
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΠΙΧΕΙΡΗΣΙΑΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΒΑΣΙΣΜΕΝΗ ΣΕ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΕΡΙΟΡΙΣΜΩΝ

Διπλωματική Εργασία

του

Δραγοσλή Αθανασίου ΑΜ 16010

Θεσσαλονίκη, 02 / 2019

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΠΙΧΕΙΡΗΣΙΑΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΒΑΣΙΣΜΕΝΗ ΣΕ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΕΡΙΟΡΙΣΜΩΝ

Δραγοσλής Αθανάσιος

Πτυχίο Πληροφορικής, ΕΑΠ, 2014
MSc in Information Systems, ΠΑΜΑΚ, 2016

Διπλωματική Εργασία

υποβαλλόμενη για τη μερική εκπλήρωση των απαιτήσεων του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΤΙΤΛΟΥ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ
ΠΛΗΡΟΦΟΡΙΚΗ

Επιβλέπων καθηγητής

Σακελλαρίου Ηλίας

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 26/02/2019

Σακελλαρίου Ηλίας Βεργίδης Κωνσταντίνος Σιφαλέρας Άγγελος

...................................

Δραγοσλής Αθανάσιος

...................................

iii

iv

Περίληψη

Κατά τις τελευταίες δύο δεκαετίες παρατηρείται μια μεταστροφή στη διαλεκτική

της επιστήμης της Διοίκησης Επιχειρήσεων αναφορικά με τον τρόπο οργανωσιακής

δόμησης μιας επιχείρησης. Η παραδοσιακή στρατηγική οργάνωσης σε σχεδόν απολύτως

διακριτά ιεραρχικά επίπεδα, αντικαθίσταται σταδιακά από τη λειτουργική δόμηση

βασισμένη στις επιχειρηματικές διαδικασίες που διατρέχουν οριζόντια και κάθετα την

επιχειρηματική οντότητα. Η επιχειρηματική διαδικασία μπορεί να οριστεί ως ένα σύνολο

από συντονισμένες ενέργειες που επιδιώκει την επιτυχή υλοποίηση ενός επιχειρηματικού

στόχου και την παραγωγή υπεραξίας. Συνεπώς, ο σχεδιασμός και τρόπος εκτέλεσης μιας

διαδικασίας μπορεί να επηρεάσει άμεσα την αποδοτικότητα ενός οργανισμού και την

ποιότητα που απολαμβάνει ο καταναλωτής από το παραγόμενο προϊόν. Η σημαντικότητα

σχεδιασμού και διαχείρισης των επιχειρηματικών διαδικασιών για την επιβίωση μιας

επιχείρησης μέσα στο σύγχρονο παγκοσμιοποιημένο περιβάλλον οικονομικής

δραστηριότητας, καταδεικνύουν την αναγκαιότητα ανάπτυξης συστημάτων υποστήριξης

των αποφάσεων για τη βελτίωση ή αναδόμηση των διαδικασιών με βάση ποσοτικά και

ποιοτικά κριτήρια. Λαμβάνοντας υπόψη ότι ο λογικός προγραμματισμός με

περιορισμούς μπορεί να προσφέρει το υπολογιστικό περιβάλλον επίλυσης περίπλοκων

συνδυαστικών προβλημάτων, στόχος της παρούσας μελέτης είναι ο σχεδιασμός και η

ανάπτυξη ενός συστήματος σύνθεσης πολύπλοκων βελτιστοποιημένων διαδικασιών από

απλούστερα μοντέλα με βάση προκαθορισμένα κριτήρια αξιολόγησης. Το προτεινόμενο

σύστημα αποτελείται από τέσσερα συνεργαζόμενα αρθρώματα λογισμικού. Η βάση

δεδομένων αποθηκεύει τα στοιχειώδη μοντέλα επιχειρηματικών διαδικασιών σε μορφή

ποσοτικής αναπαράστασης που είναι κατάλληλη για τη διαδικασία βελτιστοποίησης. Η

γραφική διεπαφή δίνει τη δυνατότητα στο χρήστη να εισάγει τα απαιτούμενα δεδομένα

και δημιουργεί το λογικό πρόγραμμα περιορισμών χρησιμοποιώντας τη γλώσσα λογικού

προγραμματισμού Prolog. Η πλατφόρμα λογικού προγραμματισμού ECLiPSe εκτελεί το

λογικό πρόγραμμα με στόχο αφενός να συμπεράνει τις εφικτές διαδικασίες για δεδομένα

σύνολα πόρων εισόδου και εξόδου, αφετέρου να κατασκευάσει τις διαδικασίες με την

βέλτιστη αξιολόγηση. Τέλος, το υποσύστημα οπτικοποίησης μεταφράζει τη ποσοτική

αναπαράσταση των βελτιστοποιημένων επιχειρηματικών διαδικασιών σε γραφική

μορφή.

Λέξεις Κλειδιά: επιχειρηματική διαδικασία, λογικός προγραμματισμός

περιορισμών, βελτιστοποίηση επιχειρηματικών διαδικασιών.

v

vi

Abstract

During the last two decades a change occurred in the dialectics of Business

Administration science about the principles that should rule the organizational structure

of a company. A structural model based on business processes that run through the

business entity horizontally and/or vertically, is gradually replacing the traditional

strategy that stratifies the functional entity in distinct and isolated hierarchical levels. A

business process can be defined as a set of coordinated activities aiming at the successful

realization of a business goal and the production of surplus value. Therefore, the design

and the implementation of a process can significantly affect the efficiency of an

organization's operation and the quality that the consumer receives from the produced

outcome. The significance of planning and managing the business processes for the

survival of a company in the modern globalized economic environment, demonstrates the

need for the development of computational systems that can assist the effort for the

improvement or re-engineering of processes in regard to quantitative and qualitative

criteria. Considering that the constraint logic programming can offer the computational

means for the confrontation of complex combinatorial problems, the aim of this thesis is

to design and develop a system that can compose optimized complex business processes

from simple tasks based on predefined evaluation criteria. The proposed system is

consisted by four collaborating software modules. The database that stores the simple

tasks in the appropriate quantitative representation for the optimization procedure. The

graphical user interface (GUI) that accepts the required input by the decision maker and

creates the constraint logic program using the programming language Prolog. The

ECLiPSe platform executes the logic program to determine the feasible processes for

specific input and output resource data sets, and construct the processes with the

optimum evaluation. Finally, the visualization subsystem translates the quantitative

representation of the optimized business processes into a graphical form.

Keywords: business process, constraint logic programming, business process

optimization.

vii

viii

Contents

 1 Introduction..1

 1.1 Issue description..1

 1.2 Aim and objectives..2

 1.3 Problem formulation and contribution..2

 1.4 Thesis structure..4

 2 Literature review..5

 2.1 Business Process Management terminology...5

 2.1.1 Business Process...5

 2.1.2 Business Process Management (BPM)...6

 2.1.3 Business Process Optimization (BPO)...8

 2.2 Business process optimization approaches..9

 2.2.1 General management techniques..9

 2.2.2 BPM Frameworks...10

 2.2.2.1 Business process reengineering (BPR)..10

 2.2.2.2 Lean manufacturing...11

 2.2.2.3 Total Quality Management (TQM)...12

 2.2.2.4 Six Sigma...13

 2.2.2.5 Quality of Business Processes (QoBP)..14

 2.2.3 Algorithmic approaches..15

 2.2.3.1 Graphical approaches..15

 2.2.3.2 Evolutionary techniques..17

 2.2.3.3 Data mining approaches..21

 2.3 Research Gap...22

 2.4 Summary...23

 3 Mathematical foundation..24

 3.1 Resource Constraint Scheduling Problem (RCSP)...24

 3.2 Constraint Logic Programming (CLP)..26

 3.3 Binary search technique..29

 3.4 Summary...30

 4 Methodology...31

 4.1 Conceptual analysis of the evaluation criteria...31

 4.2 Problem formulation..32

ix

 4.3 Task library..37

 4.4 Data reduction...40

 4.5 JAVA GUI and CLP program constructor..41

 4.5.1 Application’s architecture...43

 4.6 Engine of inference – ECLiPSe..46

 4.7 Visualization..56

 4.8 Asymptotic analysis..56

 4.9 Summary...58

 5 Task generator..59

 5.1 Notation and task representation...59

 5.2 Task generation algorithm...64

 5.2.1 Biased task set creation...66

 5.2.2 Arbitrary task set generator..69

 5.2.3 Auxiliary functionalities...70

 5.3 Process network construction..70

 5.4 Application architecture..71

 5.5 Experimental evaluation..73

 6 Experimental evaluation...76

 6.1 Execution example..77

 6.2 Performance evaluation...79

 6.2.1 Scheduling evaluation...80

 6.2.2 Searching and Scheduling evaluation...81

 6.3 Summary...82

 7 Conclusion..83

 7.1 Results...83

 7.2 Limitations...84

 7.3 Future research..84

Bibliography..86

Appendix A - Database...91

Appendix B - Java GUI...92

Appendix C - Arbitrary tasks..93

x

xi

Figures

Figure 2.1.BPM life cycle...8

 Figure 3.1.Search tree...27

Figure 3.2.Binary search tree for n = 20..30

 Figure 4.1.Task library hierarchy schema..39

 Figure 4.2.ER diagram of the database..40

 Figure 4.3.Framework initial screen...42

 Figure 4.4.Use Case Diagram...44

 Figure 4.5.Activity Diagram...44

 Figure 4.6.Sequence Diagram..45

Figure 4.7.Class Diagram..46

 Figure 5.1: 10 tasks design with ICF = false (0)..63

 Figure 5.2: 10 tasks design with ICF = true (1)..63

 Figure 5.3: 15 tasks design with ICF = false (0)..63

 Figure 5.4: 15 tasks design with ICF = true (1)..64

 Figure 5.5.Use Case diagram..71

 Figure 5.6.Activity diagram...74

 Figure 5.7.Class diagram..74

 Figure 5.8.Sequence diagram...75

 Figure 5.9: Task Generator User Interface...76

 Figure 5.10.Business Process Design Graph..78

 Figure 6.1.Initial screen..80

 Figure 6.2.Optimum design attributes..81

 Figure 6.3.Optimum design graph..81

xii

xiii

Tables

Table 4.1.Mathematical model parameters...33

Table 4.2.Porter's Value Chain..37

Table 5.1.Notation and definitions..60

Table 5.2.Network Complexity...61

Table 5.3.Resource Density...62

Table 5.4.Biased and Alternative tasks...77

Table 6.1.Scheduling evaluation...82

Table 6.2.Search and Scheduling evaluation...83

xiv

 1 Introduction

 1.1 Issue description

During the last two decades a shift in the dialectics of Business Administration

science about the principles that should rule the organizational structure of a company

has occurred. A structural model based on business processes that run through the

business entity horizontally and/or vertically, is gradually replacing the traditional

strategy that stratifies the functional entity in distinct and isolated hierarchical levels.

This major change in managerial theory and practice enforced by the augmenting need of

enterprises to raise productivity, reduce costs, increase production efficiency and develop

flexibility, in order to survive and flourish within the current volatile economic

environment (Ahmadikatouli and Aboutalebi, 2011; Dumas et al., 2013). According to

modern theories of Business Administration, business processes constitute the core asset

of an enterprise and the organizational structure must be built upon functional processes

rather than administrative hierarchies. Considered as the main structural element,

business processes specify the allocation of actions and responsibilities within the

company, integrate the available resources with the systems and influence the flexibility

of the company to adapt to market changes.

Therefore, the management of business processes can determines the financial

profile of the organizations and their potentiality to achieve their objective goals in an

economic context (Lohrmann and Reichert, 2013; Dumas et al., 2013; Wibig, 2013). The

fundamental role of business processes for achieving competitiveness and profitability,

lead managers to focus on methodologies that can assist their continuous improvement

and optimization, aiming to establish a solid competitive advantage and improve the

overall performance (Vergidis, Tiwari and Majeed, 2006b). Consequently, the

administration of business processes has become a major concern and the concept of

Business Process Management (BPM) has received wide acceptance (Lohrmann and

Reichert, 2013; van der Aalst, 2013). BPM combines knowledge from the scientific areas

of business administration and computer science (Weske, 2012; van der Aalst, 2004), in

order to develop methods, and tools to support the design, enactment, management,

analysis and improvement of operational business processes (van der Aalst, ter Hofstede

and Weske, 2003; van der Aalst, 2013; Vom Brocke and Rosemann, 2010).

The major objective of BPM is the business processes optimization, which can be

described as the procedure of identifying, analyzing, restructuring and monitoring the
1

business processes in order to maximize the delivered surplus value for the organization

and the customer. In this context, the crucial decision about process optimization is the

definition of the processes performance metrics such as cost, revenue, duration,

execution quality and adaptability to deviations (Dumas et al., 2013). Using the

techniques of BPM, managers try to ensure the functional consistency, take advantage of

the market opportunities and augment the produced value for the organization and its

customers (Dumas et al., 2013; Tiwari, Vergidis and Turner, 2010; Georgoulakos et al.,

2017). Therefore, within the context of BPM the computational systems could be

valuable tools for the identification and solution of the unstructured or semi-structured

problem of optimized business process construction.

 1.2 Aim and objectives

Aim of the present thesis is the design and the development of a system that can

compose simple business tasks in order to construct optimized complex business

processes in the base of predefined quantitative and qualitative evaluation criteria. The

constructed optimized processes can facilitate significantly the decision-making activities

about processes improvement or reengineering and additionally, can serve as simulation

tools where managers can test with safety a plethora of different combinations of tasks or

parameters. For the achievement of this aim, we identify four objectives that must be

investigated for the confrontation of the following challenges:

1. The classification of the business process optimization problem in a representative

class of mathematical problems.

2. The development of an appropriate quantitative representation of both simple tasks

and complex business processes.

3. The definition of the qualitative and quantitative evaluation criteria.

4. The formulation of the objective function that incorporates the evaluation criteria

and is used as metric for the optimization procedure.

 1.3 Problem formulation and contribution

The problem of multi-objective business process optimization is a combinatorial

optimization problem that is characterized by high computational complexity due to the

non-linear, non-convex and often discontinuous nature of the involved mathematical

models (Wang, Salhi and Fraga, 2004). In the context of this thesis, is formed as an

extension of the well-known in the operations research domain Resource Constrained

2

Project Scheduling Problem (RCPSP). The RCPSP presupposes a finite set of tasks with

known duration and resources demands, both in terms of type and quantity, along with a

set of constraints that describe precedence relationships between the tasks (Bukata, Sucha

and Hanzalek, 2015). The objective consists of finding the best feasible solution

according to one of more criteria, satisfying precedence relations and the resource

availability (Artigues, 2008). In order to extend the RCPSP we consider that the set of

tasks which consist the business process is unknown and there is not any information

about their precedence relationships. More specifically, the initial available information

is a library of tasks Plibrary, a library of resources Rlibrary, a set of input resources

I BP⊆ Rlibrary and a set of output resources OBP⊆ R library. The primary goal is to discover if

there are feasible process designs FD⊆ Plibrary that consume all the resources in I BP and

produce all the resources in OBP. The tasks of the feasible designs are related with

precedence relations in terms of resources’ availability and mutual exclusion and can be

evaluated by a predefined objective function. The ultimate goal is to determine the best

one among the feasible designs.

In more detail, each task consumes resources of specific type and quantity as

input and produces resources of specific type and quantity as output. The precedence

relations are defined at runtime in the base of input/output resources and additionally, the

solution of the optimization procedure has to satisfy a set of predefined mutual-exclusion

relations between some of the tasks. A vector of five measurable attributes, namely cost,

duration, revenue, quality and flexibility, characterizes quantitatively every task. The

attributes of the tasks that are included to a feasible process design are mapped to its

corresponding attributes via aggregation functions. The linear combination of the five

aggregation functions constitute the multi-objective function to be maximized for the

determination of the optimized design. The objective is twofold, firstly to discover

feasible designs of a business process that satisfy the precedence and mutual exclusion

relations for a certain set of initially input/output resources. Secondly, to decide which of

the feasible design the best one using as metric the predefined objective function. The

aforementioned formulation of the problem is the foundation for the rationale of the

proposed system. In more detail, the framework is consisted by three collaborative

modules that are implemented by different software technologies. The first is a relational

database, which includes the simple tasks and the available resources. The second is built

in the object-oriented language Java and acts as a middleware between the database and

3

the ECLiPSe platform, which implements the rationale part of the optimization procedure.

Additionally, the Java module visualize the optimized business process schedule into a

directed tree graph.

 1.4 Thesis structure

The rest of the thesis is organized in six chapters. The second chapter is a review

of the literature about the research related to business process optimization. Specifically,

it provides the reader with the basic terminology and the dominant definitions of the

business administration domain and exhibits the most significant scientific approaches

that have been developed for the confrontation of the process optimization problem. The

third chapter presents comprehensively the main principles of the mathematical

paradigms where is based the rationale of the developed optimization procedure. The

fourth chapter analyzes in detail the methodology that was used, describing the

theoretical formulation of the problem under examination and the construction procedure

of the proposed framework. The fifth chapter describes the design and development of a

software application that produces instances of the formulated problem. This intervention

was deemed necessary for the creation of the experimental data that was used to evaluate

the effectiveness of the proposed framework. The sixth chapter initially presents a

complete step-by-step execution of the developed process optimization software. Then it

exhibits a comparative assessment of the framework with problem’s instances of various

sizes, which investigates its potential and its limitations. Finally, the seventh chapter

summarizes the main conclusions, discusses the limitations and identified some

possibilities for the further improvement of the proposed framework.

4

 2 Literature review

In this chapter, we attempt to outline a general insight of the scientific context

where is included the research issue of the present thesis. Therefore, the first section

presents the semantics of the terms that are used throughout the thesis and explains the

definitions that have been derived from the relevant literature and adopted by the

scientific community as the most consistent and prevalent. We consider that the

comprehensive explanation of the terminology is of major importance for avoiding

confusion, due to the plethora of different and often contradictory definitions of the same

term that is found in bibliography, especially of the Business Administration domain.

The second section presents in detail the main methods and techniques that have been

developed from the global scientific community, with respect to the problem of processes

optimization within the domain of business administration. Finally, the third section

identifies the scientific gap into the arsenal of methodologies that address the problem of

business process optimization and states the challenges that must be met by the proposed

framework.

 2.1 Business Process Management terminology

The modern administrative approaches consider the business process as the

fundamental structural element of an enterprise. This principal let to the birth of the

Business Process Management scientific domain, in an effort to be developed strategies

and methods for the optimization of business processes. This section provides a

comprehensive description of the aforementioned terms.

 2.1.1 Business Process

There is not a generally accepted definition of business process in the relevant

literature. Different authors have suggested a variety of definitions according to their

personal research perspective, focusing on a subset of the aspects that constitute the

notion of business process (Ahmadikatouli and Aboutalebi, 2011;Volkner and Werners,

2000). Harvey (2005) specifies the process as a “step by step rules specific to the

resolution of a business problem”. Hammer and Champy (1993) emphasize on the input-

output functionality, describing process as a collection of activities that consumes an

input and produces an output with surplus value for the customer. Davenport (1993)

introduces execution constraints between activities, defining a business process as “a set

5

of tasks logically related in a specific order across time and place with a beginning, an

end, and predefined inputs and outputs. The execution of those tasks aims to achievement

of a business outcome for a particular customer or market”. Vergidis and Tiwari (2008)

perceive the notion of business process as a “collective set of tasks that when properly

connected perform a business operation that is producing value to the organization”.

Doumas et al. (2013) define the business process as a “collection of inter-related events,

activities and decision points that involve a number of actors and objects, and that

collectively lead to an outcome that is of value to at least one customer”. Similar

definitions can be found in Volkner and Werners (2000), Weske (2012), Tiwari, Vergidis

and Turner (2010) and Melao and Pidd (2000).

In general, a business process consists of an arbitrary number of events, activities,

activity attributes, input/output resources, actors and connectivity patterns. A very

simple activity is called a task. Events are intangible entities that happen atomically and

may trigger the execution of an activity. The attributes are measurable characteristics of

the activity such as cost, revenue, duration, execution quality and flexibility that can be

used for the evaluation of a business process. A process involves a finite number of

actors, which can be humans, software systems, physical objects like equipment, tools

and products or immaterial objects like electronic documents and records. The patterns

that interconnect the activities constitute one of the main distinguishing characteristics of

the business processes. Finally, the execution of a business process produces an outcome,

which is consumed by a special actor that is called customer (Tiwari, Vergidis and

Turner, 2010; Dumas et al., 2013).

