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Chapter 1

Introduction

1.1 The enigma of population oscillations

The first scientific study of population oscillations dates back to at least the 1920s
with the work of the English zoologist Charles Elton. He was puzzled by multi-
annual cycles in the population abundances of small mammals like lemmings, mice,
voles and lynx. Based on data covering many years of study, he suggested that
periodic fluctuations in the numbers of certain animals is likely to be due to climatic
fluctuations as they have a similar frequency (Elton 1924).

Interestingly, shortly after Elton’s empirical work, Alfred Lotka and Vito Volterra
showed through simple mathematical models that population oscillations can be gen-
erated by predator-prey interactions (Lotka 1925; Volterra 1926). When Volterra’s
article appeared in Nature in 1926, Elton’s certainties about externally driven pop-
ulation oscillations faded away. The idea that population cycles can be generated
through interactions between species was an unexpected breakthrough.

1.2 The discovery of chaos: Lorenz’s famous cup
of coffee

In the 1960s another remarkable discovery was made that changed scientific thinking.
Meteorologist Edward Lorenz had created a simple computer simulation model de-
scribing the weather. Having obtained some results from his numerical simulations,
he decided to carry the calculations further. Instead of starting the simulations all
over again (at that time the computers were really slow), he took a shortcut and
started somewhere in the middle of the simulations. He entered new initial condi-
tions at that midpoint by typing the numbers from his earlier printout. After going
away for a cup of coffee, he came back to check the model’s output and to his sur-
prise the results were very different from the previous run. He soon understood the
reason: the input data of the second run were rounded off and were slightly different
from those of the first run (at the fourth decimal digit). Surprisingly, in the course

1
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of a coffee break, that small difference in initial conditions had grown exponentially
to provide a completely different result. Lorenz had accidentally discovered chaos
(Lorenz 1963).

1.3 What is chaos?

1.3.1 Definition of chaos and the “butterfly effect”

Chaos is defined as aperiodic long-term behavior in a deterministic system that
exhibits sensitive dependence on initial conditions (Strogatz 1994).

“Aperiodic long-term behavior” means that the dynamics remain irregular ad
infinitum, so the dynamics do not lead to a fixed point, periodic orbit, or
quasi-periodic orbit.

“Deterministic” means that the system has no random or noisy components.
The irregular fluctuations arise from the system’s non-linearity and not from
stochastic factors.

“Sensitive dependence on initial conditions” means that small differences in the
initial conditions grow exponentially in time. This means that minor deviations
in the initial conditions cause large deviations in the long term, making long-
term predictions of the state of the system impossible.

The last point is also known as the “butterfly effect” and has been made popular by
Lorenz’s world famous talk entitled: “Predictability: Does the flap of a butterfly’s
wings in Brazil set off a tornado in Texas?”. The flapping wing represents a small
change in the initial conditions of the system, which causes a chain of events leading
to large-scale alterations of events.

1.3.2 Strange attractors: patterns of chaos in phase space

In a dynamical system, phase space is defined as the collection of all possible states of
the system. A specific evolution of the system s state over time in this phase space is
called a trajectory of the dynamical system. Consider for instance the Lotka-Volterra
model describing the population dynamics of a predator and its prey:

dx

dt
= x(α− βy)

dy

dt
= −y(γ − δx) (1.1)

2
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Figure 1.1: A trajectory in phase space for the Lotka-Volterra model.

where x is the abundance of the prey, y is the abundance of its predator, and
α, β, γ and δ are parameters representing the interactions between the species. We
can draw a trajectory in the phase space of this system by plotting the abundance
of species x against the abundance of species y at each point in time, according to
the solution (x(t), y(t)) of Eq. 1.1 (Figure 1.1).

An attractor is a set of points in phase space (for instance population abundances
in the Lotka-Volterra model) that represents the states that the system reaches in
the long run. An attractor has the following properties:

1. Any trajectory that starts on the attractor stays on the attractor for all time.

2. Any trajectory starting near enough to the attractor will always converge to
the attractor.

3. The attractor is the minimum set of points that satisfies both 1 and 2.

Geometrically, an attractor can have different shapes depending on the solution
of the system. The simplest attractor is the fixed point, where the trajectories
approach a stable equilibrium (Figure 1.2a). A more complex attractor is the limit
cycle, which is represented by a closed curve as the solutions oscillate periodically
(Figure 1.2b). Another possibility is the quasi-periodic attractor which occurs if

3
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a

b

c

d

Figure 1.2: Depending on the solutions of the system different types of attrac-
tor may exist. a, The attractor is a fixed point if the solutions are equilibria.
b, The attractor is a closed curve called a ‘limit cycle’ if the solutions oscillate
periodically. c, The attractor is a torus if the solutions are quasi periodic with
two or more incommensurate frequencies. d, The attractor is called a ‘strange
attractor’ if the solutions are chaotic.
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the oscillations consist of two or more incommensurate frequencies. The attractor
then has the shape of a torus in phase space (Figure 1.2c). Every trajectory winds
endlessly around the torus, yet never intersects with itself.

If the solutions are chaotic, the attractor is called a strange attractor (Fig-
ure 1.2d). Strange attractors have some important properties. The first property
is that they are sensitively dependent on initial conditions, which means that two
trajectories that are very close to each other will be arbitrarily far apart at later
times. The only restriction is that the trajectories remain on the attractor. The
second property is that strange attractors are never closed, which means that the
motion of the system never repeats itself (aperiodic). The third property is that
these attractors have a fractal structure, which means that their shape does not
have an integer dimension (like a point, a line, a surface or a volume). A classical
example of a strange attractor is the famous Lorenz attractor which has the typical
shape of a butterfly (Figure 1.2d). Hence, the “butterfly effect” is indeed a very
appropriate name!

1.3.3 A measure of chaos: the Lyapunov exponent

The sensitive dependence on initial conditions can be quantified by so-called Lya-
punov exponents (often indicated by the Greek letter λ). To illustrate the basic idea
of a Lyapunov exponent, we take a point s on the attractor and consider what hap-
pens to a small sphere of points close to s (Figure 1.3). This small sphere of nearby
points can be interpreted as small perturbations of the initial conditions. If we follow
the trajectory from the initial point s and trajectories starting from the small sphere
of nearby initial conditions through time, we will see that the distances between the
trajectory starting from s and its neighboring trajectories will either grow or shrink,
causing the sphere to become distorted into an ellipsoid (Figure 1.3). The distances
between the trajectory starting from s and the other trajectories in the ellipsoid
can be followed in time. From the development of these distances we can determine
the rates of exponential divergence (or convergence) of nearby trajectories. Each of
these rates of change is a Lyapunov exponent. Thus, there is a set of n Lyapunov
exponents (λ1, . . . , λn), with as many exponents as the n system’s variables in phase
space. The attractor is chaotic if at least one of the Lyapunov exponents is positive,
so that at least in one direction the trajectories are diverging. Since the Lyapunov
exponent measures the rate at which nearby trajectories diverge, the magnitude of
the Lyapunov exponent provides an indication of the predictability of the system.
Fast divergence, and hence large Lyapunov exponents, implies low predictability.

It is common (and we also follow this approach in this thesis) to look only at
the largest Lyapunov exponent (simply indicated as λ) to determine if a system is
chaotic or not. The largest Lyapunov exponent determines to a large extent the rate
of divergence of the entire system and thus provides information about the system’s
predictability. In the example in Figure 1.3, we have a system of two variables in
phase space. Hence, we will have two Lyapunov exponents, one (λ1) in the direction

5
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s(0)

x2

x1

s(t)
x1

x2

Time

Figure 1.3: Sensitive dependence on initial conditions of a chaotic system. A
small sphere of initial conditions close to reference point s evolves into an ellip-
soid whose principal axes expand (or diverge) at rates given by the Lyapunov
exponents. There are as many Lyapunov exponents as the number of variables
in phase space (two in this case). Chaotic systems are characterized by at
least one positive Lyapunov exponent, indicating that small initial differences
expand along at least one of the axes.

of axis x1 and the other (λ2) in the direction of axis x2. In this example, the largest
Lyapunov exponent is λ2, and the system will thus diverge most strongly in the
direction x2 (Figure 1.3).

1.3.4 Deterministic chaos versus stochasticity

Often chaos is misunderstood and wrongly associated with stochasticity. It is there-
fore important to underline that chaotic and stochastic dynamics are two very dif-
ferent phenomena. Chaotic systems follow deterministic rules and therefore have
a high predictability in the short run. Because the divergence of trajectories takes
times, chaotic systems have a low predictability when predictions are made over long
time spans. In contrast, stochastic fluctuations are at least partly caused by chance.
Therefore, stochastic systems never permit exact prediction, not even in the short
run, but are predictable only in terms of probabilities.

6
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In models of chaotic systems, if information is complete, predictions will be
perfect. In other words, if we would start such a model twice with exactly the same
initial conditions, we would obtain exactly the same result. The impossibility of
making long-term predictions for chaotic systems derives from the lack of complete
information about the initial conditions. As the tiniest difference in initial conditions
grow exponentially in time, it is fundamentally impossible to predict the system
dynamics in the long run.

1.4 Chaos in ecology

In the 1970s Sir Robert May showed that simple deterministic population models
can generate chaos (May 1976). May worked with a simple discrete model (i.e., a
difference equation) describing the logistic growth of a single population, when he
observed that changing the intrinsic growth rate of the population led to a plethora
of different model behaviors. At low growth rates, the population reached an equi-
librium and stayed there (Figure 1.4a). As the intrinsic growth rate increased, the
equilibrium population size increased gradually. However, at a certain level of the
growth rate, the behavior of the model changed. Instead of settling down to a
single population size, it jumped back and forth between two different values (Fig-
ure 1.4b). It had a higher value one year, and a lower value next year, and so on.
Raising the growth rate a little more caused it to jump between four different values
(Figure 1.4c). As the growth rate was increased further, the periodicity doubled
again. These period doublings came faster and faster until chaos appeared. Thus,
beyond a certain growth rate, it became impossible to predict the long-term dynam-
ics of the population. From generation to generation, it jumped up and down in
what looked like a random fashion (Figure 1.4d).

One might think that this result would have aroused immediate and huge interest
from empirical ecologists, but it did not. One reason was the belief that such complex
ecological dynamics arise only in models. This belief was at least partly fed by a
follow-up study of May’s single-population model, which showed that chaos in insect
populations would require much higher intrinsic growth rates than observed in nature
(Hassell et al. 1976). Consequently, and for the next ten years, the ‘chaos revolution’
proceeded mainly in the physical sciences, and much less in ecology.

In the 1990s a series of new model studies demonstrated that high intrinsic growth
rates were not the only mechanism capable of generating chaos in population dynam-
ics. It turned out that the phenomenon was not restricted to difference equations ei-
ther. In particular, mathematical models showed that chaos can arise from many dif-
ferent ecological processes, including predator–prey interactions (Gilpin 1979; Schef-
fer 1991; Vandermeer 1993), food-chain dynamics (Hastings and Powell 1991), and
multispecies competition for limiting resources (Huisman and Weissing 1999). How-
ever, despite the abundance of theoretical results, most ecologists remained skeptical
and thought of chaos as something that may happen for a restricted range of pa-
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ulation oscillates between two different values. c, At growth rate r=3.5, the
population oscillates between four different values.d,At growth rate r=3.8, the
population oscillates chaotically.

rameters in models, but is not really important for real ecosystems. In particular,
some ecologists argued that chaotic fluctuations would be unlikely in nature, as the
strong ups and downs would easily lead species to near-extinction (Philippi et al.
1987; Berryman and Millstein 1989). However, other studies counter argued that
chaos could actually reduce the probability of species extinction (Allen et al. 1993),
and that windows of opportunity created in nonequilibrium communities may en-
hance biodiversity (Huisman and Weissing 1999). However, the debate remained
largely theoretical. One of the main reasons for the widespread belief that chaos
would be rare in ecology was that it is really difficult to demonstrate chaos in real-
world ecosystems. In the real world, the external conditions are never constant and
the observed species fluctuations may be driven by these environmental fluctuations
rather than by intrinsic dynamics. Moreover, the statistical techniques to demon-
strate chaos in a rigorous manner require long and high-resolution time series, and
such data are scarce in ecology.
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To deal with this problem, ecologists have developed different methodologies to
demonstrate chaos in natural populations. Pioneering work by Schaffer and col-
leagues, using techniques based on attractor reconstruction, indicated the likely
chaotic character of various childhood epidemics (Schaffer and Kot 1986; Olsen et al.
1988; Olsen and Schaffer 1990; Schaffer et al. 1990). Almost at the same time Su-
gihara and May (1990) developed a non-linear forecasting method with which they
pointed to the possibility of chaotic behavior in the dynamics of diatom popula-
tions along the Pacific coast of Southern California. Subsequently, various authors
(Turchin and Taylor 1992; Hanski et al. 1993; Turchin 1993, 1995; Ellner and Turchin
1995) fitted nonlinear time-series models to long-term data, and their results suggest
chaos in the population dynamics of several insects and small mammals.

Although these first results were exciting, it remains difficult to determine un-
equivocally whether intrinsic chaotic dynamics are the true explanation of species
fluctuations observed in nature. Indeed, stronger evidence of chaos in ecology came
from studies in the laboratory, where scientists could keep the environmental con-
ditions constant. In 1997, biologist Robert Costantino and his colleagues reported
chaos in flour beetles (Costantino et al. 1997). Costantino and co-workers raised
flour beetles in flasks for over 20 years. The researchers built a mathematical model
to represent the population dynamics of flour beetles. They showed that if adult
mortality was high, the model became very sensitive to the rate of cannibalism, in
some cases jumping to cycles and in other cases to chaos depending on the rate of
cannibalism. To validate their model’s results they tried to recreate this behavior in
the lab. In their experiments, adult mortality rate was increased simply by regularly
removing beetles which have reached maturity. Then they mimicked different canni-
balism rates by taking away pupae from the flasks. The experiments confirmed the
model predictions. Depending on the experimental settings, the beetle populations
reached a stable equilibrium, oscillated regularly, or fluctuated chaotically.

About 10 years passed since the findings of Costantino and co-workers, when
two other studies demonstrated chaos under controlled laboratory conditions. Becks
et al. (2005) discovered chaotic dynamics in a simple three-species food web consist-
ing of one protozoa and two bacterial species. A few years later, Graham et al. (2007)
showed chaos in the dynamics of nitrifying bacteria in a wastewater bioreactor. So
far, however, laboratory studies have not considered the natural complexity of real
food webs and the time span of experiments has often been too short to detect chaos
in a rigorous manner.

1.5 Thesis outline

In this thesis I provide the first experimental demonstration of chaos in a real com-
plex food web. In chapter 2 we analyze data from a marine planktonic food web
isolated from the Baltic Sea and grown under constant laboratory conditions by Dr.
Reinhard Heerkloss for nearly 8 years. The analysis demonstrates convincingly that
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the species fluctuations in this food web show sensitive dependence on the initial
conditions.

In chapter 3 we use wavelet and cross wavelet analysis to investigate the chaotic
fluctuations in our marine food web in more detail. The analysis reveals that the
food web contains two interacting predator-prey cycles. The two cycles are coupled
through competition for nutrients and light between the two prey species. The
system shifts back and forth between the two predator-prey cycles in a chaotic
fashion, which results in continued alternations in species dominance.

One may argue that external forcing by regular seasonal variation could prevent
chaos in real ecosystems. In chapter 4 we study a multispecies predator-prey model
to investigate how seasonal forcing may affect chaos in plankton communities. Our
results demonstrate that the chaotic dynamics may become entrained by the seasonal
cycle in an intriguing way.

Another common argument is that real ecosystems also experience short-term
stochastic variation, for instance by day-to-day variability in weather conditions.
The effect of such environmental noise on plankton populations is investigated in
chapter 5. Finally in chapter 6 I summarize the results presented in this thesis
and I give an outlook for future research.

Acknowledgements
I thank Marten Scheffer, Egbert van Nes and Jef Huisman for their helpful comments
on this chapter.
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Chapter 2

Chaos in a long-term experiment with a

plankton community

Abstract

Mathematical models predict that species interactions such as competi-
tion and predation can generate chaos (May 1974, 1976; Gilpin 1979; Hastings
and Powell 1991; Vandermeer 1993; Huisman and Weissing 1999; van Nes and
Scheffer 2004; Huisman et al. 2006). However, experimental demonstrations of
chaos in ecology are scarce, and have been limited to simple laboratory systems
with a short duration and artificial species combinations (Ellner and Turchin
1995; Costantino et al. 1997; Becks et al. 2005; Graham et al. 2007). Here, we
present the first experimental demonstration of chaos in a long-term experi-
ment with a complex food web. Our food web was isolated from the Baltic
Sea, and consisted of bacteria, several phytoplankton species, herbivorous and
predatory zooplankton species, and detritivores. The food web was cultured in
a laboratory mesocosm, and sampled twice a week for more than 2,300 days.
Despite constant external conditions, the species abundances showed striking
fluctuations over several orders of magnitude. These fluctuations displayed a
variety of different periodicities, which could be attributed to different species
interactions in the food web. The population dynamics were characterized
by positive Lyapunov exponents of similar magnitude for each species. Pre-
dictability was limited to a time horizon of 15-30 days, only slightly longer
than the local weather forecast. Hence, our results demonstrate that species
interactions in food webs can generate chaos. This implies that stability is
not required for the persistence of complex food webs, and that the long-term
prediction of species abundances can be fundamentally impossible.

This chapter is based on the paper: Benincà, E., Huisman, J., Heerkloss, R., Jöhnk, K.D.,
Branco, P., van Nes, E.H., Scheffer, M. & Ellner, S.P. 2008. Chaos in a long-term experiment
with a plankton community. Nature 451, 822-825.
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2.1 Introduction

The discovery by Sir Robert May in the 1970s that simple population models may
generate complex chaotic dynamics (May 1974, 1976) triggered heated debate and
caused a paradigm shift in ecology. Since May’s pioneering findings, mathematical
models have shown that chaos can be generated by a plethora of ecological mecha-
nisms, including competition for limiting resources (Huisman and Weissing 1999;
Huisman et al. 2006), predator-prey interactions (Gilpin 1979; Vandermeer 1993),
and food-chain dynamics (Hastings and Powell 1991; van Nes and Scheffer 2004). In
contrast to the overwhelming theoretical attention, convincing empirical evidence of
chaos in real ecosystems is rare (Zimmer 1999). What could explain the paucity of
empirical support? It might be that chaos is a rare phenomenon in natural ecosys-
tems, for instance because food webs contain many weak links between species,
which may stabilize food-web dynamics (McCann et al. 1998; Neutel et al. 2002).
Alternatively, one might argue that there is a lack of suitable data to test for chaos
in food webs. For instance, external variability (e.g., weather fluctuations) may ob-
scure the role of intrinsic species interactions. In principle, laboratory experiments
provide ideal conditions to obtain high-resolution data in a constant environment.
Chaos has so far been demonstrated experimentally for a few single species (Ellner
and Turchin 1995; Costantino et al. 1997), a simple three-species food web (Becks
et al. 2005), and a wastewater bioreactor (Graham et al. 2007). Thus far, however,
laboratory studies did not consider the natural complexity of real food webs, and
the time span of experiments has often been too short to detect chaos in a rigorous
manner.

2.2 The mesocosm experiment dataset

Here, we analyze a time series of a plankton community isolated from the Baltic Sea.
The plankton community was cultured in a laboratory mesocosm under constant ex-
ternal conditions for more than 8 years (Heerkloss and Klinkenberg 1998). In total,
two nutrients (N and P), one detritus pool, and ten different functional groups were
distinguished (Figure 2.1a). The phytoplankton was divided into picophytoplank-
ton, nanophytoplankton, and filamentous diatoms. The herbivorous zooplankton
was classified into protozoa, rotifers, and calanoid copepods. The rotifers and pro-
tozoa were grazed by cyclopoid copepods. The microbial loop was represented by
heterotrophic bacteria and two groups of detritivores: ostracods and harpacticoid
copepods. The abundances of these functional groups were counted twice a week.
Our analysis covers a period of 2,319 days, which yielded 690 data points per func-
tional group. Since most species in this food web have generation times of only a
few days, the time series spanned hundreds to thousands of generations per species.
We performed several analyses to investigate the dynamics of this food web.

12



Chaos in a plankton community

 

0

4

8

12

80

160
X 10

 
0

2

4

6

8

0

15

30

45

100

200

0.0

0.2

0.4

0.6

2.5

5.0

d e

g

0

4

8

12

60

120
c

Time [days]

f

0.0

0.2

0.4

0.6
1.0
2.0
3.0

b

a

Detritus

Picophyto
plankton

Cyclopoids

Protozoa Rotifers Calanoids

Ostracods Harpacticoids

Nanophyto
plankton

Nutrients

Filamentous
diatoms

Bacteria

N
ut

rie
nt

s 
[µ

m
ol

   
L-1

]

Ba
ct

er
ia

 [m
g 

fw
t L

-1
] 

Ph
yt

op
la

nk
to

n 
[m

g 
fw

t L
-1
] 

Cy
cl

op
oi

ds
 [m

g 
fw

t  
L-1

] 

H
er

bi
vo

re
s 

[m
g 

fw
t L

-1
] 

D
et

rit
iv

or
es

 [m
g 

fw
t  

L-1
] 

0          500      1000     1500     2000     25000          500      1000     1500     2000     2500

Figure 2.1: Description of the plankton community in the mesocosm experi-
ment. a, Food web structure of the mesocosm experiment. The thickness of the
arrows gives a first indication of the food preferences of the species, as derived
from general knowledge of their biology. b-g, Time series of the functional
groups in the food web (measured as freshweight biomass). b, Cyclopoid cope-
pods; c, calanoid copepods (red), rotifers (blue), and protozoa (dark green);
d, picophytoplankton (black), nanophytoplankton (red), and filamentous di-
atoms (green); note that the diatom biomass should be magnified by 10; e,
dissolved inorganic nitrogen (red) and soluble reactive phosphorus (black); f,
heterotrophic bacteria; g, harpacticoid copepods (violet) and ostracods (light
blue).
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Chapter 2

2.3 Methods

2.3.1 Methods summary

The mesocosm consisted of a cylindrical plastic container (74 cm high, 45 cm diam-
eter), which was filled with a 10 cm sediment layer and 90 liter of water from the
Baltic Sea. This inoculum provided all species in the food web. The mesocosm was
maintained in the laboratory at a temperature of ≈20◦C, salinity of ≈9 , incident
irradiation of 50 µmol photons m−2 s−1 (16/8 hours light-dark cycle), and constant
aeration. Species abundances were measured twice a week, while nutrients were
measured weekly.

We interpolated each time series to obtain data with equidistant time intervals of
3.35 days. The interpolated time series were subsequently transformed to stationary
time series with mean zero and standard deviation of 1. Long sequences of zero
values were removed from the analysis.

We calculated the predictabilities of the species by fitting a neural network model
to the time series, following Nychka et al. (1992). For each species, the neural
network predictions were based on the observed population abundances of the species
itself and of those species with which it has a direct link in the food web (Figure 2.1a).

We used two different methods to calculate the Lyapunov exponent. The direct
method was based on attractor reconstruction by time-delay embedding of each time
series (Kantz and Schreiber 1997; Rosenstein et al. 1993). We chose an embedding
dimension of 6 and a time delay of 1 time step (see Appendix A). This direct method
yielded Lyapunov exponents for each species separately. The consistency of these
Lyapunov exponents provides an additional check on the robustness of our conclu-
sions. The indirect method was based on a neural network approach to estimate
the deterministic skeleton of the dynamics (Ellner and Turchin 1995; Nychka et al.
1992). This deterministic skeleton was used to calculate one Lyapunov exponent
characterizing the dynamics of the entire food web.

2.3.2 Experimental set-up

The experiment (Heerkloss and Klinkenberg 1998) started on 31 March 1989, when
the mesocosm was filled with a 10 cm sediment layer and 90 liter of water from
the Darss-Zingst estuary (southern Baltic Sea, 54◦ 26’ N, 12◦ 42’ E). Phytoplankton
was divided in three functional groups: picophytoplankton consisting of 1-2 µm pico-
cyanobacteria (mostly Synechococcus species), nanophytoplankton consisting of 3-5
µm eukaryotic flagellates (mainly Rhodomonas lacustris Pascher and Ruttner), and
large filamentous diatoms (Melosira moniliformis (O.F.M.) C. Agardh). Herbivo-
rous zooplankton was classified into three groups: protozoa (mainly large ciliates
such as Cyclidium and Strombidium species), rotifers (mainly Brachionus plicatilis
(O.F.M.)), and the calanoid copepod Eurytemora affinis (Poppe). Rotifers and pro-
tozoa were grazed by predators belonging to the cyclopoid copepods (unidentified
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species of the Eucyclops genus). The microbial loop was represented by heterotro-
phic bacteria and two groups of detritivores: ostracods and the harpacticoid copepod
Halectinosoma curticorne (Boeck). Sampling of the mesocosm is described in the
Appendix A.

From 23 November 1990 to 5 March 1991, the length of the light period was
temporarily reduced from 16 to 12 hrs per day. Accounting for a brief period of
recovery, we therefore restricted our time series analysis to the period from June 16,
1991, onwards until the end of the experiment on 20 October 1997.

2.3.3 Data treatment

Several of our analyses required stationary time series, with equidistant data and
homogeneous units of measurement. We therefore interpolated each time series
using cubic hermite interpolation to obtain data with equidistant time intervals of
3.35 days. Nitrogen and phosphorus concentrations were transformed to equivalent
units of ‘biomass’ assuming Redfield ratios (Redfield 1958). Some functional groups
remained below the detection limit for a long time, yielding long sequences of zero
values. We shortened these time series by removing these long sequences of zero
values. Also, the time series showed sharp ups and downs in species abundances.
Therefore, all time series were rescaled by a fourth-root power transformation. This
power transformation homogenized the variances, and eliminated a possible bias
in the ‘direct method’ calculation of the Lyapunov exponents (see Appendix A).
Subsequently, we removed long-term trends from the data by utilizing a sliding
window with a bandwidth of 300 days and a Gaussian kernel. Finally, the data
were normalized by the transformation x−µ

σ , where x is the original datapoint, µ is
the mean of the time series, and σ is the standard deviation. Thus, we obtained
stationary time series with mean zero and standard deviation of 1. The transformed
time series are shown in the Appendix A.

2.3.4 Predictability

We developed a model to investigate the predictability of each species. Ideally,
this model would be based on the biology of the species interactions. However, the
exact mechanisms of species interaction in this food web are not known. For in-
stance, we do not know the elemental stoichiometry of the different species, whether
allelochemicals modified the species interactions, or whether zooplankton followed
type-II or type-III functional responses. We may even lack information on some
food-web components (e.g., viruses were not measured). Using a mechanistically
incorrect parametric model can lead to spurious results in nonlinear time series
analysis (Kendall 2001). Therefore, we used a semi-mechanistic approach in which
the general model structure is based on biological knowledge about the food web,
while nonparametric methods are used to fit aspects about which little is known.
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In our case, we can exploit the food web structure to make predictions. For each
species, we used the following nonlinear model:

Ni,t+T = fi,T (Ni,t, N1,t, N2,t, ..., Nm,t) (2.1)

Here, Ni,t is the population abundance (or nutrient concentration) of species i
at time t, T is the prediction time (i.e., the number of days that we want to predict
ahead), and fi,T is an unknown function describing the change in the population
abundance of focal species i. The function fi,T uses the focal species i, and those
species 1 to m that have a direct link in the food web to this focal species (Fig-
ure 2.1a). For instance, predictions for picophytoplankton are based on picophy-
toplankton abundance, the nutrients nitrogen and phosphorus, and its herbivores
(rotifers, protozoa, and calanoid copepods) at the preceding time step. We esti-
mated the unknown functions fi,T using the neural network algorithm of Nychka
et al. (1992) (see Appendix A for details).

We tested whether the nonlinear neural network model yielded significantly bet-
ter predictions than the corresponding linear model. For this purpose, each nonlinear
function fi,T in Eq.2.1 was replaced by a linear function of the same population abun-
dances. The coefficients of this linear model were estimated by multiple regression.
The significance test comparing the predictions of the linear and nonlinear model is
explained in the Appendix A.

2.3.5 Lyapunov exponents

We used direct methods and indirect methods (also called Jacobian methods) to
estimate Lyapunov exponents. Direct methods search the data for nearby pairs of
state vectors. In other words, the time series are searched for pairs of data points
at which all species abundances in the food web are in a similar state. The rate
of trajectory divergence at subsequent times, averaged over many such pairs, is an
estimate of the dominant Lyapunov exponent (Kantz and Schreiber 1997; Rosenstein
et al. 1993). Because state vectors that are close in time are often also close in state
space, temporal correlation in the data may obscure the divergence of trajectories.
Our time series was sufficiently long to solve this problem by a Theiler window
(Theiler 1986), which is a moving window covering data before and after each data
point (see Appendix A for details).

Jacobian methods are based on the development of a deterministic model of the
underlying dynamics, called the deterministic skeleton. The Lyapunov exponent is
here calculated from the sequence of Jacobian matrices of the deterministic skeleton,
evaluated at the time series of observed or reconstructed state vectors (Ellner and
Turchin 1995; Nychka et al. 1992). Thus, Jacobian methods require the prelimi-
nary step of estimating the deterministic skeleton. We estimated the deterministic
skeleton using a similar neural network model as for the predictability (Eq. 2.1).

Both approaches have advantages and disadvantages. Direct methods cannot
distinguish trajectory divergence caused by chaos from trajectory divergence due to
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noise, and might therefore be less suitable for many ecological time series. Although
our experimental system was maintained under controlled laboratory conditions,
even small levels of environmental or demographic noise could bias direct methods
towards positive estimates of the Lyapunov exponent. Jacobian methods are not
biased by noise; their main problem is uncertainty in estimation of the deterministic
skeleton. If the Lyapunov exponents obtained from both approaches are consistent,
this adds further reliability to the results.

Further details on the calculation of Lyapunov exponents are provided in the
Appendix A.

2.4 Data analysis

First, the time series showed remarkable fluctuations in species abundances over sev-
eral orders of magnitude, despite constant external conditions (Figure 2.1). Spec-
tral analysis revealed that the fluctuations covered a range of different periodicities
(see Appendix A). In particular, picophytoplankton, rotifers and calanoid copepods
seemed to fluctuate predominantly with a periodicity of ≈30 days, suggestive of
coupled phytoplankton-zooplankton oscillations. Periodicities of ≈30 days are con-
sistent with model predictions of phytoplankton-zooplankton oscillations (Scheffer
and Rinaldi 2000), and have also been observed in earlier laboratory experiments
with phytoplankton and zooplankton species (Fussmann et al. 2000).

Second, a closer look at the species fluctuations revealed several striking pat-
terns (Table 2.1). Peaks of picophytoplankton, nanophytoplankton, and filamentous
diatoms alternated with little or no overlap (Figure 2.1d), and picophytoplankton
and nanophytoplankton concentrations were negatively correlated (Table 2.1), in-
dicative of competition between the phytoplankton groups. Predator-prey interac-
tions could also be discerned. We found negative correlations of picophytoplankton
with protozoa, and of nanophytoplankton with both rotifers and calanoid copepods
(Table 2.1). This indicates that protozoa fed mainly on picophytoplankton, while
rotifers and calanoid copepods fed mainly on larger nanophytoplankton, consistent
with the structure of the food web (Figure 2.1a). Conversely, the positive correla-
tion of picophytoplankton with calanoid copepods may point at indirect mutualism
between prey species and the predators of their competitors (that is, ‘the enemy of
my enemy is my friend’). Other striking patterns included the negative correlation
between bacteria and ostracods, and the positive correlation between bacteria and
phosphorus. Although our interpretation of these correlation patterns is somewhat
speculative, they correspond with the trophic links in the food web. This shows
that the observed fluctuations in species abundances were largely driven by species
interactions in the food web, not by external forcing.

Third, we investigated the long-term predictability of the food-web dynamics.
The predictability of a deterministic non-chaotic system with uncorrelated noise
(e.g., a limit cycle with sampling error) remains constant in time, while the pre-
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dictability of chaotic systems decreases in time (Sugihara and May 1990). We fitted
the time series to a neural network model (Nychka et al. 1992) to generate predic-
tions at different time intervals. For short-term forecasts of only a few days, most
species had a high predictability of R2=0.70-0.90 (Figure 2.2). However, the pre-
dictability of the species was much reduced when prediction times were extended to
15-30 days. This is a characteristic feature of chaos, where short-term predictabil-
ity is high, while the predictability decreases when making forecasts further into
the future. However, decreasing predictability can also occur in linear (and there-
fore non-chaotic) systems exposed to stochastic perturbations. We therefore tested
(Sugihara and May 1990) whether the predictions of the nonlinear neural network
model were significantly better than the predictions generated by the best-fitting
linear model. Already after a few time steps, the nonlinear model yielded signifi-
cantly higher predictabilities than the corresponding linear model for all species in
the food web (Figure 2.2; see Appendix A for the statistics). These findings demon-
strate that (i) the predictability of the species abundances in the food web decreased
in time, and (ii) there was a strong nonlinear deterministic component in the food
web dynamics.

