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Abstract Infestations with ectoparasitic poultry red mites (Dermanyssus gallinae) pose

an increasing threat to poultry health and welfare. Because of resistance to acaricides and

higher scrutiny of poultry products, alternative and environmentally safe management

strategies are warranted. Therefore, we investigated how volatile cues shape the behavior

of D. gallinae and how this knowledge may be exploited in the development of an attract-

and-kill method to control mite populations. A Y-tube olfactometer bio-assay was used to

evaluate choices of mites in response to cues related to conspecific mites as well as related

to their chicken host. Both recently fed and starved mites showed a strong preference

(84 and 85%, respectively) for volatiles from conspecific, fed mites as compared to a

control stream of clean air. Mites were also significantly attracted to ‘aged feathers’ (that

had remained in the litter for 3–4 days), but not to ‘fresh feathers’. Interestingly, an air

stream containing 2.5% CO2, which mimics the natural concentration in air exhaled by

chickens, did attract fed mites, but inhibited the attraction of unfed mites towards volatiles

from aged feathers. We conclude that both mite-related cues (aggregation pheromones) and

host-related cues (kairomones) mediate the behavior of the poultry mite. We discuss the

options to exploit this knowledge as the ‘attract’ component of attract-and-kill strategies

for the control of D. gallinae.

Keywords Poultry red mite � Dermanyssus gallinae � Attract-and-kill method �
Aggregation behavior � Host-seeking behavior � Pheromone � Kairomones �
Biological control

Introduction

An infestation with the blood-feeding, ectoparasitic mite Dermanyssus gallinae (DeGeer)

is one of the most important welfare and health problems of poultry (Chauve 1998; Emous
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et al. 2005; Hegelund and Sørensen 2007). It may lead to feather-pecking among individual

chickens, to unrest and to stress. Reduced egg production, anemia, and eventually death

can occur in the most severe cases (Kirkwood 1967; Kilpinen et al. 2005). Resistance to

acaricides and an increased scrutiny of poultry products for human health hazards (food

safety) have limited the options to control the poultry red mite (Sparagano et al. 2009).

Therefore, alternative approaches are urgently needed. A little-explored avenue in this

regard is the exploitation of chemical cues that mediate interactions among mites or

between mites and their chicken host. For other veterinary and agricultural pests, such as

ticks and herbivorous mites, the use of pheromones, whether or not in combination with a

biological kill component, has shown good promise in controlling them (Sonenshine 1985,

2006).

Dermanyssus gallinae spends most of its time hidden in the numerous cracks and cre-

vices of the poultry installation and comes out to feed during the night. Nymphal and adult

stages spend approximately 30 min on their host before returning to their hiding places

(Maurer et al. 1988). In general, blood feeding ectoparasites utilize a variety of cues such as

body heat, CO2 and host-specific kairomones to locate their host (Takken and Knols 1999;

Guerenstein and Hildebrand 2008). Kilpinen and colleagues demonstrated that D. gallinae is

highly sensitive to small temperature changes and that starved mites are more responsive to a

heat cue than freshly fed ones (Kilpinen 2001; Kilpinen and Mullens 2004). Zeman (1988)

showed that several surface skin lipids are involved in host identification and stimulation of

feeding by D. gallinae. Under dark conditions, CO2 does not elicit a response in terms of

walking speed or turning angle, but in light conditions mites ‘freeze’ (i.e. they become

motionless) in response to CO2. The latter behavior probably reflects a defensive strategy to

avoid being eaten by the host (Kilpinen 2005). After the blood meal, D. gallinae forms

aggregations of mixed developmental stages. As is the case in the related Dermanyssus
prognephilus, thigmokinesis and pheromones are thought to play a role in this (Entrekin and

Oliver 1982). The aim of this study was to investigate how D. gallinae responds to host-

derived volatiles and whether CO2 affects this response. In addition, we explored the role of

volatiles in aggregation behavior and how this is affected by feeding status.