 2.1.2 Business Process Management (BPM)

Business Process Management is defined as an administrative strategy that is

consisted of a variety of concepts, methods, and techniques to support the identification,

design, analysis, monitoring, reengineering and enactment of business processes (Weske,

2012;Dumas et al., 2013; Van der Aalst, ter Hofstede and Weske, 2003). The above

definition declares the sovereign role of business process in the context of BPM and the

fact that BPM is a circular procedure that comprised of six phases (fig. 1.1) (Dumas et

al., 2013):

1. Process identification: this phase addresses a business problem and analyzes the

relevant to that problem functions and dependencies. The outcome is an updated

6

architecture that provides an overall view of the processes and their

interconnections.

2. Process discovery or as-is modeling: the result of this phase is an as-is model

which documents the current state of the process. For this purpose many alternative

modeling notations have been employed, either specific in the task or more general,

like Business Process Modeling Notation (BPMN), Petri nets, Event-Driven

Process Chain (EPC), Unified Modeling Language (UML), Business Process

Execution Language (BPEL) and so forth (Weske, 2012; van der Aalst, 2013).

3. Process analysis: all the issues that are relevant to as-is processes are identified,

analyzed, documented and evaluated by qualitative performance measures. The

output is a structured hierarchical ranking of issues.

4. Process redesign or improvement: the goal of this phase is to discover changes to

the current state of processes that will lead to their improvement and will help the

organization to achieve its business objectives. The output is a to-be process model,

which serves as a guide for the next actions.

5. Process implementation: during this phase the required changes are prepared and

applied in order to move from the as-is to the to-be process.

6. Process monitoring and controlling: the redesigning process is supervised and the

collected data determines if and how well the process complies with the predefined

performance objectives. Problematic deviations and unexpected behaviors lead to

corrective actions and the cycle of BPM is repeated on a continuous basis.

The most important gain of BPM is the introspection of the operation of an

organization. Through BPM an enterprise can create optimized processes that operate

consistently at the level of which they are capable. The operational benefits of

consistency in terms of cost, speed, quality, and service, can be transformed into a higher

customer loyalty and a strong competitive advantage for the organization (Hammer,

2015).

7

Figure 2.1.BPM life cycle (Dumas et al., 2013, p.21)

 2.1.3 Business Process Optimization (BPO)

The plethora of existing definitions for the term “business process” is a clear

evidence for the vagueness of its nature and the difficulty of constructing a mathematical

representation for an optimization procedure. According to Wang, Salhi and Fraga

(2004), the non-linear, non-convex and discontinuous nature of the involved

mathematical models, make the implementation of process optimization a difficult task.

Formally, BPO can be defined as the problem of constructing feasible business process

schedules with optimum values for execution time, cost, outcome quality and customer

satisfaction (Ahmadikatouli and Aboutalebi, 2011;Georgoulakos et al., 2017;Tiwari,

Vergidis and Turner, 2010). Although the concept of optimality is fuzzy and there is not

a broadly accepted methodology for business process optimization (Wibig,

2013;Vergidis and Tiwary, 2008;Vergidis, Tiwari and Majeed, 2007), an abstract view of

BPO procedure includes the following steps:

1. Data collection from many different sources and integration in a consistent and

homogeneous structure.

2. Comprehensive data analysis with statistical and data mining techniques, for the

evaluation of predefined metrics and the discovery of hidden insights and

bottlenecks.

3. Detection and application of improvements for the confrontation of the revealed

deficiencies (Wibig, 2013;Niedermann and Schwarz, 2011).

8

 2.2 Business process optimization approaches

In general, the research related to business process optimization can be

distinguished into three categories: the general management techniques, the BPM

frameworks and the algorithmic approaches (Lohrmann and Reichert, 2013).

 2.2.1 General management techniques

This category includes managerial methods that aim mainly to the evaluation of

the overall performance of business processes. Afterwards, the obtained results can be

used for decision making about the improvement initiatives. However, they do not

support any automated procedure and the plan of process optimization is left to

stakeholder’s intuition (Lohrmann and Reichert, 2013). Two widely adopted techniques

of this category are:

1. Benchmarking. It is a technique for the improvement of business processes of an

organization by the combination of experience and knowledge acquired from the

comparison to other organizations that are recognized as the best within the

relevant business context (Bhutta and Huq, 1999). The philosophy of

benchmarking is based on the identification of the highest implementation

standards of comparable processes in leading competitors and the collection of the

necessary information that can be utilized in a business processes improvement

procedure (Bhutta and Huq, 1999).

Two are the key factors for a successful application of benchmarking and the

effective exploitation of its results: the selection of the appropriate performance

measures that can be mapped directly to the business objectives of the company

and the proper adaption of the selected “best practice” to the specific structural

characteristics of the domestic organization (Bhutta and Huq, 1999). Benchmarking

can be distinguished in qualitative, which compares the as-is state of a process with

known good practices and is mainly related to evaluation of organizational

structures, business processes models and information systems. Quantitative

benchmarking utilizes predefined key performance indicators in order to measure

various characteristics of a business process and compare the results with those

from similar competitive organizations (Lohrmann and Reichert, 2013).

2. Business Balanced Scorecard. It is a powerful tool for the evaluation of the

business processes performance, which can give a comprehensive view of the

entire company (Kaplan and Norton, 1992). Balanced scorecard is consisted by a

9

set of measures that consider the organization through four dimensions, namely, the

“Financial”, the “Customer, the “Innovation and Learning” and the “Internal

Business”, and its advantage is that minimizes the information overload by limiting

the number of utilized measures (Kaplan and Norton, 1992). The main

characteristic of scorecard is that includes in a single management report, a

combinatorial overview of the performance of heterogeneous aspects of a

company's operational functions. Additionally, the scorecard tries to avoid sub-

optimization by forcing managers to a holistic consideration of all of the

operational measures concurrently (Kaplan and Norton, 1992). However, the

drawback of scorecard is that in regard to each organization requires the

development of special tangible and intangible key performance indicators for each

dimension (Lohrmann and Reichert, 2013).

 2.2.2 BPM Frameworks

Frameworks are not considered as methodologies or managerial techniques but

rather as holistic strategies that introduce a new “way of thinking” about structuring and

administering an organization. Just as all the other BPM strategies, frameworks aim to

the functional improvement of business processes in order to augment the overall

efficacy of the enterprise. However, although they offer a rich arsenal of managerial

guidelines and tools, in practice there is a rather wide margin of interpretation and the

initiative is based upon manager’s experience. Next, follows a discussion about some of

the most popular frameworks in BPM literature.

 2.2.2.1 Business process reengineering (BPR)

BPR is a revolutionary management strategy focusing on both how an

organization is structured and how it can be improved. According to BPR, a company

should not be seen in terms of functions, departments or products but rather as a set of

interconnected key business processes that interact for the achievement of predefined

strategic goals. The optimization of these processes can be conducted by their ground-up

redesigning, rather than the partial improvement of their constructing components

(Davenport, 1993). BPR aims to assist organizations to recreate their structure through

the radical redesign of their processes, employing whatever administrative innovations,

new technologies and available business resources.

10

This combination of the process-oriented point of view of the organization with

the application of innovations to key processes can create tremendous potential for the

achievement of business objectives such as cost and time reduction, quality improvement

and operational flexibility (Davenport, 1993). However, the radical nature of BPR

strategy can emerge serious danger even for the existence of a company, due to the lack

of a well-defined procedure and a comprehensive toolkit of techniques that can facilitate

its practical applicability and ensure the completeness of coverage of the business

objectives (Lohrmann and Reichert, 2013; O'Neill and Sohal, 1999). Indeed, relevant

studies in US and Europe have shown that among the applied BPR initiatives only 30

percent can be considered successful because of misuse in implementation (O'Neill and

Sohal, 1999).

 2.2.2.2 Lean manufacturing

Lean manufacturing is a customer-oriented production practice that aims to the

elimination of the wasteful components of business processes. This approach considers

as waste any consumption of resources or any function that target to any goal other than

the creation of value for the end customer. More specifically, any business process may

contain mistakes that require rectification, actions which are not actually needed,

transportation of goods or humans without any purpose, waiting queues that waste time

and the production of items which do not meet the needs of the customer (Womack and

Jones, 2003). Lean manufacturing provides a way to do more with less, specifying value,

sequencing the value creating actions in the optimized way, conducting the actions

without interruption whenever someone requests them and making work more

satisfactory by providing immediate feedback on efforts to convert waste into value.

The pursued goals of Lead manufacturing are the maximum efficiency, the

clearly defined responsibilities, the exact description of processes and the traceable

communication ways (Womack and Jones, 2003). Lean management is an extension of

Lean manufacturing and in the core of its philosophy is the principle that the customers

are willing to pay for value, not for mistakes or waste. Therefore, in order to maximize

profit an organization has to increase the value of produced goods or services (Womack

and Jones, 2003). In general, Lean manufacturing is based on five main principles

(Womack and Jones, 2003):

11

1. Specify Value. The critical starting point for Lean manufacturing is the precise

definition of value in terms of a specific product that is offered at a specific time

and price and has certain characteristics defined by a specific customer.

2. Identify the Value Stream. The value stream is the set of actions required to

deliver a product from the concept to the hands of the customer. The identification

of the entire value stream for each product can eliminate a significant amount of

waste.

3. Production Flow. This principle pursues the construction of a continuous

execution flow of the value creating actions. According to Lean manufacturing,

higher efficiency and accuracy can be accomplished when a product is

manufactured by a continuous production line from raw material to finished good.

Thus, the focus must be on the product and its specifications rather than the

organization or the equipment.

4. Demand Pull. It is the ability to design and schedule exactly what the customer

wants just when the customer wants it. Therefore, a company must let the customer

pull the product as needed rather than trying to push the products to the customer.

5. Perfection. The implementation of the four initial principals involves an

interaction with each other in an endless execution cycle. Although the effort for

the improvement of business processes in terms of time, cost and mistakes

reduction can never stop, Lean manufacturing offers the organizational means for

the convergence towards the perfection.

 2.2.2.3 Total Quality Management (TQM)

TQM is a holistic and structured administrative strategy that aims to integrate all

processes within an organization into a procedure for the continuous improvement of

competitiveness, effectiveness and flexibility (Oaklant, 2003). This goal can be achieved

through the ongoing structural and functional adjustment of business processes in

response to the received feedback from all possible sources (Godfrey, 1999). TQM is

essentially a way of planning, organizing and understanding each activity by each

individual at each level. To attain the promotion of business efficacy, the principles of

TQM must be propagated throughout the organization, along with participants’

commitment to accept the burden of realization's responsibility. On the other hand, the

organization needs to ensure participants that through the efforts and achievements they

will acquire the analogous recognition and reward (Oaklant, 2003). Although the

12

plethora of different approaches, in general, a TQM model that covers all angles and

aspects of an organization is based on the following concepts (Oaklant, 2003; Godfrey,

1999; Omachonu and Ross, 2004):

1. Planning. TQM requires the establishment of a strong top-management leadership

for the development and deployment of clear short, mid and long-term vision,

policies and strategies that utilize properly its concepts and scientific methods. The

implementation of TQM can be conducted by defining the mission, identifying the

strategic goals, discovering customer’s requirements and determining the activities

required to fulfill these objectives.

2. Performance. Regarding vital organizational resources such as infrastructure,

humans and information, a performance measure framework with the appropriate

metrics must be developed for carrying out self-assessment, audits, reviews and

benchmarking.

3. Processes. In the core of TQM is the notion of business process. Therefore, first

priority is the introduction of a cross-functional quality management system with

the potential to understand, analyze, design and redesign the business processes,

combining all the fundamental organizational powers in order to achieve

continuous improvement.

4. People. TQM is not a strict framework with specific guidelines about human

participation within an organization. It is rather a way of thinking that pursues a

cultural change that accepts as primary objective to fulfill customer requirements

and implements a managerial philosophy that acknowledges the ethic of continuous

improvement. This cultural change can be achieved by the encouragement of

employees’ involvement through the constant training and education, the

teamwork, the creation of effective communication channels, the diffusion of

information and feedback throughout the organization, the sponsoring of

innovation and excellence and the formation of a supporting working environment.

The objective is to make individuals accountable for their own performance and to

remain committed in attaining the quality targets of organization.

 2.2.2.4 Six Sigma

Six Sigma is a statistical methodology closely related to the TQM and Lean

Management. The goal of Six Sigma is the continuous improvement of business

processes by reducing the causes of defects and the elimination of the variability in

13

products manufacturing through the removal of normally distributed errors. Six Sigma

utilize a variety of techniques to analyze comprehensively a business process, aiming to

the discovery of possible problematic element and the reformation of unnecessary or

inefficient steps that reduce the overall performance level of the process (Conger, S.,

2010). In the context of Six Sigma can be distinguished two project life cycles, DMAIC

that stands for Define-Measure-Analyze-Improve-Control and DMADV that is translated

to Define-Measure-Analyze-Design-Verify.

In general, the DMAIC approach is recommended for the improvement of an

existing business process and the DMADV approach is suitable for the design of a new

process (Conger, S., 2010). However, the application of Six Sigma in practice suffers by

a major drawback. Although it involves a large set of techniques for the recognition,

analysis, evaluation and redesign of a business process, it does not offer specific

guidance about which methods are the best in a certain phase or state of the process

aspects under consideration. Additionally, there is little concern about how to customize

or improvise the applied techniques in regard to specific cases and their variations

(Conger, S., 2010).

 2.2.2.5 Quality of Business Processes (QoBP)

The suggested by Heravizadeh, Mendling and Rosemann (2009) framework,

defines business process quality in terms of 41 quality dimensions divided in four

categories: quality of functions, quality of input and output objects, quality of non-human

resources, and quality of human resources. The quality dimensions guide the process

analysis that conducted by the proposed Process Root Cause Analysis technique (PRCA).

This approach is founded on the assumption that an issue can only be solved by

addressing the underlying cause and pursues to identify the consisting elements and the

relations of a process for a particular case (Heravizadeh, Mendling and Rosemann, 2009).

In particular, the PRCA process is consisted by six major steps for the definition of a

business process model, a quality model for a process, a goal model, correlation model,

measurement model for each goal and the identification of the issue occurrences.

The crucial step is the availability of a generic quality model that directs the

creation of the goal model and the precision of the subsequent steps. The objective of a

quality model is to identify all the potential quality requirements for the elements of the

process (Heravizadeh, Mendling and Rosemann, 2009). QoBP framework combines

goal-oriented and activity-oriented process modeling for the identification of a process’s

14

weaknesses and an explicit description of its quality attributes (Heravizadeh, Mendling

and Rosemann, 2009). However, the suggested approach does not show the quality

dimensions interrelation to organizational targets or to an overall formal quality

definition (Lohrmann and Reichert, 2013). Additionally, PRCA approach does not define

clearly the completeness the quality dimensions and a specific procedure for the

evaluation of the overall process quality (Lohrmann and Reichert, 2013).

 2.2.3 Algorithmic approaches

A considerable number of algorithmic approaches have been developed in order

to deal with individual performance aspects of business processes such as execution

quality, control flow and resource scheduling. Although they do not comprehensively

cover the entire field of business process optimization, they constitute an exceptional set

of alternative tools in the context of BPM (Lohrmann and Reichert, 2013).

 2.2.3.1 Graphical approaches

A class of research efforts tries to achieve optimization using as main tool the

business process graphical models. Van der Aalst (1998) proposed a framework that uses

Petri nets as the medium for the achievement of business process optimization. Petri nets

are directed bipartite graph with two type of nodes, places and transitions, which can be

connected via directed arcs with the constraint that connections between nodes of the

same type is not allowed (Van der Aalst, 1998). The advantages of Petri nets are their

well-defined formal semantics and the identification of a plethora of mathematically

founded properties. In the base of these characteristics have been developed many

powerful analysis techniques for Petri nets such as linear algebraic techniques for the

verification of properties, coverability graph analysis, model checking, and reduction

techniques that analyze their dynamic behavior, simulation and Markov-chain analysis

for the model performance evaluation (Van der Aalst, 1998).

Van der Aalst used the high-level Petri nets, an extension of classical Petri nets

with color, time and hierarchy in order to represent specific aspects. In particular, the

color extension models the value for an attribute of an entity of the graph. The extension

with time describes the temporal behavior of the system and the extension with hierarchy

confronts specification's complexity using sub-nets for the construction of the entire

model (Van der Aalst, 1998). In order to achieve business processes optimization, Van

der Aalst (1998) defined formally the notion of the soundness of workflow nets as the set

15

of minimal requirements that any workflow process definition should satisfy. Toward the

same direction, Hallerbach, Bauer and Reichert (2009) tried to expand the notion of

workflow soundness for an entire process family. More specifically, for a particular

business process there can be in practice a significant number of variations due to the

special requirements of the business context and the set of constraints that must be

satisfied. In their work Hallerbach, Bauer and Reichert (2009), examined advanced

concepts and developed a five-step effective algorithm that utilizes these concepts, in the

context-based and constraint-based configuration of variations that belong to the same

process family while guaranteeing their property of soundness.

Going further, Reichert, Rinderle and Dadam (2009) proposed an extension of

workflow soundness in the context of dynamic processes that change at run-time.

Motivated by the fact that a static way of thinking can lead to the design of business

processes that are rigid and cannot be reined any further, they proposed the ADEPT2

framework as a Process-Aware Information System, which allows the dynamic structural

adaptation and evolution of process models in order to confront uncertainty, functional

exceptions and context variations during execution. ADEPT2 pursues to achieve the

ability of processes to deal with uncertainty, the production of new process instances

through structural adaptation and the evolution of processes in order to comply with

emerging specification. The ultimate goal is to preserve the correctness of the modified

process instances guaranteeing their structural and behavioral soundness and to ensure

that the model adaptations do not violate at run-time the constraints that was set at build

time (Reichert, Rinderle and Dadam, 2009).

The evolution of Process-Aware Information Systems (PAIS) gives the ability to

configure a business process at design-time and adapt it dynamically at runtime (Li,

Reichert and Wombacher, 2010). However, although PAIS offer run-time flexibility

while preserving model’s consistency and lead to the construction of a large number of

variants from the same model, in general it is a computationally expensive and difficult

to maintain procedure (Li, Reichert and Wombacher, 2010). For the containment of this

drawback, Li, Reichert and Wombacher (2010) developed the MinAdept project that

utilizes an efficient clustering algorithm for knowledge mining from a collection of

process variants and the construction of a model with minimized average distances from

the variant models. Subsequently, the constructed model can be used as reference model

by the PAIS in order to decrease the complexity during processes configuration and

adaptation.

16

 2.2.3.2 Evolutionary techniques

However, the high complexity of some real-world multi-objective optimization

problems is challenging the computational adequacy of traditional operational research

techniques (Coello, Lamont and Van Veldhuizen, 2007). Wang, Salhi and Fraga (2004)

characterize process optimization as a difficult task because of the non-linear, non-

convex and often discontinuous nature of the involved mathematical models. This fact

turned the focus of researchers to the evolutionary computation due to the population-

based nature of evolutionary algorithms that allows the generation of several elements of

the Pareto optimal set in a single run (Coello, Lamont and Van Veldhuizen, 2007). In the

context of business process optimization, the evolutionary or genetic algorithms can act

on a large population of process designs. Therefore, they evaluate many alternative

models generating a series of diverse process designs on the basis of specific objectives

and they can discover designs that a human designer may ignore (Tiwari, Vergidis and

Turner, 2010). According to Moon and Seo (2005), the most attractive characteristic of

evolutionary algorithms is their flexibility to solve a variety of objective functions with

the least mathematical requirements.

Wang, Salhi and Fraga (2004) proposed an evolutionary approach for business

process optimization, which extends their pattern-matching Scan Circle genetic algorithm

with the Learning Vector Quantization (Kohonen, 1995 cited in Wang, Salhi and Fraga,

2004, p.663). Their approach defines the crossover and mutation operators on the basis of

the extracted knowledge about the feasible region and the behavior of the objective

function during the data analysis, aiming to the discovery of the key aspects of the search

space the objective function. The combination of visualization, data analysis and

optimization techniques makes the proposed schema suitable for highly constrained

problems through the construction of a robust process design tool that can achieve higher

consistency by the optimization procedure and better conceivable results through the

synchronous data analysis and visualization (Wang, Salhi and Fraga, 2004).