Fourth, we calculated the Lyapunov exponent, the hallmark of chaos in non-
linear systems. The dominant Lyapunov exponent (λ) is a measure of the rate of
convergence or divergence of nearby trajectories (Strogatz 1994). Negative Lya-
punov exponents indicate that nearby trajectories converge, which is representative
for stable equilibria and periodic cycles. Conversely, positive Lyapunov exponents
indicate divergence of nearby trajectories, which is representative for chaos. We used
two different methods to calculate the Lyapunov exponent: a direct method and an
indirect method.

The direct method started with a reconstruction of the attractor by time-delay
embedding of each time series (Strogatz 1994; Takens 1981; Kantz and Schreiber
1997). Exponential divergence (or convergence) of trajectories was calculated from
nearby state vectors in the reconstructed state space (Rosenstein et al. 1993). The
results show that the distance between initially nearby trajectories increased over
time, and reached a plateau after about 20-30 days (Figure 2.3). This matches the
time horizon of 15-30 days obtained from the predictability estimates (Figure 2.2).
Lyapunov exponents were calculated from the initial slope of the exponential diver-
gence, using linear regression. This yielded significantly positive Lyapunov expo-
nents of strikingly similar value for all species (Figure 2.3; mean λ≈0.057 day−1,
s.d.=0.005 day−1, n=9). This gives much confidence that the species in the food
web were all fully connected, and that their population dynamics were governed by
the same chaotic attractor.

Direct methods cannot distinguish trajectory divergence caused by chaos from
trajectory divergence due to noise (Ellner and Turchin 1995; Nychka et al. 1992).
Therefore, we also applied an indirect method, which calculates the Lyapunov ex-
ponent from a deterministic model. While indirect methods are not affected by
noise, they rely on the assumption that the deterministic model provides an ade-
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Figure 2.2: Predictability of the species decreases with increasing prediction
time. The predictability is quantified as the coefficient of determination (R2)
between predicted and observed data. Already after a few time steps, predic-
tions by the nonlinear neural network model (open circles) were significantly
better than predictions by the best-fitting linear model (closed circles) (see Ap-
pendix A for further details). a, Cyclopoid copepods; b, rotifers; c, calanoid
copepods; d, picophytoplankton; e, nanophytoplankton; f, filamentous diatoms;
g, soluble reactive phosphorus; h, dissolved inorganic nitrogen; i, bacteria; k,
ostracods; l, harpacticoid copepods; m, protozoa.

quate representation of the system’s deterministic skeleton. In our case, the model
structure again followed the trophic structure of the food web (Figure 2.1a). The
model was used to calculate trajectory divergence at each time step by evaluation
of the Jacobian matrix (see Appendix A for details). This indirect method yielded
a global Lyapunov exponent of λ=0.04 day−1, characterizing the divergence of tra-
jectories across the entire food web. We ran a bootstrap procedure based on 1000
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Figure 2.3: Exponential divergence of the trajectories. The Lyapunov expo-
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exponents were significantly different from zero (linear regression: P<0.001,
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plankton; c, calanoid copepods; d, soluble reactive phosphorus; e, dissolved
inorganic nitrogen; f, rotifers; g, ostracods; h, harpacticoid copepods; i, bac-
teria. Exponential divergence could not be calculated for filamentous diatoms,
protozoa, and cyclopoid copepods, because their time series contained too many
zeros.

replicates to estimate the uncertainty of this value (see Appendix A). A one-sided
confidence interval at the 95% confidence level yielded a lower bound of λ=0.03
day−1. This confirmed that the Lyapunov exponent was significantly positive, and
that this positive value was not due to noise.

2.5 Discussion

In total, our analysis revealed several signatures of chaos. Despite constant external
conditions, the food web showed strong fluctuations in species abundances that
could be attributed to different species interactions. We found high predictability
on the short term, reduced predictability on the long term, and significantly positive
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Lyapunov exponents. This shows that the population dynamics in the food web
were characterized by exponential divergence of nearby trajectories, which provides
the first experimental demonstration of chaos in a complex food web.

Compared with other systems, the time horizon for the predictability of our
plankton community (15-30 days) is only slightly longer than the time horizon for the
local weather forecast (≈2 weeks, Lorenz 1982). Lyapunov exponents were smaller
in our plankton community (λ=0.03-0.07 day−1) than in recent experiments with
microbial food webs (Becks et al. 2005; Graham et al. 2007) (λ=0.08-0.20 day−1).
This might indicate that our plankton was ‘less chaotic’. Alternatively, these differ-
ences in Lyapunov exponents might be attributed to differences in generation times,
because most phytoplankton and zooplankton species in our experiment have longer
generation times than the bacteria and ciliates used in these microbial food webs.
Since the time horizon is inversely proportional to the Lyapunov exponent (Strogatz
1994), this suggests that the time horizon for the predictability of chaotic food webs
scales with the generation times of the organisms involved.

Our findings have important implications for ecology and ecosystem manage-
ment. First, our data illustrate that food webs can sustain strong fluctuations in
species abundances during hundreds of generations. Apparently, stability is not re-
quired for the persistence of complex food webs. Second, nonequilibrium dynamics
in food webs affect biodiversity and ecosystem functioning. For instance, fluctua-
tions on time scales of 15-30 days, as observed in our experiment, offer a suitable
range of temporal variability to promote species coexistence in plankton communi-
ties (Gaedeke and Sommer 1986). Hence, chaotic fluctuations generated by species
interactions may contribute to the unexpected biodiversity of the plankton, which
provides a solution for one of the classic paradoxes in ecology known as the paradox
of the plankton (Huisman and Weissing 1999). Third, chaos limits the predictability
of species abundances. In our experimental food web, predictability was lost on a
time scale of 15-30 days, which corresponds to 5-15 plankton generations depending
on the species. Since many other food webs have a similar structure of plants, her-
bivores, carnivores and a microbial loop, it is tempting to suggest that the observed
loss of predictability in 5-15 generations is likely to apply to many other food webs
as well.
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Coupled predator-prey oscillations in a

chaotic food web

Abstract

Coupling of several predator-prey oscillations can generate intriguing pat-
terns of synchronization and chaos. Theory predicts that prey species will fluc-
tuate in phase if predator-prey cycles are coupled through generalist predators,
whereas they will fluctuate in anti-phase if predator-prey cycles are coupled
through competition between prey species. Here, we investigate predator-prey
oscillations in a long-term experiment with a marine plankton community.
Wavelet analysis of the species fluctuations reveals two predator-prey cycles
that fluctuate largely in anti-phase. The phase angles point at strong com-
petition between the phytoplankton species, but relatively little prey overlap
among the zooplankton species. This food-web architecture is consistent with
the size structure of the plankton community, and generates highly dynamic
food webs. Continued alternations in species dominance enable coexistence of
the prey species through a non-equilibrium ‘killing-the-winner’ mechanism, as
the system shifts back and forth between the two predator-prey cycles in a
chaotic fashion.

3.1 Introduction

In 1665, confined to his home by a minor illness, the Dutch physicist Christiaan Huy-
gens discovered an ‘odd kind of sympathy’ between two pendulum clocks mounted
next to each other on the same beam (Bennett et al. 2002). The two pendula
oscillated with exactly the same frequency, but in opposite directions. When he
disturbed one pendulum, the anti-phase oscillations were quickly restored. Appar-
ently, the two pendula displayed coupled oscillations. Since Huygens’s discovery,

This chapter is based on the paper: Benincà, E., Jöhnk, K.D., Heerkloss, R. & Huisman, J. 2009.
Coupled predator-prey oscillations in a chaotic food web. Ecology Letters 12, 1367-1378.
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coupled oscillations have been described in many biological, chemical and physical
systems (Strogatz and Stewart 1993; Golubitsky et al. 1999; Rodriguez et al. 1999;
Kiss et al. 2002). In food webs, resource-consumer interactions can generate os-
cillations, for instance in the form of predator-prey and host-parasitoid cycles. In
a series of papers, Vandermeer (1993, 2004, 2006) showed that coupling of several
predator-prey oscillations can lead to intriguing patterns of synchronization, as in
Huygens’s clockwork.

Vandermeer (2004) described two different ways in which several predator-prey
oscillations can be coupled. If specialist predators each feed on only one prey species
while these prey species compete with each other, we say that the predator-prey
systems are ‘coupled through competition’ (Figure 3.1a). Conversely, if generalist
predators feed on all prey species, we say that the predator-prey systems are ‘cou-
pled through predation’ (Figure 3.1b). Interestingly, theory predicts that the mode
of coupling affects the phase relationships between the species fluctuations. Prey
species are predicted to oscillate all in phase with each other if predator-prey sys-
tems are coupled through generalist predation only. In contrast, prey species are
predicted to oscillate in anti-phase if systems are coupled through competition only.
Anti-phase oscillations are characterized by continued alternations in species dom-
inance, such that the dominance of one prey species is followed by the dominance
of another prey species, and so on. Likewise, predators are predicted to oscillate
in phase if systems are coupled through predation, but in anti-phase if systems are
coupled through competition (Vandermeer 2004).

In reality, of course, predator-prey systems will often be coupled through both
competition and predation. In this mixed case, theory predicts that the population
dynamics become chaotic for a relatively wide range of parameter values (Vander-
meer 2004). Hence, species fluctuations will not display the strict regularity of
Huygens’s clockwork but will vary in frequency and amplitude, which makes it more
difficult to identify patterns of synchrony. Still, some predator-prey systems may be
coupled predominantly through competition, whereas others may be coupled mainly
through predation, and the signatures of these different coupling modes may still be
reflected in the phase relationships between the species (Vandermeer 2004).

With these intriguing model predictions in mind, the question is whether similar
patterns of in-phase and anti-phase synchrony can be observed in real food webs.
Recently, we demonstrated chaos in a long-term experiment with a plankton com-
munity (Benincà et al. 2008). The plankton community was isolated from the Baltic
Sea, and consisted of phytoplankton species, herbivorous and predatory zooplank-
ton species, and a microbial loop. It was maintained in a laboratory mesocosm for
more than 8 years. Despite constant laboratory conditions, the species abundances
fluctuated over several orders of magnitude. We showed that the predictability of
these species fluctuations was limited to a time horizon of only 15-30 days (Ben-
incà et al. 2008). However, we were unable to pinpoint the underlying mechanisms
causing these chaotic fluctuations. Mathematical models suggest several possible me-
chanisms that can generate chaos in plankton communities, including multispecies
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Coupling through predation: two generalist predators (Z 1 and Z 2) feed on both
prey species. The magnitude of the selectivity coefficient β is a measure of the
strength of coupling (note that high β implies low selectivity). c-f, Coupled
oscillations may lead to different phase angles between the species fluctuations:
c, in-phase oscillations (0◦); d, quarter-delay oscillations (90◦); e, anti-phase
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competition (Huisman and Weissing 1999, 2001), tritrophic interactions (Hastings
and Powell 1991), coupled predator-prey oscillations (Vandermeer 2004; Dakos et al.
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2009), intraguild predation (Tanabe and Namba 2005), and the interplay between
mixing and sinking of plankton populations (Huisman et al. 2006).

In this study, we compare the results of this long-term experiment with predic-
tions of the coupled predator-prey model of Vandermeer (2004). For this purpose, we
use a simple statistical test to establish whether the experimental time series is char-
acterized by alternations in species dominance. In addition, we apply an advanced
statistical technique, known as cross-wavelet analysis (Torrence and Compo 1998;
Grinsted et al. 2004), to investigate the phase relationships between the dominant
phytoplankton and zooplankton species. The analyses show that the chaotic ups
and downs of the species are essentially driven by two coupled predator-prey cycles
fluctuating largely in anti-phase. This presents the first experimental demonstration
of two coupled oscillations in a chaotic food web.

3.2 Theory

Consider a simple food-web model consisting of two coupled predator-prey systems.
Let P1 and P2 denote the two prey species, and Z 1 and Z 2 the two predator species.
We assume that the prey species interact through Lotka-Volterra competition, and
are consumed by the predators according to a saturating functional response. The
model can then be written as (Rosenzweig and MacArthur 1963; Vandermeer 2004;
Dakos et al. 2009):

dPi
dt

= riPi

(
1−

∑
j αijPj

Ki

)
−
∑
k

gkβikPi
Hk +

∑
j βjkPj

Zk i = 1, 2 (3.1)

dZk
dt

=
gk
∑
j βjkPj

Hk +
∑
j βjkPj

Zk −mkZk k = 1, 2 (3.2)

Here, r i is the specific growth rate of prey species i and K i is its carrying
capacity, the competition coefficients αij describe competition between the two prey
species, gk is the maximum specific grazing rate of predator species k and H k is
its half-saturation constant, βik is the selectivity coefficient of predator species k
for prey species i (where 0≤βik≤1), and mk is the specific mortality rate of the
predator species. Without loss of generality, we scale the model equations such
that intraspecific competition equals unity (α11=α22=1) and that predators have
maximum selectivity for their preferred prey species (β11=β22=1). For the purpose
of illustration, we simplify the model by assuming symmetric competition between
the prey species (α12=α21=α) and symmetric selectivity of predators for their less-
preferred prey species (β12=β21=β).

The coupling between the two predator-prey systems is now captured by two
coefficients, α and β (Vandermeer 2004). If α=β=0, the prey species do not com-
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pete and the predator species consume only their preferred prey species. The two
predator-prey systems are thus independent of each other. If α>0, the prey species
compete and we say that the two predator-prey systems are coupled through com-
petition (Figure 3.1a). Conversely, if β>0, both predators feed on both prey species.
In this case, we say that the predator-prey systems are coupled through predation
(Figure 3.1b).

3.3 Material and methods

3.3.1 Long-term experiment

We investigated coupled oscillations between predators and prey species in a long-
term experiment with a plankton community isolated from the Baltic Sea (Heerk-
loss and Klinkenberg 1998; Benincà et al. 2008). Figure 3.2 shows the food-web
structure of this plankton community. Phytoplankton was divided in three func-
tional groups: picophytoplankton consisting of 1–2 µm picocyanobacteria (mostly
Synechococcus species), nanophytoplankton consisting of 3–5 µm eukaryotic flagel-
lates (mainly Rhodomonas lacustris Pascher and Ruttner), and large filamentous
diatoms (Melosira moniliformis (O.F.M.) C. Agardh). Herbivorous zooplankton
was also classified into three groups: protozoa (mainly large ciliates such as Cy-
clidium and Strombidium species), rotifers (mainly Brachionus plicatilis (O.F.M.)),
and the calanoid copepod Eurytemora affinis (Poppe). Feeding relationships of the
species are indicated by arrows in Figure 3.2. Previously, we assumed that rotifers
fed mainly on nanoflagellates, and to a lesser extent on picocyanobacteria, based on
the correlations between their species abundances (Benincà et al. 2008). However,
the phase relationships reported in this paper (see Results) suggest that rotifers fed
mainly on picocyanobacteria, and to a lesser extent on nanoflagellates. Rotifers and
protozoa were eaten by cyclopoid copepods. The microbial loop was represented by
heterotrophic bacteria and two groups of detritivores (ostracods and harpacticoid
copepods).

The experiment started on 31 March 1989, when the mesocosm was filled with
a 10 cm sediment layer and 90 L of water from the Darss-Zingst estuary (southern
Baltic Sea; 54◦ 26’ N, 12◦ 42’ E). This inoculum provided the plankton community
for the entire experiment, which was maintained at a temperature of ≈20◦C, salinity
of ≈9‰, incident irradiation of 50 µmol photons m−2 s−1 with a 16 hr : 8 hr light-
dark cycle, and constant aeration for more than 8 years (Heerkloss and Klinkenberg
1998; Benincà et al. 2008). The population abundances of the species were counted
twice a week, from 12 July 1990 until the experiment was terminated on 20 October
1997. From 23 November 1990 to 5 March 1991, however, the length of the light
period was temporarily reduced from 16 to 12 hr per day (Heerkloss and Klinkenberg
1998). Wavelet analysis does not require stationary time series. Therefore, we
decided to make use of the entire time series, including these few months with a
reduced light period. This resulted in a time series of 2,657 days, which is 338 days
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longer than the time series analyzed previously (Benincà et al. 2008). Further details
of the mesocosm experiment are provided in Appendix A.1.
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Figure 3.2: Experimental data. a, Food web structure of the mesocosm exper-
iment. Our analysis focuses on coupled oscillations between picocyanobacteria
(mainly Synechococcus spp.), nanoflagellates (mainly Rhodomonas lacustris),
rotifers (mainly Brachionus plicatilis), and calanoid copepods (Eurytemora affi-
nis). b, Time series of picocyanobacteria (blue) and nanoflagellates (green). c,
Close-up of the species fluctuations shown in panel b. d, Time series of rotifers
(red) and calanoid copepods (purple). e, Close-up of the species fluctuations
shown in panel d. The time series were transformed by a fourth-root power
transformation to suppress sharp peaks, and hence phytoplankton and zoo-
plankton abundances are expressed as (mg fwt L� 1)1/4.

In this study, we are particularly interested in the phytoplankton and herbiv-
orous zooplankton, because their ups and downs resembled typical predator-prey
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oscillations (Benincà et al. 2008). Of these species, picocyanobacteria, nanoflagel-
lates, rotifers and calanoid copepods were present in large numbers during the entire
experiment, whereas the time series of filamentous diatoms and protozoa contained
long sequences of zero values. This does not imply that filamentous diatoms and
protozoa were completely absent from the food web, but at least their concentra-
tions remained below the detection limit during most of the experimental period.
We therefore focus specifically on picocyanobacteria, nanoflagellates, rotifers and
calanoid copepods (Figure 3.2). We applied nearly the same data transformation
as in Benincà et al. (2008). First, we interpolated each time series using cubic her-
mite interpolation, to obtain data with equidistant time intervals of 3.35 days. As
a result, the time series contains 794 data points for each species. Next, the time
series were rescaled by a fourth-root power transformation to suppress sharp peaks
that may obscure less conspicuous periodicities. Contrary to Benincà et al. (2008)
however, we did not detrend the time series, because wavelet analysis can handle
non-stationary data.

3.3.2 Alternations in species dominance

We tested for alternations in species dominance simply by counting the number of
times that a peak of one phytoplankton species was followed by a peak of the other
phytoplankton species. Therefore, we searched all local maxima in the transformed
time series of a species, and identified these local maxima as ‘peaks’ if they were at
least 0.2 units higher than nearby local minima and at least 12 days spread apart.
Our null hypothesis is that the species identity of peaks is randomly distributed.
Hence, since both phytoplankton species had approximately the same number of
peaks in the time series, the probability that two consecutive phytoplankton peaks
are dominated by the same species would be 0.5. This can be tested against the
alternative hypothesis that two consecutive peaks are more likely to be dominated
by different species using the binomial distribution B(n; 0.5), where n is the total
number of phytoplankton peaks in the time series. The same test was applied to the
two zooplankton species.

3.3.3 Wavelet analysis

We investigated the species fluctuations in further detail using wavelet analysis, a
powerful statistical technique for the analysis of periodic signals in non-stationary
time series (Torrence and Compo 1998; Cazelles et al. 2008). Traditionally, periodic
signals in time series are analyzed by spectral analysis. However, classic spectral
analysis requires stationary time series. This limits the applicability of spectral
analysis, because many ecological time series are not stationary but display tempo-
ral changes in their trends and fluctuations. This limitation is overcome by wavelet
analysis, which is specifically tailored for the analysis of non-stationary time series.
Wavelet analysis decomposes local fluctuations observed during a small stretch of
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time into a series of different frequencies (periods). This decomposition is based
on a local wave function, known as the wavelet function, which captures the lo-
cal fluctuations in terms of both their time and frequency (period). Thus, wavelet
analysis allows investigation of changes in the frequency distribution of species fluc-
tuations during time. Given its applicability to non-stationary data, wavelet analysis
is rapidly becoming a popular tool for the analysis of ecological time series (Grenfell
et al. 2001; Keitt and Fisher 2006; Ménard et al. 2007; Keitt 2008). Appendix B
presents a simple example illustrating the basic idea of wavelet analysis.

Cross-wavelet analysis is an extension of wavelet analysis. It compares the
wavelet power spectra of two time series (Grinsted et al. 2004). This enables de-
tection of similarities in the local fluctuations of the two time series, and allows
estimation of the phase angles between these fluctuations. This makes cross-wavelet
analysis a very useful technique for the study of predator-prey oscillations. To iden-
tify significant results, we investigated whether the cross-wavelet spectra of two time
series were significantly different (at the 0.05 level) from the cross-wavelet spectra
of two independent red-noise processes with the same first-order autoregression co-
efficients as the time series (Appendix B; see also Grinsted et al. 2004). We used
comparison against red noise, because the time series in our study showed a high
degree of temporal autocorrelation (Gilman et al. 1963; Grinsted et al. 2004)

To investigate the robustness of our findings, we also applied a related method
called wavelet coherence (Grinsted et al. 2004; Maraun and Kurths 2004). Wavelet
coherence measures the coherence of the fluctuations in two time series by normal-
izing their cross-wavelet spectra by the product of the two single wavelet spectra.
Thus, cross-wavelet analysis and wavelet coherence provide different perspectives on
coupled fluctuations of two time series. While cross-wavelet analysis emphasizes the
common power spectrum of two time series (i.e., the magnitude of the fluctuations),
wavelet coherence emphasizes the correlations between the fluctuations of two time
series (i.e., the coherence of the fluctuations). For more details on cross-wavelet
analysis and wavelet coherence the interested reader is referred to Appendix B.

3.4 Results

3.4.1 Theoretical predictions

The model predicts that, if two predator-prey systems are coupled through predation
only, the two prey species will fluctuate in phase (Figure 3.3a). In this specific case,
with α=0 and β=0.0015, the two prey species fluctuated at a periodicity of ≈ 40
days. Cross-wavelet analysis successfully captured these patterns (Figure 3.3b).
Colour coding in the contour plots indicates the local power of the cross-wavelet
spectra. Black contour lines enclose regions of greater than 95% confidence that the
observed local cross-wavelet power exceeds the cross-wavelet power that would have
been generated by two independent red-noise processes. Shaded areas on both sides
of the contour plots represent the cone of influence, where edge effects might distort
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Figure 3.3: Model predictions. Time plots (left panels) and cross-wavelet
spectra (right panels) of the two prey species, predicted by the model for various
modes of coupling. a-b, In case of coupling through predation only (α=0,
β=0.0015), the two prey species oscillate in phase (phase angle of 0◦). c-d, In
case of coupling through competition only (α=0.075, β=0), the two prey species
oscillate almost in anti-phase (phase angle of 135◦). e-f, Coupling through
both competition and predation (α=1.5, β=0.1) may lead to chaotic population
dynamics with a range of different phase angles between the two prey species.
The cross-wavelet power spectra are presented as contour plots, where the y-
axis plots the common periodicities in the fluctuations of the two prey species,
and the x-axis plots how these common periodicities change over time. Colour
coding indicates the cross-wavelet power (ranging from low power in blue to high
power in red), which is a measure of the relatedness between the fluctuations of
the two prey species. Black contour lines enclose significant regions in the cross-
wavelet power spectra (i.e., regions of greater than 95% confidence that the
cross-wavelet power of the two prey species exceeds red noise). Arrows indicate
the phase angles between the fluctuations of the two prey species, where arrows
pointing to the right represent in-phase oscillations (0◦) while arrows pointing
to the left represent anti-phase oscillations (180◦). Shaded areas on both sides
of the contour plots represent the cone of influence, where edge effects might
distort the signal. For more details on cross-wavelet analysis, see Appendix B.
Parameter values used in the simulations: r1=r2=1, K 1=K 2=1, m1=m2=0.1,
g1=g2=1.5, H 1=H 2=0.8. Initial conditions: P1=0.28, P2=0.50, Z 1=0.14,
Z 2=0.18.
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the signal. Therefore, we restrict our interpretation of the cross-wavelet spectrum to
the non-shaded areas. According to the cross-wavelet spectrum, the two prey species
fluctuated with high common power at a significant periodicity of 32-64 days (red
band in Figure 3.3b). In addition, cross-wavelet analysis also points at a slightly
less significant periodicity of 16-32 days (yellow band in Figure 3.3b), which is half
the period of the actual fluctuations. Such harmonics are commonly observed in
spectral analysis and wavelet analysis, if the waveform of the fluctuations is not
perfectly sinusoidal. The arrows in the significant common power area all point to
the right, which accurately reflect a phase angle of 0◦ between the fluctuations of
the two prey species (Figure 3.3b). We also applied cross-wavelet analysis to all
other species combinations in this food-web model. The results are summarized in
Table 3.1. This shows that, analogous to the prey species, the two predator species
also fluctuated in phase (i.e., at a phase angle of 0◦), and that the prey species were
tracked by fluctuations of the predators with a quarter delay (phase angle of 90◦).
A quarter delay between the fluctuations of predator and prey species is typical for
many predator-prey models (e.g., Begon et al. 2006).

Coupling through competition only (α=0.075, β=0) revealed a different pat-
tern. In this case, the model predicts that the two prey species fluctuate almost in
anti-phase (Figure 3.3c). Cross-wavelet analysis reveals that the two prey species
fluctuate again at a significant periodicity of 32-64 days, but the arrows now indicate
a phase angle of ≈135◦ (Figure 3.3d, Table 3.1). Thus, interestingly, the oscillations
produced by coupling through competition are not in perfect anti-phase (180◦), but
cover 3/8th (i.e., 135◦) of the full circle. The phase angle distribution of the two
prey species also points at a less significant periodicity of 16-32 days with a phase
angle centered around 290◦ (Figure 3.3d, Table 3.1), which is again explained by the
non-sinusoidal waveform of the signal.

Models that include coupling through both competition and predation often dis-
play chaotic dynamics (Vandermeer 2004). In this case, the dynamics are still dom-
inated by fluctuations with a periodicity of 32-64 days, but with clear variations
in the phase relationships between the species (Figure 3.3e). This is confirmed by
cross-wavelet analysis, which detects the dominant periodicity of the species fluctua-
tions, and shows that the phase angles vary in all directions (Figure 3.3f). Still, some
pattern in the distribution of the phase angles can be discerned. In this model ex-
ample, coupling through competition was stronger than coupling through predation
(α=1.5, β=0.1), and therefore the chaotic fluctuations of the two prey species were
quite often in anti-phase with a main phase angle at ≈135◦ (Figure 3.3f; Table 3.1).

3.4.2 Experimental analysis

The mesocosm experiment showed strong fluctuations of the phytoplankton and zoo-
plankton species (Figure 3.2). A close look at the phytoplankton fluctuations sug-
gests alternating dominance of picocyanobacteria and nanoflagellates (Figure 3.2b,c).
To quantify this observation, we identified the species composition of all local phyto-

32



Coupled predator-prey oscillations

Model predictions  Experiment 
            Species 

Coupling through 
predation 

Coupling through 
competition 

Mixture of both 
coupling modes  Mesocosm data 

Nanoflagellates (P1) 

vs 

Picocyanobacteria (P2) 
    

Calanoids (Z1) 

vs 

Rotifers (Z2) 
  

 

  

Nanoflagellates (P1) 

vs 

Calanoids (Z1) 
   

 

 

Picocyanobacteria (P2) 

vs 

Rotifers (Z2) 
  

Nanoflagellates (P1) 

vs 

Rotifers (Z2) 
   

Picocyanobacteria (P2) 

vs 

Calanoids (Z1) 
   

Table 3.1: Relative frequency distributions of the phase angles between the
fluctuating species. The relative frequency distributions are obtained from
cross-wavelet spectra of the model predictions (Figure 3.3) and experimental
data (Figure 3.4). We selected all phase angles located within significant re-
gions of the cross-wavelet spectra but outside the cone of influence. The sec-
ond, third, and fourth column show the phase angles predicted by the model,
assuming coupling through predation (α=0; β=0.0015), coupling through com-
petition (α=0.075; β=0), and the combination of both modes of coupling that
gave the best fit between model predictions and experimental data (α=1.5;
β=0.1), respectively. The fifth column shows the phase angles detected in the
experimental data.

plankton peaks in the time series. This yielded 118 cases in which the phytoplankton
species composition of consecutive peaks alternated between picocyanobacteria and
nanoflagellates, and only 34 cases in which the phytoplankton species composition
of consecutive peaks remained the same. These alternations in species composition
deviate significantly from the null hypothesis that the peaks of picocyanobacteria
and nanoflagellates are randomly distributed (i.e., the probability of drawing 118 or
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more cases from the binomial distribution B(152; 0.5) is p<0.001). We found similar
patterns in the zooplankton community (Figure 3.2d,e), with 69 cases in which the
zooplankton species composition of consecutive peaks alternated between rotifers
and calanoid copepods, but only 33 cases in which the zooplankton species compo-
sition of consecutive peaks remained the same. Again, this pattern of alternating
species composition deviates significantly from the null hypothesis that the peaks of
rotifers and calanoid copepods are randomly distributed (the probability of drawing
69 or more cases from B(102; 0.5) is p<0.001).

As a next step, we investigated the species fluctuations using cross-wavelet anal-
ysis. The cross-wavelet spectrum shows that nanoflagellates and picocyanobacteria
displayed coupled fluctuations with a significant periodicity of 32-64 days during
the time periods from 1300 to 1700 days and from 1900 to 2100 days (Figure 3.4a).
Arrows in significant regions of the cross-wavelet spectrum point at anti-phase fluc-
tuations of nanoflagellates and picocyanobacteria, characterized by a main phase
angle at ≈135◦ and an additional phase angle at ≈315◦. Both phase angles were also
predicted by the model if the predator-prey systems would be coupled through com-
petition (Table 3.1). Calanoid copepods and rotifers displayed coupled oscillations
with a significant periodicity of 16-64 days from day 500 to day 1700 (Figure 3.4b).
Significant regions in their cross-wavelet spectrum reveal a wide distribution of dif-
ferent phase angles, with dominant phase angles at ≈45◦ and at 135◦-157◦. The
latter angle is close to the phase angle predicted for predator-prey systems coupled
through competition (Table 3.1).

Phase angles of picocyanobacteria versus rotifers and of nanoflagellates versus
calanoid copepods pointed at 90◦-135◦ (Figure 3.4c,d; Table 3.1). Thus, we observed
roughly a quarter delay between fluctuations of predators and their preferred prey
species, consistent with the phase angle of 90◦ predicted by the model irrespective
of the mode of coupling. Rotifers and their less-preferred prey (nanoflagellates) also
showed coupled oscillations; their phase angles point to a range of different direc-
tions, but phase angles at ≈90◦ and ≈202◦ seem dominant (Figure 3.4e; Table 3.1).
Interestingly, the phase angle of ≈90◦ is consistent with coupling through predation,
while the phase angle of 202◦ is consistent with coupling through competition. The
phase angles of calanoid copepods and their less-preferred prey (picocyanobacteria)
are far from the phase angle of 90◦ predicted by coupling through predation, but close
to the phase angle of 293◦ predicted by coupling through competition (Figure 3.4f;
Table 3.1).

Time series analysis by wavelet coherence demonstrated significant coherence in
the species fluctuations during at least part of the time series (Figure B.4 in Ap-
pendix B), meaning that the ups and downs of the different species in the plankton
community were indeed related with each other. Moreover, wavelet coherence de-
tected similar phase angles between the species fluctuations as cross-wavelet analysis
(Table B.1). This confirms the consistency of our results.
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Figure 3.4: Cross-wavelet spectra of the experimental data. a, Nanoflagellates
versus picocyanobacteria (P1 vs P2); b, Calanoid copepods versus rotifers (Z 1

vs Z 2); c, Nanoflagellates versus calanoid copepods (P1 vs Z 1); d, Picocya-
nobacteria versus rotifers (P2 vs Z 2); e, Nanoflagellates versus rotifers (P1 vs
Z 2); f, Picocyanobacteria versus calanoid copepods (P2 vs Z 1). Colour coding
indicates the cross-wavelet power, while arrows indicate the phase angles be-
tween the fluctuations of the two time series (as in Figure 3.3). Black contour
lines enclose significant regions in the cross-wavelet power spectra. Shaded ar-
eas on both sides of the contour plots represent the cone of influence, where
edge effects might distort the signal (see Appendix B).

