foliar application of Mn, Mn uptake decreased exponentially with the o,o-FeEDDHA content 

of the FeEDDHA treatments. In the shoot, the decrease in Mn content was proportional to the 

increase in Fe content. In case of excessive FeEDDHA application or the omission of Mn 

fertilization, Mn deficiency may arise.  

The evident increase in both yield and Fe nutritional value of plants confirms the usefulness of 

FeEDDHA application on calcareous soils. When FeEDDHA is applied prior to the set in of 

chlorosis, the Fe concentration in the pore water proved to be the key parameter determining 

the treatment’s effectiveness. This parameter is largely determined by the Fe dose and the  

o,o-FeEDDHA content of the treatment. Hence, from a formulation with a higher  

o,o-FeEDDHA content, a smaller Fe dose suffices to obtain the same results in terms of yield 

and Fe nutritional value. 
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Appendix 

 

Calibration of the SPAD-meter 

 

Extraction protocol 

An extraction solution was prepared by mixing acetone (99%) and 0.05 M K2CO3 solution in a 

volumetric ratio of 9:1. The solution was stored in a refrigerator. 1.00 g of fresh plant material 

was transferred to a homogenization vessel. 10 ml of the cooled extraction solution  

(T = 4 ± 1 °C) was added to the plant material. The suspension was homogenized for one 

minute and subsequently the homogenate was filtered over a glass filter by vacuum filtration. 

The filtrate was made up to 100 ml with extraction solution. The chlorophyll concentration 

was determined by spectrophotometry. The sum of the chlorophyll a and b concentration was 

determined by measuring the extinction at 652 nm. The extraction is based on the method 

described by Bruinsma (1963). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.1: Relation between chlorophyll content and SPAD-index of the youngest leaves of soybean 

plants. 
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“Recipe ferrum!” 

trans. “Receive the iron!” 

 

Roman expression, urging not to show 

mercy to a defeated opponent in combat. 
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Abstract 

FeEDDHA products are widely used to prevent and remedy Fe chlorosis in crops grown on 

calcareous soils. These products consist of a mixture of FeEDDHA components: racemic  

o,o-FeEDDHA, meso o,o-FeEDDHA, o,p-FeEDDHA and rest-FeEDDHA. The FeEDDHA 

components differ in physical and chemical properties, and as a consequence also in 

effectiveness as Fe fertilizer. In order to efficiently match dose, frequency and moment of 

FeEDDHA application with the Fe requirements of plants, it is important to understand the 

behaviour of the FeEDDHA components in the soil-plant system as a function of time and 

dosage, and to relate this behaviour to Fe uptake by plants. These issues have been examined in 

a pot trial study with soybean plants (Glycine max (L.) Merr. cv Mycogen 5072) grown on 

calcareous soil from Santomera, Spain. Four FeEDDHA treatments (two compositions, two 

dosages) were applied prior to the set in of chlorosis. Leaching of FeEDDHA components was 

prevented. Plant and soil were sampled every week, for six weeks. From one week onward the 

Fe concentration in the pore water was largely gouverned by racemic and meso  

o,o-FeEDDHA. The concentration behaviour of the o,o-FeEDDHA isomers underwent two 

stages: a strong decline within the first week resulting from linear adsorption, and a gradual 

decline from one week onward. For meso o,o-FeEDDHA, unlike racemic o,o-FeDDHA, the 

gradual decline could be mathematically well described with an exponential decay function. 

Soybean plants mainly took up Fe in the progressed vegetative stage (3
rd
 and 4

th
 week) and in 

the reproductive stage, when the pods were being filled with seeds (6
th
 week). Fe uptake and 

removal of racemic o,o-FeEDDHA from the soil system displayed a similar time-trend, 

whereas the removal of meso o,o-FeEDDHA had a plant-independent character. This indicates 

the removal of racemic o,o-FeEDDHA was to a larger extent plant-related. 
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Introduction 

Fe deficiency chlorosis is a nutritional disorder characterized by a significant decrease of 

chlorophyll in the leaves, often observed in plants grown on alkaline and calcareous soils. It 

decreases crop yield both quantitatively and qualitatively, resulting in economic losses 

(Chaney, 1984; Mortvedt, 1991). Elevated bicarbonate concentrations and high pH have been 

identified as the main soil conditions explaining the incidence of Fe chlorosis (Boxma, 1972; 

Mengel, et al., 1984; Shi, et al., 1993). Under such conditions, the solubility of Fe(hydr)oxides 

is low (Lindsay, 1979) and Fe uptake mechanisms become impaired (Marschner, 1995; 

Venkatraju and Marschner, 1981), or Fe becomes inactivated inside the leaf’s apoplast 

(Mengel, 1994). 

 

The application of synthetic Fe chelates is the most common practice to mend or to prevent Fe 

chlorosis. These chelates increase the solubility of Fe and function as a transporter through 

solution to the plant. FeEDDHA (iron (3+) ethylene diamine-N,N’-bis(hydroxy phenylacetic 

acid)) is among the most effective synthetic Fe chelates under neutral and alkaline soil 

conditions (Lucena, et al., 1992; Reed, et al., 1988; Wallace, et al., 1955). Commercial 

FeEDDHA formulations consist of a mixture of positional isomers, diastereomers and 

polycondensates. Such mixtures can be divided into 4 groups of FeEDDHA components:  

1) racemic o,o-FeEDDHA (iron (3+) (R,R) and (S,S) ethylene diamine-N,N'-bis(2-hydroxy 

phenyl acetic acid) complexes), 2) meso o,o-FeEDDHA (iron (3+) (R,S) = (S,R) ethylene 

diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex), 3) o,p-FeEDDHA (iron (3+) 

ethylene diamine-N-(2-hydroxy phenyl acetic acid)-N’-(4-hydroxy phenyl acetic acid) 

complexes), and 4) rest-FeEDDHA (largely consisting of polycondensates). The physical and 

chemical properties of these FeEDDHA components differ strongly (Ahrland, et al., 1990; 

Bannochie and Martell, 1989; Frost, et al., 1958; Gomez-Gallego, et al., 2005; Gomez Gallego, 

et al., 2006; Yunta, et al., 2003a; Yunta, et al., 2003b), and as a consequence, so does their 

ability to preserve Fe in solution and deliver it to the plant. 

The effectiveness of the individual FeEDDHA components is determined by the following 

characteristics: 1) their ability to remain in solution, 2) their susceptibility to cation 

competition and biodegradation, 3) their ability to transfer Fe to the plant, and 4) the ability of 

the corresponding EDDHA component to selectively chelate Fe from the soil (Lucena, 2003). 

The first two characteristics have been addressed in a number of interaction studies with soil 

(Alvarez-Fernandez, et al., 1997; Alvarez-Fernandez, et al., 2002; Garcia-Marco, et al., 2006; 

Hernandez-Apaolaza, et al., 2006; Schenkeveld, et al., 2007). These studies show that racemic 

o,o-FeEDDHA is superior in maintaining Fe in solution, followed by meso o,o-FeEDDHA, 

while rest-FeEDDHA and particularly o,p-FeEDDHA are largely removed from solution.  

 

With respect to Fe transfer to the plant, studies with hydroponic systems show that in such 

systems o,p-FeEDDHA is more effective in mending Fe chlorosis in soybean than  

o,o-FeEDDHA (Garcia-Marco, et al., 2006) and that both are more effective than synthesis  

by-products (referred to as rest-FeEDDHA in this study) (Hernandez-Apaolaza, et al., 2006). 
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Furthermore, meso o,o-FeEDDHA has been claimed to be more effective than racemic  

o,o-FeEDDHA (Cerdan, et al., 2006).  

Still little is known about the performance of FeEDDHA components in the soil-plant system. 

Recently, Schenkeveld et al.(2008) reported a pot trial study with soybean and FeEDDHA 

administration prior to the set in of chlorosis. The amount of o,o-FeEDDHA (i.e. the sum of 

racemic an meso o,o-FeEDDHA) largely determined the effectiveness of the treatment in terms 

of Fe uptake. The superiority of o,o-FeEDDHA over o,p-FeEDDHA in delivering Fe to  

soil-grown crops was confirmed by Rojas et al.(2008). Furthermore, Schenkeveld  et al. (2008) 

observed that the concentration of the o,o-FeEDDHA isomers decreased considerably 

throughout the experiment, and that Fe uptake by the plants could not account for the loss of 

o,o-FeEDDHA. 

 

Thus far, Fe dynamics in the soil-plant system with FeEDDHA addition have not yet been 

examined. Both FeEDDHA component concentrations in the pore water and Fe requirements 

of the plant vary over time. An understanding of these time dependencies is essential to 

determine dose, frequency and moment of FeEDDHA application to soil grown crops, for 

optimizing yield and crop quality, while minimizing the use of FeEDDHA. The aim of this 

study was 1) to examine the pore water concentration of FeEDDHA components in a soil-plant 

system as a function of time and dosage, and 2) to relate the observed concentration behaviour 

to FeEDDHA-facilitated Fe uptake by plants.  

For this purpose a pot trial study was set up, with soybean grown on a calcareous soil from 

Spain. Four FeEDDHA treatments (two compositions, two Fe dosages) were administered 

prior to the set in of chlorosis. Leaching of FeEDDHA components from the root-zone, 

occurring under field conditions as a result of excessive irrigation or atmospheric precipitation 

(Rombola and Tagliavini, 2006), was prevented. Harvesting was done destructively on a 

weekly basis.  

 

 

Material and Methods 

 

Soil 

Calcareous soil was collected from the top soil layer (0 – 20 cm) at a site located in Santomera 

(Murcia, Spain). Relevant soil characteristics are presented in Table 4.1. Santomera soil is a 

clay soil with a lutum fraction of 260 g kg
-1
 and a CaCO3 content of 520 g kg

-1
, common for 

calcareous soils from that area. The pH of the soil is 8.0 (pH-CaCl2). The soil organic carbon 

(SOC) content is low (0.5%), and the dissolved organic carbon (DOC) concentration equals  

30 mg l
-1 
(0.01 M CaCl2). Fe availability parameters are low: the oxalate extractable 

(‘reactive’) Fe content amounts 0.30 g kg
-1
 Fe, and the diethylene triamine penta acetic acid 

(DTPA) extractable content amounts 3.5 mg kg
-1
 Fe. Plants grown on Santomera soil became 

chlorotic, both under field conditions and in a previous pot trial (Schenkeveld, et al., 2008). 

Pre-treatment consisted of air drying and sieving (1 cm). 
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Table 4.1: Soil characteristics. 

a
 ISO/DIS 10390 Soil Quality – Determination of pH

  

b
 ISO/DIS 11265 Soil Quality – Determination of the specific electric conductivity 
c 
Walinga et al. (1992) 

d
 Houba et al. (1997)

 

e
 ISO 10693, Soil Quality – Determination of carbonate content, volumetric method

 

f
 ISO/DIS 11260 Soil Quality – Determination of cation exchange capacity and base saturation – method using 

barium chloride solution 
g 
Houba et al. (2000) 

h
 Schwertmann (1964) 
i 
Lindsay and Norvell (1978) and Quevauvillier et al. (1996) 
j
 Tipping et al. (2003). Fest el al. (2005) 

 

 

FeEDDHA solutions 

FeEDDHA solutions were prepared from a sodium-EDDHA stock solution and solid  

o,o-H4EDDHA (99% pure). The sodium-EDDHA stock solution was synthesized through a 

Mannich-like reaction (patent - Petree, et al., 1978). Prior to Fe addition, the solid  

o,o-H4EDDHA was dissolved by adding sufficient 1 M NaOH. Fe was added as FeCl3*6H2O 

in a 5% excess based on a 1:1 stoichiometry between Fe and ethylene diamine. The pH was 

raised to 7 (± 0.5) and the solutions were left over-night in the dark to allow excess Fe to 

precipitate as hydroxides. The following day, the solutions were filtered over a 0.45 µm nitro 

cellulose micro pore filter (Schleicher & Schuell, ref-no: 10401114) and further diluted for 

application in the pot trial. The composition of the FeEDDHA solutions was analysed by 

combined ICP and HPLC analysis at t=0.  

 

Pot trial 

A pot trial with a runtime of six weeks was done from late August until mid October 2005. The 

main experiment consisted of five treatments with plants: a blank and four FeEDDHA 

treatments. The FeEDDHA treatments varied in amount of chelated Fe and in FeEDDHA 

component composition (Table 4.2). In this way, the effect of dosage of the FeEDDHA 

components on their concentration behaviour in soil solution, and on Fe uptake by plants could 

be examined. Labels of the treatments indicate the combined percentage of Fe chelated by 

racemic and meso o,o-EDDHA (30 or 100%), and the Fe dose applied (L or H). The L(ow) 

   
Extraction 

  

Origin/Name Santomera
  

CaCl2 (0.01 M)
g 

DOC (mg l
-1
) 30

 

Region Murcia 
 

Oxalate
h 

Fe (g kg
-1
)
 

0.30
 

Country
 

Spain
  

DTPA
i 

Fe (mg kg
-1
)
 

3.5
 

Soil classification
 

entisol
   

Mn (mg kg
-1
)
 

4.6
 

Water holding capacity (g kg
-1
)
 

320
   

Cu (mg kg
-1
) 4.1 

pH-CaCl2
a 

8.0
  

 Zn (mg kg
-1
) 0.9 

Electro conductivity (mS m
-1
)
b 

23 
 

HNO3 (0.43 M)
j
 Fe (mg kg

-1
)
 

494 

SOC (g kg
-1
)
c 

5.4
   

Mn (mg kg
-1
)
 

179 

Clay (g kg
-1
)
d 

260
  

 Cu (mg kg
-1
) 10 

CaCO3 (g kg
-1
)
e 

520
 

  Zn (mg kg
-1
) 5 

CEC (cmol kg
-1
)
f
 10.3   
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dose corresponds to ≈ 4 mg l
-l 
 Fe (0.07 mM) and the H(igh) dose to ≈  40 mg l

-l 
 Fe (0.7 mM) 

in the pore water at t=0 (see Table 4.2). FeEDDHA was applied once, at the start of the trail. 

The blank and L-treatments were harvested (destructively) every week, the H-treatments every 

second week. The L-treatments were harvested more frequently, because at 4 mg l
-1
 Fe, the 

composition of the FeEDDHA treatment was certain to affect Fe uptake; at 40 mg l
-1
 Fe this 

was questionable (Schenkeveld, et al., 2008). The experiment was carried out in triplicates, 

comprising 72 pots in total. 

To examine the influence of plants on the concentration of the FeEDDHA components in soil 

solution, a second experiment was carried out with the blank and the L-treatments, both with 

and without plants. Harvest was after 6 weeks only. This experiment was done in duplicates. 

 

 

Table 4.2: Composition of the FeEDDHA treatments expressed as pore water concentrations at t=0. 

 
 

The pot experiment was executed in a greenhouse with 7 liter Mitscherlich pots. Pots, bottom 

plates and related materials were cleaned with 0.01 M HCl prior to usage. The inside of the 

pots were covered with polyethylene sacks with tiny holes allowing for aeration. The pots 

contained six kg of soil, thoroughly and successively mixed with a number of nutrient 

solutions. Per pot 40 mmol NH4NO3, 25 mmol K2HPO4, 20 mmol CaCl2, 10 mmol MgSO4,  

0.5 mmol H3BO3 and 3.75 µmol (NH4)6Mo7O24 were added. Additionally, the L- and  

H-treatments received respectively 0.069 and 0.69 mmol pot
-1
 Fe as FeEDDHA solution. 

Based on previous trials with Santomera soil, no micronutrient deficiencies other than Fe 

deficiency were expected in the blank. Therefore Cu, Mn and Zn fertilization was omitted. The 

moisture content was made up to 50% of the water holding capacity with demineralized water.  

 

Seeds of the Fe chlorosis susceptible soybean (Glycine max (L.) Merr.) cultivar Mycogen 5072 

were germinated on quartz sand with demineralised water. After five days eight seedlings were 

transferred to each pot, which had been filled with soil one day prior to the transfer. The pots 

from the main experiment were rotated on a daily basis. Every day the pots received an amount 

of demineralized water equal to the weight loss due to evapo-transpiration. At later growth 

stages the plant weight was compensated for in this respect. Evapo-transpiration did not exceed 

260 ml pot
-1
 day

-1
 (i.e. 27% of the soil water content). The temperature in the greenhouse was 

kept above 20 °C. The time-span between sunrise and sunset
 
decreased from 14 to 11 hours, 

approximately. No supplementary light was provided to assist plant-growth. 

Treatment racemic o,o-
FeEDDHA 
(mg l

-1
 Fe) 

meso o,o-
FeEDDHA 
(mg l

-1
 Fe) 

o,p-
FeEDDHA 
(mg l

-1
 Fe) 

rest-
FeEDDHA 
(mg l

-1
 Fe) 

totaal Fe 
 

(mg l
-1
 Fe) 

blank  0 0 0 0 0 

30%o,oL 0.60 (14%) 0.68 (16%) 0.79 (19%) 2.18 (51%) 4.25 

100%o,oL  1.93 (48%) 2.00 (50%) 0 0.05 (1%) 3.98 

30%o,oH  5.97 (14%) 6.75 (16%) 7.94 (19%) 21.8 (51%) 42.5 

100%o,oH  19.3 (48%) 20.0 (50%) 0 0.55 (1%) 39.8 
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Sampling and measurement 

  

SPAD-measurement 

SPAD-measurements were done three times per week with a Minolta–502 SPAD-meter to 

compare the chlorophyll content of leaves among treatments. Measurements started 6 days 

after the transfer of the seedlings to the pots, when the leaves had grown sufficiently large. Per 

pot, SPAD-indices were measured for two youngest leaves and two leaves from the second 

youngest trifoliate of every second plant. Measurement was done at the middle section of the 

leaf, midway between the central vein and the leaf edge. If a leaflet was necrotic or too small to 

analyze, no value was recorded. SPAD-indices for the youngest and second youngest trifoliate 

were averaged separately per pot. The plants harvested after 6 weeks were monitored 

throughout the experiment. SPAD-measurements on plants harvested earlier, started 

respectively one and two weeks before harvest for the L- and H-treatments. To ascertain 

representitativeness, the SPAD-values of plants harvested after 6 weeks were compared, per 

treatment, to the SPAD-values of plants harvested earlier. Chlorosis was operationally 

established as a significant difference (α = 0.05) in SPAD-indices of the youngest leaves 

between the blank and the treatment with the highest SPAD-indices. The size of the difference 

in SPAD-value has been interpreted as a measure for the severity of chlorosis. 

 

Harvest 

At each harvesting round, 16 of the youngest trifoliate leaves were separately collected per pot, 

with exception of the first harvesting round when plants were still too small. The (remaining) 

shoots were cut off right above the soil surface. Prior to harvest, the moisture content of the 

soil had been restored to 50% of the water holding capacity. After a few hours of equilibration 

time, a 1 kg mixed subsample was taken from the soil, from which roots were collected 

manually. The soil subsample was stored overnight at 4 °C. The remaining roots were collected 

by rinsing out the soil over a 1 mm sieve. Plant parts (youngest leaves, shoot and roots) were 

washed with demineralized water and dried at 70 °C. After 48 hours, the plant parts were 

weighed (dry weight). 

 

Mineral analysis of plant tissue 

The mineral contents of the plant parts were determined through microwave digestion with 

nitric acid, fluoric acid and hydrogen peroxide (Novozamsky, et al., 1996). Al, Co, Cu, Fe, Mn, 

Ni and Zn concentrations were measured by ICP-AES (Varian, Vista Pro). 

 

Pore water collection and analysis 

A fraction of the pore water was collected from the soil subsamples by centrifugation at  

7,443 g (7,000 rpm) for 15 minutes (Sorvall RC 5C plus) in Delrin (polyacetal) cylindrical  

2 compartment containers the day after harvest. The centrifugate was led from the soil 

containing compartment (approximately 150 cm
3
) over a 0.45 µm nitro cellulose micro pore 

filter (Schleicher & Schuell, ref-no: 10401114) into a soil solution collection compartment 
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(approximately 40 cm
3
). Per unit soil, the amount of water collected did not exceed 

evapotranspiration; therefore the collected pore water was assumed available to plants. 

pH was measured directly after pore water collection. Fe, Ca and Mg concentrations were 

measured by ICP-AES (Varian, Vista Pro); Cu, Al, Mn, Zn, Ni and Co concentrations were 

measured by ICP-MS (Perkin Elmer, ELAN 6000). The samples were acidified with nitric acid 

before ICP-measurement. FeEDDHA component concentrations were determined after 

separation through high-performance liquid chromatography (HPLC) as described by 

Schenkeveld et al. (2007). The Fe concentration chelated by rest-EDDHA was calculated by 

subtracting the Fe concentrations related to the other FeEDDHA components and the Fe 

concentration in the blank treatment from the total Fe concentration measured by ICP-AES. To 

avoid contamination, the preparation of the experimental solutions and dilution of samples for 

measurement were done with analytical grade chemicals and ultra pure water. 

 

Statistical analysis 

Statistical analyses were performed with the program SPSS 12.0. Differences between 

variables were determined by applying the one-way ANOVA procedure with a Tukey post-hoc 

test (α = 0.05). The growth rates of the shoot were compared by analysis of the slopes of linear 

regression lines (α = 0.05). 

 

 

Results  

 

Fe and FeEDDHA component concentrations in soil solution 

The Fe concentration in soil solution of the blank treatment was below detection limit 

throughout the experiment (data not shown). This implies that the Fe concentrations in the 

treatments with FeEDDHA addition entirely resulted from FeEDDHA components. In  

Figure 4.1, the Fe and FeEDDHA component concentrations are presented as a function of 

time for the 30%o,oL treatment. During the first week, o,p-FeEDDHA and rest-FeEDDHA 

were removed from solution practically entirely, resulting in a drop in Fe concentration from  

4.25 mg l
-1
 Fe at t=0 to 0.81 mg l

-1
 Fe after 1 week (Figure 4.1a). From week 1 onward, the Fe 

concentration was largely determined by the sum of the racemic and the meso o,o-FeEDDHA 

concentration (> 92%) (Figure 4.1b).  

The concentration behaviour of the o,o-FeEDDHA isomers can be subdivided into two stages: 

a rapid decline within the first week, and a gradual decline from one week onward. Within the 

first week, the meso o,o-FeEDDHA concentration decreased more strongly (≈ 54%) than the 

racemic o,o-FeEDDHA concentration (≈ 28%). From one week onward, the decline in meso 

o,o-FeEDDHA concentration remained faster, resulting in an increasing relative contribution 

of racemic o,o-FeEDDHA to the total Fe concentration in soil solution.  

Adsorption is proposed as the process causing the strong decline in concentration within the 

first week; FeEDDHA components are known to adsorb to soil reactive surfaces (Hernandez-

Apaolaza and Lucena, 2001; Schenkeveld, et al., 2007), and adsorption (pseudo-)equilibrium 
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t

t eAC λ−⋅= 0

Figure 4.1: a) Fe concentration in the pore water of Santomera soil as a function of time for the 

30%o,oL treatment; b) Enlargement of the indicated area from Figure 1a; Total Fe, racemic  

o,o-FeEDDHA and meso o,o-FeEDDHA concentrations in the pore water of Santomera soil as a 

function of time for the 30%o,oL treatment. Error bars indicate standard deviations. 

 

 

of ionic compounds interacting with soil is generally reached within hours to days rather than 

weeks. Moreover, the larger decline in concentration of meso o,o-FeEDDHA compared to 

racemic o,o-FeEDDHA corresponds with the stronger tendency of meso o,o-FeEDDHA to 

adsorb (Alvarez-Fernandez, et al., 1997; Alvarez-Fernandez, et al., 2002; Hernandez-Apaolaza 

and Lucena, 2001; Schenkeveld, et al., 2007). Potential causes for the gradual decline in 

concentration of racemic and meso o,o-FeEDDHA after the first week are discussed further on 

in relation to Fe uptake by plants.  

 

In both L-treatments, the gradual decline in meso o,o-FeEDDHA concentration was continuous 

from one week onward, while for racemic o,o-FeEDDHA there was no decline during the 

second week, and the gradual decline only set in after two weeks. In Figure 4.2a, the meso  

o,o-FeEDDHA concentration data are presented on a logarithmic scale as a function of time for 

all FeEDDHA treatments. The gradual decline in meso o,o-FeEDDHA concentration can be 

accurately described with an exponential decay function
1
: 

 

 (1) 

 

in which Ct is the meso o,o-FeEDDHA concentration in the pore water at t=t; A0 is a fitted 

meso o,o-FeEDDHA concentration at t=0, disregarding the concentration drop caused by 

                                                
1
 The terms “exponential decay” and “decay constant” are used in a mathematical sense as opposed to 

“exponential growth” and “growth constant”; as such these terms do not address the cause for the decline and 

bear no direct reference to “decomposition” or “biodegradation”. 
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adsorption and the moment the gradual decline set in; λ is the decay constant; and t is the time 

passed since FeEDDHA application. For all treatments R
2
 of the exponential fit was 0.99 or 

higher. 

A similar procedure was followed for the racemic o,o-FeEDDHA concentration data from 2 

weeks onward (Figure 4.2b). The data from the L-treatments could also be fitted reasonably 

well with an exponential equation (R
2
 = 0.99); for the H-treatments, the fits were poor  

(R
2
 = 0.83 and 0.23). 

Figure 4.2: Concentration of a) meso o,o-FeEDDHA and b) racemic o,o-FeEDDHA in the pore water of 

Santomera soil as a function of time for all FeEDDHA treatments. The concentrations are presented on 

a logarithmic scale. Error bars indicate standard deviations. The interrupted lines represent trend 

extrapolations in between the start of the experiment and the first moment of harvest. C0 indicates the 

concentration applied with the treatment, C0
*
 indicates the extrapolated concentration corresponding to 

adsorption equilibrium at t ≈ 0. 
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Under the assumption that adsorption equilibrium was reached before the impact of the process 

causing the gradual decline became substantial, the amounts of racemic and meso  

o,o-FeEDDHA adsorbed in the first stage (Q0) can be determined through extrapolation of the 

concentration trends to t=0. Q0 can then be calculated from: 

 

 (2) 

    

in which C0 is the initial pore water concentration applied with the treatment; C0
*
 is the pore 

water concentration at adsorption equilibrium, determined through extrapolation to t=0; and 

SSR is the soil-solution ratio. For meso o,o-FeEDDHA, the intercepts (C0
*
) were determined 

through extrapolation of the exponential fits (as indicated by the dashed lines in Figure 4.2a), 

and equal A0
 
(equation (1)). For racemic o,o-FeEDDHA, C0

*
 was assumed to equal the 

concentration after 1 and 2 weeks, since the gradual decline only set in after 2 weeks (indicated 

in Figure 4.2b). C0 and C0
*
 are indicated on the Y-axis of Figure 4.2a and b for all treatments. 

For meso o,o-FeEDDHA, C0 is consequently a factor 1.6 - 1.9 higher than C0
*
; for racemic  

o,o-FeEDDHA consequently a factor 1.3 - 1.4.  

With the extrapolated pore water concentrations at adsorption equilibrium (C0
*
) and the 

corresponding adsorbed amounts (Q0) at t≈0, adsorption isotherms for racemic and meso  

o,o-FeEDDHA to Santomera soil were derived (Figure 4.3a). The adsorption isotherms are 

linear in shape and can be described with: 

 

(3) 

 

in which Q is the adsorbed amount by the soil, K is an effective affinity parameter of 

Santomera soil for the o,o-FeEDDHA isomers, and C is the equilibrium concentration in soil 

solution. The slope of the meso o,o-FeEDDHA isotherm (0.139) is a factor 2.5 steeper than the 

slope of the racemic o,o-FeEDDHA isotherm (0.055). Because the isotherms only comprise 4 

data points, a double logarithmic transformation of the data was carried out to check for  

over-representation of the data point with the highest concentration (see Figure A4.1 in the 

Appendix). Also the transformed data could be fitted linearly with R
2
 = 1.00 and tangents of 

1.10 and 0.95 for meso and racemic o,o-FeEDDHA respectively, implying the assumption of 

linear adsorption isotherms is reasonable.  

The decay constant in equation (1) increases with decreasing meso o,o-FeEDDHA 

concentration applied with the treatment (Figure 4.3b). This dependency is remarkable because 

it implies that neither the pore water concentration, nor the linearly dependent amount 

adsorbed determines the rate of decline, like in standard first order reaction kinetics, at which 

the exponential fits hint (Figure 4.2a). The relation between decay constant and concentration 

applied can be accurately described (R
2
 = 0.99) with the following equation: 

 

 (4) 

 

in which b and c are fitting constants. 
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Figure 4.3: a) Derived adsorption isotherms for racemic and meso o,o-FeEDDHA to Santomera soil;  

b) The decay constant (from equation (1)), as a function of the meso o,o-FeEDDHA concentration 

applied with the treatment. Error bars indicate standard deviations. 

 

 

With the linear adsorption isotherm (equation (3)) and the relation between the decay constant 

and the applied concentration (equation (4)), the parameters needed to describe the exponential 

decrease in meso o,o-FeEDDHA concentration in the Santomera soil as a function of time from 

one week onward (equation (1)), can be calculated for any applied meso o,o-FeEDDHA 

concentration in between 0.68 and 20 mg l
-1
 Fe.  

 

The results from the second experiment show that, after 6 weeks, the racemic as well as the 

meso o,o-FeEDDHA concentration were significantly higher in treatments without plants than 

in corresponding treatments with plants (Table 4.3). However, in agreement with the results 

from Schenkeveld et al. (2008), the effect of plants on the concentration is relatively small.  

 

 

Table 4.3: Comparison of FeEDDHA component concentrations after 6 weeks for the 30%o,oL and 

100%o,oL treatment with and without plants. Standard deviations are indicated between parentheses. 

*
 b.d. = below determination limit. 

Treatment Plants racemic o,o-
FeEDDHA 
(mg l

-1
 Fe) 

meso o,o-
FeEDDHA 
(mg l

-1
 Fe) 

o,p-FeEDDHA 
 

(mg l
-1
 Fe) 

rest-FeEDDHA 
 

(mg l
-1
 Fe) 

30%o,oL - 0.35 (0.01) 0.07 (0.00) b.d.
* 

b.d. 

 + 0.30 (0.00) 0.05  (0.00) b.d. b.d. 

      
100%o,oL - 1.18 (0.00) 0.25 (0.01) b.d. b.d. 

 + 0.97 (0.00) 0.17 (0.02) b.d. b.d. 
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Furthermore, the concentration profiles as a function of time were similar in shape in systems 

with and without plants (see Figure 4.1, and Figure A4.2 in the Appendix), in particular for 

meso o,o-FeEDDHA. Hence, non-plant related processes, made a large contribution to the 

gradual decline in concentration of the o,o-FeEDDHA isomers. The amount of racemic and 

meso o,o-FeEDDHA removed from soil solution as a result of Fe uptake cannot be calculated 

from the difference in concentration between the treatments with and without plants, because 

the kinetics of Fe uptake and other processes affecting the o,o-FeEDDHA isomer 

concentrations are mutually affected; they have at least one reactant (the o,o-FeEDDHA 

isomer) and possibly also reaction products in common. 

 

Chlorosis and SPAD-indices 

SPAD-indices of the youngest leaves of plants harvested after 6 weeks are presented as a 

function of time in Figure 4.4a for the blank, the 30%o,oL and the 30%o,oH treatment. The 

general trend shows a strong decline in SPAD-index after 8 days and a more or less gradual 

increase from 2 weeks onward. The plants of the blank treatment became chlorotic after 8 days 

and remained chlorotic until the end of the experiment. It required 17 days before the SPAD-

indices of the youngest leaves of the 30%o,oL treatment differed from those of the blank 

treatment (α = 0.05). In Figure 4.4b the differences in SPAD-indices relative to the blank are 

presented for all FeEDDHA treatments as a function of time. Because this figure merely serves 

to illustrate the trends, error bars have been omitted. Chlorosis was most severe after 3 weeks  

 

 

Figure 4.4: a) SPAD-indices of the youngest leaves of soybean plants grown on Santomera soil as a 

function of time for the blank, 30%o,oL and 30%o,oH treatment. Error bars indicate standard deviations; 

b) Difference in SPAD-index of the youngest leaves of soybean plants grown on Santomera soil 

between the blank treatment and the FeEDDHA treatments as a function of time. Error bars have been 

omitted.  
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Figure 4.5: Fe content of a) the youngest leaves, and b) the shoot of soybean plants grown on 

Santomera soil as a function time for all treatments. Error bars indicate standard deviations. 

 

 

(up to a difference of 11 SPAD-units), corresponding with observations from a previous pot 

trial (Schenkeveld, et al., 2008). Initially, the youngest leaves of the H-treatments had higher 

SPAD-indices than those of the L-treatments, while the SPAD-indices of the L-treatments 

hardly differed from those of the blank. After 2 weeks, the difference in SPAD-indices 

between the blank and the L-treatments rapidly increased. SPAD-indices of the 100%o,oL 

treatment reached the same level as those of the H-treatments after about 3 weeks and 

remained similar until the end of the experiment. So, after 3 weeks no additional cosmetic 

effects were obtained from increasing the o,o-FeEDDHA dose beyond the level of the 

100%o,oL treatment. The SPAD-indices of 30%o,oL treatment remained lower than those of 

the H-treatments, but higher than those of the blank.   

 

Fe content 

The influence of FeEDDHA treatments on the Fe content was examined separately for the 

youngest leaves and the shoot (see Figure 4.5). The Fe content of the roots was not further 

considered, due to its overestimation resulting from contamination of the roots with soil 

material - as confirmed by the linear relation between the Fe and Al content of the roots  

(R
2
 = 0.93). 

The Fe content of the youngest leaves (53 to 143 mg kg
-1
 Fe) was at all times higher than the 

corresponding Fe content of the shoot (40 to 114 mg kg
-1
 Fe) and in 75% of the cases 

significantly different (α = 0.05). For the blank treatment, differences were only significant for 

2 out of 5 sampling moments. No lasting significant increase in Fe content of the youngest 

leaves was observed, except in the 100%o,oH treatment (from 112 to 133 mg kg
-1
 Fe).  
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The Fe content of the shoot declined over time in both the blank and the 30%o,oL treatment. 

This decrease indicates a dilution effect resulting from a higher relative increase in biomass dry 

weight than in accumulated Fe in the shoot. In the 100%o,oL treatment the Fe content of the 

shoot was only significantly lower after 5 weeks, while in the H-treatments no differences were 

observed among sampling moments. So, a minimum amount of o,o-FeEDDHA needed to be 

applied to maintain the Fe content of the shoot. 

Throughout the trial, the Fe content of the youngest leaves and the shoot of the blank were 

lower than in all other treatments. Compared to the 30%o,oL treatment the differences were at 

no stage significant, compared to the 100%o,oL treatment the differences were significant from 

3 weeks onward with exception of the shoot after 4 weeks. The H-treatments had significantly 

higher Fe contents than both the blank and the 30%o,oL treatment throughout the trial, with 

exception of the shoot of the 30%o,oH treatment after 2 weeks. No significant differences in Fe 

content were found between the H-treatments, despite the substantially higher Fe concentration 

in the pore water of the 100%o,oH treatment; apparently a plateau had been reached. 

 

Yield 

The biomass of the shoot (including youngest leaves) increased linearly from 2 weeks onward 

for all treatments (R
2
 = 1.00), as illustrated in Figure 4.6a through the blank, the 30%o,oL and 

the 30%o,oH treatment. The total dry weight yield displayed a similar trend (data not shown). 

After 6 weeks the difference in shoot biomass between the blank (lowest yield) and the 

30%o,oH treatment (highest yield) amounted 3.1 g per pot; an increase of 27% due to 

FeEDDHA application. The growth rates (corresponding to the slopes of the regression lines 

 

 

Figure 4.6: a) Shoot dry weight yield per pot of soybean plants grown on Santomera soil as a function 

of time for the blank, the 30%o,oL and the 30%o,oH treatment; b) Relation between the growth 

coefficient of the shoot of soybean plants grown on Santomera soil and the initial o,o-FeEDDHA 

concentration of the treatment. Error bars indicate standard errors. 
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in Figure 4.6a) increased from 2.32 to 3.06 g (dw) pot
-1
 week

-1
 (an increase of 32%) and 

depended on the amount o,o-FeEDDHA applied with the treatment, as shown in Figure 4.6b. 

With increasing o,o-FeEDDHA dosage, the growth rate initially increased strongly but the 

slope flattened. A plateau was reached and the growth rate corresponding to the 100%o,oH 

treatment, although not statistically different from that of that 30%o,oH treatment, may hint at 

the set-in of a decline in yield as a result of excessive FeEDDHA application. This is supported 

by the observation that, in particular at harvest after 6 weeks, parts of the roots of the 

100%o,oH treatment were coloured black and seemed necrotic. 

 

Fe uptake 

Cumulative Fe uptake was calculated as the product of shoot dry weight yield and Fe content 

of the shoot (including youngest leaves). The Fe initially present in the soybean seeds  

(0.14 ± 0.02 mg Fe per pot) was not corrected for. The combination of a linear time-trend for 

yield and a non-linear one for Fe content results in a non linear cumulative Fe uptake function, 

as illustrated by the blank and the L-treatments in Figure 4.7a. All cumulative Fe uptake curves 

continuously increase throughout the experiment; implying that decreases in Fe content were 

always overcompensated by increases in yield. 

From 2 weeks onward, cumulative Fe uptake increased with increasing o,o-FeEDDHA 

concentration applied with the treatment, as illustrated in Figure 4.7b for 2, 4 and 6 weeks. 

After 2 weeks, cumulative Fe uptake ranged from 0.14 to 0.26 mg pot
-1
 Fe, after 4 weeks from 

0.32 to 0.78 mg pot
-1
 Fe and after 6 weeks from 0.48 to 1.33 mg pot

-1
 Fe. The slope at the 

lower-end of the curve grows steeper with time, indicating FeEDDHA continues to enhance Fe  

 

 

Figure 4.7: a) Cumulative Fe uptake (shoot) per pot as a function of time for all treatments. Error bars 

indicate standard errors; b) Cumulative Fe uptake (shoot) per pot after 2, 4 and 6 weeks as a function 

of the initial o,o-FeEDDHA concentration. Error bars indicate standard deviations. 
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Figure 4.8: Fe uptake (shoot) per pot, per week by soybean plants grown on Santomera soil as a 

function of time, for the blank, the 30%o,oL and the 100%o,oL treatment. Error bars have been omitted.  

 

 

uptake throughout the experiment. Cumulative Fe uptake does not differ significantly between 

the 30%o,oH and the 100%o,oH treatment at any sampling moment. This implies Fe uptake is 

maximized in the 30%o,oH treatment and application of additional o,o-FeEDDHA is 

superfluous. 

The (additional) Fe uptake per week has been calculated as the difference in cumulative Fe 

uptake between two consecutive data points of the same treatment and is presented as a 

function of time in Figure 4.8 for the blank and the L-treatments. The Fe uptake indicated at 2 

weeks is in fact the Fe uptake during the 2
nd
 week, and so on. Because the figure only serves to 

illustrate the trends, error bars have been omitted. 

For all sampling moments the sequence in Fe uptake per week was identical: blank < 30%o,oL 

< 100%o,oL. Fe uptake per week displayed the same time trend in all three treatments. During 

the 2
nd
 week Fe uptake was relatively low. The small Fe requirements at this stage are probably 

related to the small size of the plants during the early vegetative stage and the utilization of Fe 

present in the seeds. Fe uptake increased during the 3
rd
 and the 4

th
 week. As the vegetative 

stage progressed, the plants grew bigger and Fe from the seeds became increasingly 

insufficient, resulting in an increased Fe demand. In the blank treatment chlorosis was most 

severe at this stage (Figure 4.4b). In the course of the 4
th
 and during the 5

th
 week, the plants 

flowered and pods were formed, indicating the shift from the vegetative to the reproductive 

stage. The plants hardly grew in size anymore, leading to small Fe requirements during the 5
th
 

week. During the 6
th
 week the seed formation inside the pods progressed and Fe uptake 

increased strongly again, in order to provide the seeds with sufficient Fe (Grusak, 1995). The 

Fe requirements in the reproductive stage were larger than in any preceding week.  

I = Early vegetative stage (initial chlorosis); 

II = Progressed vegetative stage (maximum 

chlorosis); 

III = Transfer from vegetative to reproductive 

stage (flowering and pod formation);  

IV = Progressed reproductive stage (pod filling) 
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Fe uptake in relation to removal of o,o-FeEDDHA isomers from the soil system  

Finally, the relation between FeEDDHA-facilitated Fe uptake to the shoot, and the amount of 

racemic and meso o,o-FeEDDHA removed from the soil system (solid and solution phase 

combined) was examined as a function of time. The removed amounts of racemic and meso 

o,o-FeEDDHA were calculated from the decrease in soil solution concentration under the 

assumption adsorption equilibrium was preserved and could be described by the derived 

adsorption isotherms (Figure 4.3a). In Figure 4.9a the amounts of racemic, meso and total  

o,o-FeEDDHA removed from the soil system per week, are presented for the 100%o,oL 

treatment. The amount of meso o,o-FeEDDHA removed per week was larger than the amount 

of racemic o,o-FeEDDHA, throughout the experiment. Racemic o,o-FeEDDHA however, 

appears to have a more pronounced influence on the shape of the total o,o-FeEDDHA removal-

curve. 

In Figure 4.9b FeEDDHA-facilitated Fe uptake is presented as a function of time for the 

100%o,oL treatment. Two uptake scenarios have been included: 1) a maximum scenario, in 

which all Fe uptake was assumed FeEDDHA-facilitated, and 2) a minimum scenario, in which 

only the difference in Fe uptake between the 100%o,oL and the blank treatment was assumed 

FeEDDHA-facilitated. In both scenarios, FeEDDHA-facilitated Fe uptake was highest in the 

growth stages that Fe requirements were largest (3
rd
, 4

th
 and 6

th
 week). The curve representing 

the amount of racemic o,o-FeEDDHA removed from the soil system per week shows a strong 

similarity in shape to the Fe uptake curves, and up until the 6
th
 week, the amount of racemic 

o,o-FeEDDHA removed was in range with Fe uptake. This indicates that the removal of  

 

 

Figure 4.9: a) Amounts of total, racemic and meso o,o-FeEDDHA removed from the soil system per 

pot, per week for the 100%o,oL treatment; b) Minimum and maximum FeEDDHA-facilitated Fe uptake 

(shoot) per pot, per week by soybean plants grown on Santomera soil as a function of time, and the 

amount of racemic o,o-FeEDDHA removed from the soil system per pot per week, both for the 

100%o,oL treatment. Error bars have been omitted. 
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racemic o,o-FeEDDHA from the soil-system was to a larger extent plant-determined than the 

removal of meso o,o-FeEDDHA. The fact that the gradual decline in racemic o,o-FeEDDHA 

concentration, only started after 2 weeks, when the plants developed a strong need for Fe, 

further supports this reasoning. 

 

 

Discussion  

For an efficient use of FeEDDHA fertilizer in soil application, dosage and moment of 

FeEDDHA application should be matched with the Fe requirements of the plant. In order to do 

so, the fate of FeEDDHA components in the soil-plant system and the plant’s demand for 

(FeEDDHA-facilitated) Fe need to be understood as a function of time. This study presents 

important first insights in both these issues. 

 

The concentration behaviour of the o,o-FeEDDHA isomers, which almost completely 

governed the Fe concentration in the pore water from one week onward, could be subdivided 

into two stages: a rapid decline in concentration within the first week, and a gradual decline 

from one week onward. The rapid decline has been attributed to adsorption, the extent of which 

could be described with linear adsorption isotherms, for both o,o-FeEDDHA isomers. For 

meso o,o-FeEDDHA, the gradual decline was accurately described with an exponential decay 

function, in which the decay constant is a logarithmic function of the concentration applied; for 

racemic o,o-FeEDDHA a similar description was inadequate. 