Wibig (2013) proposed a method for automated task scheduling in business

processes models. In particular, the proposed method combines Petri nets to model the

processes and simulate their execution, with dynamic programming for the reduction of

the computational complexity by reconstructing only the parts of the model that have

been changed. Finally, the simulation-based optimization is conducted by the Non-

dominated Sorting Genetic Algorithm II to find the Pareto optimal solutions. Hofacker

and Vetschera (2001) conducted a comparative analysis of three different mathematical

17

techniques in regard to optimization of business process design problem: mixed integer

mathematical programming, several variants of a direct branch and bound search strategy

and genetic algorithms.

Additionally, they introduced (Hofacker and Vetschera, 2001) an appropriately

adapted for each technique formal quantitative representation of business process, which

is utilized by the corresponding analysis method for the determination of the optimal

designs with respect to various min/max type objective functions. Concerning

evolutionary algorithms, their computational experiments indicate a weak performance

due to the difficulty of maintaining feasibility in a tightly constrained problem (Hofacker

and Vetschera, 2001). Their formal model is hard to produce feasible solution because of

the high number of constraints and mathematical formulations that implicates (Vergidis,

Tiwari and Majeed, 2007). In the context of evolutionary computing, Vergidis, Tiwari

and Majeed (2006a;2006b) proposed a framework that extends the approach of Hofacker

and Vetschera, using the multi-objective evolutionary algorithms Non-Dominated

Sorting Genetic Algorithm II (NSGA2) and Strength Pareto Evolutionary Algorithm II

(SPEA2), in order to construct an automated method for the multi-objective optimization

of business processes.

The proposed framework defines formally a generic business process model to

guarantee that the pursued optimization is repeatable and verifiable. The optimization

procedure is performed by NSGA2, which is applied on a predefined library of candidate

activities and selects the optimum ones in the appropriate sequence by defining their

starting times (Vergidis, Tiwari and Majeed, 2006b). The experimental results indicate

that although the highly constrained nature of process optimization problem, the

fragmentation of the searching space can lead to the production of several alternative

processes that meet the optimization requirements. With a later work Vergidis, Tiwari

and Majeed (2007) applied their framework to a larger number of objectives, focusing on

the tasks that compose a business process rather than the process design itself.

Specifically, they introduced the concept of composite business process as a set of

collaborative tasks in the appropriate sequence in order to achieve a business goal. From

this point of view, each consisting task can be represented by a set of quantitative

attributes such as cost, duration, quality, and flexibility, which can be used for the

calculation of a quantitative evaluation. Consequently, task attributes can be mapped to

the corresponding process attributes and provide an evaluation for the composite process

via aggregation functions (Vergidis, Tiwari and Majeed, 2007). Based on this concept,

18

Vergidis, Tiwari and Majeed formulated multi-objective optimization problems and then

conducted a comparative application of the popular evolutionary multi-objective

optimization algorithms NSGA2, SPEA2 and MORSO, in an attempt to generate

optimum business process designs.

According to their approach, the process optimization can be defined as the

selection and the proper sequencing of alternative tasks in a fixed process design that

aims to satisfy specific predefined criteria. These criteria can be formulated as objectives

or constraints in the base of process attributes. Considered as constraints, the criteria

express the limit or the optimum value of the attributes, while considered as objectives,

they must be satisfied as much as possible to maintain design’s feasibility (Vergidis,

Tiwari and Majeed, 2007). Vergidis and Tiwari (2008) proposed an optimization

framework that applies evolutionary algorithms on quantitative models of business

processes and generates diverse optimized process designs on the basis of predefined

requirements. Specifically, they define business process design and attributes

optimization as the problem of constructing feasible process design with optimum

attribute values.

Design’s feasibility is determined by the process resource requirements and the

connectivity patterns of the participating tasks. The proposed framework introduces a

quantitative representation of business processes and involves the application of genetic

algorithms Evolutionary Multi-objective Optimization Algorithm (EMOOA) and

NSGA2. The experimental application of the proposed framework on a variety of

problems, demonstrates that despite the high complexity a satisfactory number of

optimized alternative designs can be produced. An extension to the above framework

proposed by Tiwari, Vergidis and Turner (2010). This extended framework involves a

quantitative representation of business processes, an algorithm that composes feasible

process designs and a set of optimization algorithms for the generation of diverse

optimized designs constructed on the basis of predefined requirements (Tiwari, Vergidis

and Turner, 2010). Their aim was to add the potentiality of selection the designs with the

optimum objective values for business processes with large size. Another extension of

the evolutionary optimization framework of Vergidis and Tiwari (2008) presented by

Georgoulakos et al. (2017), who introduced an additional per-processing layer for the

refinement of the predefined process requirements.

Specifically, the proposed extended framework utilizes a quantitative formulation

of business processes, a composition algorithm that examines the feasibility of the

19

constructed process designs, an additional step for the per-processing of the library of the

available tasks and the evolutionary optimization algorithms NSGA2, SPEA2, PESA2

and PAES. The aim of this framework is to generate an arbitrary number of diverse

optimized designs constructed on the basis of predefined requirements that have been

refined by the per-processing layer (Georgoulakos et al., 2017). The pursued goal of per-

processing is to reduce the computational complexity of the problem and to improve the

performance of the evolutionary algorithms. In particular, the targets of the suggested

per-processing step are (Georgoulakos et al., 2017):

2. The removal of tasks that require an input resource that belongs to the set of the

required outputs of the entire business process.

3. The removal of tasks that produce an output resource that belongs to the set of the

initial business process inputs.

4. The removal of tasks that require an input resource that is not produced by any

other task or is not contained in the set of the initial business process inputs.

5. The removal of tasks with a single output resource that is not required as input by

any other task.

6. The removal of tasks which are dominated by their alternative. Alternatives are

considered the tasks that have identical input and output resources and

distinguished only by their attribute values.

Using analogous rationale, Ahmadikatouli and Aboutalebi (2011) proposed a

novel algorithmic methodology, which models a business process with Petri nets and

introduces a formal quantitative structure for its optimization, considering a vector of

evaluation criteria such as time, cost, quality of products and queue length. The proposed

methodology considers the process representation as a dynamic system that is consisted

by two components, a vector for the design and a matrix for the evaluation criteria.

Subsequently, it utilizes a genetic algorithm to determine the optimized process design

and a number of potential alternatives. The novelty is that instead of using the classical

genetic operations crossover and mutation, the algorithm uses the defined by

Ahmadikatouli and Aboutalebi (2011) operations parallelization and merge respectively.

Parallelization operation is based on the sense that sometimes a complex activity might

act as performance bottleneck, thus splitting it into smaller paralleled activities with the

same input and output could probably accelerate the execution and improve the

efficiency. On the contrary, merge operator tries to achieve execution acceleration and

20

efficiency improvement by merging two or more very simple activities into one more

complicated (Ahmadikatouli and Aboutalebi, 2011).

 2.2.3.3 Data mining approaches

 In the relevant literature, there is notable research effort that focuses mainly on

data analytics and the comprehensive exploitation of the data generated during process

execution. The aim is the development of prescriptive methods to transform analysis

results into improvement actions. Groger, Schwarz and Mitschang (2014) suggested a

data-mining technique for the recommendation-based business process optimization

(rBPO) as the base of an adaptive and continuous optimization procedure. rBPO exploits

descriptive analytics from the data that is generated during business process execution

and recommends remedial actions for the avoidance of the predicted deviations from the

predefined metric standards.

In the core of the system there is a holistic process warehouse, which initially

integrates the transactional data that is collected from a variety of sources during process

execution and then employs classification techniques pursuing real-time prediction and

recommendation generation (Groger, Schwarz and Mitschang, 2014). Niedermann and

Schwarz (2011) developed the deep Business Optimization Platform (dBOP), which

integrates a layer of formalized optimization patterns and techniques, with a layer of

heterogeneous data analysis and integration capabilities for specific situations. The dBOP

is consisted by three functionally sequential layers. The data layer manipulates the

integration of heterogeneous data that is collected from various sources during process

execution. The analytics layer automatically analyses the integrated data on the basis of

the graph analysis of the employed optimization patterns, using standardized metrics and

data mining techniques.

Finally, the optimization layer combines an optimization engine and the

optimization patterns that are stored in the pattern catalog to discover and apply process

improvements (Niedermann and Schwarz, 2011).The pattern catalog is a collection of

formal patterns classified according to a set of quantitative and qualitative criteria.

Namely, the type of changes they implement, the level of their contribution towards the

fulfillment of the optimization goal, the process stage during which they can be applied,

the set of constraints that they must satisfy and finally, the required data in order to be

involved in the process design (Niedermann and Schwarz, 2011).Gerke, Petruch and

Tamm (2010) presented a solution for the optimization of service delivery through the

21

continual process improvement. Their approach involves a data mining methodology for

the automated inference of process knowledge from a set of individual process instances.

In particular, the execution of these instances is continuously monitored and recorded in

event logs appropriately formed in in order to be processed by the data mining algorithms

provided by the process mining framework ProM2.

Process mining can discover information about the performance, the weaknesses

and the improvement potential of a process (Gerke, Petruch and Tamm, 2010). On the

basis of the knowledge derived from process mining, an internal benchmarking is

conducted against predetermined key performance indicators. The benchmarking can

reveal the steps of the process that prevent the fulfillment of the business objectives

(Gerke, Petruch and Tamm, 2010). Finally, a considerable number of algorithms exist for

the optimal scheduling of sub-processes of a more complex process. Sub-processes can

be combined in many different temporal and spatial sequences and the problem is to find

the sequence that optimize a set of predefined criteria, considering relation constraints

between sub-processes. However, the fact that there is an infinite number of components

that can be used to construct an administrative process, makes exponential the

computational complexity of searching in process elements domain (Hofacker and

Vetschera, 2001).

 2.3 Research Gap

From the description of the methodologies and frameworks that have been

developed to solve the problem of business process optimization can be discerned a

common characteristic. In principle, all of them try to formulate the rules for the

implementation of a comprehensive and effective search within the domain of business

tasks, in order to discover the consisting parts that can construct the optimum business

process on the basis of predefined requirements. The majority of the methods are based

on graphical paradigms, evolutionary methodologies or data mining techniques while is

observed a complete absence of methods that are founded entirely or partially on

constraint logic programming (CLP). However, CLP is by nature a searching technique

in the domain of decision variables under the limitation of predefined constraints. Thus,

CLP can offer the computational environment for the confrontation of complex

combinatorial problems such as business process optimization, which can be treated as a

COP problem with precedence and resources constraints that must be optimized in

respect to a set of evaluation criteria.

22

Therefore, the aim of the present thesis is to investigate the applicability of CLP

to the field of business process optimization by the design and development of a

framework that can compose optimized complex business processes from simpler

business tasks in the base of predefined quantitative and qualitative evaluation criteria.

For the achievement of this goal, the challenge is to find the appropriate quantitative

representation of entities such as tasks, resources and business processes, which

simulates adequately the real world and is suitable to be used in a CLP program.

Additionally, must be defined the qualitative and quantitative evaluation criteria, along

with the objective function that incorporates them as metric for the optimization

procedure. Finally, technical challenges arise by the effort to integrate heterogeneous and

incompatible technologies such as relational databases, object-oriented programming,

visualization techniques and logic programming within the functional boundaries of a

single software system.

 2.4 Summary

The second chapter presents the semantics of the terms used in thesis and explains

their definitions that derived from the relevant literature and adopted as the most

comprehensive. Subsequently, it briefly outlines the major methodologies that have been

developed in respect to the problem of processes optimization within the domain of

business administration, presents the major principles of the CLP paradigm and explains

in detail the formulations of the ERCPSP as a COP problem. Finally, it concludes the

complete absence of methods that are founded entirely or partially on CLP, justifying the

investigation of the applicability of CLP to the field of process optimization, through the

design of a framework that composes optimized processes from simpler tasks in the base

of predefined evaluation criteria. The next chapter presents the methodological approach

utilized for the fulfillment of the distinct challenges and the implementation of the

aforementioned complex software system.

23

 3 Mathematical foundation

The third chapter is devoted to the comprehensive presentation of the principles

and techniques that constitute the mathematical foundation of the developed framework

and can guarantee the structural consistency and rational robustness of the proposed

optimization procedure. More specific, the first sub-chapter describes the classic

formulation of the Resource Constrained Scheduling Problem, which is the mathematical

basis of the suggested business process optimization algorithm. The second sub-chapter

analyses in details the principles of the Constraint Logic Programming, which is the

main mathematical paradigm that is used for the implementation of the optimization

procedure. Finally, the third sub-chapter explains the function of the binary search

technique, which is of crucial importance for the reduction of the computational

complexity of the optimization algorithm.

 3.1 Resource Constraint Scheduling Problem (RCSP)

In general, the well-known Resource Constrained Project Scheduling Problem

assumes that a process is consisted by a set of tasks of known duration and resource

requests from a predefined set of available resources of limited availability. The tasks are

linked by precedence relations and the objective is the construction of a feasible schedule

with the minimum duration in respect to the precedence relations and the resources

availability (Artigues, 2008;Kolisch, 1996). More formally, the RCPSP problem is a

combinatorial optimization problem that can be defined by a discrete solution space X

and a subset of feasible solutions Y ⊆ X in the base of an objective function F: Y → ℝ.

The aims is the discovery of a feasible solution y ∈ Y such that F(y) is optimized

(Artigues, 2008). In mathematical formalism, RCPSP is defined by a tuple (T, DR, P, R,

A, DM) where (Artigues, 2008):

1. T={T 0 ,…, T n+1} is the set of tasks that constitute the schedule. The dummy tasks

T0 and Tn+1 represent by convention the start and the end of the schedule

respectively, thus the set of non-dummy tasks is the T={T 1, …,Tn}.
2. The vector DR in ℕn+2 represents the durations of the tasks, thus dri is the duration

of activity Ti with special values dr0 = drn+1 = 0.

24

3. The precedence relations are contained in the set P. The pair (Ti, Tj) ∈ P denotes

that the task Ti precedes the task Tj. The assumption is that T0 is a predecessor and

Tn+1 is a successor of all the other tasks.

4. The available resources are contained in the set R={R1,…, Rq}.
5. The availability of the resources are represented by the vector A in ℕq such that Ak

denotes the availability of the resource Rk.

6. The demands of tasks for resources are contained in the (n+2)× q integer matrix

DM, such that dmik denotes the amount of resource Rk used per time period during

the execution of Ai.

7. A schedule is a point S in ℝn+2 such that Si represents the start time and Ei the end

time of the task Ai , with Ei = Si + dri. It is assumed that S0 = 0 as a reference point

for the beginning of the schedule.

8. A solution S is feasible if it is compatible with the precedence constraints (1) and

the resource constraints (2), where T t={T i∈ T∨ S i≤ t<S i+dri} represents the set

of non-dummy activities in process at time t.

S j− S i≥ dr i ,∀ (T i , T j)∈ P (1)

∑
T i∈ T t

❑

dmik ≤ Ak ,∀ Rk∈ R ,∀ t ≥ 0 (2)

Using the above notation the RCPSP can be defined as the “problem of finding a

non-preemptive schedule S of minimal makespan Sn+1 subject to precedence constraints

(1) and resource constraints (2)” (Artigues, 2008). The RCPSP is considered as a

generalization of the Static Job Shop Problem and Blazewicz, Lenstra and Kan (1983)

proved that belongs to the class of NP-hard problems. In order to extend RCPSP, we

consider that the set T={T1 ,…,Tn} is unknown and we have to search if it exists as a

subset of a tasks library Plibrary. The key point of the search is to discover the initially

unknown precedence relations between the tasks of T, in the base of their input/output

resources combination and the predefined mutual exclusions that might exist. A feasible

solution is a schedule of interconnected tasks ∈Plibrary, which consumes a predefined set

of input resources, produces a predefined set of output resources and satisfies the

constraints about the resources availability.

25

 3.2 Constraint Logic Programming (CLP)

Logic programming (LP) is a programming paradigm based on mathematical

techniques for automated proof of theorems and is foundations lay on the resolution

principle and the notion of unification. The resolution proof procedure, which was

introduced by Alan Robinson in 1965, can construct proofs for axioms in the form of

first-order logic formulas and answer positively or negatively to a question (Apt and

Wallace, 2007). Later in 1974, Robert Kowalski proposed a modification that enables the

resolution method to overcome its limitations and to compute answers to a question (Apt

and Wallace, 2007). The new version allows the construction of a substitution that

satisfies the original formula and this substitution is considered as the result of a

computation (answer set substitution). The revised resolution method led to the

introduction of a new programming paradigm, known as logic programming (Apt and

Wallace, 2007). Constraint programming (CP) is another mathematical method for

solving combinatorial search problems. CP consists of the declarative formulation of

constraints on the feasible solutions for a set of decision variables and the selection of a

search strategy (Rossi, van Beek and Walsh, 2006).

The fundamental concept of CP is the notion of constraint and it has been used

extensively in computer science and artificial intelligence the last decades (Rossi, van

Beek and Walsh, 2006). During the same period, in the context of the aforementioned

scientific fields was identified the problem of constraint satisfaction and formulated the

concept of constraint propagation for the confrontation of the combinatorial explosion

when solving constraint satisfaction problems using a top-down search. The term top-

down search refers to the technique of constructing a final solution by the systematic

extension of a partial solution through the application of constraints (Niederlinsky,

2014). In particular, this type of search combines a branching strategy along with

constraint propagation in order to split a complex logic problem into an arbitrary number

of simpler, the union of which is equivalent to the initial complex problem. This

procedure creates during execution the so-called search tree (Figure 2.2) where the top-

down search technique is applied, considering each path as a vector of decision variables

(Apt and Wallace, 2007).

26

Figure 3.1.Search tree (Apt and Wallace, 2007, p.112)

The most commonly used top-down search techniques are backtracking search, a

variation of depth-first search and branch and bound search for optimization problems

(Niederlinsky, 2014). Backtracking search starts at the root, moves towards the first

leftmost descendant node-variable and assigns a value from its domain. If there are more

than one values to be assigned, it creates a choice-point saving the state of the search.

The procedure continues until the visited node is a leaf or a violation of a constraint

arises. Then search goes back to the closest ancestor where the last choice-point was

created and moves toward the next more left descendant. When all of its descendants

have been visited, the choice-point is removed and the search returns to the choice-point

of the higher level according to the described rationale. Backtracking search finishes

when the control is back to the root and the possible value assignment combinations of

the decision variables have been tested (Apt and Wallace, 2007). Of course, problem

independent heuristic search procedures, have been proposed that increase the efficiency

of the CP approach significantly on a number of problems, with the most celebrated

being the first-fail heuristic.

Branch and bound is a general paradigm of combinatorial optimization, designed

to find global optima of non-linear objective function that are limited by non-linear

constraints (Apt and Wallace, 2007). However, in practice is used mainly for linear

objective function under linear constraints. The main difference from backtracking search

is that branch and bound utilizes an objective function and compares its best so far value

with its current value (Apt and Wallace, 2007). Specifically, when the search has run
27

through the leftmost branch of the tree saves the value of the objective function as the

best so far bound and the corresponding variables’ vector as the optimum solution. The

search control moves to the next branch and if upon reaching its leaf, the current value of

the objective function is better than the best so far, is saved as the new best so far and the

corresponding variables' vector as the optimum solution. Otherwise, if the current value

is worse than the best so far or while running through the branch reaches an intermediate

node and the current value of the objective function is already worse than the best so far,

then the search stops and the control moves to the next branch.

The remarkable concept in this case is that CP program can be developed as an

LP program and executed in a LP platform that is properly extended by the concept of

constraints. Indeed, CP constraints and LP predicates are both mathematical relations, in

both CP and LP decision variables considered unknown and backtracking is the main

top-down search technique. The above combination resulted to the constraint logic

programming (CLP) (Apt and Wallace, 2007). In mathematical formalism, CLP is

defined as a method for solving constraints satisfaction problems (CSP) with the

following characteristics (Niederlinsky, 2014):

1. They involve a finite set of integer variables S={X1 , X2 ,…, X n} with values from

the corresponding finite domains {D1, D2 ,…, D n}.
2. There is a set of constraints between variables. The ith constraint

C i (X i 1 , X i 2 ,…, X ik) between k variables from S can be expressed as relation

(equation, inequality or a subroutine), which is defined as a subset of the Cartesian

product Di 1× Di 2× …× Dik that determines the values of the variables.

3. A CSP solution is any assignment of domain values to variables that satisfies all

the constraints.

4. When a CSP solution additionally optimize an objective function, the problem is

referred as constraint optimization problem (COP) and its solution as optimum

solution.