3.4.3 Comparison between theoretical predictions and exper-
imental data

To investigate these patterns in further detail, we ran many model simulations using
different strengths of coupling (i.e., different combinations of α and β). More specif-
ically, we screened the entire parameter space that allowed coexistence of all four

35



Chapter 3

species in the model (0≤α≤1.5 and 0≤β≤0.7; see Figure 6 in Vandermeer (2004),
with a resolution of 0.05 for both α and β, and calculated the relative frequency
distribution of the phase angles predicted by the model for each point in param-
eter space. We then minimised the total Euclidean distance between the phase
angles predicted by the model and the phase angles derived from the experimental
data to find the parameter values that gave the best fit. The best fit of the model
to the experimental data was obtained for α=1.5 and β=0.1 (compare columns 4
and 5 in Table 3.1). Interestingly, for these parameter values, the model simulations
show considerable variation in the phase angles between the fluctuating species, even
though the main phase angles still point at coupling through competition (Table 3.1).
More specifically, the model predicts chaos for this parameter combination of strong
coupling through competition (high α) but weak coupling through predation (low
β), consistent with the chaotic dynamics observed in the experiment.

3.5 Discussion

It is well known from classic ecological theory that predator-prey interactions can
generate oscillations (Lotka 1925; Volterra 1926; Rosenzweig and MacArthur 1963).
The existence of predator-prey oscillations predicted by theory has been confirmed
by many laboratory experiments and field observations. Textbook examples of
predator-prey oscillations include the famous hare-lynx cycles in northern Canada
(Elton and Nicholson 1942; Stenseth et al. 1997), Huffaker’s (1958) experiments
with herbivorous and predatory mite species, and several laboratory experiments
with microbial predator and prey species (Gause 1934; Luckinbill 1973; Fussmann
et al. 2000; Yoshida et al. 2003; Becks et al. 2005). Food webs typically contain
multiple predator and prey species. Thus, food webs provide many opportunities
for coupled oscillations driven by the interplay between several predator-prey cycles.
Yet, coupled oscillations of multiple predator and prey species have thus far received
surprisingly little attention in experimental studies.

Theory predicts that coupled predator-prey oscillations can generate complex
dynamics, including chaos (Vandermeer 1993, 2004; Dakos et al. 2009). Yet, cou-
pled predator-prey oscillations do not provide the only source of chaos in population
dynamics. Models predict that chaos can also be generated by a plethora of other
mechanisms, including multispecies competition (Huisman and Weissing 1999, 2001),
tritrophic food chains consisting of a prey, predator and top-predator (Hastings and
Powell 1991), intraguild predation (Tanabe and Namba 2005), and the interplay be-
tween mixing and sinking of plankton populations (Huisman et al. 2006). Which of
these mechanisms are most relevant for the generation of chaos in natural communi-
ties is an important but, as yet, unanswered question. In our experimental system,
however, the focus on two coupled predator-prey oscillations arises quite naturally,
because the phytoplankton and herbivorous zooplankton were each dominated by
two species (picocyanobacteria and nanoflagellates in the phytoplankton, rotifers
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and calanoid copepods in the herbivorous zooplankton), and their ups and downs
resembled typical phytoplankton-zooplankton oscillations (Benincà et al. 2008).

Although our study presents the first experimental analysis of two coupled preda-
tor-prey oscillations, it has several limitations. First, the population dynamics of the
phytoplankton and herbivorous zooplankton species investigated in this paper were
embedded in a larger food web, including a top-predator (cyclopoid copepods of the
Eucyclops genus) and a microbial loop (Benincà et al. 2008). We do not know to what
extent the coupled oscillations between our focal species may have been influenced by
interactions with these other food-web components. Second, the phytoplankton and
zooplankton species in our study will probably have shown considerable intraspecific
variation, since the organisms were not obtained from well-defined laboratory clones
but were simply scooped up from sea. In addition, calanoid copepods have stage-
structured life cycles consisting of naupliar, copepodid and adult stages, and may
feed on different prey at different life stages. It is well-known that genetic variation
or phenotypic plasticity within prey species (Abrams and Matsuda 1997; Yoshida
et al. 2003; Vos et al. 2004) and stage-structured variation within predator species
(De Roos et al. 2003; McCauley et al. 2008) can affect the stability of predator-prey
interactions, and may modify the phase relationships between predator and prey
species.

Despite these limitations, statistical analysis revealed that the time series showed
persistent alternations in species dominance. The phytoplankton species composi-
tion switched between picocyanobacteria and nanoflagellates, while the zooplankton
species composition shifted back and forth between rotifers and calanoid copepods.
Moreover, cross-wavelet analysis and wavelet coherence were able to detect signif-
icant phase relationships between the ups and downs of the phytoplankton and
zooplankton species (Figure 3.4, Figure B.4). The time periods with a significant
signal covered only a limited part of the time series. However, since the total time
series spanned more than 2,600 days, the significant signal still covered several hun-
dred days, which is longer than the entire duration of many earlier experimental
studies of predator-prey oscillations. During these significant periods, we observed a
quarter delay between fluctuations of the predators and their preferred prey species
(Table 3.1). Moreover, the two phytoplankton groups fluctuated in anti-phase (at
≈135◦; Table 3.1), confirming the alternations in species dominance of the phyto-
plankton. The two zooplankton groups also seemed to fluctuate largely in anti-phase,
although for them the pattern was less clear. Comparison between theory and ex-
periment shows that these phase relationships are representative of two coupled
predator-prey cycles, with strong coupling through competition but weak coupling
through predation (Table 3.1).

This food-web structure is consistent with the size structure of our experimental
plankton community. Irrespective of their size, all phytoplankton species compete
for the same resources, viz. nutrients and light. Hence, resource competition among
phytoplankton species promotes strong coupling through competition. However,
small phytoplankton (picocyanobacteria, in our study) are mainly eaten by small
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zooplankton (rotifers), whereas larger phytoplankton (nanoflagellates) are eaten by
larger zooplankton (calanoid copepods). These size differences restrict overlap in the
diet of the zooplankton species, which results in weak coupling through predation.
Interestingly, comparison of the observed and predicted phase relationships showed
that the model parameters yielding the best fit to the experimental data actually
predict chaos. This is in agreement with previous analysis, which demonstrated
chaos in this food web using a completely independent approach (Benincà et al.
2008). The general picture thus emerging from these findings is that the size struc-
ture of the plankton in our experimental food web has resulted in two parallel food
chains, one of them consisting of small zooplankton specialized on small phytoplank-
ton and the other of larger zooplankton specialized on larger phytoplankton. The
two parallel food chains are weakly coupled through predation, but strongly coupled
through phytoplankton competition. Coupling of the predator-prey oscillations in
these two parallel food chains has, in turn, contributed to the chaotic nature of the
species fluctuations.

Intuitively, it is straightforward to understand why this food-web structure, with
two predator species specialized on different prey species, leads to continued alter-
nations in species dominance. In essence, coexistence of prey species is achieved
through a non-equilibrium version of the ‘killing-the-winner’ mechanism (Thingstad
and Lignell 1997; Thingstad 2000). Every time one of the prey species tends to dom-
inance, its key predator shows up, suppresses further population development, and
thereby swings the competitive balance to the other prey species. For instance, if pi-
cocyanobacteria are abundant, the rotifer population will increase and will suppress
the picocyanobacteria. Hence, nanoflagellates can gain a competitive advantage,
and will displace the picocyanobacteria. This will benefit the calanoid copepods,
which rise in abundance, and subsequently suppress the nanoflagellates. This, in
turn, gives new opportunities for picocyanobacteria to seize the available resources.
In this way, the system rocks back and forth between the two predator-prey cycles.
These non-equilibrium dynamics prevent competitive exclusion, and could therefore
play an important role in the maintenance of biodiversity (Huisman and Weissing
1999; Vandermeer 2006; Brose 2008). It would be intriguing to learn whether simi-
lar patterns of alternating species dominance can also be observed in other food webs.
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Interannual variability in species

composition explained as seasonally

entrained chaos

Abstract

The species composition of plankton, insect and annual plant communities
may vary markedly from year to year. Such interannual variability is usually
thought to be driven by year-to-year variation in weather conditions. Here we
examine an alternative explanation. We studied the effects of regular seasonal
forcing on a multispecies predator-prey model consisting of phytoplankton and
zooplankton species. The model predicts that interannual variability in species
composition can easily arise without interannual variability in external condi-
tions. Seasonal forcing increased the probability of chaos in our model commu-
nities, but squeezed these irregular species dynamics within the seasonal cycle.
As a result, the population dynamics had a peculiar character. Consistent with
long-term time series of natural plankton communities, seasonal variation led
to a distinct seasonal succession of species, yet the species composition varied
from year to year in an irregular fashion. Our results suggest that interan-
nual variability in species composition is an intrinsic property of multispecies
communities in seasonal environments.

4.1 Introduction

Aquatic and terrestrial communities are often characterized by a complex wax and
wane of species driven by the seasonal cycle. Plankton communities show some regu-
larity in the form of an annually recurring spring bloom. Yet, the height, timing, and

This chapter is based on the paper: Dakos, V., Benincà, E., van Nes, E.H., Philippart, C.J.M.,
Scheffer, M. and Huisman, J. 2009. Interannual variability in species composition explained as
seasonally entrained chaos. Proceedings of the Royal Society of London B. 276, 2871-2880.
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Figure 4.1: Time series (bi-weekly averages) of marine phytoplankton species
in the Marsdiep tidal inlet between the North Sea and Wadden Sea, the Nether-
lands, from January 1985 to December 1990. Different species are depicted
by different colors, viz. Leptocylindrus minimus, Phaeocystis globosa, Guinar-
dia delicatula, Rhizosolenia hebetata, Asterionellopsis glacialis, Brockmanniella
brockmannii in top graph, and Rhizosolenia imbricata, Cerataulina pelagica,
Asterionella kariana, Diatoma elongatum, Plagiogrammopsis vanheurckii and
Cymatosira belgica in bottom graph. Details of sampling and counting are
described in Philippart et al. (2000).
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species composition of the spring bloom often vary strongly from year to year (Fig-
ure 4.1; see also Talling 1993; Harris and Baxter 1996; Smayda 1998; Philippart et al.
2000). Similar year-to-year variability in species composition has been observed in
multispecies communities of insects (Wolda 1988; Raimondo et al. 2004), soil fauna
(Giller and Doube 1994; Berg et al. 1998) and annual plants (Guo et al. 2002). Of-
ten, this interannual variability in species composition is attributed to year-to-year
variation in weather conditions (i.e., exceptionally cold winters, wet springs, or hot
summers). However, mathematical models (Hastings and Powell 1991; Vandermeer
1993; Huisman and Weissing 1999; Brose 2008) and laboratory experiments (Becks
et al. 2005; Graham et al. 2007; Benincà et al. 2008) have shown that interactions
between species may generate striking chaotic fluctuations in species abundances
even without external forcing. One might therefore hypothesize that interannual
variability in species composition may not require year-to-year variation in weather
conditions. Interannual variability could be an intrinsic property of multispecies
communities in seasonal environments. To investigate this hypothesis, it is inter-
esting to assess to what extent complex dynamics in multispecies communities are
modified by the seasonal cycle.

The effects of regular seasonal variation on population models of two or three in-
teracting species have been studied extensively (Kot and Schaffer 1984; Doveri et al.
1993; Rinaldi et al. 1993; Steffen et al. 1997; Huppert et al. 2005). These studies
have shown that periodically forced populations can display a rich repertoire of dy-
namical behaviours, including simple and complex periodic cycles, quasi-periodicity,
and chaos (Rinaldi et al. 1993; King and Schaffer 1999; Vandermeer et al. 2001).
However, the parameter space in which chaotic behaviour occurs is usually small.
Typically, the population dynamics show repeatable patterns. Slow-growing species
may fluctuate on seasonal or multi-annual time scales, as exemplified by the famous
cycles of voles and lemmings at northern latitudes (Stenseth 1999; Turchin 2003).
Fast-growing species, such as bacteria or plankton, may display multiple ups and
downs per year. The frequency of the population fluctuations can be remarkably
persistent as a result of frequency-locking (e.g., Scheffer et al. 1997; Vandermeer
et al. 2001). Seasonal forcing tends to ‘lock’ the frequency of population oscilla-
tions, such that populations oscillate at the same frequency as the seasonal cycle or
integer multiples of it.

While many theoretical studies have examined effects of seasonality on model
systems of only a few species, seasonal forcing of multispecies communities has re-
ceived surprisingly little theoretical attention (but see Ebenhöh 1992). Yet, bacte-
rial, plankton, and insect communities may contain tens, hundreds, and sometimes
even thousands of species (Hutchinson 1961; Erwin 1982; Irigoien et al. 2004; Venter
et al. 2004). Generally speaking, multispecies models display more complex dynam-
ics than models with two or three species only (May 1973; Ellner and Turchin 1995;
Huisman and Weissing 2001). From a conceptual perspective, multispecies food
webs can be interpreted as systems with several interacting oscillations (e.g., several
predator-prey cycles). Coupled oscillations are known to generate complex dynam-
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ics, including chaos (Hastings and Powell 1991; Vandermeer 1993, 2004; Huisman
and Weissing 2001; Benincà et al. 2008). The prevalence of complex dynamics is of
interest, because these non-equilibrium dynamics may help to sustain the biodiver-
sity of natural communities (Armstrong and McGehee 1980; Huisman and Weissing
1999; Brose 2008), and also because complex dynamics can induce regime shifts in
ecosystems with important implications for their management (Scheffer et al. 2001;
Hsieh et al. 2005; Ives et al. 2008).

Here, we study the effect of seasonal forcing on the dynamics of a multispecies
predator-prey model, using phytoplankton and zooplankton as our model organ-
isms. We use this model to assess to what extent a regular seasonal cycle will
modify chaos in multispecies communities. Our results show that regular seasonal
forcing can promote year-to-year variability in species composition. In addition, our
results suggest that this interannual variability in species composition is affected
by ecosystem productivity in a manner analogous to Rosenzweig’s (1971) classical
paradox of enrichment.

4.2 Methods

4.2.1 Model description

We study a minimal model that is sufficiently complex to investigate the impact
of seasonal forcing on multispecies communities, yet sufficiently simple to produce
generic insights. The model is based on a straightforward multispecies version of the
classical Rosenzweig-MacArthur predator-prey model (Rosenzweig and MacArthur
1963; Vandermeer 1993; van Nes and Scheffer 2004), extended with seasonal forcing
(Rinaldi et al. 1993; Scheffer et al. 1997). In our interpretation, the model repre-
sents a plankton community, although our findings can probably be generalized to
other multispecies communities in which organisms have fast growth rates and short
generation times compared to the length of the growing season (e.g., microbial food
webs, soil fauna, tropical insects). Let P i and Z k denote the population abundances
of phytoplankton species i and zooplankton species k, respectively. Then, the model
reads:

dPi
dt

=σ(t)riPi

(
1−

∑
j(αijPj)

σ(t)Ki

)
−
∑
k

(
σ(t)gkZk

SikPi∑
j(SjkPj) +Hk

)
+ u (4.1)

dZk
dt

=σ(t)ekgkZk

( ∑
j(SjkPj)∑

j(SjkPj) +Hk

)
− σ(t)mkZk + u (4.2)

σ(t) = 1− a cos
2πt

365
(4.3)
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The phytoplankton species (Eq. 4.1) grow logistically with maximum specific
growth rates ri, carrying capacities Ki, and competition coefficients αij to describe
competition between species. The phytoplankton species are consumed by zooplank-
ton species, as described by a multispecies functional response (of Holling type II)
with a fixed half-saturation constant Hk and maximum grazing rate gk. Selective
predation (Chesson 1978) is introduced through the selectivity coefficient Sik of zoo-
plankton species k for phytoplankton species i and it can take values between 0
and 1, indicating the preference of the predator for its prey (van Nes and Scheffer
2004). The factor u accounts for small levels of immigration and it is introduced
to reduce the probability of heteroclinic cycles. Heteroclinic cycles are considered
mostly biologically irrealistic, since species reach extremely low population abun-
dances during these cycles without going extinct (May and Leonard 1975). The
zooplankton species (Eq. 4.2) grow on the consumed phytoplankton with an assim-
ilation efficiency ek, suffer a mortality rate mk, and immigrate at a small rate u
similar to the phytoplankton.

Many biological parameters are sensitive to seasonal forcing. One might thus
argue that seasonal forcing should be applied to all model parameters, perhaps
with different parameters affected by seasonality in different ways depending on the
species. However, this would yield a rather complex model, while we aim at a simple
model that captures the essence of multispecies dynamics in a seasonal environment.
Accordingly, we choose a simple way to incorporate seasonal forcing following earlier
contributions (Doveri et al. 1993; Scheffer et al. 1997). In particular, seasonal varia-
tion in temperature and light conditions has a major impact on the growth rates and
mortality rates of plankton species (Raven and Geider 1988; Litchman and Klaus-
meier 2001), and on the seasonal development of total plankton biomass (Sommer
et al. 1986; Longhurst 2006). We therefore assume that seasonal fluctuations in the
species’ growth rates, mortality rates, and carrying capacity (r i, Ki, gk, mk) can be
described by a sinusoidal forcing function σ(t) (Eq. 4.3), which can be interpreted
as the environmental forcing imposed by seasonal variation in temperature or light.
Factor a determines the amplitude of the seasonal forcing (Rinaldi et al. 1993) and
takes values between 0 and 1. The cosine function is chosen to produce maximum
rates in summer and minimum rates in winter (t=0 is January 1st), and the period
is set to 365 days (Scheffer et al. 1997).

4.2.2 Parameterization

We parameterized the model for 10 competing phytoplankton species (i=1,. . . ,10)
grazed by 6 zooplankton species (k=1,. . . ,6). The parameter values assigned to
the different species were selected from the ranges indicated in table 1, which are
representative for plankton communities (Scheffer et al. 1997; Reynolds 2006). Phy-
toplankton intraspecific competition was set to unity (αii=1 for all i), while the
interspecific competition coefficients (αij) were drawn randomly from the inter-
val (0.5, 1.5). Differences in grazing rate were introduced through the selectivity

43



Chapter 4

Symbol Interpretation Range Units

ri Maximum specific growth rate of phytoplankton 0.2−2 d−1

αij Competition coefficient among phytoplankton species i and j 0.5−1.5 –

gk Maximum grazing rate of zooplankton 0.4 d−1

Sik Selectivity coefficient of zooplankton 0−1 –

Hk Half-saturation constant of zooplankton 0.9−1.5 mg L−1

ek Assimilation efficiency of consumed phytoplankton 0.6−0.9 –

mk Mortality rate of zooplankton 0.1−0.2 d−1

u Immigration rate 10−7 mg L−1 d−1

K Carrying capacity of phytoplankton 2−10 mg L−1

a Amplitude of seasonal forcing 0−1 –

Table 4.1: Parameter ranges used in the model simulations. (Note: The exact
parameter values of each individual simulation presented in the figures are given
in the Appendix C).

coefficients S ik, which were drawn randomly from the interval (0, 1) to create a
food web of generalists where predators utilize prey species with average selectivity
Savg,k =

∑
i
Sik
10 = 0.5. We assumed that the carrying capacities of all phytoplank-

ton species are the same (i.e., K i=K for all species i) following the rational that K
is an environmental parameter reflecting the local nutrient and light conditions.

We analyzed the model without seasonal forcing (a=0) and with seasonal forcing
(0<a<1); the time-averaged parameter values in the model simulations with seasonal
forcing were equal to the fixed parameter values used in the model simulations
without seasonal forcing. We investigated the model communities at different levels
of productivity (K =2, 5, 10, 20, 50 mg L−1), to compare the species dynamics in
oligotrophic and eutrophic conditions.

4.2.3 Assessment of complex dynamics

We assessed how frequent the model communities displayed chaos and we calculated
the corresponding values of the Lyapunov exponent by assembling 100 randomly
generated model communities for every model scenario that we investigated. For
this purpose, the parameter values of the 6 predator and 10 prey species in each
model community were drawn randomly from uniform distributions covering the
ranges indicated in Table 4.1, and the initial biomasses of the species were drawn
randomly from the interval (0, 10 mg L−1). The model communities were first
simulated for 1,000 years to ensure that the population dynamics had reached an
attractor. Thereafter, we continued the model simulation for another 40 years, we
calculated the Lyapunov exponent, and determined the nature of the attractors as
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Figure 4.2: Community dynamics predicted by the model. The two top panels
indicate the nature of the environmental forcing. Without seasonal forcing, the
model produces a, stationary equilibria, b, simple cycles, c, complex periodic
cycles, or d, chaotic dynamics. With seasonal forcing, the model produces a
similar repertoire of attractors: e, simple cycles, f, complex periodic cycles (in
this example a periodicity of 6 years), or g, chaotic dynamics, all entrained by
seasonal forcing. Parameter values are given in Appendix C.

stable, simple periodic (period-one limit cycles), complex periodic (multiple-period
cycles), quasiperiodic, and chaotic. The Lyapunov exponent quantifies the rate
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of exponential divergence (or convergence) of nearby trajectories (Strogatz 1994;
Sprott 2003). A positive Lyapunov exponent indicates chaos, and its magnitude is
a measure of the system’s sensitivity to initial conditions. Our calculation of the
Lyapunov exponent is explained in the Appendix C. We used visual inspection and
Poincaré maps as additional methods to verify the computed nature of the attractors
or to check for undetermined cases. All simulations were carried out in MATLAB
using our software package GRIND (freely available at http://www.dow.wau.nl/

aew/grind).

4.3 Results

Without seasonal forcing, the model predicts various kinds of asymptotic regimes,
including stable equilibria (Figure 4.2a), simple limit cycles (Figure 4.2b), complex
periodic cycles (Figure 4.2c), and chaos (Figure 4.2d). At first sight, seasonal forc-
ing seems to have little influence on the dynamical repertoire of the model. With
seasonal forcing, the model also displays simple limit cycles (Figure 4.2e), complex
periodic cycles (Figure 4.2f), and chaos (Figure 4.2g). However, a closer look reveals
differences between the model behavior with and without seasonal forcing. With sea-
sonal forcing, the periodic solutions are ‘locked’ within the seasonal cycle, i.e. the
same pattern repeats each year (Figure 4.2e) or after some years (Figure 4.2f). In
addition, the model can also produce quasi-periodic cycles, where solutions are en-
trained within the seasonal cycle yet never repeat themselves as they slightly shift
phase every year. Chaotic communities seem to experience similar seasonal patterns.
However, the fluctuations of phytoplankton and zooplankton species in chaotic com-
munities remain irregular even when entrained in a regular seasonal environment
(Figure 4.2g).

These dynamics can be illustrated by Poincaré maps sampling the model com-
munities once per year for many consecutive years. Model communities with a
periodicity of one year return to exactly the same species composition year after
year, which appears as a single point on the Poincaré map. Communities with a
periodicity of N years produce N points on the Poincaré map, quasi-periodicity pro-
duces a closed curve (Figure 4.3a), while chaos produces a complex fractal structure
(Figure 4.3b).

Many of the model communities exposed to seasonal forcing displayed chaos with
remarkable synchronization patterns at the species level (Figure 4.4). The species
fluctuations are irregular, yet these irregular fluctuations are squeezed within the
seasonal cycle. As a consequence, each fall species enter the winter season in different
proportions, and this affects the species composition of the next spring bloom. For
instance, Figure 4.4a shows a typical phytoplankton spring species. It reaches peak
abundance in March, although its peak abundance varies from year to year, and some
years it does not peak in spring at all. Figure 4.4b shows another phytoplankton
species from the same plankton community. This species could be called a typical
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Figure 4.3: Poincaré maps with annual snapshots of the model community
collected over many years. More specifically, the maps plot the biomasses of
two plankton species sampled from the model community at the 1st of January
of each year for 100,000 years. a, Poincaré map of a quasi-periodic model
community. b, Poincaré map of a chaotic model community. Parameter values
for both panels are given in the Appendix C.
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Model assumptions
Occurrence of chaotic dynamics (%)

No seasonality (a=0) Seasonality (a=0.7)
Reference model (competition and predation, K =10) 54 56

Competition
interspecific > intraspecific (αij > 1;αii = 1) 41 46
interspecific < intraspecific (αij < 1;αii = 1) 41 55

Predation
no zooplankton predationa 0 4

inefficient zooplankton predationb 4 28
specialist zooplankton predationc 11 38

Productivity, K (mg L−1)
2 3 14
5 23 59

10 (=reference model) 54 56
20 36 48
50 15 27

Seasonal forcing
forcing on phytoplankton only n.a. 52
forcing on zooplankton only n.a. 66

Table 4.2: Occurrence of chaos in our simulated communities under different
model assumptions. The first row shows the percentage of chaotic communities
predicted by the reference model used in our study, both without seasonal
forcing (a=0) and with seasonal forcing (a=0.7).

a Zooplankton absent (Zk = 0).
b Half-saturation constants Hk drawn from the range 3.5−4.5.
c Each zooplankton species is specialized on a phytoplankton species (Skk=1),

while it feeds on the other phytoplankton species with lower preference (0 <
Sik < 1).

summer species. It is present every summer. However, some years it peaks twice,
with a first peak in May-June and a second smaller peak in September. In other
years, it peaks in September only. The zooplankton species show similar seasonal
patterning. For instance, some zooplankton species are mainly present in winter
(Figure 4.4c) while others dominate during the summer period (Figure 4.4d). The
example in Figure 4.4d is particularly interesting. In some years, this zooplankton
species shows little variability from March to September, while in other years it
fluctuates wildly during the same period. Accordingly, the species composition in
our model communities shows distinct patterns of seasonal organization, but with
strong year-to-year variability.

Which species traits and environmental conditions are responsible for the wi-
despread chaotic dynamics in our model communities? A complete answer to this
question is beyond the scope of this paper. However, some insight can be obtained
by modifying the model assumptions systematically. This shows that more than
50% of the model simulations produced chaos when using our default parameter
settings (Table 4.2, first row). The occurrence of chaos was not very sensitive to the
relative magnitude of intraspecific versus interspecific phytoplankton competition
(Table 4.2). In contrast, modifying zooplankton predation had a striking effect on
the occurrence of chaos. When zooplankton was removed from the model, very few
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simulations showed chaotic dynamics and only under seasonal forcing (Table 4.2).
Similarly, inefficient zooplankton grazing and specialist zooplankton reduced the oc-
currence of chaos. This shows that predator-prey oscillations, and the nature of
predation, played a key role in the generation of complex dynamics in our model
communities.
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Figure 4.5: a, b, Relative frequency at which randomly generated model com-
munities display chaos, plotted as function of the amplitude of seasonal forcing.
Results are shown for model communities grown at two productivities: a, K =5
mg L� 1, and b, K =10 mg L � 1. A linear regression line is fitted to the data in
a, and a quadratic regression to the data in b. c, d, Boxplots of the Lyapunov
exponents of the chaotic communities, plotted as function of the amplitude of
seasonal forcing. Results are again shown for c K =5 mg L � 1, and d, K =10
mg L� 1. Black dots represent the 5 and 95 percentiles. The results are based
on 100 simulations for each level of seasonal forcing.

Productivity also had a clear effect on the occurrence of chaotic dynamics. At
low productivity (K =2), stationary dynamics prevailed in constant environments,
simple periodic dynamics prevailed in seasonal environments, and chaos occurred
only in a few model communities with strong seasonal forcing (Table 4.2; see also
Appendix C). Chaos was widespread at intermediate productivity (K =5 and K =10).
At high productivity (K =20 and K =50), the occurrence of chaos declined slightly
and the population dynamics often shifted to periodic cycles in both constant and
seasonal environments.
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In all cases summarized in Table 4.2, seasonal forcing increased the occurrence of
chaos. To investigate this aspect in further detail, we estimated whether the ampli-
tude of seasonal forcing affected the occurrence of chaos in our model communities
(Figure 4.5). We focused on the intermediate productivities (K =5 and K =10). At
K =5 mg L−1, the amplitude of seasonal forcing increased the occurrence of chaos
(Figure 4.5a; linear regression: R2=0.45, N =11, p=0.024). At K =10 mg L−1, mild
forcing (0.1<a<0.4) caused a slight increase in the probability of chaos, but when the
amplitude of seasonal forcing was further increased (a>0.6), the probability of chaos
declined (Figure 4.5b; quadratic regression: R2=0.66, N =11, p=0.013). We further
explored the predictability of these communities by calculating their Lyapunov ex-
ponents. A positive Lyapunov exponent indicates chaos. The inverse value of the
Lyapunov exponent is often used as a simple metric of the predictability of chaotic
systems (Strogatz 1994). In those simulations that displayed chaotic dynamics, the
magnitude of the Lyapunov exponent was not affected by the amplitude of seasonal
forcing (Figure 4.5c,d). This indicates that the predictability of the chaotic plankton
communities was neither enhanced nor reduced by a stronger seasonality. However,
the median values of the Lyapunov exponents were significantly higher at K =10
mg L−1 than at K =5 mg L−1 (Figure 4.5c,d; t-test: t=-3.77, d.f.=20; p>0.002),
which indicates that the predictability of the model communities was affected by
productivity.

4.4 Discussion

4.4.1 Interannual variability as an intrinsic property

Our model results show that interannual variability in species composition is an in-
trinsic property of multispecies communities in a seasonal environment. It does not
require year-to-year variability in weather conditions. In many simulations the tim-
ing and abundances of different plankton species varied strongly, both within years
and among years. Some species peaked only once per year, while others peaked two
or three times; some species were present every year, while other species popped
up only occasionally (Figure 4.4). An often invoked and seemingly straightforward
intuitive explanation for this interannual variability in species composition is that
winter ‘resets’ population densities, whereas stochastic variation in weather condi-
tions during spring and summer determines interannual differences in community
composition. However, this idea of winter resetting is obviously an oversimplifi-
cation. Each fall, species enter the winter season in different proportions. Thus,
the species composition from the previous fall affects the species composition of the
next spring bloom. Our model results show that this mechanism of seasonally en-
trained chaos can easily create interannual variability in species composition without
invoking year-to-year differences in external environmental conditions.

Interannual variability in species composition does not imply that the species
composition varies at random. The model predicts temporal organization of the
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species, even if their population dynamics are chaotic, in the form of a seasonal
succession. Some species occur mainly in spring, while others dominate in sum-
mer (Figure 4.4). Which mechanisms are responsible for this seasonal pattern?
For instance, what makes a species a typical spring species? The model assumes
similar thermal physiologies for all species (i.e., they are all forced by the same
function σ(t)). Therefore, interspecific differences in thermal physiology or other
species-specific seasonal cues cannot explain the seasonal succession predicted by
the model. Instead, the spring species in Figure 4.4a peaks in March, because its
main predators (e.g., zooplankton species 5) have just declined while its key com-
petitors (phytoplankton species 6) are still low in abundance. Apparently, seasonal
forcing locks the species interactions, such that the only window of opportunity for
this species is restricted to the spring time. This illustrates that seasonal succes-
sion can be an emergent property of the underlying community dynamics, in which
species are sorted according to their positions in the complex network of species
interactions.

4.4.2 Comparison with empirical data

The classical predator-prey model of Rosenzweig and MacArthur (1963), which pro-
vided the point of departure in our study, is clearly a major simplification of reality.
For instance, the model does not specify the underlying mechanisms of phytoplank-
ton competition for nutrients and light (Tilman 1977; Huisman et al. 1999), ignores
induced defenses and other forms of phenotypic plasticity (Vos et al. 2004; Stomp
et al. 2008), does not detail the population structure and life history of plankton
species (De Roos et al. 1992; Nelson et al. 2005), neglects the potentially stabilizing
effect of planktivorous fish on zooplankton dynamics (Scheffer et al. 1997; Gliwicz
and Wrzosek 2008), does not take into account species-specific adaptations to the
seasonal cycle such as resting stages (Marcus and Boero 1998), and ignores many
other factors that may play a role in the population dynamics of natural plank-
ton communities. However, the model does describe the essence of multispecies
predator-prey interactions. As such, it provides the core of more complex plankton
models widely used in aquatic ecology and oceanography (e.g., Fasham et al. 1990;
Franks 2002; Lima et al. 2002). It is therefore interesting to assess to what extent
the key qualitative predictions of the model, most notably the interannual variability
in species composition, are consistent with empirical data.

The predicted patterns of seasonal organization with interannual variability at
the species level are well in line with observations from real plankton communities.
A closer look at the time series of the Dutch coastal zone, in Figure 4.1, reveals
typical spring species like the diatom Asterionella kariana (Figure 4.1b). If present,
this species blooms in March, although its peak abundance varies from year to year,
and some years it does not peak in spring at all. The prymnesiophyte Phaeocyctis
globosa, a nuisance species that can leave large layers of foam on the beach, reaches
its maximum in late spring or early summer, and in some years with a smaller
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second peak in late summer (Figure 4.1a). The diatoms Rhizosolenia imbricata and
Guinardia delicatula bloom mainly in the period between June and August, and can
thus be called summer species. Whereas Rhizosolenia imbricata typically blooms
only once per year, Guinardia delicatula can display several peaks per year. All
species in this time series show striking year-to-year variability in timing and/or
peak abundance.