The linear shape of the adsorption isotherms does not correspond with the shapes of adsorption 

isotherms determined by Hernandez-Apaolaza and Lucena (2001) for racemic and meso  

o,o-FeEDDHA to several soil constituents. For this reason, the adsorption behaviour of 

racemic and meso o,o-FeEDDHA to Santomera soil was further examined in a separate batch 

experiment, presented in the Appendix. This experiment also resulted in linear adsorption 

isotherms (see Figure A3 in the Appendix). However, the slopes of corresponding isotherms 

from batch and pot experiment differ considerably; in the pot experiment the slopes are 

approximately a factor 4 and 6 higher for racemic and meso o,o-FeEDDHA respectively. This 

difference in adsorption behaviour may result from the difference in soil-solution ratio or the 

difference in ionic strength of the solution phase. Results from an incubation experiment at 

field capacity by Cantera et al. (2002) support this. FeEDDHA was recovered from a 

calcareous soil comparable to Santomera soil through extraction with distilled water instead of 

through direct centrifugation. This lowered the soil-solution ratio (SSR = 0.83) and ionic 

strength. The FeEDDHA recovery and corresponding adsorbed fraction strongly differed from 

those in the pot experiment (SSR = 6), but were approximately equally large as in the batch 

experiment with Santomera soil (SSR = 1). The effect of ionic strength and soil-solution ratio 

on FeEDDHA adsorption need to be further examined. 

Evapo-transpiration caused daily fluctuations in the pore water concentration of the FeEDDHA 

components, on top of the trends described. Near the end of the trial, the relative increase may 

have amounted 35% at maximum, before replenishment with demineralized water. The actual 

fluctuations were probably smaller due to the mitigating effect of adsorption. 
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Preventing leaching may have caused the FeEDDHA component concentrations to decline 

slower than under field conditions. Studies with soil columns have demonstrated that 

FeEDDHA components are susceptible to leaching (Cesco, et al., 2000; Lucena, et al., 2005). 

The actual impact of leaching will however depend on the water balance in the field. The 

effects of leaching on FeEDDHA component concentrations and Fe uptake in the soil-plant 

system need to be further examined. 

The impact of plants on the racemic and meso o,o-FeEDDHA concentration after 6 weeks was 

relatively small, but significant. Plants may enhance the gradual decline through several 

processes. First, uptake of the FeEDDHA complex as a whole (Bienfait, et al., 2004) may play 

a role. Secondly, after Fe reduction and chelate splitting at the root surface, and subsequent Fe 

uptake (Chaney, et al., 1972), the chelating agent o,o-EDDHA may move back into soil 

solution and be degraded or form a complex with a strongly binding competing cation like Cu 

or Al instead of with Fe (Schenkeveld, et al., 2007). Thirdly, plants enhance evapo-

transpiration which may increase FeEDDHA surface precipitation resulting from water 

transport from lower parts of the pot to the soil surface. 

The gradual decline of in particular meso o,o-FeEDDHA, is however mostly caused by  

non-plant related processes. Leaching is excluded as a sink, because the pots were closed at the 

bottom end. Precipitation at the soil surface may decrease the o,o-FeEDDHA isomer 

concentrations, but if this process were dominant, the most mobile isomer i.e. racemic  

o,o-FeEDDHA would be most affected, which was not the case. FeEDDHA consumption by 

microorganisms (e.g. through biodegradation of the chelating agent), chemical degradation 

(e.g. related to local anaerobic conditions in the soil), or slow adsorption onto, or absorption 

into soil particles may (partly) account for the loss of o,o-FeEDDHA. Furthermore, a slow 

displacement of Fe from FeEDDHA complexes by a competing cation could decrease the  

o,o-FeEDDHA concentrations. However, no corresponding increases in concentration of 

competing cations like Cu, Al or Co were observed (data not shown). Further research is 

needed to clear up the processes underlying the plant-independent decrease in concentration of 

the o,o-FeEDDHA isomers. 

 

Time trends in SPAD-index and Fe content of the plants did not correspond: SPAD-indices 

more or less continuously increased from two weeks onward in all treatments (Figure 4.4a), 

while the Fe content of the leaves only significantly increased in the 100%o,oH treatment 

(Figure 4.5a); the Fe content of the shoot even decreased unless a certain dose of  

o,o-FeEDDHA was applied (Figure 4.5b). This confirms the notion that SPAD-indices are 

useful for comparing the Fe status of plants among treatments, but give no absolute indication 

of the Fe content of a leaf. The plant’s stage of development and growth conditions also affect 

SPAD-indices through parameters like e.g. leaf-thickness. 

The soybean plants mainly took up Fe from FeEDDHA in the progressed vegetative stage  

(3
rd
 and 4

th
 week) and in the reproductive stage, when the pods were being filled with seeds  

(6
th
 week). Fe deficiency in the reproductive stage may be overlooked, because Fe storage in 

seeds does not reflect in a visible parameter like leaf colour; SPAD-indices did not change 

much during the 6
th
 week (Figure 4.4a). A good allocation of Fe to the seeds is however vital 
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for a high Fe nutritional value in the plant parts suitable for consumption, and for the viability 

of the next generation of plants; Fe deficient plants are likely to generate offspring that will be 

more susceptible to Fe deficiency than non Fe-deficient plants (Grusak, 1994). 

Fe uptake and removal of racemic o,o-FeEDDHA from the soil system display a similar time-

trend, whereas the removal of meso o,o-FeEDDHA had a plant-independent character. This 

indicates the removal of racemic o,o-FeEDDHA is to a larger extent plant-related and suggests 

that racemic o,o-FeEDDHA might be more effective in supplying soil-grown plants with Fe 

than meso o,o-FeEDDHA. The effectiveness of the individual isomers in soil application needs 

to be further examined. 
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Figure A4.1: Log-log transformed derived adsorption isotherms of racemic and meso o,o-FeEDDHA to 

Santomera soil. 
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Pore water concentrations of FeEDDHA components as a function of time 

Pots filled with Santomera soil without plants, prepared as described under materials and 

methods, were given the blank and L-treatments and were placed on a table in the greenhouse. 

The trial was conducted in duplicates. The pots were rotated and were supplied with 

demineralized water to compensate for evaporation, both on a daily basis. FeEDDHA 

component concentrations were monitored for 6 weeks by in situ sampling with rhizon pore 

water samplers (rhizons) (SMS MOM, Rhizosphere Research Products, Wageningen, The 

Netherlands). The rhizons consist of a cylindrical polyethersulfone (PES) membrane 

(diameter: 2.5 mm; length: 10 cm; pore size: < 0.2µm), which is connected to a PVC/PE tube. 

Before use, the rhizons were cleaned with 0.14 M HNO3 and ultra pure water, and rinsed with 

1 mM NaNO3. Afterwards they were stored in a 1 mM NaNO3 solution until use. The rhizons 

were incorporated in the soil when the pots were filled, with the membrane placed horizontally 

at a height of approximately 10 cm from the bottom plate. The PVC/PE tube was led upwards 

and the ending was connected to the rim of the pot. Sampling was done twice per week by 

imposing a vacuum on the inside of the rhizon with a 10 ml syringe with luer lock (SS*10LZ1, 

Terumo) for maximally 16 hours. To rinse the rhizons, the first ml sampled was put back into 

the sand column. At most 6 ml of pore water were sampled per rhizon per sampling session. 

During sampling the PVC/PE tube and the syringe were covered to avoid exposure of the 

sample to light. FeEDDHA component concentrations were determined as described in 

Schenkeveld et al. (2007). The racemic and meso o,o-FeEDDHA concentrations measured in 

the pore water of the 100%o,oL treatment are presented in Figure A4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.2: Racemic and meso o,o-FeEDDHA concentrations measured in the pore water of 

Santomera soil as a function of time for the 100%o,oL treatment without plants. Sampling was 

executed in situ. Error bars indicate standard deviations. 
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Batch experiment for determining adsorption isotherms to Santomera soil 

Racemic o,o-H4EDDHA (purity: 100%) and meso o,o-H4EDDHA (purity: 99.5%) were 

obtained by separation as described in Bannochie and Martell (1989) and Bailey et al. (1981), 

starting from solid o,o-H4EDDHA, also used for the preparation of the 100%o,o treatments. 

The racemic and meso o,o-FeEDDHA solutions were prepared in the same way as the 

100%o,o FeEDDHA solutions as described under materials and methods. Santomera soil was 

allowed to interact with racemic and meso o,o-FeEDDHA solutions with concentrations of 

0.2; 0.5; 2; 5; 10; 20; 50 and 100 mg l
-1 
Fe in a soil-solution ratio of 1:1 (w/v) for 3 days in 50 

ml polypropylene test tubes (Greiner bio-one, Cat No 210296). The tubes were placed in an 

end-over-end shaker, rotating at 18 rpm in absence of light. Room temperature was kept at  

20 (± 1) °C. The experiment was carried out in duplicates. Control treatments with the 

different experimental solutions without soil were included. After interaction, the samples 

were centrifuged for 15 minutes at 3000 rpm. The pH and EC of the supernatant were 

measured. Subsequently the supernatant was filtered through a 0.45 µm cellulose acetate 

micro pore filter (Schleicher & Schuell, ref no: 10462650). The filtrate was further analyzed. 

o,o-FeEDDHA isomer concentrations were determined as described in Schenkeveld et al. 

(2007). The adsorption isotherms are presented in Figure A4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.3: Adsorption isotherms of racemic and meso o,o-FeEDDHA to Santomera soil as 

determined in a batch shaking experiment. Encircled data point was left out of the regression. 
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“Parsin, mene, tekel, upharsin.” 

 trans. “Divisions, counted, weighed and divisions.” 

 

Adapted from: 

Daniel 5:1–31; 

“Mene, mene, tekel, upharsin.” 

interpr. “Weighed and found wanting.” 
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Abstract 

FeEDDHA (iron (3+) ethylenediamine-N,N'-bis(hydroxy phenyl acetic acid) products are 

commonly applied to mend and prevent Fe deficiency chlorosis in soil-grown crops. Plants 

mainly take up Fe in the progressed vegetative and in the reproductive stage. In this study it 

was examined which of the principal constituents of FeEDDHA products (the isomers racemic 

o,o-FeEDDHA, meso o,o-FeEDDHA and o,p-FeEDDHA), most effectively meets the Fe 

requirements of soybean plants (Glycine max (L.) Merr.), grown on calcareous soil, in the 

aforementioned growth stages. FeEDDHA isomers were applied once, separately or in 

mixtures, either at t=0, in the progressed vegetative stage or in the reproductive stage.  

O,p-FeEDDHA did not significantly contribute to Fe uptake in either growth stage. Both 

racemic and meso o,o-FeEDDHA were effective in supplying plants with Fe, approximately to 

the same extent. Moment of application had a significant effect on yield and FeEDDHA pore 

water concentrations at harvest, but not on Fe uptake. For optimizing yield while minimizing 

FeEDDHA dosage, FeEDDHA is best applied to soybean plants prior to the set in of chorosis. 
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Introduction 

Fe deficiency chlorosis is a common nutrient deficiency, occurring worldwide. It is 

characterized by a significant decrease in the chlorophyll content of the leaves, and results in 

diminished yield and crop quality (Chaney, 1984; Mortvedt, 1991). Chlorosis is found mainly 

on alkaline and calcareous soils. The high pH and elevated bicarbonate concentrations in these 

soils (Boxma, 1972) result in a limited bioavailability of Fe, due to the low solubility of 

Fe(hydr)oxides (Lindsay, 1979), the impairment of the Fe uptake mechanism (Venkatraju and 

Marschner, 1981), and the inactivation of Fe in the leaf apoplast (Mengel, 1994) under such 

conditions. 

 

The application of synthetic Fe chelates is the most common practice for mending and 

preventing iron chlorosis. FeEDDHA (iron (3+) ethylene diamine-N,N’-bis(hydroxy phenyl 

acetic acid)) is among the most effective synthetic Fe chelates under neutral and alkaline soil 

conditions (Lucena, et al., 1992; Reed, et al., 1988). Commercial FeEDDHA formulations 

consist of a mixture of positional isomers, diastereomers and polycondensates. The three 

quantitatively most important compounds are: (1) racemic o,o-FeEDDHA (iron (3+) (R,R) and 

(S,S) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complexes), (2) meso  

o,o-FeEDDHA (iron (3+) (R,S) = (S,R) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic 

acid) complex ), and (3) o,p-EDDHA (iron (3+) ethylene diamine-N-(2-hydroxy phenyl acetic 

acid)-N’-(4-hydroxy phenyl acetic acid) complexes). These compounds will be addressed as 

FeEDDHA isomers in this study. The physical and chemical properties of the FeEDDHA 

isomers differ (Bannochie and Martell, 1989; Gomez Gallego, et al., 2005; Yunta, et al., 

2003a; Yunta, et al., 2003b), and as a consequence, so does their ability to preserve Fe in 

solution and deliver it to the plant. Because the isomeric composition varies strongly among 

commercial FeEDDHA formulations on the market (Garcia-Marco, et al., 2003), the need for 

quality assurance arose. This issue has been addressed in the European Fertilizer Law 

(Regulation (EC) No. 2003/2003; amendment (EC) No. 162/2007), through the following 

parameters: (1) soluble Fe content of the product, (2) percentage of Fe chelated, and  

(3) percentages of Fe chelated by the o,o-EDDHA and o,p-EDDHA isomers.  

 

In recent years, considerable effort has been made to assess the effectiveness of the individual 

Fe chelate compounds present in FeEDDHA products. The ability of FeEDDHA isomers to 

deliver Fe to plants has been examined in several studies with hydroponic systems. Garcia-

Marco et al. (2006) concluded that o,p-FeEDDHA offers a more effective remedy to Fe 

chlorosis in soybean than o,o-FeEDDHA. This conclusion is in line with the findings of 

Lucena and Chaney (2006; 2007) that less stable Fe chelates are more effective in supplying 

cucumber plants with Fe, as long as they manage to maintain Fe chelated. Contradicting 

findings by Rojas et al. (2008) are probably related to the absence of EDTA in the nutrient 

solution, resulting in an incremental displacement of Fe from o,p-FeEDDHA by Cu upon 

replenishment with nutrient solution. Moreover, both o,o-FeEDDHA and o,p-FeEDDHA were 

found more effective than synthesis byproducts (polycondensates) (Hernandez-Apaolaza, et 
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al., 2006), and meso o,o-FeEDDHA has been claimed to be more effective in mending 

chlorosis in strategy 1 plants than racemic o,o-FeEDDHA (Cerdan, et al., 2006). 

The effectiveness of FeEDDHA isomers in soil application has received little attention so far. 

Schenkeveld et al (2008) concluded from a pot trial study with soybean that the amount of  

o,o-FeEDDHA in FeEDDHA treatments, administered prior to the set-in of chlorosis, 

determines the Fe uptake of plants that would otherwise become chlorotic. Rojas et al (2008) 

confirmed the superiority of o,o-FeEDDHA over o,p-FeEDDHA in delivering Fe, in repeated 

soil application to chlorotic plants. Ryskievich and Boka (1962) assessed the effectiveness of 

separated racemic and meso o,o-FeEDDHA in soil application and concluded both were 

effective in providing bean plants with Fe. Presumably, the applied FeEDDHA dosage was 

however so high that Fe uptake reached an optimum for both racemic and meso  

o,o-FeEDDHA (Schenkeveld, et al., 2008), preventing a potential difference in effectiveness 

from being uncovered. 

 

For an efficient use of FeEDDHA fertilizer in soil application, knowledge is required on when 

plants have need for FeEDDHA, and on what FeEDDHA isomers most adequately serve the 

plant’s Fe demand at that particular growth stage. It was recently found that soil grown 

soybean mainly takes up Fe from FeEDDHA when the Fe demand is highest: in the progressed 

vegetative stage and in the reproductive stage (Schenkeveld, et al., 2010a). The efficiency of 

individual FeEDDHA isomers in supplying soil-grown plants with Fe at these particular 

growth stages had not previously been addressed, and has been examined in this study. For the 

sake of comparison, FeEDDHA application prior to the set-in of chlorosis has also been 

included. As part of this study, racemic and meso o,o-FeEDDHA have been separately  

re-assessed with regard to their effectiveness in soil application, at considerably lower dosages 

in comparison to the study by Ryskievich and Boka (1962). 

A pot trial study was conducted with soybean plants grown on a calcareous soil from Spain, 

involving 6 FeEDDHA treatments (separated FeEDDHA isomers, as well as characterized 

FeEDDHA isomer mixtures) applied, at the 3 aforementioned growth stages.  

 

 

Material and Methods 

 

Soil 

Calcareous clay soil was collected from the top soil layer (0 – 20 cm) at a site located in 

Santomera (Murcia, Spain). Lutum fraction (260 g kg
-1
) and CaCO3 content (520 g kg

-1
) are 

common for calcareous soils from that area. The pH of the soil is 8.0 (pH-CaCl2). The soil 

organic carbon (SOC) content is low (5 g kg
-1
), and the dissolved organic carbon (DOC) 

concentration equals 30 mg l
-1 
(0.01 M CaCl2). Fe availability parameters are low: the oxalate 

extractable (‘reactive’) Fe content amounts 0.30 g kg
-1
 Fe, and the diethylene triamine penta 

acetic acid (DTPA) extractable content amounts 3.5 mg kg
-1
 Fe. Plants grown on this soil 

became chlorotic, both under field conditions and in previous pot trials (Schenkeveld, et al., 
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2008; Schenkeveld, et al., 2010a). Pre-treatment consisted of air drying and sieving (1 cm). 

Additional relevant soil characteristics are presented in Table 5.1.   

 

 

Table 5.1: Soil characteristics. 

 

a
 ISO/DIS 10390 Soil Quality – Determination of pH

  

b
 ISO/DIS 11265 Soil Quality – Determination of the specific electric conductivity 
c 
Walinga et al. (1992) 

d
 Houba et al. (1997)

 

e
 ISO 10693, Soil Quality – Determination of carbonate content, volumetric method

 

f
 ISO/DIS 11260 Soil Quality – Determination of cation exchange capacity and base saturation – method using 

barium chloride solution 
g 
Houba et al. (2000)

 

h
 Schwertmann (1964) 
i 
Lindsay and Norvell (1978) and Quevauvillier et al. (1996) 
j
 Tipping et al. (2003) and Fest et al. (2005) 

 

 

FeEDDHA solutions 

FeEDDHA solutions were prepared from racemic o,o-H4EDDHA (purity: 100%), meso  

o,o-H4EDDHA (purity: 99.5%), o,p-H4EDDHA (purity: 90%) and a mixture of racemic and 

meso o,o-H4EDDHA (in a ratio close to 1; purity: 99%).  Racemic and meso o,o-H4EDDHA 

were obtained by separation of the o,o-H4EDDHA mixture, as described in Bannochie and 

Martell (1989) and Bailey et al. (1981).  

Solid H4EDDHA was dissolved by adding sufficient 1 M NaOH. Fe was added as 

FeCl3*6H2O in a 2% excess based on a 1:1 stoichiometry between metal and EDDHA ligand 

(chelating capacity of impurities was corrected for). The pH was raised to 7 (± 0.5) and the 

solutions were left over-night in the dark in order for excess Fe to precipitate as hydroxides. 

The following day, the solutions were filtered over a 0.45 µm nitro cellulose micro pore filter 

(Schleicher & Schuell, ref-no: 10401114) and further diluted for application in the pot trial. 

The composition of the experimental solutions was analysed through combined ICP and 

HPLC analysis at time t=0.  

   
Extraction 

  

Origin/Name Santomera
  

CaCl2 (0.01 M)
g 

DOC (mg l
-1
) 30

 

Region Murcia 
 

Oxalate
h 

Fe (g kg
-1
)
 

0.30
 

Country
 

Spain
   

Al (g kg
-1
)
 

0.44
 

Soil classification
 

entisol
  

DTPA
i 

Fe (mg kg
-1
)
 

3.5
 

Water holding capacity (g kg
-1
)
 

320
   

Mn (mg kg
-1
)
 

4.6
 

pH-CaCl2
a 

8.0
  

 Cu (mg kg
-1
) 4.1 

Electro conductivity (mS m
-1
)
b 

23 
 

 Zn (mg kg
-1
) 0.9 

SOC (g kg
-1
)
c 

5.4
  

HNO3 (0.43 M)
j
 Fe (mg kg

-1
)
 

494 

Clay (g kg
-1
)
d 

260
  

 Mn (mg kg
-1
)
 

179 

CaCO3 (g kg
-1
)
e 

520
 

  Cu (mg kg
-1
) 10 

CEC (cmol kg
-1
)
f
 10.3   Zn (mg kg

-1
) 5 
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Pot trial 

A pot trial with a runtime of 8 weeks was done from mid August until mid October 2006. The 

experiment involved a blank treatment and 6 FeEDDHA treatments: o,p; meso o,o;  

racemic o,o; o,o-mix low; o,o mix-low + o,p; and o,o-mix high. In the first 4 FeEDDHA 

treatments, an Fe dose corresponding to a pore water concentration of around 0.6 mg l
-1 
Fe 

(i.e. 11 µM) was applied, in the latter 2, an Fe dose corresponding to around 1.8 mg l
-1
 Fe (i.e. 

32 µM). The treatments with 1.8 mg l
-1
 Fe were included to ascertain that Fe uptake had not 

yet reached its maximum in the treatments with 0.6 mg l
-1
 Fe. This is a precondition for a 

sound comparison of the effectiveness of the FeEDDHA isomers. The composition of the 

treatments is presented in Table 5.2. The mixed treatments have been included to examine 

potential synergetic effects. Except for the blank treatments, all pots received an FeEDDHA 

treatment once; either at t=0, at the start of the experiment, a day after the transfer of the 

seedlings to the pots; at t=3 weeks, in the middle of the vegetative stage; or at t=6 weeks, at 

the beginning of the reproductive stage when the pods started to fill. Not all FeEDDHA 

treatments were administered at all three moments; moments of application are also indicated 

per treatment in Table 5.2. The o,p-FeEDDHA treatment has been omitted at t=0, because of 

its short lifetime in a soil environment and the lack of Fe deficiency at this growth stage. 

Treatments are named after the FeEDDHA treatment administered and the moment of 

application. The experiment was carried out in triplicates, which were distributed over three 

tables in accordance with a randomized complete block design. 

 

 

Table 5.2: Treatment overview. The composition of the treatments is expressed in terms of pore water 

concentration prior to interaction with soil. 

Treatment Composition  Moment of application 

 racemic o,o-
FeEDDHA 
(mg l

-1
 Fe) 

meso o,o-
FeEDDHA 
(mg l

-1
 Fe) 

o,p-
FeEDDHA 
(mg l

-1
 Fe) 

 
t=0 

t=3 
weeks 

t=6 
weeks 

blank        

        
o,p   0.53   x x 

meso o,o  0.56   x x x 

racemic o,o 0.58    x x x 

        
o,o-mix low 0.29 0.31    x  

o,o-mix low + o,p 0.29 0.31 1.06   x  

o,o-mix high 0.87 0.93   x x  

 

 

 

The pot experiment was executed in a greenhouse with 7 liter Mitscherlich pots containing 5 

kg of soil at 50% of the waterholding capacity. Each pot received 35 mmol NH4NO3, 20 mmol 

K2HPO4, 17.5 mmol CaCl2, 10 mmol MgSO4, 0.5 mmol H3BO3 and 5 µmol (NH4)6Mo7O24. 

All FeEDDHA treatments were applied through a sand column with a diameter of around  
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6 cm, that was positioned in the centre of the soil surface and went about 10 cm deep into the 

soil. After FeEDDHA addition, the column was flushed with demineralized water.  

After 5 days of germination, 8 soybean (Glycine max (L.) Merr.) seedlings of the Fe chlorosis 

susceptible cultivar Mycogen 5072 were transferred to each pot. Preparation of the pot trial, 

germination of the seeds, foliar fertilization with micronutrients other than Fe, and plant care 

were performed as described in Schenkeveld et al. (2008). 

 

Sampling and measurement 

SPAD-measurements were done three times per week on leaves from the youngest and the 

second youngest trifoliate with a Minolta–502 SPAD-meter, as described in Schenkeveld et al. 

(2008). At harvest, the shoots were cut off right above the soil surface. A 1 kg mixed 

subsample was taken from the soil, from which roots were collected manually. The soil 

subsample was stored at 4 °C until further use. The shoots were washed with demineralized 

water and dried at 70 °C. After 48 hours, the shoots were weighed (dry weight). The mineral 

contents of the shoots were determined through microwave digestion with nitric acid, fluoric 

acid and hydrogen peroxide (Novozamsky, et al., 1996). Cu, Fe, Mn and Ni concentrations 

were measured on ICP-AES (Varian, Vista Pro). 

Pore water was collected by centrifugation of the soil subsample at 7,443 g (7,000 rpm) for 15 

minutes as described in Schenkeveld et al 2008. pH was measured directly after collection. Fe, 

Ca and Mg concentrations were measured by ICP-AES (Varian, Vista Pro); Cu, Al, Mn, Zn, 

Ni and Co concentrations were measured by ICP-MS (Perkin Elmer, ELAN 6000). The 

samples were acidified with nitric acid before ICP-measurement. FeEDDHA isomer 

concentrations were determined after separation through high-performance liquid 

chromatography (HPLC) as described in Schenkeveld et al. (2007). The limits of 

quantification (LOQ) were respectively 2 µg l
-1 
Fe for racemic o,o-FeEDDHA, 5 µg l

-1 
Fe for 

meso o,o-FeEDDHA, and 40 µg l
-1 
Fe for o,p-FeEDDHA (20 µg l

-1 
Fe for each  

o,p-FeEDDHA peak). To avoid contamination, the preparation of the experimental solutions 

and dilution of samples for measurement were done with analytical grade chemicals and ultra 

pure water. 

 

Statistical analysis 

Statistical analyses were done with the program SPSS 12.0. Homogeneity of the data was 

tested with the Levene’s test (α = 0.05). A data transformation was executed in case data 

proved non-homogenous. Differences among treatments were determined by applying the 

univariate general linear model procedure with a Tukey post-hoc test (α = 0.05). Block effects 

from the tables were accounted for by including table as a random factor. 
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Results and Discussion 

 

Chlorosis and SPAD-indices 

SPAD-measurements were done to monitor and compare the treatments with regard to Fe 

status of the plants. In Figure 5.1, the SPAD-indices of the youngest leaves are presented as a 

function of time for all treatments. The treatments have been clustered per moment of 

FeEDDHA application. The moments of application are indicated by the dashed vertical lines. 

The plants receiving treatment at t=3 and t=6 weeks were chlorotic at the moment of 

FeEDDHA application, with SPAD-indices ranging from 16.7 to 20.4. These SPAD-indices 

were significantly lower than the SPAD-indices of plants that had received an  

(o,o-)FeEDDHA application at t=0.  

Throughout the experiment, the SPAD-indices of neither o,p-treatment significantly exceeded 

those of the blank treatment. Market-claims of a fast re-greening effect of o,p-FeEDDHA 

were not confirmed in either o,p-treatment. From 3 weeks onward, the SPAD-indices of the 

blank and the o,p-treatments remained more or less constant, while in previous pot trials, 

SPAD-indices of the blank had gradually increased or chlorosis had even entirely been 

overgrown (Schenkeveld, et al., 2008; Schenkeveld, et al., 2010a). 

All treatments involving o,o-FeEDDHA isomers, either separated or in a mixture, resulted in 

an increase in SPAD-indices relative to the blank. In general, the time-trends in SPAD-indices 

of o,o-FeEDDHA treatments, that were applied at the same moment, were similar. For both 

application at t=0 and t=3 weeks, SPAD-indices were highest for the o,o-mix high treatment. 

For all corresponding treatments applied at t=0 and t=3 weeks, the SPAD-indices of the 

treatment applied at t=3 weeks eventually surpassed those of the treatment applied at t=0, and 

remained higher for the rest of the experiment. SPAD-indices were analyzed by means of the 

GLM procedure, from the moment the SPAD-index of the treatment applied at t=3 weeks 

exceeded the value of the corresponding treatment applied at t=0, until the end of the 

experiment (approximately the final 4 weeks). Although differences in SPAD-index did not 

exceed 4 SPAD-units, the effect of moment of application proved significant (α = 0.05) for all 

corresponding treatments. o,o-FeEDDHA application at t=6 weeks did lead to an increase in 

SPAD-indices, but to a lesser extent than o,o-FeEDDHA application at t=0 or t=3 weeks. 

Although at t=6 weeks the reproductive stage was already progressing and the pods were 

filling, the plants apparently did not exclusively invest in securing the Fe demand of their 

offspring, but also still allocated Fe to the leaves for chlorophyll synthesis. 

 

 

 

 

Figure 5.1 (p. 111): SPAD-indices of the youngest leaves of soybean plants grown on Santomera soils 

as a function of time for all treatments. FeEDDHA treatments were applied at (approximately) t=0 (a); 

t=3 weeks (b); and t=6 weeks (c). Dashed lines indicate the moment of FeEDDHA application. Error 

bars indicate standard deviations. The blank treatment has been omitted as a reference in the third 

cluster (c) because the large standard deviations in the blank treatment obscure the trends in the other 

treatments. 
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Fe and FeEDDHA isomer concentrations in the pore water 

The Fe and FeEDDHA isomer concentrations measured in the pore water after harvest are 

presented in Table 5.3, grouped per FeEDDHA treatment. O,p-FeEDDHA was not detected in 

any of the samples, and has been omitted from Table 5.3. In none of the treatments, including 

those receiving FeEDDHA application only 2 weeks before harvest, the remaining FeEDDHA 

concentration accounted for more than 24% of the dose applied. For each moment of 

application separately, racemic o,o-FeEDDHA remained in soil solution to a larger extent than 

meso o,o-FeEDDHA. This corresponds with previous observations (Schenkeveld, et al., 2008; 

Schenkeveld, et al., 2010a). 

 

 

Table 5.3: Fe, racemic o,o-FeEDDHA and meso o,o-FeEDDHA concentrations in the pore water of 

Santomera soil at harvest for all treatments. Standard deviations are indicated between parentheses. 

Treatment Total Fe 
(µg l

-1
 Fe) 

racemic o,o-FeEDDHA 
(µg l

-1
 Fe) 

meso o,o-FeEDDHA 
(µg l

-1
 Fe) 

blank 7 (3) a
*
 --  --  

       
o,p 3 17 (8) a --  --  

o,p 6 20 (13) a --  --  

       
meso o,o 0 62 (33) a --  20 (3) bc 

meso o,o 3 28 (3) a --  12 (1) ab 

meso o,o 6 55 (5) a --  47 (4) d 

       
racemic o,o 0 150 (13) b 133 (16) b --  

racemic o,o 3 63 (6) a 54 (7) a --  

racemic o,o 6 147 (25) b 145 (26) b --  

       
o,o-mix low 3 40 (15) a 27 (5) a 6 (3) a 

o,o-mix low + o,p 3 57 (6) a 33 (5) a 11 (1) ab 

       
o,o-mix high 0 313 (86) c 212 (17) c 42 (7) d 

o,o-mix high 3 168 (15) b 133 (9) b 29 (5) c 
*
 Letters indicate the significantly different groups as identified by the Tukey post-hoc test, including all FeEDDHA 

treatments and all moments of application. 

 

 

For corresponding FeEDDHA treatments, administered at t=0 and t=3 weeks, the FeEDDHA 

isomer concentrations were consequently lower for the treatments applied at t=3 weeks  

(Table 5.3). This is remarkable, for despite the shorter residence time in the soil-plant system, 

a larger portion of the FeEDDHA had been removed from soil solution. The principal 

difference in conditions between FeEDDHA application at t=0 and t=3 weeks, is that the 

plants receiving treatment at t=3 weeks were chlorotic at that stage, while the plants receiving 

treatment at t=0 never grew Fe deficient to this extent. This suggests that the enhanced 

FeEDDHA consumption in treatments administered at t=3 weeks is related to an Fe deficiency 

stress response mechanism of the plants. When Strategy I plants, i.c. soybean, become Fe 

deficient, the enzymatic ferric chelate reductase (FCR) system at the root surface is  
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up-regulated (Marschner and Romheld, 1994; Robinson, et al., 1999). Thus, the efficiency 

with which chelated Fe is reduced, detached from the chelating agent and taken up by the 

plant increases. Provided that the efficiency of the corresponding EDDHA ligand in 

complexing and solubilizing Fe from the soil is limited, the FeEDDHA isomer concentration 

in soil solution will decrease more swiftly and strongly in the presence of Fe deficient plants 

than with plants which are not Fe deficient. Other stress response mechanisms like the 

excretion of protons and phenolic compounds (Marschner, et al., 1986) alter rhizosphere 

conditions like pH, availability of competing cations and bacterial activity, and may lead to 

enhanced cation competition or biodegradation. Contrary to an increase in reduction capacity, 

such processes only result in a decreased FeEDDHA concentration in soil solution, and not in 

increased Fe uptake, relative to the blank treatment. In order to discriminate, these findings 

will be further discussed in relation to Fe uptake. 

Comparison of corresponding treatments applied at t=0 and t=6 weeks (Table 5.3) shows that 

racemic o,o-FeEDDHA concentrations at harvest (133 and 145 µg l
-1
 Fe respectively) were 

equal, while meso o,o-FeEDDHA concentrations (20 and 47 µg l
-1
 Fe respectively) differed 

only little, relative to the concentration applied (560 µg l
-1
 Fe; Table 5.2). In this study, the 

impact of stress response mechanisms on FeEDDHA concentrations exceeded the impact of 3 

weeks of residence time in the soil-plant system for meso o,o-FeEDDHA and equaled the 

impact of 6 weeks of residence time for racemic o,o-FeEDDHA (Table 5.3). 

Comparison of the concentrations of both o,o-FeEDDHA isomers between the o,o-mix low 3 

and the o,o-mix low + o,p 3 treatment showed that, for pots from the same table,  both racemic 

and meso o,o-FeEDDHA concentration were always higher in the o,o- mix low + o,p 3 

treatment. As indicated in Table 5.3, the concentrations were however not identified as 

different in the overall Tukey post-hoc test. Since the treatments were identical, except for the 

additional o,p-FeEDDHA in the o,o-mix low + o,p 3 treatment, the concentrations of both  

o,o-FeEDDHA isomers could also be compared with a simple t-tests. Then the concentration 

of meso o,o-FeEDDHA proved significantly higher in the o,o-mix low + o,p 3 treatment  

(p = 0.04), while the concentration of the racemic o,o-FeEDDHA isomer was not (p = 0.20). 

Despite the fact that the effect is small, the observation implies that o,p-FeEDDHA is 

involved in a “guarding mechanism” which somewhat diminishes the decrease in meso  

o,o-FeEDDHA concentration. Nonetheless, comparison of the o,o-mix low + o,p 3 and the 

o,o-mix high 3 treatment with regard to the remaining Fe concentration in soil solution shows 

that the beneficial effect from o,p-FeEDDHA on the meso o,o-FeEDDHA concentration 

cannot compete with simply applying more meso o,o-FeEDDHA instead. 

 

Yield 

The dry weight yield ranged from 16.7 to 22.3 g pot
-1
 (see Table 5.4). The Tukey post-hoc test 

indicated that differences in yield were neither significant between different FeEDDHA 

treatments applied at the same moment, nor between corresponding FeEDDHA treatments 

applied at different moments. An overall effect of moment of application was examined by 

comparing the yields from different moments of application collectively instead of per 

treatment. Only corresponding FeEDDHA treatments were included in the comparison. The 
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overall effect of moment of application was significant (p = 0.022) and, for corresponding 

treatments, application at t=6 weeks yielded less biomass than application at t=3 weeks  

(p = 0.013). 

 

 

Table 5.4: Dry weight yield and Fe content of the shoot of soybean plants grown on Santomera soil for 

all treatments. Standard deviations are indicated between parentheses.  

Treatment Dry weight yield (g pot
-1
)  Fe content (mg kg

-1
) 

blank 19.0 (1.4) abc
*
  38.6 (5.7) a 

      
meso o,o 0 21.1 (0.9) bc  59.2 (6.5) cd 

racemic o,o 0 20.0 (1.7) abc  57.6 (5.6) c 

o,o-mix high 0 21.7 (1.6) bc  62.2 (2.8) cd 

      
o,p 3 19.3 (1.2) abc  41.4 (1.4) ab 

meso o,o 3 21.5 (2.1) bc  51.6 (4.0) bc 

racemic o,o 3 22.2 (0.4) c  57.5 (1.8) c 

o,o-mix low 3 22.1 (1.7) bc  50.1 (2.7) abc 

o,o-mix low + o,p 3 22.2 (1.7) bc  52.7 (2.7) bc 

o,o-mix high 3 21.6 (1,0) bc  70.8 (3.8) d 

      
o,p 6 16.7 (0.8) a  37.9 (2.4) a 

meso o,o 6 18.9 (3.2) ab  58.8 (6.7) cd 

racemic o,o 6 19.8 (0.7) abc  55.2 (2.3) c 
*
 Letters indicate the significantly different groups as identified by the Tukey post-hoc test, including all FeEDDHA 

treatments and all moments of application. 

 

 

Fe content shoot 

After 8 weeks of growth, the Fe content of the shoot ranged from 37.9 to 70.8 mg kg
-1
 Fe (see 

Table 5.4). The Fe contents of the blank (38.6 mg kg
-1
 Fe) and the o,p-treatments (37.9 and 

41.4 mg kg
-1
 Fe) did not significantly differ, but were all significantly lower than the Fe 

contents of all treatments involving o,o-FeEDDHA with exception of the o,o-mix low 3 

treatment (50.1 mg kg
-1
 Fe). Plants grown with the o,o-mix high treatments had the highest Fe 

contents (62.2 to 70.8 mg kg
-1
 Fe). For none of the moments of application, significant 

differences in Fe content between the racemic o,o and the meso o,o treatment were found. 

Only at t=3 weeks significant differences between the treatments involving o,o-FeEDDHA 

were found: the o,o-mix high treatment had a significantly higher Fe content than the other 

treatments. For corresponding FeEDDHA treatments, the Tukey post-hoc test did not identify 

significant differences in Fe content between the moments of application.  

 

Fe uptake 

Fe uptake was calculated as the product of shoot dry weight and Fe content of the shoot. Due 

to previous experience with contamination of the roots with soil material, the roots were left 

out of consideration. As shown in Figure 5.3, Fe uptake ranged from 0.63 to 1.52 mg Fe per 

pot. No significant differences in Fe uptake were observed between the blank, the o,p 3 and 
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the o,p 6 treatment. So, the plants did not benefit from o,p-FeEDDHA, even under conditions 

in which the Fe uptake efficiency had increased as a result of Fe deficiency stress mechanisms 

(Marschner and Romheld, 1994); neither in the vegetative stage, nor in the reproductive stage. 

Regarding the vegetative stage, this finding is in agreement with findings from Rojas et al. 

(2008).  O,p-FeEDDHA is known to largely adsorb to soil reactive surfaces and exchange Fe 

for Cu (Schenkeveld, et al., 2007). Apparently, fast adsorption and cation competition kinetics 

heavily outweighed the preferential Fe transfer by o,p-FeEDDHA compared to  

o,o-FeEDDHA, demonstrated in hydroponics systems (Garcia-Marco, et al., 2006). 

By comparing Fe uptake in the o,o-mix low 3 and the o,o-mix low + o,p 3 treatment, it was 

examined if the presence of o,p-FeEDDHA might enhance the performance of  

o,o-FeEDDHA, through the aforementioned “guarding mechanism”. However, no significant 

difference in Fe uptake was found, although the o,p-FeEDDHA dose in the  

o,o-mix low + o,p 3 treatment was twice as high as in the o,p 3 and o,p 6 treatments. The 

higher Fe uptake in the o,o mix high 3 treatment confirms that distinction between the  

o,o-mix low and o,o-mix low + o,p 3 treatments is not compromised by Fe saturation of the 

plants, and indicates that substituting o,p-FeEDDHA from the o,o-mix low + o,p 3 treatment 

for o,o-FeEDDHA significantly increases the effectiveness of the treatment. 

 

Figure 5.3: Fe uptake by soybean plants grown on Santomera soil for all FeEDDHA treatments. Error 

bars indicate standard deviations. Letters indicate the significantly different groups as identified by the 

Tukey post-hoc test including all FeEDDHA treatments and all moments of application. 

 

Fe uptake was highest in the o,o-mix high treatments (1.35 (t=0) and 1.52 (t=3) mg Fe), but 

not significantly different from all other treatments. An overall effect of FeEDDHA treatment 

was examined by comparing Fe uptake from different FeEDDHA treatments for all 

corresponding moments of application combined. Overall, the o,o-mix high treatments led to a 

significantly higher Fe uptake than the racemic o,o treatments (p = 0.030) and the meso o,o 
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treatments (p = 0.012). This is in agreement with the finding by Schenkeveld et al. (2008) that 

a higher dose of o,o-FeEDDHA results in a higher Fe uptake. 

Fe uptake in racemic o,o and meso o,o treatments was in all cases significantly higher than in 

the blank. This testifies that both racemic and meso o,o-FeEDDHA are effective in  

soil-applied Fe fertilization, in accordance with the study by Ryskievich and Boka (1962). Fe 

uptake in the racemic o,o treatments was not significantly different from Fe uptake in the  

meso o,o treatments, neither overall (p = 0.73), nor for any of the moments of application 

separately. The lack of significant difference in Fe uptake, while Fe uptake was not maximal, 

demonstrates that the effectiveness of racemic and meso o,o-FeEDDHA in soil application is 

comparable. This does not correspond with the conclusions from hydroponics studies (Cerdan, 

et al., 2006; Lucena and Chaney, 2006; 2007), in which meso o,o-FeEDDHA was found to be 

more effective than racemic o,o-FeEDDHA. In studies in which racemic and meso  

o,o-FeEDDHA were applied as a mixture to Fe deficient plants, the decrease in meso  

o,o-FeEDDHA concentration was considerably stronger than in racemic o,o-FeEDDHA 

concentration (Cerdan, et al., 2006; Hill-Cottingham and Lloyd-Jones, 1965). This stronger 

decrease may however in part be explained by a redistribution of Fe over the available  

o,o-EDDHA ligands, upon Fe transfer from racemic o,o-FeEDDHA to the plant; the larger 

stability of the racemic o,o-FeEDDHA complex favours Fe complexation by racemic  

o,o-EDDHA (Bannochie and Martell, 1989). 

A possible explanation why, in the soil-plant system, contrary to hydroponics systems 

(Lucena and Chaney, 2006; 2007), Fe uptake was not larger in meso o,o treatments than in 

racemic o,o treatments, involves the lower Fe concentration in soil solution in the meso o,o 

treatments, due to the larger degree of meso o,o-FeEDDHA adsorption to soil reactive 

surfaces, and the faster non-plant-related decline in concentration (Schenkeveld, et al., 2010a). 

The effect of preferential Fe uptake from meso o,o-FeEDDHA may thus have been undone by 

the lower soil solution concentration. Schenkeveld et al. (2010a) even suggested that racemic 

o,o-FeEDDHA might be more effective in supplying soil-grown plants with Fe than meso  

o,o-FeEDDHA, because the removal of racemic o,o-FeEDDHA from the soil-plant system 

proved to a larger extent plant-related. The present study does however not support this 

suggestion. 