Considering the definition of the RCPSP problem as presented in 3.2, it can be treated as

a COP problem with precedence and resources constraints that must be optimized in

respect to a set of evaluation criteria. This ascertainment encourages the research about

the applicability of CLP for the confrontation of the RCPSP problem and maybe some of

its variations.

28

 3.3 Binary search technique

The binary search is a recursive algorithm designed to apply on a sorted group of

elements in order to ascertain if it contains a target element T or not (Knuth, 1998). The

idea is to compare T with the middle element of the sorted group. In case there are not

equal, the procedure is repeated with the half of the group where T is possible to exist,

ignoring the other half. This iteration continues until just one element Am of the group is

left. If T = Am then the target element is found, otherwise the target element is not

contained in the group (Wikipedia contributors, 2019). In a more formal mathematical

notation, given a group A of n sorted elements A1 ≤ A2 ≤ ≤ A⋯ n − 1 and a target element

T the steps of a general form of the binary search algorithm are the following (Wikipedia

contributors, 2019):

1. Set left bound L to 1 and right bound R to n

2. If L = R go to step 6

3. Set Am (the middle element) to the ceiling of (L + R) / 2, which is the least integer

greater than or equal to (L + R) / 2

4. If Am < T , set R to m − 1 and go to step 2

5. Set L to Am and go to step 2

6. Now L = R and if L = R = T, return true, otherwise return false

Considering that every iteration of the binary search splits the sorted group of

elements into half, the binary logarithm has a logarithmic computational complexity

O(log2 n) , in the worst case it requires no more than ⌊ log2n ⌋+1 comparisons and in

average it makes about log 2 n−1 comparisons for a successful search, where n is the

size of the group (Knuth, 1998). In the optimization algorithm that will present in this

thesis, we divide the available tasks into twenty subgroups ordered according to the id of

their first input resource. In order to locate a specific subgroup using binary search is

utilized a vector of nineteen values, which represent the id of the first input resource of

the last task of the groups 2 to 19. Figure 3.2 shows the complete searching tree that is

created for n = 20, where we can observe that the longest path is composed by

⌊ log220+1⌋=5 comparisons.

29

 3.4 Summary

In the third chapter was presented the mathematical background where this thesis

is based on, namely the Resource Constraint Scheduling Problem formulation, the

principles of the Constraint Logic Programming paradigm and the functionality of the

binary search technique. The reader, equipped with the aforementioned information will

be able to follow easily the reasoning of the design and development of the proposed

process optimization procedure.

30

Figure 3.2.Binary search tree for n = 20

 4 Methodology

In the context of the present thesis, a business process can be defined as a

collection of activities arranged in a sequence in order to perform a specific operation

(Vergidis and Tiwary, 2008). In more detail, the business process’ elements are the

participating tasks, the task attributes, their input and output resources and the

connectivity relations in terms of precedence or concurrent execution constraints (Tiwari,

Vergidis and Turner, 2010). The resources are physical or information objects flowing

through the system and can be distinguished in initial input resources, required output

resources and the intermediate produced resources (Hofacker and Vetschera, 2001). The

tasks are transformation procedures that consume resources as inputs and produce other

resources as outputs (Hofacker and Vetschera, 2001). Finally, the potential connectivity

patterns are constrained by the requirement that resources must be contained in the set of

initially input resources or the set of intermediate produced resources before they can be

consumed by other tasks (Hofacker and Vetschera, 2001).

Therefore, the challenge of the entire process optimization is manipulated through

the quantitative representation of tasks by a set of five criteria, namely cost, revenue,

duration, quality and flexibility (Hofacker and Vetschera, 2001;Vergidis and Tiwary,

2008;Dumas et al., 2013). Considering that the individual attributes of the participating

tasks can be mapped to the entire process attributes, the evaluation of a business process

can be achieved by aggregating the evaluations of the consisting task attributes using

appropriate functions (Vergidis, Tiwari and Majeed, 2007). Thus, the objective of the

optimization procedure is to search for the tasks that can construct the feasible process

design with the best evaluation in the base of the aforementioned evaluation criteria.

 4.1 Conceptual analysis of the evaluation criteria

The execution time of a process can be separated in processing time, which is the

time for the elaboration of input resources and in waiting time, which is the time that a

process spends in idle mode (Dumas et al., 2013). The cost is considered as a function of

the sum of the values of consumed resources and similarly, the revenue is the sum of the

value of the resources that are produced by a process (Dumas et al., 2013). The notion of

process quality can be distinguished between external and internal quality. The external

quality can be measured as the client’s satisfaction from the outcome of the process,

namely, the extent to which the client’s expectations are met by the delivered product.

31

On the contrary, the internal quality of a process refers to the level that the participants

feel that control the performed tasks and the working variation they experience.

Additionally, a measure of the internal quality could be whether the participation within

the context of the process is challenging in terms of self-improvement and target

achievement (Dumas et al., 2013). Finally, the flexibility of a business process is closely

related to the issue of change and can be defined as the capability to react to unexpected

processing diversions. That is, the ability to handle variations while executing a specific

business process setting, the easiness to alter the structure and responsiveness of the

process according to market requirements and the ability to reallocate responsibilities,

work flows and employee’s roles (Dumas et al., 2013).

 4.2 Problem formulation

The foundation of the optimization procedure upon a formal mathematical model

ensures the structural consistency and can guarantee the construction of feasible process

designs by a repeatable and verifiable approach, which aspires to optimize a set of

objectives functions through the satisfaction of a set of predefined relational constraints

(Vergidis, Tiwari, and Majeed, 2006b). In the context of the present thesis, it is

considered that a complex business process can be constructed by a set of t simple tasks

that are stored in a task library Plibrary={p1 , p2 ,... , pt} . Each task i consumes resources

of specific type and quantity as input I i and produces resources of specific type and

quantity as output Oi. All of the m available resources are stored in a resource library

Rlibrary={r1 , r2 ,… , rm}, and the following I i⊆ R library and Oi⊆ Rlibrary∀ i∈Plibrary hold.

Additionally, each task i is characterized by a vector of five measurable attributes

ai={ai 1, ai2 , ai 3 , ai 4 , ai 5}, namely cost, duration, revenue, quality and flexibility

respectively, which can be used for its quantitative evaluation. The tasks’ attributes that

construct a complex business process are mapped to its corresponding attributes via

appropriate aggregate functions and min/max relations depending on the attribute’s

nature. This quantitative evaluation is a key factor of the optimization procedure.

The business process optimization is considered as a NP-hard problem due to the

non-linear, non-convex and often discontinuous nature of the involved mathematical

models (Wang, Salhi and Fraga, 2004), meaning that the computational efficiency

depends on the size of the examined instance of the problem (Georgoulakos et al., 2017).

For the reduction of the high complexity and the improvement of performance, the task

32

library Plibrary is formed using an index schema that groups the available tasks in non-

overlapping categories. Following this strategy, the search domain of a specific instance

of the optimization problem is only a small subset of Plibrary, that is a certain category

only, leading to a significant reduction of the variables' combinations that must be

produced and evaluated by the CLP program and thus, to improvement of its

computational efficiency. The parameters that are involved in the problem formulation

are described in Table 4.1.

Table 4.1.Mathematical model parameters

Parameter Description
Plibrary Library of available tasks

Cx Category of tasks according to index schema, C x⊆ Plibrary

Rlibrary Library of available resources
n Number of tasks in category C x⊆ Plibrary

m Number of available resources in Rlibrary

rj Resource of type j in Rlibrary

IBP Set of initially available input resources
OBP Set of initially requested output resources
RIP Set of the intermediately produced resources
Ii Set of input resources of task i
Oi Set of output resources of task i

ini[rj, qj] Quantity qj of resource j as input to task i
outi[ri, qi] Quantity qj of resource j as output of task i
ip[rj, qj] Quantity qj of intermediately produced resource j

cti Cost of task i
dri Duration of task i
rvi Revenue of task i
qli Execution quality of task i
fxi Flexibility of task i

pri[p1, p2 ,..., pv] Set of v tasks that directly preceding task i
mexi[p1, p2 ,..., pu] Set of u tasks that mutually excluded with task i

pi(idi, namei, cti, rvi, dri, qli,
fxi, ini[rj, qj], outi[ri, qi],

mexi[p1, p2 ,..., pv])

Representation of task i

BPM(Tasks, cost, revenue,
duration, quality,

flexibility, evaluation,
Starts, Finns, Connectivity)

Representation of the constructed optimized business
process

The resources that participate to the construction of a specific business process

design can be distinguished in the set IBP of the initially available input, the set OBP of the

requested output by the complex constructed process and the set RIP of the resources,
33

which are produced by the tasks that are included in the complex design. The initial aim

of the optimization procedure is to define all the feasible interconnection patterns

between the set of tasks that belong to a certain category Cx⊆ Plibrary, for the construction

of a complex business process that consumes all the resources contained in IBP∪ RIP and

produces all the resources contained in OBP. However, the primary target is to distinguish

among the feasible designs those with the best values for their attributes

a={ct , dr , rv , ql , fx }. Therefore, the mathematical model defines five objective functions,

namely:

F (ct)=∑
i =1

k

ct i →min(1)

F (dr)=∑
i=1

k

max [par i]→min(2)

F (rv)=∑
i=1

k

rv i→ max (3)

F (ql)=min [ql1 , ql2 ,…,qln]→max (4)

F (fx)=min [fx1 , fx2 ,…, fxn]→ max (5)

If we transform the objective functions (1) and (2) as follows:

F (ct)=∑
i=1

k

ct i→min⇔−∑
i=1

k

ct i→max (1)

F (dr)=∑
i=1

k

max [par i]→min⇔−∑
i=1

k

max [par i]→ max (2)

the five objective function can be linearly combined into a single objective function to be

optimized:

F (opt)=−F (ct)+F (rv)− F (dr)+F (ql)+F (fx)→max

Considering that k is the number of participating tasks in the construction of the

optimized process, then the first objective function minimizes the total cost and the

second minimizes the total duration of the optimized process. The total duration is the

addition of the maximum duration of the groups of tasks that are executed in parallel.

34

The third objective function maximizes the total revenue obtained by the participating

tasks. For the qualitative attributes execution quality and flexibility, the mapping to the

corresponding attributes of the constructed process is based on the concept of the

common sense that the qualitative characteristics of complex structures are specified

exclusively by the consisting parts with the minimum value.

Therefore, the fourth and fifth objective functions pursue the maximization of the

minimum value of execution quality and flexibility respectively. The parameter

pri[p1,p2,...,pv] is used to denote the ancestor-descendant relations between tasks that

participate to the design and concerns the groups of tasks that can be executed in parallel.

Thus, the optimized business process design can be considered as a set of temporally

sequential groups, which contain parallel-executed tasks. The constraints of the logic

model limit the optimization procedure and guide the construction of consistent and

feasible business processes with optimized values for their attributes. The complete set of

the logic formulas that formulate the constraints of the logic model is the following:

1. ∀ pi∈ BPM ([r j , q j]∈ I i∧[r j , qa]∈ I BP∪ R IP∧q j⩽ qa)

A task participates in process design when all its input resources are available in

equal or bigger quantities.

2. ∀[r j , q j]∈ R IP∪OBP(∃ pi∈ BPM ([r j , qa]∈ Oi∧qa⩽q j))

All the resources that belong to the set RIP of the intermediately produced resources

or to the set OBP of the output of a feasible process design must be produces as

output by at least one participating tasks in equal or less quantity.

3. ∀[r j , q j]∈ R IP

(∃[p i , ... , pk]∈ BPM ([r j , qi] , ... ,[r j , qk]∈ Oi∪ ...∪O k∧q j=qi+...+qk))

The quantity of each intermediately produced resource must not exceed the sum of

quantities, which are produced by the participating tasks that have as output the

specific resource.

4. ∀ pi , p j∈ BPM (¬(i= j))

A task can be used once to avoid cyclic dependencies between tasks. This can

occur when one task produces the input resources of another task, which in turn

produces the input resources of the former task.

5. ∀[r j , q j]∈ OBP

35

(∃([pi ,... , pk]∈ BPM∧[r j , q i] ,... ,[r j , qk]∈ Oi∪ ...∪ Ok∧q j=q i+...+qk))

The quantity of each final output resource must not exceed the sum of quantities,

which are produced by the participating tasks that have as output the specific

resource.

6. ∀ pi , p j∈ BPM (pi→ p j⇒∃[r k , q i]∈ Oi∧∃[rk , q j]∈ I j)

Two participating tasks pi, pj are connected with the preceding- succeeding relation

pi→ p j when the task pi produces as output an input resource of the task pj.

7. ∀ pi , p j∈ BPM (pi⊗p j⇒(e i⩽s j)∨(e j⩽s i))

Two participating tasks pi, pj are connected with the mutual exclusion relation

pi⊗ p j, when the end time ei of the task pi is earlier or equal than the start time sj of

the tasks pj or the end time ej of the task pj is earlier or equal than the start time si of

the tasks pi.

8. ∀ pi∈ BPM (∅ →pi⇒∀[r j , q j]∈ I i(∃([r j , qa]∈ I BP∧q j⩽ qa)))

A participating task has not a preceding task(s), when all of its input resources are

contained into the set IBP of initially available resources in equal or bigger

quantities.

9. ∀ pi∈ BPM (pi→∅ ⇒∀[r j , q j]∈ Oi(∃([r j , qa]∈ OBP∧q j⩽ qa)))

A participating task has not a succeeding task(s), when all of its output resources

are contained into the set OBP of the required resources in equal or bigger quantities.

10. ∀ pi , p j∈ BPM (pi∥p j⇒(si⩽s j∧ei>s j)∨(s j⩽s i∧e j>si))

Two participating tasks pi, pj are connected with the parallel execution relation

pi∥p j, when the start time si of the task pi is earlier or equal than the start time sj of

the tasks pj and the end time of the task pi is later than the start time of the task pj or

vice versa.

The algorithm terminates when all of the following termination conditions are fulfilled:

1. All the resources that are contained in OBP have been produced in the required

quantities.

2. All the initially input resources that are contained in IBP have been consumed.

3. All the intermediately produced resources that are contained in RIP have been

consumed.

36

 4.3 Task library

The proposed software system includes a relational database, which contains an

arbitrary number of tasks and resources. This database acts as the library of the

fundamental building blocks that will be used for the construction of the entire optimized

business process. However, the most significant contribution of the database to the

optimization procedure is the implementation of the first step of the data reduction,

namely the selection of the candidate tasks that fulfill the requirements to participate to

the construction of the optimized business process in respect to user’s choices.

Specifically, for the storage of the available tasks is utilized a hierarchical schema that is

based on the Value Chain Analysis management concept which was developed by

Michael Porter (1985). Value Chain (Table 4.2) is a conceptual collection of general

classes, where theoretically can be classified all the processes that a company can

perform in order to create value for its customers, to pursue competitive advantages and

to attain higher profitability. Value Chain Analysis focuses on the systems and activities

considering customers as the central principle rather than the functional departments or

the organizational hierarchy (Porter, 1985). The utilization of this hierarchical schema for

the organization of the task library, results a significant limitation of the size of the

searching domain, so that the application of searching strategies can become

computationally more effective.

Table 4.2.Porter's Value Chain

Inbound

Logistics

Production Outbound

Logistics

Marketing

& Sales

Service

Procurement
Human Resources Management (HRM)

Research and Technological Development (R&TD)
Infrastructure

According to Porter (1985), the processes that an organization can engage to

transform the available resources to products, in general can be classified in five primary

categories and four supporting categories that serve as auxiliary processes for the proper

implementation of each primary process. In particular, the primary categories are:

1. Inbound Logistics: includes the processes that are required to receive, store and

distribute inputs.

37

2. Production: includes the processes that are required to transform resources into

products.

3. Outbound Logistics: includes the processes that are required to collect, store and

distribute the output.

4. Marketing and Sales: includes the processes that inform customers about

products, inducing them to purchase.

5. Service: includes the processes that required to maintain the effective functionality

of the products after purchase.

Moreover, the supporting categories are:

6. Procurement: includes the processes for the acquisition of resources.

7. Human Resources Management: includes the processes that are involved in

recruiting, hiring, training, developing, compensating and dismissing employees.

8. Research and Technological Development: includes the processes for the

acquisition of the equipment such as hardware, software, machinery, tools,

procedures and technical knowledge.

9. Infrastructure: includes the processes that interconnect the various departments

of the company such as accounting, legal, finance, planning, public affairs,

government relations, quality assurance and general management.

The structure of the relational model of the database and the developed

programming routines (PL SQL triggers and functions) facilitate the preservation of the

overall data consistency, utilizing the embedded consistency mechanisms of the DBMS

to guard against possible violations of constraints or relationships. Furthermore, they

offer a single update point by disseminating automatically the applied changes

throughout the entire database and make easy to insert new data, alter the existing or

delete the obsolete without any alterations to the rationale of the framework. The

complete logical model of the hierarchy schema of the task library is a tree graph (Figure

4.1) where the tasks are located into the leafs according to the functional sector of the

company that they belong. The category General introduced to store the tasks that can be

used to more than one functional sectors and eliminates the need for task repetition.

Responsibility of the user is to insert as parameters the functional sector that the process

to be optimized belongs, the set of initially input resources and the set of desired output

resources. Thus, the framework can limit the extent of the searching domain utilizing the

38

aforementioned data reduction constraints, only to the tasks that are contained into the

corresponding leaf, reducing significantly the complexity of the optimization procedure..

Figure 4.1.Task library hierarchy schema

The database was developed with the DBMS MySQL and is consisted by four

relational tables as shown in the Entity Relation Diagram (Figure 4.2). The table

Category indicates the functional sector where a task belongs according to the indexing

schema that was described to the previous paragraph. The table In_out_resource relates

each task with the resources that requires as input and produces as output, using the field

type as indicator to denote if a resource is input or output and the field quantity to store

the amount of the specific resource. Furthermore, three embedded triggers (Figure 4.2)

disseminate and incorporate any changes (insert, update, delete) to the table Process

according to the relationship constraint between the two tables. The table Process stores

the partial quantitative representations of the available tasks. The value of the fields

duration, quality and flexibility is predefined at storage time, while the value of the fields

cost and revenue is calculated by the stored function CalculateCostRevenue (Figure 4.2)

in order to maintain their updatability after a possible change of resources’ cost. The

table Resource contains the available resources that will be used for the construction of

the optimized business process as input or output and the embedded trigger (Figure 4.2)

disseminates the inserted value changes of the field cost, in order to preserve the

accuracy of the fields cost and revenue of the table Process.

39

 4.4 Data reduction

One of the major problems for the effectiveness of the searching techniques is the

high computational complexity when they have to elaborate very large domains. The

manipulation of huge amounts of data can make the searching procedure impractical or

even infeasible. For the confrontation of high data volume problem, the proposed system

applies three preprocessing rules for data reduction. More specifically:

1. The search domain is consisted only by tasks that belong to the functional sector

defined by the user. For the implementation of this rule, the proposed system

borrows a data reduction technique that comes from the field of data mining,

namely the Concept Hierarchy Generation (CHG) appropriately customized for the

case. CHG specifies and groups portions of data in the base of conceptual relations

and creates a hierarchical structure using the interrelationships between them (Han,

Kamber and Pei, 2012). This data reduction rule is implemented by the logical

model of the task library and for a specific instance limits the search domain only

to a single task category.

2. Rejection of tasks that require an input resource that is included in OBP. The

production of the resources that belong to the requested optimized process output is

one of the termination conditions of the optimization procedure. Thus, if a task

40

Figure 4.2.ER diagram of the database

requires as input resources that are contained in OBP, certainly will not be part

of the optimized process design and can be excluded from the search domain

(Georgoulakos et al., 2017). This rule is enforced by the Java module of the system

by utilizing the appropriate SQL queries according to user’s input.

3. Rejection of tasks that produce an output resource that is included in IBP. The

resources that belong to the initial input are considered as already available at the

beginning of the optimization procedure and there is no need to be produced.

Therefore, if a task produces as output resources that are contained in IBP, certainly

will not be part of the optimized process design and can be excluded from the

search domain (Georgoulakos et al., 2017). This rule is also applied by the Java

module by using the appropriate SQL queries according to user’s input.