Similar examples of interannual variability have been documented in many stud-
ies. Maberly et al. (1994) report considerable year-to-year variation in the timing and
peak abundance of the diatom Asterionella formosa in a 45-year time series in Lake
Windermere, UK. Smayda (1998) recognized different patterns of species variability
in a 37-year time series of the plankton in Narragansett Bay, USA. For instance,
the diatom Asterionellopsis glacialis displayed episodic irregular blooms, while the
diatom Thalassiosira nordenskioeldii peaked at 5-year intervals. Interannual varia-
tion in species composition can have dramatic consequences. The spring bloom in
the Kattegat between Denmark and Sweden is usually dominated by diatom species.
In the late spring of 1988, however, the prymnesiophyte Chrysochromulina polylepis
produced a major bloom with severe toxic effects on higher organisms, including fish,
molluscs, ascidians and cnidarians (Nielsen et al. 1990; Lekve et al. 2006). Since the
1988 event, large-scale blooms of Chrysochromulina have not returned in the area.
Numerous other studies have described similar patterns of interannual variability in
plankton community composition (Talling 1993; Harris and Baxter 1996; Reynolds
and Bellinger 1992; Arhonditsis et al. 2004; Huisman et al. 2006; Valdés et al. 2007;
Smetacek and Cloern 2008). In many of these case studies, the underlying causes
for the observed interannual variability were not apparent.

Not all model simulations produced interannual variability. For the same envi-
ronmental setting (i.e., same values of a and K ), some simulations generated chaos
whereas other simulations with different species combinations generated simple pe-
riodic solutions (Figure 4.2). This seems in line with real plankton communities,
where some time series display less interannual variability than other time series
(Smetacek and Cloern 2008). For example, phytoplankton in Lake Kinneret showed
little interannual variability during 20 years, with dinoflagellate species dominant in
late winter-spring and small chlorophytes in summer-fall (Berman et al. 1992). In a
brackish lagoon along the Baltic Sea, a copepod and polychaete species showed very
stable seasonal succession during 22 years, while rotifers displayed high interannual
variability (Feike and Heerkloss 2008). Thus, it would be interesting to investigate
to what extent interannual variability of plankton communities depends on commu-
nity composition. For instance, would plankton communities dominated by buoyant
cyanobacteria be more regular than communities dominated by diatom species?

4.4.3 The role of seasonality and productivity

One might think that seasonality would enhance the predictability of multispecies
communities. Indeed, our results show that seasonal forcing enables temporal or-
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ganization of the species. Species are entrained within the seasonal cycle, and be-
come dominant during specific periods in the year that match their highest growth
potential (Figure 4.4). In this sense, seasonality generates recurrent patterns in
species composition. Yet, the seasonal cycle also interferes with intrinsic species
interactions, which can have both stabilizing and destabilizing effects (e.g., Rinaldi
et al. 1993; King and Schaffer 1999). In particular, mild seasonal forcing increases
the likelihood of chaotic dynamics (Figure 4.5a,b), whereas strong seasonal forcing
may lead to synchronization of the species dynamics (Figure 4.5b). Strikingly, for
chaotic communities, the magnitude of the Lyapunov exponent was not affected by
the strength of seasonal forcing (Figure 4.5c,d). Thus, the rate of divergence of
species trajectories was independent of the strength of seasonal forcing, which sug-
gests that seasonality per se does not necessarily affect the time horizon for accurate
prediction of changes in plankton community structure.

Our model predicts that the productivity of ecosystems will affect the nature
of the species fluctuations. This result can be explained by Rosenzweig’s (1971)
‘Paradox of Enrichment’ (see Appendix C, for a complete discussion). In short, this
classic work showed that stable predator-prey systems start to display oscillations
when productivity is increased beyond a certain threshold value. In our multi-
species communities, with 10 phytoplankton and 6 zooplankton species, there are
60 predator-prey pairs. With increasing productivity, many of these predator-prey
pairs will start to oscillate, each with its own characteristic frequency. It is well-
known that such systems of coupled nonlinear oscillators have a strong tendency to
generate chaos (Vandermeer 1993, 2004; Huisman and Weissing 2001; Benincà et al.
2008), which explains the widespread occurrence of chaos in model communities at
intermediate productivity (Table 4.2). Interestingly, we found that many of these
chaotic predator-prey fluctuations coalesced to periodic cycles at high productivity
(i.e., in hypertrophic environments). These model predictions, if correct, suggest
that changes in productivity, for instance through human-induced eutrophication,
are likely to alter patterns of interannual variability in multispecies communities.
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Resonance of plankton communities to

temperature fluctuations

Abstract

Fluctuations in species abundances are often driven by the interplay be-
tween environmental variation and the intrinsic dynamics of species interac-
tions. Yet, little is known about the way in which this interplay should be
expected to affect natural populations. Here, we show that temperature fluc-
tuations in lakes and oceans can be described as a red noise process, and use
a simple phytoplankton-zooplankton model to explore the expected sensitivity
of plankton communities to such natural fluctuations. The effect of red noise
on our predator-prey model is particularly large if the intrinsic population
dynamics are on the edge of stability, close to the transition to predator-prey
oscillations. In this situation even mild temperature fluctuations can be ampli-
fied to large fluctuations in population abundances. However, the magnitude
of this resonance effect depends critically on the characteristic time scale of
the temperature fluctuations. Communities that have an intrinsic tendency to
oscillate with a period of T are particularly sensitive to environmental noise
characterized by a time scale of τ = T

2π
. The intrinsic periodicity of plank-

ton oscillations depends largely on the growth rates of the organisms involved,
which are inversely correlated to body size. We predict the resonance peak for
natural plankton to vary from a characteristic time scale of 1-2 days for small
nano-flagellates and ciliates, about 5-15 days for cladocerans and copepods, to
80 days for large krill species. In measured time series, we found characteristic
time scales of temperature fluctuations ranging from 7 to 50 days. Thus, the
characteristic time scales of temperature fluctuations in lakes and oceans fall
largely within the range to which plankton communities are most sensitive.

This chapter is based on the manuscript: Benincà, E., Dakos, V., van Nes, E.H., Huisman, J. &
Scheffer, M. Resonance of plankton communities to temperature fluctuations. (Submitted).
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5.1 Introduction

It is long known that interactions between species may cause oscillations in species
abundances (Lotka 1925; Volterra 1926). Famous examples include the predator-
prey oscillations of hares and lynx in northern Canada (Elton and Nicholson 1942;
Stenseth et al. 1997), Huffaker’s (1958) experiments with herbivorous and predatory
mite species, and a wide variety of laboratory studies with bacterial and plankton
communities (Gause 1934; Luckinbill 1973; Fussmann et al. 2000; Yoshida et al.
2003). The basic mechanism is that a predator depletes the prey population, leading
to a lack of food and thus a decrease in the predator population. This releases the
predation pressure allowing the prey to recover, implying the start of a new cycle.
If multiple predator and prey species are involved, such predator-prey cycles can
interact to produce chaotic dynamics (Gilpin 1979; Vandermeer 1993; Becks et al.
2005; Benincà et al. 2009). In addition, other ecological interactions may also lead
to oscillations and chaos in species abundances, for instance due to multispecies
competition (Huisman and Weissing 1999, 2001) or host-parasite relationships (May
and Hassell 1981; Hochberg et al. 1990).

While there is good evidence that intrinsic oscillations occur in biological commu-
nities, most ecologists will probably sustain that fluctuations in species abundances
are often driven by external factors such as variation in weather conditions (Fig-
ure 5.1).

         Intrinsic oscillations Environmental noise

Species composition

Fluctuations of natural 
plankton populations

a

b d

e f Weather

 Seasonalityc

Figure 5.1: Representation of the main mechanisms driving fluctuations of
natural plankton populations, illustrating the interplay between intrinsic pop-
ulation dynamics and external forcing by seasonal variation and environmental
noise.
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Indeed, many species do not have an intrinsic tendency to cycle (Kendall et al.
1998), and even notoriously oscillating organisms such as waterfleas (Daphnia) can
be relatively stable in some situations (McCauley and Murdoch 1987; Murdoch et al.
1998). Various mechanisms might explain why intrinsic oscillations occur in some
situations but not in others. For instance, models predict that predator-prey in-
teractions may lead to stable communities in nutrient-poor environments, but to
predator-prey oscillations in nutrient-rich ecosystems. This phenomenon, known as
the ‘paradox of enrichment’ (Rosenzweig 1971), has also been documented in lab-
oratory experiments (Luckinbill 1973; Bohannan and Lenski 1997; Fussmann et al.
2000). Also, spatial heterogeneity may commonly cause oscillating systems to be-
come stable or almost stable (Scheffer and de Boer 1995). Here, we investigate
how environmental fluctuations might affect the transition from stable to unstable
community dynamics.

Several studies have shown that communities that are at the edge of stability
might be pushed into an oscillatory mode by environmental fluctuations (e.g Nisbet
and Gurney 1976; Kaitala et al. 1996; Greenman and Benton 2003; Mankin et al.
2006). Indeed, it is well known that strong oscillations can be induced in some
systems by slight periodic forcing, provided that the intrinsic frequency of the cycle
is equal (or has a simple ratio) to the frequency of the forcing. For instance, a child
on a swing can reach large amplitudes even if it receives only small periodic pushes at
the right frequency. Similarly, a bridge may start to vibrate dangerously under the
periodic forcing of a marching group of soldiers. These are examples of the general
phenomenon known as ‘resonance’: oscillations of large amplitude produced by a
relatively small input signal near the same frequency as the natural frequency of the
resonating system. Resonance can also happen if a system is exposed to stochastic
forcing. As an example consider a flute. The noise invoked by blowing across an
edge causes a perturbation that is resonated in the instrument with a frequency
depending among other things on e.g. its length. In the essence, the question we
address in this paper, is whether noise in environmental conditions such as random
fluctuations temperature could ‘blow’ natural communities into resonance.

In the theoretical literature, environmental fluctuations are often referred to as
environmental noise. The effect of environmental noise on community dynamics
may vary widely depending on characteristics of the system (May 1973; Kendall
2001; Billings and Schwartz 2002; Mankin et al. 2006; Scheffer et al. 2009). More-
over, many studies have revealed that the ‘color’ of noise can make a large difference
(Steele and Henderson 1994; Ripa and Ives 2003; Greenman and Benton 2003). Noise
is called white if there is no correlation between its subsequent values. In colored
noise the subsequent values are correlated. In practice, environmental fluctuations
often resemble red noise, with positive correlations between subsequent values (Man-
delbrot and Wallis 1969; Steele 1985; Pelletier 2002; Király et al. 2006; Roe 2009).
For instance, the temperature of a lake today will be positively correlated to that
of yesterday, since heating or cooling of a lake simply takes time. An important pa-
rameter in this context is the characteristic time scale of red noise, which essentially
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describes the time it takes before perturbations in temperature are smoothed out
again.

In this paper, we use a simple predator-prey model to investigate whether en-
vironmental fluctuations can ‘blow’ natural communities into resonance. Our work
is motivated by earlier studies on the interplay between intrinsic population fluctu-
ations and external noise (Nisbet and Gurney 1976; Greenman and Benton 2003;
Bjørnstad and Grenfell 2001; Coulson et al. 2004; Ruokolainen et al. 2009), but
with a specific application to the plankton of freshwater and marine ecosystems.
Plankton communities can display striking intrinsic population fluctuations (Schef-
fer 1991; Huisman and Weissing 1999; Fussmann et al. 2000; Benincà et al. 2008),
and are strongly affected by variations in environmental conditions (Grover 1991;
Sommer 1995; Descamps-Julien and Gonzalez 2005). We will analyze the sensitivity
of the model to different characteristic time scales of red noise. The model results
are then compared against red noise spectra derived from temperature measure-
ments in lakes and oceans. Our findings show that the characteristic time scale
of temperature fluctuations in aquatic ecosystems matches the intrinsic frequency
of phytoplankton-zooplankton oscillations, such that small temperature fluctuations
can be amplified to large-amplitude oscillations in species abundances.

5.2 Predator-prey model

We consider a simple model consisting of a phytoplankton and a zooplankton species,
both exposed to the same environmental noise. The model is based on the classical
Rosenzweig-MacArthur predator-prey model (Rosenzweig and MacArthur 1963, see
also, e.g., Vandermeer 1993; Scheffer et al. 1997). More specifically, let P denote
the phytoplankton abundance and Z the zooplankton abundance. Then our model
reads:

dP

dt
= (1 + nt) r P

(
1− P

(1 + nt)K

)
− (1 + nt)

(
gP

P +H

)
Z (5.1)

dZ

dt
= (1 + nt)

(
egP

P +H

)
Z − (1 + nt)mZ (5.2)

Phytoplankton growth is described by the logistic equation, where r is the maxi-
mum specific growth rate (d−1) and K is the carrying capacity (mg DW L−1) of the
phytoplankton. Grazing by zooplankton is formulated as a Holling type II functional
response with half-saturation constant H (mg DW L−1) and a maximum specific
grazing rate g (d−1). Zooplankton growth depends on the grazing rate, the food
assimilation efficiency e and a zooplankton mortality rate m (d−1). Environmental
fluctuations are incorporated by the noise term nt, which is assumed to affect the
growth rates, grazing rates, mortality rates and carrying capacity.
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Parameter values were chosen to represent the interaction between Daphnia and
edible phytoplankton in lakes (Rose et al. 1988; Scheffer et al. 1997; Reynolds 2006).
The phytoplankton growth rate r was set to 0.5 d−1. We varied carrying capacity K
from near zero to 4 mg DW L−1. The maximum grazing rate g was set to 0.4 d−1,
assimilation efficiency e to 0.6, the half-saturation constant H to 0.6 mg DW L−1,
and the zooplankton mortality rate m to 0.15 d−1. Initial values of phytoplankton
and zooplankton were both set to 3 mg DW L−1. All simulations were carried out
in MATLAB using our software package GRIND (freely available at http://www.

dow.wau.nl/aew/grind).

5.3 The paradox of enrichment

Without noise (i.e., nt = 0), the population dynamics of this standard predator-prey
model is well understood. For K<1, the model has a stable boundary equilibrium
where only phytoplankton is present (Figure 5.2b). The carrying capacity is too
low to support a zooplankton population. For 1<K<1.5, the boundary equilibrium
becomes unstable; there is sufficient phytoplankton food available for the zooplank-
ton population to invade. The phytoplankton and zooplankton coexist at a stable
internal equilibrium. The equilibrium point is a stable node. For 1.5<K<2.6, phyto-
plankton and zooplankton still coexist at a stable internal equilibrium, but now this
equilibrium is a stable spiral. That is, the predator and prey population approach
equilibrium through damped oscillations (Figure 5.2c). When the carrying capac-
ity is increased further, the system passes through a Hopf bifurcation. For K>2.6,
the internal equilibrium is no longer stable and the system displays predator-prey
oscillations in the form of a stable limit cycle (Figure 5.2d).

Hence, with increasing carrying capacity, the dynamics change from a stable
node to a stable spiral and then to sustained predator-prey oscillations. This desta-
bilization of the predator and prey populations has been confirmed by laboratory
experiments with phytoplankton and zooplankton species (Luckinbill 1973; Fuss-
mann et al. 2000), and is known as the ‘paradox of enrichment’ (Rosenzweig 1971).
The period of the predator-prey oscillations depends on the generation times of the
organisms involved. For instance, the phytoplankton and zooplankton in our model
oscillate with a period of about 50 days, which is consistent with the time scale of
plankton fluctuations typically observed in laboratory experiments (Luckinbill 1973;
Fussmann et al. 2000; Benincà et al. 2008), but much faster than the predator-
prey oscillations of larger organisms such as the ten-year cycle of hare and lynx in
northern Canada (Elton and Nicholson 1942; Stenseth et al. 1997).

5.4 Adding noise

What happens if we add small environmental fluctuations to our phytoplankton-
zooplankton model? To address this question, we introduce a measure of noise
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Figure 5.2: Dynamical behavior of the phytoplankton-zooplankton model with
or without white noise as a function of carrying capacity K. a, Asymptotic
regimes (attractors) as a function of carrying capacity K. Bifurcations occur
at three different values of K. At K =1, zooplankton can invade the system
(transcritical bifurcation). At K =1.57, the internal equilibrium changes from a
stable node to a stable spiral (spiral-node bifurcation). At K =2.6, the internal
equilibrium becomes unstable as the solutions change from a stable spiral to
a limit cycle (Hopf bifurcation). The lower panels illustrate the population
fluctuations of phytoplankton (gray) and zooplankton (black), b-d, without
white noise, and, e-g, with white noise (σε=0.05). Parameter settings for
carrying capacity are indicated in panels b-g.
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amplification. We use a similar definition as Greenman and Benton (2003), but
with a correction for intrinsic population fluctuations. That is, we quantify noise
amplification as the difference between the coefficient of variation of a population in
the presence of noise (CV noise) and the coefficient of variation of that population in
the absence of noise (CV intrinsic) divided by the standard deviation of environmental
noise (σε):

A =
CVnoise − CVintrinsic

σε
(5.3)

We estimated noise amplification of phytoplankton and zooplankton dynamics
from simulated dynamics over 5,000 days after discarding the first 1,000 days to
avoid transients. To obtain accurate estimates, the simulations were repeated 100
times and the average noise amplification is reported.

5.4.1 White Noise

We first consider random environmental fluctuations in the form of white noise. In
our application, white noise is drawn from a Gaussian distribution with zero mean
and standard deviation σε, at a time step of one day. For low carrying capaci-
ties (K<1.5), white noise produces only minor stochastic variation in the popu-
lation abundances (Figure 5.2e). The environmental fluctuations are damped by
the stabilizing dynamics of the stable node. At high carrying capacity (K>2.6),
where the undisturbed system displays a limit cycle, white noise just makes the
predator-prey oscillations somewhat irregular (Figure 5.2g). However, white noise
has a pronounced effect in the intermediate parameter region, especially close to the
bifurcation point (approximately 2.3<K<2.6) where the phytoplankton and zoo-
plankton populations displayed damped oscillations towards a stable spiral in the
absence of noise. Here, even minor white noise generates a striking pattern of oscilla-
tions (Figure 5.2f), with similar frequency as the predator-prey oscillations observed
for K>2.6 (compare Figure 5.2f and Figure 5.2g). Hence, adding noise has the ef-
fect that the system shows predator-prey fluctuations over a wider range of carrying
capacities.

5.4.2 Red noise

In many cases, environmental fluctuations do not mimic the random scatter of white
noise. Instead, fluctuations often show some memory or persistence in time. Tem-
perature fluctuations in aquatic ecosystems present a clear example. When a lake
has warmed up during an exceptionally hot summer day, its excess heat content will
be slowly released such that the lake will return to average temperatures only after
several days. Such persistent variation can be described by red noise.

Red noise, nt, can be generated by a simple autoregressive model (Box and
Jenkins 1970):
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nt+1 = αnt + σε
√

(1− α2) ε (5.4)

Again we consider a time step of one day. At each time step, the stochastic
term εt is randomly drawn from a Gaussian distribution with zero mean and unit
standard deviation. The term σε determines the magnitude of environmental noise
and the autocorrelation coefficient α describes its color (where -1<α<1). When
environmental variation is uncorrelated in time (α=0), it is called white noise. When
environmental variation is positively autocorrelated (α>0), it is called red noise. The
term σε is multiplied by

√
(1− α2) to ensure that the asymptotic variance of nt is

independent of the autocorrelation coefficient α (Roughgarden 1975; Petchey et al.
1997; Ives and Jansen 1998).

The autocorrelation function for red noise, r(t), is given by:

r(t) = e(− t
τ ) (5.5)

This equation implies that environmental variation generated by red noise decays
exponentially with time. The rate at which the variation decays is described by the
characteristic time scale of red noise, τ (also called e-folding time; e.g. (von Storch
and Zwiers 2003), which is related to the autocorrelation coefficient α:

τ = − 1

ln α
(5.6)

Thus, systems in which environmental fluctuations decay very slowly have a long
characteristic time scale (and a high autocorrelation coefficient).

As a starting point we studied the effect of red noise on plankton populations
assuming a carrying capacity close to the Hopf bifurcation point (K =2.5). Red noise
yields strong population fluctuations, with higher noise amplification than white
noise (Figure 5.3). Interestingly, noise amplification depends on the characteristic
time scale of red noise. At the default parameter settings, mimicking phytoplankton-
zooplankton interactions, the strongest noise amplification occurred for red noise
with a characteristic time scale τ of 8-10 days (Figure 5.3).

5.5 Resonance and the power spectrum of red noise

The observation that noise amplification peaks at a particular characteristic time
scale of red noise can be interpreted as the result of resonance of the intrinsic
predator-prey oscillations in response to the power spectrum of red noise. The
power spectrum of red noise summarizes the extent to which different frequencies
(periods) contribute to the total red noise signal. Thus, the interesting question is
which characteristic time scale of red noise generates the highest power at the fre-
quency to which the plankton community is most sensitive? In other words, which
characteristic time scale generates the highest power at the intrinsic frequency of
the phytoplankton-zooplankton oscillations?
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Figure 5.3: Amplification of red noise by phytoplankton (gray) and zooplank-
ton (black) as function of the characteristic time scale τ of red noise. Maximum
amplification of red noise occurs at a characteristic time scale τmax of about
8-10 days. For comparison, the horizontal dashed lines indicate noise amplifi-
cation generated by white noise. Each data point is based on 100 simulations
of the phytoplankton-zooplankton model, with a carrying capacity of K = 2.5.

According to the Wiener-Khinchin theorem, the power spectral density of a red
noise process, P(f,τ), is the Fourier transform of the autocorrelation function r(t).
In view of Eq. 5.5 this can be written as:

P (f, τ) =

∫ +∞

−∞
e−

t
τ e−i2πftdt (5.7)

where f is frequency, and τ is the characteristic time scale of red noise as defined
in Eq. 5.6. Contour integration yields:

P (f, τ) =
2τ

1 + (2πfτ)2
(5.8)

or in terms of periods T rather than frequencies:

P (T, τ) =
2τ

1 + ( 2πτ
T )2

(5.9)
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This equation shows that the power spectral density of red noise is an increasing
function of the period T (Figure 5.4a), and a unimodal function of the characteristic
time scale of red noise τ (Figure 5.4b). The characteristic time scale of red noise
that yields maximum power can be derived by evaluating dP

dτ = 0 and solving for τ .
In view of Eq. 5.9, this yields:

τmax =
T

2π
(5.10)

This simple expression is one of the key equations in our paper. It shows that
the characteristic time scale of red noise that generates maximum power at a given
period T is given by T

2π . For instance, the predator-prey oscillations in our model
have a period of about 50 days. According to Eq. 5.10, red noise generates maximum
power at a period of T=50 days if τ ≈8 days. This explains why our model predicts
the strongest noise amplification for plankton populations exposed to red noise with
a characteristic time scale of about 8 days (compare Figure 5.3 and Figure 5.4b).

Changing the period of the phytoplankton-zooplankton oscillations will shift the
characteristic time scale τ of red noise with which the plankton dynamics will res-
onate. This is illustrated in Figure 5.5. The growth rates and mortality rates of the
zooplankton species were rescaled to produce oscillations with different periods. For
instance, when the period of intrinsic predator-prey oscillations is halved to 25 days,
maximum amplification of the plankton is obtained for red noise with a character-
istic time scale τ of 4 days. Conversely, when the period of intrinsic predator-prey
oscillations is doubled to 100 days, maximum amplification is obtained for red noise
with a characteristic time scale τ of 16 days (Figure 5.5). This illustrates that the
interplay between the period of the plankton oscillations and the characteristic time
scale of red noise determines when the plankton dynamics will be amplified the most.

5.6 Time scales of plankton populations and tem-
perature fluctuations

What are the characteristic time scales of red noise in aquatic ecosystems? Many
factors in aquatic ecosystems may show considerable variation (e.g., temperature,
pH, light, nutrients), and the answer to this question will probably depend on the
variable concerned. Here, we focus on temperature fluctuations, since temperature
is a key variable that affects almost all aquatic organisms and many physical and
chemical processes as well (e.g., stratification, dissolution of gases and salts). We
analyzed time series of daily surface water temperature for a range of water bodies
in Europe and the USA (Table 5.1). First, we removed the seasonal component of
the temperature fluctuations (Figure 5.6a). This was done by calculating the mean
temperature for each particular day of the year (i.e., averaged over all years in the
time series), and subsequently subtracting this seasonal pattern from the time series.
Then, we used the seasonally detrended time series to calculate the autocorrelation
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Figure 5.4: Power spectral density of red noise. a, Power spectral density
as function of periodicity, for different characteristic time scales τ . The arrow
indicates a period of 50 days. b, Power spectral density at a period of 50 days
as function of the characteristic time scale τ of red noise. The power spectral
density is described by Eq. 5.9.
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Figure 5.5: Noise amplification of the phytoplankton fluctuations as a func-
tion of the characteristic time scale of red noise and the period of the intrinsic
phytoplankton-zooplankton oscillations. The black line indicates the character-
istic time scale of red noise that yields the highest noise amplification. Slower-
growing plankton species will display predator-prey oscillations with a longer
period, which will increase the characteristic time scale of red noise for which
the plankton will be most sensitive.

coefficient α from the product-moment correlation between the temperature at day t
and at day t+1 (Figure 5.6b). Subsequently, we visually compared the power spectral
density of the time series against the power spectral density of red noise generated
with the autocorrelation coefficient α (see Appendix D for methodological details).
This illustrated that the power spectra of the temperature fluctuations could indeed
be characterized as a red noise process (Figure 5.6c). Finally, we computed the char-
acteristic time scale τ of red noise from the corresponding autocorrelation coefficient
α using Eq. 5.6.

The results show that the characteristic time scale of temperature fluctuations
ranged from 7 days in Lake Champlain to almost 50 days in the Atlantic Ocean
(Table 5.1). One might hypothesize that the temperature fluctuations will be faster
in small shallow lakes than in large deep ocean basins. However, according to our
analysis, it is not that simple. For instance, Lake IJsselmeer is a shallow lake with
an average depth of only 2-3 m, yet its temperature fluctuations show a relatively
long characteristic time scale compared to other aquatic ecosystems. Conversely, we
also found a station in the Atlantic Ocean with a short characteristic time scale of 8
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Water body Description Sampling period
Characteristic time scale of

red noise (days)
[95% confidence interval]

Atlantic Ocean
Open tropical ocean 2005-2007

48
(Mid Atlantic) [42-54]

IJsselmeer
Large shallow lake 1972-1993

43
(The Netherlands) [41-45]

Crater Lake
Deep lake 1998-2003

28
(Oregon, USA) [25-31]

Pacific Ocean
Open tropical ocean 2006-2009

27
(Southwest of Hilo, [24-30]

Hawaii, USA)

Cedar Lake
Small shallow lake 1974-1976

25
(Wisconsin, USA) [22-28]

Bee Lake
Small shallow lake 2005-2008

22
(Mississipi, USA) [20-24]

Gulf of Mexico
Coastal subtropical ocean 2000-2006

19
(South of Freeport, [18-21]

Texas, USA)

Gulf of Alaska
Coastal subpolar ocean 2005-2009

19
(Shumagin Islands, [17-21]

Alaska, USA)

Caillou Lake
Small shallow lake 1997-2002

11
(Lousiana, USA) [10-12]

Tarpon Lake
Medium-sized shallow lake 1964-1968

8
(Florida, USA) [7-9]

Atlantic Ocean
Coastal temperate ocean 2005-2008

8
(Southeast of Nantucket, [7-9]

Massachusetts, USA)

Lake Meredith
Medium-sized shallow lake 2004-2009

8
(Colorado, USA) [7-9]

Lake Champlain Large deep lake 2005-2010 7
(New York, USA) [7-8]

Table 5.1: Surface water temperature records used to estimate the character-
istic time scale of red noise, τ . Additional information on these time series is
presented in the Appendix D.

days only. Most likely, the characteristic time scale of the temperature fluctuations
will strongly depend on the local climatic and hydrodynamic conditions.

Which aquatic organisms would be most sensitive to the temperature fluctuations
observed in aquatic ecosystems? The generic rule is that maximum amplification of
red noise occurs when the intrinsic species oscillations would have a period of about
2πτ . The period of intrinsic predator-prey oscillations depends on the generation
times of the organisms involved. For instance, the phytoplankton and zooplankton
populations in our model oscillate with a period of about 50 days. Thus, they would
be very sensitive to temperature fluctuations with a characteristic time scale of 8-10
days, as in Lake Meredith, Lake Champlain, and the above-mentioned station in
the North Atlantic Ocean. We also calculated the periodicity of predator-prey oscil-
lations in case our model Daphnia would be replaced by zooplankton species with
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Figure 5.6: Time series analysis of daily surface temperature, illustrated by
data of Lake Tarpon. a, Detrended time series of daily surface temperature
after the seasonal trend was removed from the original data. b, Plotting the
seasonally detrended temperature on day t+1 against the temperature on the
previous day t yields the autocorrelation coefficient α. c, The power spectral
density of the seasonally detrended temperature data (black line) corresponds
well with the power spectral density of red noise with the autocorrelation coef-
ficient α estimated from panel b (red line). (See Appendix D for details on the
spectral analysis).

other generation times (Figure 5.7). For instance, for fast-growing zooplankton like
phagotrophic nanoflagellates and ciliates the strongest noise amplification would be
expected for temperature fluctuations with a short characteristic time scale τ of 1.5
to 5 days (Figure 5.7). Large zooplankton like krill (euphasiids) have a much longer
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generation time, and they would respond more strongly to temperature fluctuations
with a characteristic time scale of 80 to 90 days (Figure 5.7).

Comparing the estimates in Figure 5.7 and Table 5.1, it seems that particularly
the population dynamics of cladocerans and copepods will be very sensitive to the
temperature fluctuations observed in many aquatic ecosystems.
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Figure 5.7: Relationship between the maximum specific growth rates of dif-
ferent zooplankton species and the characteristic time scale, τmax, producing
maximum amplification of red noise. The species include heterotrophic flagel-
lates (green), ciliates (red), rotifers (gray), salps (violet), cladocerans (black),
copepods (orange) and euphasiids (light blue). Maximum specific growth rates
of the species were obtained from the literature (see Table D.2 in Appendix D).
To calculate τmax from the model, we assumed that the maximum growth rate
of the zooplankton equaled the product eg and that the mortality rate m was
proportional to the maximum specific growth rate (with a constant of propor-
tionality of 0.62 as in our parameter setting for Daphnia).

5.7 Discussion

Our results illustrate that small stochastic fluctuations in the environment can invoke
large oscillations in natural communities that would otherwise be stable. Specifically
this can happen if the community contains ‘damped oscillators’. Such systems do
not oscillate autonomously, but upon perturbation they return to a stable state
through damped oscillations. The observation that environmental noise can sustain
the fluctuations of damped oscillators is well known in physics, and several studies
hint at its potential relevance to ecological systems (Nisbet and Gurney 1976; Kaitala
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et al. 1996; Greenman and Benton 2003, 2005). Not surprisingly, this resonance
effect depends on the intrinsic rates of the system relative to the characteristic
time scale of the environmental fluctuations (Greenman and Benton 2003, 2005).
It is commonly believed that resonance requires a very precise match between the
intrinsic periodicity of a system and the frequency of external forcing. In case of
noisy forcing, however, the power of the external fluctuations is spread out over a
range of frequencies. Hence, the time scale of the intrinsic dynamics and the time
scale of external forcing do not have to match exactly. In Figure 5.3, for instance, the
noise amplification peak is quite wide, and there is substantial noise amplification
for red noise with characteristic time scales ranging from 3 to 30 days.

Our analysis illustrates that there is a straightforward relationship between the
intrinsic periodicity of the system and the time scale of red noise that provokes the
strongest oscillations. Since the intrinsic periodicity of predator-prey oscillations
depends on the growth rates of the predator and prey species, one can thus indicate
which (range of) characteristic time scales of environmental fluctuations should pro-
voke resonance in a given predator-prey system. Interestingly, the characteristic time
scales of natural temperature variations in aquatic ecosystems ranges from 7 to 50
days (Table 5.1). This happens to match surprisingly well with the range to which
plankton communities should resonate most strongly, especially when dominated
by cladocerans and copepods (Figure 5.7). Plankton communities are notorious for
their striking fluctuations in species abundances. Our results suggest that a substan-
tial part of such fluctuations might result from resonance of the intrinsic community
dynamics to temperature fluctuations.