Materials and methods

Mites

Poultry red mites (Dermanyssus gallinae) were obtained from an in vivo rearing with eight

chickens held in a cage (2 by 3 m) located at experimental station De Haar, Department of

Animal Sciences, Wageningen University, The Netherlands. Average temperature in this

facility was 20 ± 2�C. Because poultry red mites are nocturnal feeders (Maurer et al. 1988),

they were held in the experimental room with a reversed light–dark period (14L:10D).

Bio-assay

Olfactory preferences of the mites were tested in a closed-system Y-tube olfactometer

(Takabayashi and Dicke 1992). Briefly, pressurized air was filtered through activated

charcoal, humidified and split in two streams with a flow rate of 2 l/min each. Air was then

led through 2.5 l glass jars for experiments that tested the response to host cues or 50 ml

plastic tubes for experiments that tested the response to volatiles from conspecific mites.

An extra inlet was available to add 100% CO2 from a cylinder to the air stream. By using
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flow meters (Brooks Instruments, Ede, The Netherlands), CO2 was mixed with the air

stream to a concentration of 2.5% v/v. During the experiments, average temperature was

25.3 ± 0.9�C and relative humidity 70 ± 9% inside the Y-tube. Mites were released

individually at the down-wind end of the stem of the Y-tube. They were given the

opportunity to walk upwind and choose for one of the odor sources for a maximum of

5 min. ‘First choice’ was recorded as soon as the mite entered either the left or right arm. If

a mite remained in one arm for a consecutive period of 1 min, this choice was recorded as

‘final choice’ and the mite was then discarded. All other situations were recorded as ‘no

choice’. To observe the mites’ behavior under darkness conditions, a red light was installed

*50 cm above the Y-tube.

Experiments

The experiments tested the response of mites to host volatiles as well as to volatiles from

conspecific mites. Both experiments were carried out with mites that had obtained a blood

meal recently (within 0–1 days; indicated as ‘fed’ mites) as well as with mites that had

been starved for 4–5 days by keeping them in 50-ml tubes in the experimental room at

24 ± 0.4�C and 67 ± 6% RH (indicated as ‘unfed’ mites). In each experiment the

response of 60 mites was assessed. Stimuli were alternated between left and right arms

after every batch of ten mites. Experiments with host odor cues were spread over 3–6 days,

while experiments with conspecific mites were spread over 2–4 days. New odor sources

were used on each experimental day.

Response to host odor cues

We investigated the response towards freshly cut feathers (FF) versus clean air, aged

feathers (AF) versus clean air and fresh feathers versus aged feathers. Fresh feathers were

obtained by cutting feathers located in the neck area of one of the eight experimental

chickens. Ten of these feathers were placed in the 2.5 l glass jar and served as a stimulus.

Aged feathers were obtained by collecting naturally shed feathers from the litter of the

cage and that were not visibly contaminated with fecal matter. Because all shed feathers

were collected at regular intervals, the time that feathers remained in the litter was

3–4 days. Ten of these feathers were placed in a glass jar and served as a stimulus. A final

experiment compared the response of mites towards fresh feathers versus feathers that had

been incubated at 37�C for 7 days. For this purpose, a sample of fresh feathers was split

into two equal portions and either placed in sealed Petri dishes in the freezer at -20�C or in

an incubator at 37�C.

In the next series of tests, we investigated the effects of CO2 on the host-seeking

response. CO2 was provided in a concentration of 2.5% that mimics the concentration

naturally exhaled by a chicken (Gleeson et al. 1985). The following combinations were

tested: 2.5% CO2 versus clean air, fresh feathers ? 2.5% CO2 versus clean air and aged

feathers ? 2.5% CO2 versus clean air.

Response to volatiles cues from conspecific mites

Two hundred adult mites, either fed or unfed, were placed in a 50-ml tube. Air was led

through this tube and introduced into the Y-tube olfactometer set-up described above. We

investigated the response of mites to the volatiles from 200 fed mites versus clean air, the
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volatiles from 200 unfed mites versus clean air and to the volatiles from 200 fed mites

versus those from 200 unfed mites.