 4.5 JAVA GUI and CLP program constructor

The initial interface of the framework is the control center of the application,

where the user is provided with the necessary forms in order to insert the required data

and adjust the appropriate parameters for the construction and implementation of the

business process optimization procedure. Additionally, the interface contains in the

background a set of routines that utilize the user input to acquire data from the database

and to formulate the CLP program. Subsequently, it initiates the ECLiPSe platform by

transmitting the constructed CLP program and appropriately transforms the returned

calculation to be visualized by the visualization module. In more detail, the user has first

to connect to the database using the credentials of a legitimate user’s account (Figure 4.3,

forms 1 and 2). The connection success or failure is denoted by a relevant pop up

message. The procedural part is completed with the indication of the folder where the

ECLiPSe platform is installed (Figure 4.3, form 3). On successful connection, the drop

down list Choose Process Category (Figure 4.3, form 4) is automatically filled with the

available task categories that were retrieved from the database. When the user chooses

the desired category, the corresponding routine retrieves from the database the relevant to

the tasks data using the appropriate SQL queries and stores it to a local temporary

structure.

41

At the same time, the field Resources displays the available resources that are

contained in the database (Figure 4.3, form 5). The user can choose the desired resources

and manipulate the arrow-controls 6a and 6b to insert or remove them respectively to the

set of the initial input resources (Figure 4.3, form 6). The same sequence of steps must be

conducted for the selection of the final output resources (Figure 4.3, arrow-controls 8a,

8b and form 8). An additional responsibility of the user is to insert the quantities of the

selected initial input and final output, utilizing the fields that are marked with the

numbers 7 and 9 respectively (Figure 4.3). The termination of the data import stage is

indicated by the confirmation of selections with the button-controls Confirm Initial

Resources and Confirm Final Resources (Figure 4.3, button-controls 10 and 11).

 The final required interaction with the user consists of the activation of the

button-control Run Optimization (Figure 4.3, button-controls 12). The last action initiates

the optimization phase of the framework's functionality. Specifically, first the data

reduction operations are applied, namely the rejection of the tasks that require an input

42

Figure 4.3.Framework initial screen

resource that is included in OBP and the rejection of tasks that produce an output resource

that is included in IBP. A very important operation at this point is the sorting of input

resources of the remaining tasks in ascending order according to their id. These tasks will

become the facts for the CLP program to be constructed using the programming language

Prolog. Later in this chapter we will see that the sorted input resources is a crucial

characteristic for a clustering technique that is applied to the task set and reduces the

computational complexity. The fully developed CLP program contains the

aforementioned facts, the sets of the initial input and output sorted in ascending order

according to the resources’ ids and a set of constraints in the form of logical rules, in

order to formulate mathematically the problem under examination and achieve the

satisfaction of the objective goals.

 Subsequently, the Java interface offers the communication channel for the

interaction between the Java application and the ECLiPSe platform. Specifically, the CLP

program is inscribed into a file, which is passed as an argument to the appropriate

routines pursuing to engage the functionalities of the ECL iPSe platform that implement

the main part of the optimization procedure. The inference mechanism of the ECLiPSe

platform tries to determine the optimum feasible process design for the specific input and

output resources. Finally, if the ECLiPSe terminates successfully, returns the result to the

Java interface to be appropriately transformed for the visualization process.

 4.5.1 Application’s architecture

For the complete technical description of the software architecture, subsequently

will be presented the necessary UML diagrams of designing level. The following Use

Case Diagram (Figure 4.4) demonstrates graphically the structural architecture, the

dependencies and the interactions between the programmatic modules that compose the

framework.

43

Moreover, the Activity Diagram (Figure 4.5) exhibits the functional sequence of

application’s execution and the potential control flow paths.

44

Figure 4.4.Use Case Diagram

Figure 4.5.Activity Diagram

The Sequence Diagram (Figure 4.6) describes the consecutive foreground and

background steps of a complete functional circle, for the decision of the optimized

business process design for a specific case.

Finally, the Class Diagram (Figure 4.7) shows the main structural classes of the

application and the associations between them that implement the functionalities of the

framework.

45

Figure 4.6.Sequence Diagram

 4.6 Engine of inference – ECLiPSe

During mid-eighties, the European Computer-Industry Research Center in

Munich initiated a research about the benefits of the application of the mathematical

reasoning to practical problems (Apt and Wallace, 2007). The outcome of the

aforementioned research was the development of three programming systems upon the

same logic paradigm. The first for the confrontation of complex problems on

multiprocessor environments, the second for the intelligent processing of vast amounts of

data with advanced database techniques and the third was the programming language

CHIP. The constraint logic language CHIP incorporates the concept of constraints’

satisfaction with the logic programming by implementing a top-down search in order to

attribute values to constraint variables from predefined finite domains (Apt and Wallace,

2007).

The merge of the three systems constitutes the ECL iPSe platform, which initially

derived its constraint programming features mainly from CHIP. Over time though,

ECLiPSe has been equipped with a variety of constraint solvers, solver interfaces and

interfaces to Database Management Systems and other programming languages (Apt and

Wallace, 2007). The last decade ECLiPSe has been used from institutions and companies

all over the world for education, research business purposes in a variety of fields such as

production planning, transportation scheduling, bioinformatics, software testing and

network optimization (Apt and Wallace, 2007). For the purposes of the suggested

46

Figure 4.7.Class Diagram

framework the CLP program contains as facts the initially input resources and the

required output resources sorted in ascending order according their id in the form:

global_input([[name, quantity],..., [name, quantity]]).

global_output ([[name, quantity],..., [name, quantity]]).

The available tasks are also CLP facts in the following form, having their input resources

sorted as well according their id:

model(id(),cost(),revenue(),duration(),quality(),flexibility(),

in([[name,quantity],...,[name,quantity]]),out([[name,quantity],...,

name,quantity]], mutual_exclusions[ida,...,idk]).

The optimization procedure is conducted by nineteen predicates, which

manipulate the facts in order to discover feasible process designs and decide the optimum

design for the specific input and output. The first predicate is used for the construction of

a feasible process design graph. Specifically, when a task i becomes a candidate for

participation to a feasible process design, the predicate attaches to its output resources the

task id, which later is used as the origin node for the edge towards the nodes that

represent the tasks of the design that consume the output resources of i. Additionally, it

keeps ascending order of the resource sets.

add_origin(Task_ID,Task_Res,Origin_Res):-
 add_origin_aux(Task_ID,Task_Res,[],Unsort_Origin_Res),
 msort(Unsort_Origin_Res,Origin_Res),!.

add_origin_aux(_,[],Origin_Res,Origin_Res):-!.

add_origin_aux(Task_ID,[Res|RestRes],TillNow_Res,Origin_Res):-
 append(Res,[Task_ID],Origin_H),
 append(TillNow_Res,[Origin_H],New_TillNow_Res),
 add_origin_aux(Task_ID,RestRes,New_TillNow_Res,Origin_Res).

The second predicate applies a type of clustering to the tasks set according the id

of their first input resource, creating twenty groups using the predefined bounds as

separation criteria. The bounds are determined by the Java interface in the base of the

tasks set size, trying to create task groups of the same size. Aim of this technique is the

reduction of searching space in each iteration of the algorithm by excluding the majority

of the tasks that cannot participate to the process design with criterion the currently

47

available resources. The key point is to keep always the input resources sets sorted in

ascending order according their id. Each of the task groups contains task with the

characteristic that the id value of their first input resource is within a specific range which

is determined by the given bounds.

In each iteration, the algorithm selects only the task groups with the resource id

range where belong the ids of the currently available input resources and ignores the

others. For at least one of the currently available input resources, if there is a feasible

process design then there is a task in the corresponding task group that its first input

resource have the same id. If there is not such a task for any of currently available input

resources then there is not a feasible design and the algorithm. Additionally, when is

checked the appropriateness of a task to participate to a feasible design and its first input

resource is not contained in the currently available input resources then it can be rejected

without checking its other input resources.

make_task_groups([Task_group1,Task_group2,Task_group3,Task_group4,Task_
group5,Task_group6,Task_group7,Task_group8,Task_group9,Task_group10,
Task_group11,Task_group12,Task_group13,Task_group14,Task_group15,
Task_group16,Task_group17,Task_group18,Task_group19,Task_group20]):-

 bounds([B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,B17,B1
 8,B19]),

 findall(T1,(task(id(T1),_,_,_,_,_,in([[H1|_]|_]),_,_),H1 =< B1),
 Task_group1),
 findall(T2,(task(id(T2),_,_,_,_,_,in([[H2|_]|_]),_,_),H2 > B1,H2 =<
 B2),Task_group2),
 findall(T3,(task(id(T3),_,_,_,_,_,in([[H3|_]|_]),_,_),H3 > B2,H3 =<
 B3),Task_group3),
 findall(T4,(task(id(T4),_,_,_,_,_,in([[H4|_]|_]),_,_),H4 > B3,H4 =<
 B4),Task_group4),
 findall(T5,(task(id(T5),_,_,_,_,_,in([[H5|_]|_]),_,_),H5 > B4,H5 =<
 B5),Task_group5),
 findall(T6,(task(id(T6),_,_,_,_,_,in([[H6|_]|_]),_,_),H6 > B5,H6 =<
 B6),Task_group6),
 findall(T7,(task(id(T7),_,_,_,_,_,in([[H7|_]|_]),_,_),H7 > B6,H7 =<
 B7),Task_group7),
 findall(T8,(task(id(T8),_,_,_,_,_,in([[H8|_]|_]),_,_),H8 > B7,H8 =<
 B8),Task_group8),
 findall(T9,(task(id(T9),_,_,_,_,_,in([[H9|_]|_]),_,_),H9 > B8,H9 =<
 B9),Task_group9),
 findall(T10,(task(id(T10),_,_,_,_,_,in([[H10|_]|_]),_,_),H10 > B9,H10
 =< B10),Task_group10),
 findall(T11,task(id(T11),_,_,_,_,_,in([[H11|_]|_]),_,_),H11 > B10,
 H11 =< B11),Task_group11),
 findall(T12,(task(id(T12),_,_,_,_,_,in([[H12|_]|_]),_,_),H12 > B11,
 H12 =< B12),Task_group12),
 findall(T13,(task(id(T13),_,_,_,_,_,in([[H13|_]|_]),_,_),H13 > B12,
 H13 =< B13),Task_group13),
 findall(T14,(task(id(T14),_,_,_,_,_,in([[H14|_]|_]),_,_),H14 > B13,

48

 H14 =< B14),Task_group14),
 findall(T15,(task(id(T15),_,_,_,_,_,in([[H15|_]|_]),_,_),H15 > B14,
 H15 =< B15),Task_group15),
 findall(T16,(task(id(T16),_,_,_,_,_,in([[H16|_]|_]),_,_),H16 > B15,
 H16 =< B16),Task_group16),
 findall(T17,(task(id(T17),_,_,_,_,_,in([[H17|_]|_]),_,_),H17 > B16,
 H17 =< B17),Task_group17),
 findall(T18,(task(id(T18),_,_,_,_,_,in([[H18|_]|_]),_,_),H18 > B17,
 H18 =< B18),Task_group18),
 findall(T19,(task(id(T19),_,_,_,_,_,in([[H19|_]|_]),_,_),H19 > B18,
 H19 =< B19),Task_group19),
 findall(T20,(task(id(T20),_,_,_,_,_,in([[H20|_]|_]),_,_),H20 > B19),
 Task_group20).

The third predicate applies binary search in each iteration of the algorithm, in order to

find the task groups with resource id range that corresponds to the ids of the currently

available input resources.

select_group(Task_groups,Global_input,Group):-
 bounds([B1,B2,B3,B4,B5,B6,B7,B8,B9,B10, B11,B12,B13,B14,B15,B16,B17,
 B18,B19]),
 member([Id|_],Global_input),

 (Id =< B10 ->
 (Id =< B5 ->
 (Id =< B3 ->
 (Id =< B1 ->
 (nth1(1,Task_groups,Group))
 ;
 (Id =< B2 ->
 (nth1(2,Task_groups,Group))
 ;
 (nth1(3,Task_groups,Group))
)
)
 ;
 (Id =< B4 ->
 (nth1(4,Task_groups,Group))
 ;
 (nth1(5,Task_groups,Group))
)
)
 ;
 (Id =< B7 ->
 (Id =< B6 ->
 (nth1(6,Task_groups,Group))
 ;
 (nth1(7,Task_groups,Group))
)
 ;
 (Id =< B9 ->
 (Id =< B8 ->
 (nth1(8,Task_groups,Group))
 ;
 (nth1(9,Task_groups,Group))
)
 ;

49

 (nth1(10,Task_groups,Group))
)
)
)
 ;
 (Id > B15 ->
 (Id > B17 ->
 (Id > B19 ->
 (nth1(20,Task_groups,Group))
 ;
 (Id > B18 ->
 (nth1(19,Task_groups,Group))
 ;
 (nth1(18,Task_groups,Group))
)
)
 ;
 (Id > B16 ->
 (nth1(17,Task_groups,Group))
 ;
 (nth1(16,Task_groups,Group))
)
)
 ;
 (Id > B13 ->
 (Id > B14 ->
 (nth1(15,Task_groups,Group))
 ;
 (nth1(14,Task_groups,Group))
)
 ;
 (Id > B12 ->
 (nth1(13,Task_groups,Group))
 ;
 (Id > B11 ->
 (nth1(12,Task_groups,Group))
 ;
 (nth1(11,Task_groups,Group))
)
)
)
)
).

The fourth predicate removes for the rest of the search procedure the tasks that have

already been selected to participate to a feasible process design and ensures the

satisfaction of the logic formula 4.

replace_group(Task_groups,Group,New_Group,New_Task_groups):-
 append(Start,[Group|Fin],Task_groups),
 append(Start,[New_Group|Fin],New_Task_groups),!.

The fifth predicate checks if the input resources of a task are contained into the

set of currently available resources in equal or bigger quantity. In case of success, the

50

task becomes a candidate for participation to the process design, the quantities of its input

resources are subtracted from the quantities of the corresponding available resources and

it is excluded from the next steps of the optimization procedure. Finally, the new

currently available input is sorted in ascending order according to the resources’ ids. To

make the connection with the mathematical formulation of the problem, this predicate

checks the satisfaction of the logic formula 1.

check_input(_,[],Global_input,Global_input,[]):-!.

check_input(Task_ID,[[Task_resource,Task_quantity]|Task_input],
Global_input,New_Global_input,[(Origin_ID,Task_ID)|RestConn]):-
 member([Task_resource,Global_quantity,Origin_ID],Global_input),
 arrange_resource_consumption(Task_quantity,Global_quantity,
 Task_resource,Origin_ID,Task_input,New_Task_Input,Global_input,
 Temp_Global_Input),
 check_input(Task_ID,New_Task_Input,Temp_Global_Input,
 New_Global_input, RestConn).

arrange_resource_consumption(Quantity,Quantity,Task_resource,
Origin_ID,Task_input,Task_input,Global_input,New_Global_input):-
 !,
 lists:delete([Task_resource,Quantity,Origin_ID],Global_input,
 New_Global_input).

arrange_resource_consumption(Task_quantity,Global_quantity,
Task_resource,Origin_ID,Task_input,Task_input,Global_input,
New_Global_input):-
 Task_quantity #=< Global_quantity,!,
 New_Global_quantity is Global_quantity - Task_quantity,
 lists:delete([Task_resource,Global_quantity,Origin_ID],Global_input,
 Temp_Global_input),
 msort([[Task_resource,New_Global_quantity,Origin_ID]|
 Temp_Global_input],New_Global_input).

arrange_resource_consumption(Task_quantity,Global_quantity,
Task_resource,Origin_ID,Task_input,New_Task_input,Global_input,
New_Global_input):-
 Task_quantity #> Global_quantity,!,
 New_Task_quantity is Task_quantity - Global_quantity,
 lists:delete([Task_resource,Global_quantity,Origin_ID],
 Global_input,New_Global_input),
 lists:delete([Task_resource,Task_quantity],Task_input,
 Temp_Task_input),
 msort([[Task_resource,New_Task_quantity,Origin_ID]|
 Temp_Task_input],New_Task_input).

The sixth predicate checks if some of the currently available input resources

belong to the set of required (global) output and cover them quantitatively in total or

partially. When succeeds, the quantities of the available input resources are subtracted

from the quantities of the corresponding required output resources but also they are

removed from the available input resources because they must not be used as input

51

resources by any other task as the optimization procedure continues. In addition, it sorts

the remaining final output in ascending order. This predicate refers to the satisfaction of

the logic formulas 2 and 5.

check_output(Global_input,Global_output,New_Global_input,New_Global_out
put,[(Origin_ID,-2)|RestConn]):-
 member([Output_resource,Output_quantity],Global_output),
 member([Input_resource,Input_quantity,Origin_ID],Global_input),
 Input_resource #= Output_resource,
 Input_quantity #=< Output_quantity,
 New_Output_quantity #= Output_quantity - Input_quantity,
 lists:delete([Output_resource,Output_quantity],Global_output,
 Global_output_aux),
 (New_Output_quantity #= 0 ->
 Temp_Global_output = Global_output_aux;
 append([[Output_resource,New_Output_quantity]],Global_output_aux,
 Temp_Global_output)),
 lists:delete([Input_resource,Input_quantity,Origin_ID],
 Global_input,Temp_Global_input),
 check_output(Temp_Global_input,Temp_Global_output,New_Global_input,
 Unsort_Global_output,RestConn),
 msort(Unsort_Global_output,New_Global_output),!.

check_output(Global_input,Global_output,Global_input,Global_output,_):-
 !.

The functionality of the seventh predicate is rather procedural. In particular, when a task

becomes candidate for participation to a feasible design, adds its output resources to the

set of the currently available input resources for the next step of the optimization

procedure, participating to the check of satisfaction of the logic formula 3. Additionally,

it maintains the ascending order of the currently available input

add_task_output([],Global_input,Global_input):-!.

add_task_output([[Output_resource,Output_quantity,Origin_ID]|
Rest_Task_output],Global_input,New_Global_input):-
 append([[Output_resource,Output_quantity,Origin_ID]],Global_input,
 Temp_Global_input),
 add_task_output(Rest_Task_output,Temp_Global_input,
 Unsort_Global_input),
 msort(Unsort_Global_input,New_Global_input).

The eighth predicate could be considered as the heart of the optimization procedure.

Specifically, using the aforementioned predicates decides whether a task can be carried

out with the currently available input resources and thus, can be a candidate for

participation to a feasible process design.

52

participation(Task_group,Global_input,Global_output,Task_ID,
Cost,Revenue,Quality,Flexibility,Rest_tasks,New_Global_input,
New_Global_output,[Task_Conns1|Task_Conns2]):-
 member(Task_ID,Task_group),
 task(id(Task_ID),cost(Cost),revenue(Revenue),_,quality(Quality),
 flexibility(Flexibility),in(Task_input),out(Task_output),_),
 check_input(Task_ID,Task_input,Global_input,Temp_Global_input,
 Task_Conns1),
 add_origin(Task_ID,Task_output,Origin_Task_output),
 add_task_output(Origin_Task_output,Temp_Global_input,
 Temp_Global_input1),
 check_output(Temp_Global_input1,Global_output,New_Global_input,
 New_Global_output,Task_Conns2),
 lists:delete(Task_ID,Task_group,Rest_tasks).

The ninth predicate applies the searching and scheduling constraints to the set of the

available task and constructs a feasible process design, taking under consideration the

specific initially input resources and the specific initially required output resources. This

predicate succeeds when the termination conditions 1, 2 and 3 have been satisfied.

design(Model,Tcost,Trevenue,Tduration,Tquality,Tflexibility,
TEvaluation,Connectivity,Starts,Fins):-
 make_task_groups(Task_groups),
 global_input(Global_input),
 add_origin(-1,Global_input,Origin_GI),
 global_output(Global_output),
 design_aux(Task_groups,Origin_GI,Global_output,Model,Tcost,Trevenue,
 TQuality,TFlexibility,Conns),
 flatten(Conns,Connections),
 remove_duplicates(Connections,Connectivity),
 model_durations_exclusions(Model,Durations,Mutual_Exclusions),
 timespan(Model,Connectivity,Durations,Mutual_Exclusions,Starts,
 Fins,TDuration),
 Evaluation #= TRevenue - TCost - TDuration + TQuality + TFlexibility,
 labeling([TRevenue,TCost,TDuration,TQuality,TFlexibility]),
 TEvaluation is -Evaluation.

design_aux(_,[],[],[],0,0,1000,1000,_):-!.

design_aux(Task_groups,Global_input,Global_output,[Task_ID|
RestModel],TCost,TRevenue,TQuality,TFlexibility,[Task_Conns|
TillNow_Conn]):-
 setof(Group,select_group(Task_groups,Global_input,Group),Sub_Groups),
 member(Sub_Group,Sub_Groups),
 participation(Sub_Group,Global_input,Global_output,Task_ID,
 Cost1,Revenue1,Quality1,Flexibility1,New_Sub_Group,New_Global_input,
 New_Global_output,Task_Conns),
 replace_group(Task_groups,Sub_Group,New_Sub_Group,New_Task_groups),
 design_aux(New_Task_groups,New_Global_input,New_Global_output,
 RestModel,Cost2,Revenue2,Quality2,Flexibility2,TillNow_Conn),
 TCost #= Cost1 + Cost2,
 TRevenue #= Revenue1 + Revenue2,
 TQuality #= min(Quality1,Quality2),
 TFlexibility #= min(Flexibility1,Flexibility2).