 

The effect of moment of application on Fe uptake was not significant; neither for FeEDDHA 

treatments individually, nor for corresponding treatments collectively. This seems counter-

intuitive, because plants that receive a treatment containing o,o-FeEDDHA at a later stage, 

have less time to benefit from it until harvest. Still, the difference in Fe uptake between the 

blank treatment on the one hand and the racemic o,o 6 and meso o,o 6 treatments on the other, 

amounted 0.36 mg Fe per pot, and was built up in merely 2 weeks. 0.36 mg Fe per pot 

corresponds to 50% of the total Fe uptake in the blank treatment after 8 weeks. Two factors 

may help to explain the lack of significant difference in Fe uptake between the moments of 

application. First, as mentioned earlier, when FeEDDHA treatments were applied after 3 or 6 

weeks, the plants were Fe deficient and stress response mechanisms facilitated a faster, more 

efficient Fe uptake (Marschner and Romheld, 1994). Secondly, by applying the same 
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FeEDDHA dose at a later stage, losses related to residence in the soil were smaller and the 

FeEDDHA concentrations in soil solution were highest when plants were actually Fe 

deficient. Although no quantitative effect on Fe uptake was found, it seems likely the moment 

of application will affect the Fe distribution over the plant (leaves versus seeds) (Grusak, 

1994).  

The mechanism of Fe uptake has not been specifically considered in this study. Although Fe 

reduction and chelate splitting is considered the prevailing Fe uptake mechanism (Chaney, et 

al., 1972; Robinson, et al., 1999), uptake of the racemic and meso o,o-FeEDDHA complex as 

a whole has been demonstrated in several plant studies on substrate and in plain nutrient 

solution (Bienfait, et al., 2004; Orera, et al., 2009) In these studies racemic and meso  

o,o-FeEDDHA were taken up to approximately to the same extent. Recently, also uptake of 

the o,p-FeEDDHA complex was demonstrated (Orera, et al., 2009). If uptake of the 

FeEDDHA complex as a whole also occurs in soil-grown plants, and if so, to what extent it 

accounts for overall Fe uptake, needs to be further examined. 

 

 

Practical implications 

In this study o,p-FeEDDHA did not significantly contribute to Fe uptake of Fe deficient,  

soil-grown plants, regardless whether it was applied in the vegetative or in the reproductive 

stage, as a single substance or in a mixture. The acclaimed short-term effectiveness in soil 

application (Garcia-Marco, et al., 2006) was rejected. Soil contamination with Cu had been 

identified to cause limited stability of o,p-FeEDDHA, thereby reducing its effectiveness 

(Garcia-Marco, et al., 2006; Lucena, et al., 2005; Yunta, et al., 2003a). The Santomera soil is 

however not Cu-contaminated
2
, so the lack of Cu contamination is no guarantee for  

o,p-FeEDDHA functionality. In general, it seems questionable if o,p-FeEDDHA in 

commercial FeEDDHA formulations has any added value as Fe fertilizer in soil application; 

chances for positive results seem highest in sandy soils with a low Cu content (Schenkeveld, 

et al., 2007). 

Both racemic and meso o,o-FeEDDHA isomer proved effective in supplying soil-grown 

plants with Fe, approximately to the same extent. The outcomes of this study offer no 

incentive for altering the ratio between racemic and meso o,o-FeEDDHA in commercial 

FeEDDHA formulations for soil application, or for discriminating between the o,o-FeEDDHA 

isomers on product labels. 

The moment of application had no significant effect on Fe uptake by soybean plants, but did 

have a significant effect on yield and on the FeEDDHA isomer concentrations in the pore 

water at harvest. o,o-FeEDDHA application in the reproductive stage resulted in diminished 

yield in comparison to earlier application. o,o-FeEDDHA application in the vegetative stage, 

after the set in of chlorosis, resulted in lower FeEDDHA isomer concentrations in comparison 

                                                
2
 The Cu content of Santomera soil is below the Dutch soil-specific background value “AW-2000” (35 mg kg

-1
 Cu), 

indicating that, with respect to Cu, the soil is not contaminated and suitable for any application in accordance with 

current regulation (Besluit Bodemkwaliteit 2008/Administrative Order on Soil Quality 2008). 
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to corresponding treatments applied earlier or later. Thus, in view of an efficient use of Fe 

fertilizer, FeEDDHA application prior to the set in of chlorosis is recommendable; for 

obtaining similar results, less FeEDDHA is required than in application after the set in of 

chlorosis, and yield loss related to FeEDDHA application in the reproductive stage is avoided. 

The distribution of Fe over the plant has not been examined in this study; FeEDDHA 

application in a later growth stage might be favorable for the allocation of Fe to edible plant 

parts, e.g. the fruits or the seeds. 

 

In conclusion, since the amount of o,o-FeEDDHA applied determined the effectiveness of the 

treatment, regardless of the moment of application, the conclusion that FeEDDHA 

formulations with a higher o,o-content can be applied at a lower dose (Schenkeveld, et al., 

2008), is not limited to application prior to the set in of chlorosis but remains valid throughout 

the growing season. 
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“Do not wait to strike until the iron is hot, 

  but make it hot by striking.” 

 

By W.B. Sprague 
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Abstract 

FeEDDHA (iron (3+) ethylenediamine-N,N'-bis(hydroxy phenyl acetic acid) products are 

commonly applied to mend or prevent Fe chlorosis in plants. In soil application, racemic and 

meso o,o-FeEDDHA constitute the effective components, while o,p-FeEDDHA tends to 

adsorb or react to o,p-CuEDDHA. Upon interaction with soil, a plant-independent, gradual 

decline in soil solution concentration of meso o,o-FeEDDHA and o,p-CuEDDHA had been 

observed. The aim of this study was to examine to what extent biodegradation contributes to 

this gradual decline. A 4-week incubation experiment was done with calcareous soil receiving 

an FeEDDHA treatment. The experiment involved 3 sterility regimes, 2 conditioning regimes 

and 3 time steps. 

Soil solution concentrations of meso o,o-FeEDDHA and o,p-CuEDDHA gradually declined in 

all sterility regimes. Biodegradation did not significantly contribute to the decline in 

concentration of any EDDHA chelate, except for the marginally formed CoEDDHA. The rate 

of the process causing the decline was higher at higher temperature and in soil not exposed to 

gamma irradiation. This study offers no evidence that the effectiveness of soil-applied 

FeEDDHA fertilizers is compromised by biodegradation. 
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Introduction 

Synthetic aminocarboxylate chelating agents consist of a group of chemicals, which have a 

strong ability to form stable, water soluble complexes with di- and trivalent cations. These 

chemicals, with NTA (nitrilo tri acetic acid), EDTA (ethylene diamine tetra acetic acid) and 

DTPA (diethylene triamine penta acetic acid) being their most well-known representatives, are 

widely utilized in industrial, nutritional, medical, domestic and agricultural applications to 

prevent the formation of precipitates, to prevent reactions catalyzed by metal ions, to remove 

toxic metal ions and to increase metal bioavailability (Bucheli-Witschel and Egli, 2001).  

Many micronutrient fertilizers for Fe, Zn, Cu and Mn are based on aminocarboxylate chelates; 

the chelating agents enhance metal solubility and transport the metal ions through solution to 

the plant root. FeEDDHA (iron (3+) ethylene diamine-N,N’-bis(hydroxy phenyl acetic acid)) 

is among the most effective fertilizers to prevent and remedy Fe deficiency in plants under 

neutral and alkaline soil conditions (Lucena, 2003; Reed, et al., 1988). The current world 

market for FeEDDHA products is in the order of 10 thousand metric tons per year, the 

majority of which is sold in the Mediterranean countries and the Middle East. FeEDDHA 

products are manufactured through a Mannich-like reaction between ethylenediamine, 

glyoxylic acid and phenol, and subsequent Fe addition (Petree, et al., 1978). The Mannich-like 

reaction produces a mixture of positional isomers, diastereomers and polycondensates. The 

quantitatively most important components in FeEDDHA products are: 1) racemic  

o,o-FeEDDHA (iron (3+) (R,R) and (S,S) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic 

acid) complexes), 2) meso o,o-FeEDDHA (iron (3+) (R,S) = (S,R) ethylene diamine-N,N'-

bis(2-hydroxy phenyl acetic acid) complex) and 3) o,p-FeEDDHA (iron (3+) ethylene 

diamine-N-(2-hydroxy phenyl acetic acid)-N’-(4-hydroxy phenyl acetic acid) complexes). The 

remaining components, mainly consisting of polycondensates are labelled 4) rest-FeEDDHA. 

The behaviour and effectiveness of these FeEDDHA components has been extensively studied 

in soil systems, hydroponics systems with plants, and soil-plant systems (Alvarez-Fernandez, 

et al., 2002; Garcia-Marco, et al., 2006; Garcia-Mina, et al., 2003; Hernandez-Apaolaza, et al., 

2006; Lucena and Chaney, 2007; Schenkeveld, et al., 2008; Schenkeveld, et al., 2007). It has 

been shown that upon interaction with soil, o,p-FeEDDHA and rest-FeEDDHA are quickly 

removed from soil solution almost completely, while racemic and meso o,o-FeEDDHA remain 

in solution to a much larger extent. O,p-EDDHA rapidly mobilizes Cu from the soil by 

exchanging Fe for Cu and forming a soluble o,p-CuEDDHA complex. Subsequently, the soil 

solution concentrations of particularly meso o,o-FeEDDHA and o,p-CuEDDHA gradually 

declined over time. This decline cannot be attributed to plant uptake (Schenkeveld, et al., 

2007; Schenkeveld, et al., 2010a) and it is yet unclear which soil process is responsible. The 

biodegradation of the EDDHA chelates has been identified as a possible cause, but has not 

been previously examined. In the present study this issue has been addressed. 

 

The biodegradability of various other aminocarboxylate chelates has been intensively studied 

in view of environmental persistence, particularly observed in certain EDTA chelates (Tandy, 

et al., 2004). Therefore, a potentially high risk of (heavy) metal mobilization and subsequent 

leaching to the groundwater (Wenzel, et al., 2003; Wu, et al., 2004) arises when chelating 
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agents like EDTA are used in soil applications at high doses, e.g. in soil remediation 

techniques (Nowack, et al., 2006; Römkens, et al., 2002). To reduce this risk, the application 

of alternative aminocarboxylate chelating agents, like [S,S]-EDDS (ethylene diamine 

disuccinic acid), which form biodegradable chelates (Tandy, et al., 2006; Van Devivere, et al., 

2001), is being examined. 

Recently, a readily biodegradable chelate has also been considered for Fe fertilization: 

FeIDSA (iron (3+) imino disuccinic acid) (Villen, et al., 2007). In soil application of chelate-

based fertilizers there is however a trade-off between risk of leaching and the time span the 

fertilizer remains effective in soil solution. Due to its biodegradability, its low stability  

(< FeEDTA) and its relatively high affinity for reactive surfaces, the residence time of 

FeIDSA in soil solution is strongly compromised. Therefore the effectiveness of FeIDSA in 

soil application is small in comparison to o,o-FeEDDHA, and its potential limited. 

 

Both from an agricultural and an environmental perspective it is important to further the 

understanding on the fate of EDDHA chelates in the soil. This understanding is required to 

improve estimates on the time span FeEDDHA components remain effective as fertilizer and 

to assess potential risks to the environment of leaching of heavy metal after mobilization by 

EDDHA components (e.g. o,p-CuEDDHA). The aim of this study was to examine to what 

extent biodegradation contributes to the observed gradual decline in EDDHA chelate 

concentrations upon interaction with soil. For this purpose an incubation study was done with 

FeEDDHA application to sterilized and non-sterilized calcareous soil.  

 

 

Material and Methods 

 

Soil 

Calcareous soil was collected from the top soil layer (0 – 20 cm) at a site located in Santomera 

(Spain). Plants grown on this soil became chlorotic, both under field conditions and in pot 

trials (Schenkeveld, et al., 2008; Schenkeveld, et al., 2010a). Pre-treatment consisted of air 

drying and sieving (1 cm). Relevant soil characteristics are presented in Table 6.1.   

 

FeEDDHA solution 

The FeEDDHA solution was prepared from a sodium-EDDHA stock solution. Fe was added 

as FeCl3*6H2O in a 5% excess based on a 1:1 stoichiometry between Fe and ethylene 

diamine. The pH was raised to 7 (± 0.5) and the solution was left over-night in the dark in 

order for excess Fe to precipitate as hydroxides. The following day, the solution was filtered 

over a 0.45 µm nitro cellulose micro pore filter (Schleicher & Schuell, ref-no: 10401114) and 

further diluted for application in the incubation experiment. The composition of the 

FeEDDHA solution was analyzed by combined ICP and HPLC analysis at time t=0. 
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Table 6.1: Soil characteristics. 

   
Extraction 

  

Origin/Name Santomera
  

Oxalate
g 

Fe (g kg
-1
)
 

0.30
 

Region Murcia 
    

Country
 

Spain
  

DTPA
h 

Fe (mg kg
-1
)
 

3.5
 

Soil classification
 

entisol
   

Cu (mg kg
-1
) 4.1 

Water holding capacity (g kg
-1
)
 

320
   

Co (mg kg
-1
) b.d. 

pH-CaCl2
a 

8.0
  

   

Electro conductivity (mS m
-1
)
b 

23 
 

HNO3 (0.43 M)
i
 Fe (mg kg

-1
)
 

494 

SOC (g kg
-1
)
c 

5.4
   

Cu (mg kg
-1
) 10 

Clay (g kg
-1
)
d 

260
  

 Co (mg kg
-1
) 3 

CaCO3 (g kg
-1
)
e 

520
 

    

CEC (cmol kg
-1
)
f
 10.3   

 
 

a
 ISO/DIS 10390 Soil Quality – Determination of pH

  

b
 ISO/DIS 11265 Soil Quality – Determination of the specific electric conductivity 
c 
Walinga et al. (1992) 

d
 Houba et al. (1997)

 

e
 ISO 10693, Soil Quality – Determination of carbonate content, volumetric method

 

f
 ISO/DIS 11260 Soil Quality – Determination of cation exchange capacity and base saturation – method using 

barium chloride solution 
g
 Schwertmann (1964) 
h 
Lindsay and Norvell (1978) and Quevauvillier et al. (1996) 

i
 Tipping et al. (2003) and Fest et al. (2005) 

 

 

Table 6.2: FeEDDHA component concentrations in soil solution at t=0 and t=1 day. Standard 

deviations are indicated in between parentheses. The concentrations at t=1 day are averaged for all 

FeEDDHA treatments. 

b.d.: below detection limit. 

 

 

Incubation experiment 

A soil incubation experiment with a runtime of 4 weeks was executed to examine the effect of 

biodegradation on the concentration of EDDHA-chelates in soil solution after administration 

of an FeEDDHA treatment. The composition of the FeEDDHA treatment is listed in Table 

6.2. The experiment started in late June 2006 and had a randomized complete block design. 

The variables included were: FeEDDHA addition (with or without FeEDDHA application), 

FeEDDHA component Concentration 

at t=0  

(mg l
-1
 Fe) 

Fraction of 

Fe chelated 

at t=0  

 

Concentration 

at t=1 day 

 (mg l
-1
 Fe) 

Remaining 

fraction 

([FeEDDHAt=1] / 

[FeEDDHAt=0]) 

racemic o,o-FeEDDHA 1.57 (0.01) 0.22 1.19 (0.06) 0.76 

meso o,o-FEDDHA 1.91 (0.02) 0.27 1.27 (0.06) 0.67 

o,p-FeEDDHA 1.22 (0.01) 0.17 b.d. 0.00 

rest-FeEDDHA 2.49 (0.04) 0.35 0.07 (0.03) 0.03 

total Fe 7.18 (0.09)  2.53 (0.14) 0.35 
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interaction time (1, 14 or 28 days), sterility (sterile, sterilized and reinoculated, or  

non-sterilized) and conditioning (conditioned room or greenhouse). The reinoculated 

treatments were included to rule out side effects from the sterilization process on the 

concentration of EDDHA-chelates. Two conditioning regimes were included to examine the 

potential effect of temperature on the biodegradation rate. A greenhouse was preferred over a 

second controlled regime, to relate more closely to the conditions of the pot trial study in 

which the dynamics in EDDHA-chelate concentration were first observed. Soil sampling was 

done destructively and the experiment was carried out in duplicates. 

One liter poly ethylene (PE) pots were filled with 0.5 kg of soil, to which 3.3 mmol NH4NO3, 

2.1 mmol K2HPO4, 1.7 mmol CaCl2, 0.83 mmol MgSO4, 42 µmol H3BO3 and 0.31 µmol 

(NH4)6Mo7O24 had been added by thoroughly and successively mixing through nutrient 

solutions. Subsequently, the top openings of the pots were covered with aluminum foil to 

prevent microbial invasion and to minimize evaporation. The foil-covered pots involved in the 

sterile, and the sterilized and reinoculated treatments were gamma-sterilized
3
 in 2 batches, 

both receiving over 25 kGy of radiation. 

FeEDDHA treatments were applied after gamma sterilization of the soil to avoid breakdown 

of the chelates due to irradiation. Prior to administration, the FeEDDHA solution was  

filter-sterilized over a 0.2 µm micro pore filter (Schleicher and Schuell FP30/0.2 CA-S). The 

FeEDDHA solution was applied to and mixed through the soil in a laminar flow cupboard 

under sterile conditions. All materials used were either sterilely packaged prior to usage, or 

sterilized by flame or in an autoclave. The overall FeEDDHA dose applied equalled a pore 

water concentration of 7.18 mg l
-1 
Fe; the composition of the FeEDDHA treatment is specified 

in Table 6.2.  

Reinoculation was done by mixing through 5 ml of a soil extract obtained by adding ultra pure 

water to Santomera soil in a ratio of 10:1, leaving it for a few hours and filtering off the soil 

over a cheesecloth. After addition of the FeEDDHA solution and the soil extract for 

reinoculation, the moisture content in all pots equalled 50% of the water holding capacity. In 

accordance with the treatment, the pots were positioned in the conditioned room or in the 

greenhouse. The temperature in the conditioned room was kept at 20 (± 1) °C. The average 

maximum day temperature in the greenhouse amounted 30 °C and the average overall 

temperature 25 °C; at all time, the temperature in the greenhouse was minimally 20 °C. In the 

vicinity of the pots, 100% water saturation of the air was preserved. The pots were weighed at 

t=0 and before sampling; evaporation never exceeded 2% of the water added and 

consequently did not substantially affect pore water concentrations. 

 

Soil colonization 

At harvest, a selection of pots was sampled under sterile conditions to check if the sterile 

treatments had remained sterile throughout the experiment and if the reinoculated treatments 

had been colonized. The selection included all sterile treatments harvested after 2 and 4 weeks 

and all reinoculated treatments harvested after 4 weeks. From each pot, three soil samples of 

                                                
3
 Gamma sterilization was carried out by a specialized company Isotron Nederland B.V., located in Ede (Gld); the 

Netherlands 
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0.5 ± 0.2 g were taken. The samples were vigorously shaken for 30 seconds in glass tubes 

containing 5 ml 0.01 M MgSO4 and glass beads. Serial dilutions were plated on King’s 

medium B (King, et al., 1954). Colonies were counted after 48 hours. 

 

Pore water collection and analyses 

Pore water was collected by centrifugation at 7,443 g (7,000 rpm) for 15 minutes the day after 

soil sampling (Schenkeveld, et al., 2008). pH was measured directly after pore water 

collection. In the soil solution samples from t=28 days, DOC (dissolved organic carbon) 

concentrations were measured to examine for concentration effects from gamma irradiation, 

because DOC potentially affects the speciation of EDDHA chelates as a competitor for 

cations and reactive surface sites. DOC concentrations were measured with a segmented flow 

analyzer (SFA) (Skalar, SK12) by persulphate and tetraborate oxidation under ultraviolet light 

and infrared detection. Fe, Ca and Mg concentrations were measured by ICP-AES (Varian, 

Vista Pro); Cu, Al, Mn, Zn, Ni and Co concentrations were measured by ICP-MS (Perkin 

Elmer, ELAN 6000). The samples were acidified with nitric acid before ICP-measurement. 

The concentrations of metals chelated to EDDHA components were calculated by subtracting 

the metal concentrations of corresponding treatments with and without FeEDDHA addition. 

FeEDDHA component concentrations were determined after separation through high-

performance liquid chromatography (HPLC) (Schenkeveld, et al., 2007). To avoid 

contamination, the preparation of the experimental solutions and dilution of samples for 

measurement were done with analytical grade chemicals and ultra pure water. 

 

Statistical analysis 

Statistical analysis of the data was performed using SPSS 12.0. The homogeneity of the data 

was tested with the Levene’s test (α = 0.05). A data transformation was executed in case data 

proved non-homogenous. Differences among treatments were determined by applying the 

multivariate general linear model procedure with a Tukey post-hoc test (α = 0.05).  

 

 

Results and Discussion 

 

Sterilization 

Colonization data confirm that the sterile treatments had remained sterile throughout the 

experiment (Table 6.3). Reinoculation had been successful and at the moments of sampling, 

the number of colony forming units (cfu’s) in reinoculated treatments was lower but within 

one order of magnitude of the non-sterilized treatments. After 4 weeks, the number of cfu’s in 

the reinoculated treatments was significantly higher in the conditioned room than in the 

greenhouse. This effect was larger in the treatments that received FeEDDHA. Furthermore, 

the number of cfu’s appears to be constant over time in the non-sterilized treatments, but 

variable in the reinoculated treatments, indicating bioequilibrium had not yet been restored 

two weeks after reinoculation. 
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Table 6.3: Colonization of Santomera soil in sterilized, sterilized and reinoculated, and non-sterilized 

treatments. Standard deviations are indicated in between parentheses. 

n.d.: not determined. 

 

 

Gamma irradiation induces chemical degradation of organic material, resulting in increased 

DOC (dissolved organic carbon) concentrations in the treatments that have been gamma 

sterilized (Powlson and Jenkinson, 1976). This is illustrated in Figure 6.1 for the treatments 

without FeEDDHA. DOC represents the main source of energy-rich substrates for 

microorganisms (Jandl and Sollins, 1997; Neff and Asner, 2001). As a result of microbial 

activity, the DOC concentration in the reinoculated treatments declined over a time span of  

4 weeks to one third of the DOC concentration in sterile treatments.  

For the sterile treatments, the effect of conditioning on DOC concentration is significant  

(p = 0.033). The lower concentration in the conditioned treatment cannot be attributed to 

biodegradation. The oxidation of irradiated organic material may have been enhanced by the 

higher temperatures in the greenhouse, resulting in more hydrophilic compounds and hence a 

higher DOC concentration. The higher temperature in the greenhouse may also have resulted 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: DOC concentrations after 4 weeks in the treatments without FeEDDHA addition. Error bars 

indicate standard deviations. 

FeEDDHA 

treatment 

Conditioning Sterilized 

(10
5
 cfu g

-1
) 

Reinoculated 

(10
5
 cfu g

-1
) 

Non-sterilized 

(10
5
 cfu g

-1
) 

  2 weeks 4 weeks 2 weeks 4 weeks 2 weeks 4 weeks 

- c. room <0.001 <0.001 14.82 6.01 (0.54)  b 19.07 18.51 

- greenhouse <0.001 <0.001 n.d. 3.03 (0.28)  c n.d n.d 

+ c. room <0.001 <0.001 n.d. 11.6 (0.33)  a n.d 19.90 

+ greenhouse <0.001 <0.001 n.d 2.37 (0.09)  c n.d n.d. 
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in a shift in adsorption equilibrium of DOC in favour of the solution phase (Kaiser, et al., 

2001). Although soil from both the conditioned and the greenhouse treatments had been stored 

over-night under equal conditions prior to pore water collection, a difference in DOC 

concentration may well have remained because reinstallment of the DOC adsorption 

equilibrium is a slow process, requiring over 24 hours (Jardine, et al., 1992). 

 

Fe and FeEDDHA component concentrations 

For all treatments without FeEDDHA, the Fe concentration in soil solution was below 

detection limit throughout the experiment (data not presented). This implies that Fe 

concentrations in treatments with FeEDDHA exclusively result from FeEDDHA complexes. 

The Fe concentration strongly decreased in all FeEDDHA treatments within the first 24 hours, 

on average from 7.18 to 2.53 mg l
-1
 Fe (Table 6.2). O,p-FeEDDHA and rest-FeEDDHA were 

almost completely removed from soil solution and have not been further considered in the 

statistical data analysis. The concentrations of racemic and meso o,o-FeEDDHA decreased by 

respectively 24 and 33 %, and largely determined the remaining Fe concentration in soil 

solution. Adsorption has been identified as the principal process underlying the strong initial 

decline in FeEDDHA component concentrations (Schenkeveld, et al., 2010a). For  

o,p-FeEDDHA adsorption is complemented with cation competition from Cu (Garcia-Marco, 

et al., 2006; Schenkeveld, et al., 2007). The small standard deviations in FeEDDHA 

component concentrations after 24 hours (Table 6.2) indicate the processes responsible for the 

fast initial decline are hardly affected by the sterility of the soil. Biodegradation is therefore 

excluded as a substantial contributor to this fast decline.  

After the fast initial decline, the Fe concentration in soil solution of all FeEDDHA treatments 

gradually decreased further, from 2.53 ± 0.08 (means ± s.d.) mg l
-1 
Fe after 1 day, to  

1.60 ± 0.30 mg l
-1 
Fe after 4 weeks (Figure 6.2a). This decrease mainly results from a decline 

in meso o,o-FeEDDHA concentration from 1.27 ± 0.06 to 0.48 ± 0.23 mg l
-1 
Fe (Figure 6.2c), 

which can be described with an exponential decay function (Schenkeveld, et al., 2010a). The 

increase in standard deviation results from differences in rate of decline among the treatments. 

The racemic o,o-FeEDDHA concentration remained relatively constant, only decreasing from 

1.19 ± 0.06 to 1.13 ± 0.08 mg l
-1 
Fe (Figure 6.2b). The ANOVA confirms that incubation time 

had a significant effect on the Fe and meso o,o-FeEDDHA concentration (p = 0.000), but not 

on the racemic o,o-FeEDDHA concentration (p = 0.1; Table 6.4a). Specifically for the  

non-sterilized treatments, the effect of incubation time on the racemic o,o-FeEDDHA 

concentration was significant (p = 0.002). Contrary to meso o,o-FeEDDHA, the decrease in 

racemic o,o-FeEDDHA concentration in these treatments was larger in the second 2 weeks of 

the experiment.  The lack of a significant effect of incubation time on the racemic  

o,o-FeEDDHA concentration in the sterilized treatments indicates that adsorption equilibrium 

had been reached within the first 24 hours. 

The meso o,o-FeEDDHA concentration was significantly affected by both conditioning and 

sterility of the treatment (p = 0.000; Table 6.4a). All FeEDDHA treatments in the greenhouse 

had significantly lower meso o,o-FeEDDHA concentrations than the treatments in the 
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Figure 6.2 (p. 130): a) Total Fe; b) racemic o,o-FeEDDHA; and c) meso o,o-FeEDDHA concentration 

in the pore water of Santomera soil as a function of time for all treatments with FeEDDHA addition. 

Error bars indicate standard deviations. 

 

 

 

 

conditioned room, both after 2 and after 4 weeks (Figure 6.2c). For both greenhouse and 

conditioned room separately, the meso o,o-FeEDDHA concentration in the non-sterilized 

treatments was lower than in the sterile and the reinoculated treatments, also both after 2 and 

after 4 weeks (Figure 6.2c). The post-hoc test confirms this difference is significant  

(p = 0.000) (Table 6.4b), but does not distinguish between sterile and reinoculated (p = 0.08). 

All observed effects in the meso o,o-FeEDDHA concentration reflect in the Fe concentration, 

yet less significantly (Table 6.4a). The racemic o,o-FeEDDHA concentration was neither 

significantly affected by conditioning (p = 0.06), nor by sterility (p = 0.07). 

The interaction term sterility*time is significant for the concentrations of meso o,o-FeEDDHA 

(p = 0,000), Fe (p = 0.002), and racemic o,o-FeEDDHA (p = 0.049) (Table 6.4a), implying 

that the rate of decline in concentration is affected by sterility. In Figure 6.2c this is illustrated 

 

 

Table 6.4: Results of the statistical analysis on the effect of time, sterility and conditioning on the total 

Fe and several EDDHA chelate concentrations: (a) P-values of the ANOVA. Interactions without  

P-values < 0.05 have not been included into the model (reduced model); (b)  P-values of the post-hoc 

test on sterility - reduced model; and (c) P-values of the post- hoc test on incubation time - reduced 

model. 

 

(b) Total Fe Fe-meso CuEDDHA CoEDDHA 

Sterile - reinoculated 0.897 0.078 0.764 0.000 

Sterile – non-sterilized 0.008 0.000 0.000 0.000 

Reinoculated – non-sterilized 0.003 0.000 0.000 0.000 

 

(c) Total Fe Fe-meso CuEDDHA CoEDDHA 

1 day – 14 days 0.000 0.000 0.000 0.000 

1 day – 28 days 0.000 0.000 0.000 0.004 

14 days – 28 days 0.000 0.000 0.000 0.000 

 

(a) Total Fe Fe-rac Fe-meso CuEDDHA CoEDDHA 

Time (T) 0.000 0.098 0.000 0.000 0.000 

Sterile (S) 0.003 0.068 0.000 0.000 0.000 

Conditioning (C) 0.000 0.064 0.000 0.000 0.243 

T*S 0.002 0.049 0.000 0.005 0.001 

S*C 0.711 0.404 0.737 0.423 0.009 
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from the concentration difference in meso o,o-FeEDDHA between the sterile and the non 

sterilized treatments of the same conditioning regime, which increases as a function of time. 

The interaction term sterility*conditioning is not significant for the concentration of either Fe 

(p = 0.711), racemic o,o-FeEDDHA (p = 0.404) or meso o,o-FeEDDHA (p = 0.737). This 

implies the effect of conditioning on the rate of decline is similar for all sterility treatments. 

This is illustrated from the exponential fits of the meso o,o-FeEDDHA concentration data as a 

function of time (Table 6.5). The ratios of the exponential terms of treatments of 

corresponding sterility and different conditioning are approximately the same. 

 

 

Table 6.5: Exponential fits of the meso o,o-FeEDDHA concentration data from 1 day onward for all 

FeEDDHA treatments; t is expressed in weeks after FeEDDHA application. 

 

 

Biodegradation can be excluded as a single cause for the decline in meso o,o-FeEDDHA 

concentration, because a gradual decline was observed in all treatments, including the sterile 

ones. The fact that under both conditioning regimes, the meso o,o-FeEDDHA concentration 

declined faster in the non-sterilized treatment than in the sterile treatment suggests at least a 

contribution from biodegradation. However, the results from the ANOVA offer two principal 

objections. First, if the concentration difference between corresponding sterile and  

non-sterilized treatment were due to biodegradation, an effect of biodegradation would also be 

expected in the reinoculated treatments; microbial activity was confirmed and the number of 

cfu’s was in the same range as in the non-sterilized treatments. However, the post hoc test on 

sterility (Table 6.4b) indicates that the meso o,o-FeEDDHA concentrations of corresponding 

sterile and reinoculated treatments did not significantly differ (p = 0.08). Secondly, an impact 

of biodegradation on the meso o,o-FeEDDHA concentration was expected to be temperature 

dependent, because microbial activity in the soil is a function of temperature, reaching its 

optimum between 25 and 30 °C (Pietikainen, et al., 2005). Therefore a larger temperature 

effect would be expected in the non-sterile treatments. However, for all sterility treatments, the 

temperature dependency of the process causing the gradual decline was similar, as shown by 

the approximately equal ratios of the exponents of the exponential fits (Table 6.5). Based on 

these objections, it was concluded that biodegradation did not substantially contribute to the 

gradual decline in meso o,o-FeEDDHA concentration. Including the reinoculated treatments in 

the experimental setup proved essential for drawing this conclusion. 

Sterility Conditioning Exponential fit R
2
 Ratio of the exponents 

Sterile greenhouse 1.27e
-0.321t 

0.999 

 conditioned room 1.24e
-0.135t 

0.999 
2,4 

Reinoculated greenhouse 1.36e
-0.340t 

1.000 

 conditioned room 1.32e
-0.142t 

0.999 
2.4 

Non-sterilized greenhouse 1.41e
-0.518t 

0.999 

 conditioned room 1.35e
-0.247t 

1.000 
2.1 
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The observed differences in rate of decline (Figure 6.2c) indicate that the major process 

responsible for the gradual decline in meso o,o-FeEDDHA is affected by temperature and 

gamma irradiation. The faster decline in meso o,o-FeEDDHA concentration in the 

greenhouse, where temperatures up to 17 °C higher than in the conditioned room were 

registered, obeys the general rule that the speed of processes and reactions increases with 

increasing temperature. Possible processes involved include sorption, cation competition and 

oxidation of the chelating agent. Photodecomposition and precipitation on the soil surface 

were excluded, because the soil was not exposed to light and evaporation was negligible. The 

more constant concentration of racemic o,o-FeEDDHA in comparison to meso o,o-FeEDDHA 

might be explained from the higher stability constant of the former, potentially making it less 

susceptible to the aforementioned processes. 

Sorption processes tend to be relatively fast, reaching equilibrium within hours to days rather 

than weeks. Slow sorption e.g. in relation to organic matter can however not be excluded. 

Jorda et al. (1992) studied the effect of temperature on the sorption kinetics of FeEDDHA to a 

calcareous soil in 2-day batch experiments and also observed a faster decline in concentration 

at higher temperature. The study does however not offer any argumentation why the observed 

decline in concentration should be related to sorption and not some other process. Moreover, it 

does not distinguish between the individual FeEDDHA components; only the total Fe 

concentration in soil solution was considered. 

Reactions involved in cation competition are known to potentially have slow reaction kinetics, 

in particular when it concerns double-exchange reactions and both metal ions are chelated 

prior to exchange. Also the involvement of trivalent cations in the exchange may contribute to 

a low reaction rate (Morel and Hering, 1993). However, in relation to the decline in meso  

o,o-FeEDDHA concentration, no increase in concentration of any competing cation has been 

observed (see paragraph on competing cations). This implies, that either cation competition 

was not causing the decline, a competing cation has been overlooked, or the newly formed 

chelate has a high affinity for the solid phase.  

The oxidation of the chelating agent EDDHA under soil conditions has hardly been examined. 

For other chelating agents including EDTA several pathways are known, involving Mn or 

Mn-oxides (Nowack, 2002). 

 

The cause for the decreased rate of decline in meso o,o-FeEDDHA concentration in 

treatments with irradiated soil is unclear, but is probably related  to the radiation-induced 

degradation of the SOM (soil organic matter). It was beyond the scope of this research to 

extensively examine the effect of irradiation on the size and quality of the organic matter 

pools in the soil. The larger amount of DOC in irradiated treatments (Figure 6.1) was expected 

to increase the competition with meso o,o-FeEDDHA for reactive surfaces sites on clay 

minerals and Fe(hydr)oxides, and to decrease meso o,o-FeEDDHA adsorption. However, the 

approximately equally large decline in meso o,o-FeEDDHA concentration in irradiated and 

non-sterilized treatments within the first 24 hours rebuts that adsorption was substantially 

affected. 
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Competing cations 

Significant chelate-related increases in concentration were only observed for Cu and Co. The 

concentration behaviour of other cations (data not shown) is not further discussed. 

 

Copper 

In treatments without FeEDDHA addition, the Cu and DOC concentrations were linearly 

related (Figure 6.3), indicating that basically all Cu in soil solution was bound to DOC.  

In treatments with FeEDDHA addition, a mobilization of Cu was observed within the first day 

(Figure 6.4a). This Cu mobilization is almost entirely caused by the formation of the soluble 

o,p-CuEDDHA complex, resulting from the displacement of Fe from the o,p-FeEDDHA 

complex by Cu from the soil (Schenkeveld, et al., 2007). After 1 day, the CuEDDHA 

concentrations in the treatments with FeEDDHA addition were approximately equally large, 

ranging from 797 to 861 µg l-1 Cu. Subsequently, the concentrations declined over time, 

approaching equilibrium after 4 weeks. The ANOVA and post-hoc tests indicate the  

o,p-CuEDDHA concentration is significantly affected by the same factors as the meso  

o,o-FeEDDHA concentration (Table 6.4a). Along the same line of reasoning as for meso  

o,o-FeEDDHA, it is concluded that the concentration of o,p-CuEDDHA had not been affected 

by biodegradation. In comparison to meso o,o-FeEDDHA, the decline in o,p-CuEDDHA 

concentration went faster and the impact of conditioning on the rate of decline was smaller 

relative to sterility. Besides the rate of decline, also the chemical equilibrium appears to be 

substantially affected: more o,p-CuEDDHA remained in solution in sterilized treatments and 

in the conditioned room. The process underlying the decline in o,p-CuEDDHA remains 

unclear. There is no experimental evidence that hints at further displacement of Cu by another 

competing cation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Relation between Cu and DOC concentration in the pore water of Santomera soil for 

treatments without FeEDDHA addition. Error bars indicate standard deviations. 
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Figure 6.4: a) CuEDDHA and b) CoEDDHA concentration in the pore water of Santomera soil as a 

function of time for all treatments with FeEDDHA addition. Error bars indicate standard deviations. 

 

 

Cobalt 

Unlike Cu, Co concentrations in the treatments without FeEDDHA addition were not related 

to the DOC concentration. In the treatments with FeEDDHA addition, CoEDDHA 

concentrations ranged from 0.50 and 34 µg l-1 Co (Figure 6.4b), which is orders of magnitude 

lower than CuEDDHA and FeEDDHA concentrations. No specific EDDHA component could 

be appointed in relation to Co solubilization. The results from the ANOVA show that 

CoEDDHA concentrations were significantly affected by time and sterility (p = 0.000). Also 

two significant interaction terms were found, namely: sterility*conditioning (p = 0.009) and 
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sterility*time (p = 0.001) (Table 6.4a). In all treatments with FeEDDHA addition, CoEDDHA 

concentrations were highest after 2 weeks.  Gamma irradiation significantly increased the 

impact of Co as a competing cation (Figure 6.4b): 11.3 to 34.2 µg l- Co chelated to EDDHA in 

the sterilized treatments versus 0.50 to 1.47 µg l- Co in the non-sterilized treatments. The 

reason for this is unclear. After 2 and 4 weeks the CoEDDHA concentrations in the sterile 

treatments were significantly higher than in the reinoculated treatments (p = 0.000;  

Figure 6.3b). So, microbial activity had a negative effect on the CoEDDHA concentration. It 

remains unclear if CoEDDHA complexes simply formed to a lesser extent in the reinoculated 

treatments, or if they were removed from soil solution more quickly. Studies on CoEDTA 

indicate that the valence of the complexed Co strongly affects the behaviour of the complex in 

the soil system. Co(III)EDTA is more chemically inert and has a much higher stability than 

Co(II)EDTA, and is therefore less susceptible to adsorption and cation competition reactions. 

Under soil conditions, the valence of the complexed Co is affected by oxidation, catalyzed by 

Mn(IV)oxides (Jardine and Taylor, 1995) and bacterial reduction (Caccavo, et al., 1994; 

Gorby, et al., 1998). Assuming the same processes affect CoEDDHA, the higher 

concentration in the sterile treatments may be explained from the lack of bacterial reduction of 

the more stable and mobile Co(III)EDDHA. 

 

Practical implications 

This study offers no evidence that the effectiveness of soil-applied FeEDDHA fertilizers is 

compromised by biodegradation; FeEDDHA component concentrations in soil solution were 

not significantly affected by microbial activity. The gradual decline in pore water 

concentration of particularly meso o,o-FeEDDHA was caused by another, yet undetermined 

soil process. The rate of decline is temperature dependent. The faster decline at higher 

temperatures signifies that in warm areas or warm seasons larger or more frequent FeEDDHA 

application is necessary to maintain a certain Fe concentration in soil solution, even 

disregarding plant uptake. 

Upon FeEDDHA application, the heavy metals Cu and Co can be mobilized from the soil 

matrix through the formation of soluble CuEDDHA and CoEDDHA complexes, as a result of 

cation competition. In this study, CuEDDHA concentrations were not significantly affected by 

microbial activity, but CoEDDHA concentrations were. 

The risks of leaching EDDHA chelates should be controlled through an efficient application 

regime. The observed gradual decline in meso o,o-FeEDDHA and CuEDDHA concentration 

in soil solution imply the risk of leaching grows smaller over time. Because Cu is particularly 

solubilized as o,p-CuEDDHA, the risk of Cu leaching can be specifically reduced by applying 

FeEDDHA fertilizer containing little o,p-FeEDDHA. The residence time of o,p-FeEDDHA in 

soil solution is very short, and its added value as Fe fertilizer in soil application is debatable to 

begin with. Additional research is needed to clear up the processes that affect the residence 

time of EDDHA chelates in soil solution, as well as the underlying mechanisms. 
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“Nothing is true, everything is permitted.”  

 

Allegedly by Hassan-i-Sabbah (1050s - 1124)   
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Abstract 

FeEDDHA products are commonly applied as Fe fertilizer to plants grown on calcareous soil 

and comprise a mixture of FeEDDHA components. The isomers racemic and meso  

o,o-FeEDDHA determine the effectiveness of soil-applied FeEDDHA treatments. In pot and 

incubation trials, a gradual decline in pore water concentration of in particular meso  

o,o-FeEDDHA has been observed, not related to plant uptake or biodegradation. In this study 

the potential impact of cation competition from Cu on o,o-FeEDDHA concentrations under 

calcareous soil conditions has been evaluated through modelling and batch experiments. 

Predictions with mechanistic multi-surface models show there is a thermodynamic basis for 

assuming that under equilibrium conditions a certain fraction of o,o-EDDHA ligands in soil 

solution can be chelated to Cu, in particular of meso o,o-EDDHA. The high affinity of  

o,o-CuEDDHA for the soil solid phase, demonstrated in a batch interaction experiment, 

greatly increases the potential impact of Cu competition; for a given quantity of  

o,o-CuEDDHA in soil solution, a much larger quantity of o,o-CuEDDHA is adsorbed to the 

solid phase. Finally, the displacement of Fe from o,o-FeEDDHA by Cu was reproduced in a 

single-surface goethite suspension, demonstrating that the displacement reaction is not 

kinetically inhibited. With these results, the boundary conditions are met for explaining the 

observed gradual decline in meso o,o-FeEDDHA concentration with Cu competition.  
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Introduction 

The environmental fate of aminocarboxylate chelating agents (e.g. ethylene diamine tetra 

acetic acid (EDTA) and diethylene triamine penta acetic acid (DTPA)) has received 

considerable attention, in particular in view of the environmental persistence of certain 

aminocarboxylate chelates (Tandy, et al., 2004), and the risk of mobilizing and leaching heavy 

metals to the groundwater (Wenzel, et al., 2003; Wu, et al., 2004). Aminocarboxylate 

chelating agents are amongst others widely applied in micronutrient fertilizers, for their 

outstanding ability to form soluble complexes with di- and trivalent cations. FeEDDHA  

(iron (3+) ethylene diamine-N,N’-bis(hydroxy phenyl acetic acid)) is among the most effective 

fertilizers in preventing and remedying Fe deficiency chlorosis in plants grown on alkaline and 

calcareous soils (Wallace, et al., 1955). The current world market for FeEDDHA products is in 

the order of 10 thousand metric tons per year, the majority of which is sold in the 

Mediterranean countries and the Middle East.  

FeEDDHA products are produced through a Mannich-like reaction (Petree, et al., 1978), 

resulting in a mixture of positional isomers, diastereomers and polycondensates. The 

quantitatively most important components are the isomers: 1) racemic o,o-FeEDDHA  

(iron (3+) (R,R) and (S,S) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) 

complexes), 2) meso o,o-FeEDDHA (iron (3+) (R,S) = (S,R) ethylene diamine-N,N'-bis 

(2-hydroxy phenyl acetic acid) complex)  and 3) o,p-FeEDDHA (iron (3+) ethylene diamine-

N-(2-hydroxy phenyl acetic acid)-N’-(4-hydroxy phenyl acetic acid) complexes). The physical 

and chemical properties of the isomers differ strongly, and so do their behaviour in the soil and 

their performance in delivering Fe to plants. The effectiveness of FeEDDHA treatments in soil 

application is determined by the amount of o,o-FeEDDHA (racemic and meso o,o-FeEDDHA 

combined) (Schenkeveld, et al., 2008). The environmental fate of the o,o-FeEDDHA isomers 

is however still poorly understood. 

