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Abstract  
The prediction of phenotypic responses from genetic and environmental information is an 
area of active research in genetics, physiology and statistics. Rapidly increasing amounts 
of phenotypic information become available as a consequence of high throughput 
phenotyping techniques, while more and cheaper genotypic data follow from the 
development of new genotyping platforms. , A wide array of -omics data can be generated 
linking genotype and phenotype. Continuous monitoring of environmental conditions has 
become an accessible option. This wealth of data requires a drastic rethinking of the 
traditional quantitative genetic approach to modeling phenotypic variation in terms of 
genetic and environmental differences. Where in the past a single phenotypic trait was 
partitioned in a genetic and environmental component by analysis of variance techniques, 
nowadays we desire to model multiple, interrelated and often time dependent, phenotypic 
traits as a function of genes (QTLs) and environmental inputs, while we would like to 
include transcription information as well. The EU project 'Smart tools for Prediction and 
Improvement of Crop Yield' (KBBE-2008-211347), or SPICY, aims at the development of 
genotype-to-phenotype models that fully integrate genetic, genomic, physiological and 
environmental information to achieve accurate phenotypic predictions across a wide 
variety of genetic and environmental configurations. Pepper (Capsicum annuum) is chosen 
as the model crop, because of the availability of genetically characterized populations and 
of generic models for continuous crop growth and greenhouse production.  In the 
presentation the objectives and structure of SPICY as well as its philosophy will be 
discussed. 
 
Introduction 
 
Plant breeding has considerably contributed to the increased quality and yield of crops 
over the last decades. This was initially achieved by a systematic comparison of crosses in 
an experimental set-up. In the last decade the use of molecular markers has been added as 
a tool in breeding and this has increased insight in the genetics behind the genotypic 
differences. By selecting genotypes on the basis of molecular markers, we aim to select 
the ones having the favorable phenotype. This method of breeding is commonly known as 
marker assisted breeding and has proven to be especially successful when used for simple 
traits involving a very limited number of genes, e.g. disease resistance. 
For complex traits like development and yield, current molecular breeding still has some 
severe limitations. By complex traits we mean traits that are the outcome of many 
underlying genetic factors that mask or accentuate each other and that interact with 
environmental factors. Prediction of the phenotype for complex traits is difficult due to the 
many interactions that need to be taken into account and the large variation observed. 
These traits are however most crucial to face the challenges of the future. In order to select 
and breed the best genotypes for a large range of diverse conditions, ideally the breeder 
should test all his crosses under all these conditions. Especially with complex 
physiological traits like energy content, food quality or yield, which exhibit large 



variation, this would require many expensive and large trials. The considerable costs 
involved hamper this approach. 

 
How can molecular breeding help to assist breeders for these complex traits?   
The 'traditional' approach to link genetic markers to a trait which is the result of multiple 
interacting genes, is by quantitative trait loci (QTL) analysis. This analysis is generally 
conducted for phenotypes observed in a single environment, but this is often not sufficient 
for complex traits that exhibit considerable genotype x environment interaction. Recently, 
advances have been made by considering the combination of the QTL under different 
environments, a so called QTL x E analysis, and new methods are still being developed in 
this area (Alimi et al, this issue). The occurrence of QTLxE interactions can be discovered 
by performing experiments at several locations under different conditions. However, in 
itself this doesn’t lead to predictive models. In order to achieve that, it is necessary to 
know what the important environmental factors are, and how changes in these factors 
affect the traits studied. This can be approached purely statistically (Van Eeuwijk et al., 
2010), e.g. by the inclusion of environmental data as cofactors. However, a different and 
biologically more meaningful approach is the use of crop growth models.  

Crop growth models have proven to be an excellent tool to predict crop yield of a 
specific variety under different environmental conditions. A crop growth model 
disentangles the complex trait yield under different conditions in a number of model 
parameters specific for the crop, based on known physiological principles like 
photosynthesis, and for the environment, like light and temperature (Figure 1). In this 
project we want to integrate the two approaches of QTL and crop growth modelling.  
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Figure 1. A simple growth model with three parameters describes the development of 
yield over time. The responses are shown of a “default” genotype and of three other 
genotypes, each differing from the default in only one parameter: earliness, growth rate or 
maximum yield. It is expected that QTLs for such parameters are more stable across 
environments than QTLs for yield itself. 
 