Of course, natural systems are far more complicated than the minimal model
we used to highlight the resonance phenomenon. For instance, in addition to tem-
perature, many other environmental factors of relevance for plankton communities
fluctuate as well (e.g., nutrients, light, pH). Some of these factors might fluctuate
more or less in synchrony with temperature, while others may have different char-
acteristic time scales. Also, natural plankton communities consist of many different
species, each with their own typical characteristics. This may give rise to interac-
tions between different oscillatory components within the community (Vandermeer
2004; Benincà et al. 2009) and to a plethora of different population dynamics ranging
from stable states to chaos (Scheffer 1991; Huisman and Weissing 1999, 2001; Ben-
incà et al. 2008; Dakos et al. 2009). It would be interesting to explore how resonance
to external fluctuations cascades through such multispecies communities depending
on the color of the forcing noise in relation to constituent intrinsic frequencies. This
is a complex issue, as the web of interactions that link the different species implies
indirect responses that may in many ways alter the way communities react to envi-
ronmental noise (Ives and Jansen 1998; Xu and Li 2002, 2003; Greenman and Benton
2005; Brassil 2006; Vasseur 2007; Vasseur and Fox 2007).

Clearly, we have only scratched the surface of the intriguing question what the
role of resonance in natural communities might be, and there are many ways in
which this idea may be developed further. In addition to more sophisticated model-
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ing exercises, experimental analysis of the effects of different types of environmental
fluctuations on plankton communities would help probing the hypothesis of reso-
nance further. Meanwhile, it is tempting to speculate about the implications of
resonance for ecological theory.

In view of the relatively few possibilities for niche differentiation in aquatic
ecosystems, the biodiversity of plankton communities has puzzled ecologists for
decades (Hutchinson 1961). It is well known that environmental fluctuations may
help to prevent competitive exclusion (Connell 1978; Reynolds et al. 1993; Chesson
2000; Descamps-Julien and Gonzalez 2005), which may offer a plausible solution
for Hutchinson’s paradox of the plankton. Other studies have shown that intrinsic
nonequilibrium dynamics can play an important role in the maintenance of biodi-
versity as well (Huisman and Weissing 1999; Scheffer et al. 2003; Benincà et al.
2008, 2009). The phenomenon of resonance connects these two lines of thinking, by
providing a link between intrinsic population dynamics and external fluctuations.
In particular, the remarkable correspondence between the intrinsic periodicity in
plankton communities and the characteristic time scales of temperature fluctuations
suggests that resonance could be an important mechanism to generate the permanent
turmoil that helps numerous plankton species to coexist in nature. Interestingly, ex-
periments indicate that environmental fluctuations with a period of 6-10 days yield
the highest biodiversity in plankton communities (Gaedeke and Sommer 1986; Som-
mer 1995; Flöder and Sommer 1999). This corresponds quite well to the time scales
that we estimated to invoke oscillations most easily in a range of plankton types.

Another obvious question to ask is how climate change could affect tempera-
ture fluctuations, and thus the resonance of plankton communities to these fluctu-
ations. Global warming is predicted to increase climatic variability (Solomon et al.
2007), and may also alter the characteristic time scales of environmental fluctua-
tions (Wigley et al. 1998; Easterling et al. 2000). In addition to model studies,
experiments and long-term observations of temperature fluctuations and associated
community dynamics in different climatic regions might help to explore these ideas
further.

In the introduction we asked whether environmental fluctuations could blow nat-
ural communities into resonance, much as the breath of a musician may cause a flute
to resonate. Our study shows that in plankton communities resonance to temper-
ature fluctuations might play an important role. Perhaps more importantly, our
findings suggest a way to predict from the characteristic time scales of intrinsic dy-
namics versus external fluctuations when resonance phenomena are most likely to
occur in natural communities.
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Afterthoughts

6.1 Is there chaos out there?

The title of my thesis refers to one of the big questions in ecology today. While
I have elaborated on this issue from different angles for plankton communities in
the different chapters, I will reflect on the broader question of the role of chaos in
ecosystems here.

Our analysis of the extraordinary time series from an experimentally isolated
community from the Baltic Sea (Chapter 2) implies a firm demonstration of in-
trinsic chaos in this case. The results convincingly show that a realistic complex
food web can generate chaotic dynamics and imply that a stable equilibrium is not
required for the persistence of complex food webs. The cross-wavelet analysis of
phase angles strongly indicates that coupled oscillating predator-prey systems are at
the root of the chaotic dynamics (Chapter 3). In plankton communities numerous
potentially oscillatory predator-prey links exist. Therefore, our results suggest that
chaos may well be an important driver of plankton dynamics in nature. Nonetheless,
the step from simple models and experimental data from an isolated community un-
der constant conditions to the real dynamics in lakes and oceans is of course still
large.

One important aspect of natural situations is the permanent variation in external
conditions such as temperature and light. Should such variation in conditions be
expected to mask or even suppress intrinsically generated oscillations or might it
work in synergy, catalyzing the occurrence of chaos and cycles? We have looked at
potential effects of seasonality and of stochastic fluctuations in the environment as
two (of the many) components of environmental change.

Seasonality may in principle lock chaotic systems into a simple seasonal pat-
tern. However, seasonal variation in conditions may also invoke chaos in otherwise
stable communities (Rinaldi et al. 1993) or perhaps more commonly, lead to a sub-
tle interplay that creates a particular kind of chaos, that looks regular when it
comes to overall patterns, but allows different species to dominate in different years
(Chapter 4). Such interannual variation in species composition is commonly ob-
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served in nature (Berg et al. 1998; Smayda 1998; Philippart et al. 2000; Raimondo
et al. 2004), and often leads biologists to speculate whether interannual differences in
species dominance might be explained by particularly warm springs (Straile 2000),
ice-cover in winter (Adrian et al. 1999; Weyhenmeyer et al. 1999) or other variations
in climatic conditions (Reynolds and Bellinger 1992; Harris and Baxter 1996). Our
results suggest that ‘perhaps there is no explanation’ for interannual variation in
species composition, just intrinsic sensitivity to initial conditions resulting in highly
unpredictable chaos, or more plausibly that there is an interplay between intrin-
sic and extrinsic factors that makes it difficult to explain much of the ecological
dynamics.

Another aspect of temporal variation we examined is stochastic variation in
temperature (Chapter 5). This analysis highlighted the possibility that ‘noise’
in the external conditions may sometimes invoke intrinsically generated oscillations
in species abundances. This can happen when the system behaves as a damped
oscillator. Upon a single perturbation such systems would return to a stable state
through damped oscillations, but under continued external perturbations the oscilla-
tions can be sustained (Nisbet and Gurney 1976; Kaitala et al. 1996; Greenman and
Benton 2003, 2005). As we argue such noise-induced oscillations could be relevant
for many predator-prey systems in nature. We also show that the characteristic
time scales of the environmental fluctuations matter, and that one can predict from
the growth rates of species which characteristic time scales would most easily invoke
oscillations. Surprisingly, the characteristic time scales of temperature fluctuations
typically found in aquatic ecosystems fall in the range to which important plankton
groups such as copepods and cladocerans are predicted to be most sensitive. This
leads us to conclude that environmental fluctuations may often catalyze rather than
mask intrinsic oscillations in plankton. More importantly, it suggests ways to probe
other biological communities for the potential of resonance to fluctuations in their
environment. Interestingly, climate change may modify the characteristic time scales
of environmental fluctuations (Wigley et al. 1998; Easterling et al. 2000). While this
component of climate change received little attention so far, our results suggest that
it may affect the dynamics of biological communities in surprising ways.

Clearly the question ‘is there chaos out there?’ remains far from resolved when
it comes to ecosystems in general. While my thesis has carried the topic a few
steps further, many issues remain to be addressed that separate the simple models
and controlled communities from natural communities. Nonetheless, the presence of
chaotic dynamics has been observed in many other instances: in lab experiments with
microbial communities (Becks et al. 2005; Graham et al. 2007), in the time series of
epidemics (Schaffer and Kot 1986; Olsen et al. 1988; Olsen and Schaffer 1990; Schaffer
et al. 1990) and in the time series of populations of insects and small mammals
(Turchin and Taylor 1992; Hanski et al. 1993; Turchin 1993, 1995; Ellner and Turchin
1995). Another reason to think that chaotic dynamic could be important is that some
of the underlying mechanisms, such as multi-species competition and predation, that
are assumed to generate the chaotic behavior, are widespread in nature. This all
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suggests that yes, most likely, there will be chaos out there.

6.2 Limits to prediction

While discussions on chaos may sometimes appear rather academic, the existence
of intrinsic chaos implies a formidably different view of explanations of trends in
nature. Much of ecology evolves around the search for explanations of trends in
population densities. The idea that there may be no particular explanations for some
of these trends other than intrinsically chaotic alternations in dominance challenges
the traditional way in which the majority of ecologists view ecosystems. The core
of this traditional view is that nature is either at equilibrium or is returning to
equilibrium after a disturbance. The work in this thesis suggests that in the absence
of external disturbances, intrinsic processes will still cause population densities to
rise and fall forever in a chaotic way.

One of the fundamental implications of such chaos is that unless the abundances
of species and all external influences are known at infinite precision, predictions of
population development in the long term are impossible. The limited prediction
horizon in chaotic systems is due to the phenomenon of sensitivity to initial condi-
tions. For our enclosed plankton system we estimated a prediction horizon in the
order of a few weeks; surprisingly close in fact to that of the weather. However, pre-
diction horizons arising from intrinsic chaos in communities are scaled to generation
times, implying large differences if one moves from microbes to communities of fish,
corals, large terrestrial herbivores or trees.

Although the verdict ‘unpredictable in the long term’ may sound harsh, it is
important to become slightly more specific if we want to understand what this
means in practice. A first point to clarify is, what it is we would like to predict. For
instance, in the case of plankton, are we interested in the biomass of a single species,
of functional groups, or of the total biomass of an entire community? We might
also be interested in predicting the timing of a bloom rather than its magnitude.
Different targets can have different predictabilities. Consider for instance the results
from our model exercise (Chapter 4) shown in Figure 6.1. The species fluctuations
are irregular, yet these irregular fluctuations are locked within the seasonal cycle.
As a consequence, each year species enter the winter season in different proportions,
and this affects the species composition of the next spring bloom (Figure 6.1a). The
interannual variability of plankton species is thus very high: the timing and height
of each species peak may vary strongly between years (Figure 6.1a). However, when
we lump all phytoplankton species and all zooplankton species together much less
variability is observed (Figure 6.1b). The phytoplankton and zooplankton blooms
start each year essentially at the same time, although some variability in maximum
biomass during the bloom is observed between years (Figure 6.1b). Thus, it may be
quite feasible in this system to predict the timing and magnitude of algal blooms,
even though the ups and downs of the individual species are quite unpredictable.
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Figure 6.1: a, The biomass of individual phytoplankton and zooplankton
species over time. b, Total phytoplankton biomass (solid line) and total zoo-
plankton biomass (dashed line) over time. The graphs are based on simulations
with the model of (Dakos et al. 2009) (Chapter 4 of the thesis).
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6.3 Methodological considerations

Although it is tempting to philosophize about possibilities for smart prediction of
chaotic systems, we should recognize that even demonstrating that a system is driven
by intrinsically chaotic processes remains remarkably hard in ecology. Obviously, the
plankton time series of Dr. Reinhard Heerkloss was a gold-mine when it comes to
detecting chaos. The food web was kept under constant conditions, and sampled
with high frequency for thousands of generation times. For the detection of chaos in
natural communities, the interplay of intrinsic population dynamics with external
disturbances implies an extra challenge. In addition, a critical issue for the analysis
of chaotic dynamics is the length of the time series in relation to the generation
times of the organisms. This is one of the reasons why it may not be easy to repeat
the power of our plankton analyses for other ecosystems like forests and savannas.
Indeed, when corrected for generation times, a single summer for the plankton may
compare to an entire interglacial period for a community of trees.

Certainly, closing in on the big question which systems may be governed to a
large extent by intrinsic chaos will require a combination of approaches, ranging
from models and experiments to smart data analysis. In the last 20 years many
techniques have been developed for detecting chaos in ecosystems. Unfortunately,
none of these methods is a silver bullet approach.

For instance, one option (used in Chapter 2) is a model-free approach, where the
largest Lyapunov exponent is calculated directly from the time series (e.g., Rosen-
stein et al. 1993). Such approaches are called ‘direct methods’. Some authors have
applied direct methods to very short time series. However, to obtain reliable esti-
mates of Lyapunov exponents, temporally correlated data points should be removed
by a so-called Theiler window (Kantz and Schreiber 1997). Therefore, direct methods
require stationary time series of considerable length. In addition, direct methods as-
sume that noise is negligible in comparison to the deterministic signal of the system.
This assumption may be realistic for experiments performed under highly controlled
laboratory conditions, but will be unrealistic for many natural ecosystems.

Alternatively, one may use time series data to fit statistical models (e.g., Ellner
and Turchin 1995). The detection of chaos is then based on these statistical models,
which can be used to calculate the largest Lyapunov exponent and to estimate the
predictability of the system. Such approaches are called ‘indirect methods’, and
were also applied in Chapter 2 of the thesis. Fitting statistical models does not
necessarily require long time series: in some cases, 50 points might even be sufficient
(Hastings et al. 1993). Moreover, indirect methods can accommodate environmental
noise, which makes this approach highly suitable for ecological data (Ellner and
Turchin 1995).

Finally, instead of statistical models, one may develop a plausible mechanistic
model to explain the population dynamics and estimate the model parameters from
observations or experiments (e.g., Costantino et al. 1997). If the dynamic behavior of
the parameterized population model is chaotic this suggests that the real population
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could also be chaotic. This method has the advantage that lengthy time series are
not needed, but has the disadvantage that the results will depend critically on the
a priori choice of the population model. One way to deal with this limitation is
to study a broad range of feasible models and parameter settings. The statistical
analysis of the resulting behavior can then yield some estimate of the probability of
chaos. Our analysis in Chapter 4 of the thesis works along these lines.

Since each of these approaches has different strengths and weaknesses, the best
way to analyze whether a system is chaotic, is to combine the different types of
analyses.

6.4 The challenge ahead

The emerging view of chaotically driven communities suggests that for such systems,
ecologists may have to shift away from the idea of forecasting the precise numbers
of each individual species at any given time. Instead, ecologists could shift towards
the equivalent of climate forecasting, where meteorologists cannot say whether it
will rain on a given day in three months but can make predictions about whether a
summer will be particularly dry, or a winter particularly cold. The monitoring and
modelling methodology developed by meteorologists may provide a good example
for improved prediction of ecosystems. Looking into this field further, we may also
want to invest more in monitoring efforts for some important ecosystems, and use
these monitoring results to continuously update model predictions, as is common
practice in weather forecasts.

In addition, new approaches to investigate species fluctuations, such as the cross-
wavelet analysis used in this thesis (Chapter 3), will be needed to make most out
of the limited possibilities we have to unravel the dynamics of the hugely complex
natural systems on which humanity depends. While our insight is deepening at a
tantalizing slow pace, understanding the role of chaos is worth the effort. It fun-
damentally delineates what are relevant ambitions for ecologists when it comes to
understanding and predicting changes in the abundances of species in nature.
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Supplementary information to chapter 2

A.1 Materials and methods of the mesocosm ex-
periment

In spring 1989, the mesocosm was filled with a 10 cm sediment layer from the Darss-
Zingst estuary (southern Baltic Sea, 54◦ 26’ N, 12◦ 42’ E). After preincubation
for one week to stabilize the sediment, the mesocosm was filled with 90 litres of
water from the same location, which had been filtered through a 200 µm gauze.
This inoculum provided all species in the food web. During the first weeks, several
plankton species were lost, as they were not able to survive the laboratory conditions.
The sediment layer served as a source and refuge for resting stages and buffered the
nutrient cycles.

The mesocosm was placed in a 15◦C climate room, and heated by an aquarium
thermostat (Rena Cal Excel aquarium heater, 100 Watt, Aquarium Pharmaceu-
ticals, Chalfont, PA, USA) to maintain the mesocosm temperature at 20◦C. The
mesocosm was illuminated from above, by neon fluorescent lamps providing an in-
cident irradiation of 50 µmol photons m−2 s−1 (16 hours/8 hours light-dark cycle).
The mesocosm walls were not transparent. Salinity was maintained at 9 , reflect-
ing the salinity of the Darrs-Zingst estuary. The mesocosm was constantly aerated
by bubbling with compressed air.

Nutrients were measured weekly after filtration of 20-mL samples through glass
fiber filters (Whatman GF/F, 0.7 µm). Concentrations of soluble reactive phos-
phorous and dissolved inorganic nitrogen (nitrate, nitrite and ammonium) were an-
alyzed according to standard methods (Rohde and Nehring 1979; Grasshoff et al.
1983) using a flow-injection autoanalyzer (Alpkem RFA-300, Alpkem, Wilsonville,
OR, USA).

Species abundances were measured twice a week. Picophytoplankton, nanophy-
toplankton, and protozoa were counted alive, immediately after sampling, in a Kolk-
witz plankton chamber under fluorescence light using an interference contrast mi-
croscope (Olympus research microscope BH-2). Bacteria were counted using fluores-
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cence microscopy, in samples fixed with 2% glutaraldehyde and stained with DAPI
(Porter and Feig 1980). Zooplankton, detritivores, and filamentous diatoms were
sampled by scooping 10 litres from the mesocosm using a 2-litre beaker. The water
was sieved through a 50 m net to retain the plankton, and the filtrate was returned
to the mesocosm. The sieved material was washed off into 20 ml aged biotope wa-
ter and fixed with neutralized formaldehyde to a final concentration of 4%. For
the abundant species, 200 individuals were counted. For less abundant species (i.e.,
with less than 200 individuals per sample), the total number of individuals per sam-
ple were counted. It was difficult to take a representative sample of the cyclopoid
copepods. The adults and later copepodite stages moved very fast, and escaped
the scooping procedure by the beaker. Therefore, only the nauplii of the cyclopoid
copepods were counted. The abundances of the species were converted into biomass
using geometric equivalents of the body volumes. A list of the geometric conversion
factors of the different species is provided in Heerkloss et al. (1991).

Attached algae were brushed from the walls of the mesocosm once a month.
During the entire experiment, small quantities of biotope water filtered (0.4 µm
pore size) from the Darss-Zingst estuary were added to compensate for water losses
due to sampling. In addition, small quantities of distilled water were added to
compensate for water loss due to evaporation.

A.2 Earlier analyses of the same time series

Part of the same time series has been presented in earlier publications (Heerkloss
and Klinkenberg 1993, 1998; Dippner et al. 2002). The papers of Heerkloss and
Klinkenberg (1993, 1998) present graphs of the time series, and suggest from visual
inspection of the irregular ups and downs of the species that this food web might
display chaotic dynamics. However, a nonlinear analysis of the data is not presented
in their papers.

In contrast, Dippner et al. (2002) present a nonlinear analysis of the mesocosm
data. However, they could not detect chaos in these time series. Why did Dippner
et al. (2002) reach a conclusion that is completely different from our findings?

There were several differences between the approach of Dippner et al. (2002) and
our approach.

First, Dippner et al. (2002) analyzed a shorter time series. They used the meso-
cosm data obtained until May 11, 1995 (day 1425 in our time series).

Second, Dippner et al. (2002) did not transform the time series to obtain station-
ary data with homogenized variances. As a consequence, their time series showed
sharp spikes which may have hampered the interpretation of their results.

Third, Dippner et al. (2002) applied a different analysis. They used a graphical
method known as recurrence quantification analysis (RQA). RQA is based on the
analysis of recurrence plots, which were introduced by Eckmann et al. (1987). A
recent review of recurrence plots is provided by Marwan et al. (2007). In essence, re-
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currence plots visualize the times at which a trajectory visits roughly the same area
in phase space. The recurrence of the trajectory to similar states, after some time of
divergence, is one of the key features of deterministic dynamical systems. To draw
a recurrence plot, one needs to define when trajectories are considered as ‘nearby’
(i.e., when they pass through roughly the same area). For this purpose, a ‘neigh-
bourhood’ of radius r is defined in phase space and two trajectories are assigned
as ‘nearby’ if they both pass through the same neighbourhood. Unfortunately, in
retrospect, the size of the neighbourhood in Dippner et al. (2002) was chosen much
too large. For calanoid copepods, for instance, Dippner et al. (2002, p. 33) used a
neighbourhood with radius of r=5 mg L−1. However, this radius is about 30% of
the maximum biomass measured in the calanoid time series. Moreover, population
abundances of the calanoids remained below 5 mg L−1 for long stretches of time.
In fact, the complete population dynamics of the calanoids from t=400 to 600 days
(index=110 to 170), and also from t=850 to 1250 days (index=250 to 350) vanished
within the same neighbourhood (this yielded the large black areas in their recur-
rence plots; compare Figure 1C and Figure 5 in Dippner et al. (2002)). Thus, in
retrospect, many of the interesting ups and downs in the population dynamics of
the calanoids remained undetected in their recurrence quantification analysis, and,
hence, their resolution was too coarse to detect rapid chaotic fluctuations with a
predictability of only 15-30 days. The same comment applies to their analysis of the
other phytoplankton and zooplankton species.

A.3 Transformation of the time series

We transformed the original time series, shown in Figure 2.1b-g, to obtain stationary
time series with equidistant data and homogeneous units of measurement. The
transformation steps are illustrated for the bacteria (Figure A.1).

First, the time series were interpolated using cubic hermite interpolation, to
obtain data with equidistant time intervals of 3.35 days (Figure A.1a).

Next, because the original time series showed many sharp spikes, the time series
were rescaled using a fourth-root power transformation (Figure A.1b). The sharp
spikes bias “direct method” estimates of the Lyapunov exponent, because nearby
pairs of reconstructed state vectors mostly occurred in the troughs between spikes.
The average rate of subsequent trajectory divergence from these pairs is therefore
an estimate of the local Lyapunov exponent in the troughs, which may be very
different from the global Lyapunov exponent. By making spikes and troughs more
nearly symmetric, the power transformation resulted in a much more even spread of
nearby state vector pairs across the full range of the data for all functional groups
in the food web. The transformation is also useful for fitting nonlinear models
of the deterministic skeleton (used for nonlinear predictability and indirect method
estimates of the Lyapunov exponent), which was done by least squares and therefore
is most efficient when error variances are stabilized. Fourth-root transformation
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Figure A.1: Data treatment of the time series of bacteria. a, First, the time
series was interpolated to obtain equidistant intervals of 3.35 days. b, Next, the
time series was transformed by a fourth-root power transformation to suppress
large spikes in the data, and the trend (red line) was calculated by a Gaussian
kernel window with a bandwidth of 300 days. c, Finally, the time series was
detrended, and subsequently normalized to obtain a stationary time series with
mean zero and standard deviation of 1.
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is intermediate between the square-root transformation that would approximately
stabilize the measurement error variance in count data from random subsamples,
and the log transformation that is usually recommended for stabilizing process noise
variance due to stochastic variation in birth and death rates.
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Figure A.2: Stationary time series of the functional groups in the food web, af-
ter data treatment. a, Cyclopoid copepods; b, calanoid copepods (red), rotifers
(blue), and protozoa (dark green); c, picophytoplankton (black), nanophyto-
plankton (red), and filamentous diatoms (green); d, dissolved inorganic nitro-
gen (red) and soluble reactive phosphorus (black); e, heterotrophic bacteria; f,
harpacticoid copepods (violet) and ostracods (light blue).

The time series were then detrended using a Gaussian kernel with a bandwidth
of 300 days (red line in Figure A.1b), to obtain stationary time series. Most species
did not show long-term trends, except for the bacteria, detritivores (ostracods and
harpacticoid copepods), dissolved inorganic nitrogen and soluble reactive phospho-
rus. One possible explanation for these trends in the microbial loop could be the
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slow accumulation of refractory organic material in the mesocosm, but we have not
measured this component.

Finally, the time series were linearly rescaled to have zero mean and a standard
deviation of 1 (Figure A.1c).

The time series of cyclopoid copepods, protozoa, filamentous diatoms, harpacti-
coid copepods and ostracods contained long sequences of zero values. This does not
imply that these species were absent from the food web during these periods, but
that their concentrations were below the detection limit. Time series dominated
by many zeros can bias the statistical analysis. Therefore, these time series were
shortened to remove long sequences of zero values, before the data transformation.

The transformed data of all species in the food web are shown in Figure A.2.

A.4 Spectral analysis

We applied spectral analysis to obtain a better understanding of the predominant
periodicities in the species fluctuations. The discrete Fourier transform X for a time
series of length N , with observations x0, . . . , xN−1, is:

X(k) =
1√
N

N−1∑
j=0

xje
−2πijk
N (A.1)

where k = 0, . . . , N − 1 is the frequency index. The power spectrum is defined as:

P (k) = X(k)X∗(k) (A.2)

where X∗(k) is the complex conjugate of X(k).
We present both raw power spectra (Figure A.3) and smoothed power spectra

(Figure A.4). The raw periodogram is not a consistent estimator of the spectral den-
sity, as its variance does not converge to zero when increasing the length of a time
series (Percival and Walden 1993). Consistent estimators can be derived by smooth-
ing the raw periodogram. However, smoothing might introduce substantial bias at
frequencies near spectral peaks by spreading and flattening the signal. Thus, there
is a tradeoff between bias and variance. We smoothed the power spectrum using
the modified Welch periodogram (Welch 1967). This method splits the time series
in overlapping segments, called Hamming windows, and calculates the periodogram
for each window separately. The Welch periodogram is then obtained by averaging
the resulting periodograms. This yields a smooth periodogram, which is a consistent
and asymptotically unbiased estimator of the spectral density. Visual inspection of
the raw power spectra and Welch periodograms indicated that we obtained good
results using 5 Hamming windows with 50% overlap.

All species in the food web showed reddened power spectra (i.e., decreasing power
with increasing frequency; Figure A.3, A.4), indicating some persistence in the data.
Therefore, the power spectra of the species were compared with the power spectrum
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Figure A.3: Raw power spectra of the species. a, Picophytoplankton; b,
nanophytoplankton; c, calanoid copepods; d, ostracods; e, harpacticoid cope-
pods; f, rotifers; g, soluble reactive phosphorus; h, dissolved inorganic nitrogen;
i, bacteria. For comparison, the grey line shows the red-noise spectrum calcu-
lated from an AR1-process. Note the different scale of the y-axes in panels
g-i.

of red noise. A simple model for red noise is the univariate lag-1 autoregressive
[AR(1)] process (e.g., Torrence and Compo 1998):

xt = αxt−1 + zt (A.3)

where α is the lag-1 autocorrelation calculated from the time series under investi-
gation, x0 = 0, and zt is taken from Gaussian white noise. Following Gilman et al.
(1963), the power spectrum of red noise calculated from Eq. A.3 is:

P (k) =
1− α2

1 + α2 − 2α cos 2πk
N

(A.4)

where k = 0,. . . ,N − 1 is the frequency index.
Both the raw spectra and Welch periodograms show that picophytoplankton,

rotifers, and calanoid copepods fluctuated with periodicities of ≈ 30 days, and its
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possible harmonics at≈ 60 and≈ 120 days (Figure A.3, A.3). This is consistent with
earlier studies reporting periodicities of ≈ 30 days for phytoplankton-zooplankton
oscillations (Scheffer and Rinaldi 2000; Fussmann et al. 2000).
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Figure A.4: Welch periodogram of the species. a, Picophytoplankton; b,
nanophytoplankton; c, calanoid copepods; d, ostracods; e, harpacticoid cope-
pods; f, rotifers; g, soluble reactive phosphorus; h, dissolved inorganic nitrogen;
i, bacteria. For comparison, the grey line shows the red-noise spectrum calcu-
lated from an AR1-process. Please note that the power in this graph is plotted
on a log scale.

The raw spectra further suggest that ostracods and harpacticoid copepods, which
are connected to bacterial activity, may have fluctuated with periodicities of ≈ 15
days (Figure A.3). Other periodicities in the raw spectra can be observed at ≈ 25
days (bacteria, dissolved inorganic nitrogen, ostracods, harpacticoid copepods), ≈ 75
days (dissolved inorganic nitrogen), ≈ 150 days (soluble reactive phosphorus, ostra-
cods), and ≈ 225 days (bacteria), which points at intriguing linkages between nutri-
ents and the microbial loop at a range of commensurate frequencies (Figure A.3).
However, many of these periodicities are evident only in the raw spectra and less in
the Welch periodogram. For this reason we cannot tell with certainty whether these
periodicities of the nutrients and microbial loop are real features of the food web.
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A.5 Predictability

A.5.1 Neural network

To investigate the predictability of the food-web dynamics, we employed a neural
network model for each species in the food web. The neural network model assumes
that the population dynamics of the focal species is a (complex nonlinear) function
of the population abundances of this focal species and the species that have a direct
link to this focal species (cf. Eq. 2.1 in chapter 2):

Ni,t+T = fi,T (Ni,t, N1,t, N2,t, . . . , Nm,t) (A.5)

where Ni,t is the population abundance (or nutrient concentration) of species i
at time t, the subscripts 1 to m indicate all species directly linked to species i, T is
the prediction time (i.e., the number of days that we want to predict in advance),
and fi,T is an unknown function estimated by the neural network model.

The architecture of the neural network model is shown in Figure A.5. The input
of the network is received by input units, which monitor the population abundances
of the focal species and the species linked to this focal species. The input values
are passed on to a layer of hidden units. Each connection between input unit j and
hidden unit k (indicated by an arrow in Figure S5) performs a linear transformation
determined by the connection strength γkj . Hence, the total input for hidden unit
k at time t is given by:

ink = γkiNi,t +

m∑
j=1

γkjNj,t + αk (A.6)

where the first term on the right-hand side describes the neuron’s activity due to
input from the focal species i, the second term describes the neuron’s activity due
to input from the connected species, and the third term, αk, describes the neuron‘s
intrinsic activity level. In other words, each hidden unit receives its own input,
depending on its connection strengths to the input units and its intrinsic activity
level.

The hidden unit performs a non-linear transformation on its total input, defined
by the activation function ψ. This activation function is the same for all hidden
units. Typically, the activation function is a sigmoid function, which approaches
zero if the total input is very negative, while it approaches 1 if the total input
is very positive. Following Nychka et al. (1992), we used the following activation
function:

ψ(ink) =
ink(1+ | ink2 |)

2+ | ink | +
in2
k

2

(A.7)
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Figure A.5: Architecture of the neural network model. In this example, the
input layer consists of 3 input units representing the population abundances of
focal species i and two connected species at time t, the hidden layer consists of
4 hidden units, and the output layer predicts the new population abundance of
focal species i at time t+T.

The activation signals from the hidden units are collected by a single output
unit, which performs a linear transformation on the activation signals to present the
output of the neural network. The network output can therefore be written as:

Out = β0 +
n∑
k=1

βkψ(ink) (A.8)

where β0 is the intrinsic output level, the βk’s are the weights given to the ac-
tivation signals from different hidden units, and n is the total number of hidden
units. This output represents the model prediction, by the neural network, of the
population abundance of the focal species. The total number of hidden units, n,
should be sufficiently large to avoid inaccurate predictions, but should not be too
large either as a large number of hidden units increases the computation time sub-
stantially. We selected the total number of hidden units by minimizing a generalized
cross-validation statistic (GCV2) with 2-fold overweighting of model degrees of free-
dom to avoid overfitting (Nychka et al. 1992). This yielded an estimate of 4 hidden
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units for bacteria, nanophytoplankton and protozoa, 5 hidden units for cyclopoid
and calanoid copepods, rotifers, picophytoplankton, phosphorus, nitrogen, ostracods
and harpacticoid copepods, and 6 hidden units for filamentous diatoms. The param-
eters (αk, βi, γij) of the neural network models were estimated using the software
package LENNS (Ellner et al. 1992; Nychka et al. 1992), which fits neural networks
to data using a least-squares approach.

A.5.2 Testing for differences between the nonlinear and linear
model

We tested whether the nonlinear neural network model yielded significantly higher
predictabilities than the corresponding linear model. For this purpose, we calcu-
lated the Pearson product-moment correlation coefficient (r) between predicted and
observed values, for both the nonlinear model (r1) and the linear model (r2). These
correlation coefficients are simply the square roots of the coefficients of determination
(R2) shown in Figure 2.2 of the main text.