53

The tenth predicate is utilized for right the visualization of a feasible process design

graph, replacing the recurring edges with just one.

remove_duplicates(List,UList):-
 remove_duplicates_aux(List,[],UList).

remove_duplicates_aux([],UList,UList):-!.

remove_duplicates_aux([H|Rest],TempUList,UList):-
 member(H,TempUList),
 remove_duplicates_aux(Rest,TempUList,UList),!.

remove_duplicates_aux([H|Rest],TempUList,UList):-
 remove_duplicates_aux(Rest,[H|TempUList],Ulist),!.

The eleventh predicate is auxiliary and is used to find the duration and the lists of mutual

exclusions of the tasks that participate to a feasible process design.

model_durations_exclusions([],[],[]).

model_durations_exclusions([ID|Model],[Dur|Durations],
New_Mutual_Exclusions):-
 task(id(ID),_,_,duration(Dur),_,_,_,_,mutual_exclusions(ME_IDs)),
 model_durations_exclusions(Model,Durations,Mutual_Exclusions),
 fix_arg_ex(ME_IDs,ID,Mutual_Exclusions,New_Mutual_Exclusions).

fix_arg_ex([],_,Mutual_Exclusions,Mutual_Exclusions):-!.

fix_arg_ex(ME_Ids,ID,Mutual_Exclusions,[[ID|ME_Ids]|
Mutual_Exclusions]).

The twelfth predicate is responsible for the scheduling of the tasks of the feasible process

design in a way that minimizes the total duration. In addition, it determines the relative

start and finish time of each task, contributing to the overall optimization procedure.

timespan(Model_Ids,Connectivity,Durations,Mutual_Exclusions,Starts,
Fins,TDuration):-
 length(Durations,N),
 length(Starts,N),
 length(Fins,N),
 ic_global:sumlist(Durations,Duration_upper_bound),
 Starts #:: 0..Duration_upper_bound,
 Fins #:: 0..Duration_upper_bound,
 vars_matching(Starts,Fins,Durations),
 precedence_constraints(Model_IDs,Connectivity,Starts,Fins),
 exclusion_constraints(Model_IDs,Durations,Mutual_Exclusions,Starts),
 ic_global:maxlist(Fins,TDuration),
 bb_min(labeling(Starts),Tduration,bb_options
 {report_success:true/0}),!.

54

The thirteenth, fourteenth and fifteenth predicates are auxiliary and are used by

the twelfth predicate for the scheduling procedure. In detail, the thirteenth predicate

matches the variables that represent the start and time of the tasks of a feasible process

design. The fourteenth predicate constructs the constraints that determine the precedence

relations between the tasks of a feasible design and guards the satisfaction of the

satisfaction of the logic formula 6, 8, 9 and 10. Finally, the fifteenth predicate constructs

the constraints that define the mutual exclusion relations between the tasks of a feasible

design and ensures the satisfaction of the logic formula 7.

vars_matching([],[],[]):-!.

vars_matching([Start|RestStarts],[Fin|RestFins],[Duration|
RestDurations]):-
 Fin #= Start + Duration,
 vars_matching(RestStarts,RestFins,RestDurations).

precedence_constraints(_,[],_,_):-!.

precedence_constraints(Model_IDs,[(From,To)|RestConns],Starts,Fins):-
 ((From #> 0,To #> 0) ->
 (nth1(IndexTo,Model_IDs,To),
 nth1(IndexFrom,Model_IDs,From),
 nth1(IndexTo,Starts,S),
 nth1(IndexFrom,Fins,F),
 S #>= F);
 true),
 precedence_constraints(Model_Ids,RestConns,Starts,Fins).

exclusion_constraints(_,_,[],_):-!.

exclusion_constraints(Model_IDs,Durations,[ME|RestME],Starts):-
 starts_list(Model_IDs,Starts,ME,Starts_List),
 durations_list(Model_IDs,Durations,ME,Durations_List),
 disjunctive(Starts_List,Durations_List),
 exclusion_constraints(Model_IDs,Durations,RestME,Starts).

The sixteenth, seventeenth and eighteenth predicates are used as auxiliary by the fifteenth

predicate during the construction mutual exclusion constraints.

starts_list(Model_IDs,Starts,Excluded_List,Starts_List):-
 create_list(Model_Ids,Starts,Excluded_List,Starts_List).

durations_list(Model_IDs,Durations,Excluded_List,Durations_List):-
 create_list(Model_Ids,Durations,Excluded_List,Durations_List).

create_list(_,_,[],[]).

create_list(Model_IDs,Attributes,[EX|RestExcluded],[Attribute_EX|
Attributes_List]):-

55

 nth1(IndexEX,Model_IDs,EX),
 nth1(IndexEX,Attributes,Attribute_EX),
 create_list(Model_IDs,Attributes,[EX|RestExcluded],Attributes_List).

Finally, the nineteenth predicate implements the branch_and_bound optimization strategy

trying to constructs feasible process designs and determine the design that maximizes the

objective function F (opt). The predicate succeeds when at least one feasible process

design has been found within a time period of 60s cpu.

optimization(Optimum,Cost,Revenue,Duration,Quality,Flexibility,
Evaluation,Connectivity,Starts,Fins):-
 bb_min(design(Optimum,Cost,Revenue,Duration,Quality,Flexibility,
 Eval,Connectivity,Starts,Fins),
 Eval,
 bb_options{timeout:60}),
 Evaluation is -Eval.

 4.7 Visualization

After the execution of the logic program the ECLiPSe platform on success returns

attributes of the optimized business process design in the form: (Tasks List, cost,

revenue, duration, quality, flexibility, evaluation, Starts List, Finns List, Connectivity).

The Java module formats the characteristics of the optimum design and prints them on

the screen. Subsequently, depicts into a separate window the graph of the optimum

design. For the construction of the graphs is used the free Java library JGraphT release

1.2, which provides graph theory mathematical objects and graph-related algorithms

implementations (Naveh and Contributors, 2018). The JGraphT project is consisted by

two complementary and collaborating libraries. The first is the JGraphT that focuses on

data structures and algorithms implementation. The second is the JGraphX that is used

for data rendering and GUI-based editing (Naveh and Contributors, 2018).

 4.8 Asymptotic analysis

The asymptotic analysis of an algorithm refers to the determination of its

computational complexity in terms of time or space requirement in relation to the size of

the input. The analysis focuses on the behavior of the algorithm in the worst case, namely

the growth rate of complexity as the input’s size tends to infinity. The algorithm of the

process optimization procedure uses the exhaustive search strategy and examines all the

permutations of the set of the chosen tasks in order to determine the business process

design with the optimized evaluation. Therefore, in the general case for input of size

n→∞ there are n ! possible permutations and the computational complexity can be
56

estimated by the approximation of its natural logarithm ln n!=∑
x=1

n

ln x (Wikipedia

contributors, 2018). Specifically:

∫
1

n

ln x dx≤∑
x=1

n

ln x≤∫
0

n

ln(x+1)dx≈

n ln(n
e)≤ ln n!≤ (n+1)ln((n+1)

e)+1≈

(n
e
)

n

e≤ n! ≤(n+1
e

)
n+1

∙e ≈

n
3

n

≤ n! ≤
n
2

n

The asymptotic analysis shows that the proposed algorithm has exponential

complexity:

O((n
2
)

n

)

and in the general case, it is not computationally efficient. However, the framework

applies three data reduction techniques, which can lead to a significant reduction of the

searching domain and improve the overall performance and thus, the computational

efficiency of the algorithm. More specific:

1. The hierarchical indexing schema of the task library restricts the search only to a

category of tasks and in practice the number of tasks that belong to a specific

functional sector of a company according to Porter's Value Chain is limited.

Furthermore, a systematic analysis of a company can lead to a further refinement of

its operational structure and the definition of more functional sub-sectors that

contain small number of tasks.

2. The rejection of the tasks that require an input resource that is included in OBP or

produce an output resource that is included in IBP can diminish further the size of

the task set that is used as input to the algorithm.

3. The clustering of the input task set into twenty groups and the selection of a small

number of these groups in each iteration of the algorithm, decreases significantly

the searching domain.

57

 4.9 Summary

The fourth chapter presented the rationale that used for the design and

construction of the proposed framework. Initially, is analyzes in mathematical notation

the formulation of the problem under examination. Next, it presents the modules that

consist the framework both in terms of structure and functionality. Specifically, the

MySQL database contains all the necessary data while the Java module is responsible for

the interconnection between the subsystems and the interaction with the user. The

ECLiPSe platform conducts the main part of the optimization procedure and finally, the

JGraphT project visualizes obtained result. Although the algorithm typically has

exponential computational complexity, in practice the indexing schema of the task

library, the rejection of tasks with specific characteristics and the clustering of the input

task set, reduce significantly the searching domain and improves satisfactorily the

performance.

58

 5 Task generator

The present chapter describes the design and implementation of a generator for

the construction of instances for the business process construction and scheduling

problem, as it have been formulated in the context of the present thesis. The generated

instances can be of various levels of difficulty, depending on the user’s input and the

leverage of three complexity factors that correspond to three major structural

characteristics of a business process, if the latter is considered as an acyclic directed

graph. More specifically, the Net Complexity factor declares the maximum number of

precedence relations that a task can participate in, the Resource Density factor determines

the number of input and output resources that a task can consume and produce

respectively and finally, the Inter-level

Connection factor denotes if the immediate successors of a task belong to the

same level of the business process tree-graph or that is possible to exists precedence

relations between tasks of any level. Additionally, the difficulty level of an instance can

be increased by the ability of the generator to create alternative designs in the base of one

initially constructed feasible process design. In general, an instance can be described as a

set of a predefined number of tasks, which contains at least two feasible business process

designs with respect to a certain set of initial input resources and a certain set of required

final output resources. The creation of a set of instances of diverse levels of complexity

and size, provides the tool for the systematic evaluation of the computational complexity

and the performance of the business process optimization algorithm.

 5.1 Notation and task representation

We consider that a business process design is consisted of N + 2 labeled and

partially ordered tasks, where the n = 0 task is the unique dummy start-node and the n =

N + 1 is the unique dummy end-node. In order to constitute a processes, each task

consumes a set of specific input resources and produces a set of specific output resources.

Each task is characterized by a vector of five measurable attributes, namely cost,

revenue, duration, quality and flexibility. The evaluations for these attributes are

generated randomly within certain lower and upper bounds set by the user (arguments to

the algorithm). A generated instance of the problem contains tasks that can be

distinguished into two types. The first type refers to at least one subset of biased tasks,

which regard to the initial input, the final output and the individual input/output

59

resources, form a feasible business process design. The second type is the sub-set of

arbitrary tasks, which serve only as a control of the instance’s size and cannot participate

to the construction of a feasible process design. Table 5.1 presents the utilized notations

for the user input and provides their definition.

Table 5.1.Notation and definitions

User Input Definition
process_size The number N of tasks that construct the business

process.
population The number of arbitrary tasks that are contained in

the problem instance.
min_task_id
max_task_id

The range of integers for the IDs of the tasks.

min_cost
max_cost

The lower and upper bound of the randomly
calculated task’s cost respectively.

revenue_margin The percentage of profit that is produced by a task.
min_duration
max_duration

The lower and upper bound of the randomly
calculated task’s duration respectively.

quality_scale The upper bound of integers for the evaluation of
the quality of a task (1...N).

flexibility_scale The upper bound of integers for the evaluation of
the flexibility of a task (1...M).

min_resource_id
max_resource_id

The range of integers for the IDs of the resources.

min_resource_quantity
max_resource_quantity

The range within the quantity of an input / output
resource must be.

global_input_ids
global_input_quantities

The IDs and the corresponding quantities of the
initially available input resources.

global_output_ids
global_output_quantities

The IDs and the corresponding quantities of the
required output resources by the constructed
business process.

net_complexity The integer value of the network complexity
factor.

resource_factor The integer value of the resource factor.
inter_connection The boolean value of the inter_connection factor.
mutual_exclusions(task_id:
idk,…,idn)

For each task, the list of tasks (if there are) that
cannot be executed in concurrently.

For the manipulation of the complexity level of a problem’s instance, the

generator utilizes three parameters, namely the Network complexity factor, the Resource

Density factor and the Inter-level Connection factor. Furthermore, the user can choose

the construction of a number of alternative feasible designs in the base of one initially

constructed by the generator. In detail:

60

1. Network Complexity factor: the complexity of the business process network can

be measured by the mean number of unique connections (precedence relations) per

node (task). The rationale behind this parameter is that for certain number of tasks,

the higher the complexity is, the more dependencies there are between the tasks,

affecting their scheduling and the makespan of the entire business process

(Kolisch, Sprecher and Drexl, 1995; Kolisch, Schwindt and Sprecher, 1999).

According to graph theory, a complete graph is a graph where all nodes are

connected with each other, thus for a graph of n nodes, each node is connected with

the (n – 1) other nodes but in total there are n * (n – 1) / 2 unique directed arcs

excluding the duplicates. Considering that for realistic business processes each task

can be related up to 60% of the other tasks, the Network Complexity factor takes

values from 1 to 6 and randomly determines the percentage of tasks which each

task is related to as shown in Table 5.2:

Table 5.2.Network Complexity

Network complexity net_complexity value
1 (random in [1, 10]) / 100

relations with 1% to 10% of the remaining tasks
2 (random in [11, 20]) / 100

relations with 11% to 20% of the remaining tasks
3 (random in [21, 30]) / 100

relations with 21% to 30% of the remaining tasks
4 (random in [31, 40]) / 100

relations with 31% to 40% of the remaining tasks
5 (random in [41, 50]) / 100

relations with 41% to 50% of the remaining tasks
6 (random in [51, 60]) / 100

relations with 51% to 60% of the remaining tasks

In order to ensure that the resulting relation graph is a tree, and also ensure the

connectivity of the business process design, for each task the number of its precedence

relations is calculated by the formula:

connections_number = max(1, round((process_size - 1) * net_complexity)) (1)

where process_size initially is given by the user and is decreased by one each time a task

has been processed and has acquired precedence relations.

2. Resource Density factor: determines the number of different resources that a task

produces as output, thus decides the number of the different resource that are input

61

of the successive tasks of each processed task. This increases the level of

dependency among the tasks that participate to the construction of the process

design and can affect their execution time scheduling and the search complexity of

the optimization algorithm. In order to insert randomness, the Resource Density

factor is utilized as presented in Table 5.3:

Table 5.3.Resource Density

Resource
Density value

Output resource
number

1 1

2 random in [1, 3]

3 random in [2, 4]

4 random in [3, 5]

5 random in [4, 6]

6 random in [5, 7]

3. Inter-level Connection factor: it is a boolean parameter that determines if the

immediate successors of a task in terms of resources consumption belong to the

same level of the business process tree-graph or the precedence relations can exist

regardless of the level, creating groups of dependency. If the factor is set to “false”

it means that the resources produced by a task are consumed by the directly

successive tasks, otherwise the resources can be consumed by tasks that are in a

greater depth of the tree hierarchy. This kind of organization increases the

expansion and diffusion dependency between the nodes of a graph and may create

more backtracking points for the optimization algorithm. The following graphs

depict more clearly the differences in a business process tree-graph structure

accordingly to the value of the Inter-level Connection factor. In detail, we used the

same sets of initial input and final output resources for the construction of a

feasible business process design of 10 and 15 tasks. Figure 5.1 shows the graph of

the 10 task design with the Inter-level Connection factor set to false (0), while

Figure 5.2 shows the graph of the 10 task design with the Inter-level Connection

factor set to true (1).

62

Figure 5.1: 10 tasks design with ICF = false (0)

Figure 5.2: 10 tasks design with ICF = true (1)

Similarly, Figure 5.3 shows the graph of the 15 task design with the Inter-level
Connection factor set to false (0), while Figure 5.4 shows the graph of the 10 task design
with the Inter-level Connection factor set to true (1).

Figure 5.3: 15 tasks design with ICF = false (0)

63

Figure 5.4: 15 tasks design with ICF = true (1)

4. Alternative feasible designs: the creation of alternative designs in the base of one

initially constructed feasible process design is based mathematically on the

principles of Combinatorics. Specifically, considering a process design of n tasks

as a vector of variables then there are k1∗k2∗...∗kn possible evaluations, where k i

is the number of different values that can take the variable i. Therefore, if x < n

task of a constructed process design is duplicated then there are 2x alternative

designs. The generator provides the choice for the creation of 2, 4, 8 or 16

alternatives.

Finally, for the representation of the tasks is used a form that makes the generated

instances structurally compatible as input to the business process optimization algorithm,

that is:

task(id, cost, revenue, duration, quality, flexibility, input(...),
output(...), mutual_exclusions[mutual_exclusions])

 5.2 Task generation algorithm

The instance generator algorithm consists of two subroutines, one for the biased

task set calculation and one for the arbitrary task set calculation respectively. The

subroutines can operate independently or simultaneously, depending on the user input for

64

process_size and population variables. When process_size > 0 is triggered the

biased task set calculation and the arbitrary set task calculation is triggered when

population > 0. First of all the algorithm creates the data structures needed by both

subroutines, that is the initial input, the final output and the set of resources that will be

used as the input/output of the tasks:

READ
 process_size
 population
 min_task_id, max_task_id
 min_cost, max_cost
 revenue_margin
 min_duration, max_duration
 quality_scale, flexibility_scale
 min_resource_id, max_resource_id
 min_resource_quantity, max_resource_quantity
 global_input_ids, global_input_quantities
 global_output_ids, global_output_quantities
 net_complexity
 resource_factor
 inter_connection
 mutual_exclusions
END READ

BEGIN
 FOR index:= 1 to global_input_ids[] size
 global_input[index]:= (global_input_ids[index],
 global_input_quantities[index]);
 END FOR

 FOR index:= 1 to global_output_ids[] size
 global_output[index]:= (global_output_ids[index],
 global_output_quantities[index]);
 END FOR

 FOR index:= min_resource_id to max_resource_id
 available_resources[index]:= index;
 END FOR

 FOR each id in global_input_ids[]
 remove id from available_resources[];
 END FOR

 FOR each id in global_output_ids[]
 remove id from available_resources[];
 END FOR
END

The next two sections present in detail the steps of the subroutines that constitute

the algorithm of the instance generator. For their implementation are used the following

functions:

65

1. random_ints(num, from, to): returns a stream of random integers of size num

within the interval [from, to].

2. random_doubles(num, from, to): returns a stream of random doubles of size

num within the interval [from, to].

3. random(): returns a random double within the interval [0, 1).

4. random(n): returns a random integer within the interval [1, n].

5. round(d): rounds the double number d to the closer integer.

6. distribute_full(resources[], tasks[]): distributes all the resources in

resources[] to tasks in tasks[]. If the resources are less than tasks then it duplicate

some of the resources, if the resources are more than tasks then gives to some tasks

more than one resource.

7. distribute_part(resources[], tasks[]): gives one of the resources in

resources[] per task in tasks[]. If the resources are less than tasks then it duplicate

some of the resources, if the resources are more than tasks then some resources

remain into available_resources[].

 5.2.1 Biased task set creation

The first step is to create the body of the biased tasks and the values for the

randomly calculated attributes, namely id, cost, revenue, duration, quality, flexibility and

mutual exclusions. The created tasks are inserted to a temporary array

temp_biased_tasks[process_size].