Basically we propose to use explanatory models to disentangle the sink and source 
components of growth. The hypothesis is that model parameters are more directly linked 
to genetic information than direct plant measurements (e.g. length, fruit size, leaf area) as 
the latter are the final result of complex interactions between sink and source. Hence QTL 



regions for these model parameters are expected to be more specific and stable over 
environments than QTL for those directly measured traits (Van Eeuwijk et al., 2010). The 
potential of this “gene-to-phenotype” modeling approach was illustrated in a simulation 
study by Chenu et al. (2009). The results of this approach will be compared with those of a 
QTL study for the measured traits (Barchi et al., 2009) in the same population. 

If QTLs can be found for the crop growth model parameters, this will help us to 
predict the performance of a genotype under a range of environmental conditions, 
reducing the need for large scale phenotyping. Recent research has shown the potential of 
this approach (Letort et al, 2006). This approach requires extension of existing crop 
growth models to better handle the genotype specific parameters and new QTL-analysis 
tools to link genetic markers / QTL with these model parameters. An illustration of the 
concept is shown in Figure 2.  

 
Figure 2. The concept of QTL identification for model parameters instead of for 
phenotypic traits. 
 

QTLs for crop growth model parameters are of use in marker assisted breeding, but 
they still pose some drawbacks: QTLs identified in one population may not be useful in 
another, due to differences in parental alleles in markers and/or genes, possible loss of 
linkage and their interaction with the genetic background. Besides QTLs do not increase 
insight in the true genetic and metabolic processes involved. It would be more interesting 
to find the gene(s) underlying the QTL for crop growth model parameters. This would 
help to identify their mode of action, and also allow multiple alleles to be found in other 
genetic material. Therefore we will apply and develop tools to localize the responsible 
genes within the QTL (Nicolaï et al, this issue). 

Large scale phenotyping is needed to provide the data for these analyses, and will 
also remain necessary in breeding. Therefore we will also develop automated and fast 
high-throughput tools for large scale phenotyping, thereby reducing the amount of manual 
labour necessary in phenotyping experiments. 

Solanaceous species are among the major EU-grown crops (EPSO, 2004). Pepper was 
selected as a model crop as suitable genetic material (a genotyped set of Recombinant 
Inbred Lines) was available, as well as a genetic map and a suitable, although not 
genotype specific, crop growth model. Furthermore the crop is grown indoors, allowing 
better crop management, hence limiting the environmental variation. The tools developed 
in this study have the potential to be applied to other crops as well. 
 
Scientific approach 
 
Plant material and phenotyping experiments  
For this project a Capsicum annuum intraspecific Recombinant Inbred Line (RIL) 
population of the cross “Yolo Wonder” x “Criollo de Morelos 334” (Barchi et al, 2007) is 
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used, which was already genotyped. The parents of this population differ markedly in leaf 
size and shape, stem length, fruit size and shape and other traits  (Barchi et al., 2009), 
allowing to study the segregation of many traits involved in crop growth models. 

The main phenotyping s done in four large experiments in 2009, two in Wageningen, 
the Netherlands and two in Almeria, Spain. In each experiment the RIL population, 
including controls and replicates, is grown. Phenotyping is done both manually for plant 
and leaf morphology and fruit number and size, and by using the phenotyping tools 
described in the next paragraph. Apart from these experiments a pilot experiment was 
performed in 2008, and a validation experiment will be performed in 2011. 

 
Large-scale phenotyping tools 
We have developed two phenotyping tools: an imaging tool for capturing and analyzing 
images of the plants growing in a greenhouse, and a tool for measuring chlorophyll 
fluorescence as a parameter for photosynthetic potential. 
 The imaging tool consists of a trolley with 4 color cameras, 4 infrared cameras and 4 
range finder cameras, mounted on a vertical frame to capture the entire plant height. The 
plants are labeled with a bar code that is also included in the image.  We are developing 
software that estimates the leaf area, the amount of stem tissue and the number and size of 
fruits from the captured images. 
 The chlorophyll fluorescence tool consists of a mobile setup with several (currently 
two) sensor heads, each containing a chamber to hold a leaf equipped with multi-
wavelength illumination and detection, temperature sensor and humidity sensor, allowing 
several plants to be monitored simultaneously. 
 