For each prediction time, we tested the null hypothesis that the linear model and
nonlinear model yielded the same predictability (i.e., r1=r2) against the alternative
hypothesis that the nonlinear model yielded better predictions than the linear model
(i.e., r1>r2). The two correlation coefficients were both transformed with the Fisher
z-transformation ((Sokal and Rohlf 1995)):

zi =
1

2
ln

(
1 + ri
1− ri

)
(A.9)

The sampling distribution of the z statistic is known to be approximately normal,
with a standard error of

σz =
1√
N − 3

(A.10)

where N is the number of observations. We note that, in our case, N is the same
for both correlation coefficients, since they are calculated for the same time series.
Accordingly, we calculated the difference

∆z =
z1 − z2√

2
N−3

(A.11)

Under the null hypothesis, the sampling distribution of ∆z has a standard normal
distribution with mean of 0 and standard deviation of 1. Hence, in view of the
alternative hypothesis, we rejected the null hypothesis if the calculated value of ∆z
exceeded the 95th percentile of the standard normal distribution. The results show
that, already after one time step, the nonlinear model yielded significantly better
predictions than the linear model for all species (Table A.1).
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Species
Prediction time

1 2 3 >3
Bacteria < 0.02 < 0.001 < 0.001 < 0.001
Harpacticoids < 0.001 < 0.001 < 0.001 < 0.001
Ostracods < 0.001 < 0.001 < 0.001 < 0.001
Nitrogen n.s < 0.02 < 0.001 < 0.001
Phosphorus n.s. < 0.005 < 0.001 < 0.001
Picophytoplankton < 0.05 < 0.001 < 0.001 < 0.001
Nanophytoplankton n.s < 0.01 < 0.001 < 0.001
Filamentous diatoms < 0.02 < 0.001 < 0.001 < 0.001
Rotifers < 0.05 < 0.001 < 0.001 < 0.001
Protozoa n.s < 0.01 < 0.005 < 0.005
Calanoids n.s. < 0.01 < 0.001 < 0.001
Cyclopoids n.s. < 0.05 < 0.05 < 0.02

Table A.1: Statistical evaluation of differences between the predictability of the
nonlinear neural network model and the predictability of the best-fitting linear
model. Data entries show p values, for each species and each prediction time
(measured in time steps, where one time step equals 3.35 days). If p<0.05, the
nonlinear model had a significantly higher predictability than the linear model.
n.s. = not significant.

A.6 Methods for estimating Lyapunov exponents

Numerous methods have been proposed and studied for estimating Lyapunov expo-
nents from time series data. Essentially, these methods can be classified into two
types of approaches, direct methods and indirect methods (the latter are also called
Jacobian methods); we applied both approaches.

A.6.1 Direct method by time-delay embedding

Direct methods descend from Guckenheimer (1982) and Wolf et al. (1985). The data
are searched to find nearby pairs of state vectors (or reconstructed state vectors).
In other words, the data are searched for different points in the time series at which
all species abundances in the food web are in a similar state. The rate of trajectory
divergence at subsequent times, averaged over many such pairs, is an estimate of the
dominant Lyapunov exponent λ.

All calculations to estimate the Lyapunov exponent by the direct method were
performed using the software of the Tisean package (Hegger et al. 1999). We chose
the procedure of Rosenstein et al. (1993), because it was specifically developed and
tested for short, noisy time series (which ours are by the standards of theoretical
physics). This method uses attractor reconstruction by time-delay embedding (Tak-
ens 1981; Strogatz 1994; Kantz and Schreiber 1997), so that separate estimates could
be obtained for each species in the food web, providing an additional check on the
robustness of our conclusions.

Time-delay embedding requires a suitable choice of time delay and embedding
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Figure A.6: Exponential divergence of the trajectories of picophytoplankton
as a function of time, calculated with different embedding dimensions (m=3,
dark green; m=4, red; m=5, blue; m=6, pink; m=7, black; m=8, light green).
Exponential divergence is plotted on a natural-logarithmic scale. Robust esti-
mates of the Lyapunov exponent require that the initial slope of the exponential
divergence is independent of the exact value of the embedding dimension. This
requirement is fulfilled with an embedding dimension of m ≥ 6.

dimension. Since all data are from the same dynamical system, we chose a single
value of the time delay and embedding dimension representative for the entire food
web. Rosenstein et al. (1993) suggested that a good choice of time delay is the
time lag where the autocorrelation function drops to a fraction 1 � 1

e (i.e., 63%)
of its initial value. Following this criterion, we estimated time delays ranging from
1 to 4 time steps, depending on the species (where 1 time step equals 3.35 days).
Turchin (2003) suggested a time delay of 1 time step for organisms with generation
times less than the unit time interval. In our food web, several species have a
generation time equal or less than ≈ 3.35 days (e.g., bacteria, picophytoplankton,
nanophytoplankton, filamentous diatoms, ostracods, rotifers). Hence, a time delay
of 1 time step would seem suitable. A time delay of 1 also gave robust results in
terms of the linear scaling region in the exponential divergence which is used to
calculate the Lyapunov exponent. Accordingly, we chose a time delay of 1 time
step.

Theory suggests that the embedding dimension, m, can be estimated by the value
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where the number of false nearest neighbours drops to zero (Kantz and Schreiber
1997). Following this criterion, we estimated embedding dimensions ranging from
m=4 to m=9, depending on the species. At embedding dimensions of 6 and higher,
the initial slope of the exponential divergence became independent of embedding
dimension (Figure A.6). Hence, we chose an embedding dimension of m=6.

Figure A.7: Space time separation plots of the functional groups. a, Ro-
tifers; b, calanoid copepods; c, picophytoplankton; d, nanophytoplankton; e,
dissolved inorganic nitrogen; f, bacteria. The plots indicate how the temporal
distance between pairs of data points from the time series affects their spatial
distance on the reconstructed attractor. Contour lines are shown at the spatial
distance e where for a given temporal separation ∆t (in time steps) a fraction
of 1/10, 2/10, (lines from below) of pairs are found.

Estimates of trajectory divergence, and therefore of the Lyapunov exponent,
may be distorted if nearby state vectors (in state space) are also near in time.
For example, the time-delay state vector consisting of samples 101-106 is near to
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that consisting of samples 102-107, and their future histories never diverge very
far. The Theiler window offers a classical and effective solution to this problem
(Theiler 1986; Kantz and Schreiber 1997). A Theiler window removes temporally
nearby data points from the set of pairs used to estimate trajectory divergence. We
estimated a suitable size of the Theiler window by visual inspection of space time
separation plots (Provenzale et al. 1992). Space time separation plots show how
the temporal distance between pairs of data points affects their spatial distance on
the reconstructed attractor (Figure A.7). The Theiler window should be sufficiently
large to exclude those data points for which the spatial distance on the attractor is
affected by their temporal distance. For our species, the effect of temporal distance
on spatial distance vanished when data points were separated by more than 10 to 20
time steps (Figure A.7). To be on the safe side, we therefore introduced a Theiler
window of 50 time steps (≈ 170 days) for each species in the food web.

A.6.2 Jacobian method: a neural network food web model

Jacobian methods descend from Eckmann et al. (1986). These are based on the
development of a deterministic model of the underlying dynamics of the system.
This deterministic model will henceforth be called the ‘deterministic skeleton’. The
deterministic skeleton is differentiated to estimate the Jacobian matrices. The Lya-
punov exponent is then defined in terms of the sequence of Jacobian matrices of
the deterministic skeleton, evaluated at the time series of observed or reconstructed
state vectors. Thus, Jacobian methods require the preliminary step of estimating
the deterministic skeleton, either locally or by fitting a global map to the time series.
For theoretical properties of Jacobian methods, see McCaffrey et al. (1992); Bailey
et al. (1997); Lu and Smith (1997).

The length of our time series and the high dimensionality of the system (i.e., the
relatively large number of interlinked species in the food web) favour the use of a neu-
ral network regression model to estimate the deterministic skeleton, as discussed by
Ellner and Turchin (1995). However, our analysis here incorporates some subsequent
developments. In particular, follow-up studies have shown that semi-mechanistic
(also called semi-parametric) models should be preferred over state space recon-
struction in time-delay coordinates (Ellner et al. 1998; Smith et al. 2000). “Semi-
mechanistic” means that the structure of the model is based on biological knowledge
about the system (when that is available), as are any process rate equations for which
independent data are available, while nonparametric methods are used to fit aspects
about which little is known. Here we used the food web structure (Figure 2.1a)
to dictate the structure of the model, exactly as in the estimates of nonlinear pre-
dictability. Hence, functional relationships in the model include only those species
that have a direct link in the food web to the focal species. So for example, the
deterministic skeleton for rotifers is assumed a priori to have the form

rot(t+ 1) = frot[rot(t), cyclo(t), pico(t), nano(t), bact(t)] (A.12)
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where t is the time measured in time steps of 3.35 days. The omission of other
dependencies (e.g., absence of nutrients on the right-hand side of the last equation)
leads to structural zeros in the fitted Jacobians, which avoids “fitting the noise”
or incorporating functional relationships in the model that are absent in the real
system. Another advantage of adopting the food web structure is that it eliminates
the potential problem of spurious exponents in Jacobian-based estimates using state
space reconstruction (Sauer et al. 1998).

As in the direct method estimates, the forecasting interval (one sample time) is
chosen on mechanistic grounds (generation time) rather than a statistical rule-of-
thumb. However, the skeleton maps f were estimated by fitting a neural network
regression model with no a priori limits on the number of hidden units, so that any
model shape and complexity can be fitted, if there is evidence for it in the data.

Hence, the final issue is selecting the complexity (number of hidden units) of
the skeleton map for each species in the food web. This has no simple resolution.
To avoid overfitting we need a conservative criterion. Ellner and Turchin (1995),
following Nychka et al. (1992), used GCV2, a modification of the Generalized Cross
Validation criterion in which model degrees of freedom are overweighted by a fac-
tor of 2. Subsequent work suggested that twofold overweighting may be excessive.
With short, noisy time series Kendall (2001) found that GCV2 model selection had a
substantial risk of drastically underfitting, leading to spurious strongly negative es-
timates of λ. For longer and less noisy data sets, McCaffrey et al. (1992) and Nychka
et al. (1992) obtained good results using the Bayesian Information Criterion (BIC)
with neural network models. Assuming Gaussian errors and using the maximum like-
lihood estimate of the error variance (i.e. the mean squared residual error, MSE ), the

BIC criterion is equivalent to chosing the model that minimizes log(MSE)+P log(N)
N ,

where P is the number of model parameters and N is the sample size. GCV2 is equiv-
alent to selecting the model that minimizes log(MSE)−2 log(1− 2P

N ). For our time
series length, the BIC criterion is more conservative.

Based on these considerations, we applied both the GCV2 and BIC criteria to
estimate the number of hidden units. However, in our case, both criteria gave rather
similar results. Depending on the species, we obtained skeleton maps f with up to
8 hidden units, which was sufficient for model selection under all criteria.

All calculations to estimate the Lyapunov exponent by the Jacobian method were
performed using the LENNS software (Ellner et al. 1992; Nychka et al. 1992). An
R (R Development Core Team 2006) version of LENNS for the Windows operating
system is available on request from S.P.E. or can be downloaded from http://www.

eeb.cornell.edu/ellner/software.
To place confidence limits on the estimate of λ we used bootstrapping in partic-

ular the “resampling errors” approach to bootstrapping regression models (Davison
and Hinkley 1997), as follows. For each functional group i in the food web, let

f̂i(Xi) denote the fitted deterministic skeleton map, where Xi is the vector of all
functional groups linked with species i, including itself. From this we obtain a time
series of forecasting errors ei(t) = xi(t)− f̂i(Xi(t− 1)). Each bootstrap sample for
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functional group i was generated by first sampling with replacement from {ei(t)}Nt=2

to generate a series {e∗i (t)}Nt=2. These reshuffled error terms were subsequently used
to create a new time series consisting of fictitious “one step ahead” data

x∗i (t) = f̂i(Xi(t− 1)) + e∗i (t) (A.13)

For each such “data set” we then refitted the neural network model (with x∗i as
the response variable, and the real data series Xi(t−1) as the predictors), including
selection of model complexity by the BIC criterion. Due to the high computational
time required for fitting neural network models reliably, we limited the complexity
of the refitted networks to at most 1 more hidden unit than the number selected by
BIC for the real data. Because more complex models have a tendency to lead to
more strongly positive estimates of λ, this limitation is conservative for our purposes
(assessing the strength of evidence that λ>0). Obtaining 1000 bootstrap replicates
required about one month on a current desktop PC.

Based on these 1000 bootstraps, a one-sided confidence interval at the 95% con-
fidence level yielded a lower bound of λ=0.03 d−1. This confirms that the Lyapunov
exponent was significantly positive. We also report the two-sided confidence interval
at the 95% confidence level, which yielded 0.025<λ<0.109 d−1.

We also assessed the robustness of the Jacobian estimates informally in several
different ways (these were done individually, not in all possible combinations).

We modified the food web by completely removing the detritivores (ostracods
and harpacticoid copepods), and subsequent refitting of the neural network
model to the remaining time series.

We eliminated the first 500 days of the time series, during which the temper-
ature was slightly higher than 20oC.

Instead of a neural network we used a generalized additive model (GAM) with
spline ridge functions (Wood 2006, package mgcv package in R). The model
for functional group i included a univariate self-limitation spline term s(xi), a
univariate spline term s(xj) for each group j linked to group i, and a bivariate
spline term s(xi, xj) for each group j linked directly to group i (i.e., indirect
links via the microbial loop were not represented by bivariate spline terms).
A spline GAM can be fitted quickly and reliably, including selecting model
complexity by GCV criteria, but it cannot include higher-order interactions
(for example, all possible 3-way interactions between rotifers and all groups
linked to them) due to the large number of basis functions required for such a
model. We fitted the GAM to the shortened time series mentioned just above.

All of these modifications produced similar results, in particular they all yielded
a positive value for the dominant Lyapunov exponent. For the GAM model, we
obtained a Lyapunov exponent of λ=0.08 d−1, and an application of our bootstrap
procedure (using 200 replicates) resulted in a positive lower bound of the Lyapunov
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exponent at the 95% confidence level of 0.024 d−1. Analyses of the shorter time
series (without the first 500 days) produced a slightly larger estimate of the domi-
nant Lyapunov exponent, of λ=0.097 d−1, with a positive lower bound at the 95%
confidence level of 0.02 d−1.

A.7 Temperature fluctuations

The mesocosm was placed in a 15oC climate room, and heated by an aquarium ther-
mostat to maintain a constant water temperature. During the entire period of inves-
tigation, for 2,319 days, the temperature of the mesocosm was ≈ 20oC (mean=20.28
oC, s.d.=1.07 oC, n=688). Nevertheless, some temperature fluctuations were un-
avoidable (Figure A.8a), either by failure of the climate room or by failure of the
aquarium thermostat. For instance, accidental failures of the thermostat resulted
in a fast temperature increase on April 3, 1992 (day 292), June 17, 1993 (day 732),
May 18, 1995 (day 1432), and September 4, 1997 (day 2272).

One might argue that the chaotic behavior of the food web could have been
driven by the temperature fluctuations. There are actually two hypotheses: (1) the
temperature itself fluctuated chaotically, and/or (2) the temperature was not chaotic,
but temperature variability pushed the species dynamics into a chaotic regime.

To investigate these hypotheses, we carried out several analyses. For this pur-
pose, the temperature data were transformed in exactly the same way as the species
in the food web (i.e., interpolation, fourth-root power transformation, detrending,
and normalization of the time series). This yielded a stationary time series with
equidistant data and homogeneous units of measurements (Figure A.8b).

First, we investigated whether the observed species variability was associated
with temperature variability, by calculation of the product-moment correlation coef-
ficient between the species abundances and temperature. This revealed that bacteria
and rotifers showed significantly positive correlations with temperature, whereas the
other species did not show a significant relationship (Table A.2). Visual inspection of
the data suggested that the positive correlations of bacteria and rotifers could be at-
tributed to the slightly elevated temperatures from day 300 to day 475 (Figure A.8a;
mean=21.55oC; s.d.=0.96oC, n=47). Indeed, when we shortened the time series by
removal of the first 500 days, none of the species in the food web showed significant
correlations with temperature anymore (Table A.2). Hence, we conclude that the
temperature fluctuations may have had some effect on the species abundances, but
that this effect was relatively minor and mainly concentrated in the first 500 days
of the time series.

Second, we investigated the predictability of the temperature fluctuations by
developing a neural network model using the same methodology as for the species
in the food web. However, we could of course not exploit the food web structure
to predict temperature, and instead we predicted the temperature by time-delay
embedding of the time series. We used a time delay of d=1 time step, which cor-
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Figure A.8: Time series of the temperature in the mesocosm experiment. a,
Original time series. b, Stationary time series after data transformation.

responded to the value where the autocorrelation function dropped to 1 − 1
e . We

used an embedding dimension of m=3, corresponding to the first minimum of the
GCV2 statistics as a function of the embedding dimension. The results showed that
the predictability of temperature was already low for a prediction time of only one
time step (R2=0.14), and was further reduced from the second time step onwards
(R2<0.08). Hence, the temperature signal was noise dominated, with only a very
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Species
Correlation coefficient

complete time series shortened time series
Bacteria 0.11* 0.11
Harpacticoids 0.09 0.09
Ostracods 0.10 0.11
Nitrogen 0.02 0.03
Phosphorus 0.07 −0.11
Picophytoplankton −0.12 −0.04
Nanophytoplankton −0.07 −0.07
Rotifers 0.11* 0.08
Protozoa −0.01 0.00
Calanoids −0.11 0.05

Table A.2: Correlations between species abundances and temperature. Table
entries show the product-moment correlation coefficients, after transformation
of the data to stationary time series (see Methods section). In the shortened
time series, the first 500 days were removed from the data set. Significance
tests were corrected for multiple hypothesis testing by calculation of adjusted
p-values using the false discovery rate (Benjamini and Hochberg 1995). Sig-
nificant correlations are indicated in bold: ***p<0.001, **p<0.01; *p<0.05.
Filamentous diatoms and cyclopoid copepods were not included in the correla-
tion analysis, because their time series contained too many zeros.

weak deterministic component.
Third, we estimated the Lyapunov exponent using both direct and indirect meth-

ods. In the direct method, the Lyapunov exponent was estimated using attractor
reconstruction by time-delay embedding, following exactly the same approach as
for the species. We used a time delay of d=1 time step, an embedding dimension
of m=3, and a Theiler window of 70 time steps (about 235 days). This yielded a
strongly positive Lyapunov exponent (λ=0.151 d−1). Does this imply that the tem-
perature fluctuations were driven by chaotic dynamics? Not necessarily. The direct
method may yield positive Lyapunov exponents when the dynamics are chaotic, but
also when the dynamics are not chaotic but dominated by noise (Ellner and Turchin
1995). Moreover, the predictability results above had indicated that the temperature
fluctuations were noise dominated.

The indirect method is specifically designed for noisy data sets; it avoids the noise
signal by investigation of the deterministic skeleton underlying the time series. For
this purpose, we used again a neural network model to estimate the deterministic
skeleton, and subsequently calculated the Lyapunov exponent by evaluation of the
Jacobian matrices. The methodology was as described previously (see the earlier
section on the Jacobian method). However, because we could not exploit the food
web structure, we used time-delay embedding with a time delay of d=1 time step
and an embedding dimension of m=3 to generate the neural network model. This
yielded a strongly negative Lyapunov exponent (λ=-0.091 d−1). In fact, a negative
Lyapunov exponent should have been expected, because the temperature was regu-
lated by a thermostat system (i.e., the temperature trajectories should all converge
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to the same point attractor at 20oC). The contrasting results from the direct and
indirect method emphasize once more that assessment of the chaotic nature of noisy
time series (i.e., many ecological time series) requires investigation of the underlying
deterministic skeleton.

Thus, we conclude that the temperature fluctuations were not driven by chaotic
dynamics, but reflected a stable thermostat system disturbed by noise.

Finally, could the temperature fluctuations have pushed the species dynamics
into a chaotic regime? In principle, this could have been the case. However, the
species abundances showed at best only a very weak relationship with temperature
(Table A.2). Moreover, the positive Lyapunov exponent of the entire food web,
estimated by the indirect method (see main text), points out that the underlying
population dynamics were chaotic. Hence, we conclude that the chaotic nature of
this food web was not driven by external forcing, but by the food web interactions
themselves.
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B.1 Introduction

Time series play a prominent role in ecology and environmental management. They
usually consist of a series of observations of species abundances and other relevant
ecological variables, gathered at regular intervals over a long period of time. Time
series are widely used to monitor long-term changes in the species composition of
freshwater, terrestrial and marine ecosystems, for instance to investigate impacts of
eutrophication, fisheries, or global warming. Time series are also commonly used to
study regular or irregular fluctuations in species abundances, as in the famous hare-
lynx cycles of northern Canada (Elton and Nicholson 1942; Stenseth et al. 1997),
in disease dynamics (Grenfell et al. 2001; Rodó et al. 2002), or in studies of algal
bloom dynamics (Smetacek and Cloern 2008).

Several statistical techniques are available to extract information from ecological
time series. Traditionally, periodic signals in time series are analyzed by means of
spectral analysis (Platt and Denman 1975; Chatfield 1989). Spectral analysis, also
known as Fourier analysis, decomposes the fluctuations of a time series into differ-
ent oscillating components with different frequencies (periods). Spectral analysis
produces a periodogram or power spectrum. Peaks in the power spectrum indi-
cate which frequencies (periods) occur most dominant, which enables detection of
characteristic periodicities in time series.

However, spectral analysis requires that time series are stationary. That is, spec-
tral techniques assume that the statistical properties of time series do not vary over
time. This makes it difficult to apply spectral analysis to ecological time series,
because many ecological time series are not stationary. The non-stationarity of eco-
logical time series may originate from many sources. For instance, the expansion
of human populations is known to have major impacts on ecosystems, resulting in
large changes in species composition and loss of biodiversity in response to, e.g., en-
vironmental pollution, urbanization and other changes in land use, or deforestation
and local harvesting. Ecosystems may also switch from one relatively stable state to
another state through regime shifts, which manifest themselves as abrupt reorgani-
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zations of entire ecosystems often in response to gradual changes in climate or other
environmental conditions (Hare and Mantua 2000; Scheffer and Carpenter 2003).
Non-stationarity of time series may also result from intrinsic processes, generated
by complex dynamics within natural ecosystems (Hastings et al. 1993; Benincà et al.
2008). The chaotic dynamics in our experimental food web provides an example.
In all these cases, one would like to apply a method that can capture the observed
changes in the periodic signal of these non-stationary time series.

During recent years a new methodology has been developed, called wavelet anal-
ysis. In contrast to spectral analysis, wavelet analysis is particularly suitable for
non-stationary time series. In essence, wavelet analysis decomposes local fluctua-
tions observed during a small stretch of time into different frequencies (periods).
Thus, wavelet analysis characterizes periodic signals in terms of both frequency and
time. Through this approach, wavelet analysis can keep track of changes in the peri-
odic signal of fluctuations. This makes wavelet analysis a very attractive tool for the
analysis of ecological time series (Grenfell et al. 2001; Keitt and Fisher 2006; Ménard
et al. 2007; Keitt 2008). Moreover, wavelet techniques have been further extended to
compare fluctuations in two time series, through a method known as cross-wavelet
analysis. Cross-wavelet analysis aims at the detection of similar periodicities in the
fluctuations of two time series, and also estimates the phase angles between these
periodicities. Cross-wavelet analysis is therefore a quite natural and very interesting
technique for the analysis of predator-prey oscillations and other forms of coupled
oscillations.

In this appendix, we first present a simple example to illustrate the basic ideas of
wavelet analysis. Next, we discuss the theory underlying wavelet analysis and explain
our significance tests. Finally, we move on to introduce cross-wavelet analysis and a
related method known as wavelet coherence. Excellent reviews on wavelet analysis
are provided in Torrence and Compo (1998), Grinsted et al. (2004), Cazelles et al.
(2008).

B.2 A simple example

In Figure B.1, we have presented two time series to illustrate the interpretation
of wavelet power spectra. Both time series contain two periodic components: fast
fluctuations with a period of 1 day and slow fluctuations with a period of 5 days.
Figure B.1a shows a stationary time series; the two periodic components are present
throughout the entire time series. Figure B.1b presents an example of a non-
stationary time series. The fast fluctuations are present only during the first half of
the time series, and are then replaced by slow fluctuations during the second half
of the time series. Spectral analysis yields exactly the same power spectra for both
time series (Figure B.1c and Figure B.1d), with peaks at the dominant periods of 1
and 5 days.
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Figure B.1: A simple example illustrating the interpretation of wavelet power
spectra. a, Time series consisting of a fast and a slow periodic signal that are
both present during the entire time series. b, Time series that begins with
a fast periodic signal, but shifts towards a slow periodic signal. c, d, Power
spectra obtained by classic spectral analysis, for the time series shown in a
and b, respectively. The power spectra are smoothed using the modified Welch
periodogram. e, f, Wavelet power spectra obtained by wavelet analysis, for the
time series shown in a and b, respectively. Wavelet power spectra are presented
as contour plots, where the y-axis plots the periodicities detected in the time
series, and the x-axis plots how these periodicities change over time. Colour
coding indicates the wavelet power, ranging from low power in blue to high
power in red. Black contour lines enclose significant regions in the wavelet
power spectra. Shaded areas on both sides of the contour plots represent the
cone of influence, where edge effects might distort the signal.

However, wavelet power spectra of the two time series are different (Figure B.1e
and Figure B.1f). The contour plots show how the wavelet power spectra change
during time. High wavelet power is indicated by red and orange colours, surrounded
by black contour lines indicating significant regions in the wavelet power spectrum.
Figure S1e identifies two dominant periodicities, of 1 and 5 days, which are both
significant throughout the entire time series, consistent with the original time series
data in Figure B.1a. Conversely, Figure B.1f shows that the fluctuations are dom-
inated by a significant periodicity of 1 day during the first half of the time series,
but then shift to a significant periodicity of 5 days during the second half of the
experiment, which matches the original time series in Figure B.1b. Thus, wavelet
power spectra provide information on the dominant periodicities in time series, as
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well as the exact timing during which these dominant periodicities are present.

B.3 Theory of wavelet analysis

Wavelet analysis makes use of a wavelet function, which is a periodic function re-
sembling a local wave. By definition, wavelet functions have zero mean and are
localized in frequency and time. One particular wavelet function, called the Morlet
wavelet, consists of the product of a sine wave and a Gaussian bell-shaped curve
(Figure B.2):

ψ0(η) = π−
1
4 eiω0ηe−

η2

2 (B.1)

where i is the imaginary number, ω0 is dimensionless frequency, and η is dimen-
sionless time. The Morlet wavelet is particularly useful to analyse periodicities in
time series. Therefore, we chose the Morlet wavelet for our analysis, assuming the
standard value of ω0=6 to satisfy the admissibility condition for wavelet functions
(Farge 1992).

Time
Figure B.2: Three examples of the Morlet wavelet, a local wave function that
can be characterized by the frequency and timing of its oscillations. The three
examples differ in wavelet scale.

We consider a time series xn, consisting of observations n = 1, . . . , N that are
equally spaced in time at intervals δt. The continuous wavelet transform, Wn(s), of
our discrete time series xn is defined as the convolution of xn with the scaled and
normalized wavelet. This can be written as (Grinsted et al. 2004):
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Wn(s) =

√
δt

s

N∑
m=1

xmψ0

[
(m− n)δt

s

]
(B.2)

The wavelet transform is stretched in time by varying the wavelet scale s. The
wavelet transform is normalized to ensure that wavelet transforms at different scales
s are comparable. The local wavelet power spectrum is defined as |Wn(s)|2, whereas
the complex argument of Wn(s) can be interpreted as the local phase (Torrence
and Compo 1998; Grinsted et al. 2004). The word ‘local’ indicates that the wavelet
power spectrum and its phase depend on the local time n. Thus, results from wavelet
analysis can be visualized in contour plots in which the local wavelet power spectrum
is plotted as a function of time.

We define the global wavelet spectrum as the time-average of all local wavelet
spectra:

W 2(s) =
1

N

N∑
n=1

|Wn(s)|2 (B.3)

The global wavelet spectrum provides a consistent and unbiased estimation of
the total power spectrum of a time series (Percival 1995).

When the wavelet transform is applied to a real finite length time series, errors
will occur at the beginning and end of the wavelet spectra. To limit these edge effects,
the beginning and end of the time series can be padded with zeroes before calculating
the wavelet transform (and removing these added data afterwards). However, this
procedure still introduces discontinuities and decreases the amplitudes at the edges.
The cone of influence (COI) is the region of the wavelet spectrum where this edge
effect is important. Following Torrence and Compo (1998), we define the COI as the
area in which the wavelet power caused by a discontinuity at the edge has dropped
by a factor e−2. Results falling in the COI are not included in our further analysis.

The statistical significance of the wavelet power can be assessed by comparison
against an appropriate null hypothesis. Our null hypothesis is that the wavelet
power spectrum is generated by a background signal, such as white noise or red
noise. Many ecological time series show a high degree of temporal autocorrelation.
That is, ecological time series often have distinctive red noise characteristics, and
this also applied to our experimental time series. Red noise can be modeled by
a first-order autoregressive process (AR1). The power spectrum, Pk, of an AR1
process is (Gilman et al. 1963):

Pk =
1− α2

1 + α2 − 2α cos( 2πk
N )

(B.4)

where the autocorrelation coefficient α at a time lag of 1 is estimated from the
observed time series, and k = 0, . . . , N/2 is the frequency index.
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The measured local wavelet power spectrum can be tested against the power
spectrum of a red noise process using a chi-square test. More precisely, under the
null hypothesis of red noise, the distribution of the local wavelet power spectrum is
given by Torrence and Compo (1998):

|Wn(s)|2

σ2
⇒ 1

2
Pkχ

2
2 (B.5)

where σ2 is the variance of the time series, the symbol “⇒” indicates “is dis-
tributed as”, and χ2

2 is the chi-square distribution with two degrees of freedom. The
value of Pk in Eq. B.5 is the mean power spectrum at the frequency index k that
corresponds to the wavelet scale s (Torrence and Compo 1998). Thus, one can con-
struct 95% confidence contour lines by evaluating Eq. B.5 at each scale using the
95th percentile value of the chi-square distribution. The software for our wavelet
analysis was kindly provided by C. Torrence and G. Compo, and is available at
http://atoc.colorado.edu/research/wavelets/.
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Figure B.3: Wavelet power spectra of the experimental data. a, Nanoflagel-
lates; b, picocyanobacteria; c, calanoid copepods; d, rotifers. Colour coding
indicates the local power of the species fluctuations. Black contour lines enclose
regions of greater than 95% confidence that the observed local power exceeds
red noise. Shaded areas on both sides of the contour plots represent the cone
of influence, where edge effects might distort the signal. Line graphs show the
global wavelet power spectra of the experimental data (blue lines) and of red
noise (red lines).

We applied wavelet analysis to the time series of picocyanobacteria, nanoflag-
ellates, rotifers and calanoid copepods. The results are plotted as contour plots in
Figure B.3. The colour coding in the contour plots indicates the local wavelet power.
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Black contour lines enclose regions of greater than 95% confidence that the observed
local wavelet power exceeds the wavelet power that would have been generated by
red noise. Shaded areas on either end of the contour plots represent the cone of in-
fluence, where edge effects might distort the signal. The contour plots show several
significant regions in the local wavelet power spectra of all four species, primarily at
periodicities in the range of 32-128 days (Figure B.3). This is further confirmed by
global wavelet power spectra of the four species, which show significant periodicities
at 32-64 days (line graphs in Figure B.3).

B.4 Cross-wavelet analysis

In predator-prey studies, as well as in many other applications, one would like to
know whether the ups and downs of two time series are related with each other.
This can be investigated by cross-wavelet analysis (Grinsted et al. 2004). Cross-
wavelet analysis compares the wavelet power spectra of two time series. This enables
detection of similarities in the local ups and downs of these two time series, and also
allows an estimation of the phase angle between these fluctuations.

The cross-wavelet transform of two time series, xn and yn, is defined asWxy,n(s) =
Wx,n(s) ·W ∗y,n(s), where the superscript * denotes complex conjugation. The local
cross-wavelet power spectrum is defined as |Wxy,n(s)|, while the complex argument
arg(Wxy,n(s)) can be interpreted as the local phase angle between fluctuations in
the two time series xn and yn. The phase angle can be visualized graphically by
arrows in the cross-wavelet plots.