 

In a recent pot trial study by Schenkeveld et al (2010a), a gradual, exponential decline in meso 

o,o-FeEDDHA concentration was observed, which was not caused by plant related processes 

or biodegradation (Schenkeveld, et al., 2010c). Cation competition has been suggested as a 

possible cause. Cation displacement reactions commonly occur in soil and surface water with 

synthetic aminocarboxylate chelating agent released into the environment (Nowack, 2002).  

Studies examining cation competition under soil conditions in relation to FeEDDHA have 

mainly focused on Cu (Garcia-Marco, et al., 2006; Yunta, et al., 2003a); EDDHA isomers 

have a high affinity for Cu (Bannochie and Martell, 1989; Yunta, et al., 2003a; Yunta, et al., 

2003b), the Cu content of soils is generally sufficiently high to potentially compromise the 

effectiveness of FeEDDHA treatments, and formation of o,p-CuEDDHA has been 

demonstrated upon interaction of o,p-FeEDDHA with soil (Garcia-Marco, et al., 2006; 

Schenkeveld, et al., 2007).  

Thus far, soil applied o,o-FeEDDHA was assumed not to be affected by competition from Cu. 

This is supported by results from model calculations by Yunta et al. (2003a). Moreover, 

contrary to o,p-FeEDDHA, the interaction of o,o-FeEDDHA with soil does not lead to a 

strong increase in Cu concentration in soil solution (Alvarez-Fernandez, et al., 2002; 
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Schenkeveld, et al., 2007) Nonetheless, an impact of Cu on the concentration of  

o,o-FeEDDHA isomers in soil solution cannot be excluded for the following reasons:  

1) Cation displacement reactions from aminocarboxylate chelating agents often have slow 

reaction kinetics (Nowack, 2002), which fits the observed gradual nature of the decline in 

meso o,o-FeEDDHA. 2) o,o-CuEDDHA may have a high affinity for soil reactive surfaces 

causing it to adsorb rather than to increase the Cu concentration in soil solution.  

3) The predictive value of the model calculations by Yunta et al. (2003a) is compromised by 

over-simplification, in particular regarding the description of Cu speciation in the soil through 

a single solid phase binding constant. 

 

It is essential to further the understanding of processes (potentially) compromising the 

effectiveness of FeEDDHA in soil application for improving soil-specific Fe fertilizing 

strategies and for developing alternative Fe fertilizers. The aim of this study was to re-evaluate 

the potential impact of competition from Cu on the effectiveness of soil-applied  

o,o-FeEDDHA isomers. Re-evaluation of Cu competition was addressed in 3 stages:  

1) the thermodynamic basis underlying the potential threat of Cu, displacing Fe from  

o,o-FeEDDHA isomers was examined through mechanistic multi-surface modelling,  

2) the behaviour of o,o-CuEDDHA was examined upon interaction with soil, and 3) cation 

competition from Cu was examined in single-surface goethite suspension systems.  

 

 

Model description 

The distribution of Cu over soil reactive surfaces was modelled for 8 actual soils (6 calcareous 

soils and 2 reference soils). Addition of EDDHA isomers to these soil systems was simulated 

and the resulting Cu and EDDHA isomer speciation were examined. Validation of the 8 soil 

system models was done through comparison of the free Cu concentrations in simulations 

without EDDHA addition with the corresponding free Cu concentrations in CaCl2 extracts.  

 

The computer program ECOSAT (Keizer and Van Riemsdijk, 1994) was used for chemical 

speciation calculations. Complexation and protonation constants of the EDDHA isomers were 

taken from Yunta et al. (2003a; 2003b), and corrected to I = 0 with the Davies equation. Cu 

speciation in soil systems was modelled using a multi-surface approach, in which soil is 

considered as a set of independent reactive surfaces (Weng, et al., 2001). By combining 

surface complexation models and a model describing the aquatic chemistry, the Cu speciation 

in the solid and the soil solution phase can be well described (Dijkstra, et al., 2004; Fest, et al., 

2005; Weng, et al., 2001). Binding to solid and dissolved organic matter (respectively SOM 

and DOM) was described with the Non-Ideal consistent Competitive Adsorption (NICA)-

Donnan model (Kinniburgh, et al., 1999). SOM and DOM were assumed to consist for 50% of 

organic carbon. Humic acid (HA) was used as a model analogue for SOM. The maximum 

binding capacity (Qmax) of SOM was assumed to be one third of the binding capacity of HA 

(5.7 mol kg
-1 
eq) (Weng, et al., 2001). DOM was modelled comprising 30% HA, 30% fulvic 
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acid (FA) and 40% inert material (Weng, et al., 2002). Generic NICA-Donnan parameters for 

metal and proton binding to HA and FA were taken from Milne et al. (2001; 2003). 

Binding to crystalline Fe(hydr)oxide surfaces was described with the Charge Distribution 

Multi-Site Complexation (CD-MUSIC) model (Hiemstra and Van Riemsdijk, 1996; 1999) 

using goethite as model analogue. Binding to amorphous Fe(hydr)oxide surfaces was 

described with the two site Diffuse Double Layer (DDL) model (Dzombak and Morel, 1990) 

using hydrous ferric oxide (HFO) as model analogue. For both models, parameters describing 

metal and proton binding were taken from Weng et al. (2001). 

Binding to Al- and Mn(hydr)oxide surfaces as well as to clay minerals was disregarded.  

Non-specific adsorption to clay and organic matter were not included, because the 

model describing Donnan-phase adsorption, as implemented at present in ECOSAT, proved 

inadequate at high soil solution ratios. It was tested that the effect of excluding non-specific 

adsorption of Cu on Cu speciation in the soil solid phase and on the free Cu concentration was 

negligible. 

 

The reactive Cu content of the soils was determined with a 0.43 M HNO3 extraction (Fest, et 

al., 2005; Tipping, et al., 2003); the amorphous Fe(hydr)oxide content with an ammonium-

oxalate extraction (Schwertmann, 1964), and the crystalline Fe(hydr)oxide content was 

determined from the difference in Fe extracted between a dithionite-citrate (Holmgren, 1967), 

and an ammonium-oxalate extraction. The free Cu concentration in 0.01 M CaCl2 extracts was 

calculated from the measured pH, and the dissolved organic carbon (DOC) and total Cu 

concentrations using the NICA-Donnan model (Weng, et al., 2002). 

Soil conditions were modelled largely in accordance with the conditions from the pot trial 

presented in Schenkeveld et al. (2008). Soil-solution ratios corresponded to 50% of the water 

holding capacity of the soils. Ionic strength was fixed at 0.1 M; 30 mM CaCl2 was used as 

background electrolyte. pH-CaCl2 was used as input for the pH. Fe activity was imposed by 

the solubility of Fe(hydr)oxides; the solubility product of Fe(OH)3 was set at 10
-40
. The effects 

of EDDHA addition to soil, up to a pore water concentration of 0.1 mM, were simulated 

separately per EDDHA isomer. Competition effects from metals other than Fe, Cu and Ca 

were not taken into account. Adsorption of EDDHA ligands and complexes was not included 

into the model. Data on soil characteristics, used as model input, are presented in Table 7.1.  

 

 

Experimental section 

 

Materials 

Soils – 8 soil samples were collected from seven sites, located in Italy (Bologna), Spain 

(Xeraco and Santomera), Saudi Arabia (Nadec and Hofuf) and the Netherlands (Droevendaal 

and Herveld) and are described in more detail in Schenkeveld et. al (2007). Pre-treatment 

consisted of drying (40 °C) and sieving (2 mm). Relevant soil characteristics are presented in 

Table 7.1. 



Table 7.1: Soil characteristics. 

a
 ISO/DIS 10390 Soil Quality – Determination of pH

  

b 
Walinga et al. (1992) 

c
 Houba et al. (1997)

 

d
 ISO 10693, Soil Quality – Determination of carbonate content, volumetric method

 

e
 ISO/DIS 11260 Soil Quality – Determination of cation exchange capacity and base saturation – method using barium chloride solution 
f 
 Houba et al. (2000) 
g
 Holmgren (1967); figures have been corrected for the Fe extracted with oxalate 
h
 Schwertmann (1964) 
i 
Tipping et al. (2003) and Fest et al. (2005) 

         0.01 M CaCl2  Dithionite
g 

 Oxalate
h 

 0.43 M HNO3
i 

Name (origin) Country 
Soil 
class. 

Water 
holding 
capacity 

pH- 
CaCl2

a SOM
b
 Clay

c 
CaCO3

d 
 

DOC
f
 Cu 

 Crystalline 
Fe(hydr)-
oxide 

 Amorphous 
Fe(hydr)-
oxide 

 
Cu 

   (g kg
-1
)  (g kg

-1
) (g kg

-1
) (g kg

-1
)  (mg kg

-1
) (µµµµg kg

-1
)  (g kg

-1
)  (g kg

-1
)  (mg kg

-1
) 

Santomera ES entisol 320 8.0 10.8 260 520  55 62  8.1  0.57  10.1 

Xeraco L ES entisol 350 7.7 27.4 360 150  108 54  21.3  1.72  12.6 

Bologna IT entisol 560 7.8 17.4 230 140  107 75  10.1  2.95  9.1 

Herveld NL spodosol 360 7.0 30.3 260 30  177 137  10.6  4.46  15.1 

                 
Xeraco T ES entisol 330 7.6 87.4 100 420  281 59  4.5  3.21  4.8 

Nadec SA aridisol 190 8.0 17.5 70 140  101 15  2.2  0.25  0.8 

Hofuf SA aridisol 180 7.8 14.2 40 60  78 127  0.7  0.36  6.3 

Droevendaal NL spodosol 260 5.3 30.3 40 0  108 44  1.3  3.21  4.5 
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Goethite - A stock goethite suspension was prepared from Fe(NO3)3 according to Atkinson et 

al. (1967) as described in more detail by Hiemstra et al. (1989). The BET(N2) specific surface 

area amounted 98.6 m
2
 g
-1 
and EC was below 10 µS. 

Reagent solutions - Racemic o,o-H4EDDHA (purity: 100%) and  meso o,o-H4EDDHA (purity: 

99.5%) were obtained by separation of an o,o-H4EDDHA mixture (99% pure; 49% racemic 

o,o-EDDHA, 51% meso o,o-EDDHA), as described in Bannochie and Martell (1989) and 

Bailey et al. (1981). EDDHA solutions were prepared by dissolving racemic and meso  

o,o-H4EDDHA (either separated or as a mixture) by adding sufficient 1 M NaOH.  

Metal-EDDHA solutions were prepared by adding dissolved metal chloride salt to EDDHA 

solution in a 2% excess based on a 1:1 stoichiometry between metal and EDDHA. The pH was 

raised to 7 (± 0.5). FeEDDHA solutions were left over-night in the dark in order for excess Fe 

to precipitate as hydroxides. The following day, FeEDDHA solutions were filtered over a  

0.45 µm nitro cellulose micro pore filter (Schleicher & Schuell, ref-no: 10401114). 

CO2-free 0.1 M NaOH solution was prepared from Titrasol. MOPS-buffer was prepared by 

dissolving solid MOPS (3-(N-Morpholino)-propanesulfonic acid) in pre-boiled ultra pure 

water, and was made to pH by adding 0.1 M NaOH solution. MOPS does not complex 

transition metals nor does it interfere in spectrophotometric measurement at wavelengths 

above 250 nm (Yu, et al., 1997).  Both MOPS- and NaOH solution were stored in a desiccator 

to avoid CO2 contamination. Stock and experimental solution were prepared from analytical 

grade chemicals and ultra pure water. The composition of experimental solutions was 

examined at t=0 and at the end of the experiment. 

 

Experiments 

Soil interaction experiment – The interaction between o,o-CuEDDHA and the aforementioned 

8 soils was examined in a 1-week 1:1 (w/v) interaction experiment in triplicates. The 

experiment involved 2 treatments: 1) a blank treatment, and 2) a 142 µM o,o-CuEDDHA 

solution (70 µM racemic o,o-CuEDDHA and 72 µM meso o,o-CuEDDHA; in total  

9 mg l
-1
 Cu). In both treatments ionic strength was imposed with 0.01 M CaCl2. 

The soil interaction experiment was executed in 50 ml polypropylene test tubes (Greiner bio-

one, Cat No 210296). The tubes were placed in an end-over-end shaker, rotating at 18 rpm in 

absence of light. Room temperature was kept at 20 (± 1) °C. After interaction, the samples 

were centrifuged for 10 minutes at 3000 rpm. The pH and EC of the supernatant were 

measured. The supernatant was filtered over a 0.45 µm cellulose acetate micro pore filter 

(Schleicher & Schuell, ref no: 10462650) and the filtrate was further analyzed by ICP and 

HPLC.  

Goethite suspension experiment - EDDHA speciation was examined as a function of time in a 

10 g l
-1 
goethite suspension containing 90 µM Cu, 90 µM  “fresh” Fe

4
 and 90 µM EDDHA. 

EDDHA was introduced into suspension as either: 1) FeEDDHA, 2) CuEDDHA or  

3) EDDHA-ligand. Depending on the scenario, metals were introduced into suspension, either 

as chelate or as dissolved metal chloride salt. Fe addition in scenario 2 and 3 was done to 

harmonize the solubility of the Fe(hydr)oxide phase for all experiments in relation to the 

                                                
4
 “fresh” refers to newly introduced Fe, (initially) not included into the goethite crystal matrix. 
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(potential) fresh precipitation of displaced Fe from FeEDDHA in scenario 1. pH was fixed at 7 

and  I = 0.1 M. The experiments were separately conducted for racemic and meso o,o-EDDHA 

and executed in duplicates. 

NaCl, and when required, CuCl2 and FeCl3 solutions were added to a portion of the goethite 

stock solution. pH was lowered to 5.5. The suspensions were purged overnight with washed  

(1 M H2SO4/1 M NaOH), moist N2 gas to remove CO2. The following day, the pH was raised 

to around 7 with 0.1M NaOH and a MOPS buffer was added (0.005 M; pH 7 ± 0.05). 

Suspensions were made to volume with pre-boiled water. 0.9 mM FeEDDHA, CuEDDHA or 

EDDHA solution, purged with washed, moist N2 gas for 30 minutes prior to addition, was 

added to the goethite suspension in a 100 ml polytethylene bottle under N2-atmosphere in a 

ratio 1:9 (v/v). The moment of addition was recorded as t=0. The suspension was stirred and 

divided over 10 gas-tight 23.6 ml low-density polyethylene bottles (Rietra, et al., 2001), which 

had been flushed with N2; 5 ml of goethite suspension was added to each bottle. The bottles 

were placed in an end-over-end shaker, rotating at 24 rpm in absence of light. Room 

temperature was kept at 20 (± 1) °C. Sampling was done destructively after 0.5; 1.25; 2; 4; 8; 

24; 48; 96; 192 and 336 hours. The samples were centrifuged for 10 minutes at 10,000 rpm. 

The supernatant was filtered over a 0.45 µm cellulose acetate micro pore filter (Schleicher & 

Schuell, ref no: 10462650). The filtrate was further analysed by UV-VIS spectrophotometry. 

 

 

Analysis 

Al, Co, Cu, Mn, Ni and Zn concentrations were measured by ICP-MS (Perkin Elmer, ELAN 

6000), Ca, Mg and Fe concentrations by ICP-AES (Varian, Vista Pro). Samples were acidified 

with nitric acid before ICP-measurement.  

In soil extracts, racemic and meso o,o-FeEDDHA concentrations were determined after 

separation through high-performance liquid chromatography (HPLC) as described in 

Schenkeveld et al. (2007). The concentrations of other metal-EDDHA chelates (racemic and 

meso o,o-EDDHA combined) were calculated from the difference in metal concentration 

between the treatment involving EDDHA and the blank treatment. 

EDDHA and metal-EDDHA concentrations in the supernatant of goethite suspensions were 

determined through spectrophotometry with a double beam spectrophotometer (Unicam  

Helios α) using disposable UltraVette cuvettes (BrandTech Scientific), with a 10 mm light 

path. Local absorption maxima of EDDHA compounds were determined by scanning from 

250 to 900 nm (Table A7.1 in the Appendix). An external calibration method was used to 

determine the concentrations of the EDDHA compounds. Absorbance was measured at 

wavelengths corresponding to absorption maxima of all EDDHA compounds that could be 

present in the sample. Measured absorbances were considered linear combinations of the 

absorbances of the individual EDDHA compounds. EDDHA compound concentrations were 

calculated from the measured absorbances by a smallest sum of squares method. 
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Results and Discussion 

 

Modelling Cu and EDDHA speciation in soil systems 

Prior to the soil system simulations, factors affecting EDDHA and Cu speciation in soil 

solution were individually assessed. Results are presented in the Appendix and are briefly 

summarized below. 

The extent to which EDDHA isomers chelate Fe and Cu is largely determined by pH, Fe and 

Cu activity and the specific affinity of the EDDHA isomers for Fe and Cu (Figure A7.1 in the 

Appendix). In soil systems, Fe activity is mainly governed by pH and solubility of the 

Fe(hydr)oxide phase. Because a soil specific Fe(hydr)oxide solubility is not easily determined, 

but its impact on EDDHA speciation can be considerable, it is an important source of 

uncertainty in the soil system models. Cu activity mainly depends on pH, Cu content and the 

contents of soil reactive surfaces (Figure A7.2 in the Appendix). The sequence in 

susceptibility of the EDDHA isomers to Cu competition based on the relative affinity for Cu in 

comparison to Fe is: o,p-EDDHA >> meso o,o-EDDHA > racemic o,o-EDDHA (Figure A7.1a 

in the Appendix). Complexation of Cu instead of Fe is favoured by a high pH, a high soil Cu 

content, low contents of soil reactive surfaces binding Cu, and a low solubility of the 

Fe(hydr)oxide phase. 

 

A summary of results from the soil system simulations is presented in Table 7.2. Results are 

clustered per soil and include free Fe and Cu concentration, EDDHA speciation upon addition 

of EDDHA isomer, and Cu distribution over the soil reactive surfaces.  

pFe
3+
 ranges from 12.9 to 21.0. Because pFe

3+
 is imposed by the solubility of the 

Fe(hydr)oxide phase, it is a mere function of pH, and unaffected by EDDHA addition. pCu
2+
 

ranges from 9.3 to 15.0. EDDHA addition (0.1 mM) does not affect pCu
2+
 by more than 0.3 

unit, except in the Nadec soil (0.9 unit). This soil has by far the lowest HNO3-extractable Cu 

content, and becomes almost 50% Cu-depleted upon o,p-EDDHA addition. The fact that Fe 

and Cu activity are generally hardly affected by EDDHA speciation, implies that the 

concentration ratio in which FeEDDHA and CuEDDHA occur in soil solution is barely 

affected by not including specific adsorption of EDDHA complexes into the models. 

In all soils, most Cu is adsorbed to SOM; without EDDHA addition, SOM accounts for 

98.0 -100% of the adsorbed Cu in sandy soils and for 59.4 - 92.7% in clay soils. Goethite 

substantially contributes to Cu adsorption in clay soils (6.2 - 40.4%). The contribution of HFO 

to Cu adsorption is almost negligible (0 - 1.0%). In sandy soils, Cu chelated by EDDHA 

originates almost entirely from SOM; only in the Hofuf soil, goethite modestly contributes 

(4.9%). In clay soils, both SOM (33.8 - 83.0%) and goethite (14.6 - 65.8%) substantially 

contribute. The relative decrease in adsorbed Cu content as a result of EDDHA addition is 

larger for goethite than for SOM in all soils. The fraction of soil-Cu that becomes chelated 

upon EDDHA addition ranges from 0 to 2.5% for racemic o,o-EDDHA, from 0 to 8.1% for 

meso o.o-EDDHA and from 6.5 to 51.3% for o,p-EDDHA. 

 



Table 7.2: EDDHA and Cu speciation in the modelled soil systems. 

Soil Treatment Free metal conc. EDDHA speciation  Cu distribution 

  pFe
3+ 

pCu
2+ 

FeEDDHA (µM) CuEDDHA (µM)  Cu SOM Cu goethite Cu HFO CuEDDHA 

Santomera (ES) blank 21.0 10.9 - -  59.4% 40.4% 0.2% 0.0% 

(clay) racemic o,o 21.0 10.9 74.9 25.1  58.6% 38.7% 0.2% 2.5% 

 meso o,o 21.0 10.9 27.7 72.3  56.9% 35.6% 0.2% 7.2% 

 o,p 21.0 11.0 0.0 100.0  55.9% 33.9% 0.2% 10.0% 

Xeraco L (ES) blank 20.1 11.0 - -  81.6% 18.1% 0.2% 0.0% 

(clay) racemic o,o 20.1 11.0 95.4 4.6  81.4% 18.0% 0.2% 0.4% 

 meso o,o 20.1 11.0 68.0 32.0  79.9% 17.0% 0.2% 2.8% 

 o,p 20.1 11.1 0.0 100.0  76.2% 14.8% 0.2% 8.8% 

Bologna (IT) blank 20.4 11.0 - -  80.5% 18.8% 0.7% 0.0% 

 (clay) racemic o,o 20.4 11.0 92.2 7.8  79.6% 18.2% 0.7% 1.5% 

 meso o,o 20.4 11.1 58.6 41.4  75.6% 15.7% 0.6% 8.1% 

 o,p 20.4 11.2 0.0 100.0  68.3% 11.6% 0.4% 19.6% 

Herveld (NL) blank 18.0 9.8 - -  92.7% 6.2% 1.0% 0.0% 

(clay) racemic o,o 18.0 9.8 97.8 2.2  92.6% 6.2% 1.0% 0.2% 

 meso o,o 18.0 9.8 78.2 21.8  91.3% 6.0% 1.0% 1.7% 

 o,p 18.0 9.9 0.0 100.0  86.4% 5.1% 0.9% 7.6% 

Xeraco T (ES) blank 19.8 13.3 - -  100.0% 0.0% 0.0% 0.0% 

(sand) racemic o,o 19.8 13.3 100.0 0.0  100.0% 0.0% 0.0% 0.0% 

 meso o,o 19.8 13.3 99.8 0.2  99.9% 0.0% 0.0% 0.0% 

 o,p 19.8 13.6 10.1 89.3  80.6% 0.0% 0.0% 19.4% 

Nadec (SA) blank 21.0 14.1 - -  99.9% 0.1% 0.0% 0.0% 

(sand) racemic o,o 21.0 14.1 100.0 0.0  99.9% 0.1% 0.0% 0.0% 

 meso o,o 21.0 14.1 99.8 0.2  99.8% 0.1% 0.0% 0.1% 

 o,p 21.0 15.0 31.2 66.7  48.7% 0.0% 0.0% 51.3% 

Hofuf (SA) blank 20.4 11.0 - -  98.0% 1.9% 0.1% 0.0% 

(sand) racemic o,o 20.4 11.0 91.7 8.3  97.3% 1.8% 0.1% 0.7% 

 meso o,o 20.4 11.0 55.6 44.4  94.2% 1.7% 0.1% 4.0% 

 o,p 20.4 11.1 0.0 100.0  89.5% 1.5% 0.1% 8.9% 

Droevendaal (NL) blank 12.9 9.3 - -  100.0% 0.0% 0.0% 0.0% 

(sand) racemic o,o 12.9 9.3 100.0 0.0  100.0% 0.0% 0.0% 0.0% 

 meso o,o 12.9 9.3 99.9 0.1  99.9% 0.0% 0.0% 0.0% 

 o,p 12.9 9.4 62.2 35.6  93.5% 0.0% 0.0% 6.5% 
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All EDDHA isomers chelate Cu to some degree when introduced into soil systems. For the 

o,o-EDDHA isomers this particularly concerns the clay soils and Hofuf soil: 2.2 - 25.1% of 

racemic o,o-EDDHA and 21.8 - 72.3% of meso o,o-EDDHA is chelated to Cu. For the 

remaining sandy soils, less than 1% of racemic and meso o,o-EDDHA is chelated to Cu. In 

Droevendaal soil this is due to the lower pH, favouring Fe complexation, and in Nadec and 

Xeraco T soil, due to the very low Cu activity resulting from respectively a low soil Cu 

content and a relatively high SOM content. O,p-EDDHA is exclusively chelated to Cu in all 

clay soils and for 35.6 to 100% in sandy soils. In the sandy soils other than Hofuf, a small 

fraction of o,p-EDDHA occurs as mere ligand, not chelated to Fe or Cu. 

 

Model validation and discussion 

pCu
2+
 values, calculated through multi-surface modelling, were compared with pCu

2+
 values, 

calculated from the pH, and the total Cu and DOC concentration in 0.01 M CaCl2-extracts. 

Corresponding pCu
2+
 values were within 1 order of magnitude for all soils, except for  

Xeraco L soil (1.3 units; Figure 7.1). Conformity was higher for sandy soils, with a maximum 

deviation of 0.2 units. The range of pCu
2+
 determined in sandy soils (9.3 - 14.1) supplements 

the range (4.9 - 7.9), successfully determined through multi-surface modelling by Weng et al. 

(2001). 

For clay soils, pCu
2+
 predicted by multi-surface modelling is structurally lower  

(0.8 - 1.3 units); the soil with the highest clay content having the largest deviation. The lack of 

a surface complexation model describing specific Cu binding to clay edges may contribute to 

the consequent overestimation of Cu activity in clay soils. EDDHA speciation was  

re-calculated for the clay soils using the (calculated) free Cu concentrations in the  

CaCl2-extracts (Table A7.2 in the Appendix): 0.2 - 4.3% of racemic o,o-EDDHA, 2.5 - 27.4% 

of meso o,o-EDDHA and 99.6 – 100% of o,p-EDDHA is chelated to Cu. 

 

The assumed solubility of the Fe(hydr)oxide phase is conservative with respect to Cu 

competition; pKsol = 40 is only 0.7 units above the average solubility of soil-Fe (Lindsay, 

1979). In principle, the most soluble Fe(hydr)oxide phase determines Fe solubility. However, 

in highly weathered soils where crystalline Fe(III)oxides predominate, hematite (pKsol = 41.9) 

and goethite (pKsol = 42.0) are expected to control Fe
3+ 
solubility (Lindsay, 1988). Crystalline 

Fe(hydr)oxide is dominant in all modeled soil systems except Droevendaal soil. In Santomera, 

Xeraco L and Nadec soil, the crystalline Fe(hydr)oxide content exceeds the amorphous 

Fe(hydr)oxide content by an order of magnitude (Table 7.1); in particular for these soils pKsol 

probably exceeds 40. A decrease in solubility of Fe(hydr)oxide favours Cu complexation (see 

Figure A7.1b in the Appendix). Due to the uncertainty in solubility of the Fe(hydr)oxide 

phase, the model outcomes regarding o,o-EDDHA speciation should be interpreted as 

affirmation of the potential impact of competition from Cu on the concentration of  

o,o-FeEDDHA, in particular of the meso isomer, rather than as exact predictions of the 

concentration ratios between o,o-FeEDDHA and o,o-CuEDDHA.  
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Figure 7.1: Comparison of free Cu concentrations, predicted through multi-surface modelling, and 

calculated from the pH, and the total Cu and DOC concentration in CaCl2-extracts. The solid line 

represents the 1:1 line; the dashed lines represent the ± 1 log unit interval. 

 

 

In a model study by Yunta et al. (2003a), no effect from Cu competition on o,o-FeEDDHA 

concentration was predicted under soil conditions within the pH range 7 - 8. Yunta et al. 

described Cu adsorption to soil as a precipitation equilibrium of Cu(hydr)oxide, with  

pKsol =  25.2, which is six log units above the actual pKsol of Cu(hydr)oxide: 19.3 (Lindsay, 

1979)). This approach does not take into account soil-Cu or reactive surface contents and may 

lead to a strong underestimation of the Cu activity in soil solution. Furthermore, Yunta et al. 

assumed a higher solubility for the Fe(hydr)oxide phase (pKsol = 39.3; an average value for 

soils, reported by Lindsay (1979)), than in the present study (pKsol = 40), thereby favouring 

complexation of Fe. Without determining the free Fe
3+ 
concentration, the assumption for pKsol 

remains arbitrary. Because of the generally high ratio between crystalline and amorphous 

Fe(hydr)oxide content in the simulated calcareous soils (Table 7.1), a pKsol somewhat above 

average seemed more appropriate. 

In describing o,p-EDDHA speciation in “normal calcareous soils”, Yunta et al. accounted for 

(limited) soil-Cu availability by imposing a maximum o,p-CuEDDHA concentration (10
-5
 M). 

The assumption underlying this maximum was that Cu concentrations in soil solution only 

become as high as 10
-4
 M in Cu-contaminated soils. This assumption is correct under “normal” 

conditions, but erroneous when chelating agents are added to the soil. None of the soils 

simulated in this study is Cu contaminated according to Dutch law or even exceeds the former 

remediation target value (Circulaire bodemsanering 2006 & 2009). Still, in most of these soils, 

all o,p-EDDHA is predicted to be chelated to Cu, up to a concentration of 10
-4
 M (Table 7.2). 

In conclusion, Yunta et al. potentially underestimate the impact of Cu competition as a result 

of their modelling approach and assumptions. 
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Interaction experiment of o,o-CuEDDHA with soils 

The impact of Cu competition on o,o-FeEDDHA concentration in soil solution does not only 

depend on the solution equilibrium, as discussed in the previous section, but also on the extent 

to which o,o-CuEDDHA adsorbs to the solid phase (Figure 7.2). Therefore, adsorption of  

o,o-CuEDDHA to eight soils was examined. In seven out of eight soils over 80%, and in five 

soils over 95% of the added o,o-CuEDDHA was removed from soil solution within one week 

(Figure 7.3). Only in 3 soils o,o-CuEDDHA was replaced by o,o-FeEDDHA for more than 

15%, including the 2 Dutch reference soils with a lower pH (Table 7.1). o,o-FeEDDHA 

adsorption accounted for a few percent of the removed o,o-CuEDDHA, at most (Schenkeveld, 

et al., 2010a). The removal of o,o-CuEDDHA in calcareous soils should therefore be largely 

attributed to adsorption, indicating a high affinity of o,o-CuEDDHA for the solid phase in 

comparison to o,o-FeEDDHA. O,o-CuEDDHA adsorption in calcareous soils is positively 

related to crystalline Fe(hydr)oxide and clay content. Fe displaced more Cu from meso  

o,o-CuEDDHA than from racemic o,o-CuEDDHA, indicating that equilibrium had not yet 

been reached (Figure A7.1a in the Appendix), and that displacement of Cu from meso  

o,o-CuEDDHA is kinetically favoured.  

 

 

Figure 7.2: Chemical equilibria involved with Cu competition affecting the o,o-FeEDDHA concentration 

in soil solution. The dashed darts indicate that the impact of Cu competition also depends on the 

extent to which o,o-CuEDDHA adsorbs to the solid phase. Around pH 7, o,o-CuEDDHA chelates are 

mainly singly protonated. Hydroxylation of metals in the solid phase has been omitted.  

 

 

The tendency of o,o-CuEDDHA to adsorb strongly increases the potential impact of Cu 

competition on the o,o-FeEDDHA concentration in soil solution. The ratio between the  

o,o-FeEDDHA and o,o-CuEDDHA concentration in soil solution is determined by Fe and Cu 

activity and pH (Figure 7.2; Figure A7.1b in the Appendix) and remains constant as long as 

these factors remain approximately constant (Table 7.2). Removal of o,o-CuEDDHA from 

solution will lead to a re-establishment of the solution equilibrium, which in turn will lead to 

more o,o-CuEDDHA adsorption, etc. Even if o,o-CuEDDHA accounts for a relatively small 

fraction in soil solution, the high affinity of CuEDDHA for the solid phase multiplies the 

  

� � � � � 

Soil solution 

Solid phase 

)(,)()(2 aqFeEDDHAooaqHaqCu −++ −++  )()(, 3 aqFeaqCuHEDDHAoo +− +−  � 
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Figure 7.3: Measured o,o-FeEDDHA and o,o-CuEDDHA concentrations in soil solution upon 

interaction of o,o-CuEDDHA with 6 calcareous soils and 2 reference soils for 7 days. 

 

 

overall effect of Cu competition on the o,o-FeEDDHA concentration, resulting in a much 

further o,o-FeEDDHA depletion than indicated by the presented model predictions.  

In pot trials or under field conditions, the soil-solution ratio is even much higher, and more 

reactive surface area is available per unit pore water than in this soil interaction experiment. 

This will further shift the o,o-CuEDDHA adsorption equilibrium towards adsorption and may 

explain how Cu competition can affect o,o-FeEDDHA concentration without a substantial 

increase in Cu concentration in soil solution (Schenkeveld, et al., 2010a). 

 

Goethite suspension experiment 

Upon introduction into a goethite suspension containing Cu, both racemic and meso  

o,o-FeEDDHA concentrations decreased, and the concentrations of the corresponding  

o,o-CuEDDHA isomers increased (Figure 7.4). This indicates that displacement of Fe from 

o,o-FeEDDHA by Cu is not kinetically inhibited and can be reproduced in a well-defined 

system with a single adsorption surface, governing Fe and Cu activity, on a reasonable 

timescale. Introduction of o,o-CuEDDHA into a goethite suspension led to a partial 

displacement of Cu by Fe. Introduction of o,o-EDDHA into a goethite suspension containing 

Cu resulted in chelation and solubilization of both Fe and Cu (Figure 7.4). Meso o,o-

FeEDDHA and both o,o-CuEDDHA isomers underwent an initial concentration drop upon 

introduction into suspension, as a result of adsorption to goethite. Adsorption was relatively 

fast in comparison to the displacement reaction. 

Rates of displacement reactions involving meso o,o-EDDHA were higher than of 

corresponding reactions involving racemic o,o-EDDHA. This corresponds with the faster 
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Figure 7.4: a) racemic o,o-EDDHA, and b) meso o,o-EDDHA speciation as a function of time in a  

10 g l
-1
 goethite suspensions with 90 µM EDDHA, 90 µM Cu, and 90 µM additional Fe; I = 0.1 M,  

pH = 7. Names of the treatments refer to EDDHA speciation (FeEDDHA, CuEDDHA or EDDHA) at t=0. 

Open symbols represent o,o-CuEDDHA  concentrations, closed symbols represent o,o-FeEDDHA 

concentrations. Time is presented on a logarithmic scale. Error bars indicate standard deviations. 

  

 

decline in meso o,o-FeEDDHA concentration in soil solution observed in pot and incubation 

studies (Schenkeveld, et al., 2010a; Schenkeveld, et al., 2010c); the rates of decline in goethite 

suspension were however much higher than in soil. Contrary to most soil systems in the soil 

interaction experiment, a substantial fraction of CuEDDHA (≈ 50%) did not adsorb. After  

336 hours (i.e. 2 weeks), meso o,o-FeEDDHA (≈ 13.5 µM) and meso o,o-CuEDDHA  

(≈  44.5 µM) concentrations from the three treatments had converged, implying (pseudo-) 

equilibrium was attained; for racemic o,o-EDDHA, this was not yet the case.  

pCu
2+
, pFe

3+
 and  pKsol (goethite) were calculated from the (pseudo-)equilibrium 

concentrations in the suspensions containing meso o,o-EDDHA. pCu
2+
 was calculated with the 

CD-MUSIC model, from the amount of Cu adsorbed to goethite. By mass balance, the amount 

of adsorbed Cu equaled the total amount of meso o,o-FeEDDHA in suspension
5
. The latter 

was estimated by means of an adsorption isotherm (Figure A7.3 in the Appendix); 25% of the 

meso o,o-FeEDDHA was adsorbed to goethite. Subsequently, pFe
3+
 was calculated by 

simulating the solution equilibrium in ECOSAT, and pKsol (goethite) was calculated from the 

                                                
5
 [EDDHA]T = [CuEDDHA]T + [FeEDDHA]T ;          [Cu]T = [CuEDDHA]T + [Cu(ads)]

 
 

[EDDHA]T = [Cu]T = 90 µM ;       ergo [Cu(ads)] = [FeEDDHA]T   

[Cu(aq)] and [EDDHA] can be neglected 
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pFe
3+
 and pH. pCu

2+
 equaled 9.8, pFe

3+
 equaled 18.6 and  pKsol(goethite) equaled  41.0. pCu

2+
 

and pFe
3+
 values are in range with the values from the modeled soil systems (Table 7.2). The 

solubility of goethite was higher than reported in literature (pKsol = 42.0; Lindsay, 1988), 

presumably as a result of Fe addition to the suspension. 

The treatment receiving meso o,o-EDDHA ligand reached (pseudo-)equilibrium most quickly. 

This observation is of interest in view of the shuttle mechanism of Fe chelates in soil-plant 

systems (Lindsay and Schwab, 1982), and suggests that by taking up Fe from o,o-FeEDDHA, 

which leads to a release of EDDHA ligand into soil solution, plants may enhance the rate at 

which FeEDDHA is replaced by CuEDDHA. 

 

 

Implications  

This study has shown that there is a thermodynamic basis for assuming that cation 

competition from Cu can affect o,o-FeEDDHA concentrations in calcareous soils, in 

particular of the meso o,o-FeEDDHA isomer. The high affinity of o,o-CuEDDHA for the 

solid phase enhances the potential impact of Cu competition on the performance of 

FeEDDHA in soil application, while the increase in Cu concentration in soil solution upon 

displacement of Fe from o,o-FeEDDHA remains small. The displacement of Fe from 

FeEDDHA by Cu could be reproduced in a goethite suspension system, indicating the 

displacement is not inhibited by slow kinetics. 

With these results, the boundary conditions are met for explaining the gradual decrease in 

meso o,o-FeEDDHA concentration, observed in pot trial and incubation studies (Schenkeveld, 

et al., 2010a; Schenkeveld, et al., 2010c) with Cu competition. Given the extent of the 

observed decline in these studies, the successful application of (meso) o,o-FeEDDHA in 

certain soils may be largely based on slow kinetics involved with Cu displacing Fe from  

o,o-FeEDDHA. Additional experimental research is needed to establish Cu competition 

related to o,o-FeEDDHA in soil systems and to examine which soil factors affect the rate of 

the displacement reaction. 



The potential impact of Cu competition on the performance of o,o-FeEDDHA 

 

 155 

0.0

0.5

1.0

-17 -15 -13 -11 -9 -7
log (Cu)

E
D
D
H
A
 f
ra
c
ti
o
n
 c
h
e
la
te
d
 t
o
 F
e

pH=7; log Ksol=-39.5
pH=7; log Ksol=-40.5
pH=8; log Ksol=-39.5
pH=8; log Ksol=-40.5

 

b 

0.0

0.5

1.0

-17 -15 -13 -11 -9 -7
log (Cu)

E
D
D
H
A
 f
ra
c
ti
o
n
 c
h
e
la
te
d
 t
o
 F
e racemic o,o-EDDHA

meso o,o-EDDHA
o,p-EDDHA

 

a 

Appendix 

 

Effect of Cu activity, pH and Fe(hydr)oxide solubility on the preferential chelation of Fe 

and Cu by EDDHA isomers  

In a basic system with pH 7, an ionic strength of 0.1 M and a Ksol(Fe(OH)3) of 10
-40
, Fe 

accounts for over 99.4% of the metals chelated to any EDDHA isomers if Cu activity is below 

10
-16
 (Figure A7.1a)

6
. If Cu activity increases above 10

-16
, EDDHA isomers successively start 

to chelate Cu to a substantial degree, and if Cu activity exceeds 10
-6
, all EDDHA isomers are 

for at least 99.8% chelated to Cu (Figure A7.1a). The sequence in relative affinity for Cu 

(compared to Fe) is: o,p-EDDHA >> meso o,o-EDDHA > racemic o,o-EDDHA. This 

sequence indicates the relative susceptibility of the corresponding FeEDDHA isomers to 

competition from Cu. A decrease in solubility of the Fe(hydr)oxide phase and an increase in 

pH lead to a decrease in Fe activity. For a fixed Cu activity this causes a shift in favour of 

CuEDDHA as illustrated for meso o,o-EDDHA in Figure A7.1b.  

 

Figure A7.1: a) Calculated fraction of EDDHA isomers chelated to Fe as a function of Cu activity at  

pH 7, I = 0.1 M and Ksol(Fe(OH)3) = 10
-40
. The fraction not chelated tot Fe is chelated to Cu, except for  

o,p-EDDHA: at low Cu activity (<10
-12
), a small fraction of o,p-EDDHA is present as mere ligand (4% at 

maximum, at Cu activity 10
-17
 ); b) Calculated fraction of meso o,o-EDDHA chelated to Fe as a function 

of Cu activity for I = 0.1 M, pH 7 and pH 8 and Ksol(Fe(OH)3) = 10
-39.5

 and Ksol(Fe(OH)3) = 10
-40.5

. The 

fraction not chelated tot Fe is chelated to Cu. 

 

                                                
6
 At low Cu activity (<10

-12
), a fraction of o,p-EDDHA (max 4%) is present as mere ligand. The complexation 

constant for o,p-FeEDDHA (10
28.7

; I = 0.1 M) is relatively low in comparison to the complexation constants for 

racemic o,o-FeEDDHA isomers (10
35.9 

) and meso o,o-FeEDDHA (10
34.2

) and Fe complexation by o,p-EDDHA is 

limited by the  Fe(hydr)oxide solubility. 
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Cu binding by reactive soil compounds  

Reactive soil compounds display different Cu adsorption behaviour. Their affinity for Cu is a 

function of Cu activity and pH, and can be expressed as a surface accumulation factor 

(log[Cu(ads) g
-1
/(Cu)] ) (Figure A7.2a). The accumulation factor increases with decreasing Cu 

activity; for SOM this increase is linear throughout the examined range of Cu activities, while 

for Fe(hydr)oxides a maximum is reached. The horizontal parts of the Fe(hydr)oxide curves 

represent linear adsorption, implying impact of adsorbed Cu on the surface charge is 

negligible. At high Cu activity Fe(hydr)oxide surfaces become saturated with Cu, leading to a 

decrease in accumulation factor. The absence of a horizontal area in the SOM curves is due to 

the heterogeneity in binding strength of the reactive surface sites. At low Cu activity (< 10
-12
), 

the sequence in accumulation factor is SOM > goethite > HFO, implying SOM can bind Cu 

most strongly. At high Cu activity (> 10
-6.5
), the sequence is reversed, implying HFO has the 

highest complexation capacity per unit mass. For a fixed Cu activity, an increase in pH leads 

to a larger Cu accumulation on reactive surfaces. At higher pH, there is less competition from 

protons for reactive surface sites, and electrostatic repulsion between Cu and Fe(hydr)oxide 

surfaces decreases because Fe(hydr)oxide surfaces become less positively charged (pristine 

point of zero charge (PPZC) of HFO = 8.1 (Dzombak and Morel, 1990); PPZC of  

goethite = 9.3 (Filius, et al., 1997)). The effect is smaller at high Cu activity, and wears off 

almost entirely for Fe(hydr)oxides due to Cu saturation. 

In Figure A7.2b the distribution of Cu over reactive surfaces is presented as a function of pH 

for 2 model systems comprising 1g l
-1
 HFO, 1g l

-1
 goethite, 1g l

-1
 SOM, and respectively  

5 and 250 µM Cu. With 5 µM Cu, SOM is the dominant adsorption surface for the examined 

pH range (5 - 9), while with 250 µM Cu SOM is the dominant adsorption surface from 

 

Figure A7.2: a) Accumulation of Cu on reactive surfaces per gram of reactive soil compound, relative 

to the Cu activity, as a function of Cu activity for pH 7 and pH 8; I = 0.1 M; b) Distribution of fixed 

amounts of Cu (5 and 250 µM Cu) over 1 g l
-1
 goethite, SOM and HFO as a function of pH. I = 0.1 M. 
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pH 5 - 6, and goethite from pH 6 upward. HFO plays a subordinate role in Cu adsorption in 

both systems. In actual soil systems, the distribution of Cu over reactive surfaces can be 

substantially determined by the contents of the reactive soil materials present in the soil, 

besides by their affinity for Cu. 