IF process_size > 0 DO
 FOR index:= min_task_id to max_task_id
 task_ids[index]:= index;
 END FOR

 cost[]:= random_doubles(process_size, min_cost, max_cost);

 FOR index:= 1 to cost[] size
 revenue[index]:= cost[index] + cost[index] *0.2 + random() *
 revenue_margin;
 END FOR

 duration[] = random_ints(process_size, min_duration, max_duration);
 quality[] = random_ints(process_size, 1, quality_scale);
 flexibility[] = random_ints(process_size, 1, flexibility_scale);

 FOR index:= 1 to process_size
 create new biased_task(task_ids[index], cost[index],
 revenue[index], duration[index], quality[index],
 flexibility[index]);

 IF exists mutual_exclusions_list for task_ids[index]

66

 add mutual_exclusions_list to task;
 End IF

 temp_biased_tasks[index]:= biased_task;
 END FOR

At the beginning the set of the available resources is the initial input. The algorithm

selects [1 to available resources number] tasks, distributes the available resources as their

input and creates the necessary arcs for the process graph.

 current_input[] = global_input[];
 indices[] = random_ints (global_input[] size, 1, global_input[]
size);

 FOR each index in indices[]
 selected_tasks[]:= temp_biased_tasks[index];
 END FOR

 FOR index:= 1 to selected_tasks[] size
 links[index]:= (-1, selected_tasks[index].task.id);
 END FOR

 BEGIN BLOCK_1
 IF inter_connection == false:
 distribute_full(current_input[], selected tasks[]);
 Else
 distribute_part(current_input[], selected tasks[]);
 End If;

 remove consumed resources from current_input[];
 END BLOCK_1

Next in order to ensure connectivity, selects one of the aforementioned tasks, creates

resources as its output, inserts this output to available resources, removes the selected

task from the temporary array, inserts it to the permanent set of biased tasks and reduces

the process_size by one.

 BEGIN BLOCK_2
 index:= random(selected_tasks[] size);
 select_task:= temp_biased_tasks[index];

 indices[]:= random_ints(resource_factor, 1, available_resources[]);

 FOR each index in indices[]
 resource_id:= available_resources[index];
 resource_quantity:= random_doubles(1, min_resource_quantity,
 max_resource_quantity);
 task_output[index]:= (resource_id, resource_quantity);
 END FOR

 add task_output[] to select_task;
 add select_task into biased_tasks[];

67

 current_process_size:= process_size – 1;
 END BLOCK_2

While there are more than [final resources number] tasks, the algorithm sequentially

selects randomly tasks according to the procedure that described in 4.1 using the formula

(1) and connects them with the last inserted to the set of biased tasks in terms of output

→ input resources, creating the necessary arcs for the process graph. Then, selects

randomly one of them to be inserted to the set of biased tasks and repeats the step

sequence.

 WHILE temp_biased_tasks[] size > global_output[] size:
 task_connections = round(current_process_size * net_complexity);
 biased_task:= biased_tasks[biased_tasks size];

 FOR each out_resource in biased_task.task_output[]
 add out_resource into current_input[];
 END FOR

 indices[]:= random_ints(task_connections, 1,temp_biased_tasks[]
 size);

 FOR each index in indices[]
 selected_tasks[index]:= temp_biased_tasks[index];
 END FOR

 FOR each task in selected_tasks[]
 add into links[] (biased_task.id, selected_tasks[].task.id);
 END FOR

 REPEAT BLOCK_1;
 REPEAT BLOCK_2;
 END WHILE

Finally, the currently available resources are distributed to the last [final resources

number] tasks as input and the final resources as output, creating at the same time the last

arcs for the process graph.

 biased_task:= biased_tasks[biased_tasks size];

 FOR each out_resource in biased_task.task_output[]
 add out_resource into current_input[];
 END FOR

 FOR index:= 1 to temp_biased_tasks[] size
 selected_tasks[index]:= temp_biased_tasks[index];
 END FOR

 FOR each task in selected_tasks[]
 add into links[] (biased_task.id, selected_tasks[].task.id);
 add into links[] (selected_tasks[].task.id, -2);

68

 END FOR

 REPEAT BLOCK_1;
 distribute_full(global_output[], selected tasks[]);

 FOR each task in selected_tasks[]
 add task into biased_tasks[];
 END FOR
END IF

 5.2.2 Arbitrary task set generator

The creation of the set of arbitrary tasks uses the same sequence of steps, except

that everything is calculated randomly, the evaluation of the attributes is deliberately

worst and the initial input/final output resources are excludes from the set of the available

resources, to ensure that the arbitrary tasks cannot participate to the construction of an

optimum business process design.

 IF population > 0
 FOR index:= max_task_id +1 to population
 task_ids[index]:= index;
 END FOR

 cost[]:= random_doubles(population, (min_cost + min_cost * 0.2),
 (max_cost + max_cost * 0.2));

 FOR index:= 1 to cost[] size
 revenue[index]:= cost[index] - cost[index] *0.2 - random() *
revenue_margin;
 END FOR

 duration[] = random_ints(population, (min_duration +
 min_duration * 0.2), (max_duration + max_duration * 0.2));
 quality[] = random_ints(population, 0, (quality_scale - 2));
 flexibility[] = random_ints(population, 0, (flexibility_scale - 2));

 FOR index:= 1 to population
 create new arbitrary_task(task_ids[index], cost[index],
revenue[index],
 duration[index], quality[index],
flexibility[index]);
 arbitrary_tasks[index]:= arbitrary_task;
 END FOR

 FOR index:=1 to population
 input_num:= random(2);
 indices[]:= random_ints(input_num, 1, available_resources[]);

 FOR each index in indices[]
 resource_id:= available_resources[index];
 resource_quantity:= random_doubles(1, min_resource_quantity,
 max_resource_quantity);
 task_input[index]:= (resource_id, resource_quantity);
 END FOR

 add task_input[] to arbitrary_task[index];

69

 output_num = random(2);
 indices[]:= random_ints(output_num, 1, available_resources[]);

 FOR each index in indices[]
 resource_id:= available_resources[index];
 resource_quantity:= random_doubles(1, min_resource_quantity,
 max_resource_quantity);
 task_output[index]:= (resource_id, resource_quantity);
 END FOR

 add task_output[] to arbitrary_task[index];
 END FOR
END IF

 5.2.3 Auxiliary functionalities

The Task generator application offers three optional functionalities to facilitate

the better understanding of the constructed feasible business process and the usability

with the processes optimization application. Specifically, the visualization of the graph of

the feasible business process network can act as clear overview of the construction logic.

Additionally, there is the possibility to print the calculated result into a text file for every

intended use. Finally, by default the input resources of the tasks are sorted in ascending

order according their id the application and the user can choose out of two types of task

sorting during printing into a file. That is, the constructed tasks can be printed sorted in

ascending order in the base of their id value or in ascending order in the base of the id of

their first input resource. The later is a characteristic of crucial importance for the process

optimization algorithm.

 5.3 Process network construction

The structure of the business process design and the precedence relations between

the tasks can be represented by an acyclic, connected and directed graph. Specifically,

the tasks, their input/output resources and their attributes are represented by the nodes

and the precedence relations are represented by the directed arcs that connect the nodes.

The principle for the construction of the process graph is that for each node v there is a

directed path from the dummy start-node towards v and a directed path from v towards

the dummy end-node, therefore each node, except the start-node, has at least one

predecessor and except the end-node, at least one successor (Kolisch, Sprecher and

Drexl, 1995; Kolisch and Padman, 2001). In more detail, the constructive procedure that

ensures the connectivity of the process design graph is conducted as follows:

70

1. When a task Ti consumes as input a resource that is output of the dummy start task,

then is added to the graph an arc from the start-node towards the node that

represents Ti with the label (Start → Ti_id).

2. When task Ti produces as output a resource that is input for the task T j, then is

added to the graph an arc from the node that represents Ti toward the node that

represents Tj, with the label (Ti _id → Tj _id).

3. When a task Ti produces as output a resource that is input for the dummy end task,

then is added to the graph an arc from the node that represents T i toward the end-

node with the label (Ti_id → End).

 5.4 Application architecture

The presentation of the software architecture is completed with the necessary

UML diagrams of designing level. The following Use Case Diagram (Figure 5.5)

demonstrates graphically the structural architecture, the dependencies and the

interactions between the main consisting elements of the application.

In addition, the Activity Diagram (Figure 5.6) shows the execution sequence of the

generator and the possible paths of the control flow.

71

Figure 5.5.Use Case diagram

The Class Diagram (Figure 5.7) depicts a static view of the application, presenting the

main classes and the associations between them.

72

Figure 5.6.Activity diagram

Figure 5.7.Class diagram

Finally, the Sequence Diagram (Figure 5.8) exhibits the time dimension by describing

chronically the sequence of the steps and decisions for a complete functional circle of the

application.

 5.5 Experimental evaluation

For the more comprehensive understanding of the instance generator

functionality, we present a step-by-step experimental execution with arbitrary input data

and we display the produced outcomes. The first step for the user is to insert the

necessary data and settings in the main interface of the application (Figure 5.9).

73

Figure 5.8.Sequence diagram

In this experimental execution we want to create a feasible business process

design of 15 biased tasks, 3 duplicated biased for the creation of 23=8 alternative designs

and 300 arbitrary tasks as supplement to the problem instance. The ids of the biased tasks

are from 1 to 15 units, thus the ids of duplicated are from 16 to 18 and the ids of arbitrary

tasks are from 19 to 319. The cost is calculated within the range [5, 15], while the margin

for the revenue is 3. The execution time ranges from 2 to 12 units and for the evaluation

of the attributes quality and flexibility is used a twenty-level scale from 1 to 10. Eighty

different resource types can be utilized for the input/output of the tasks, with their

quantity to range from 1 to 20 units.

The set of the initial input is consisted by the resources 56, 23, and 48 in

quantities 14, 7 and 11 respectively, while the requested output set is consisted of the

resources 65 and 39 in quantities 12 and 5 respectively. The Net Complexity factor was

set to 2, meaning that each biased task can be related with 11% to 20% of the not yet

processed biased tasks. The Resource Density factor was set to 2, thus each biased task

outputs 1 to 3 different resources. Finally, the Inter-level Connection was set to 0 (false),

therefore the immediate successors of a task belong to the same level of the process tree-

graph. Table 5.4 presents the set of the generated biased task and in Figure 5.10 is

74

Figure 5.9: Task Generator User Interface

depicted the graph of the business process design. The entire set of the generated instance

can be found in Appendix C.

Table 5.4.Biased and Alternative tasks

Biased tasks
task(id(1),cost(10),revenue(18),duration(2),quality(8),flexibility(9),in([[1,4],

[57,1]]),out([[44,7],[49,5]]),mutual_exclusions([])).
task(id(2),cost(7),revenue(14),duration(6),quality(1),flexibility(8),in([[12,2],[44,7],

[49,5]]),out([[71,1]]),mutual_exclusions([])).
task(id(3),cost(12),revenue(20),duration(6),quality(9),flexibility(1),in([[12,2]]),out([[29,1

],[34,5],[52,11]]),mutual_exclusions([])).
task(id(4),cost(14),revenue(20),duration(9),quality(3),flexibility(6),in([[31,3],[56,14],

[58,1],[76,16]]),out([[17,4],[41,18]]),mutual_exclusions([])).
task(id(5),cost(10),revenue(12),duration(2),quality(8),flexibility(6),in([[59,12]]),out([[3,1

1],[66,5],[72,17]]),mutual_exclusions([])).
task(id(6),cost(11),revenue(19),duration(10),quality(7),flexibility(4),in([[21,6]]),out([[39,

5]]),mutual_exclusions([])).
task(id(7),cost(14),revenue(20),duration(6),quality(5),flexibility(6),in([[29,1],

[34,5]]),out([[68,14],[75,7],[79,6]]),mutual_exclusions([])).
task(id(8),cost(5),revenue(9),duration(11),quality(8),flexibility(8),in([[52,11],[68,14],

[73,18],[79,6]]),out([[57,1]]),mutual_exclusions([])).
task(id(9),cost(12),revenue(14),duration(7),quality(7),flexibility(8),in([[17,4],

[41,18]]),out([[21,13]]),mutual_exclusions([])).
task(id(10),cost(9),revenue(17),duration(4),quality(3),flexibility(7),in([[3,11],[66,5],

[72,17]]),out([[73,18]]),mutual_exclusions([])).
task(id(11),cost(9),revenue(11),duration(10),quality(9),flexibility(2),in([[25,10],

[48,11]]),out([[31,3],[58,1],[76,16]]),mutual_exclusions([])).
task(id(12),cost(5),revenue(9),duration(4),quality(10),flexibility(9),in([[71,1]]),out([[25,1

0]]),mutual_exclusions([])).
task(id(13),cost(10),revenue(15),duration(6),quality(8),flexibility(7),in([[75,7]]),out([[1,4

],[59,12]]),mutual_exclusions([])).
task(id(14),cost(14),revenue(23),duration(7),quality(6),flexibility(10),in([[23,7]]),out([[1

2,7]]),mutual_exclusions([])).
task(id(15),cost(12),revenue(17),duration(11),quality(1),flexibility(8),in([[12,3],

[21,7]]),out([[65,12]]),mutual_exclusions([])).
Alternative tasks

task(id(16),cost(8),revenue(16),duration(11),quality(8),flexibility(6),in([[25,10],

[48,11]]),out([[31,3],[58,1],[76,16]]),mutual_exclusions([])).

75

task(id(17),cost(8),revenue(16),duration(6),quality(10),flexibility(6),in([[31,3],[56,14],

[58,1],[76,16]]),out([[17,4],[41,18]]),mutual_exclusions([])).
task(id(18),cost(7),revenue(8),duration(6),quality(6),flexibility(6),in([[71,1]]),out([[25,10

]]),mutual_exclusions([])).

 6 Experimental evaluation

The aim of the sixth chapter is twofold. In the first section, it presents a complete

step-by-step execution of the developed software utilizing the necessary screenshots for a

more comprehensive understanding. The second section tries to investigate the

capabilities and limitations of the proposed algorithm, presenting an experimental

analysis of the performance as function of the size of the problem's instance.

76

Figure 5.10.Business Process Design Graph

 6.1 Execution example

For the demonstration of the functionality of the framework the problem’s

instance that was created by the Task_Generator is used, as described in the previous

chapter. The produced tasks are stored into the database as members of the functional

category Inbound Logistics and constitute the Task Library. Here we should remind the

reader that the aforementioned instance consists of 318 tasks and contains eight feasible

business process designs which each containing 15 tasks. Additionally, the Resource

Library contains eighty resources from which the decision maker can select the initial

input and the required output. The initial required step is the connection to the database

using the credentials of a valid user (Figure 6.1, 1 and 2). Next follows the selection of

the ECLiPSe installation directory (Figure 6.1, 3). For the specific example the

algorithm’s parameters was configured as follows:

1. Inbound Logistics as the category of the business process design (Figure 6.1, 3).

2. The initial input resources are the res23, res48, and res56 (Figure 6.1, 6) in

quantities 7, 11 and 14 units respectively (Figure 6.1, 6c), selected from the

available resources (Figure 6.1, 5) using the arrow-controllers (Figure 6.1, 6a and

6b) and confirming with the button Confirm Initial Resources (Figure 6.1, 6d).

3. The resources res39 and res65 (Figure 6.1, 7) in quantities 5 and 12 units

respectively (Figure 6.1, 7c) as initially required output, selected from the

available resources (Figure 6.1, 5) using the arrow-controllers (Figure 6.1, 7a and

7b) and confirming with the button Confirm Final Resources (Figure 6.1, 7d).

77

The last interaction by the user is the activation of button Run Optimization

(Figure 6.1, 8), which initiates in the background the execution chain keeping it

transparent from the decision maker. At the end of the computation, if the ECL iPSe infers

a solution then the application retrieves the necessary data for the optimized design,

prints on screen the information and depicts in a separate window the graph of the

process design. For our example, the attributes of the constructed optimum design are

shown in Figure 6.2, while the constructed graph is depicted in Figure 6.3.

78

Figure 6.1.Initial screen

 6.2 Performance evaluation

The target of the proposed optimization algorithm is twofold, initially to discover

the tasks that can construct an optimum process design regarding the criteria cost,

revenue, quality, flexibility and then to schedule the process in a way that minimizes the

total execution time. This means that the algorithm tries to solve concurrently two NP-

hard mathematical problems, namely the search and the scheduling problem. For this

reason, we conducted two separate comparative evaluations, one to test the performance

of the algorithm only in scheduling and the other to test the performance when both

searching and scheduling are performed. Before we proceed, we provide a discussion of

the meaning and the defining factors of the term connectivity complexity. More

specifically, the aforementioned term refers to (1) the number of connections that a task

has with other tasks in the context of a constructed process design, (2) the number of
79

Figure 6.2.Optimum design attributes

Figure 6.3.Optimum design graph

output resources of the tasks and (3) to the existence or not of task groups that are

executed in parallel. Referring to Task Generator, the first characteristic is controlled by

the Network Complexity Factor (NC) (Table 5.2), the second is defined by the Resource

Density Factor (RD) (Table 5.3) and the third is determined by Inter-level Connection

Factor (IC) (Figures 5.1, 5.2, 5.3 and 5.4). The higher are their values, the higher is the

connectivity complexity.

 6.2.1 Scheduling evaluation

For the evaluation of the algorithm regarding only scheduling, 24 instances of

various process sizes and factor combinations were constructed using the Task Generator

as shown in Table 6.1. The column Design size contains the number of tasks that must be

scheduled, the columns NC, RD, IC shows the combinations of the connectivity

complexity factors and the column cpu time the performance of the algorithm for the

corresponding instance. The notation +60 means that a sub-optimal solution was found,

because the time expiration limit of the branch-and-bound algorithm.

Table 6.1.Scheduling evaluation

Scheduling evaluation

Design size NC RD IC cpu time Design size NC RD IC cpu time

30 1 2 0 0.03 90 1 2 0 0.17

30 1 2 1 +60 90 1 2 1 +60

30 3 5 0 0.03 90 3 5 0 0.73

30 3 5 1 +60 90 3 5 1 +60

30 4 6 0 0.05 90 4 6 0 1.05

30 4 6 1 +60 90 4 6 1 +60

60 1 2 0 0.02 120 1 2 0 0.36

60 1 2 1 +60 120 1 2 1 +60

60 3 5 0 0.19 120 3 5 0 1.80

60 3 5 1 +60 120 3 5 1 +60

60 4 6 0 0.28 120 4 6 0 2.94

60 4 6 1 +60 120 4 6 1 +60

The results show that the performance of proposed algorithm is not affected by

the size of the process and can easily schedule large problems of 120 tasks when the

connectivity complexity is medium to high. But when there are many groups of many

80

parallely executed tasks and the connectivity complexity becomes very high (IC = 1),

then the performance is very poor even for small process sizes of 30 tasks. Finally,

regarding the NC and RD factors, the results show a rather small impact to the overall

performance of the scheduling.

 6.2.2 Searching and Scheduling evaluation

Similarly, for the evaluation of the algorithm regarding both searching and

scheduling, 21 instances of various process sizes, total sizes and factor combinations

were constructed using the Task Generator as shown in Table 6.2. Additionally to the

columns of the Table 6.1, ithe column Instance size is used, that contains the total

number of the task set and the column Alt that denotes the number of the alternative

feasible designs. The absence of value in the cpu time column denotes that the algorithm

failed to find any solutions within the time limit of 60 seconds.

Table 6.2.Search and Scheduling evaluation

Search and Scheduling evaluation

Design

size

Instance

size

Alt NC RD IC cpu

time

Design

size

Instance

size

Alt NC RD IC cpu

time

20

523

8 1 2 0 0.13 60 211 2 4 6 0 48.41

20 0 1 2 1 +60 80 580 0 1 2 0 0.91

20 8 3 5 0 2.86 80 580 0 3 5 0 23.95

20 0 3 5 1 - 80 350 0 4 6 0 5.30

20 8 4 6 0 1.18 100 600 0 1 2 0 1.11

20 0 4 6 1 - 100 600 0 3 5 0 15.75

40 543 8 1 2 0 24.64 100 235 0 4 6 0 6.38

40 353 4 3 5 0 38.45 120 620 0 1 2 0 3.63

40 541 2 4 6 0 1.65 120 300 0 3 5 0 52.66

60 563 8 1 2 0 2.84 120 220 0 4 6 0 29.78

60 462 4 3 5 0 35.55

The results show that the main affecting characteristic for the performance is the

existence of a high number of groups of many parallely executed tasks. We observe that

even for only one design (Alt = 0) of 20 tasks, when IC = 1 the algorithm fails to find a

solution within the time limit. The same negative effect seems to cause the existence of

alternative feasible designs in the task set. Indeed, from a design size of 40 tasks the

81

impact starts to become significant while from size 80 tasks and above the algorithm fails

to find solution regardless the total size. This is the reason for the absence of results with

IC = 1 and Alt > 0 for design sizes bigger than 40 and 80 respectively. On the other

hand, when the connectivity complexity is medium to high the performance is

satisfactorily even for combinations of large design sizes, total sizes and high values of

NC and RD factors.