To assess the significance of the observed phase angles, we investigated whether
the cross-wavelet spectra were significantly different (at the 0.05 level) from the cross-
wavelet spectra of two independent red-noise processes with the same first-order
autoregression coefficients as the original time series. Under the null hypothesis
that both time series are generated by red noise, with background power spectra
Px,k and Py,k, the distribution of the cross-wavelet power spectrum of the two time
series is given by Torrence and Compo (1998):

|Wxy,n(s)|
σxσy

⇒ 1

2

√
Px,kPy,kV2(p) (B.6)

where V 2(p) is the value associated with the pth percentile of a probability density
function defined by the square root of the product of two chi-square distributions
with two degrees of freedom. In our applications, we chose 95% confidence levels
(i.e., V2(0.95)=3.999) to evaluate Eq. B.6 at each scale. Software for cross-wavelet
analysis was kindly provided by A. Grinsted, and is available at http://www.pol.

ac.uk/home/research/waveletcoherence/.
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B.5 Wavelet Coherence

To investigate the robustness of our findings, we also applied a related method called
wavelet coherence (Grinsted et al. 2004; Maraun and Kurths 2004). Cross-wavelet
analysis and wavelet coherence provide two different perspectives on the coupled
fluctuations of two time series. Cross-wavelet spectra describe the common power of
two time series, but without normalization of the wavelet power spectra of the two
time series. This might lead to spurious results. For instance, if the wavelet power
spectrum of one of the two time series is locally flat while the other wavelet power
spectrum exhibits strong peaks, this can produce peaks in the cross-wavelet power
spectrum even without any relationship between the two time series (Maraun and
Kurths 2004). This problem is overcome by wavelet coherence. Wavelet coherence
investigates how much the ups and downs in two time series are correlated (i.e., it
investigates the coherence of fluctuations).

More specifically, the wavelet coherence of two time series is defined as the square
of the cross-wavelet power spectrum normalized by the two single wavelet power
spectra (Torrence and Webster 1999; Grinsted et al. 2004):

R2
n(s) =

|S(s−1Wxy,n(s))|2

S(s−1|Wx,n(s)|2) · S(s−1|Wy,n(s)|2)
(B.7)

where S is a smoothing operator. We note that this definition resembles that of a
traditional correlation coefficient. It is thus useful to think of the wavelet coherence
as a localized correlation coefficient. The smoothing operator is defined as:

S(W ) = Sscale(Stime(Wn(s))) (B.8)

with Sscale denoting smoothing along the wavelet scale axis and Stime smoothing
along the wavelet time axis. Smoothing in wavelet scale was based on a boxcar filter
with a width of 0.6, which is the empirically determined scale decorrelation length
for the Morlet wavelet (Torrence and Compo 1998). Smoothing in time was based
on a Gaussian filter with the width of the smoothing kernel in the same order as the
wavelength.

The statistical significance of the wavelet coherence can be tested against red
noise using Monte Carlo methods (Grinsted et al. 2004). We generated 1000 pairs
of surrogate time series with the same first-order autoregression coefficients as the
original time series. For each pair, we calculated the wavelet coherence. We then
estimated the significance level for each scale from the ensemble of Monte Carlo
results, again using 95% confidence levels. The resulting wavelet coherence plots are
shown in Figure B.4, and the phase angles of the significant regions are summarized
in Table B.1.

Cross-wavelet analysis and wavelet coherence analysis both have their limitations.
Cross-wavelet analysis has the disadvantage that the wavelet power spectra of the
two time series are not normalized. A disadvantage of wavelet coherence is that
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Species Angle distribution 

Nanoflagellates 

vs

Picocyanobacteria 

Calanoids 

vs

Rotifers 

Nanoflagellates 

vs

Calanoids 

Picocyanobacteria 

vs

Rotifers 

Nanoflagellates 

vs

Rotifers 

Picocyanobacteria 

vs

Calanoids 

Table B.1: Relative frequency distributions of the phase angles between the
fluctuating species, as determined by wavelet coherence analysis of the experi-
mental data. The relative frequency distributions are based on all phase angles
located within significant regions of the wavelet coherence spectra, but outside
the cone of influence.
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Figure B.4: Wavelet coherence spectra of the experimental data. a, Nanoflag-
ellates versus picocyanobacteria (P1 vs P2); b, Calanoid copepods versus ro-
tifers (Z 1 vs Z 2); c, Nanoflagellates versus calanoid copepods (P1 vs Z 1); d,
Picocyanobacteria versus rotifers(P2 vs Z 2); e, Nanoflagellates versus rotifers
(P1 vs Z 2); f, Picocyanobacteria versus calanoid copepods (P2 vs Z 1). Colour
coding indicates the wavelet coherence in the fluctuations of the two time series.
Arrows indicate the phase angles, where arrows pointing to the right represent
in-phase oscillations (0◦), while arrows pointing to the left represent anti-phase
oscillations (180◦). Black contour lines enclose regions of greater than 95%
confidence that the wavelet coherence of the two time series exceeds red noise.
Shaded areas on both sides of the contour plots represent the cone of influence,
where edge effects might distort the signal.

the results are sensitive to the smoothing procedure, and that smoothing decreases
the localization in space and time (Grinsted et al. 2004). It is thus recommendable
to apply both approaches and to compare their results. In our case, cross-wavelet
spectra and wavelet coherence yielded similar patterns for almost all species com-
binations (compare Figure 3.4 and Figure B.4). The only exception is the species
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combination of nanoflagellates versus rotifers, where the significant areas were dif-
ferently spread across the time-frequency domain. For this species combination, the
phase angles obtained by wavelet coherence suggest a three-quarter delay, whereas
the phase angles obtained by cross-wavelet analysis were more widely distributed.
For all other species combinations, both approaches yielded similar distributions of
the phase angles (compare the last columns in Table 3.1 and Table B.1). Thus, the
two approaches yield largely consistent results.
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C.1 Model attractors and Lyapunov exponents

C.1.1 The different attractors

We used several criteria to distinguish between stationary equilibria, limit cycles,
complex periodic cycles, quasiperiodicity and chaos. We visually checked every sim-
ulation result. In parallel, we calculated the Lyapunov exponent for each simulation,
and we developed a simple algorithm to count the number of different local maxima
(‘peaks’) of the dominant plankton species during the simulations. Stationary equi-
libria had no peaks, limit cycles had one peak, complex periodic cycles had more
than one peak, whereas quasiperiodicity and chaos had numerous peaks (usually
more than 10). The Lyapunov exponents were used to distinguish between non-
chaotic and chaotic behavior. In several cases, to confirm the existence of chaos,
we constructed Poincaré maps by sampling the model communities once per year
for many consecutive years. Quasiperiodic solutions produced a torus manifold (i.e.,
a circle; Figure 4.3a) on the Poincaré map, whereas chaotic solutions produced a
complex fractal Figure (Figure 4.3b).

Figure C.1 shows how often the different dynamical behaviors were displayed by
the model communities. For this purpose, we simulated 100 randomly generated
model communities at each different level of seasonal forcing (a) and productivity
(K ). The results show that, at low productivity (K =2), most of the model com-
munities displayed cyclic behavior while only a few displayed chaotic dynamics. In
contrast, at intermediate productivity (K =5, K =10), many of the model communi-
ties displayed chaotic dynamics.

C.1.2 Lyapunov exponent

The Lyapunov exponent measures the exponential divergence (or convergence) of
nearby trajectories (Strogatz 1994; Sprott 2003). A positive Lyapunov exponent
indicates divergence of the trajectories, and hence chaos. Conversely, a negative
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Figure C.1: Frequency of occurrence of the different dynamical behaviors as
a function of seasonal forcing. The results are shown for model communities
at low productivity (K =2 mg L−1) and intermediate productivity (K =5 mg
L−1, K =10 mg L−1). a, chaotic attractors, b, cycles (including simple cycles,
complex cycles and quasiperiodicity), c, stationary equilibria. Data are based
on 100 randomly generated model communities at each level of productivity
and seasonal forcing.
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Lyapunov exponent indicates convergence of the trajectories, for instance towards a
stable point equilibrium or a stable periodic cycle. We first ran each model simula-
tion for 1,000 years to ensure that the system had reached an attractor. Thereafter,
we continued the model simulations to calculate the Lyapunov exponent. In total,
there were 16 dynamic variables in the model (10 phytoplankton species and 6 zoo-
plankton species), which means that there were actually 16 Lyapunov exponents to
calculate (Wolf et al. 1985). However, instead of calculating the complete Lyapunov
spectrum, we focused on the dominant Lyapunov exponent only. For this purpose,
we tracked two nearby trajectories that differed infinitesimally in initial conditions
by δ0=10−8. We allowed these two trajectories to run for 100,000 time steps to
sample the entire attractor as much as possible. The Euclidean distance, δ(t), of the
two trajectories was calculated at each time step. The Lyapunov exponent, λ, quan-
tifies the exponential divergence (or convergence) of the trajectories, as described by
‖δ(t)‖ ≈ ‖δ0‖eλt (Strogatz 1994). Accordingly, we calculated λ by linear regression,
as the slope of the ln-transformed divergence over time.

Several model communities showed signs of intermittent chaos, especially at in-
termediate productivity. These communities followed complex periodic trajectories
but were repeatedly interrupted by outbursts of chaotic motion. Still these model
simulations were considered chaotic if they yielded positive Lyapunov exponents.

C.2 Interpretation in terms of the Paradox of En-
richment

The results show that the occurrence of chaos is affected by productivity (Table 4.2;
Figure 4.5), which agrees with previous observations on simpler tritrophic mod-
els (Yodzis and Innes 1992; McCann and Yodzis 1994). This is confirmed by a
bifurcation analysis, using the productivity K as bifurcation parameter. In this bi-
furcation analysis, we consider a multispecies community without seasonal forcing.
At low productivity, the dynamics of the multispecies model converge to a stable
equilibrium point. With increasing productivity, at K =4, the equilibrium point be-
comes unstable, and the dynamics bifurcate into a limit cycle. When productivity
is increased further, more bifurcations accumulate and the system is led through a
quasiperiodicity route into chaos (Figure C.2).

The destabilization of predator-prey systems with increasing productivity has
been termed the ‘Paradox of Enrichment’ (Rosenzweig 1971). This paradox may
help to understand why seasonal forcing had qualitatively different effects on inter-
annual variability at different levels of productivity. Our intuitive argument can be
illustrated by phase-plane analysis of a simple two-species version of our predator-
prey model (Figure C.3). The vertical line in the phase plane is the zooplankton
isocline. Ignoring the small immigration term (u), it is straightforward to derive
from Eq. 4.2 in the main text that the position of the zooplankton isocline is af-
fected neither by productivity nor by seasonal forcing. The hump-shaped curve is
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Figure C.2: Bifurcation diagram plotting the local maxima and minima of one
of the zooplankton species in the model community as a function of produc-
tivity K. The bifurcation diagram is presented for a model community without
seasonal forcing, and illustrates the transition of the community dynamics from
a stable equilibrium, to a limit cycle, to chaos.

the phytoplankton isocline, and its location in the phase plane does vary with both
productivity and seasonal forcing. It is well known that this two-species predator-
prey model is stable, if the maximum (the ‘hump’) of the phytoplankton isocline is
located on the left-hand side of the vertical zooplankton isocline (Rosenzweig and
MacArthur 1963; Rosenzweig 1971). At low productivity (K =2), the maximum of
the phytoplankton isocline is indeed located on the left-hand side of the zooplank-
ton isocline (Figure C.3a). Accordingly, the equilibrium is a stable node. With
seasonal forcing, the position of the phytoplankton isocline may vary, but essentially
the hump will remain on the left-hand side of the zooplankton isocline, and the
equilibrium will track the seasonal variation.

At intermediate productivity (K =5), the hump in the phytoplankton isocline is
close to the zooplankton isocline (Figure C.3b). Moreover, seasonal forcing shifts the
position of the phytoplankton isocline (indicated by the gray lines in Figure C.3).
Every now and then, this may bring the hump in the phytoplankton isocline to
the other side of the zooplankton isocline, thereby destabilizing the equilibrium.
In the two-species system, destabilization of the predator-prey interaction through
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Figure C.3: Phase-plane diagrams with the phytoplankton isocline (blue line)
and zooplankton isocline (red line), for a simple two-species version of our
predator-prey model. The diagrams show three levels of productivity: a, K =2
mg L� 1; b, K =5 mg L� 1; c, K =10 mg L � 1. Open circles: unstable equilibria;
closed circles: stable equilibria. Grey lines indicate variation of the phytoplank-
ton isocline due to seasonal forcing.
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this Hopf bifurcation yields a limit cycle. In our multispecies model, destabilization
of multiple predator-prey interactions raises the probability that the community
dynamics shift into a chaotic regime. Thus, at intermediate productivity, seasonal
forcing pushes the equilibrium back and forth between stability and instability. This
may explain the observation of intermittent chaos at intermediate productivity.

At somewhat higher productivity (K =10), the hump in the phytoplankton iso-
cline is nearly always on the right-hand side of the zooplankton isocline (Figure C.3c).
In this case, the internal equilibrium is unstable, which enables a limit-cycle solution
in the two-species model and chaos in the analogous multispecies model.

At very high productivity (K =20 and K =50), the hump in the phytoplank-
ton isocline is far to the right of the zooplankton isocline. In a multispecies con-
text, this will induce rather similar large-amplitude cycles for all phytoplankton-
zooplankton pairs. We speculate that this similarity in the cyclic dynamics of the
different predator-prey interactions increases the likelihood of periodic dynamics in
the full model community. This, then, would provide a possible explanation for
the shift from predominantly chaotic dynamics to predominantly cyclic dynamics at
very high productivity.

C.3 Parameter values

This section presents the parameter values used in the simulations. The simulations
were based on Eq. 4.1, 4.2, 4.3 presented in the main text, and parameterized for
phytoplankton and zooplankton species with a timescale of days. In Figure 4.2 and
Figure C.1 we used the default values r i=0.5 d−1 for all phytoplankton species,
and gk=0.4 d−1, H k=0.6 mg L−1, ek=0.6, and mk=0.15 d−1 for all zooplankton
species. In Figures 4 and 5, we sampled a broad range of values for these parameters
(specified in Table 4.1). We introduced a small level of immigration, u=10−7 mg
L−1 d−1 for all plankton species. Phytoplankton intraspecific competition was set
to unity (αii=1 for all i), while the interspecific competition coefficients (αij) were
drawn randomly from the interval (0.5, 1.5). The selectivity coefficients S ik were
drawn randomly from the interval (0, 1). Below we provide the initial conditions of
the phytoplankton and zooplankton species in the vectors P0 and Z 0. Selectivity
coefficients are given in the matrix S , where rows represent phytoplankton species
and columns represent zooplankton species. Competition coefficients are given in
the matrix A, where the entries αij describe the competitive effect of phytoplankton
species j on phytoplankton species i.

In Figure 4.2a, we assumed intermediate productivity (K =5 mg L−1) without
seasonal forcing (a=0). Vectors P0, Z 0 and matrices S, A were given by:
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P0 =



3.63536
5.63899
0.926864
1.12498
5.27325
7.78813
1.36785
1.42816
5.69949
9.33256


Z0 =


3.69388
7.77147
8.36731
1.92747
1.57839
2.29056



S =



0.29066 0.34137 0.32241 0.32266 0.32654 0.34656
0.32898 0.39781 0.37396 0.36588 0.34053 0.37233
0.37539 0.33605 0.36242 0.35330 0.35269 0.26154
0.29321 0.38711 0.36405 0.36109 0.34945 0.29957
0.38581 0.30817 0.34383 0.29069 0.39209 0.34397
0.37598 0.31852 0.29804 0.36015 0.37608 0.29163
0.25377 0.25485 0.29822 0.38126 0.37246 0.36031
0.29771 0.35155 0.27249 0.37407 0.26834 0.30395
0.26983 0.39634 0.31168 0.33042 0.25705 0.34062
0.34774 0.33646 0.26717 0.36551 0.25712 0.33537



A =



1.00000 0.93529 1.09800 1.01780 1.01970 0.94738
1.09910 0.91660 0.98330 0.91521

1.08960 1.00000 1.01660 1.09940 1.05640 1.04370
0.94900 0.98847 0.91656 1.06600

0.95871 1.08950 1.00000 1.05290 1.05250 1.09370
0.96018 1.00550 0.93843 0.95333

0.99044 1.02270 1.00290 1.00000 0.95653 0.91140
1.07130 0.91366 0.96024 1.07650

0.92558 0.94945 0.99425 1.01580 1.00000 1.04160
1.01740 0.99802 0.99003 1.09370

1.05950 0.95095 1.01410 1.04660 0.92574 1.00000
0.91697 0.98950 1.02470 1.07470

0.93503 0.93194 1.02140 1.00820 0.90720 1.01870
1.00000 1.02720 0.95704 0.99208

1.03540 0.92333 1.08330 1.04220 1.06620 0.99684
0.99463 1.00000 1.01960 1.02390

0.92517 0.92813 0.98473 1.04920 0.95651 0.97612
0.96988 1.06700 1.00000 0.94958

0.96589 1.06430 1.04800 0.92050 1.07460 0.92459
1.04750 1.08260 0.95875 1.00000
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In Figure 4.2b, we assumed intermediate productivity (K =5 mg L−1) without
seasonal forcing (a=0). Vectors P0, Z 0 and matrices S, A were given by:

P0 =



7.70527
1.40047
9.73707
4.092
1.04469
7.26438
6.52615
6.76509
7.51183
5.64357


Z0 =


9.32981
1.27736
9.39732
7.13483
1.49748
2.00112



S =



0.369460 0.378060 0.390170 0.330240 0.351780 0.338660
0.284680 0.290930 0.259610 0.336330 0.301050 0.258100
0.324250 0.332030 0.323780 0.314200 0.343040 0.383740
0.362280 0.394840 0.379420 0.355100 0.367740 0.302460
0.365300 0.255900 0.286870 0.291240 0.388680 0.370970
0.294050 0.385170 0.289640 0.312490 0.267070 0.304720
0.308260 0.343080 0.382880 0.314170 0.261270 0.284470
0.341270 0.359480 0.340710 0.363480 0.398210 0.306090
0.323800 0.396260 0.303930 0.331770 0.313480 0.306740
0.341080 0.294930 0.307330 0.291120 0.317310 0.321990



A =



1.00000 1.06810 1.09250 0.90593 0.93300 0.94678
0.92708 0.93491 1.00540 1.03190

0.91815 1.00000 1.04980 0.95780 1.04690 0.90456
0.93093 0.93165 0.95471 1.09410

0.98000 0.96840 1.00000 1.01280 1.08830 1.04070
1.09570 1.08530 0.96473 0.93196

1.03820 0.90094 1.08400 1.00000 0.91844 0.92753
0.95868 1.03980 1.03620 0.98015

1.09810 1.09890 0.93642 1.00060 1.00000 0.94410
1.05680 1.06680 1.01840 0.95244

1.06500 0.94160 1.01160 1.08820 0.97381 1.00000
1.03520 0.95863 0.96214 1.04210

1.03910 0.93183 0.98489 1.03360 1.08770 1.04660
1.00000 1.01950 1.05890 1.03150

1.07120 1.00040 1.03280 0.90156 1.00330 0.97390
1.09260 1.00000 0.93127 0.91351

1.02750 1.08410 0.93845 1.05780 0.92050 0.98527
1.09440 0.90141 1.00000 0.98681

0.96586 0.90094 0.95552 0.93032 1.04240 0.91469
1.07990 0.93056 1.09060 1.00000
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In Figure 4.2c, we assumed intermediate productivity (K =5 mg L−1) without
seasonal forcing (a=0). Vectors P0, Z 0 and matrices S, A were given by:

P0 =



5.7592
0.00672887
6.11753
7.46021
3.44718
7.19126
0.681792
6.33776
4.87448
2.5065


Z0 =


7.63593
7.18401
5.00864
9.96982
0.49456
1.6149



S =



0.35645 0.25911 0.25599 0.25540 0.37147 0.34333
0.38235 0.35224 0.36569 0.27879 0.36060 0.28062
0.31936 0.32580 0.30852 0.36343 0.25057 0.35436
0.31883 0.36660 0.33324 0.32782 0.25176 0.36090
0.37799 0.29458 0.28562 0.25347 0.25830 0.33710
0.34292 0.25465 0.38898 0.27298 0.28282 0.30612
0.34073 0.28625 0.26579 0.34103 0.25826 0.36782
0.29506 0.28847 0.27941 0.35595 0.28382 0.28470
0.29987 0.29349 0.38515 0.33480 0.30321 0.38924
0.31410 0.33482 0.28590 0.31797 0.34107 0.34043



A =



1.00000 1.05790 0.97426 1.00740 0.94092 1.09990
0.90903 1.05330 1.08520 0.92133

1.00800 1.00000 0.97564 0.96529 0.92472 0.93132
1.06050 1.01340 0.93058 1.01850

1.05830 1.02460 1.00000 0.90137 1.09590 1.05280
1.03850 0.99204 1.03740 0.90772

0.96101 0.97340 1.05390 1.00000 0.96059 0.94482
1.00150 0.95437 1.05070 0.91310

1.05070 1.07380 0.97477 1.08530 1.00000 1.09730
1.01080 1.08880 1.08520 0.97148

0.92899 0.90022 1.02250 1.01170 1.01910 1.00000
1.09950 1.07590 1.09130 1.01620

0.95827 0.94281 1.08610 0.99913 0.96210 0.90316
1.00000 1.08490 0.91968 1.02780

1.07950 0.96716 0.94957 1.00020 0.97495 1.04280
0.96887 1.00000 1.09510 0.94234

0.90156 0.93505 1.02880 0.96737 1.04400 1.01660
1.03190 1.07240 1.00000 0.98084

0.94354 0.98360 1.03910 1.03120 0.96599 0.97693
1.09450 1.03180 0.94039 1.00000
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In Figure 4.2d, we assumed intermediate productivity (K =5 mg L−1) without
seasonal forcing (a=0). Vectors P0, Z 0 and matrices S, A were given by:

P0 =



5.46925
4.08658
3.94005
5.75499
5.70258
6.47918
3.70245
5.28271
3.17896
0.259128


Z0 =


4.8726
3.96219
6.69961
6.0902
1.67571
7.68037



S =



0.25096 0.28766 0.31457 0.35247 0.39975 0.26367
0.30954 0.36659 0.31202 0.29266 0.39689 0.28135
0.25247 0.38632 0.37334 0.39992 0.29728 0.26864
0.27276 0.25480 0.25624 0.35366 0.37262 0.38621
0.27708 0.30285 0.34715 0.27772 0.29860 0.35856
0.35184 0.30223 0.33853 0.39829 0.26348 0.38859
0.30563 0.29752 0.38819 0.35284 0.39792 0.29081
0.33811 0.27008 0.29145 0.29599 0.32123 0.29531
0.28847 0.38878 0.25455 0.28204 0.32032 0.28840
0.38221 0.32273 0.27457 0.33139 0.30382 0.37318



A =



1.00000 0.98904 0.98967 0.96012 1.01940 1.05710
0.95028 1.07300 1.06550 1.00600

0.93047 1.00000 0.94060 0.93359 0.99974 1.02800
1.01540 1.02930 1.08940 0.91925

0.98235 0.93034 1.00000 1.05760 0.99245 0.96100
0.90099 0.92003 1.08520 0.91460

0.99105 0.95057 0.91751 1.00000 1.00140 0.98971
1.00730 1.00990 0.92243 1.03310

1.01000 1.06150 1.04160 1.01620 1.00000 1.09420
1.01970 1.02420 0.96354 0.96942

1.09950 0.92310 0.91790 1.09960 0.99412 1.00000
1.07700 0.98083 0.98945 1.01660

0.90976 0.92729 0.91977 1.05940 1.06380 1.09790
1.00000 1.03980 0.94122 1.07660

1.09370 1.05770 1.09210 1.04830 0.93232 1.09860
0.96215 1.00000 1.07030 1.03070

0.97206 1.06230 0.90409 1.01970 1.08000 1.01810
0.93359 0.98099 1.00000 0.96620

0.92105 1.09950 0.99182 1.03560 0.93059 1.07920
0.95261 1.07890 1.09990 1.00000
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In Figure 4.2e, we assumed intermediate productivity (K =5 mg L−1) with very
strong seasonal forcing (a=0.999). Vectors P0, Z 0 and matrices S, A were given
by:

P0 =



1.35022
2.17904
5.83062
9.16413
0.0916846
4.6438
4.09236
9.88841
8.19372
9.88152


Z0 =


5.87321
7.06241
2.87903
2.17233
2.78354
5.65313



S =



0.39865 0.30829 0.32136 0.39892 0.25554 0.38321
0.32633 0.37665 0.36584 0.27568 0.33179 0.33371
0.39992 0.30389 0.38274 0.25890 0.37922 0.32362
0.25016 0.25118 0.30628 0.33729 0.38902 0.32366
0.25536 0.27644 0.27915 0.39927 0.26037 0.32143
0.32427 0.36610 0.36934 0.31307 0.37736 0.31577
0.33226 0.36876 0.31494 0.36511 0.29199 0.38403
0.39815 0.34108 0.29649 0.26011 0.33128 0.25436
0.38152 0.35705 0.25678 0.39816 0.31040 0.30565
0.28345 0.28799 0.28468 0.26485 0.35382 0.37778



A =



1.00000 1.01010 1.01190 1.05760 0.95627 1.08580
1.09130 0.92674 0.91477 1.09910

1.02750 1.00000 1.09200 1.08710 0.98821 0.99870
0.96925 0.97137 0.91290 1.06450

0.96447 1.04140 1.00000 1.08660 0.92022 0.95105
0.91928 1.01810 0.90255 1.04450

1.03220 0.98655 1.06450 1.00000 1.09600 1.09050
1.09900 0.95522 0.92495 1.06090

0.99499 0.99424 1.00640 1.05330 1.00000 0.93234
1.01290 1.08020 0.92839 0.99257

1.04130 0.97710 0.94098 1.01260 1.07340 1.00000
0.93333 1.09200 0.98503 0.93855

0.97753 1.09290 0.98456 1.02730 1.05260 0.96266
1.00000 1.04380 1.02290 1.02320

0.98529 0.90061 1.09550 0.98408 0.93780 0.99902
1.08720 1.00000 0.98880 0.91732

0.90328 0.96697 1.05240 1.05310 1.04040 0.93419
1.05520 1.09770 1.00000 0.94580

0.92449 1.05200 1.09650 0.91481 0.94793 0.95781
0.98937 0.96963 0.93559 1.00000
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In Figure 4.2f, we assumed intermediate productivity (K =10 mg L−1) with very
strong seasonal forcing (a=0.999). Vectors P0, Z 0 and matrices S, A were given
by:

P0 =



4.16377
4.84055
5.94447
6.62461
5.29555
3.65465
3.12409
9.63348
0.50302
7.18931


Z0 =


6.57662
5.48389
6.42695
2.56577
2.04671
8.6042



S =



0.283857 0.372463 0.290207 0.373357 0.355053 0.378232
0.26072 0.27255 0.277528 0.313199 0.316006 0.389759
0.347154 0.362965 0.273746 0.341199 0.377318 0.371781
0.399823 0.298206 0.324793 0.374443 0.28278 0.357781
0.334821 0.252581 0.308743 0.266602 0.326801 0.39519
0.35126 0.286861 0.280053 0.278262 0.344288 0.33747
0.367837 0.295083 0.337205 0.35588 0.253831 0.300378
0.286979 0.254326 0.389331 0.279495 0.363212 0.354572
0.28763 0.328498 0.27909 0.288631 0.302239 0.357728
0.391896 0.259821 0.307517 0.30207 0.250141 0.391685



A =



1.00000 0.985761 0.963661 1.02766 1.04015 1.01678
1.06449 0.902599 0.94197 1.00091

1.07192 1.000000 0.986204 0.915673 1.08432 1.09222
1.0175 0.908832 0.952354 1.06094

1.02466 1.01656 1.000000 1.02295 1.01378 0.95793
1.06178 1.02433 1.00002 1.07753

0.93733 1.06949 0.953364 1.000000 1.05311 1.04462
0.92502 0.923436 1.02989 0.980133

0.956111 0.908995 1.08516 0.951834 1.00000 0.911134
1.04295 0.956939 0.975999 0.970241

0.972238 1.00404 0.951228 0.976466 1.08144 1.000000
0.934735 1.00448 0.985677 1.01317

1.00235 0.962066 0.929795 1.02865 1.06561 0.954257
1.000000 0.992102 0.937234 1.09479

0.945243 1.04171 1.06076 1.08768 0.919391 0.976771
1.03821 1.000000 0.915 0.962707

0.913016 1.05948 1.07459 0.950775 0.973166 1.02252
1.01513 0.915069 1.000000 0.92413

0.930614 1.01939 1.08068 1.0372 0.937767 0.954307
1.00749 0.948873 1.041 1.00000
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In Figure 4.2g, we assumed intermediate productivity (K =10 mg L−1) with
moderate seasonal forcing (a=0.4). Vectors P0, Z 0 and matrices S, A were given
by:

P0 =



4.10477
2.81403
9.10236
4.83123
4.41213
0.0614716
8.0491
5.71316
0.406246
3.10672


Z0 =


4.53639
2.70974
0.523771
0.147228
2.09257
7.2228



S =



0.315775 0.375235 0.368958 0.352066 0.276252 0.329779
0.252791 0.296686 0.320735 0.379944 0.369076 0.399898
0.305393 0.268981 0.314635 0.336644 0.322805 0.329775
0.372249 0.384677 0.324383 0.35038 0.355527 0.287814
0.371079 0.261451 0.267947 0.351081 0.313239 0.287255
0.38034 0.327614 0.287563 0.319867 0.252655 0.285626
0.388058 0.376138 0.312235 0.265859 0.313237 0.354579
0.351709 0.315101 0.271029 0.380018 0.365342 0.256062
0.258677 0.392012 0.332469 0.340307 0.397981 0.355939
0.371127 0.305727 0.347293 0.25696 0.296807 0.359825



A =



1.00000 1.01572 0.961557 0.956827 1.06387 1.03968
0.957823 1.09485 0.932573 0.939896

1.00629 1.00000 0.961619 1.03137 0.994312 0.936902
1.03503 1.01267 1.08975 0.967337

0.949632 1.03345 1.000000 1.03934 0.916193 0.936613
0.902708 0.969061 1.02978 1.07123

1.01177 0.972276 1.01985 1.000000 0.903534 1.09485
0.952337 0.957572 1.04925 0.94649

0.947522 1.08278 1.05456 1.0142 1.000000 1.08988
0.930929 1.03527 1.02583 1.03548

1.05684 0.944364 1.06856 1.01075 0.904244 1.000000
0.943427 1.01604 1.05913 1.06444

0.936893 1.08735 1.06614 1.09557 0.96127 1.04325
1.000000 1.00426 0.977152 0.923501

1.00697 0.908474 1.01724 1.03262 0.950694 1.03784
1.00362 1.000000 0.977461 0.92729

1.08731 0.927108 0.943043 0.992167 1.03755 1.04617
1.02253 0.961301 1.000000 1.06604

1.09304 0.921416 1.04479 1.06258 0.972632 0.986827
1.09111 1.04673 0.98218 1.00000
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In Figure 4.3a, we assumed intermediate productivity (K =10 mg L−1) with
moderate seasonal forcing (a=0.3). We used the same value of gk=0.4 d−1 for all
zooplankton species, but gave different values of r i, H k, ek, and mk to different
species. More specifically:

r =



0.64665
0.73128
1.09515
0.24008
1.97589
1.3165
0.45302
0.78771
0.72965
0.50729


H =



1.18118
0.920836
1.18118
0.920836
1.17589
1.37788
1.43905
1.02976


e =


0.8391
0.8535
0.78746
0.87448
0.87566
0.74493

m =


0.16785
0.1913
0.10878
0.12509
0.11267
0.17558



Vectors P0, Z 0 and matrices r , m , e , S, A were given by:

P0 =



5.6033
3.7343
2.9252
9.5756
1.3244
6.6919
0.5373
4.0248
9.7121
3.1616


Z0 =


2.5483
0.4711
7.3076
4.7199
8.6046
3.9517



S =



0.2739 0.3692 0.7245 0.8688 0.8239 0.7317
0.8734 0.0925 0.6020 0.3653 0.0612 0.5319
0.3627 0.4512 0.7672 0.7366 0.5831 0.3031
0.1146 0.2210 0.0088 0.7630 0.6388 0.1579
0.2838 0.0599 0.0094 0.6393 0.3668 0.2917
0.8561 0.9374 0.2962 0.9456 0.5268 0.5625
0.6497 0.9486 0.5343 0.3542 0.0289 0.4778
0.0115 0.4202 0.3704 0.2416 0.1949 0.3004
0.0279 0.8689 0.2471 0.9396 0.9559 0.7904
0.7885 0.5857 0.1170 0.6928 0.3288 0.4700
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A =