 

 

 

Adsorption isotherm for meso o,o-FeEDDHA to goethite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A7.3: Adsorption isotherm of meso o,o-FeEDDHA to goethite at pH 7; 0.1 M NaCl. 
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Calibration of spectrophotometer 

 
 

Table A7.1a: λmax-values (nm) for EDDHA ligands and metal-EDDHA complexes (0.1 M NaCl). 
 

 
 
 
 
 
*
 Absorbance at the indicated λmax values was to low to use for determining EDDHA compound concentrations. 

  
 

Table A7.1b: Extinction coefficients (ε) for the relevant wavelengths at 20 °C (0.1 M NaCl).
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Re-modelling EDDHA-speciation 
 
 

Table A7.2: Re-modelling EDDHA-speciation in clay soils, based on the free Cu concentration 

calculated from the total Cu concentration measured in 0.01 M CaCl2-extracts. 

 

Ligand/complex racemic o,o-EDDHA meso o,o-EDDHA 

EDDHA 275 275 

FeEDDHA 280, 477 280, 487 

CuEDDHA 277, 639
*
 273, 646

*
 

Ligand/complex 10
6
 M

-1
 cm

-1
 

Wavelength (nm) 275 277 280 477 

racemic o,o-FeEDDHA 9.7 10.3 10.7 4.8 

racemic o,o-CuEDDHA 9.6 9.7 9.3 < 0.1 

racemic o,o-EDDHA 4.6 4.5 4.1 < 0.1 

     

Wavelength (nm) 273 275 280 487 

meso o,o-FeEDDHA 9.2 9.8 10.6 4.5 

meso o,o-CuEDDHA 9.1 9.1 8.6 < 0.1 

meso o,o-EDDHA 4.9 5.0 4.4 < 0.1 

Soil rac o,o-
FeEDDHA 

(µM) 

rac o,o-
CuEDDHA 

(µM) 

 meso o,o-
FeEDDHA 

(µM) 

meso o,o-
CuEDDHA 

(µM) 

 o,p-
FeEDDHA 

(µM) 

o,p-
CuEDDHA 

(µM) 

Santomera 95.7 4.3  72.6 27.4  0.0 100.0 

Xeraco T 99.8 0.2  97.5 2.5  0.4 99.6 

Bologna 99.2 0.8  92.8 7.2  0.1 99.9 

Herveld 99.6 0.4  95.6 4.4  0.2 99.8 
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“Omnia vincit amor, sed festinat lente.” 

trans. “Love conquers all, but makes haste slowly.” 

 

Conjunction of: 

“Omnia vincit amor, …” 

Eclogae 10.69  by Vergil (70 - 19 BC)  

and, 

“Festina lente!” 

motto of emperor Augustus (63 BC - 14 AD). 
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Abstract 

In soil application, o,o-FeEDDHA is the active ingredient of FeEDDHA chelate based Fe 

fertilizers. The effectiveness of o,o-FeEDDHA is potentially compromised by the 

displacement of Fe from FeEDDHA by Cu. The actual impact of Cu competition is  

co-determined by the rate at which it causes the o,o-FeEDDHA solution concentration to 

decline, and hence by the kinetics of the displacement reaction. In this study the influence of 

soil parameters on the displacement kinetics have been examined in goethite suspensions. 

The displacement reaction predominantly takes place on the reactive surface rather than in 

solution. The rate at which o,o-FeEDDHA concentration declined, depended on the available 

reactive surface area, the Cu loading and the FeEDDHA loading. Soil factors reducing 

FeEDDHA adsorption (high ionic strength, humic acid adsorption onto the goethite surface 

and monovalent instead of divalent cations in the electrolyte) decreased the displacement rate. 

For meso o,o-FeEDDHA the displacement rate equation was derived, which is first order in 

FeEDDHA loading and half order in Cu loading. For soil conditions the equation can be 

simplified to an exponential decay function in meso o,o-FeEDDHA solution concentration. 
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Introduction 

Aminocarboxylate chelating agents are widely applied for their ability to form stable and 

water soluble complexes with di- and trivalent metal ions (Bucheli-Witschel and Egli, 2001). 

Their environmental fate has received considerable attention (Nowack, 2002), because these 

ligands can enhance mobilization and migration of toxic heavy metals from soils and 

sediments (Nowack, et al., 1996; Nowack and Sigg, 1996). An additional concern is the 

environmental persistence of certain of these synthetic chelating agents, e.g. EDTA, resulting 

from a poor biodegradability (Bucheli-Witschel and Egli, 2001). 

The aminocarboxylate chelate FeEDDHA (iron ethylene diamine-N,N’-bis(hydroxy phenyl 

acetic acid)) is commonly used as Fe fertilizer and is considered among the most efficient in 

preventing and remedying Fe deficiency chlorosis in crops grown on calcareous soils (Lucena, 

2003; Reed, et al., 1988). Commercially available FeEDDHA products consist of a mixture of 

FeEDDHA components. The quantitatively most important components are the isomers 

racemic o,o-FeEDDHA (iron (3+) (R,R) and (S,S) ethylene diamine-N,N'-bis(2-hydroxy 

phenyl acetic acid) complexes), meso o,o-FeEDDHA (iron (3+) (R,S) = (S,R) ethylene 

diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex) and o,p-FeEDDHA (iron (3+) 

ethylene diamine-N-(2-hydroxy phenyl acetic acid)-N’-(4-hydroxy phenyl acetic acid) 

complexes). Physical and chemical properties of the isomers differ and, so does their 

effectiveness in delivering Fe to plants. In the soil application studies reported thus far,  

o,o-FeEDDHA isomers determined the effectiveness of FeEDDHA treatments (Rojas, et al., 

2008; Schenkeveld, et al., 2008; Schenkeveld, et al., 2010b); o,p-FeEDDHA proved 

ineffective due to its strong tendency to adsorb to reactive soil compounds and to have its Fe 

displaced by Cu (Garcia-Marco, et al., 2006; Schenkeveld, et al., 2007). 

In pot and incubation trial studies, a gradual exponential decline in soil solution concentration 

of meso o,o-FeEDDHA has been observed, which was not related to biodegradation, leaching 

or plant uptake (Schenkeveld, et al., 2010a; Schenkeveld, et al., 2010c). Recently, 

Schenkeveld et al. (2010d) demonstrated through multi-surface modeling that there is a 

thermodynamic basis for assuming that competition from Cu can affect o,o-FeEDDHA 

concentrations under calcareous soil conditions, in particular of the meso o,o-FeEDDHA 

isomer (Equation 1). 

 

 (1) 

 

Model outcomes are supported by observed Fe displacement from o,o-FeEDDHA by Cu in 

goethite suspension systems (Schenkeveld, et al., 2010d). These findings suggest that 

competition from Cu could be an important factor limiting the effectiveness of FeEDDHA 

application in soil-plant systems. Still, the actual impact of Cu competition will be co-

determined by the rate of the displacement reaction (equation 1) under soil conditions. The 

kinetics and reaction mechanism of metal displacement from EDDHA chelates have, however, 

hardly been addressed yet. 

For other aminocarboxylate chelating agents, in particular EDTA, displacement kinetics have 

been intensively studied (Hering and Morel, 1988; 1989; Nowack, 2002). Displacement 
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reactions with EDTA have been reported to occur both in solution (Hering and Morel, 1989) 

and on reactive surfaces (Nowack and Sigg, 1997), and the kinetics strongly depend on the 

metal initially chelated (Nowack, et al., 2001; Nowack and Sigg, 1997; Xue, et al., 1995). 

When displacement occurs at a reactive surface, EDTA chelates need to first adsorb. 

Adsorption behaviour of EDTA chelates is anionic and strongly depends on the chelated metal 

ion (Nowack, et al., 1996; Nowack and Sigg, 1996). Competing cations may either be 

adsorbed to or incorporated in the surface. Rate limiting steps identified for metal 

displacement on reactive surfaces are: dissociation of the metal-EDTA complex, and 

detachment of metal from the solid phase (Nowack, et al., 2001; Nowack and Sigg, 1997). The 

newly formed EDTA-chelate will redistribute over the solid and solution phase. Given the 

structural resemblance between EDTA and EDDHA, similarities in cation displacement 

behaviour are to be expected. 

A better understanding of the kinetics involved with the displacement of Fe from FeEDDHA 

by Cu is essential for improving soil-specific estimates on the time span FeEDDHA 

components remain effective as fertilizer in soil application. The aim of this study was to 

identify the factors determining the displacement rate under calcareous soil conditions and to 

establish the influence of a selection of soil parameters on the displacement kinetics. For his 

purpose, a series of batch experiments were done.  Goethite suspensions were used instead of 

actual soils, because model systems are more suitable for assessing the influence of (soil) 

parameters separately. 

 

 

Material and Methods 

 

Materials 

Goethite - A stock goethite suspension was prepared from Fe(NO3)3 according to Atkinson et 

al. (1967) as described in more detail by Hiemstra et al. (1989). The BET(N2) specific surface 

area amounted 98.6 m
2
 g
-1 
and EC was below 10 µS. 

Reagent solutions – EDDHA solutions were prepared by dissolving racemic o,o-H4EDDHA 

(purity: 100%), meso o,o-H4EDDHA (purity: 99.5%) and o,p-EDDHA (purity: 90%) in 

sufficient 1 M NaOH. Racemic and meso o,o-H4EDDHA were obtained by separation of an 

o,o-H4EDDHA mixture (99% pure; 49% racemic o,o-EDDHA, 51% meso o,o-EDDHA), as 

described in Bannochie and Martell (1989) and Bailey et al. (1981). Metal-EDDHA solutions 

were prepared by adding dissolved metal chloride salt of Cu(II) and Fe(III) to EDDHA 

solutions in a 2% excess based on a 1:1 stoichiometry between metal and EDDHA ligand; 

chelating capacity of impurities was corrected for. pH was raised to 7 (± 0.5). FeEDDHA 

solutions were left over-night in the dark in order for excess Fe to precipitate as hydroxides. 

The following day, FeEDDHA solutions were filtered over a 0.45 µm nitro cellulose micro 

pore filter (Schleicher & Schuell, ref-no: 10401114). 

CO2-free 0.1 M NaOH solution was prepared from Titrasol. MOPS-buffer was prepared by 

dissolving solid MOPS (3-(N-Morpholino)-propanesulfonic acid) in pre-boiled ultra pure 

water and was made to pH with 0.1 M NaOH solution. MOPS does not complex transition 
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metals nor does it interfere in spectrophotometric measurement at wavelengths above 250 nm 

(Yu, et al., 1997). Both MOPS- and NaOH solution were stored in a desiccator to avoid CO2 

contamination. Humic acid (HA) solutions were prepared by dissolving purified humic acid 

from Tongbergsven forest, near Oisterwijk, the Netherlands (Temminghoff, et al., 1997) with 

0.1 M NaOH solution in pre-boiled water under N2 atmosphere. Stock and experimental 

solution were prepared from analytical grade chemicals and ultra pure water. 

 

Experimental section 

EDDHA speciation in solution was examined as a function of time upon addition of 

FeEDDHA chelates to a goethite suspension. The parameters varied to examine their effect on 

the reaction rate of the Fe displacement reaction were: goethite suspension density  

(2 and 10 g l
-1
), Cu concentration in suspension (0, 90 and 450 µM), background electrolyte 

(0.01 M NaCl, 0.1 M NaCl and 0.033 M CaCl2), humic acid concentration in suspension  

(0, 0.3 and 1.0 g l
-1
), and EDDHA isomer (racemic o,o-EDDHA, meso o,o-EDDHA and  

o,p-EDDHA). Goethite suspension density was varied to examine the influence of available 

(soil reactive) Fe(hydr)oxide surface; Cu concentration was varied to examine the influence of 

Cu availability (in the soil); background electrolyte was varied to examine the influence of 

ionic strength and the valence of the dominant cation in (soil) solution; HA concentration in 

suspension was varied to examine the influence of adsorbed humic substances onto soil 

Fe(hydr)oxides. Temperature (20 ± 1° C), pH (7 ± 0.05) and total amount of EDDHA ligand in 

suspension (90 µM) were kept constant. The experiments were executed in duplicates. 

Background electrolyte and, when required, CuCl2 solution were added to a portion of the 

goethite stock solution in polyethylene bottles. pH was lowered to 5.5 and the suspension was 

purged overnight with washed (1 M H2SO4/1 M NaOH), moist N2 gas to remove CO2. The 

following day, pH was raised to around 7 with 0.1 M NaOH and MOPS buffer (0.005 M;  

pH 7 ± 0.05) was added. Suspensions were made to volume with pre-boiled water. In 

experiments involving HA, MOPS buffer was omitted; HA served as pH buffer and was added 

to suspension after overnight purging. pH was raised to and maintained at 7 with 0.1 M NaOH, 

while the suspension equilibrated for 72 hours (Weng, et al., 2006) under continuous purging 

with N2. Dissolved organic carbon (DOC) concentration in solution was determined after the 

suspension had been made to volume; in all cases, over 98% of the HA was adsorbed to 

goethite. 

0.9 mM metal-EDDHA solutions, purged with N2 for 30 minutes prior to addition, were added 

to goethite suspensions in 100 ml polytethylene bottles under N2-atmosphere in a 1:9 (v/v) 

ratio. The moment of addition was recorded as t=0. Suspensions were stirred and divided over 

10 gas-tight 23.6 ml low-density polyethylene bottles (Rietra, et al., 2001), which had been 

flushed with N2; 5 ml of goethite suspension was added to each bottle. The bottles were placed 

in an end-over-end shaker, rotating at 24 rpm in absence of light. Sampling was done 

destructively after approximately 0.5; 1.25; 2; 4; 8; 24; 48; 96; 192 and 336 hours. Samples 

were centrifuged for 10 minutes at 10,000 rpm. The supernatant was filtered over a 0.45 µm 

cellulose acetate micro pore filter (Schleicher & Schuell, ref no: 10462650). The filtrate was 

further analysed by UV-VIS spectrophotometry. 
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Analyses 

EDDHA and metal-EDDHA concentrations in the supernatant of goethite suspensions were 

determined through spectrophotometry with a double beam spectrophotometer (Unicam  

Helios α) using disposable UltraVette cuvettes (BrandTech Scientific), with a 10 mm light 

path. Local absorption maxima were determined for all relevant EDDHA compounds by 

scanning from 250 to 900 nm (Table A8.1a in the Appendix). An external calibration method 

was used to determine the concentrations of the EDDHA compounds (absorption coefficients 

are presented in Table A8.1b in the Appendix). Absorbance was measured at wavelengths 

corresponding to absorption maxima of all EDDHA compounds that could be present in the 

sample. Measured absorbances were considered linear combinations of the absorbances of the 

individual EDDHA compounds. EDDHA compound concentrations were calculated from the 

measured absorbances by a smallest sum of squares method. The contribution of dissolved HA 

in the supernatant to light absorbance never exceeded 15% in the UV and was negligible in the 

visible light. Absorbance by HA was corrected for in calculating the EDDHA compound 

concentrations. To samples from experiments involving HA, MOPS buffer was added prior to 

measurement, to reinstall pH 7 after centrifugation and to obtain a similar matrix as in the 

treatments without HA. 

DOC concentrations were measured with a segmented flow analyzer (SFA) (Skalar, SK12) by 

oxidation with persulphate and tetraborate and UV and IR-detection. Cu concentrations were 

measured by ICP-MS (Perkin Elmer, ELAN 6000). ICP-MS samples were acidified with nitric 

acid before measurement. 

 

Modelling 

The computer program ECOSAT (Keizer and Van Riemsdijk, 1994) was used for chemical 

speciation calculations. Cu speciation in goethite suspensions was modeled using a multi-

surface approach, in which goethite and HA are treated as independent reactive surfaces (i.e. 

linear additivity) (Weng, et al., 2001). Cu binding to goethite was described with the Charge 

Distribution Multi-Site Complexation (CD-MUSIC) model (Hiemstra and Van Riemsdijk, 

1996; 1999). Parameters describing metal and proton binding were taken from Weng et al. 

(2001). Specific and non-specific Cu binding to HA was described with the Non-Ideal 

consistent Competitive Adsorption (NICA)-Donnan model (Kinniburgh, et al., 1999). Generic 

NICA-Donnan parameters for metal and proton binding to HA and FA were taken from Milne 

et al. (2001; 2003). Adsorption of HA to goethite has not been included into the models. 

 

 

Results and Discussion 

 

Adsorption 

To distinguish between adsorption and cation displacement kinetics, FeEDDHA adsorption to 

goethite was first examined as a function of time in absence of Cu. In goethite suspensions 

with NaCl as background electrolyte, FeEDDHA isomer concentrations remained 
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approximately constant after an initial drop within the first 0.5 hour (Figure 8.1a). So, on the 

time-scale considered, adsorption (near-)equilibrium was reached practically instantaneously. 

The observed sequence in degree of FeEDDHA isomer adsorption: o,p-FeEDDHA
7
 > meso 

o,o-FeEDDHA > racemic o,o-FeEDDHA corresponds with previous findings (Hernandez-

Apaolaza and Lucena, 2001; Schenkeveld, et al., 2007). A decrease in ionic strength of the 

solution phase from 0.1 M to 0.01 M led to a substantial (relative) increase in adsorption of the 

o,o-FeEDDHA isomers (illustrated most clearly by meso o,o-FeEDDHA; Figure 8.1a). This 

indicates an important role for electrostatic interaction in the adsorption mechanism, and 

suggests weak, possibly outer-sphere complexation. A small temporary overshoot in meso  

o,o-FeEDDHA adsorption was observed at I = 0.01 M. Furthermore, Fe activity imposed by 

goethite proved too low to maintain Fe chelated by o,p-EDDHA, leading to complex 

dissociation (Figure 8.1a). o,p-EDDHA ligand was gradually released into solution, at a rate 

much slower than at which adsorption equilibrium was attained. o,p-FeEDDHA concentration 

remained almost unaffected. 

In goethite suspensions containing adsorbed HA, or with CaCl2 as background electrolyte 

instead of NaCl, FeEDDHA adsorption was comparably swift, as illustrated for meso  

o,o-FeEDDHA in Figure 8.1b. In certain treatments (0.033 M CaCl2 and both 0.3 g l
-1
 HA 

treatments) meso o,o-FeEDDHA concentration gradually decreased somewhat after the initial 

concentration drop. The reason for this is unclear. However, as will be demonstrated, this rate 

of decline is negligible in comparison to cation displacement. 

FeEDDHA adsorption decreased with increasing HA loading on the goethite surface. HA may 

compete for reactive surface sites and negatively affects the apparent surface charge of 

goethite (Weng, et al., 2008a; b); adsorption of the negatively charged HA decreases the 

electrostatic potential in the vicinity of the goethite surface (Saito, et al., 2004), inducing a 

smaller electrostatic attraction or even repulsion between the anionic FeEDDHA complex and 

the goethite surface. 

For corresponding treatments with NaCl and CaCl2, similar in ionic strength, o,o-FeEDDHA 

adsorption was consistently higher in the CaCl2 treatment. Ca has a higher affinity for goethite 

surfaces than Na, and increases the electrostatic potential near the goethite surface through the 

formation of surface complexes (Rahnemaie, et al., 2006). This leads to a larger electrostatic 

attraction between FeEDDHA chelate and surface, which enhances adsorption. At high pH, 

Weng et al. (2005) also demonstrated an increase in electrostatic potential near the goethite 

surface in ternary systems with goethite and (adsorbed) fulvic acid (FA) as a result of Ca 

adsorption. Although the effect-size may differ, a comparable effect from Ca should be 

expected in systems including HA instead of FA. Electrostatic effects of Ca in ternary systems 

with goethite and HA need to be further examined. 

 

 

                                                
7
 o,p-FeEDDHA concentrations are overestimated by spectrophotometric measurement. Impurities in the  

o,p-EDDHA standard, forming Fe chelates with lower affinity for the goethite surface (e.g. the o,o-FeEDDHA 

isomers) absorb light in the same range of wavelengths as o,p-FeEDDHA. However, measurement of the  

o,p-FeEDDHA concentration after separation by HPLC as described in Schenkeveld et al (2007), confirms the 

trends in o,p-FeEDDHA concentration displayed in Figure 1a (data not shown). 
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Figure 8.1: a) FeEDDHA isomer concentrations as a function of time in 10 g l
-1
 goethite suspensions 

differing in ionic strength (NaCl) upon addition of 90 µM FeEDDHA; b) meso o,o-FeEDDHA 

concentration as a function of time in 10 g l
-1
 goethite suspensions differing in background electrolyte 

(NaCl and CaCl2; I = 0.1 M), and humic acid loading (0, 0.3 and 1.0 g l
-1
). Error bars indicate standard 

deviations. 

 

 

Fe displacement rate 

As a starting point, Fe displacement and the soil parameters potentially affecting the 

displacement rate have been approached on a macroscopic level. The displacement rate has 

been interpreted in terms of change in amount of FeEDDHA in suspension per unit time. The 

impact of the selected parameters on the displacement rate is discussed consecutively, below. 
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Figure 8.2: a) FeEDDHA and b) CuEDDHA concentrations as a function of time in 10 g l
-1
 goethite 

suspensions (0.1 M NaCl) with 90 µM Cu upon addition of 90 µM FeEDDHA. Error bars indicate 

standard deviations. 

 

 

FeEDDHA isomer 

A strong effect of FeEDDHA isomer on the displacement rate by Cu was observed upon 

introduction of 90 µM FeEDDHA into a goethite suspension (10 g l
-1
; 0.1 M NaCl), 

containing 90 µM Cu
8
: o,p-FeEDDHA was removed from solution almost instantaneously 

(Figure 8.2a), and the corresponding o,p-CuEDDHA concentration increased strongly within 

the first 0.5 hour and only moderately afterwards (Figure 8.2b). The decrease in meso  

o,o-FeEDDHA, and corresponding increase in meso o,o-CuEDDHA, were more gradual, 

while the decrease in racemic o,o-FeEDDHA and corresponding increase in racemic o,o-

CuEDDHA were by far slowest. This order in rate of decline in FeEDDHA isomer 

concentration corresponds with observations upon interaction with soil (Schenkeveld, et al., 

2010a). In soil studies, however, no comparable increase in o,o-CuEDDHA concentration in 

soil solution was observed, and the increase in o,p-CuEDDHA was temporary. The rate of 

decline in FeEDDHA concentration increased with 1) increasing relative affinity of the 

EDDHA ligand for Cu (compared to Fe) (Schenkeveld, et al., 2010d), 2) decreasing stability 

of the FeEDDHA complex (Yunta et al. 2003 a en b), and 3) increasing affinity of the 

FeEDDHA complex for the goethite surface (Figure 8.1a). The impact of FeEDDHA 

adsorption on Fe displacement is considered in more detail further on. 

                                                
8
 pCufree prior to FeEDDHA addition was calculated in ECOSAT, and ranged from 8.3 to 9.6 for the goethite 

suspensions included in this study - see Table 8.1. 
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Reactive surface area 

By varying the goethite suspension density (2 and 10 g l
-1
), the effect of reactive surface area 

on the displacement rate of Fe from FeEDDHA by Cu was examined. For treatments, equal in 

Cu dose (90 µM) the initial drop in FeEDDHA concentration was larger in the treatment with 

a higher suspension density (10 g l
-1
), as illustrated for meso o,o-FeEDDHA (Figure 8.3a); a 

larger available reactive surface area leads to more adsorption. However, during the first  

8 hours, the difference in meso o,o-FeEDDHA concentration continued to increase, and the 

meso o,o-CuEDDHA concentration increased faster in the 10 g l
-1
 goethite treatment  

(Figure 8.3a), despite the higher degree of meso o,o-CuEDDHA adsorption. This indicates that 

the displacement rate was higher in the treatment with a higher suspension density. Because 

Cu loading and hence Cu activity were lower in this treatment, Cu activity did not govern the 

displacement rate. Furthermore, the solution concentrations of both reactants (Cu and meso 

o,o-FeEDDHA) were lower in the goethite suspension with a higher displacement rate. This 

indicates that the displacement reaction predominantly took place on the goethite surface 

rather than in solution. 

After 8 hours the difference in meso o,o-FeEDDHA concentration started to decrease, and the 

meso o,o-CuEDDHA concentration in the 2 g l
-1
 goethite-treatment even exceeded  the 

concentration in the 10 g l
-1
 goethite-treatment after approximately 30 hours. From a 

thermodynamic perspective, this is the result of differences in equilibrium concentrations 

between the goethite suspensions; the lesser degree of adsorption and the higher Cu loading 

(and Cu activity) for a given amount of reacted meso o,o-FeEDDHA favour the meso  

o,o-CuEDDHA concentration in the goethite suspension with a lower suspension density. As a 

result of the slower reaction kinetics, related to the smaller available reactive surface area, it 

merely requires more time to reach equilibrium. After 9 days, equilibrium had not yet been 

attained. 

 

Copper availability 

The Cu loading on the goethite surface positively affected the displacement rate, as illustrated 

for meso o,o-FeEDDHA introduced into goethite suspensions of equal suspension density and 

different amounts of adsorbed Cu (90 and 450 µM) (Figure 8.3b). Initial meso o,o-FeEDDHA 

adsorption was comparable, and during the early stages of the experiment, when the inverse 

displacement reaction (eq (1)) was of relatively little importance, both the decrease in meso 

o,o-FeEDDHA and the increase in meso o,o-CuEDDHA concentration were faster in the 

treatment with the higher Cu loading. 

Assuming adsorption equilibrium was reached instantaneously, only the reaction to the right of 

equation (1) took place at t=0, because there was no meso o,o-CuEDDHA yet. The rate of this 

reaction was determined by fitting the meso o,o-FeEDDHA solution concentration data as a 

function of time from t=0.5 to t=8 hours with a second order polynomial equation and 

extrapolating to t=0 (R
2
 ≥ 0.995). Subsequently, the displacement rate at t=0 was calculated by 

dividing the tangent of the extrapolated fitting curve at t=0 by the FeEDDHA fraction in 

solution at adsorption equilibrium at t=0. The obtained displacement rate is expressed as a  
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Figure 8.3: Concentration of meso o,o-FeEDDHA (closed symbols) and meso o,o-CuEDDHA (open 

symbols) as a function of time, in goethite suspensions differing in a) suspension density and  

b) amount of adsorbed Cu. Error bars indicate standard deviations; and c) the absolute displacement 

rate at t≈0 expressed as change in solution concentration per unit time, as a function of suspension 

density for goethite suspensions with 90 and 450 µM Cu. Solid curves represent fits to a power 

function for treatments of equal amount of Cu in suspension, the dashed curve represents a fit to a 

power function for treatments of equal Cu loading. 
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decrease in solution concentration per unit time, but accounts for removal of meso o,o-

FeEDDHA from both solution and goethite surface, assuming (linear) adsorption equilibrium 

was preserved. 

The calculated reaction rates confirm a pronounced effect from both soil factors reactive 

surface area and Cu availability on the displacement rate (Figure 8.3c). For a given suspension 

density, a fivefold increase in Cu loading approximately doubled the reaction rate. For a given 

amount of adsorbed Cu, a fivefold increase in suspension density also approximately doubled 

the reaction rate, despite the fivefold decrease in Cu loading. Hence for a given Cu loading, a 

fivefold increase in suspension density led to a fourfold increase in displacement rate, which 

corresponds with a fourfold increase in meso o,o-FeEDDHA adsorption, assuming adsorption 

is linear. 

 

Ionic strength 

Decreased ionic strength positively affected the displacement rate, as illustrated for meso  

o,o-FeEDDHA introduced into goethite suspensions of equal suspension density and equal  

Cu loading (Figure 8.4a). Up to 8 hours, meso o,o-FeEDDHA concentration declined faster, 

and the corresponding meso o,o-CuEDDHA concentration increased faster, in the treatment 

with a lower ionic strength (0.01 M NaCl). Initial FeEDDHA adsorption, and hence the 

FeEDDHA loading were higher in this treatment (Figure 8.1a and 8.4a). After 8 hours the 

difference in meso o,o-FeEDDHA concentration started to decrease, and after approximately 

120 hours the meso o,o-CuEDDHA concentration in the 0.1 M NaCl treatment exceeded the 

concentration in the 0.01 M NaCl treatment. The higher eventual meso o,o-CuEDDHA 

concentration in the 0.1 M NaCl treatment is the net result of a lesser degree of adsorption and 

a shift in equilibrium of the displacement reaction (equation 1). 

Three factors affecting the displacement rate of Fe from FeEDDHA by Cu have been 

identified: available reactive surface area, Cu loading, and FeEDDHA loading. The intrinsic 

reaction rate of the displacement reaction is however standardized per unit reactive surface 

area, leaving only Cu loading and Fe loading as rate determining factors. In Figure 8.4b, the 

intrinsic reaction rate a t≈0 is presented as a function of meso o,o-FeEDDHA loading. 4 levels 

of Cu loading have been distinguished. For each Cu loading larger than zero, the intrinsic 

displacement rate increased with increasing FeEDDHA loading. And, for treatments of 

comparable FeEDDHA loading, the intrinsic displacement rate increased with increasing Cu 

loading. 

Moreover, Cu loading positively affected FeEDDHA loading. The effect was more 

pronounced for treatments with ionic strength 0.01 M (indicated with open symbols), than for 

treatments with ionic strength 0.1 M (indicated with closed symbols). It was examined if meso 

o,o-FeEDDHA adsorption predominantly increased due to an increase in electrostatic potential 

near the goethite surface (1-plane) resulting from Cu adsorption, or due to chemical binding to 

adsorbed Cu. The contribution of the electrostatic effect was established through the increase 

in Boltzmann factor
9
 (B

Z
) near the goethite surface (1-plane). 

                                                
9
 The Boltzmann factor is a surface accumulation factor for charged particles near a charged surface. 
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Figure 8.4: a) Concentration of meso o,o-FeEDDHA (closed symbols) and meso o,o-CuEDDHA (open 

symbols) as a function of time in 2 g l
-1 
goethite suspensions with 90 µM adsorbed Cu, differing in ionic 

strength. Error bars indicate standard deviations; b) the absolute intrinsic displacement rate at t≈0 as a 

function of FeEDDHA surface loading; open symbols represent experiments with 0.01 M NaCl, closed 

symbols with 0.1 M NaCl. Dashed curves represent fits to a power function for treatments of equal Cu 

loading; and c) meso o,o-FeEDDHA surface loading at t≈0 as a function of the surface potential in the 

1-plane before FeEDDHA adsorption. Black symbols represent 0 µmol m
-2
 Cu; grey symbols represent 

0.09 µmol m
-2 
Cu; white symbols represent 0.46 µmol m

-2
 Cu. Per ionic strength, Boltzmann factors for 

FeEDDHA are indicated for the two extreme treatments. The solid curve represents the predicted meso 

o,o-FeEDDHA adsorption based on the Boltzmann factor in the 1-plane, calibrated on FeEDDHA 

adsorption data from the 0.01 M NaCl; 0 µmol m
-2
 Cu treatment. Dashed lines represent linear fits of 

FeEDDHA adsorption with increasing Cu loading for a given background electrolyte. 
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With the CD-MUSIC model, the surface potential in the 1-plane (ψ) was calculated for 

goethite suspensions with and without Cu, prior to FeEDDHA addition. From the calculated 

surface potentials, Boltzmann factors for meso o,o-FeEDDHA (with a charge (Z) of -1) were 

calculated, using equation 2: 

 

 (2) 

 

In Figure 8.4c, measured meso o,o-FeEDDHA adsorption is presented as a function of the 

calculated surface potential, for goethite suspensions, differing in background electrolyte  

(0.01 M and 0.1 M NaCl) and Cu loading (0, 0.09 and 0.46 µmol m
-2
 Cu). Boltzmann factors 

have been indicated for treatments with 0 and 0.46 µmol m
-2
 Cu. The solid curve represents 

the (simulated) effect of surface potential on meso o,o-FeEDDHA adsorption to goethite, 

calibrated on adsorption data from the 0.01 M NaCl; 0 µmol m
-2
 Cu treatment. Adsorption in 

the 0.1 M NaCl; 0 µmol m
-2
 Cu treatment is predicted fairly accurately. The relative increase 

in meso o,o-FeEDDHA adsorption due to adsorbed Cu (51 - 82%) is however much larger 

than predicted from the increase in Boltzmann factor (20 - 26%). This suggests that adsorbed 

Cu increased FeEDDHA adsorption mainly through chemical bonding: the formation of a 

ternary surface complex between the goethite surface, Cu and FeEDDHA, rather than through 

an electrostatic effect. Spectroscopic data to verify this suggestion are currently lacking. 

. 

Background electrolyte and HA 

The effect of HA adsorbed onto the goethite surface (0, 0.3 and 1.0 g l
-1
) and of the 

background electrolyte (NaCl and CaCl2) on the displacement rate has been examined in  

10 g l
-1
 goethite suspensions containing 90 µM Cu with I = 0.1 M. The rate of decline in meso  

o,o-FeEDDHA concentration decreased with increasing amount of adsorbed HA, and was 

higher in treatments with CaCl2 than in corresponding treatments with NaCl (Figure 8.5a). 

These observations can be interpreted in relation to the factors identified to determine the 

intrinsic displacement rate. FeEDDHA adsorption and consequently FeEDDHA loading were 

negatively affected by HA adsorbed onto the goethite surface and positively by Ca in the 

electrolyte (see section on adsorption). The effect of HA and background electrolyte on Cu 

loading on the goethite surface was examined by chemical speciation modeling with 

 

 

 

 

Figure 8.5 (p. 175): a) Meso o,o-FeEDDHA concentration as a function of time in 10 g l
-1
 goethite 

suspensions with 90 µM Cu, differing in background electrolyte (NaCl and CaCl2; I = 0.1 M) and HA 

loading (0, 0.3 and 1 g l
-1
). Error bars indicate standard deviations; b) absolute intrinsic displacement 

rate at t≈0 as a function of the surface loading product of meso o,o-FeEDDHA and Cu. In suspensions 

containing HA, the Cu loading on goethite was calculated with the NICA-Donnan and the CD-MUSIC 

model assuming linear additivity; and c) exponential fits of meso o,o-FeEDDHA concentration data as 

a function of time from 8 hours onward in 10 g l
-1
 goethite suspensions differing in HA loading  

(0.3 and 1 g l
-1
) and Cu loading (90 and 450 µM). Error bars indicate standard deviations. 
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εγβα
FeCuEDDHACuFeEDDHAFeEDDHA kkr Γ⋅Γ⋅−Γ⋅Γ⋅=− 21

 ECOSAT, assuming linear additivity of the CD-MUSIC and NICA-Donnan model (Weng, et 

al., 2001). Cu distributes over the available reactive surfaces, and with the introduction of HA, 

a fraction of Cu adsorbed to HA, thereby negatively affecting the Cu loading on the goethite 

surface. Addition of 1.0 g l
-1
 HA,

 
reduced the Cu loading on the goethite surface from  

90 to 27 nmol m
-2
 (Table 8.1). The effect that Cu, adsorbed to goethite, increased FeEDDHA 

adsorption (previous section and Figure 8.4c) decreased with increasing HA adsorption (data 

not shown); less Cu adsorbed to goethite implied fewer possibilities to form ternary surface 

complexes. Furthermore, in suspensions containing HA, Ca positively affected the Cu loading 

on the goethite surface in comparison to Na; Ca adsorption attributes positive charge to both 

the Donnan-gel of HA and the 1-plane of the goethite surface, making Cu adsorption to both 

surfaces less favourable and increasing the free Cu concentration. An increase in free Cu 

concentration causes a shift in Cu adsorption from HA to goethite (Table 8.1). 

 

 

Table 8.1: Model predictions for the free Cu concentration and the Cu loading on the goethite surface 

in 10 g l
-1
 goethite suspensions, differing in background electrolyte, amount of Cu and amount of HA;  

I = 0.1 M. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rate equation 

Given the very low Fe concentrations in solution (pFefree ≈ 21), it is reasonable to assume that 

the inverse displacement reaction (Fe displacing Cu from CuEDDHA) also occurs on the 

goethite surface. The intrinsic reaction rate of Fe displacement from FeEDDHA by Cu can 

then be described with rate equation 3a: 

 

(3a) 

 

in which -rFeEDDHA is the intrinsic displacement rate; k1 and k2 are the rate constants, ΓFeEDDHA, 

ΓCu, ΓCuEDDHA and ΓFe are respectively the FeEDDHA, Cu, CuEDDHA and Fe loadings on the 

goethite surface, and α, β, γ and ε represent the reaction orders of the respective reactants.  

Treatment pCufree Cu loading goethite 

  (nmol m
-2
) 

Na;  90 µM Cu 9.07 90 

Ca; 90 µM Cu 9.01 90 

Na; 450 µM Cu
 

8.33 450 

Na; 90 µM Cu + 0.3 g l
-1
 HA 9.23 63 

Ca; 90 µM Cu + 0.3 g l
-1
 HA 9.07 79 

Na; 450 µM Cu + 0.3 g  l
-1
 HA

 
8.40 387 

Na; 90 µM Cu + 1.0 g l
-1
 HA 9.60 27 

Ca; 90 µM Cu + 1.0 g l
-1
 HA 9.21 58 

Na; 450 µM Cu + 1.0 g  l
-1
 HA

 
8.58 267 
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CuFeEDDHAFeEDDHA kr Γ⋅Γ⋅=− 1

Including Fe loading in the rate equation is arbitrary; Fe displaced from FeEDDHA will 

probably precipitate as hydroxide and become part of the Fe(hydr)oxide matrix either as 

hydrous ferric oxide (HFO) or as goethite. 

When introducing FeEDDHA into a goethite suspension containing Cu and assuming instant 

adsorption equilibrium, the second term of the rate equation equals zero, because the 

CuEDDHA loading is still zero. Equation 3a can then be simplified to equation 3b: 

 

(3b) 

 

in which ΓCu was imposed with the treatment, ΓFeEDDHA could be determined from the initial 

drop in FeEDDHA concentration and rFeEDDHA could be determined from the slope of the 

FeEDDHA concentration curve as a function of time, at t≈0. For meso o,o-FeEDDHA the 

parameters k1, α and β were fit to the ΓCu, ΓFeEDDHA and rFeEDDHA data collected. For treatments 

including HA, ΓCu refers to Cu loading on the goethite surface as simulated in ECOSAT (see 

previous section). Results of the fitting exercise are presented in Figure 8.5b. The quality of 

the fit is good (R
2 
= 0.99; n = 13) and the simplest solution indicates the displacement of Fe 

from FeEDDHA by Cu is first order in ΓFeEDDHA (α = 1) and half-order in ΓCu (β = 0.5). The 

overall order of the reaction is 1.5 and rate constant k1 equals 1.2 10
-3
 m s

-1
 mol

-0.5
 (T = 293K;  

P = 1 atm). The higher reaction order for ΓFeEDDHA compared to ΓCu is possibly related to a 

higher mobility of FeEDDHA over the goethite surface due to its lower tendency to adsorb. 

The encircled data point (Figure 8.5b), which corresponds with the treatment with the highest 

FeEDDHA loading (0.01 M NaCl, 2 g l
-1
 goethite, 450 µM Cu) has not been included into the 

fit. Based on the fit, a higher reaction rate would be expected for the given FeEDDHA and Cu 

loading in this treatment. Apparently, at FeEDDHA loadings this high, the reaction order in 

ΓFeEDDHA decreases, possibly as a result of effects related to steric hindrance. 

Parameters related to the inverse displacement reaction (k2, γ, ε; equation 3a) are commonly 

derived from equilibrium conditions when the rates of both displacement reaction are equal. 

This proved impossible, because in most experiments equilibrium had not yet been reached 

upon termination. Furthermore, meso o,o-FeEDDHA and meso o,o-CuEDDHA loadings at 

equilibrium could not be derived sufficiently accurately. A more detailed understanding of the 

adsorption behaviour of EDDHA components and how this behaviour is affected by the 

simultaneous adsorption of other ions would aid deriving kinetic parameters of surface 

displacement reactions as examined in this study. 

 

Soil conditions 

In soil and soil-plant systems an exponential decline in meso o,o-FeEDDHA concentration in 

the pore water has been observed (Schenkeveld, et al., 2010a; Schenkeveld, et al., 2010c). An 

exponential decay function for FeEDDHA concentration can be derived from rate equation 3a 

under the following three constraints: 

1) Concentrations are sufficiently remote from equilibrium, that the part of the rate equation 

regarding the inverse displacement reaction (the k2 term) can be neglected. This leads to the 

simplification of equation 3a to equation 3b (with α = 1 and β =0.5). 
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2) Cu loading remains approximately constant. In soil application FeEDDHA is generally 

applied in such quantities that Fe displacement by Cu will have a limited effect on the Cu 

loading of soil reactive surfaces. This allows for further simplification from equation 3b to 

equation 3c, in which the Cu loading is incorporated in the conditional (soil specific) rate 

constant k1
†
: 

 

(3c) 

 

3) FeEDDHA adsorption to goethite can be considered linear and adsorption equilibrium is 

preserved. Equation 3c can then be rewritten to equation 3d, in which adsorption coefficient 

Kd is incorporated in the conditional rate constant k1
††
: 

 

(3d) 

 

which can be integrated to an exponential decay function for the FeEDDHA concentration in 

soil solution (equation 3e): 

 

(3e) 

 

Figure 8.5c illustrates that an exponential decline in meso o,o-FeEDDHA solution 

concentration was only observed in the goethite suspension for which the aforementioned 

constraints for simplification of the rate equation were sufficiently met: the treatment with  

1 g l
-1
 HA and 450 µM Cu (0.1 M NaCl; 10 g l

-1
 goethite). 1) As a result of the high HA 

loading on the goethite surface (mimicking the effect of humic substances adsorbed onto soil 

(hydr)oxide surfaces), meso o,o-FeEDDHA adsorption, and consequently, the displacement 

rate of Fe from meso o,o-FeEDDHA by Cu was sufficiently low for surface loadings to remain 

remote from equilibrium throughout the experiment. 2) The amount of Cu in suspension 

largely exceeded the amount of meso o,o-FeEDDHA added, so that the impact of 

displacement on the Cu loading remained marginal. 3) The meso o,o-FeEDDHA concentration 

range was sufficiently small to consider meso o,o-FeEDDHA adsorption linear. 

 

 

Practical implications 

Although the results presented have focused on Fe displacement by Cu from meso o,o-

FeEDDHA, comparable trends regarding the factors affecting the displacement rate have been 

observed for racemic o,o-FeEDDHA and o,p-FeEDDHA (data not shown). 

Results from this study help to better understand the fate of FeEDDHA components in soil and 

soil-plant systems and contribute to a better understanding of metal displacement reactions 

from chelates in the soil, in general. The reaction in which Fe is displaced from FeEDDHA by 

Cu takes place on a (soil) reactive surface rather than in (soil) solution. Therefore, adsorption 

and cation competition should not be considered two separate threats to the performance of 

FeEDDHA components: factors that increase adsorption also increase the rate of cation 
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competition reactions. The effectiveness of the o,o-FeEDDHA isomers in soil application 

relies on slow displacement kinetics related to a limited affinity for soil reactive surfaces. A 

high Fe(hydr)oxide and Cu content, along with soil factors enhancing adsorption (a low ionic 

strength, predominantly divalent cations on the CEC and a low content of humic substances) 

may substantially compromise the time-span FeEDDHA components remain effective as 

fertilizer in soil application. For an efficient use of Fe fertilizer, the aforementioned soil 

parameters should be considered for determining dosage and frequency of FeEDDHA 

application. 

For developing new (Fe)chelate-based fertilizers for soil application, the risk of leaching 

related to a low affinity for reactive soil surfaces should be carefully weighed against a 

tendency to adsorb with the potential risk of Fe being displaced by a competing cation. With 

regard to the latter, a high relative affinity for binding Fe in comparison to other metals seems 

recommendable. 
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Appendix 

 

Calibration of spectrophotometer 
 

Table A8.1a: λmax-values (nm) for EDDHA ligands and metal-EDDHA complexes. 