Statistical analyses

Two-sided binomial tests were carried out to evaluate whether choices of the mites in the

Y-tube olfactometer differed from a 50:50 distribution. Binary logistic regression models

were used to test for the effect of feeding status on both response rate, i.e. the proportion of

mites making a choice for either arm of the olfactometer out of the total number of mites

exposed (n = 60), and relative attractiveness, i.e. the proportion of mites making a choice

for one of the stimulus arms, excluding non-responding mites. All analyses were carried

out in SPSS v15.0 (Chicago, IL, USA).

Results

Response towards host odor cues

When fed and unfed mites were exposed to two streams of clean air (‘control’), no

preference was shown for either arm (Fig. 1). Aged feathers were significantly attractive

for both fed and unfed mites (binomial test, P = 0.012 and P \ 0.001, respectively),

whereas fresh feathers were not attractive (binomial test, P = 0.32 and P = 1.00,

respectively). When mites were exposed to both types of feather simultaneously, unfed

mites preferred aged feathers (binomial test, P = 0.016) whereas fed mites did not show a
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Fig. 1 Response of unfed (white bars) and fed (grey bars) Dermanyssus gallinae to various host-related
sources. Tests were performed in a Y-tube olfactometer; ns not significant, * P \ 0.05, *** P \ 0.001. The
total number of mites (out of 60 tested) choosing one of the two ports is given in parentheses
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preference (binomial test, P = 0.31). When mites were exposed to fresh and incubated

feathers, both fed and unfed mites did not show a preference for either type (binomial test,

P = 0.16 and P = 0.60, respectively), although there was significant day-to-day variation

in the response of fed mites (50, 36, 63 and 0% towards incubated feathers over the four

experimental days). For all experiments, the response rates, i.e. the number of mites

making a choice for either of the two arms (provided in brackets in the horizontal bars of

Fig. 1), were significantly lower for unfed than for fed mites (logistic regression,

P \ 0.05). There were no effects of feeding status on attractiveness (Fig. 1): choices of fed

and unfed mites were not significantly different (logistic regression, P [ 0.05).

When fed mites were exposed to 2.5% CO2, they were significantly attracted to this

stimulus (binomial test, P = 0.019; Fig. 2). However, this response varied significantly

over the five experimental days (44, 75, 63, 83 and 100% towards CO2, respectively).

Unfed mites were not attracted towards CO2 (binomial test, P = 0.71). Also when com-

binations of fresh or aged feathers plus CO2 were tested versus clean air, only fed mites

were significantly attracted (binomial test, P \ 0.001 and P = 0.002 for AF ? CO2 and

FF ? CO2, respectively) whereas unfed mites were not (binomial test, P = 0.31 and

P = 0.74 for AF ? CO2 and FF ? CO2, respectively). As was the case in the first series of

experiments, response rates (provided in brackets in the horizontal bars of Fig. 2), were

significantly lower for unfed than for fed mites (logistic regression, P \ 0.05). In addition,

feeding status affected attractiveness (Fig. 2): choices made by unfed mites towards a

stimulus were significantly weaker for all three tests when compared with the choices made

by fed mites.

Response towards conspecific mites

Both fed and unfed mites were significantly attracted towards volatiles derived from 200

conspecific fed mites: 84 and 85% of the mites, respectively, chose for the volatiles from

fed mites (Fig. 3; binomial test, P \ 0.001 and P = 0.003, respectively). Fed mites were

also attracted towards unfed mites (binomial test, P = 0.005), but this response varied

significantly over the three experimental days (89, 50 and 100%, respectively). Unfed
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Fig. 2 Response of unfed (white bars) and fed (grey bars) Dermanyssus gallinae to CO2 alone or in
combination with host-related sources. Tests were performed in a Y-tube olfactometer; ns not significant,
* P \ 0.05, ** P \ 0.01, *** P \ 0.001. The total number of mites (out of 60 tested) choosing one of the
two ports is given in parentheses
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mites were not attracted to unfed conspecifics (binomial test, P = 0.16). When mites were

offered the choice between fed and unfed mites, fed mites significantly preferred fed mites

(binomial test, P = 0.018), whereas unfed mites had no preference for either odor source

(binomial test, P = 0.55). Response rates were significantly lower for unfed than for fed

mites (logistic regression, P \ 0.05), except for the test where both odors of fed and unfed

mites were offered (logistic regression, P = 0.104).