1.0000 1.0961 0.5490 0.5034 1.0724 0.9110
0.9208 1.3619 1.0463 0.7324

1.4645 1.0000 0.7008 1.1112 1.2020 0.7292
0.5634 0.7309 1.2020 1.4881

1.4564 0.5321 1.0000 1.0015 0.6147 0.8651
1.0998 0.8082 1.0616 0.8880

1.0383 1.3350 1.2496 1.0000 0.5553 0.8010
0.5817 0.7524 1.2584 0.6846

0.6634 1.2818 1.0817 1.1604 1.0000 0.9473
0.6999 0.7931 0.7071 1.1986

1.0415 1.0303 0.5901 0.8202 0.5466 1.0000
0.8536 0.6567 1.0201 0.7779

1.3418 1.2713 0.6140 0.5881 1.4340 1.2514
1.0000 0.8507 1.3627 0.7733

1.3741 1.4933 1.1073 0.6776 0.8548 0.5546
0.8700 1.0000 1.1961 1.3775

0.9202 1.4680 0.6642 0.5577 1.2664 1.3027
0.6061 0.9352 1.0000 0.8912

1.1962 0.6250 0.5699 1.0464 1.3721 1.0575
1.4082 1.4656 0.7015 1.0000


In Figure 4.3b, we assumed intermediate productivity (K =10 mg L−1) with

moderate seasonal forcing (a=0.4). gk=0.4 d−1, H k=0.6 mg L−1, ek=0.6, and
mk=0.15 d−1, and u=10−7 mg L−1 d−1 for all plankton species. Vectors P0, Z 0

and matrices S , A were given by:

P0 =



1.75155
8.86987
8.65678
0.344306
3.05737
6.19159
0.793746
2.82526
6.02323
4.73876


Z0 =


6.27295
1.82754
7.16044
3.04619
7.5931
6.42452



S =



0.29850 0.27860 0.34527 0.37445 0.34266 0.32663
0.31940 0.35693 0.31036 0.28472 0.36201 0.35804
0.31993 0.29126 0.25304 0.31508 0.38415 0.34650
0.27725 0.37420 0.39575 0.27723 0.37798 0.29580
0.26970 0.27078 0.27360 0.34278 0.39206 0.26376
0.31529 0.38120 0.37441 0.34481 0.34716 0.39626
0.25364 0.30899 0.31042 0.27531 0.29503 0.38262
0.30948 0.29572 0.37126 0.38137 0.36730 0.39064
0.28607 0.36875 0.28077 0.38314 0.35655 0.28498
0.38015 0.31553 0.28367 0.26540 0.34975 0.33271
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A =



1.00000 0.99475 0.97958 0.95910 1.03280 0.92700
0.98234 0.96638 1.08750 0.95666

1.06560 1.00000 0.95634 1.08220 0.95074 1.00540
1.09620 1.08420 0.93489 0.91330

0.91709 0.92685 1.00000 1.04790 0.99072 0.98929
0.96196 0.91312 1.07330 0.92231

1.06590 1.03800 1.01530 1.00000 0.94733 1.04940
1.01340 1.07910 0.95883 1.04470

1.01210 0.92515 0.93053 1.09910 1.00000 0.98273
0.95250 1.02730 0.91475 1.09590

1.02820 1.09840 0.98001 1.00150 0.97731 1.00000
1.09980 0.90727 1.04890 1.09850

1.03300 0.98970 1.09570 1.06060 0.94573 0.98086
1.00000 0.90866 0.94027 1.04700

0.91563 1.01030 0.91116 0.90763 0.98071 0.90113
1.08920 1.00000 1.05080 1.04510

1.07190 0.90280 0.95476 0.90458 1.01090 1.09010
1.03770 1.03020 1.00000 0.98129

0.96522 0.95182 1.01380 1.01840 0.95030 1.05550
1.09230 0.99024 0.93853 1.0000


In Figure 4.4, we assumed intermediate productivity (K =5 mg L−1) with strong

seasonal forcing (a=0.8). We used the same value of gk=0.4 d−1 for all zooplankton
species, but gave different values of r i, H k, ek, and mk to different species. More
specifically, the vectors r (d−1), H (mg L−1), e , and m (d−1) were given by:

r =



1.54861
0.227021
1.00078
1.55148
1.99442
1.96711
0.354273
0.721033
0.615612
0.20288


H =


1.13726
1.15042
1.46427
0.907053
0.958407
1.14154

 e =


0.760409
0.88252
0.834658
0.666893
0.843236
0.606695

m =


0.122999
0.127312
0.164034
0.183516
0.163904
0.107039



Vectors P0, Z 0 and matrices S, A were given by:

P0 =



0.00117804
6.30557e−07

5.75243e−07

0.785067
1.29333e−06

2.41034e−06

6.65038e−07

4.0123e−06

1.54209e−06

9.22919e−07


Z0 =


1.39431
2.05514
4.05325e−06

3.28186e−06

0.257369
3.94753e−06
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S =



0.08698 0.52533 0.17573 0.64005 0.66433 0.65032
0.73321 0.60993 0.42224 0.11952 0.74602 0.18858
0.55316 0.97766 0.99446 0.79080 0.07369 0.00642
0.39041 0.24748 0.45050 0.37535 0.41623 0.14282
0.19733 0.74224 0.98730 0.16071 0.63454 0.37086
0.49605 0.57411 0.91880 0.61654 0.14503 0.29152
0.70794 0.83863 0.65944 0.27091 0.96533 0.10926
0.38644 0.22721 0.70474 0.11154 0.31407 0.23903
0.59253 0.13447 0.03458 0.52474 0.89346 0.86357
0.74268 0.34403 0.63889 0.12762 0.65188 0.36374



A =



1.00000 0.846013 0.61694 0.54086 1.08818 1.32430
1.07503 1.41741 1.06555 0.93454

0.88426 1.00000 1.04436 1.23063 1.03164 0.51144
0.76902 0.96793 1.07259 1.25264

0.55652 0.77579 1.00000 1.22768 0.54063 1.39338
0.65997 1.41046 1.01110 1.38066

1.12062 0.76347 1.31129 1.00000 0.58935 1.15726
0.51551 0.71593 0.55077 1.41190

1.13481 1.40532 0.61007 1.07318 1.00000 1.33831
1.00879 1.40002 0.86743 0.68890

0.81958 1.14729 1.12559 0.95518 1.36336 1.00000
0.86975 1.38648 0.78592 1.44744

0.73085 0.89928 0.79923 0.50769 0.67607 0.84860
1.00000 1.23217 0.87494 1.29477

0.88884 1.21369 0.91026 0.69580 0.82509 1.14056
0.81636 1.00000 0.62630 1.44856

0.79612 1.17477 0.60108 0.94745 0.66530 1.36991
0.75158 0.86824 1.00000 0.50631

0.59113 0.83081 1.45812 0.63744 0.56553 0.91114
1.42703 0.84536 0.78182 1.00000


In Figure 4.5, we ran 100 simulations per data point. For each simulation, new

parameter values were drawn randomly from the ranges indicated in Table 4.1.
In Figure C.1, we ran 100 simulations per data point. For each simulation, new

parameter values were drawn randomly from the ranges indicated in Table 4.1.
In Figure C.2, we assumed no seasonal forcing (a=0). Vectors P0, Z 0 and

matrices S, A were given by:

P0 =



0.00117804
6.30557e−07

5.75243e−07

0.785067
1.29333e−06

2.41034e−06

6.65038e−07

4.0123e−06

1.54209e−06

9.22919e−07


Z0 =


1.39431
2.05514
4.05325e−06

3.28186e−06

0.257369
3.94753e−06
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S =



0.39688 0.34169 0.33293 0.27692 0.36566 0.29518
0.29508 0.38791 0.35051 0.26846 0.39198 0.38191
0.25412 0.26443 0.26618 0.25863 0.27739 0.34430
0.36514 0.31579 0.29553 0.27960 0.30566 0.29690
0.37799 0.39630 0.33657 0.31228 0.30683 0.32668
0.39557 0.26548 0.27360 0.30007 0.31975 0.28773
0.38807 0.39995 0.34352 0.28910 0.32468 0.35178
0.39374 0.33758 0.35297 0.34044 0.31643 0.25621
0.25841 0.34850 0.28327 0.33934 0.29598 0.27393
0.32442 0.34733 0.33914 0.29485 0.38918 0.30345



A =



1.00000 1.00410 1.01700 0.91726 0.99183 0.94602
1.00830 0.99112 1.03780 0.92279

0.99627 1.00000 0.95722 0.97682 1.00170 1.06080
0.98161 0.91644 1.02540 0.99051

1.02610 1.02860 1.00000 0.94895 0.93013 1.06750
0.96058 0.93244 1.04050 1.03700

0.95701 1.02430 1.05220 1.00000 1.09760 0.95281
1.08510 1.05120 0.94871 1.06190

0.92834 1.05650 1.04300 0.91381 1.00000 1.00990
1.05440 1.05860 1.08530 1.00310

1.01440 1.02030 1.03400 1.02710 1.06360 1.00000
0.99833 0.92670 1.08860 1.00100

0.92927 1.05900 0.93177 1.06990 1.06180 1.07350
1.00000 0.95214 1.02190 0.95715

0.98737 0.91678 1.04950 1.08330 0.95171 0.95582
1.07160 1.00000 0.95818 0.97624

0.90661 0.97521 0.97198 0.94045 1.08230 0.92413
0.95609 1.06650 1.00000 1.05470

1.01010 1.07520 0.94364 1.02940 0.98052 0.93263
0.94588 0.93248 1.04440 1.00000
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D.1 Sources of the temperature data

The time series of water temperature analyzed in this paper were obtained from
different sources. The data for Lake IJsselmeer were obtained from the Dutch
Governmental Water Institute (Rijkswaterstaat) and are available at http://www.

waterbase.nl/. The data for U.S lakes were obtained from the U.S. Geological
Survey (USGS) and can be downloaded at the following link: http://waterdata.

usgs.gov/nwis. The ocean data were obtained from the National Data Buoy Cen-
ter and can be downloaded at the following link http://www.ndbc.noaa.gov/. For
all time series, the water temperature was sampled daily, except for the buoy data,
where the water temperature was sampled every hour. To make the buoy data com-
parable with the other time series, we calculated the daily mean for all buoy time
series. To estimate the mean annual temperature cycle, temperature data measured
on February 29 were removed from the leap years. Missing data were interpolated
using cubic hermite interpolation. Table D.1 provides additional information on the
time series data.
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D.2 Power spectral density of the temperature fluc-
tuations

First, the seasonal variation was removed from the temperature time series. This was
done by calculating the mean temperature for each particular day of the year (av-
eraged over all years in the time series), and subsequently subtracting this seasonal
pattern from the time series.

As a next step, we estimated the power spectral density of the seasonally de-
trended time series. The discrete Fourier transform X for a time series of length N,
with observations x0, . . ., xN−1, is:

X(k) =
1√
N

N−1∑
j=0

xje
− 2πijk

N (D.1)

where k = 0, . . ., N − 1 is the frequency index. The periodogram is defined as:

P (k) = X(k)X∗(k) (D.2)

where X *(k) is the complex conjugate of X (k).
The raw periodogram as expressed in Eq. D.2 is not a consistent estimator of the

power spectral density, because its variance does not converge to zero when increas-
ing the length of a time series (Percival and Walden 1993). Consistent estimators
can be derived by smoothing the raw periodogram. We smoothed the periodogram
using the modified Welch periodogram (Welch 1967). This method splits the time
series in overlapping segments, called Hamming windows, and calculates the peri-
odogram for each window separately. The Welch periodogram is then obtained by
averaging the resulting periodograms. This yields a smooth periodogram, which is
a consistent and asymptotically unbiased estimator of the power spectral density.
The power spectral density estimate (black line in Figure 5.6c of the main text) was
calculated using 5 Hamming windows with 50% overlap.

D.3 Power spectral density of red noise

For each time series, the power spectral density of the seasonally detrended temper-
ature data was compared against the power spectral density of red noise. A simple
model for red noise is the first-order autoregressive AR(1) process (Box and Jenkins
1970):

nt+1 = αnt + εt (D.3)

where α is the lag-1 autocorrelation coefficient and εt is white noise drawn from a
Gaussian distribution with zero mean and standard deviation σε. The power spectral
density of red noise for a finite time series of length N generated by equation D.3
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can be calculated using the following approximation (Gilman et al. 1963):

Pk =
1− α2

1 + α2 − 2α cos( 2πk
N )

(D.4)

where K = 0, . . . , N is the frequency index.
For each time series, we calculated the autocorrelation coefficient α from the

product-moment correlation between the temperature at day t and at day t+1.
Subsequently, we inserted this value of α into equation D.4 to estimate the corre-
sponding power spectral density of red noise (red line in Figure 5.6c of the main
text).

D.4 Growth rates of zooplankton

Taxonomic
group

Species name Maximum
specific
growth

rate
(d−1)

References

Heterotrophic
flagellates

(green)

Paraphysomonas
vestita (4)

5.5 Fenchel
1982

Ochromonas sp. (2) 4.6 Fenchel
1982

Monosiga sp. (◦) 4.1 Fenchel
1982

Pleuromonas
jaculans (/)

3.8 Fenchel
1982

Ciliates
(red)

Balanion sp. (4) 2.9 Stoecker
et al.
1983

Strombidium sp. (2) 2.7 Ohman
and

Snyder
1991

Urotricha
furcata (5)

1.7 Müller
and

Geller
1993

Continued on Next Page. . .
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Eutintinnus
pectinis (◦)

1.4 Heinbokel
1978

Tintinnopsis cf.
acuminata (◦)

1.4 Heinbokel
1978

Plagostrombidium
flallax (.)

0.9 Müller
and

Geller
1993

Rotifers
(gray)

Brachionus
rubens (◦)

1.25 Rothhaupt
1990

Synchaeta
pectinata (.)

0.9 Kirk and
Gilbert

1990

Ascomorpha
ecaudis (5)

0.7 Stemberger
1987

Polyarthra
vulgaris (/)

0.29 Kirk and
Gilbert

1990

Keratella
cochlearis (2)

0.25 Kirk and
Gilbert

1990

Keratella
crassa (�)

0.245 Kirk and
Gilbert

1990

Salps
(violet)

Thalia
democratica (◦)

2.5 Heron
1972

Cladocerans
(black)

Daphnia
magna1 (4)

0.24 Rose
et al.
1988

Ceriodaphnia
dubia (4)

0.23 Kirk and
Gilbert

1990

Daphnia
pulex (◦)

0.18 Kirk and
Gilbert

1990

Continued on Next Page. . .
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Daphnia
ambigua (/)

0.16 Kirk and
Gilbert

1990

Bosmina
longirostris (2)

0.1 Kirk and
Gilbert

1990

Copepods
(orange)

Acartia
tonsa (◦)

0.45 Berggreen
et al.
1988

Calanus
pacificus (2)

0.18 Banse
1982

Pseudocalanus sp. (/) 0.11 Banse
1982

Nitocra
spinipes (5)

0.09 Breitholtz
and Wol-
lenberger

2003

Metridia
gerlachei (.)

0.06 Schnack
et al.
1985

Pseudocalanus
newmani (/)

0.04 Jonasdottir
1989

Pleuromamma
abdominalis (�)

0.02 Petipa
et al.
1975

Euphasiids
(light blue)

Euphausia
superba (◦)

0.002 Mori and
Butter-
worth
2006

1 This value corresponds to a medium size individual.

Table D.2: Maximum specific growth rates of the zooplankton species used in
Figure 5.7 of the main text.
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Summary

Species often show irregular fluctuations in their population abundances. Tradi-
tionally, ecologists have thought that external processes (e.g., variability in weather
conditions) are the main drivers of these ups and downs. However, recent theoretical
work suggests that fluctuations in natural populations may also be driven by internal
mechanisms (e.g., the interplay between species). In this thesis I use a combination
of time series analysis and modeling to provide more insight into the question to
which extent such internally generated chaos might drive the population dynamics
of plankton communities under controlled as well as natural conditions.

In chapter 2 we present a time series analysis of a long-term experiment with
a marine plankton community isolated from the Baltic Sea and studied under con-
stant laboratory conditions for nearly 8 years by Dr. Reinhard Heerkloss. The food
web consisted of bacteria, several phytoplankton species, herbivorous and preda-
tory zooplankton species and detritivores. Despite constant laboratory conditions,
the species abundances showed striking fluctuations over several orders of magni-
tude. We analysed the dynamics of this complex food web using various statistical
techniques. The population dynamics were characterized by positive Lyapunov ex-
ponents (the hallmark of chaos) of similar magnitude for each species. Predictability
of the species abundances was limited to 15-30 days, only slightly longer than the
predictability horizon of the local weather forecast. These results provide the first
experimental demonstration of chaos in a complex food web.

Although chapter 2 shows that the dynamics of the experimental plankton com-
munity were caused by internal mechanisms, the approach followed there does not
allow identification of the mechanisms driving the chaotic fluctuations. To address
this issue we therefore analyzed the experimental time series by means of wavelet
and cross-wavelet analysis (chapter 3). The analysis revealed that the species
fluctuations are dominated by two predator-prey cycles that fluctuated largely in
anti-phase. According to theory, such phase differences between the species point
at strong competition between the prey species, and little prey overlap among the
predators. This finding is consistent with the size structure of the plankton commu-
nity. Thus, it seems likely that the chaotic dynamics in this experimental food web
are caused by the interplay between two predator-prey oscillations.

In chapter 4 we address the question whether seasonal variation in environmen-
tal conditions might suppress chaos in natural communities. For this purpose, we
investigated a predator-prey model consisting of multiple phytoplankton and zoo-
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plankton species in a seasonal environment. Interestingly, seasonality increased the
probability of chaos, but the population dynamics had a somewhat peculiar char-
acter as the species fluctuations were locked within the seasonal cycle. On a closer
look, the species composition and succession differed profoundly between subsequent
years. This suggests that interannual variability in species composition could be an
intrinsic property of multi-species communities that does not require year-to-year
differences in the weather.

In addition to the regular seasonal cycle, real ecosystems are also subject to
stochastic environmental variation such as day-to-day variability in temperature. In
chapter 5 we use a simple predator-prey model to examine how plankton dynamics
might respond to such environmental stochasticity. Fluctuations in environmental
factors, such as the water temperature of lakes and oceans, can be described by “red
noise” when fluctuations are temporally correlated (i.e., the temperature of today
resembles that of yesterday). In line with previous work our results show that the
effect of red noise is particularly large if the predator-prey system is on the edge of
stability. In this case, small temperature fluctuations are magnified by the intrinsic
oscillatory nature of the predator-prey interaction. The magnitude of this resonance
effect depends critically on the characteristic time scale of the environmental fluc-
tuations relative to that of the predator-prey oscillations. Specifically we show that
systems with an intrinsic tendency to oscillate with a period of T are particularly
sensitive to environmental noise with a time scale of t = T

2π . Strikingly, tempera-
ture data from lakes and marine systems show that the characteristic time scales
of natural temperature fluctuations fall largely within the range to which plankton
communities should be most sensitive.

In conclusion, this thesis demonstrates in theory and experiment that species
in plankton communities may rise and fall forever in a chaotic way. This implies
that short-term predictions of species abundances will be feasible, but long-term
prediction is limited. We can at best indicate within which bounds species will
fluctuate. Given that many other food webs are structurally similar to our plankton
food web it is tempting to speculate that other ecosystems could behave chaotically
as well. Our results challenge the traditional view that nature is at equilibrium and
that only externally driven processes may disturb this equilibrium. I hope that this
thesis will contribute to a better understanding of the species fluctuations in nature,
and will stimulate future investigations of complex dynamics in other ecosystems.
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Samenvatting

Hoewel vaak wordt gerefereerd naar het ‘natuurlijk evenwicht’, blijken de dichtheden
van veel soorten in de natuur juist erg variabel. Sommige jaren nemen soorten toe,
en in andere jaren nemen ze weer af. Veel ecologen beschouwen externe processen
zoals variaties in de weersomstandigheden als verklaring voor deze schommelingen in
aantallen. Uit recent theoretisch werk is echter gebleken dat ook intrinsieke natuurli-
jke processen, zoals de interacties tussen soorten, verantwoordelijk kunnen zijn voor
zulke fluctuaties. Interessant is dat in wiskundige modellen die dit gedrag vertonen,
het onregelmatige aantalsverloop extreem gevoelig kan zijn voor kleine variaties. We
noemen dit verschijnsel “deterministische chaos”. Onder ecologen is nog altijd veel
discussie over de vraag of deterministische chaos in echte ecosystemen van belang
kan zijn. Dit proefschrift probeert op deze kwestie een antwoord te geven, door
studie van de aantalschommelingen in het plankton.

In hoofdstuk 2 analyseren we de gegevens van een experiment, uitgevoerd door
Dr. Reinhard Heerkloss, waarin plankton werd gesoleerd uit de Oostzee en in het
laboratorium gedurende bijna 8 jaar is gevolgd. Het onderzochte voedselweb be-
stond uit vele soorten bacterin, fytoplankton, herbivore zoöplanktonsoorten, carni-
vore zoplanktonsoorten en detritivoren. Ondanks de constante laboratorium condi-
ties fluctueerden de aantallen van deze soorten voortdurend. De fluctuaties werden
gekarakteriseerd door positieve Lyapunov exponenten, een overtuigend bewijs voor
chaos. Uit de analyse kwam naar voren dat de voorspelbaarheid van het plankton
maximaal 15-30 dagen is, niet veel beter dus dan de lokale weersvoorspelling. Dit is
de eerste keer dat chaos is aangetoond in een complex voedselweb.

Deze bevinding brengt ons naar de volgende vraag: wat zouden de onderliggende
mechanismen kunnen zijn die deze chaotische dynamiek veroorzaken? Om deze
vraag te beantwoorden, analyseerden we de fluctuaties in het plankton experiment
door middel van wavelet en cross-wavelet analyse (hoofdstuk 3). Uit deze analyse
kwamen twee dominante predator-prooi cycli naar voren die grotendeels in anti-fase
waren. Volgens wiskundige modellen duidt zo‘n faseverschil op een sterke concur-
rentie tussen de prooisoorten en weinig voedseloverlap van de predatoren. Deze
conclusie is in overeenstemming met de grootteverdeling van de planktonsoorten
in het experiment. Met andere woorden, het lijkt er op dat het chaotisch gedrag
in dit experimentele voedselweb wordt veroorzaakt door de interactie tussen twee
predator-prooi systemen die tegen elkaar in fluctueren.

Nu zou het in principe zo kunnen zijn dat in echte ecosystemen de seizoenveran-

161



Samenvatting

deringen zulke chaos teniet kunnen doen. Om het effect van seizoenen op chaos
te onderzoeken, hebben we een predator-prooi model met meerdere soorten fyto-
plankton en zoöplankton blootgesteld aan regelmatige seizoensvariaties (hoofdstuk
4). Bij een sterke seizoensdynamiek verdween de chaos niet; integendeel de regel-
matige seizoenscycli verhoogden de kans op chaos juist. Wel veranderde de vorm
van de fluctuaties doordat de seizoenscyclus de populatieschommelingen als het ware
samenknijpt in de winter en uitvergroot in de zomer. Opvallend in de simulaties is
dat in opeenvolgende jaren verschillende soorten elkaar afwisselen. Dat suggereert
dat jaarlijkse verschillen in soortensamenstelling door interne processen verklaard
kunnen worden en dus niet altijd hoeven samen te hangen met jaarlijkse variaties in
weersomstandigheden.

Echte ecosystemen staan niet alleen bloot aan seizoensvariatie, maar ook aan
stochastische variatie in omgevingsfactoren zoals temperatuur die door het dageli-
jkse weer worden bepaald. In hoofdstuk 5 onderzoeken we wat daarvan het ef-
fect zou kunnen zijn op een eenvoudig fytoplankton-zoplankton model. Natuurlijke
temperatuurschommelingen kunnen worden beschreven als “rode ruis”; dagelijkse
schommelingen die in de tijd gecorreleerd zijn (de temperatuur van vandaag lijkt op
die van gisteren). We onderzochten vooral de invloed van zulke ruis op het predator-
prooi model als het evenwicht nog net stabiel is en de soorten na een verstoring via
gedempte oscillaties naar dit evenwicht terug keren. In zo‘n systeem kunnen lichte
temperatuurfluctuaties verrassend versterkt worden door de interne dynamiek van
de predator-prooi interactie en leiden tot relatief grote schommelingen in de popu-
laties. Zoals eerdere werk aangetoond heeft, is de grootte van deze resonantie sterk
afhankelijk van de karakteristieke tijdschaal van de omgevingsfluctuaties in relatie
tot de eigen tijdschaal van het predator-prooi systeem. Specifiek vinden we dat sys-
temen die een intrinsieke neiging hebben te oscilleren met een bepaalde periode T
het gevoeligst zijn voor milieufluctuaties met een tijdschaal van t = T

2π . Een analyse
van temperatuurmetingen in meren en oceanen toont aan dat de karakteristieke ti-
jdschalen van temperatuurfluctuaties grotendeels binnen het bereik vallen waarvoor
planktongemeenschappen het gevoeligst zijn.

Samenvattend heb ik in dit proefschrift met een combinatie van wiskundige mod-
ellen en experimentele gegevens aangetoond dat soorten in planktongemeenschappen
op een chaotische manier kunnen stijgen en dalen. Dit betekent dat korte-termijn
voorspellingen mogelijk zijn, maar dat lange-termijn voorspelling van de abundanties
van soorten beperkt is en we op zijn best kunnen aangeven binnen welke grenzen
soorten zullen fluctueren. Omdat het voedselweb in andere ecosystemen vaak min of
meer dezelfde structuur heeft als in onze planktongemeenschap is het verleidelijk om
te speculeren dat soorten in andere ecosystemen zich ook chaotisch kunnen gedra-
gen. Deze resultaten maken een einde aan de traditionele opvatting dat de natuur
‘in evenwicht’ is en dat alleen externe processen dit evenwicht kunnen verstoren. Ik
hoop dat dit werk een belangrijke stimulans zal zijn voor een beter begrip van de
complexe fluctuaties van soorten in ecosystemen.
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Sommario

Spesso in natura le specie variano nel loro numero in modo irregolare. Per molto
tempo gli ecologi hanno attribuito a processi esterni (come ad esempio alla va-
riabilità delle condizioni meteorologiche) la principale causa di queste fluttuazioni.
Recentemente, i risultati emersi da studi teorici hanno aperto la strada all’idea che
le irregolari fluttuazioni nel numero delle specie possano anche essere attribuite a
meccanismi interni (ad esempio, a meccanismi di interazione tra le specie come
competizione e predazione). In questa tesi attraverso l’analisi di serie temporali e
all’uso di semplici modelli viene investigata l’ipotesi che le interazioni tra le specie
possano generare dinamiche caotiche nelle popolazioni di plancton.

Nel capitolo 2 viene presentata un’analisi di serie temporali, applicata ai dati
risultanti da un esperimento condotto su una comunità marina di plancton. Questa
comunità marina planctonica è stata isolata dal Mar Baltico e mantenuta a con-
dizioni esterne costanti in un mesocosmo per circa 8 anni, dal Dr. Reinhard Heerk-
loss. La catena alimentare di questa comunità planctonica è costituita da batteri,
diverse specie di fitoplancton, zooplancton erbivoro e carnivoro e specie detritivore.
Nonostante le condizioni costanti di laboratorio, le specie fluttuavano in modo irrego-
lare esibendo oscillazioni di parecchi ordini di grandezza. Diverse tecniche statistiche
sono state applicate con lo scopo di caratterizzare le dinamiche planctoniche. In par-
ticolare si è osservato che tutte le specie nella catena alimentare erano caratterizzate
da un esponente di Lyapunov positivo (indice della caoticità delle dinamiche di un
sistema). Inoltre si è visto che l’andamento delle specie poteva essere previsto per
un periodo compreso tra i 15 e i 30 giorni, un tempo leggermente più alto delle pre-
visioni del tempo locali. Questi risultati rappresentano la prima prova sperimentale
della presenza di caos nelle dinamiche di una catena alimentare complessa.

Nonostante nel capitolo 2 sia stato mostrato come meccanismi di interazione tra
le specie fossero alla base delle dinamiche di una comunità plantonica sperimentale,
l’approccio seguito non aveva permesso di identificare quali precisamente fossero
questi meccanismi. Per rispondere a questa domanda sono state applicate tecniche
di analisi wavelet e cross-wavelet (capitolo 3). Da queste analisi è risultato che le
fluttuazioni delle specie fossero causate da due cicli preda-predatore, che oscillavano
in gran parte in anti-fase. Secondo studi teorici questa differenza fasica indica la
presenza di un forte meccanismo di competizione tra le due specie di fitoplancton
e un debole meccanismo di competizione tra le due specie di zooplancton. Questo
risultato è in pieno accordo con le dimensioni e le preferenze alimentari delle specie di
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plancton presenti nella nostra catena alimentare. Quindi sembra altamente probabile
che le dinamiche caotiche osservate in questa catena alimentare sperimentale siano
generate dall’interazione di queste due oscillazioni preda-predatore.

Nel capitolo 4 viene investigata la possibilità che le variazioni stagionali nelle
condizioni ambientali possano sopprimere il caos nelle comunità planctoniche na-
turali. A questo scopo è stato studiato un modello preda-predatore costituito da
svariate specie di fitoplancton e zooplancton in interazione tra di loro e sottoposte
a condizioni ambientali variabili stagionalmente. I risultati delle simulazioni effet-
tuate usando il modello sopra descritto hanno mostrato che le variazioni ambientali
stagionali aumentano la probabilità di osservare dinamiche caotiche nel plancton,
ma che le dinamiche di popolazione hanno la peculiare caratteristica di seguire un
ciclo stagionale. Guardando attentamente si osserva però che la composizione e la
successione delle specie presentano delle notevoli variazioni annuali. Questo risultato
ha delle consequenze molto importanti perché suggerisce che il variare delle specie di
anno in anno possa essere una caratteristica intrinseca delle comunità caratterizzate
dalla presenza di molte specie e che non richieda in linea di principio il variare di
anno in anno delle condizioni meteorologiche.

Tuttavia, in aggiunta alle regolari variazioni stagionali, gli ecosistemi sono sot-
toposti anche a variazioni ambientali stocastiche come ad esempio a variazioni gior-
naliere di temperatura. Nel capitolo 5 viene utilizzato un semplice modello preda-
predatore con lo scopo di esaminare come e in che misura le dinamiche planctoniche
rispondano a questa stocasticità nelle condizioni ambientali. Fluttuazioni nelle con-
dizioni ambientali, come ad esempio nella temperatura dell’acqua di laghi e oceani,
può essere descritta come “red noise”, nel caso in cui queste fluttuazioni siano cor-
relate temporalmente. In linea con il nostro lavoro precedente, i risultati ottenuti
dall’applicazione di questo modello mostrano che il “red noise” ha un effetto parti-
colarmente forte nel caso in cui le dinamiche preda-predatore siano al limite della
stabilità. In questa situazione, anche minime fluttuazioni di temperatura sono am-
plificate dalla intrinseca natura oscillatoria delle interazioni tra predatore e preda.
Nello specifico questo studio dimostra che sistemi che hanno un’intrinseca tenden-
za ad oscillare con un certo periodo T sono particolarmente sensibili a fluttuazioni
ambientali stocastiche caratterizzate da una scala temporale uguale a t = T

2π . In
aggiunta, ulteriori analisi statistiche applicate a dati di temperatura dell’acqua di
diversi laghi e oceani dimostrano che le caratteristiche scale temporali delle flut-
tuazioni di temperatura osservate in natura corrispondono ampiamente al range di
valori in cui le comunità di plancton mostrano di essere maggiormente sensibili.

In conclusione, questa tesi dimostra sia dal punto di vista teorico che da quello
sperimentale, che le specie planctoniche possono fluttuare in modo caotico. Questo
comporta la possibilità di predire le dinamiche plantoniche per un corto intervallo di
tempo, ma l’impossibilità di poter fare previsioni a lungo termine: è possibile infatti
indicare solamente entro quali limiti le specie fluttueranno. Tenuto conto che molte
altre catene alimentari hanno una struttura simile alla nostra catena alimentare
planctonica è molto allettante ipotizzare che altri ecosistemi possano esibire delle
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dinamiche caotiche. I risultati presentati in questa tesi hanno conseguenze molto
importanti perchè mettono in crisi la tradizionale idea che la natura sia in equilibrio e
che solamente processi esterni siano in grado di spostarla da questo equilibrio. Spero
che questa tesi abbia fatto un po’ di luce sul complicato tema delle fluttuazioni delle
specie in natura e che possa stimolare future ricerche indirizzate allo studio delle
complesse dinamiche di popolazione in altri ecosistemi.
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