 *
 : λmax-values were separately determined for al matrices, but coincided. 

**
 Absorbance at the indicated λmax values was to low to use for determining EDDHA compound concentrations. 

n.d. = not determined. 

 

 

Table A8.1b: Extinction coefficients (ε) for the relevant wavelengths at 20 °C.
 

 

 

Ligand/complex racemic o,o-EDDHA
* 

meso o,o-EDDHA o,p-EDDHA 

EDDHA 275 275 274 

FeEDDHA 280, 477 280, 487 274, 463 

CuEDDHA 277, 639
**
 273, 646

**
 271, n.d. 

Ligand/complex Matrices 10
6
 M

-1
 cm

-1
 

      
Wavelength (nm)  275 277 280 477 

racemic o,o-FeEDDHA 0.01M & 0.1M NaCl; 0.033M CaCl2 9.7 10.3 10.7 4.8 

racemic o,o-CuEDDHA 0.01M & 0.1M NaCl 9.6 9.7 9.3 < 0.1 

 0.033M CaCl2 8.7 8.8 8.6 < 0.1 

racemic o,o-EDDHA 0.01M & 0.1M NaCl; 0.033M CaCl2 4.6 4.5 4.1 < 0.1 

      
Wavelength (nm)  273 275 280 487 

meso o,o-FeEDDHA 0.01M & 0.1M NaCl; 0.033M CaCl2 9.2 9.8 10.6 4.5 

meso o,o-CuEDDHA 0.01M & 0.1M NaCl; 0.033M CaCl2 9.1 9.1 8.6 < 0.1 

meso o,o-EDDHA 0.01M & 0.1M NaCl; 0.033M CaCl2 4.9 5.0 4.4 < 0.1 

      
Wavelength (nm)  271 274 275 463 

o,p-FeEDDHA 0.01M & 0.1M NaCl; 0.033M CaCl2 8.8 9.0 9.0 2.1 

o,p-CuEDDHA 0.01M & 0.1M NaCl 10.2 10.0 9.9 0.1 

 0.033M CaCl2 10.1 9.9 9.7 0.1 

o,p-EDDHA 0.01M & 0.1M NaCl; 0.033M CaCl2 4.0 4.4 4.4 < 0.1 
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“Von des Steines craft, der Fênîs 

  verbrinnet, daz er ze aschen wirt: 

  diu asche im aber leben birt.” 

 

trans. 

“By virtue of the Stone, 

  the Phoenix is burnt to ashes, 

  in which he is reborn.”  

 

Parzival - V.469, 8-10 

by Wolfram von Eschenbach (ca. 1170 - 1220)  
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Abstract 

A mechanism of action for the performance of Fe chelates as soil-applied fertilizer has been 

hypothesized by Lindsay and Schwab (1982), in which the ligand participates in a cyclic 

process of delivering Fe at the root surface and mobilizing Fe from the soil. This “shuttle 

mechanism” seems appealing in view of fertilizer efficiency, but little is known about its 

performance. FeEDDHA is a commonly used Fe fertilizer on calcareous soil. In this study, the 

performance of the shuttle mechanism has been examined for FeEDDHA chelates in batch and 

pot trial experiments. The specificity of EDDHA ligands for chelating Fe from soils of low Fe 

availability is limited. If the efficiency of the shuttle mechanism is largely controlled by metal 

availability in the bulk soil, it is heavily compromised by complexation of competing cations: 

Al, Mn and particularly Cu. Experimental support for a shuttle mechanism in soil-plant 

systems with FeEDDHA was found in specific metal mobilization upon FeEDDHA-facilitated 

Fe uptake. The mobilized metals originated at least in part from the root surface instead of the 

soil. 
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Introduction 

Fe deficiency chlorosis is a common nutrient disorder in plants grown on calcareous soils. It is 

characterized by a significant decrease in chlorophyll content in the leaves and decreases yield 

both quantitatively and qualitatively (Chaney, 1984; Mortvedt, 1991). The limited 

bioavailability of Fe in calcareous soils arises from the poor solubility of Fe(hydr)oxides at  

high soil-pH (7 - 8.5), and the presence of a bicarbonate buffer (Boxma, 1972; Lindsay, 1979). 

The most common practice to prevent and remedy Fe chlorosis is through the application of 

synthetic Fe chelates, which can greatly increase the Fe concentration in soil solution. 

FeEDDHA (iron (3+) ethylene diamine-N,N’-bis(hydroxy phenyl acetic acid)) is among the 

most effective chelates in soil application (Lucena, 2003; Reed, et al., 1988). 

Commercially available FeEDDHA products consist of a mixture of FeEDDHA components. 

The quantitatively most important components are the isomers racemic o,o-FeEDDHA (iron 

(3+) (R,R) and (S,S) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complexes), 

meso o,o-FeEDDHA (iron (3+) (R,S) = (S,R) ethylene diamine-N,N'-bis(2-hydroxy phenyl 

acetic acid) complex) and o,p-FeEDDHA (iron (3+) ethylene diamine-N-(2-hydroxy phenyl 

acetic acid)-N’-(4-hydroxy phenyl acetic acid) complexes). Physical and chemical properties 

of these isomers differ and, as a consequence, so does their effectiveness in delivering Fe to 

the plant.  

 

Lindsay and Schwab (1982) have proposed a mechanism of action for the performance of Fe 

chelates in soils, in which the chelating agent, i.c. EDDHA, ideally functions as a shuttle 

transporter for Fe between soil particle and plant root (Figure 9.1). This mechanism was later 

referred to as the “shuttle effect” (Lucena, 2003). Driving force behind the mechanism are the 

concentration gradients arising from chelate splitting, Fe uptake and chelation of soil-Fe, 

which induce diffusive transport. The applicability of the shuttle mechanism concept to the 

performance of FeEDDHA has been experimentally supported by the ability of EDDHA 

ligands to mobilize Fe from synthetic Fe oxides and soil (Garcia-Marco, et al., 2006; Perez-

Sanz and Lucena, 1995), as well as from an adsorbed Fe siderophore (ferrioxamine B) 

(Siebner-Freibach, et al., 2003). In the latter study, the Fe was actually subsequently 

transported and transferred to plants grown in hydroponic culture. 

Although the concept of recycling the chelating agent seems particularly appealing in view of 

fertilizer efficiency, hardly anything is known, still, about the actual performance of the shuttle 

mechanism in soil-plant systems. In accordance with Lindsay and Schwab’s concept, the 

effectiveness of the shuttle is determined by the rates at which diffusive transport takes place, 

EDDHA ligands mobilize soil-Fe and plants take up Fe from FeEDDHA chelates. The 

efficiency of the shuttle will however be compromised by processes occurring in the soil 

(Figure 9.1). FeEDDHA components may leach out of the root zone as a result of excessive 

irrigation or atmospheric precipitation (Rombola and Tagliavini, 2006), or be transported 

upwards due to evapo-transpiration and precipitate on the soil surface (Schenkeveld, et al., 

2008). Reactive soil constituents adsorb FeEDDHA components (Garcia-Marco, et al., 2006; 

Hernandez-Apaolaza, et al., 2006; Hernandez-Apaolaza and Lucena, 2001) and competing 

cations like Cu can displace Fe from the FeEDDHA chelate (Schenkeveld, et al., 2010d; 
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Schenkeveld, et al., 2010e). Biodegradation of EDDHA ligands presents a potential sink, but 

needs to be further examined; biodegradation did not affect FeEDDHA chelate concentrations 

in a soil incubation study (Schenkeveld, et al., 2010c). Although Fe uptake from FeEDDHA is 

generally preceded by chelate splitting, Bienfait et al. (2004) found FeEDDHA inside plants 

grown on substrate with nutrient solution, suggesting passive uptake of the FeEDDHA chelate 

as a whole. Finally, EDDHA ligands do not exclusively chelate Fe upon interaction with soil, 

but also competing cation like Cu and Al (Garcia-Marco, et al., 2006; Schenkeveld, et al., 

2007). 

 

Figure 9.1: Shuttle mechanism for EDDHA ligands in soil solution as proposed by Lindsay and 

Schwab, 1982. FeEDDHA is transported through the rhizosphere by diffusive transport; chelate 

splitting occurs; Fe is taken up and further allocated inside the plant; EDDHA ligands are transported 

from the root surface along the concentration gradient; EDDHA ligands chelate and solubilize Fe from 

soil particles. Potential sinks for the EDDHA ligand are indicated in italic.  

Chelate splitting can be preceded by Fe reduction (Chaney, et al., 1972) at ferric chelate reductase 

(FCR) sites (Robinson, et al., 1999) – this step has not been included in the figure. FeEDDHA 

facilitated Fe uptake, as illustrated with the shuttle mechanism, does not necessarily exclude 

“conventional Fe uptake” without synthetic chelates; conventional Fe uptake has not been included in 

the figure. 
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The extent to which EDDHA ligands are capable of specifically mobilizing Fe from target 

soils is presumably a key factor in determining the success of the shuttle mechanism, but has 

hardly been touched upon. Moreover, the validity of the mechanism as proposed by Lindsay 

and Schwab (1982) has not yet been experimentally demonstrated for EDDHA ligands in  

soil-plant systems. The aim of the present study was twofold. First, the specificity of EDDHA 

ligands for chelating Fe from soil was examined in a series of soil interaction experiments 

involving 4 calcareous soils and 3 separated EDDHA ligands. Secondly, experimental support 

was sought for the shuttle mechanism actually taking place in soil-plant systems with 

FeEDDHA. This was done by means of data from two previously reported pot trial studies, in 

which FeEDDHA facilitated Fe uptake by soybean plants grown on calcareous soil was 

established (Schenkeveld, et al., 2008; Schenkeveld, et al., 2010a). Emphasis has been on the 

o,o-EDDHA ligands, because thus far only racemic and meso o,o-FeEDDHA have been 

reported to facilitate soil grown plants with Fe (Rojas, et al., 2008; Schenkeveld, et al., 2010b), 

which is a prerequisite for the shuttle mechanism. 

 

 

Material and Methods 

 

Soils 

Calcareous soils (two clay soils, two sandy soils) were collected from sites, located in Spain 

(Santomera and Xeraco L) and Saudi Arabia (Nadec and Hofuf). At all sites, the top layer  

(0 – 20 cm) was sampled, with exception of the Xeraco site (20 - 40 cm). The soils were 

selected for their low Fe availability (diethylene triamine penta acetic acid  

(DTPA)-extractable Fe < 11 mg kg
-1
). Fe chlorosis was manifest in crops grown at all sites, 

and could be reproduced in pot experiments on the Spanish soils (Schenkeveld, et al., 2008; 

Schenkeveld, et al., 2010a) Pre-treatment consisted of air drying and sieving (mesh size: 1 cm 

(plant experiments); 0.2 cm (batch experiments)). Relevant soil characteristics are presented 

in Table 9.1.   

 

Experimental solutions 

Racemic and meso o,o-H4EDDHA were obtained by separation of an o,o-H4EDDHA mixture 

(99% pure; 49% racemic o,o-EDDHA, 51% meso o,o-EDDHA), as described by Bannochie 

and Martell (1989) and Bailey et al. (1981). EDDHA solutions were prepared by dissolving 

racemic o,o-H4EDDHA (purity: 100%), meso o,o-H4EDDHA (purity: 99.5%) and  

o,p-H4EDDHA (purity: 90%) in sufficient 1 M NaOH. pH was set to 7 (± 0.5). 0.01 M CaCl2 

was used as background electrolyte. 

 

Batch experiments 

Metal mobilization upon interaction of separated EDDHA isomers with soil was examined as 

a function of: interaction time (batch experiment 1), concentration of the chelating agent added 

(batch experiment 2), and interaction time with periodical EDDHA addition (batch



Table 9.1: Soil characteristics. 

 

 

a
 ISO/DIS 10390 Soil Quality – Measurement of pH 
b 
Walinga et al. (1992) 

c
 Houba et al. (1997)

 

d
 ISO 10693, Soil Quality – Determination of carbonate content, volumetric method

 

e
 Schwertmann (1964) 
f
 Houba et al. (2000) 
g
 Linday and Norvell (1978) and Quevauvillier et al. (1996) 
h
 Tipping et al. (2003) and Fest el al. (2005) 

         Oxalate
e 

 0.01 M CaCl2 

Soil (origin) Country Region 
Soil 
class. 

pH-CaCl2
a
 SOC

b 
Clay

c 
CaCO3

d 
 Al

 
Fe  DOC

f
 

     (g kg
-1
) (g kg

-1
) (g kg

-1
)  (g kg

-1
) (g kg

-1
)  (mg kg

-1
) 

Santomera Spain Murcia entisol 8.0 5.4 260 520  0.44 0.30  55 

Xeraco L Spain Valencia entisol 7.7 13.7 360 150  1.74 0.90  108 

Nadec Saudi Arabia Near Persian Gulf aridisol 8.0 8.7 70 140  0.18 0.13  101 

Hofuf Saudi Arabia Near Persian Gulf aridisol 7.8 7.1 40 60  0.08 0.19  78 

 DTPA-extractable
g
  0.43 M HNO3-extractable

h 

Soil (origin) Fe Cu Mn Ni Zn  Al Fe Co Cu Mn Ni Zn 

 (mg kg
-1
) (mg kg

-1
) (mg kg

-1
) (mg kg

-1
) (mg kg

-1
)  (g kg

-1
) (g kg

-1
) (mg kg

-1
) (mg kg

-1
) (mg kg

-1
) (mg kg

-1
) (mg kg

-1
) 

Santomera 3.5 4.1 4.6 0.20 0.90  0.70 0.49 2.6 10.1 180 3.7 4.5 

Xeraco L 10.5 3.0 5.3 0.20 6.7  2.1 0.46 2.8 12.6 240 3.5 24 

Nadec 2.1 0.13 5.7 0.13 0.47  0.32 0.18 0.70 0.77 50 1.9 2.3 

Hofuf 6.7 2.3 3.8 0.10 5.0  0.16 0.17 0.34 6.3 41 1.1 24 
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experiment 3). Batch experiment 3 was done to mimic the gradual release of EDDHA in  

soil-plant systems, resulting from Fe uptake from FeEDDHA by plants. All batch experiments 

were executed in duplicates. 

In batch experiment 1, all four soils interacted with 89.5 µM solutions of all three EDDHA 

isomers, for respectively 1, 8, 24, 48, 96 and 168 hours.  

In batch experiment 2, all four soils interacted for 24 hours with solutions of all three EDDHA 

isomers, at the following concentrations: 1.8; 3.6; 7.2; 14.4; 28.6 and 57.3 µM. 

In batch experiment 3, Santomera soil interacted with racemic and meso o,o-EDDHA. After  

2 days of equilibration with 0.01 M CaCl2 solution, EDDHA concentration was raised by  

1.8 µM three times per week, for 5 weeks, through addition of aliquots of EDDHA solution. 

Metal concentrations were monitored throughout the experiment. 

 

Soils interacted with EDDHA solutions in a 1:1 (w/v) soil-solution ratio, in 50 ml 

polypropylene test tubes (Greiner bio-one, Cat No 210296) (batch experiment 1 and 2) and  

0.5 l polyethylene shaking bottles (batch experiment 3). Tubes and bottles were placed in an 

end-over-end shaker, rotating at 18 rpm in absence of light. Room temperature was kept at  

20 (± 1) °C. Blank treatments without EDDHA were included in all batch experiments. After 

interaction, the samples from batch experiment 1 and 2 were centrifuged for 15 minutes at 

3000 rpm. pH and EC of the supernatant were measured. 

In batch experiment 3, sampling directly preceded each EDDHA addition. Sample and aliquot 

of EDDHA solution were equal in volume, to preserve a constant total volume. Before 

sampling, pH and redox potential were measured in suspension; neither changed substantially 

during the experiment. The solid phase was allowed to precipitate and a sample was drawn 

from the supernatant accounting for 1% of the solution volume. Subsequently, the shaking 

bottle was stirred up and placed back in the end-over-end shaker. After termination of batch 

experiment 3, the soil was centrifuged for 15 minutes at 3,000 rpm and extracted for 48 hours 

with 20 mM K1.5H1.5PO4 (1:1, 1:5, 1:25 and 1:100 (w/v)), to gain insight in the amounts of 

metal-EDDHA complexes adsorbed. PO4 was used as extractant because it has a high affinity 

for Fe(hydr)oxide surfaces and strongly competes with other adsorbed species for reactive 

surface sites. A mixture of KH2PO4 en K2HPO4 was applied to avoid strong pH effects from 

the extractant. Extractions were done analogue to batch experiment 1 and 2. All samples and 

extracts were filtered over 0.45 µm cellulose acetate micro pore filters (Schleicher & Schuell, 

ref no: 10462650). The filtrates were further analyzed.  

 

Plant experiments 

Metal concentrations in soil solution from two previously reported pot trial studies, in which 

FeEDDHA facilitated Fe uptake had been established, were examined in view of the shuttle 

mechanism. Details regarding the preparation of the pot trials, the experimental solutions and 

plant care are presented in Schenkeveld et al. (2008; 2010a). 

In plant experiment 1, metal concentrations in the pore water of Santomera soil were 

monitored for 6 weeks using rhizon pore water samplers (rhizons) (SMS MOM, Rhizosphere 
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Research Products, Wageningen, The Netherlands). The pot trial included a blank and  

2 FeEDDHA treatments, applied to pots both with and without soybean plants. FeEDDHA 

treatments were equal in Fe dose (4 mg l
-1
 Fe (72 µM)), but differed in o,o-FeEDDHA content 

(i.e. the sum of racemic and meso o,o-FeEDDHA): 30% and 100%. Rhizons consist of a 

cylindrical polyethersulfone (PES) membrane (diameter: 2.5 mm; length: 10 cm;  

pore size: < 0.2 µm) connected to a PVC/PE tube. Before use, the rhizons were cleaned with  

0.14 M HNO3 and ultra pure water, rinsed with 1 mM NaNO3 and stored in a 1 mM NaNO3 

solution. The rhizons were incorporated in the soil when the pots were filled, with the 

membrane placed horizontally at a height of approximately 10 cm above the bottom plate. The 

ending of the PVC/PE tube was connected to the rim of the pot. Sampling was done twice per 

week by imposing a vacuum on the inside of the rhizon with a 10 ml syringe with luer lock 

(SS*10LZ1, Terumo) for 16 hours at most. The first ml sampled was used for rinsing and led 

back into the pot. The sample size did not exceed 6 ml and exposure of the sample to light was 

prevented. Experiment 1 was executed in duplicates. 

In plant experiment 2, soybean plants grown on calcareous soil from Santomera were offered 

FeEDDHA treatments, equal in Fe dose (7 mg l
-1
 Fe (0.13 mM Fe)) but differing in  

o,o-FeEDDHA content. Two control treatments were included: 1) with plants, without 

FeEDDHA addition, 2) without plants with FeEDDHA addition. Eight weeks after transfer of 

the seedlings to the pots, the plants were harvested. Collection and analysis of roots and pore 

water are described in Schenkeveld et al. (2008). Additionally, after collection and rinsing 

with demineralized water, the roots were extracted with 150 ml 10 mM Na2H2EDTA (ethylene 

diamine tetra acetic acid) solution by manual shaking for one minute. The amount of metals 

extracted represents a measure for the amount of metals adsorbed onto the root surface (Bates, 

et al., 1982; Hassler, et al., 2004; Kalis, et al., 2007; Kalis, et al., 2006). Extracts were filtered 

over a 0.45 µm cellulose acetate micro pore filter (Schleicher & Schuell, ref no: 10462650). 

The filtrate was further analyzed. Experiment 2 was conducted in triplicates. 

 

Chemical analyses 

Cu, Al, Mn, Zn, Ni and Co concentrations were measured by ICP-MS (Perkin Elmer, ELAN 

6000). Samples were acidified with nitric acid before ICP-measurement, with exception of the 

EDTA extracts. FeEDDHA isomer concentrations were determined after separation through 

high-performance liquid chromatography (HPLC) as described in Schenkeveld et al. (2007). 

The concentrations of metals other than Fe, chelated to EDDHA components were calculated 

as the difference between the metal concentration in the EDDHA treatment and the blank. 

 

Statistical analysis 

Statistical analysis of the data was performed using SPSS 12.0. Homogeneity of the data was 

tested with the Levene’s test (α = 0.05). Differences among treatments were determined by 

applying the multivariate general linear model procedure with a Tukey post-hoc test  

(α = 0.05).  
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Results and Discussion 
 

Batch experiment 1 

Metal mobilization was examined as a function of time upon interaction of EDDHA ligands 

with 4 calcareous soils. For Santomera soil, soil solution concentrations of the quantitatively 

most important cations (Al, Cu, Fe and Mn) are presented in Figure 9.2; for the 3 other soils, 

the results are presented in the Appendix (Figure A9.1 - A9.3). The kinetics of metal 

mobilization from soil by EDDHA ligands are fast: after 1 hour, mobilized metals accounted 

for 90 - 92% of the racemic o,o-EDDHA, 83 - 88% of the meso o,o-EDDHA, and 36 - 67% of 

the o,p-EDDHA added. This implies the average residence time of EDDHA ligand in soil 

solution is short. 

Metal mobilization by racemic and meso o,o-EDDHA is fairly similar, while metal 

mobilization by o,p-EDDHA differs distinctively. In all soils o,p-EDDHA mobilized more Cu 

and less Fe than o,o-EDDHA ligands. Furthermore, contrary to o,o-EDDHA, o,p-EDDHA 

hardly mobilized Al or Mn from any soil. To a substantial degree, the different mobilization 

behaviour results from the fact that phenolic hydroxyl groups in para position are sterically 

inhibited from contributing to chelation. The lack of a second phenolic hydroxyl group 

binding the metal considerably affects the relative affinity of o,p-EDDHA for metals in 

comparison to o,o-EDDHA. 

The concentrations of Fe and Al mobilized by o,o-EDDHA remained approximately constant 

over time, while the concentrations of Cu and Mn decreased and eventually approached zero, 

except in the Hofuf soil. The fact that Fe and Al concentrations remained unaffected by the 

decrease in Cu and Mn concentration suggests o,o-CuEDDHA and o,o-MnEDDHA complexes 

adsorbed and no substantial degree of complex dissociation or cation displacement reaction 

took place; Fe availability (DTPA-extractable Fe) did not limit further Fe mobilization. The 

strong tendency of o,o-CuEDDHA to adsorb to soil has been previously reported by 

Schenkeveld et al. (2010d) and the relatively slow decline in Cu and Mn concentration in the 

Hofuf soil, which has the lowest content of reactive soil compounds, further supports the 

involvement of adsorption.  

O,o-CuEDDHA is removed from solution more quickly than o,p-CuEDDHA and thus displays 

a stronger tendency to adsorb, despite its higher complexation constant. In view of adsorption, 

it is remarkable that the decrease in CuEDDHA concentration did not set in immediately, but, 

in the case of Santomera soil, only after 2 days. The adsorption mechanisms of metal-EDDHA 

complexes to soil need to be further examined and are presumably affected by the geometry of 

the metal-EDDHA coordination complexes: FeEDDHA has a mildly distorted octahedral 

structure, resulting from heterogeneity in coordinating groups (Bailey, et al., 1981); 

AlEDDHA has an octahedral structure (Rajan, et al., 1981), presumably also mildly distorted; 

Mn(III)EDDHA has a more severely distorted octahedral structure with elongated metal-

ligand bonds along the z-axis (a Jahn-Teller effect) (Bihari, et al., 2002); and CuEDDHA has 

the most severe (Jahn-Teller) octahedral distortion (Riley, et al., 1983), in solution presumably  
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resulting in a square planar structure, in which the carboxylic groups are detached at high pH 

and the (protonated) phenolate groups at low pH (Frost, et al., 1958). Functional groups which 

are detached or participate in relatively weak elongated bonds may bind to soil reactive 

surface groups more easily, and positions on octahedral coordination complexes not occupied 

by, or bonded relatively weakly to EDDHA ligands may facilitate ligand exchange reactions, 

with e.g. soil organic matter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2:  Percentage of a) racemic o,o- EDDHA; b) meso o,o-EDDHA; and c) o,p-EDDHA added, 

chelated to Fe, Cu, Mn and Al in solution upon interaction with Santomera soil as a function of time. 

Error bars indicate standard deviations. 
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Batch experiment 2 

Because the Fe uptake flux at plant roots is relatively small and complexation kinetics are fast, 

the EDDHA concentration near the roots resulting from Fe uptake from FeEDDHA will be 

near-zero. In batch experiment 1 the concentration administered was orders of magnitude 

higher, and mobilization of certain metals can then become limited by decreasing metal 

availability on the soil reactive surfaces. In batch experiment 2, metal mobilization from soil 

was examined as a function of the administered EDDHA concentration to address  

metal-EDDHA speciation resulting from (infinitesimally) low EDDHA doses. Interaction time 

was set at 24 hours, because, on average, overall metal mobilization was highest at that 

moment. For Santomera soil, mobilized Al, Cu, Fe and Mn concentrations are presented in 

Figure 9.3. For the other soils, the results are presented in the Appendix (Figure A9.4 – A9.6). 

In Santomera soil, metal concentrations increased approximately linearly with increasing 

EDDHA concentration added; for the other soils this linear relation was not always observed. 

Deviation from the linear increase was most pronounced for racemic and meso o,o-EDDHA 

interacting with Hofuf soil (Figure A9.6): at low EDDHA concentrations mainly Cu was 

mobilized, at high EDDHA concentrations, as a result of decreased Cu availability due to 

extraction, mainly Fe. 

Metal concentration data were fit and the fitting curves extrapolated to [EDDHA]added = 0. The 

tangent of a fitting curve at [EDDHA]added = 0 corresponds to the fraction of the EDDHA 

ligand, mobilizing a specific metal upon addition of an infinitesimally low EDDHA 

concentration. All tangents are presented in Table 9.2, as percentages instead of fractions. 

Chelate adsorption by the soil is the most plausible explanation for the fact that the sum of 

percentages (per EDDHA ligand, per soil) remained mostly below 100%. Upon addition of 

(infinitesimally) low EDDHA ligand concentrations, only 20.8 – 47.8% of racemic  

o,o-EDDHA, 20.5 – 52.0% of meso o,o-EDDHA, and 0 – 14.6% of o,p-EDDHA would 

mobilize Fe from soil. This implies that the efficiency of a potential shuttle mechanism would 

be heavily compromised by the limited specificity of EDDHA ligands for mobilizing Fe from 

soils with a low Fe availability. In general, Cu is the principal competing metal; 9.2 – 70.1% 

of racemic o,o-EDDHA, 15.4 – 69.4% of meso o,o-EDDHA and 14.3 – 89.5% of o,p-EDDHA 

would mobilize Cu. Over 90% of the mobilized metal by o,p-EDDHA would be Cu, except in 

the Nadec soil. Although the relative affinity of racemic and meso o,o-EDDHA for Fe and Cu 

differ (Schenkeveld, et al., 2010d), the extent to which they mobilize Fe and Cu are similar, 

except in the Nadec soil. Therefore metal mobilization must at least in part be governed by 

kinetic rather than thermodynamic principles.  

The deviant metal mobilization from Nadec soil is related to the fact that racemic o,o-EDDHA 

mobilized more Mn than meso o,o-EDDHA, which strongly manifested due to the very low Fe 

and Cu availability of Nadec soil (Table 9.1 and 9.2). Upon chelation under aerobic 

conditions, Mn(II) (from the soil) is oxidized to Mn(III) (Patch, et al., 1982). The difference in 

Mn mobilization by racemic and meso o,o-EDDHA is probably (co-)related to the difference 

in oxidation rate. In plain solution, it was observed that Mn oxidation, which is accompanied 
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by a change in colour of the complex from pale pink to brown, is considerably faster for 

racemic o,o-MnEDDHA. For ligands like EDDHA, primarily consisting of hard Lewis bases, 

complexation constants are generally higher for the trivalent than for the divalent species of a 

metal. The faster formation of a more stable o,o-Mn(III)EDDHA chelate is advantageous in 

competition with other metals. Redox behaviour and stability of MnEDDHA complexes need 

to be further examined, but were outside the scope of this study.  

 

 

Figure 9.3: Metal-EDDHA concentrations in solution after 24 hours of interaction between EDDHA 

isomers and Santomera soil as a function of the concentration of a) racemic o,o-EDDHA; b) meso  

o,o-EDDHA; and c) o,p-EDDHA added. Error bars indicate standard deviations. 
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Table 9.2: Metal mobilization by infinitesimally small amounts of EDDHA ligands interacting with 4 

calcareous soils. Metal mobilization is expressed as a percentage of the amount of EDDHA ligand 

added, chelating a specific metal in soil solution. Percentages were determined from the tangents of 

concentration curves at [EDDHA]added = 0 (See Figure 9.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
n.d.: not determined – concentration data could not be properly fit for deriving the tangent. 
 

 

Batch experiment 3 

The gradual release of racemic and meso o,o-EDDHA at plant roots resulting from FeEDDHA 

facilitated Fe uptake was mimicked by periodical addition of small amounts of o,o-EDDHA to 

Santomera soil. Over a period of 36 days, EDDHA was added in 15 aliquots to a total 

concentration of 27 µM. Less than 2% of the EDDHA added was removed by periodical 

sampling. Fe and Cu concentration data are presented in Figure 9.4. 

The FeEDDHA concentration data presents 3 points of attention. First, the slope of the 

concentration curve near t=0 indicates that both o,o-FeEDDHA isomers accounted for only  

10 - 12% of the EDDHA added. This is a factor 2 - 2.5 lower than derived with the tangent in 

 Santomera Xeraco L Nadec Hofuf 

racemic o,o-EDDHA   

Al 5.5% n.d.
 

9.3% 0.4% 

Co 0.1% 0.1% 2.3% 0.4% 

Cu 49.4% 24.9% 9.2% 70.1% 

Ni 0.4% 0.2% 0.7% 0.1% 

Mn 5.4% 1.7% 60.7% 6.6% 

Fe 26.8% 47.8% 20.8% 25.0% 

     
     
total 87.6% 74.8% 102.9% 102.5% 

     

meso o,o-EDDHA    

Al 5.6% n.d. 24.4% 2.9% 

Co 0.2% 0.2% 5.0% 0.5% 

Cu 52.5% 23.3% 15.4% 69.4% 

Ni 0.1% 0.0% 1.4% 0.1% 

Mn 0.1% 0.0% 12.5% 0.8% 

Fe 24.8% 52.0% 44.8% 20.5% 

     
     
total 83.3% 75.6% 103.5% 94.1% 

     

o,p-EDDHA    

Al n.d. n.d. n.d. n.d. 

Co 0.1% 0.1% 4.2% 0.3% 

Cu 79.0% 58.3% 14.3% 89.5% 

Ni 0.0% 0.2% 3.3% 0.5% 

Mn 0.7% 0.1% 6.1% 1.2% 

Fe 0.0% 2.1% 14.6% 3.1% 

     
     
total 79.7% 60.9% 42.4% 94.5% 
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batch experiment 2 (Table 9.2). Contrary to batch experiment 2, the soil had been allowed to 

equilibrate 2 days with background electrolyte solution prior to the first EDDHA addition. 

Apparently, equilibration negatively affected the relative availability of Fe compared to other 

metals. Secondly, o,o-FeEDDHA concentrations did not increase linearly with the amount of 

o,o-EDDHA added, as would be expected from batch experiment 2 (Figure 9.3), but the slope 

flattened (Figure 9.4a). And thirdly, meso o,o-FeEDDHA concentrations deviated more 

strongly from the expected linear increase than racemic o,o-FeEDDHA concentrations.  

 

Figure 9.4: a) o,o-FeEDDHA, and b) o,o-CuEDDHA concentration as a function of time. After each 

sampling session EDDHA was added, raising the concentration by 1.8 µmol l
-1
. The straight line in 9.4a 

represents the o,o-FeEDDHA concentration as a function of time if the increase had continued at the 

rate of t≈0. Because Fe availability does not become limiting for Fe mobilization as FeEDDHA, 

deviation from the straight line must be caused by a second process decreasing the FeEDDHA 

concentration. Therefore, the straight line represents the cumulative gross Fe mobilization. 

 

 

An ongoing decrease in relative Fe availability, affecting Fe mobilization by meso  

o,o-EDDHA more strongly than by racemic o,o-EDDHA, seems improbable. Instead, the 

involvement of a second process, causing a decrease in o,o-FeEDDHA concentration, 

simultaneous to the increase due to addition of o,o-EDDHA, is more likely. Assuming the 

relative availability of metals remained constant after equilibration and an equal amount of Fe 

was mobilized with each o,o-EDDHA addition, the rate of decrease was proportional to the 

o,o-FeEDDHA concentration, which suggests the second process caused an exponential 

decline. An exponential decline in concentration of o,o-FeEDDHA interacting with Santomera 

soil has been previously reported (Schenkeveld, et al., 2010a; Schenkeveld, et al., 2010c). 

Recent studies suggest this decline is caused by displacement of Fe from o,o-FeEDDHA by 

Cu (Schenkeveld, et al., 2010d; Schenkeveld, et al., 2010e). Results from the present study 

support this, demonstrating the high relative affinity of o,o-EDDHA for Cu, and the tendency 
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of o,o-CuEDDHA to be removed from soil solution, inducing an ongoing reinstallment of the 

solution equilibria involving EDDHA species and causing the o,o-FeEDDHA concentrations 

to decline. Meso o,o-FeEDDHA is more susceptible to Fe displacement by Cu than racemic 

o,o-FeEDDHA (Schenkeveld, et al., 2010d; Schenkeveld, et al., 2010e), which corresponds 

with the stronger deviation from linear increase in meso o,o-FeEDDHA concentration. No 

substantial decrease in o,o-FeEDDHA concentrations was however observed in batch 

experiment 1. This probably results from a combination of factors: the shorter interaction time 

(without previous equilibration), a (partial) depletion of available Cu due to the much higher 

o,o-EDDHA dose which caused a decrease in Cu activity, and the lower relative rate of 

decline at (considerably) higher initial FeEDDHA concentrations (Schenkeveld, et al., 2010a). 

 

The o,o-CuEDDHA concentration curves are typical for repetitive dosing with elimination: 

initially the concentration increased, but the slope flattened and a plateau was reached 

relatively quickly (Figure 9.4b). A saw-tooth concentration pattern underlies the measured Cu 

concentrations; upon o,o-EDDHA addition, Cu was mobilized from the soil and  

o,o-CuEDDHA concentration increased rapidly, after which it gradually decreased again due 

to adsorption, until new o,o-EDDHA was added again. The racemic and meso o,o-CuEDDHA 

concentration curves are identical, because the corresponding o,o-EDDHA ligands mobilize 

Cu to the same extent (Table 9.2), and adsorption kinetics of racemic and meso  

o,o-CuEDDHA are similar (Figure 9.2). The slopes of the concentration curves near t=0 

indicate that o,o-CuEDDHA accounted for only 6% of the o,o-EDDHA added, i.e. much less 

than the 49 - 53% derived with the tangent in batch experiment 2 (Table 9.2). In batch 

experiment 1, a strong increase in o,o-CuEDDHA adsorption was observed after 2 days. The 

2-day equilibration time in batch experiment 3, probably resulted in more favourable 

conditions for o,o-CuEDDHA adsorption already upon the first addition of EDDHA ligand, 

resulting in less o,o-CuEDDHA mobilization. The overall EDDHA fraction mobilizing metals 

was much lower than in batch experiment 2. After 2 days of interaction it equaled around 21% 

for both o,o-EDDHA isomers, compared to 83 - 88% in batch experiment 2. The fraction 

further decreased throughout the experiment. 

Statistical analyses on metal concentrations in the 1:1, 1:5 and 1:25 PO4-extracts (Table 9.3) 

indicate that only Cu concentrations were significantly elevated in the racemic and meso  

o,o-EDDHA treatments in comparison to the blank; approximately to the same extent, as 

would be expected from the CuEDDHA concentrations in soil solution. FeEDDHA 

concentrations in the extracts were below determination limit and could not be measured. The 

increase in Al and Mn concentration with lower soil solution ratios is remarkable and probably 

related to the formation of soluble Al- and Mn-phosphate complexes.  

An additional 1:100 PO4-extraction was done, to closer estimate the amount of o,o-CuEDDHA 

adsorbed. When averaging the results of the racemic and meso o,o-EDDHA treatment, the 

extracted o,o-CuEDDHA accounts for 5.2 µM of the 27 µM o,o-EDDHA added; pore water 

content of the extracted soil (16.8%) and the CuEDDHA concentration therein (0.27 µM) were 

corrected for. No mass balance for the o,o-EDDHA ligands could be established and it is 

unclear which fraction of the adsorbed o,o-CuEDDHA was extracted. The results from the 
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extractions do however clearly indicate that o,o-CuEDDHA accounts for a substantial fraction 

of the o,o-EDDHA added, and that at least a factor 20 more o,o-CuEDDHA is adsorbed, than 

that is present in soil solution. 

 

 

Table 9.3: a) Metal concentrations extracted from Santomera soil with 20 mM PO4-extractant in 

various soil-solution ratios. Standard deviations are indicated between parentheses; b) P-values of the 

ANOVA; and c) P-values of the post-hoc test on treatment. 

 

(a)  Al Co Cu Mn Ni 

Extraction Treatment (µmol l
-1
) (nmol l

-1
) (nmol l

-1
) (nmol l

-1
) (nmol l

-1
) 

1:1 blank 4.8 (0.54) 5.8 (1.4) 393 (9) 23.7 (3.1) 60.8 (0.7) 

 racemic o,o-EDDHA 5.2 (0.12) 4.9 (0.2) 520 (52) 22.6 (1.5) 50.9 (9.9) 

 meso o,o-EDDHA 5.9 (1.2) 5.6 (0.7) 520 (46) 23.5 (2.3) 46.3 (0.5) 

       

1:5 blank 16.5 (0.8) 3.4 (0) 345 (4) 59.9 (5.9) 40.9 (3.4) 

 racemic o,o-EDDHA 23.7 (4.0) 3.4 (0.5) 402 (19) 87.0 (22.7) 57.7 (11.3) 

 meso o,o-EDDHA 17.8 (-) 3.4 (-) 392 (-) 76.1 (-) 51.4 (-) 

       

1:25 blank 16.9 (1.6) 1.4 (0.5) 161 (6) 91.0 (7.7) 29.6 (2.4) 

 racemic o,o-EDDHA 19.7 (3.6) 1.4 (0) 186 (18) 92.1 (4.1) 29.5 (2.6) 

 meso o,o-EDDHA 16.4 (2.2) 1.2 (0.2) 205 (12) 97.6 (6.2) 23.5 (1.0) 

       

1:100 blank   85 (4)   

 racemic o,o-EDDHA   122 (3)   

 meso o,o-EDDHA   136 (17)   

 

* in between parentheses: p-values if 1:100 extraction is included. 

 

 

Plant experiment 1 

Although quantitatively of little importance, Co mobilization by EDDHA is a suitable 

indicator for the shuttle mechanism in soil-plant systems. Unlike Cu and Mn, Co largely 

remains in solution
10
, the variance in concentration among replicates and over time tends to be 

small, and background Co concentrations in soil solution are generally very low compared to 

                                                
10
 This is illustrated by the Co mobilization data from batch experiment 1, presented in the Appendix 

 (Figure A9.7).  
 

(b) Effect of treatment   (c) Cu  

Al 0.059   blank - racemic 0.005 (0.001)* 

Co 0.761   blank – meso 0.007 (0.002) 

Cu 0.003 (0.000)*  racemic - meso 1.000 (0.909) 

Mn 0.222      

Ni 0.345      
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other metals. Therefore Co concentrations in the pore water of Santomera soil were examined 

as a function of time (Figure 9.5). 

Both plant and FeEDDHA treatment were required to obtain elevated Co concentrations. 

Elevation in Co concentration became substantial in the 3
rd
 week, when SPAD-indices of the 

youngest leaves in the blank treatment became significantly lower than those in the FeEDDHA 

treatments (Schenkeveld, et al., 2010a). This implies that, from the 3
rd
 week onwards, plants 

receiving FeEDDHA treatments were evidently utilizing the Fe offered as FeEDDHA. So, 

utilization of Fe from FeEDDHA and elevation in Co concentration coincided. The extent to 

which Co concentrations were elevated, was determined by the o,o-FeEDDHA content of the 

treatment. Fe uptake positively correlates to the amount of o,o-FeEDDHA applied 

(Schenkeveld, et al., 2008), so larger Fe uptake was related to more Co mobilization. These 

findings supports the hypothesis that upon FeEDDHA facilitated Fe uptake, EDDHA ligands 

are released and mobilize metals, i.c. Co. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.5: Co concentrations in the pore water of Santomera soil as a function of time for treatments 

with and without FeEDDHA application, and with and without plants.  

 

 

Plant experiment 2 

Because the kinetics involved with chelating and mobilizing metals are fast (see batch 

experiment 1), EDDHA ligands should be expected to mobilize metals from the direct vicinity 

of Fe uptake sites on the plasma membrane. Cell walls of root cells, both at the root surface 

and within the cortex, constitute a reactive surface onto which metals adsorb and metal 

hydroxides precipitate (Bienfait, et al., 1985; Kalis, et al., 2007). These metals are in close 

proximity to Fe uptake sites, and may comprise an important pool of metals for chelation by 

EDDHA ligands after Fe transfer. The effect of FeEDDHA application on metal availability at 

the root surface of soybean plants grown on Santomera soil was examined in plant 
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experiment 2 (Schenkeveld, et al., 2008) by means of an EDTA extraction of the roots. The 

amounts of Al, Co and Ni extracted from the root surface per gram dry weight root decreased 

linearly with increasing o,o-FeEDDHA content of the treatment (Figure 9.6). Blanks (without 

FeEDDHA treatment) have been excluded from the regression, because stress response 

mechanisms to Fe deficiency (rhizosphere acidification, excretion of chelating agents, etc 

(Marschner, et al., 1986)), cause metal mobilization from the root surface, unrelated to 

FeEDDHA application. 

 

 

Figure 9.6: EDTA-extractable a) Al; b) Co; and c) Ni from roots of soybean plants grown on 

Santomera soil as a function of the o,o-FeEDDHA content of the treatment. The slopes of the 

regression lines for Al (p = 0.004), Co (p = 0.000) and Ni (p = 0.001) are significantly different from 0. 

Error bars indicate standard deviations. 
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Consistently, the concentrations of Al, Co and Ni in soil solution increased linearly with 

increasing o,o-FeEDDHA content of the treatment (Figure 9.7). In agreement with plant 

experiment 1, the data indicate that elevated metal concentrations are a combined effect of 

plant and FeEDDHA application: both the treatments with plant without FeEDDHA, and with 

FeEDDHA without plant result in lower metal concentrations than the treatments with both 

plant and FeEDDHA.  

 

 

 

Figure 9.7: Al (a), Co (b) and Ni (c) concentration in the pore water of Santomera soil as a function of 

the o,o-FeEDDHA content of the treatment. Slopes of the regression lines for Al (p = 0.000),  

Co (p = 0.000) and Ni (p = 0.001) deviate significantly from 0. Error bars indicate standard deviations. 
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For Fe and Cu, no significant decrease in EDTA-extractable amounts were observed as a 

function of the o,o-FeEDDHA content of the treatments. Possibly, the method applied does 

not deliver an adequate indication for Fe availability at the root surface due to the short 

extraction time and the relatively slow kinetics involved with EDTA-enhanced dissolution of 

Fe(hydr)oxides (Nowack and Sigg, 1997) from the root surface. Upon chelation of “root 

surface-Cu” by o,o-EDDHA, its high affinity for reactive surfaces may have caused  

o,o-CuEDDHA to adsorb to the root surface. If so, the amount of root surface-Cu remains 

unaffected by FeEDDHA treatment; possibly, part of the Cu in the EDTA extract was or had 

been chelated to o,o-EDDHA. 