Discussion

Our results indicate that volatile cues from conspecific mites and from host-related sources

play an important role in the behavioral ecology of D. gallinae mites. Because of the fact

that these volatile cues mediate interactions between individuals from the same species

(mite) or between species (mite and chicken), they can be classified as ‘pheromones’ and

‘kairomones’, respectively (Dicke and Sabelis 1988). In line with our expectations, fed

mites, which are probably searching for a place to hide and aggregate with conspecifics

after a blood meal, responded strongly to volatile cues from conspecific mites. Interest-

ingly, fed mites were also motivated when host-related cues, including CO2, were offered.

We expected that unfed (starved) mites would be more responsive than fed mites to the

combination of feathers and CO2, because both signal the presence of a chicken host from

which a blood meal can be taken, but this was not the case. The role of CO2 in mediating

behavioral responses of D. gallinae towards host-related volatiles will be discussed below.

A variety of chemical compounds may be responsible for the attraction of D. gallinae
towards feathers. Lipids from the uropygial (preen) gland waterproof the plumage and

inhibit microbial growth, but these compounds are generally not very volatile (Haahti and

Fales 1967; Bernier et al. 2008). Therefore, microbial breakdown products of uropygial

gland secretions are more likely to serve as kairomones in the host location process. The

fact that unfed mites were more attracted to aged than to fresh feathers supports this

suggestion, but when we artificially stimulated microbial growth by incubating fresh

feathers at 37�C for 7 days, mites did not distinguish between fresh and incubated feathers.

Because aged feathers had been in contact with the litter for 3–4 days, it is well possible

that other factors, such as litter-associated microbes and chemical components from
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Fig. 3 Response of unfed (white bars) and fed (grey bars) Dermanyssus gallinae to 200 conspecific mites.
Tests were performed in a Y-tube olfactometer; ns not significant, * P \ 0.05, ** P \ 0.01, *** P \ 0.001.
The total number of mites (out of 60 tested) choosing one of the two ports is given in parentheses
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manure, play a role in the attraction of the mites towards aged feathers. The diversity and

amount of compounds on chicken skin is enormous, and includes alcohols, ketones, diones

and aldehydes (Bernier et al. 2008). The fact that the attraction in our study occurred with

only a small number of feathers suggests that mites are able to detect low levels of

kairomones.

In general, CO2 is used as a cue by insects and mites for a variety of behaviors such as

finding suitable host plants for oviposition (mainly in Lepidoptera), locating living or dead

plant material as a food source and detecting suitable hosts for a blood meal by hema-

tophagous insects (Guerenstein and Hildebrand 2008). For example, the blood-feeding

mosquito Aedes aegypti is capable of detecting small changes in background levels of CO2:

an increase from 0.035 to 0.05% activates these mosquitoes and sensitizes them to human

skin odors (Dekker et al. 2005). Similarly, CO2 may act in synergism with host-specific

odors, as is the case in ornithophilic black flies (Fallis and Smith 1964). We found that

unfed (starved) mites were not attracted to levels of CO2 comparable to the amount exhaled

by chickens (*2.5%, (Gleeson et al. 1985)). In contrast, recently fed mites were attracted

to this concentration of CO2. Carbon dioxide even appeared to be capable of masking

attractive compounds, because the attractiveness of aged feathers to unfed mites was lost in

the presence of CO2. This was contrary to our expectations, because we hypothesized that

mites in need of a blood meal are more motivated to respond to CO2 as a host cue. Kilpinen