Genotype specific crop growth and yield models 
Three models are compared within this project. The simplest model (SPICY 1; 7 
parameters) simulates growth of vegetative and generative biomass based on light use 
efficiency. Partitioning to the fruits (harvest index) is assumed to be constant. The second 
model (SPICY 2; 20 parameters) resembles the simplest model, but includes a boxcar train 
method to simulate fruit development. The most complex model is INTKAM (> 50 
parameters; Marcelis et al., 2006), which contains many submodels for e.g. light 
interception, photosynthesis, respiration, dry matter partitioning and fruit growth. 

It is an important research question in this project, to determine which model will best 
serve our goals. A simple model with only a few parameters that can all be determined for 
all genotypes, or a complex model with many parameters. Such a complex model is more 
flexible and ‘physiologically sound’. However, it contains many parameters which cannot 
be determined for each genotype and hence have to be assumed equal for all genotypes. 
Furthermore, some of the parameters will hardly influence the model output. Based on 
probabilistic sensitivity analysis (Oakley and O’Hagan, 2004), the most relevant 
parameters in such a complex model will be determined and will be measured on all 
genotypes. 

 
New QTL analysis tools 
A major component in the SPICY project is the development of QTL mapping 
methodology for the identification of crop growth parameters. As mentioned before, we 
will model the  phenotypic traits over time (longitudinally), and more specifically the 
changes (increase/decrease and acceleration/deceleration) that these traits show. 
Furthermore, this analysis should not be done for each growth trait separately, but for all 
traits simultaneously (Alimi et al, this issue). 



The mapping of QTL for longitudinal traits may be done by a two step approach 
comprising the fitting of a suitable growth curve (e.g., logistic, exponential, Gompertz) 
and subsequently treating the curve parameter estimates as trait records (e.g., Malosetti et 
al., 2006). However, here we aim to integrate these two steps into one flexible method 
that, for example, takes into account the uncertainty in parameter estimates. 
A statistical framework that allows explicit specification of prior knowledge (or prior 
uncertainty) about model parameters is the Bayesian paradigm. In a Bayesian approach the 
prior knowledge on model parameters is integrated with the information contained by the 
experimental data. After this integration, conclusions are based on the posterior 
knowledge that also quantifies the degree of certainty on the model parameters after the 
analyses. Bayesian approaches for QTL mapping have been successfully applied to 
analyze complex traits (e.g., Bink et al., 2002; Bink et al., 2008; Yi & Shriner, 2008; Bink 
& Van Eeuwijk, 2009; Liu & Wu 2009). The Bayesian approach will likely build upon the 
R packages R/qtl and R/qtlbim (Yandell et al., 2007) as the R language is flexible and 
publicly available. 
 
Candidate gene identification 
QTL regions are generally large, containing many hundreds of genes. In order to pinpoint 
genes in the QTL regions that are likely to be causally related to the QTL effect we will 
follow two approaches (Nicolaï et al, this issue). The first is to focus on known genes for 
similar traits that have already been validated in other crops. We will generate SNP 
markers in the corresponding Capsicum homologues and check whether these are mapped 
to the QTL regions in the RIL population. 
 Another approach to identify the genes involved in the growth of pepper is by 
studying the differential gene expression between contrasting QTL-genotypes (Clark et al. 
2006; Clop et al. 2006; Frary et al. 2000). We will assay variation in gene expression of 
thousands of loci in the pepper genome. By combining QTL mapping with expression 
profiling, called eQTL mapping, one can identify and locate on a linkage map positional 
candidate genes for a phenotype of interest whose expression segregates in the progeny. 
Those genes that are located in a growth model QTL region and whose eQTL also 
coincides with that QTL (so-called cis-acting eQTLs) will be interesting genes for further 
study. 
 
Conclusion 
 
The European SPICY project is a major approach to develop tools for the genetic analysis 
of, and breeding for complex traits like growth and yield. It is multi-disciplinary, 
involving contributions from electronics and engineering, crop husbandry, plant 
physiology and molecular and quantitative genetics. Most major pepper breeding 
companies are represented on the Industrial Advisory Board. All results of this project will 
be in the public domain, made available through scientific publication, presentations and 
through the project website: www.spicyweb.eu. This project is therefore likely to have a 
significant impact on European pepper breeding. 
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