 

With the experimental setup of the plant experiments, it could not be determined whether the 

Fe chelated to o,o-EDDHA in soil solution was applied with the treatment or if it originated 

from the soil. Although, for this reason, the evidence of the shuttle mechanism remains 

circumstantial, the combined results of batch and plant experiments are convincing. Upon 

interaction of EDDHA ligands with soil in batch experiments, both Fe and competing metals 

were mobilized. In plant experiments, the soil solution concentration of competing metals, 

forming EDDHA chelates with limited affinity for the solid phase, were only elevated in 

treatments with plants receiving FeEDDHA; and elevation only started when plants had 

evidently started to utilize Fe from FeEDDHA. This suggests that, after Fe transfer to the 

plant, EDDHA ligands had mobilized competing metals; given the results from the batch 

experiments, it is only likely that EDDHA ligands will also have mobilized Fe. 

If the efficiency of the shuttle is largely controlled by metal availability in the bulk soil, it is 

heavily compromised by competition from other cations. The Fe mobilizing efficiency 

amounted 21 - 52% for direct o,o-EDDHA application to calcareous soils; equilibration with 

electrolyte solution prior to o,o-EDDHA application to Santomera soil decreased the 

efficiency from 25 - 27% to 10 - 12%. However, root extraction data from plant experiments 

suggest that at least part of the metals mobilized by EDDHA were not adsorbed to soil, as 

suggested in Lindsay and Schwab’s conceptual model, but to the root surface. Metal 

availability in the rhizosphere and the potential role of the apoplastic Fe pool in the roots 

(Bienfait, et al., 1985; Strasser, et al., 1999) need to be further examined in relation to metal 

chelation by EDDHA ligands. Tracer studies with isotope labeled FeEDDHA could aid this 

and help to provide a better understanding of the actual effectiveness of the shuttle mechanism 

in soil-plant systems.  
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Appendix 

 

Figure A9.1: Percentage of a) racemic-o,o EDDHA; b) meso o,o-EDDHA; and c) o,p-EDDHA added, 

chelated to Fe, Cu, Mn and Al in solution upon interaction with Xeraco L soil as a function of time. Error 

bars indicate standard deviations. 
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Figure A9.2: Percentage of a) racemic-o,o EDDHA; b) meso o,o-EDDHA; and c) o,p-EDDHA added, 

chelated to Fe, Cu, Mn and Al in solution upon interaction with Nadec soil as a function of time. Error 

bars indicate standard deviations. 
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Figure A9.3: Percentage of a) racemic-o,o EDDHA; b) meso o,o-EDDHA; and c) o,p-EDDHA added, 

chelated to Fe, Cu, Mn and Al in solution upon interaction with Hofuf soil as a function of time. Error 

bars indicate standard deviations. 
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Figure A9.4: Metal-EDDHA concentrations in solution after 24 hours of interaction between EDDHA 

isomers and Xeraco L soil as a function of the concentration of a) racemic o,o-EDDHA; b) meso  

o,o-EDDHA; and c) o,p-EDDHA added. Error bars indicate standard deviations. 

0

10

20

30

40

0 20 40 60

EDDHA added (µmol l
-1
)

M
e
ta
l-
E
D
D
H
A
 (
a
q
) 
(µ
m
o
l 
l -
1
)

Fe

Cu

Mn

Al

 

a 

0

10

20

30

40

0 20 40 60

EDDHA added (µmol l
-1
)

M
e
ta
l-
E
D
D
H
A
 (
a
q
) 
(µ
m
o
l 
l -
1
)

Fe

Cu

Al

Mn

 

b 

0

10

20

30

40

0 20 40 60

EDDHA added (µmol l
-1
)

M
e
ta
l-
E
D
D
H
A
 (
a
q
) 
(µ
m
o
l 
l -
1
)

Cu

Al

Fe

Mn

 

c 



The shuttle mechanism of FeEDDHA chelates at the soil-root interface 
 

 

 207 

 

 

Figure A9.5: Metal-EDDHA concentrations in solution after 24 hours of interaction between EDDHA 

isomers and Nadec soil as a function of the concentration of a) racemic o,o-EDDHA; b) meso  

o,o-EDDHA; and c) o,p-EDDHA added. Error bars indicate standard deviations. 
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Figure A9.6: Metal-EDDHA concentrations in solution after 24 hours of interaction between EDDHA 

isomers and Hofuf soil as a function of the concentration of a) racemic o,o-EDDHA; b) meso  

o,o-EDDHA; and c) o,p-EDDHA added. Error bars indicate standard deviations. 
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Figure A9.7: Percentage of EDDHA isomers added, chelated to Co in solution upon interaction with  
a) Santomera soil; b) Xeraco L soil; c) Nadec soil; and d) Hofuf soil as a function of time.
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“Mann und Weib, und Weib und Mann, 

  reichen an die Gottheit an.” 

 

trans. 

“Man and wife, and wife and man, 

  reach to the height of godliness.” 

 

Excerpt from the libretto of: 

“Die Zauberflöte”  

by Emanuel Schikaneder (1751 - 1812) 
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Introduction 

In the general introduction (Chapter 1) it has been outlined, that, although FeEDDHA (iron 

(3+) ethylene diamine-N,N’-bis(hydroxy phenyl acetic acid)) products have been commonly 

applied to prevent and remedy Fe chlorosis in plants grown on calcareous soil since the 1950s, 

the fate and effectiveness of FeEDDHA components in soil-plant systems are still poorly 

understood. For an efficient use of FeEDDHA fertilizer, however, an advanced understanding 

of both the behaviour of FeEDDHA components in soil-plant systems, and of the efficiency of 

the individual FeEDDHA components in supplying plants with Fe is essential. Only with this 

understanding, moment and frequency of application, dosage and composition of the 

FeEDDHA treatment can be suitably matched with the Fe requirements of the crop and the 

characteristics of the soil. 

In the preceding chapters several specific aspects regarding the behaviour of FeEDDHA 

components in soil-plant systems and the efficiency of FeEDDHA components as Fe fertilizer 

have been examined. The purpose of this concluding chapter is to present the key findings 

from this research study in a more coherent context, on the basis of a conceptual model. The 

model aims to identify and qualitatively describe the processes determining the fate of the 

individual FeEDDHA components, and is used as a starting point for discussing their 

effectiveness. It is based on the soil-plant system examined in the pot trial studies, presented in 

chapter 3 to 5, and was constructed from data collected in batch experiments, incubation 

experiments, pot trials and model calculations, described in the preceding chapters, 

supplemented with additional experimental data. The additional experiments are described in a 

materials and methods section, which is included in the Appendix.  

First, the conceptual model is presented and elucidated on the basis of the observed 

concentration behaviour of individual EDDHA components. Then, the processes affecting 

EDDHA component concentrations are examined separately and more in-depth. Subsequently, 

the effectiveness of FeEDDHA components is discussed. In conclusion, the implications and 

limitations of the conceptual model and of the research presented in this thesis in general are 

considered, and suggestions for further research are made.  

 

 

Conceptual model 

A conceptual model for the behaviour of FeEDDHA components in soil-plant systems is 

presented schematically in Figure 10.1. The backbone of the model consists of three processes, 

indicated with bold arrows: 

 

1) FeEDDHA adsorption 

2) Fe displacement from adsorbed FeEDDHA by Cu, followed by CuEDDHA release 

into solution 

3) Slow re-adsorption of CuEDDHA 
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Figure 10.1: Conceptual model for the behaviour of FeEDDHA components in soil-plant systems. Bold 

arrows indicate the dominant direction of reversible processes. 

 

 

Through mechanistic multi-surface modeling it has been affirmed there is a thermodynamic 

basis for assuming that cation competition from Cu may impact the soil solution concentration 

of all major FeEDDHA components in calcareous soils (Schenkeveld, et al., 2010d). The 

extent to which EDDHA is chelated to Cu under equilibrium conditions depends strongly on 

the EDDHA component as well as on soil characteristics like pH, Cu and reactive surface 

contents, and the solubility of the Fe(hydr)oxide phase. Complexation and mobilization of Cu 

upon interaction of EDDHA ligands with various calcareous soils confirmed the high relative 

affinity of the EDDHA ligands for Cu (Schenkeveld, et al., 2010f). In goethite suspensions it 

was demonstrated that the displacement of Fe from FeEDDHA by Cu is not kinetically 

inhibited (Schenkeveld, et al., 2010d) and predominantly occurs at a (soil) reactive surface, 

rather than in (soil) solution (Schenkeveld, et al., 2010e). This implies that FeEDDHA 

adsorption precedes Fe displacement (Figure 10.1). FeEDDHA adsorption is a relatively fast 

process; in goethite suspensions approximate adsorption equilibrium was attained within half 

an hour (Schenkeveld, et al., 2010e), in a soil incubation study the concentration drop as result 

of adsorption was completed within 24 hours (Schenkeveld, et al., 2010c).  

Depending on the FeEDDHA component, Fe displacement by Cu leads to a strong release of 

CuEDDHA into solution (Schenkeveld, et al., 2010c; Schenkeveld, et al., 2007) (Figure 10.1). 

In goethite suspensions it was demonstrated that for a given FeEDDHA complex, the rate of 
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the displacement reaction in terms of decrease in FeEDDHA solution concentration depends 

on the available reactive surface area and on the FeEDDHA and Cu loading on this reactive 

surface area (Schenkeveld, et al., 2010e). For soil conditions, the rate equation of the 

displacement reaction can be simplified assuming: 1) adsorption is linear, 2) the Cu loading on 

the reactive surface remains constant, and 3) soil solution concentrations remain remote from 

equilibrium. The simplified rate equation can be solved to an exponential decay function in 

FeEDDHA solution concentration (Schenkeveld, et al., 2010e).  

CuEDDHA released into soil solution gradually re-adsorbs (Figure 10.1). CuEDDHA has a 

high affinity for the soil solid phase (Schenkeveld, et al., 2010d). The strong tendency of 

CuEDDHA to adsorb greatly increases the impact of Cu competition on the FeEDDHA 

concentration in soil solution: as a result of the high degree of CuEDDHA adsorption, much 

more Fe needs to be displaced by Cu before the equilibrium ratio between FeEDDHA and 

CuEDDHA in soil solution is reached. The kinetics of CuEDDHA re-adsorption are much 

slower than the kinetics of FeEDDHA adsorption; after Cu had been rapidly mobilized from 

soil by EDDHA ligands, the CuEDDHA concentration remained approximately constant for 

approximately two days after which it gradually decreased in the course of days rather than 

hours (Schenkeveld, et al., 2010f). 

 

In addition to the aforementioned processes, also Fe uptake is included into the conceptual 

model. In a pot trial it was shown that when FeEDDHA components are affected relatively 

little by cation competition, Fe uptake can lead to a pronounced decrease in FeEDDHA 

component concentration (Schenkeveld, et al., 2010a). It is generally assumed that the 

principal mechanism of Fe uptake from Fe chelates involves Fe reduction on the complex, 

chelate splitting and release of the ligand into soil solution (Chaney, et al., 1972; Lindsay and 

Schwab, 1982). A limited specificity of EDDHA ligands for chelating Fe from soil or root 

surfaces is the most probable cause for the contribution of Fe uptake to the decrease in 

FeEDDHA component concentration. In particular chelation of Cu was found to compromise 

efficiency of chelating Fe (Figure 10.1) (Schenkeveld, et al., 2010f). 

Biodegradation was found not to affect FeEDDHA or CuEDDHA component concentration 

and has therefore not been included into the conceptual model (Schenkeveld, et al., 2010c) 

 

 

EDDHA isomer speciation in soil solution 

Upon introduction into soil, the individual FeEDDHA components are exposed to the same 

conditions and processes. Still, the extent to which, and the rate at which the soil solution 

concentration of the FeEDDHA components is affected, differs distinctively as a result of 

differences in physico-chemical properties. This is illustrated for the quantitatively most 

important FeEDDHA components in FeEDDHA products: o,p-FeEDDHA (iron (3+) ethylene 

diamine-N-(2-hydroxy phenyl acetic acid)-N’-(4-hydroxy phenyl acetic acid) complexes) 

(Figure 10.2a), and racemic and meso o,o-FeEDDHA (iron (3+) ethylene diamine-N,N'-bis 

(2-hydroxy phenyl acetic acid) complexes) (Figure 10.2b). The o,p-FeEDDHA data were 

collected in a batch interaction experiment with FeEDDHA formulation “X” and Santomera 
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soil, described in the materials and methods section (SSR=1); the o,o-FeEDDHA data  were 

collected in a pot trial study with soybean grown on Santomera soil, receiving FeEDDHA 

treatment ((Schenkeveld, et al., 2010a); treatment 100%o,oL; SSR≈6). The o,o-FeEDDHA 

isomer concentrations in the interaction experiment with formulation “X” (data not shown) 

declined much more slowly. Due to the lower soil solution ratio, less reactive surface area per 

unit solution was available for the displacement reaction, causing a much slower decline.  

The three processes comprising the backbone of the conceptual model are well-illustrated 

from o,p-EDDHA speciation (Figure 10.2a). O,p-FeEDDHA was largely (for 86%) removed 

from soil solution within the first half hour, as a result of adsorption. Subsequently,  

o,p-CuEDDHA concentration increased, mainly as a result of Fe displacement from  

o,p-FeEDDHA by Cu, and release of o,p-CuEDDHA into solution. Formulation “X” contained 

a small fraction of o,p-EDDHA ligand, which also chelates and mobilizes Cu upon interaction 

with soil (Schenkeveld, et al., 2007; Schenkeveld, et al., 2010c). As a result, o,p-CuEDDHA 

concentration somewhat exceeded the initial o,p-FeEDDHA concentration after 1 day. After  

3 days, o,p-CuEDDHA adsorption became the dominant process, which resulted in a net 

gradual decline in o,p-CuEDDHA concentration until the end of the experiment. At the same 

time the remaining o,p-FeEDDHA was removed from soil solution, probably as a result of a 

shift in solution equilibria due to o,p-CuEDDHA adsorption. 

 

Figure 10.2: a) o,p-EDDHA speciation as a function of time in a batch experiment with FeEDDHA 

formulation “X” and Santomera soil (SSR = 1); b) o,o-EDDHA speciation in soil solution in a pot trial 

study with soybean plants grown on Santomera soil, receiving FeEDDHA treatment (Schenkeveld, et 

al., 2010a) (SSR = 6). Error bars indicate standard deviations. 
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decreased exponentially as a function of time as a result of Fe displacement by Cu, in 

accordance with the simplified rate equation for soil conditions (Schenkeveld, et al., 2010a; 

Schenkeveld, et al., 2010e). For racemic o,o-FeEDDHA the exponential decline as a result of 

Fe displacement is less pronounced, because the concentration is also substantially affected by 

other processes, in particular racemic o,o-FeEDDHA facilitated Fe uptake by plants (Figure 

10.1) (Schenkeveld, et al., 2010a). A significant effect of cation competition on the racemic 

o,o-FeEDDHA concentration, is however confirmed in batch and incubation experiments 

(Schenkeveld, et al., 2010c; Schenkeveld, et al., 2010f).  

The sequence in rate of decline in FeEDDHA component concentration equals:  

o,p-FeEDDHA >> meso o,o-FeEDDHA > racemic o,o-FeEDDHA (Figure 10.2a and 10.2b). 

This sequence corresponds with both the affinity of the FeEDDHA components for the soil 

solid phase and the relative affinity of the corresponding EDDHA ligand for Cu in comparison 

to Fe (Schenkeveld, et al., 2010d; Schenkeveld, et al., 2010a).  

Contrary to o,p-FeEDDHA, Fe displacement from o,o-FeEDDHA by Cu did not substantially 

increase the Cu concentration in soil solution (Figure 10.2b). This can be explained in view of 

the relation between the rate of Fe displacement and CuEDDHA release into solution (rCu-rel), 

and the rate of CuEDDHA adsorption (rCu-ads). If rCu-rel > rCu-ads, this leads to an increase in 

CuEDDHA concentration in soil solution (Figure 10.2a up until 3 days). If rCu-rel < rCu-ads, 

CuEDDHA concentration will decrease or no CuEDDHA mobilization will occur (Figure 

10.2b and 10.2a after 3 days). Net o,p-CuEDDHA mobilization is kinetically favoured in 

comparison to o,o-CuEDDHA mobilization because: 1) o,p-FeEDDHA has a relatively high 

affinity for the soil solid phase where the displacement reaction takes place (Schenkeveld, et 

al., 2007), 2) Fe is bonded less strongly in the pentadentate o,p-FeEDDHA complex than in 

the hexandentate o,o-FeEDDHA complex; therefore Fe is probably displaced faster from  

o,p-FeEDDHA, and 3) o,o-CuEDDHA adsorption is considerably faster than o,p-CuEDDHA 

adsorption (Schenkeveld, et al., 2010f). 

 

 

Processes affecting FeEDDHA concentration  

 

FeEDDHA adsorption 

Adsorption of FeEDDHA components to soil is the net result of interaction with several soil 

reactive compounds, the most important ones being soil organic matter, clay and 

Fe(hydr)oxides (Hernandez-Apaolaza 2001). The extent to which FeEDDHA components 

adsorb is determined by both the affinity of the FeEDDHA components for the soil reactive 

compounds, and the occurrence of these compounds in the soil.  

Pending questions regarding FeEDDHA adsorption in view of the conceptual model are:  

1) which soil reactive compound dominates the adsorption process causing the initial 

concentration drop, as observed upon interaction of FeEDDHA components with Santomera 

soil (Figure 10.2); and 2) on which soil reactive compound does the displacement reaction take 

place? 
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The first question has been addressed by examining the adsorption behaviour of racemic and 

meso o,o-FeEDDHA to individual soil reactive compounds and interpreting this behaviour in 

relation to the adsorption isotherms of racemic and meso o,o-FeEDDHA to Santomera soil 

(Schenkeveld, et al., 2010a). Adsorption isotherms for racemic and meso o,o-FeEDDHA to 

Ca-montmorillonite and goethite were determined at pH 7, with CaCl2 as background 

electrolyte (Figure 10.3). For meso o,o-FeEDDHA adsorption to goethite, the influence of 

ionic strength and adsorbed organic matter were also examined (Figure 10.3a). For racemic 

o,o-FeEDDHA only the isotherm for I = 0.01 M could be determined; at I = 0.1 M, with and 

without adsorbed HA, adsorption was too small to reliably measure (Figure 10.3b).  

The adsorption isotherm with goethite and adsorbed HA was determined, because in soils, 

anions like phosphates and organic substances adsorb onto Fe(hydr)oxide surfaces thereby 

decreasing the electrostatic attraction between FeEDDHA and surface. For clay, an effect of 

anion adsorption has not been examined but is presumably smaller, because clay surfaces are 

already negatively charged. Adsorption to organic matter has not been considered, because the 

organic matter content of Santomera soil is low (≈ 1%) in comparison to the clay content  

(≈ 26%), and at neutral to alkaline pH, organic matter is strongly negatively charged, 

disfavouring FeEDDHA adsorption. 

 

The adsorption isotherms (Figure 10.3) strongly suggest that the initial concentration drop 

observed for FeEDDHA components interacting with Santomera soil was predominantly 

caused by adsorption to clay, for three reasons: 

First, the adsorption isotherms for racemic and meso o,o-FeEDDHA to Ca-montmorillonite 

are linear over the concentration range examined (Figure 10.3c), which corresponds with the 

shape of the adsorption isotherms to Santomera soil (Schenkeveld, et al., 2010a). Adsorption 

isotherms to goethite, however, bend off towards a maximum (Figure 10.3a and 10.3b). The 

negative effect of HA adsorbed onto the goethite surface on meso o,o-FeEDDHA adsorption 

shows clearly (Figure 10.3a).  

Secondly, the ratio of the tangents of the isotherms for meso and racemic o,o-FeEDDHA is 

also comparable for adsorption to Ca-montmorillonte and Santomera soil: approximately 2.5. 

The ratio between racemic and meso o,o-FeEDDHA adsorption to goethite on the other hand, 

differs by approximately a factor 10. 

And thirdly, by means of the presented adsorption isotherms, a first indication was obtained of 

how FeEDDHA adsorption to clay and Fe(hydr)oxides relate quantitatively in Santomera soil. 

For a given meso o,o-FeEDDHA concentration (0.2 mM), adsorption to clay and 

Fe(hydr)oxides were calculated, based on the reactive compound contents of Santomera soil  

(260 g kg
-1
 clay ; 0.57 g kg

-1
 reactive Fe(hydr)oxide and 10.6 g kg

-1
 crystalline Fe(hydr)oxide). 

Adsorption to crystalline Fe(hydr)oxides was assumed to correspond with adsorption to 

goethite; the reactive Fe(hydr)oxides content was multiplied by six (based on the ratio in 

specific surface area between hydrous ferric oxide (HFO) and goethite) and added to the 

crystalline Fe(hydr)oxide content. The isotherm involving goethite with adsorbed HA was 

used for determining meso o,o-FeEDDHA adsorption. The calculated amount of adsorbed 

meso o,o-FeEDDHA was four times higher for clay than for Fe(hydr)oxides.  
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Figure 10.3: a) Adsorption isotherms for meso o,o-FeEDDHA to goethite at pH 7 with CaCl2 as 

background electrolyte, I = 0.01 M and 0.1 M, with and without adsorbed HA; b) adsorption isotherm 

for racemic o,o-FeEDDHA to goethite at pH 7, with CaCl2 as background electrolyte, I = 0.1 M; and  

c) adsorption isotherms for racemic and meso o,o-FeEDDHA to Ca-montmorillonite at pH 7.1 with 

CaCl2 as background electrolyte; I = 0.3 M. Error bars indicate standard deviations. 
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(Schenkeveld, et al., 2007) show that the meso o,o-FeEDDHA concentration correlates much 
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(Figure 10.4). Linear regressions with R
2
 > 0.8 were obtained for all sampling moments. Meso 

o,o-FeEDDHA concentrations gradually declined and the slope of the regression line 

steepened throughout the experiment. The fact that the linear relation was preserved over time 

strongly suggests that the reactive surface and the cause for the gradual decline in meso  

o,o-FeEDDHA concentration are related. This cause had been established in the conceptual 

model as Fe displacement by Cu. Ergo, the displacement reaction probably takes place at 

reactive Fe(hydr)oxide surfaces, answering the second pending question.  

 

Figure 10.4: Meso o,o-FeEDDHA concentration as a function of the reactive Fe(hydr)oxide content of 

8 soils. Data were collected in a 1:1 (w/v) batch interaction experiment, and are presented for  

4 interaction times (Schenkeveld, et al., 2007). Open symbols represent sandy soils, closed symbols 

represent clay soils. The encircled data points concern a reference soil (Droevendaal) with a 

considerably lower pH. Error bars indicate standard deviations. 
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gave less good results. Meso o,o-FeEDDHA concentrations upon interaction with the 

reference soil Droevendaal (encircled in Figure 10.4) have not been included in the 

regressions. Despite its relatively high reactive Fe(hydr)oxide content, meso o,o-FeEDDHA 

concentrations remained constant throughout the experiment.  Presumably this should be 

attributed to the considerably lower pH-CaCl2 (5.3), in comparison to the other soils (≥ 7.0). 

At lower pH, Fe displacement by Cu is thermodynamically less favourable. 

It is important to note here that, although several experiments from which conclusions with 

respect to cation competition were drawn, were done specifically with Santomera soil, the 

relation between the rate of decline in meso o,o-FeEDDHA concentration and the reactive 

Fe(hydr)oxide content supports that the concept of Cu competition is more generally 

applicable for calcareous soils. 
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Fe displacement by Cu 

With the displacement reaction taking place on soil Fe(hydr)oxide surfaces, and FeEDDHA 

adsorption to Fe(hydr)oxides being non-linear, in principal the linear adsorption assumption 

for simplifying and solving the rate equation of the displacement reaction to an exponential 

decay function in FeEDDHA solution concentration is violated (Schenkeveld, et al., 2010e). 

Still, given the accurate exponential fits of meso o,o-FeEDDHA concentration data 

(Schenkeveld, et al., 2010a; Schenkeveld, et al., 2010c), apparently, within the concentration 

ranges observed in individual FeEDDHA treatments, FeEDDHA adsorption could still be 

considered approximately linear. However, in a pot trial study with Santomera soil and 

FeEDDHA treatments containing meso o,o-FeEDDHA concentrations over a relatively large 

concentration range: 0.012 – 0.36 mmol  (i.e. 0.68 – 20 mg l
-1
 Fe) (Schenkeveld, et al., 2010a), 

it was observed that the decay constant declined with increasing initial meso o,o-FeEDDHA 

concentration. This can be explained by assuming that at higher meso o,o-FeEDDHA 

concentrations, a smaller fraction adsorbed onto Fe(hydr)oxide surfaces where the 

displacement reaction takes place, resulting in a lower relative displacement rate. This 

explanation is in line with the observed non-linear adsorption to Fe(hydr)oxides  

(Figure 10.3a). The effect of the decay constant decreasing with increasing initial meso o,o-

FeEDDHA concentration may have been somewhat enhanced by plants, utilizing a higher 

meso o,o-FeEDDHA fraction for Fe uptake at lower initial meso o,o-FeEDDHA 

concentration, but was also observed in treatments with different initial meso o,o-FeEDDHA 

concentrations in which plants took up an equal amount of Fe (Schenkeveld, et al., 2010a). 

 

In retrospective it is deduced that the displacement rate increased with increasing temperature 

and that soil sterilization decreased the displacement rate (Schenkeveld, et al., 2010c). 

Gamma-irradiation generated a lot of dissolved organic carbon (DOC), which in part adsorbed 

onto soil Fe(hydr)oxides surfaces. DOC adsorption decreased FeEDDHA adsorption to these 

surfaces (Schenkeveld, et al., 2010e) and reduced the rate at which meso o,o-FeEDDHA was 

removed from soil solution. The lack of a significant difference in initial concentration drop 

between sterilized and non-sterilized treatments confirms that the contribution of adsorption to 

Fe(hydr)oxide surfaces to overall adsorption is marginal. 

 

Re-adsorption of CuEDDHA 

The part of the conceptual model covering CuEDDHA adsorption is still unsatisfying; since 

the displacement reaction takes place on a soil reactive surface, a release of CuEDDHA into 

solution before adsorption, as observed for o,p-CuEDDHA (Figure 10.2a), seems  

counter-intuitive. Rapid mobilization and gradual adsorption of o,o-CuEDDHA upon 

interaction of o,o-EDDHA ligands with soil raises a comparable question regarding the 

underlying mechanism. 

To explain these observations, a distinction between two mechanisms involved in CuEDDHA 

adsorption to soil is proposed: 1) a fast adsorption mechanism with limited adsorption capacity 

and 2) a slow adsorption mechanism with much larger adsorption capacity. Upon formation at 

the reactive surface, CuEDDHA is partly “instantaneously” adsorbed through the first 
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mechanism and partly released into solution, where it becomes subject to the second, slow 

adsorption mechanism, which is responsible for the observed gradual decline in CuEDDHA 

concentrations. The rate of CuEDDHA release (rCu-rel), mentioned before, equals the rate of 

CuEDDHA formation corrected for the extent of adsorption by the first adsorption 

mechanism, while rCu-ads equals the adsorption rate by the second mechanism. The first 

mechanism is treated as an equilibrium process on the time scale of the slow adsorption 

reaction. 

 

Thus far, little research on CuEDDHA adsorption to soil has been done. Therefore many 

questions regarding the soil reactive compounds involved and the mechanisms of action 

remain. Evidence for the fast adsorption mechanism was observed upon introduction of  

o,o-CuEDDHA into goethite suspensions (Schenkeveld, et al., 2010d); the concentration drop 

as a result of adsorption was completed within half an hour. Presumably this mechanism 

resembles the mechanism of FeEDDHA adsorption, which is comparably fast. Slow 

CuEDDHA adsorption was not observed in goethite suspensions, so other or additional soil 

compounds are involved.   

In batch experiments, it was observed that o,o-EDDHA mobilized substantially less metals, in 

particular Cu, if the soil was first equilibrated with background electrolyte before o,o-EDDHA 

ligand was added (Schenkeveld, et al., 2010f). Hence, it was concluded that equilibration led 

to conditions more favourable for o,o-CuEDDHA adsorption. The CuEDDHA coordination 

complex has elongated bonds along the z-axis, or even a square planar structure as a result of a 

Jahn-Teller distortion due to the odd number of electrons in the eg-orbitals (d-shell). This 

geometry makes the chelated Cu more susceptible to ligand exchange reactions than for 

instance Fe, which forms a relatively regular octahedral coordination complex with  

o,o-EDDHA. Functional groups of organic substances in the soil can participate in ligand 

exchange reactions. Therefore it is hypothesized that organic substances, which had 

coagulated while drying the soil, gradually unfolded upon rewetting and, in this unfolded 

form, were better able to participate in ligand exchange reactions, thereby enhancing the 

adsorption process. 

  

To test this hypothesis, the influence of equilibration time and addition of organic substance 

on the adsorption rate of racemic o,o-CuEDDHA was examined in a batch experiment with 

Santomera soil, described in the Appendix.  

Mobilization of Fe or any other metal, as a result of displacement, was negligible, indicating 

the Cu remained chelated by EDDHA. In the treatment which had not been equilibrated prior 

to CuEDDHA addition, CuEDDHA concentration displayed a small initial drop which is 

attributed to the fast adsorption mechanism. Subsequently, the concentration remained 

approximately constant for 2 days (Figure 10.5a), after which it started to gradually decrease 

due to the slow adsorption mechanism. In the three treatments which had been equilibrated 

before CuEDDHA addition, the decline in concentration set in straight away. Addition of 

organic substances had a considerable positive effect on the adsorption rate, and the effect was 

larger for FA than for HA; in the treatment without addition of organic substance, racemic  
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o,o-CuEDDHA was practically removed from solution after 96 hours, with HA addition after 

approximately 48 hours, and with FA addition after approximately 24 hours. In all treatments, 

the racemic o,o-CuEDDHA concentration declined linearly over time, indicating the rate of 

decline was independent of the CuEDDHA concentration, which corresponds with zero-order 

kinetics. 

The slow adsorption mechanism presumably involves the formation of a ternary surface 

complex between CuEDDHA, organic substance and a clay or Fe(hydr)oxide surface. This is 

derived from the observations that: 1) organic substance is clearly involved in the mechanism, 

and 2) the extent of o,o-CuEDDHA adsorption proved related to the clay and crystalline 

Fe(hydr)oxide content of calcareous soils, and not to the organic matter content or DOC 

concentration (Schenkeveld, et al., 2010d). The formation of a ternary complex of this sort 

may also help to explain why only a fraction of CuEDDHA could be desorbed from soil, even 

with a large excess of phosphate (20 mM PO4; SSR = 0.01) (Schenkeveld, et al., 2010f); large 

organic molecules like FA and HA participating in the ternary complex presumable bind more 

strongly to soil reactive compounds like Fe(hydr)oxides than individual chelates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.5: Racemic o,o-CuEDDHA concentration as a function of time upon interaction with 

Santomera soil in a 1:2 (w/v) batch experiment. Background electrolyte was 0.01 M CaCl2. Treatments 

involved equilibration prior to CuEDDHA addition and addition of humic acid (HA) and fulvic acid (FA). 

Error bars indicate standard deviations. 

 

 

The gradual decline in o,o-CuEDDHA concentration due to the slow adsorption mechanism, 

leads to gradual desorption of o,o-CuEDDHA adsorbed through the fast mechanism. The 

eventual near complete removal of CuEDDHA from soil solution, implies also the extent of 

adsorption by the fast mechanism becomes negligible. This has an important implication for 

the displacement reaction of Fe from FeEDDHA by Cu. It was concluded that the 

displacement reaction predominantly takes place on soil Fe(hydr)oxide surfaces (see 
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paragraph on FeEDDHA adsorption), and it was observed in goethite suspensions that (direct) 

CuEDDHA adsorption to Fe(hydr)oxides follows the fast mechanism. So despite the 

displacement reaction, the CuEDDHA loading on soil Fe(hydr)oxide surfaces remains low as a 

result of CuEDDHA desorption and re-adsorption through the slow mechanism (Figure 10.6).  

Therefore, CuEDDHA loading remains remote from the displacement equilibrium. This was 

one of the criteria for solving the displacement rate equation to an exponential function in 

FeEDDHA (Schenkeveld, et al., 2010e). 

The Fe displacement related increase in o,p-CuEDDHA concentration to the extent presented 

in Figure 10.2a may be considered an experimental artifact. Because the soil had been dried, 

the slow adsorption mechanism had a lag time (Figure 10.5a) and hardly affected the  

o,p-CuEDDHA concentration for the first 48 hours, during which Fe displacement from  

o,p-FeEDDHA by Cu was almost complete. Still, also addition of o,p-FeEDDHA to 

equilibrated soil systems leads to substantial mobilization of o,p-CuEDDHA (Schenkeveld, et 

al., 2010c) 

 

The presented data are inconclusive to whether CuEDDHA first binds to organic substances in 

solution and the two adsorb together as a complex, or CuEDDHA first adsorbs to a clay or 

Fe(hydr)oxide surface and organic substances bind to the adsorbed CuEDDHA complex. The 

zero-order kinetics, observed for the slow o,o-CuEDDHA adsorption, are typically found 

when a compound that is required for the reaction to proceed, is saturated by the reactant. 

Based on this notion, the following mechanism is hypothesized: organic substances capable of 

binding CuEDDHA through ligand exchange desorb from the soil solid phase (with a lag time 

if they first need to unfold); CuEDDHA binds in solution to a maximum extent (saturation) to 

dissolved organic substances with a limited number of suitable binding sites; the organic 

substances adsorb to the soil solid phase again, thereby decreasing the total CuEDDHA 

concentration in solution
11
. The overall DOC concentration remains approximately constant 

(Figure A10.1) as a result of simultaneous desorption of organic substances providing new 

binding sites for CuEDDHA. As long as the adsorbed organic substances binding CuEDDHA 

constitute a small fraction of the pool of desorbable organic substances, potentially binding 

CuEDDHA, the proposed mechanism continues to decline the CuEDDHA concentration at a 

constant rate. The continuous ad- and desorption of organic substances is comparable to the 

mechanism of a conveyor belt removing CuEDDHA from solution. 

In this hypothesized mechanism, the rate of ad- and desorption of organic substances and the 

number of suitable binding sites per unit organic substance determine the rate of CuEDDHA 

removal from solution. The difference in rate of decline in CuEDDHA concentration between 

the treatments with HA and FA addition should be explained from a difference in these 

factors. 

 

                                                
11
 Total CuEDDHA concentration comprises “free” CuEDDHA and CuEDDHA bonded to dissolved organic 

substances. Total CuEDDHA concentration was calculated as described in the Appendix; no distinction can be 

made between CuEDDHA species. 
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Based on the new insights in the processes affecting the concentration of FeEDDHA 

components, the conceptual model is revised and presented in Figure 10.6. The principal 

changes in comparison to Figure 10.1 are: 

 

• A distinction in FeEDDHA adsorption to different reactive soil compounds, with 

adsorption to clay causing the initial concentration drop, and adsorption to 

Fe(hydr)oxides determining the rate of the reaction at which Cu displaces Fe from 

FeEDDHA. 

• A distinction in two types of CuEDDHA adsorption: fast adsorption (and partial 

release into solution) upon CuEDDHA formation at the reactive surface, and slow 

CuEDDHA adsorption as ternary complex. 

 

 

 

Figure 10.6: Revised conceptual model for the behaviour of FeEDDHA components in soil-plant 

systems. Bold arrows indicate the dominant direction of reversible processes. Dashed arrows indicate 

uncertainty on the mechanism by which an EDDHA species arrives in a certain state. 
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Effectiveness 

The effectiveness of Fe chelates as fertilizer is based on their ability to maintain Fe in soil 

solution and deliver it to the plant. From the findings presented in this thesis, as well as from 

literature, a list of requirements for an effective chelate-based Fe fertilizer has been 

assembled. Most requirements are not straight forward in the sense that “more is better”; 

features of the chelate should remain within a specific bandwidth.  

 

Fe chelates used as fertilizer in soil application should: 

 

• Bind Fe strongly in order to prevent complex dissociation and subsequent precipitation 

of Fe, — but not too strongly, that the chelated Fe becomes unavailable to plants. 

• Be well-soluble and have limited affinity for soil reactive compounds in order to 

sufficiently increase Fe availability to meet the plants Fe demands, — but not readily 

leach out of the root-zone. 

• Have a high relative affinity for Fe, so that cation competition does not substantially 

limit the effectiveness of the Fe chelate, and the ligand will bind Fe from the soil, once 

Fe has been delivered to the plant. 

• Not be subject to biological or physico-chemical degradation throughout the growing 

season, — but neither be persistent in the environment. 

• Facilitate Fe uptake, — but not be taken up by the plant as a whole. 

 

 

FeEDDHA component  

In the pot trial experiments conducted, it was found that the effectiveness of FeEDDHA 

components in delivering Fe to soil-grown plants is largely determined by the ability of 

FeEDDHA components to remain in solution. Characteristics that proved essential for this are: 

a limited affinity for the soil solid phase - to avoid a high degree of adsorption, and a high 

(relative) affinity for Fe - to avoid Fe displacement from the FeEDDHA component by 

competing cations, in particular Cu. Since the displacement reaction of Fe by Cu mainly takes 

place on a soil reactive surface, the processes of adsorption and Fe displacement should not be 

considered as independent threats to the effectiveness of FeEDDHA components. 

 

The residence time of o,p-FeEDDHA in soil solution proved too short, to significantly 

contribute to facilitating Fe uptake (Schenkeveld, et al., 2010b). As discussed in view of the 

conceptual model, o,p-FeEDDHA displays a high degree of adsorption and a swift Fe 

displacement by Cu.  

The residence time of both racemic and meso o,o-FeEDDHA was much longer and both 

isomers did contribute to Fe uptake (Schenkeveld, et al., 2010b). Although both  

o,o-FeEDDHA isomers are also subject to cation competition from Cu (Schenkeveld, et al., 

2010c; Schenkeveld, et al., 2010f), the process goes much slower (Figure 10.2), at least in part 
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 due to a much lower tendency to adsorb in comparison to o,p-FeEDDHA (Schenkeveld, et 

al., 2007). The extent to which racemic and meso o,o-FeEDDHA facilitated Fe uptake was 

approximately equal on the timescale considered (Schenkeveld, et al., 2010b). Lucena and 

Chaney (2006) reported that meso o,o-FeEDDHA was more effective in delivering Fe to 

hydroponically grown cucumber plants than racemic o,o-FeEDDHA, as a result of a lower 

stability favouring Fe reduction at the root surface. Possibly in soil, a preferential Fe uptake 

from meso o,o-FeEDDHA was balanced by a higher affinity for the solid phase and a faster 

decline in soil solution concentration (Figure 10.2b). Because the racemic o,o-FeEDDHA 

concentration in soil solution declines slower than the meso o,o-FeEDDHA concentration, the 

former isomer will remain effective for a longer time-span than the latter (Figure 10.2b). The 

extent to which racemic and meso o,o-EDDHA ligands mobilize Fe from soil via a shuttle 

mechanism is comparable (Schenkeveld, et al., 2010f).  

The effectiveness of rest-FeEDDHA has not been separately assessed in soil plant-systems. In 

a pot trial study with FeEDDHA treatments differing in composition (Schenkeveld, et al., 

2008) it was concluded that o,o-FeEDDHA governed Fe uptake and the contribution of  

rest-FeEDDHA was marginal, at most. The tendency of rest-FeEDDHA to (quickly) adsorb to 

soil compound (Hernandez-Apaolaza, et al., 2006; Schenkeveld, et al., 2007), is the primary 

cause for its poor effectiveness.  

 

Soil factors  

Soil factors affect the residence time of FeEDDHA components in soil solution and hence the 

time-span they remain effective as Fe fertilizer. For this reason, soil factors should be included 

in soil-specific Fe fertilization recommendations, affecting the recommended dosage and/or 

frequency of FeEDDHA application. In this thesis, the following soil factors have been 

identified to substantially affect FeEDDHA component concentrations in calcareous soils:  

 

• Clay content – The initial drop in racemic and meso o,o-FeEDDHA concentration 

upon interaction with Santomera soil was mainly caused by adsorption to clay (Figure 

10.2b; see section on FeEDDHA adsorption). In a batch interaction experiment with 

eight soils, the remaining o,p-FeEDDHA concentration also decreased with increasing 

clay content of the soils (Schenkeveld, et al., 2007).  

• Fe(hydr)oxide content – Soil  Fe(hydr)oxides provide the reactive surface on which the 

displacement of Fe from o,o-FeEDDHA by Cu takes place (see section on FeEDDHA 

adsorption). For meso o,o-FeEDDHA it has been demonstrated that the rate of decline 

in soil solution concentration increased with increasing reactive Fe(hydr)oxide content.  

• Cu content – Cu constitutes an essential reagent in the aforementioned displacement 

reaction. In experiments with goethite suspensions, it has been demonstrated, that the 

decline in FeEDDHA solution concentration increased with increasing Cu loading on 

the Fe(hydr)oxide surface (Schenkeveld, et al., 2010e). 
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Practical implications and limitations 

The findings on the fate and effectiveness of FeEDDHA components in soil-plant systems 

presented in this thesis may: 

 

• Serve appliers of FeEDDHA fertilizer to make a better selection out of the available 

products and help them to optimize the dosage and frequency of application. Clay-, 

reactive Fe(hydr)oxide- and Cu content of the farmland constitute important input for 

composing a tailor-made Fe fertilization plan.  

• Serve producers of FeEDDHA fertilizers by providing leads for optimizing the 

compositions of their formulations and for effectively marketing their products. 

• Provide points of attention for developing new, more efficient Fe fertilizers for soil 

application, based on alternative Fe chelates. For instance, besides a sufficiently high 

complexation constant to prevent Fe precipitation, the great importance of a high 

relative affinity for Fe in comparison to competing cations, and a limited tendency to 

adsorb have been demonstrated.  

 

The presented conceptual model combines important insights in processes affecting the 

concentration of FeEDDHA components in a controlled, well-defined soil-plant system. These 

insights are of value to agricultural practice, because these same processes also take place in 

the field. A translation of the experimental results presented in this thesis to a field situation 

should however be treated with caution, because plant care and growth conditions differ 

strongly between the field and an academic setting, not all processes affecting FeEDDHA 

concentration in the field have been considered, and the relative impact of the individual 

process may well be different in the field than in a controlled environment. 

In this thesis study, insight in processes was pursued on a level, transcending individual soils 

and crops. Still, for practical reasons, only one plant species (soybean) has been used, and one 

specific soil (Santomera) has received particular focus. This inevitably holds a risk of  

over-representation of soil-, species- or even cultivar specific peculiarities. The risk was 

minimized by seeking to explain experimental observations by the underlying mechanisms. 

 

 

Recommendations for further research 

The following suggestions for complementary research are made, to further improve and 

expand the conceptual framework for understanding the fate and effectiveness of FeEDDHA 

components in soil-plant systems 

 

• Fine-tuning the understanding of aspects already included into the conceptual model. 

The mechanisms underlying FeEDDHA and CuEDDHA adsorption to soil reactive 

compounds deserve particular attention in this respect, because of the important role of 

adsorption in cation competion, which has been demonstrated to have a large impact 

on FeEDDHA component concentrations in soil solution. Also the contribution of 
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FeEDDHA-facilitated Fe uptake to the total Fe uptake and to the decrease in 

FeEDDHA concentration in soil solution should be further examined.  

• Examining factors not yet included, for potentially expanding the conceptual model to 

relate more closely to the field situation. Processes to consider include FeEDDHA 

leaching from the root zone, FeEDDHA precipitation on the soil surface resulting from 

evapo-transpiration induced transport, FeEDDHA uptake by plants, the behaviour of 

FeEDDHA under rhizosphere conditions and degradation of EDDHA ligands. 