(2005) found that CO2 induced a different type of behavior: in response to brief pulses of 5

and 100% CO2, D. gallinae becomes motionless (‘freezes’) until further stimulated. This

behavior was observed in light conditions, but not in the dark. This was interpreted as a

defense against being eaten by a potential host. The mites in our experiments were con-

tinuously exposed to the airstream with CO2 and did not show a freezing response within

the Y-tube set-up. Mites may thus be able to differentiate between a sudden puff of CO2,

indicating the presence of a potential predator at very close range, and more continuously

elevated levels of CO2 that may make mites responsive to other host related odors, similar

to what has been observed with mosquitoes (Dekker et al. 2005). It remains to be eluci-

dated why recently fed mites were attracted to CO2. After blood feeding, D. gallinae
searches for a suitable hiding place and aggregates with conspecific mites. Aggregations of

mites can also emit small, but detectable levels of CO2 (C.J.M. Koenraadt, unpublished

data). It remains to be investigated whether these CO2 levels act synergistically with other

volatile cues emitted by mites such as aggregation pheromones. Responses of mites

towards CO2 are thus likely to be dose and context dependent.

We hypothesized that unfed mites would not respond strongly to conspecific mites,

because they would be more motivated to locate a blood meal than a hiding place with

conspecifics. This was indeed the case when unfed mites were exposed to 200 unfed

conspecifics. When looking at the response towards fed conspecifics, only few unfed mites

made a choice, but those that did choose, strongly preferred the odor of fed conspecifics.

We hypothesize that, in contrast to unfed mites, fed mites are more motivated to locate

aggregations of conspecific mites. They indeed strongly preferred air led over both fed and

unfed conspecifics. This is consistent with earlier findings that demonstrated that aggre-

gations were more quickly formed with fed than with unfed mites (Entrekin and Oliver

1982), but visual and tactile stimuli were not excluded in the experiments of the latter

study. The composition of the pheromone that triggers aggregation remains to be eluci-

dated. As is the case with other ectoparasitic arthropods, it probably consists of a blend of

various compounds (Sonenshine 1985; Siljander et al. 2008).

For all experiments, the number of unfed mites actually choosing one of the stimuli

(response rate) was lower than of fed mites. We think this may be related to the speed with
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which mites walked through the Y-tube set-up. Unfed mites were generally walking faster

than fed mites (personal observation) and may thus be less likely to remain in one of the

ports for 1 min. Another experimental study with medically and economically important

mites did not find an effect of starvation on behavioral responses in a Y-tube olfactometer

(Skelton et al. 2007). In our study, the only instance where the response rates of fed and

unfed mites were similar was when they were offered the choice between both fed and

unfed mites. This may be related to the overall stronger stimulus that these mites were

exposed to (odors from 400 mites instead of 200 mites).

For poultry farmers, D. gallinae poses an increasing challenge in their daily manage-

ment of the farm. One option as an alternative to conventional spraying of synthetic

acaricides is the development of an attract-and-kill strategy. This has shown promising

results with other agricultural pests, such as codling moths, fruit flies and banana weevils

(Charmillot et al. 2000; Stetter and Lieb 2000; Vargas et al. 2003; Tinzaara et al. 2007). A

major advantage of this strategy is that smaller amounts of the killing agent are needed and

that this agent can be administered at specific locations. This results in lower exposure and

hazard to chickens. It will also slow down the development of resistance to chemical

components. Ideally, biological kill components that are more environmentally friendly,

such as essential plant oils and entomopathogenic fungi (Kim et al. 2004; Tinzaara et al.

2007; Tavassoli et al. 2008) are incorporated in this strategy. The concealed lifestyle of the

mite during the day makes it hard for a pesticide to actually hit the mite. Therefore, an

attract-and-kill strategy that ‘brings the pest to the pesticide’ is likely to be more effective.

The present study provides stimulating data to address setting up an attract-and kill-

strategy in future studies.
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