FeEDDHA leaching has been briefly addressed by Lucena et al. (2005) and FeEDDHA 

uptake has been reported for plants grown on substrate (Bienfait, et al., 2004). 

• Carrying out comparative studies with different soils, crops and possibly chelates to 

broaden the basis for the model, to examine if the fate of FeEDDHA components can 

be explained from the same leading processes, and to verify on which aspects the 

model requires refining.  

• Conducting field trials to examine how the model relates to agricultural practice, and if 

relevant processes have been overlooked or should be weighed differently.  
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Appendix 

 

Materials and methods 

 

Materials 

Soil - Calcareous soil was collected from the top soil layer (0 – 20 cm) at a site located in 

Santomera (Spain). Plants grown on this soil became chlorotic, both under field conditions and 

in pot trials (Schenkeveld, et al., 2008; Schenkeveld, et al., 2010a). Pre-treatment consisted of 

air drying and sieving (2 mm). Relevant soil characteristics are presented in Table A10.1 and 

described in more detail in (Schenkeveld, et al., 2010a).   

Goethite - A stock goethite suspension was prepared from Fe(NO3)3 according to Atkinson et 

al. (1967) as described in more detail by Hiemstra et al. (1989). The BET(N2) specific surface 

area amounted 98.6 m
2
 g
-1 
and electro conductivity (EC) was below 10 µS. 

Ca-montmorillonite - Protonated montmorillonite (Montmorillonite K10 powder, Sigma 

Aldrich - product code: 69866; pH 3 - 4, specific surface area 250 m
2
 g
-1
)  was successively 

washed with 1 M NaOH, 1 M and 0.1 M CaCl2 solutions and ultra pure water until the 

electroconductivity of the suspension was below 5 µS cm
-1
. The suspension was centrifuged at 

2300 rpm, decanted and dried at 105 °C. 

Reagent solutions - Depending on the experiment, metal-EDDHA solutions were prepared 

from a solid o,o-H4EDDHA mixture (purity: 99%; 49% racemic o,o- H4EDDHA, 51% meso  

o,o-H4EDDHA), as described in Schenkeveld et al. (2008); from racemic o,o-H4EDDHA 

(purity: 100%) and meso o,o-H4EDDHA (purity: 99.5%) as described in (Schenkeveld, et al., 

2010); or by dissolving an FeEDDHA formulation (Formulation “X”). Racemic and meso  

o,o-H4EDDHA were obtained by separation of the o,o-H4EDDHA mixture, as described in 

Bannochie and Martell (1989) and Bailey et al. (1981). The composition of metal-EDDHA 

solutions was examined at t=0 and at the end of the experiment by ICP and HPLC analysis. 

CO2-free 0.1 M NaOH solution, MOPS-buffer (3-(N-Morpholino)-propanesulfonic acid) and 

humic acid (HA) solutions were prepared as described in (Schenkeveld, et al., 2010e). Fulvic 

acid (FA) solution was prepared by dissolving FA extracted from the Bs horizon of a peaty 

podzol (Strichen Soil Association, Scotland), purified and freeze dried as described by Filius 

et al. (2000), with 0.1 M NaOH solution. Stock and experimental solution were prepared from 

analytical grade chemicals and ultra pure water. 

 

Experiments 

Unless mentioned otherwise, extractions, soil interaction experiments and experiments for 

determining adoption isotherms were performed with 50 ml polypropylene test tubes (Greiner 

bio-one, Cat No 210296). Tubes were placed in an end-over-end shaker, rotating at 18 rpm in 

absence of light. Room temperature was kept at 20 (± 1) °C. After interaction, the samples 

were centrifuged for 10 minutes at 3,000 rpm. The pH and EC of the supernatant were 

measured. The supernatant was filtered over a 0.45 µm cellulose acetate micro pore filter 

(Schleicher & Schuell, ref no: 10462650) and the filtrate was further analyzed.  
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Interaction of formulation “X” with Santomera soil 

The interaction of an FeEDDHA formulation “X” with Santomera soil was examined as a 

function of time in a of 1:1 (w/v) interaction experiment. The experimental solution comprised 

50 µM racemic o,o-FeEDDHA, 47 µM meso o,o-FeEDDHA, 30 µM o,p-FeEDDHA and  

65 µM rest-FeEDDHA
12
. The total Fe concentration equaled 10.8 mg l

-1 
Fe. Sampling was 

done destructively after respectively 1, 4, 8 and 16 hours, as well as after 1, 2, 3, 4, 5, 6, 7, 10, 

14, 21 and 28 days. 0.01M CaCl2 was used as background electrolyte. Blank treatments were 

included for 7, 14, 21 and 28 days. To avoid drastic changes in redox conditions throughout 

the experiment, the tubes were taken out of the shaker, opened and left standing for 30 minutes 

every three to four days. The experiment was executed in triplicates.  

 

Adsorption isotherms for o,o-FeEDDHA isomers to Ca-montmorillonite  

Adsorption isotherms for racemic and meso o,o-FeEDDHA were determined together  

(o,o-FeEDDHA mixture) in 50 g l
-1
 Ca-montmorillonite suspensions at pH 7.1  ± 0.1 and  

20 °C.  pH was set with 1 M HCl, no buffer was added. Interaction time amounted 7 days and 

0.1 M CaCl2 was used as background electrolyte. Total o,o-FeEDDHA concentration at t=0 

was approximately 0.09; 0.18; 0.9 and 1.8 mM. The experiment was executed in duplicates. 

 

Adsorption isotherms for FeEDDHA isomers to goethite 

Adsorption isotherms for racemic and meso o,o-FeEDDHA were determined separately in  

5 g l
-1
 goethite suspensions at pH 7 and 20 °C. Isotherms were determined at ionic strengths 

0.01 M and 0.1 M with CaCl2 as background electrolyte, with and without HA adsorbed onto 

the goethite (0.5 g l
-1
). The experiment was executed in duplicates. 

Background electrolyte was added to a portion of the goethite stock solution in polyethylene 

bottles. pH was lowered to 5.5 and the suspension was purged overnight with washed  

(1 M H2SO4/1 M NaOH), moist N2 gas to remove CO2. The following day, pH was raised to 

around 7 with 0.1 M NaOH and MOPS-buffer (0.005 M; pH 7 ± 0.05) was added. Suspensions 

were made to volume with pre-boiled water. For the adsorption isotherm involving HA, 

MOPS buffer was omitted; HA served as pH buffer and was added to suspension after 

overnight purging. pH was raised to and maintained at 7 with 0.1 M NaOH, while the 

suspension equilibrated for 72 hours (Weng, et al., 2006) under continuous purging with N2. 

DOC concentration in solution was determined after the suspension had been made to volume; 

at least 98% of the HA was adsorbed to goethite. 

FeEDDHA solutions were added to goethite suspensions in gas-tight, 23.6 ml low-density 

polyethylene bottles (Rietra, et al., 2001) under N2-atmosphere. FeEDDHA solutions had been 

purged with N2 for 30 minutes prior to addition. The FeEDDHA concentrations at t=0 were 

approximately 3.6; 9.0; 36; 90 µM and 0.18; 0.36 and 0.90 mM. The bottles were placed in an 

end-over-end shaker, rotating at 24 rpm in absence of light. Sampling was done destructively 

after 72 hours. Samples were centrifuged for 10 minutes at 10,000 rpm. The supernatant was 

filtered over a 0.45 µm cellulose acetate micro pore filter (Schleicher & Schuell, ref no: 

10462650). The filtrate was further analyzed. 

                                                
12 For rest-FeEDDHA, the concentration refers to Fe concentration 
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Interaction of racemic o,o-CuEDDHA with soil 

The effect of equilibration time and addition of organic substances on the interaction between 

racemic o,o-CuEDDHA and Santomera soil was examined as a function of time in a 1:2 (w/v) 

interaction experiment in duplicates. The variables included were: equilibration time (0 or 3 

days), racemic o,o-CuEDDHA concentration (0 or 27 µM) and DOC addition (none,  

0.55 g l
-1
 HA and 0.55 g l

-1
 FA). HA and FA were included both to also examine the effect of 

the nature of the added organic substance. The amount of organic substance added, 

corresponded with 10% of the OM initially present in Santomera soil. Treatments without 

racemic o,o-CuEDDHA were included to determine the contribution of Cu bond to DOC to 

the total Cu concentration in corresponding treatments with racemic o,o-CuEDDHA. Not all 

possible combinations of the variables were included; the experiment involved 7 treatments 

(see Table A10.2) 

Ionic strength was imposed with 0.01 M CaCl2. In treatments involving equilibration, 

background electrolyte solution and, when required HA or FA solution, were added to the soil 

and equilibrated for 3 days in an end-over-end shaker at 18 rpm. After equilibration, racemic 

o,o-CuEDDHA solution or an equal quantity of ultra pure water was added, corresponding to 

3% of the final solution volume. In treatments without equilibration, all reagent solutions were 

administered to the soil directly after each other. The moment all reagent solutions had been 

added, was recorded as t=0. Sampling was done destructively after 8, 24, 48 and 96 hours 

after, except in the treatment without equilibration, organic substance or CuEDDHA addition. 

In the latter treatment, sampling was done after 8, 24, 72 and 168 hours. 

 

Analysis 

Al, Co, Cu, Mn, Ni and Zn concentrations were measured by ICP-MS (Perkin Elmer, ELAN 

6000), Ca, Mg and Fe concentrations by ICP-AES (Varian, Vista Pro). Samples were acidified 

with nitric acid before ICP-measurement. DOC concentrations were measured with a 

segmented flow analyzer (Skalar, SK12) by oxidation with persulphate and tetraborate and UV 

and IR-detection. FeEDDHA component concentrations were determined after separation 

through high-performance liquid chromatography (HPLC) as described in Schenkeveld et al. 

(2007). The Fe concentration chelated by rest-EDDHA was calculated by subtracting the Fe 

concentrations chelated by the other three FeEDDHA components and the Fe concentration in 

the blank treatment from the total Fe concentration as measured by ICP-AES. The 

concentration of metals (other than Fe) chelated to EDDHA components was calculated as the 

difference in metal concentration between corresponding treatments with and without addition 

of EDDHA chelates.  
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 Table 4.1: Characteristics of Santomera soil. 

 

a
 ISO/DIS 10390 Soil Quality – Determination of pH

  

b
 ISO/DIS 11265 Soil Quality – Determination of the specific electric conductivity 
c 
Walinga et al. (1992) 

d
 Houba et al. (1997)

 

e
 ISO 10693, Soil Quality – Determination of carbonate content, volumetric method

 

f
 ISO/DIS 11260 Soil Quality – Determination of cation exchange capacity and base saturation – method using 

barium chloride solution 
g 
Houba et al. (2000) 

h
 Schwertmann (1964) 
i 
Lindsay and Norvell (1978) and Quevauvillier et al. (1996) 
j
 Tipping et al. (2003). Fest el al. (2005) 

 

 

Table A10.2: Treatment overview for the interaction of racemic o,o-CuEDDHA with Santemera soil. 

 

 

 

 

 

 

 

 

 

 

 

 

   
Extraction 

  

Origin/Name Santomera
  

CaCl2 (0.01 M)
g 

DOC (mg l
-1
) 30

 

Region Murcia 
 

Oxalate
h 

Fe (g kg
-1
)
 

0.30
 

Country
 

Spain
  

 Al (g kg
-1
) 0.44 

Soil classification
 

entisol
  

DTPA
i 

Fe (mg kg
-1
)
 

3.5
 

Water holding capacity (g kg
-1
)
 

320
   

Mn (mg kg
-1
)
 

4.6
 

pH-CaCl2
a 

8.0
  

 Cu (mg kg
-1
) 4.1 

Electro conductivity (mS m
-1
)
b 

23 
 

 Zn (mg kg
-1
) 0.9 

SOC (g kg
-1
)
c 

5.4
  

HNO3 (0.43 M)
j
 Fe (mg kg

-1
)
 

494 

Clay (g kg
-1
)
d 

260
  

 Mn (mg kg
-1
)
 

179 

CaCO3 (g kg
-1
)
e 

520
 

  Cu (mg kg
-1
) 10 

CEC (cmol kg
-1
)
f
 10.3   Zn (mg kg

-1
) 5 

Treatment racemic  

o,o-CuEDDHA 

3-day 

equilibration 

DOC addition 

1 - - - 

2 - x HA 

3 - x FA 

4 x - - 

5 x x  

6 x x HA 

7 x x FA 
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Figure A10.1: DOC concentration in the treatments without racemic o,o-CuEDDHA addition as a 

function of time in a 1:2 (w/v) batch experiment with Santomera soil. Background electrolyte was  

0.01 M CaCl2. Treatments involved equilibration prior to CuEDDHA addition and addition of  

humic acid (HA) and fulvic acid (FA). Error bars indicate standard deviations. 
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Iron deficiency chlorosis is a worldwide occurring nutritional disorder in plants, reducing crop 

yields both quantitatively and qualitatively, and leading to economic losses. It predominantly 

occurs in plants grown on calcareous soils and is caused by a low bioavailability rather than an 

absence of iron in the soil. This low bioavailability of iron is primarily related to the limited 

solubility of iron minerals at calcareous soil pH (7 - 8.5) and the presence of a bicarbonate 

buffer in soil solution. Chelate based Fe fertilizers are commonly applied to increase the 

solubility, and thereby the bioavailability of Fe. The synthetic chelate FeEDDHA (iron (3+) 

ethylene diamine-N,N'-bis(hydroxy phenyl acetic acid)) is among the most effective in 

preventing and remedying iron deficiency chlorosis in plants grown on calcareous soils. 

FeEDDHA fertilizer products consist of mixtures of chemical compounds that can be 

operationally divided into four groups of FeEDDHA components: racemic o,o-FeEDDHA, 

meso o,o-FeEDDHA, o,p-FeEDDHA and rest-FeEDDHA. The composition of commercially 

available FeEDDHA formulation varies, and so does the effectiveness of individual 

FeEDDHA components in delivering Fe to soil-grown plants. 

An efficient use of FeEDDHA fertilizer is desirable, both in view of cost efficiency and from 

an environmental perspective. Maximizing the benefits from FeEDDHA application in terms 

of crop yield and Fe uptake by plants, while minimizing the applied dosage, requires 

application of the right fertilizer (right composition) at the right moment in the right quantity. 

In order to do so, an advanced understanding of the behaviour of FeEDDHA components in 

the soil-plant system is needed. The objective of this study was to establish the processes 

determining the fate of FeEDDHA components in soil-plant systems, and to relate these 

processes to the characteristics of FeEDDHA components, determining their effectiveness as 

Fe fertilizer. 

 

First (Chapter 2), the interaction of FeEDDHA components and EDDHA ligands with soil 

was examined as a function of time in a batch experiment involving eight soils. The treatments 

consisted of mixtures of FeEDDHA components and EDDHA ligands. The o,o-FeEDDHA 

isomers remained largely in solution, while rest-FeEDDHA and o,p-FeEDDHA were largely 

removed within the first week. Removal of racemic o,o-FeEDDHA was related to the organic 

matter content of the soils, removal of meso o,o-FeEDDHA to the reactive Fe(hydr)oxide 

content and removal of o,p-FeEDDHA to the clay content. In treatments involving  

o,p-EDDHA, whether or not chelated to Fe, elevated Cu concentrations were found as a result 

of the formation of o,p-CuEDDHA. From one week onward, o,p-CuEDDHA concentrations 

declined. 

 

Chapters 3 to 5 describe three pot trial studies in which FeEDDHA-facilitated Fe uptake by 

soybean plants was examined. In Chapter 3, the influence of the composition of FeEDDHA 

treatments on Fe uptake was considered in an 8-week pot trial study involving eight soils. The 

o,o-FeEDDHA components largely determined the Fe concentration in soil solution. In plants 

grown on soils in which the blank treatment became chlorotic, Fe uptake was in turn a 

function of the Fe concentration in solution. Initially, Fe uptake increased strongly with 

increasing o,o-FeEDDHA content of the FeEDDHA treatment, but the slope flattened and an 
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uptake plateau was reached. Increased Fe uptake led to both an increase in Fe content of the 

shoot and an increase in dry weight yield. 

In a 6-week pot trial study described in Chapter 4, the relation between FeEDDHA 

component concentrations in soil solution and FeEDDHA-facilitated Fe uptake was 

considered as a function of time. Rest-FeEDDHA and o,p-FeEDDHA were largely removed 

from soil solution within the first week, before plants in the blank treatment displayed 

symptoms of Fe deficiency. Racemic and meso o,o-FeEDDHA underwent an initial 

concentration drop as a result of adsorption, which could be described with linear adsorption 

isotherms. The concentration of both o,o-FeEDDHA isomers gradually declined further. For 

meso o,o-FeEDDHA, the decline could be described with an exponential decay function, and 

was largely independent of Fe uptake by plants. For racemic o,o-FeEDDHA, the decline in 

concentration was slower and to a much higher extent related to Fe uptake by plants, which 

was highest in the progressed vegetative stage and in the reproductive stage. 

Chapter 5 assesses the effectiveness of racemic o,o-FeEDDHA, meso o,o-FeEDDHA and 

o,p-FeEDDHA in soil application in relation to the moment of application in an 8-week pot 

trial. FeEDDHA components were applied both separately and in mixtures, at t=0 and in the 

aforementioned growth stages in which the plant’s Fe demand was highest. Both meso and 

racemic o,o-FeEDDHA contributed to Fe uptake, approximately to the same extent.  

O,p-FeEDDHA did not significantly contribute to Fe uptake in any treatment. The moment of 

application significantly affected dry weight yield and remaining FeEDDHA component 

concentration in soil solution, but not Fe uptake by plants. The efficiency of plants in taking 

up Fe from FeEDDHA greatly increased, when plants were Fe deficient before FeEDDHA 

application. 

 

Chapters 6 to 8 study processes possibly responsible for the plant-independent decline in soil 

solution concentration of EDDHA chelates. In Chapter 6 the role of biodegradation in the 

gradual decline in concentration of meso o,o-FeEDDHA and o,p-CuEDDHA (described in 

Chapter 2 and 4) was examined in a soil incubation experiment involving sterilized 

treatments. Biodegradation did not significantly affect the rate of decline in concentration of 

any EDDHA chelate, except for CoEDDHA, which is quantitatively of marginal importance. 

The rate of the process causing the decline in meso o,o-FeEDDHA and o,p-CuEDDHA 

concentration was higher at higher temperature and in soil which had not been sterilized.  

The next process considered to explain the plant-independent decline in soil solution 

concentration of meso o,o-FeEDDHA (Chapter 4) was cation competion from Cu  

(Chapter 7). Predictions with mechanistic multi-surface models show that there is a 

thermodynamic basis for assuming that under equilibrium conditions a certain fraction of 

o,o-EDDHA ligands in soil solution can be chelated to Cu, in particular of meso o,o-EDDHA. 

Furthermore, in a batch interaction experiment with calcareous soils, o,o-CuEDDHA was 

demonstrated to have a high affinity for the soil solid phase. This suggests that the potential 

impact of Cu competition might be much larger than predicted by modeling, because for a 

given o,o-CuEDDHA concentration in soil solution, a much larger amount of o,o-CuEDDHA 

is adsorbed to the solid phase. Finally, the displacement of Fe from o,o-FeEDDHA by Cu was 
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reproduced in a single-surface goethite suspension, demonstrating the displacement reaction is 

not kinetically inhibited. 

The influence of a number of soil parameters on the rate of the displacement reaction was 

examined in a series of batch experiments with goethite suspensions (Chapter 8). The 

displacement rate was co-determined by the FeEDDHA component. For equal conditions, the 

sequence in displacement rate was: o,p-FeEDDHA >> meso o,o-FeEDDHA > racemic  

o,o-FeEDDHA, which corresponds with the sequence in residence time in soils solution in 

soil-plant systems (Chapter 4). It was found that the displacement reaction predominantly 

takes place on a reactive surface rather than in solution. The rate of decline in FeEDDHA 

solution concentration proved dependent on the available reactive surface area, and the 

FeEDDHA and Cu loading on the reactive surface. Soil parameters decreasing FeEDDHA 

adsorption (high ionic strength, humic acid adsorbed onto the reactive surface, monovalent 

instead of divalent cations in the electrolyte), decreased the rate of displacement. For meso 

o,o-FeEDDHA, the rate equation of the displacement reaction was derived, which proved first 

order in FeEDDHA loading and half order in Cu loading. For soil conditions the rate equation 

could be simplified and solved to an exponential decay function in meso  

o,o-FeEDDHA solution concentration, which corresponds with findings in soil solution of 

soil-plant systems (Chapter 4 and 6). 

 

Chapter 9 is dedicated to the shuttle mechanism, a hypothetical cyclic mode of action in 

which the chelating agent is “recycled” by chelating and mobilizing Fe from the soil after 

delivering Fe at the root surface. The efficiency of the shuttle mechanism with EDDHA 

ligands was examined in batch interaction experiments with four calcareous soils. If metal 

availability in the bulk soil determines the shuttle’s efficiency, it is heavily compromised as a 

result of chelation of competing cations: Al, Mn and in particular Cu. Additionally, data 

collected in the pot trial studies presented in Chapter 3 and 4 were examined for experimental 

support for the shuttle mechanism. Specific metal mobilization was observed upon 

FeEDDHA-facilitated Fe uptake, indicating that EDDHA ligands do in fact mobilize metals 

after delivering Fe at the root surface. However, at least to a certain extent these metals 

originated from the root surface and not from the bulk soil. 

 

In conclusion, a conceptual model for the behaviour of FeEDDHA chelates in soil-plant 

systems is presented in Chapter 10. The model integrates the findings from the previous 

chapters and describes the processes affecting the soil solution concentration of EDDHA 

chelates after administration of an FeEDDHA treatment. The backbone of the model 

comprises three processes: 1) FeEDDHA adsorption, 2) Fe displacement from FeEDDHA by 

Cu on a reactive surface, and subsequent release of CuEDDHA into soil solution, and  

3) re-adsorption of CuEDDHA. The concentration behaviour of racemic o,o-FeEDDHA, meso 

o,o-FeEDDHA and o,p-FeEDDHA, observed in experiments, is interpreted within the 

framework of the conceptual model, and the three aforementioned processes are further 

explored, amongst others by means of additional experimental data. 
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The effectiveness of FeEDDHA components in soil application is largely determined by their 

ability to remain in solution. A limited affinity for the soil solid phase and a high (relative) 

affinity for Fe proved essential in this respect. Clay content, Fe(hydr)oxide content and Cu 

content are important soil parameters affecting the effectiveness of FeEDDHA components. 

The presented conceptual model provides a tool for both appliers of FeEDDHA products, for 

selecting the most suitable product and using it efficiently, and for producers of chelate based 

Fe fertilizers in view of product development and marketing. The chapter closes off with a 

discussion on the limitations of the research, and with recommendations for further research to 

verify and further expand the conceptual model. 
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IJzerchlorose is een voedingsstoornis in planten, die wereldwijd voorkomt. Het tast 

gewasopbrengsten zowel kwalitatief als kwantitatief aan, en leidt daardoor tot economische 

verliezen. IJzerchlorose komt voornamelijk voor in planten, die op kalkrijke gronden groeien, 

en wordt veroorzaakt door een lage biobeschikbaarheid van ijzer in de bodem; niet door de 

afwezigheid van ijzer. Deze lage biobeschikbaarheid hangt met name samen met de beperkte 

oplosbaarheid van ijzermineralen binnen de bodem-pH range van kalkrijke gronden (7 - 8.5), 

en met de aanwezigheid van een bicarbonaat pH-buffer in de bodemoplossing. Als remedie 

tegen ijzergebrek worden doorgaans ijzermeststoffen toegepast, die gebaseerd zijn op 

synthetische ijzerchelaten. Deze vergroten de oplosbaarheid en daarmee tevens de 

biobeschikbaarheid van ijzer. Het synthetische chelaat FeEDDHA (ijzer ethyleen diamine-

N,N’-bis(hydroxifenyl azijnzuur)) behoort tot de meest effectieve meststoffen om ijzergebrek 

in planten op kalkrijke grond te voorkomen en te bestrijden. FeEDDHA producten bestaan uit 

mengsels van chemische verbindingen, die kunnen worden onderverdeeld in: racemisch  

o,o-FeEDDHA, meso o,o-FeEDDHA o,p-FeEDDHA en rest-FeEDDHA. De samenstelling 

van commercieel beschikbare FeEDDHA formuleringen varieert, zo ook de effectiviteit van 

de afzonderlijke FeEDDHA componenten als ijzermeststof in grondtoepassing. Een efficiënt 

gebruik van FeEDDHA is wenselijk, zowel vanuit het oogpunt van kostenefficiëntie, als 

vanuit milieuperspectief. Het maximaliseren van de baten van FeEDDHA toepassing voor wat 

betreft gewasopbrengst en ijzeropname door planten, bij een zo laag mogelijke FeEDDHA 

dosering, vereist toepassing van het FeEDDHA product met de juiste samenstelling, op het 

juiste moment en in de juiste hoeveelheid. Een goed begrip van het gedrag van FeEDDHA 

componenten in bodem-plant systemen is hiervoor essentieel. Het doel van het onderzoek, 

gepresenteerd in dit proefschrift, was het vaststellen van de processen, die het lot van 

FeEDDHA componenten in bodem-plant systemen bepalen, en het relateren van deze 

processen aan de eigenschappen van FeEDDHA componenten, die hun effectiviteit als 

ijzermeststof bepalen. 

 

Eerst (Hoofdstuk 2) is de interactie van FeEDDHA componenten en EDDHA liganden met 

grond onderzocht in een batch experiment met acht gronden. De behandelingen bestonden uit 

mengsels van FeEDDHA componenten en EDDHA liganden. De o,o-FeEDDHA isomeren 

bleven grotendeels in oplossing, terwijl rest-FeEDDHA en o,p-FeEDDHA binnen een week 

grotendeels uit oplossing verdwenen. Verwijdering van racemisch o,o-FeEDDHA hing samen 

met het organisch stof gehalte van de gronden, verwijdering van meso o,o-FeEDDHA met het 

reactief ijzer(hydr)oxide gehalte en verwijdering van o,p-FeEDDHA met het kleigehalte. In 

behandelingen met o,p-EDDHA, al dan niet gecheleerd aan Fe, werden verhoogde Cu 

concentraties gemeten als gevolg van de vorming van o,p-CuEDDHA. Na de eerste week 

namen de o,p-CuEDDHA concentraties geleidelijk af. 

 

De Hoofdstukken 3 t/m 5 beschrijven drie potproeven, waarin FeEDDHA-gefaciliteerde 

ijzeropname door sojaboon planten is onderzocht. In Hoofdstuk 3 is de invloed van de 

samenstelling van FeEDDHA behandelingen op de ijzeropname bekeken in een acht weken 

durend potexperiment met acht gronden. De o,o-FeEDDHA componenten bepaalden in hoge 
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mate de ijzerconcentratie in de bodemoplossing. Bij gronden, waarop de planten van de 

controlebehandeling chlorotisch werden, bleek de ijzeropname een functie van de 

ijzerconcentratie in de bodemoplossing. Aanvankelijk nam de ijzeropname sterk toe met het 

o,o-FeEDDHA gehalte van de behandeling, maar naarmate het o,o-FeEDDHA gehalte hoger 

werd nam het additioneel effect van meer o,o-FeEDDHA geleidelijk af, totdat een 

opnameplateau werd bereikt. Een toename in ijzeropname leidde zowel tot een toename in 

ijzergehalte in het plantenmateriaal als tot een toename in gewasopbrengst.  

In een zes weken durend potexperiment, beschreven in Hoofdstuk 4, is de relatie tussen de 

concentraties van FeEDDHA componenten in de bodemoplossing en FeEDDHA-

gefaciliteerde ijzeropname onderzocht als functie van de tijd. Rest-FeEDDHA en  

o,p-FeEDDHA waren binnen de eerste week grotendeels uit de bodemoplossing verdwenen, 

voordat de planten in de controle behandeling symptomen van ijzergebrek vertoonden. De 

concentratie van racemisch en meso o,o-FeEDDHA in de bodemoplossing onderging een 

sterke daling in de eerste week als gevolg van adsorptie, welke kon worden beschreven met 

lineaire adsorptie-isothermen. De concentratie van beide o,o-FeEDDHA isomeren daalde 

vervolgens geleidelijk verder. De afname in meso o,o-FeEDDHA concentratie kon worden 

beschreven met een exponentiële functie en was grotendeels onafhankelijk van ijzeropname 

door planten. De afname in racemisch o,o-FeEDDHA concentratie verliep langzamer en was 

in hogere mate gerelateerd aan ijzeropname door planten. De ijzeropname was het hoogst in 

het gevorderd vegetatieve en het reproductieve groeistadium van de sojaboon planten. 

Hoofdstuk 5 evalueert de effectiviteit van racemisch o,o-FeEDDHA, meso o,o-FeEDDHA en 

o,p-FeEDDHA in grond toepassing in relatie tot het moment van toediening in een acht weken 

durend potexperiment. De FeEDDHA componenten werden afzonderlijk en in mengsels 

toegediend, bij aanvang van het experiment en in de voorgenoemde groeistadia, wanneer de 

ijzerbehoefte het hoogst was. Zowel meso als racemisch o,o-FeEDDHA droeg bij aan de 

ijzeropname, ongeveer in gelijke mate. O,p-FeEDDHA leverde geen significante bijdrage aan 

de ijzeropname, in geen enkele behandeling. Het moment van toediening had een significant 

effect op het drooggewicht van de gewasopbrengst en op de resterende FeEDDHA component 

concentratie in de bodemoplossing, maar niet op de ijzeropname. De efficiëntie waarmee 

planten ijzer van FeEDDHA opnamen, nam sterk toe wanneer planten ijzergebrek hadden voor 

toediening van FeEDDHA. 

 

De Hoofdstukken 6 t/m 8 bestuderen processen, die mogelijk verantwoordelijk zijn voor de 

plant-onafhankelijke afname in EDDHA-chelaat concentraties in de bodemoplossing. In 

Hoofdstuk 6 is de rol van biodegradatie in de geleidelijke afname in concentratie van meso 

o,o-FeEDDHA en o,p-CuEDDHA (beschreven in de Hoofdstukken 2 en 4) onderzocht in een 

grondincubatie experiment met gesteriliseerde behandelingen. Biodegradatie had voor geen 

enkel EDDHA chelaat een significant effect op de snelheid waarmee de concentratie in 

bodemoplossing afnam, met uitzondering van CoEDDHA, welk kwantitatief van marginaal 

belang is. De snelheid van het proces, dat de afname in meso o,o-FeEDDHA en  

o,p-CuEDDHA concentratie veroorzaakt, is hoger bij hogere temperatuur en in grond, die niet 

is gesteriliseerd. 
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Het volgend proces, dat is onderzocht als mogelijke verklaring voor de plant-onafhankelijke 

afname in meso o,o-FeEDDHA concentratie in de bodemoplossing (Hoofdstuk 4), is 

kationcompetitie door koper (Hoofdstuk 7). Voorspellingen met behulp van mechanistische 

multi-surface modellen laten zien, dat er een thermodynamische basis is om aan te nemen, dat 

onder evenwichtscondities een zekere fractie van o,o-EDDHA liganden in de bodemoplossing 

gecheleerd kan zijn aan koper, met name van meso o,o-EDDHA. Verder is in een schudproef 

met kalkrijke gronden aangetoond, dat o,o-CuEDDHA een hoge affiniteit heeft voor de vaste 

fase van de bodem. Dit suggereert, dat de potentiële impact van kopercompetitie veel groter 

zou kunnen zijn dan voorspeld aan de hand van de modellen, omdat voor een gegeven  

o,o-CuEDDHA concentratie in de bodemoplossing een veel grotere hoeveelheid  

o,o-CuEDDHA geadsorbeerd zit aan de vaste fase. Tot slot is de reactie waarin ijzer van  

o,o-FeEDDHA wordt verdrongen door koper gereproduceerd in goetietsuspensies, waarmee is 

aangetoond, dat de verdringingsreactie niet kinetisch verhinderd wordt. 

De invloed van een aantal bodemparameters op de snelheid van de verdringingsreactie is 

onderzocht in een serie batchexperimenten met goetietsuspensies (Hoofdstuk 8). De 

verdringingssnelheid wordt mede bepaald door de FeEDDHA component. Voor gelijke 

condities is de volgorde in verdringingsnelheid als volgt: o,p-FeEDDHA >> meso  

o,o-FeEDDHA > racemisch o,o-FeEDDHA; dit komt overeen met de volgorde in verblijftijd 

in bodemoplossing in bodem-plant systemen (Hoofdstuk 4). Er is vastgesteld, dat de 

verdringingsreactie vooral op het reactief oppervlak plaatsvindt. De afnamesnelheid van de 

FeEDDHA concentratie in oplossing bleek afhankelijk van de hoeveelheid beschikbaar 

reactief oppervlak, en van de FeEDDHA- en koper-loading op het reactief oppervlak. 

Bodemparameters, die FeEDDHA adsorptie verminderden (hoge ionsterkte, geadsorbeerd 

humuszuur op het reactief oppervlak, en monovalente in plaats van divalante kationen in het 

electroliet), verminderden de verdringingssnelheid. Voor meso o,o-FeEDDHA is de 

reactiesnelheidsvergelijking van de verdringingsreactie afgeleid. Deze is eerste orde in 

FeEDDHA-loading en halfde orde in koper-loading. Voor bodemcondities kan de 

reactiesnelheidsvergelijking worden vereenvoudigd en geïntegreerd tot een exponentiële 

afnamefunctie in meso o,o-FeEDDHA concentratie in oplossing, hetgeen overeenkomt met 

bevindingen in de bodemoplossing van bodem-plant systemen (Hoofdstukken 4 en 6). 

 

Hoofdstuk 9 is gewijd aan het shuttle mechanisme; een hypothetisch, cyclisch 

werkingsmechanisme, waarbij de chelant wordt “gerecycled” door ijzer uit de grond te 

cheleren en mobiliseren, nadat ijzer aan het worteloppervlak is afgeleverd. De efficiëntie van 

het shuttle mechanisme is onderzocht voor EDDHA liganden middels batch interactie-

experimenten met vier kalkrijke gronden. Indien de metaalbeschikbaarheid in de bulkgrond 

maatgevend is voor de efficiëntie van de shuttle, dan wordt deze sterk beperkt door chelering 

van andere kationen: aluminium, mangaan en met name koper. Aanvullend is de data, 

verzameld in de potexperimenten gepresenteerd in de Hoofdstukken 3 en 4, onderzocht op 

experimentele ondersteuning voor het shuttle mechanisme. Er is specifieke metaalmobilisatie 

als gevolg van FeEDDHA-gefaciliteerde ijzeropname geconstateerd. Dit duidt erop, dat 

EDDHA liganden inderdaad metalen mobiliseren, nadat ijzer aan het worteloppervlak is 
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afgestaan. Echter, tenminste in zekere mate waren deze metalen afkomstig van het 

worteloppervlak en niet uit de bulkgrond. 

 

Tot slot wordt in Hoofdstuk 10 een conceptueel model voor het gedrag van FeEDDHA 

chelaten in bodem-plant systemen gepresenteerd. Het model integreert de bevindingen uit de 

voorafgaande hoofdstukken en beschrijft de processen, die de concentratie van EDDHA 

chelaten in de bodemoplossing beïnvloeden na toediening van een FeEDDHA behandeling. 

De basis van het model bestaat uit 3 processen: 1) FeEDDHA adsorptie, 2) de reactie op het 

reactief oppervlak, waarbij ijzer van FeEDDHA wordt verdrongen door koper, en het 

vervolgens in bodemoplossing gaan van CuEDDHA, en 3) her-adsorptie van CuEDDHA. Het 

concentratieverloop van racemisch o,o-FeEDDHA, meso o,o-FeEDDHA and o,p-FeEDDHA, 

zoals waargenomen in experimenten, wordt binnen het kader van het conceptueel model 

geïnterpreteerd, en de drie voorgenoemde processen worden nader verkend, onder andere aan 

de hand van additionele experimentele data. 

De effectiviteit van de FeEDDHA componenten in bodemtoepassing wordt grotendeels 

bepaald door het vermogen van de FeEDDHA component om in oplossing te blijven. Een 

geringe affiniteit voor de vaste fase van de bodem en een hoge (relatieve) affiniteit voor ijzer 

zijn hiervoor essentieel. Kleigehalte, ijzer(hydr)oxidegehalte en kopergehalte zijn belangrijke 

bodemparameters, die de effectiviteit van FeEDDHA componenten beïnvloeden. Het 

gepresenteerde conceptueel model vormt een hulpmiddel voor zowel gebruikers van 

FeEDDHA producten, om het meest geschikte product te selecteren en het zo efficiënt 

mogelijk toe te passen, als voor producenten van ijzermeststoffen die gebaseerd zijn op 

chelaten, met het oog op productontwikkeling en marketing. 

Het hoofdstuk sluit af met een korte bediscussiëring van de beperkingen van het onderzoek en 

met aanbevelingen voor verder onderzoek om het conceptueel model te verifiëren en uit te 

bouwen. 
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“What binds me has been slain, 

  what surrounds me has been overcome; 

  my desire has been ended, 

  and ignorance has died.”  

 

Excerpt from: 

The Gospel of Mary Magdalene 
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“Acta est fabula” – met het schrijven van dit dankwoord zit mijn promotieonderzoek er 

gevoelsmatig dan echt definitief op. In retrospectief staat één ding voor mij als een paal boven 

water: ik heb met volle teugen genoten van m’n periode als AiO! Ik heb me afgevraagd, 

geëxperimenteerd, beschouwd, gepuzzeld en me verwonderd over de schoonheid der dingen, 

alvorens de volgende vragen weer opborrelden – een verslavende cyclus. Als ik het promotie-

traject opnieuw in zou gaan, dan zou ik veel zaken beslist heel anders aanpakken - en 

waarschijnlijk is dat een goed teken. 

 

Op deze plek wil ik graag de mensen met wie ik heb samengewerkt of die anderszins een 

belangrijke rol hebben gespeeld tijdens mijn promotie bedanken; mocht ik onverhoopt iemand 

vergeten zijn – mijn welgemeende excuses! 

In de eerste plaats mijn promotor Willem en co-promotor Erwin. Willem, ik heb genoten van 

je begeestering voor, en je geweldige expertise op het gebied van bodemchemie. Onze 

gesprekken waren inspirerend voor mij, en ik heb me er meerdere malen – soms maanden later 

– over verbaasd, dat je hypotheses, tegen mijn verwachting in, toch juist bleken te zijn. Ook je 

snelle becommentariëring van mijn manuscripten en het intensievere contact richting de 

afronding van dit proefschrift heb ik erg gewaardeerd. 

Erwin, dank dat je ervoor hebt gezorgd, dat ik in alle vrijheid, zorgeloos onderzoek kon doen – 

dat is enorm waardevol geweest voor mij. Ook heb ik veel van je geleerd ten aanzien van het 

structureren en helder presenteren van mijn onderzoeksresultaten. 

 

Ook de mensen, die vanuit AkzoNobel bij het project betrokken zijn geweest ben ik veel dank 

verschuldigd.  

Arjen, ik wil je hartelijk danken voor de erg fijne samenwerking! Jouw kennis op het gebied 

van chemie in het algemeen, en van complexvormers in het bijzonder is voor mijn onderzoek 

van onschatbare waarde geweest. Onze gesprekken over mijn onderzoeksresultaten, 

marktontwikkelingen en al dan niet recente publicaties waren zowel erg leuk als erg nuttig. 

Dank ook voor je belangstelling, je kritische blik, het meedenken en de duizenden HPLC en 

UV/VIS metingen, die ik in Arnhem heb mogen doen. 

Marcel, je geloof in het onderzoek en je inspanningen om de resultaten onder de aandacht te 

brengen, ook buiten de wetenschappelijke gemeenschap, waren enthousiasmerend en voor mij 

mede aanleiding om, middels een derde potproef, een stapje extra te zetten.  

Pascal Weijters wil ik graag bedanken voor zijn inspanningen bij het opstarten en op gang 

brengen van het project. De uitstekende voorselectie van de door jou geïmporteerde gronden 

ligt mede ten grondslag aan de geboekte onderzoeksresultaten. 

Verder dank ik ook Staffan Asplund, Anders Mollenstahl en Teun Scheperman voor hun 

bijdragen. 

 

Bij mijn onderzoekswerkzaamheden heb ik veel ondersteuning gehad, zowel in de kas als op 

het lab. 

Jaap, dank voor al je praktische adviezen, vooral op het gebied van planten en 

bodemvruchtbaarheid; gevraagd of ongevraagd, maar altijd bijzonder welkom. Het succes van 
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de potproeven heb ik daar mede aan te danken. Ook je organisatorische hulp om mijn tweede 

potproef tot een goed einde te brengen, toen op het laatste moment de student, die me hierbij 

zou helpen, afhaakte, vond ik grandioos! 

De heren van de VEP (Willem, Arie en Peter) wil ik hartelijk danken voor alle hulp bij het 

inzetten en verzorgen van mijn plantproeven, het malen en zeven van duizenden kilo’s grond, 

en eindeloos wortelspoelen (super, Willem!). 

 

Op het lab kon ik vooral aankloppen bij Peter en Gerlinde. Peter, bedankt voor het uitvoeren 

van de vele ICP-analyses; ik vond het leuk om gaandeweg steeds meer te leren over de kunst 

van het meten en daar ook over mee te denken. Gerlinde, dankjewel voor je adviezen en je 

fantastische ondersteuning bij mijn experimenten. 

Ook de andere medewerkers van het Centraal Laboratorium Bodem en Gewasanalyses, 

Andre, Arie, Carry, Johan, Karin, Kees, Monique, Simon, Tamas, Willeke, Wim en Wobbe, 

dank voor jullie hulp. 

 

During my PhD-research, I was privileged to supervise two MSc students, which was a great 

learning experience for me. Rob and Marina, thank you very much for your dedication and 

hard work – the fruits of your labour are presented in Chapter 3 and Chapter 9 of this thesis. 

 

Ook wil ik graag mijn ex-collega’s bij de vakgroep bodemkwaliteit bedanken - de AiOs en 

post-docs Bert, Debby, Dorien, Ellen, Erwin, Franciska, Gerard, Gerwin, Gijs, Ingrid, 

Jacintha, Julia, Laura, Maria, Mabel, Monika, Nicole, Odair, Petra, Ram, Rasoul, Thomas, 

Xiaopeng; de vaste staf Ellis, Jan-Willem, Lijbert, Liping, Meindert, Paul, Rob, Ron, Thom en 

Tjisse en de dames van het secretariaat Caroline, Esther, Gerda, Riette en Winnie - dank voor 

de gezelligheid, de samenwerking en de fijne werksfeer! 

Gerwin, dank ook dat je mij betrokken hebt bij jouw EDDS-project; voor mij een leuke zijstap 

en ik vond de samenwerking, die heeft geresulteerd in een mooie publicatie, erg plezierig! 

Ellis, Liping en Tjisse – ook erg bedankt voor jullie inhoudelijke bijdragen aan mijn 

onderzoek. 

 

Een bijzonder woord van dank gaat uit naar mijn beide paranimfen Debby en Roald; ik vind 

het heel fijn dat jullie me bij de verdediging van dit proefschrift terzijde willen staan. Debby, 

het was een waar genoegen om ruim vier jaar een kamer met je te mogen delen – ik had me 

geen betere kamergenoot kunnen wensen. Goedlachs, altijd in voor een praatje en op z’n tijd 

een goed gesprek. Dank voor alle gezelligheid, een luisterend oor en een hart onder de riem als 

het even tegen zat. Roald, na twee gezamenlijke studies en een gelijktijdig promotie-

onderzoek was een verdediging zonder jou als paranimf natuurlijk eigenlijk uitgesloten. Dank 
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