 6.3 Summary

The sixth chapter was devoted to the description of how the software can be used

and to the exploration of its capabilities. Thus, initially a complete step-by-step cycle of

execution via screenshots is presented and then is conducted a comparative evaluation of

the performance of the proposed algorithm, using problem instances of various sizes and

connectivity complexity that was constructed with the Task Generator application.

82

 7 Conclusion

The modern approaches of Business Administration consider the business

processes as the crucial element for the organizational structure of an effective enterprise,

for the achievement of high competitiveness and profitability. Therefore, the

administration of processes has become a major concern for the companies and

researchers in an attempt to develop methodologies that can assist processes’ continuous

improvement. The review of the relevant bibliography revealed that the majority of these

methodologies are based on graphical paradigms, evolutionary algorithms or data mining

techniques while is observed a complete absence of methods that are based on CLP.

However, CLP is by nature a searching technique in the domain of decision variables

under the limitation of predefined constraints. Therefore, CLP can offer the

computational environment for the solution of complex combinatorial problems such as

business process optimization.

 7.1 Results

The present thesis investigated the applicability of CLP to the field of process

optimization, by the design and development of a framework that integrates

heterogeneous technologies in order to compose optimized business processes by simple

tasks in the base of quantitative and qualitative evaluation criteria. The developed

framework is consisted by a relational database for the storage of the task related data, a

Java interface which handles the interaction between the subsystems and the user, the

ECLiPSe platform that performs the optimization procedure utilizing logic programming

and finally, the JGraphT which visualizes the constructed optimum process design as a

acyclic directed graph. To deal with the fact that the business process optimization is

considered as a NP-hard problem and the performance of an algorithm depends on the

size of a specific instance (Wang, Salhi and Fraga, 2004;Georgoulakos et al., 2017), the

proposed framework involves three techniques of data reduction.

The first is implemented in the system’s database, where the tasks are organized

by an indexing schema according to Porter's Value Chain that groups the tasks into non-

overlapping categories and decreases the searching domain of the problem. The second

data reduction technique is the exclusion of the tasks with certain characteristics in the

base of predefined rules. Finally, is utilized a clustering technique for the separation of

the input task set into twenty groups using as criterion the id of their first input resource,

83

in order to be reduced the searching space in each iteration of the optimization algorithm.

For the evaluation of the performance and the detection of the limitations of the proposed

algorithm, was developed the Task Generator application which can create instances of

various sizes of the formulated problem, manipulating their characteristics through the

factors Network Complexity, Resource Density and Interconnection.

 7.2 Limitations

The benchmarking with instances of various sizes and parameter configuration,

reviled that the algorithm is suitable for problem’s instances of small to medium size and

low connectivity complexity when is required searching and scheduling of an optimized

business process design. On the other hand, it seems to be able to confront efficiently

instances of large sizes but low to medium complexity when only scheduling is required.

Although the computational complexity is exponential, the clustering technique that is

used to split up the input task set into twenty groups, speeds up satisfactorily the

execution and succeeds to give exact solution to realistic problem instances within

practical time. However, in the general case the proposed algorithm as an exact method

has limitation to escalation, thus can be considered as a solution for small to medium

instance sizes and limited connectivity complexity.

 7.3 Future research

In the context of the proposed framework the tasks are manipulated as “black

boxes” without any knowledge about their internal structure or functionality. The only

known characteristics of a task are the input/output resources and the evaluation for the

criteria cost, revenue, duration, quality and flexibility. This means that a constructed

optimized process can be treated also as a task of a higher level. Taking advantage of this

feature, we can create a multilevel hierarchy of tasks, stored into a corresponding

multilevel hierarchy of tables in the database that preserves the constructing relationships

between the tasks of each level with the tasks of the directly lower level. Considering that

a very complex constructing procedure is usually consisted by smaller sub-procedures for

reasons of better administrative control, the aforementioned strategy theoretically can be

applied on business process optimization problems of any size.

 Concerning the current structure of the framework, some interventions can induct

further improvement in terms of flexibility of decision-making, completeness of analysis

and technical integration. In more detail, a systematic analysis of a company’s structure

84

can lead to a further refinement of its operations and define functional sub-sectors that

contain smaller number of tasks and reduce the overall complexity. Regarding flexibility,

each evaluation criterion can be refined to a set of sub-criteria that are more

representative and comprehensible. For example, the criterion Cost can be refined to the

sub-criteria Row Materials Cost, Auxiliary Materials Cost, Labor Cost, Machinery Cost,

Transportation Cost, Storage Cost and offer better understanding to the decision maker

in order to recognize problems and suggest possible modifications.

Additionally, the criteria may be weighted in an effort to simulate in a better way

the reality of a specific case and incorporate into the analysis the particular perception of

the decision maker. In terms of analysis completeness and robustness of the multicriteria

analysis, could be employed additional evaluation criteria. Finally, in terms of

technological integration the connection of the database of the proposed system with

other transactional databases of a company can ensure the acquisition of timely data

about the available resources and tasks. Additionally, the implementation of the

framework as a web service from a local server or through the utilization of the Cloud

and Internet services, could guarantee the integrity and validity of the analysis, scale

economies as a single deployment point and convenience in use with mobile devices.

85

Bibliography

Ahmadikatouli, A. and Aboutalebi, M., 2011. New Evolutionary Approach to Business
Process Model Optimization. In: Proceedings of International MultiConference
of Engineers and Computer Scientist Vol II (IMECS). Hong Kong, China, 16-18
March, 2011.

Apt, K.R. and Wallace, M., 2007. Constraint Logic Programming using ECLiPSe.
Cambridge, UK: Cambridge University Press.

Bhutta, K.S. and Huq, F., 1999. Benchmarking–best practices: an integrated approach.
Benchmarking: An International Journal, 6(3), pp.254-268.

Coello, C.A.C., Lamont, G.B. and Van Veldhuizen, D.A., 2007. Evolutionary Algorithms
for Solving Multi-Objective Problems. 2nd ed. New York: Springer.

Conger, S., 2010. Six Sigma and Business Process Management. In: Vom Brocke, J., and
Rosemann, M., eds., 2010. Handbook on business process management 1:
Introduction, Methods, and Information Systems. 2nd ed. Heidelberg: Springer-
Verlag. pp.127-146.

Davenport, T.H., 1993. Process Innovation: Reengineering Work through Information
Technology. Boston: Harvard Business School Press.

Dumas, M., Mendling, J., La Rosa, M. and Reijers H.A., 2013. Fundamentals of
Business Process Management. Heidelberg: Springer-Verlag.

Georgoulakos, K., Vergidis, K., Tsakalidis, G. and Samaras, N., 2017. Evolutionary
Multi-Objective Optimization of business process designs with pre-processing.
In: Evolutionary Computation (CEC), 2017 IEEE Congress. Donostia / San
Sebastian, Spain: IEEE. pp. 897-904.

Gerke, K., Petruch, K. and Tamm, G., 2010. Optimization of Service Delivery through
Continual Process Improvement: A Case Study. In: Abramowicz, W., Alt, R.,
Fahnrich, K.P., Franczyk, B. and Maciaszek, L.A., eds. 2010. INFORMATIK
2010, Business Process and Service Science-Proceedings of ISSS and BPSC,
Lecture Notes in Informatics (LNI), P-177. Bonn: LNI. pp. 94-107.

Godfrey, A.B., 1999. Total Quality Management. In: Joseph M. Juran, J.M., Godfrey,
A.B, Robert E. Hoogstoel R.E., and Edward G. Schilling E.G., eds. 1999. Juran’s
Quality Handbook. New York: McGraw-Hill. Ch.14.

Groger, C., Schwarz, H., and Mitschang, B., 2014. Prescriptive Analytics for
Recommendation-Based Business Process Optimization. In: Proceedings of the
17th International Conference on Business Information Systems (BIS) 2014.
Larnaca: Springer. pp.25-37.

Hallerbach, A., Bauer, T. and Reichert, M., 2009. Guaranteeing soundness of
configurable process variants in Provop. In: Proceedings of 11th IEEE
Conference on Commerce and Enterprise Computing (CEC 2009). Vienna: IEEE
Computer Society Press. pp.98-105.

86

Han, J., Kamber, M. and Pei, J., 2012. Data Mining Concepts and Techniques. 3rd ed.
Waltham: Morgan Kaufmann-Elsevier.

Heravizadeh, M., Mendling, J. and Rosemann, M., 2009. Dimensions of Business
Processes Quality (QoBP). In: Ardagna, D., Mecella, M. and Yang, J., eds. 2009.
BPM 2008 Workshops, LNBIP 17. Heidelberg: Springer-Verlag. pp.80-91.

Hammer, M. and Champy, J., 1993. Reengineering the Corporation: A Manifesto for
Business Revolution. London: Brealey.

Hammer, M., 2015. What is Business Process Management? In: Vom Brocke, J. and M.
Rosemann, M., eds. 2015. Handbook on Business Process Management 1,
International Handbooks on Information Systems. 2nd ed. Heidelberg: Springer-
Verlag. pp.3-16.

Havey, M., 2005. Essential Business Process Modeling. O’Reilly Media Inc.

Hofacker, I. and Vetschera, R., 2001. Algorithmical approaches to business process
design. Computers & Operations Research, 28, pp.1253-1275.

Kaplan, R.S. and Norton, D.P., 1992. The balanced scorecard: Measures that drive
performance. Harvard Business Review, 70(1), pp.71-79.

Knuth, D. 1998. Sorting and searching. The Art of Computer Programming Volume 3.
2nd ed. Reading, Massachusetts: Addison-Wesley. ISBN 0-201-89685-0.

Kohonen, T., 1995. Self-Organizing Maps. Heidelberg: Springer-Verlag.

Kolisch, R. and Padman, R., 2001. An integrated survey of deterministic project
scheduling. Omega, 29(3), pp. 249-272.

Kolisch, R., Schwindt, C., and Sprecher, A., 1999. Benchmark instances for project
scheduling problems. In: J. Weglarz ed. 1999. Project scheduling: Recent
Models, Algorithms and Applications. Boston MA: Springer. pp. 197-212.

Kolisch, R., Sprecher, A. and Drexl, A., 1995. Characterization and generation of a
general class of resource-constrained project scheduling problems. Management
science, 41(10), pp. 1693-1703.

 Li, C., Reichert, M. and Wombacher, A., 2010. The MinAdept clustering approach for
discovering reference process models out of process variants. International
Journal of Cooperative Information Systems, 19(3-4), pp.159-203.

Lohrmann, M., and Reichert, M., 2013. Understanding business process quality. Ιn:
Glykas, M., Ed, 2013. Business Process Management, Theory and Applications.
Heidelberg: Springer-Verlag. pp.41-73.

Melao, N. and Pidd, M., 2000. A conceptual framework for understanding business
process modeling. Information System Journal, 10, pp.105-129.

87

Moon, C. and Seo, Y., 2005. Evolutionary algorithm for advanced process planning and
scheduling in a multi-plant. Computers & Industrial Engineering, 48(2), pp.311-
325.

Naveh, B. and Contributors, 2018. JGraphT. [online] Available at: <https://jgrapht.org >
[Accessed 29 August 2018)]

Niederlinsky, A., 2014. A Gentle Guide to Constraint Logic Programming via ECLiPSe.
3rd ed. Gliwise: Jacek Skalmierski Computer Studio.

Niedermann, F. and Schwarz, H., 2011. Deep Business Optimization: Making Business
Process Optimization Theory Work in Practice. In: Halpin, T., Nurcan, S.,
Krogstie, J., Soffer, P., Proper, E., Schmidt, R. and Bider, I., eds. 2011. BPMDS
2011 and EMMSAD 2011, LNBIP, 81. Heidelberg: Springer-Verlag. pp. 88-102.

Oaklant J, 2003. Total Quality Management: text with cases. 3rd ed. Amsterdam:
Butterworth-Heinemann.

Omachonu, V.K, and Ross, J.E., 2004. Principles of total quality. 3rd ed. New York:
CRC Press LLC.

O'Neill, P., and Sohal, A.S., 1999. Business Process Reengineering. A review of recent
literature. Technovation, 19(9), pp.571-581.

Porter, M. E., 1985. Competitive advantage: creating and sustaining superior
performance. New York: Nova Science Publishers.

Reichert M., Rinderle-Ma S. and Dadam P., 2009. Flexibility in Process-Aware
Information Systems. In: Jensen K. and Van der Aalst W.M.P., eds. 2009.
Transactions on Petri Nets and Other Models of Concurrency II. Lecture Notes in
Computer Science, 5460. Heidelberg: Springer-Verlag. pp.115-135.

Rossi, F., Van Beek, P. and Walsh, T., eds. 2006. Handbook of Constraint
Programming. Amsterdam: Elsevier.

Tiwari, A., Vergidis, K. and Majeed, B., 2006a. Evolutionary Multi-objective
Optimisation of Business Processes. In: Proceedings of IEEE Congress on
Evolutionary Computation 2006. Vancouver: IEEE. pp.3091-3097.

Tiwari, A., Vergidis, K. and Turner, C., 2010. Evolutionary Multi-Objective
Optimization of Business Processes. Soft Computing in Industrial Applications,
pp. 293-301.

Valiris, G. and Glykas, M., 2004. Business analysis metrics for business process
redesign. Business Process Management Journal, 10(4), pp. 445-480.

Van der Aalst, W. M. P. and Van Hee, K. M., 1996. Business process redesign: A Petri-
net-based approach. Computers in industry, 29(1), pp. 15-26.

Van der Aalst, W.M.P., 1998. The application of Petri nets to workflow management.
Journal of Circuits, Systems and Computers, 8(1), pp. 21-66.

88

https://jgrapht.org/

Van der Aalst, W. M. P., 2004. Business process management demystified: a tutorial on
models, systems and standards for workflow management. In: Desel, J., Reisig,
W. and Rozenberg, G., eds. 2004. Lectures on Concurrency and Petri Nets, vol.
3098 of Lecture Notes in Computer Science. Heidelberg: Springer-Verlag. pp.1-
65.

Van der Aalst, W.M.P., 2013. Business Process Management: A Comprehensive Survey.
ISRN Software Engineering, Vol 2013, Article ID 507984, 37 pages. Hindawi
Publishing Corporation.

Van der Aalst, W. M. P., ter Hofstede A. H. M. and Weske, M., 2003. Business process
management: a survey. In: van der Aalst, W. M. P., ter Hofstede, A. H. M., and
Weske, M., eds. 2003. Proceedings of the International Conference on Business
Process Management (BPM ’03), Vol. 2678 of Lecture Notes in Computer
Science (LNCS). Heidelberg: Springer-Verlag. pp.1-12.

Vergidis, K., Tiwari, A. and Majeed, B., 2007. Composite Business Processes: An
Evolutionary Multi-objective Optimisation Approach. In: Evolutionary
Computation, 2007, CEC 2007, IEEE Congress. Singapore: IEEE. pp.2672-2678.

Vergidis, K., Tiwari, A. and Majeed, B., 2006b. Business Process Improvement using
Multi-objective Optimisation. BT Technology Journal, 24(2), pp.229-235.

Vergidis, K. and Tiwary, A., 2008. Business process design and attribute optimization
within an evolutionary framework. In: Proceeding of 2008 IEEE Congress on
Evolutionary Computation (IEEE World Congress on Computational
Intelligence). Hong Kong, China, 1-6 June: IEEE.

Volkner, P. and Werners, B., 2000. A decision support system for business process
planning. European Journal of Operational Research, 125, pp. 633-647.

Vom Brocke, J., and Rosemann, M., eds. 2010. Handbook on business process
management 1: Introduction, Methods, and Information Systems. 2nd ed.
Heidelberg: Springer-Verlag.

Wang, K., Salhi, A. and Fraga, E.S., 2004. Process design optimization using embedded
hybrid visualization and data analysis techniques within a genetic algorithm
optimization framework. Chemical Engineering and Processing, 43, pp.663-675.

Weske, M., 2012. Business Process Management: Concepts, Languages, Architectures.
Heidelberg: Springer-Verlag.

Wibig, M., 2013. Dynamic Programming and Genetic Algorithm for Business Processes
Optimisation. I.J. Intelligent Systems and Applications, 01, pp.44-51.

Wikipedia contributors, 2018. Factorial. In: Wikipedia, The Free Encyclopedia. [online]
Available at: <https://en.wikipedia.org/w/index.php?
title=Factorial&oldid=853729291> [Accessed 28 August 2018].

Wikipedia contributors, 2019. Binary search algorithm. In: Wikipedia, The Free
Encyclopedia. [online] Available at: <https://en.wikipedia.org/w/index.php?
title=Binary_search_algorithm&oldid=880095920> [Accessed 30 January 2019].

89

https://en.wikipedia.org/w/index.php?title=Factorial&oldid=853729291
https://en.wikipedia.org/w/index.php?title=Factorial&oldid=853729291
https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=880095920
https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=880095920

Womack, J.P. and Jones, D.T., 2003. Lean Thinking. New York: Free Press.

90

Appendix A - Database

The thesis have as attachment the file process_optimization.sql that contains the

SQL code for the creation of database that is used as component of the proposed

framework for the implementation of its functionality. The code is provided “AS IS’

without any warranty by the writer of this thesis. Possible use involves the assumption of

full responsibility by the user. The database developed and tested with the DBMS

MySQL 8.0.

91

Appendix B - Java GUI

The thesis have as attachments the folders Process Optimization and Task

Generator that contain the executable java files Process_Optimization.jar and

TaskGenerator.jar respectively along with the necessary java libraries and the logic

program that was constructed for the experimental evaluation of the application. The

applications requires Java 8.0 or higher and is provided “AS IS’ without any warranty by

the writer of this thesis. Possible use involves the assumption of full responsibility by the

user. The application developed and tested on Linux Ubuntu 18.04 LTS.

92

Appendix C - Arbitrary tasks

task(id(19),cost(12),revenue(10),duration(6),quality(5),flexibility(5),in([[2,4],[31,16],[54,2],[65,2],

[68,19]]),out([[24,13],[31,6]]),mutual_exclusions([])).

task(id(20),cost(9),revenue(7),duration(7),quality(7),flexibility(6),in([[32,5],[54,12],

[57,10]]),out([[33,2]]),mutual_exclusions([])).

task(id(21),cost(6),revenue(5),duration(13),quality(2),flexibility(2),in([[19,9],[30,3],[72,12]]),out([[33,13],

[52,2]]),mutual_exclusions([])).

task(id(22),cost(15),revenue(9),duration(13),quality(4),flexibility(1),in([[26,5],[42,17],[48,4],[56,3]]),out([[6,10],

[47,9]]),mutual_exclusions([])).

task(id(23),cost(12),revenue(10),duration(8),quality(1),flexibility(0),in([[2,16],[35,4],[53,15]]),out([[13,2],[24,18],

[61,14]]),mutual_exclusions([])).

task(id(24),cost(15),revenue(9),duration(4),quality(2),flexibility(0),in([[1,18],[11,2],[17,11],[67,3]]),out([[4,7],

[50,16]]),mutual_exclusions([])).

task(id(25),cost(14),revenue(8),duration(12),quality(2),flexibility(3),in([[38,11],[67,11]]),out([[25,3],

[70,19]]),mutual_exclusions([])).

task(id(26),cost(15),revenue(9),duration(4),quality(5),flexibility(5),in([[9,7],[42,11],[44,5],[58,13]]),out([[8,11],

[50,1]]),mutual_exclusions([])).

task(id(27),cost(11),revenue(9),duration(10),quality(0),flexibility(6),in([[2,7],[21,17],[27,13],

[45,8]]),out([[44,19]]),mutual_exclusions([])).

task(id(28),cost(6),revenue(5),duration(10),quality(6),flexibility(5),in([[35,11],[74,4]]),out([[13,18],[37,8],

[57,1]]),mutual_exclusions([])).

task(id(29),cost(8),revenue(6),duration(6),quality(7),flexibility(1),in([[15,1],[49,8],

[50,8]]),out([[7,9]]),mutual_exclusions([])).

task(id(30),cost(17),revenue(14),duration(9),quality(7),flexibility(5),in([[29,17],[34,9],[40,1],[56,13],

[61,7]]),out([[36,11],[66,12]]),mutual_exclusions([])).

task(id(31),cost(12),revenue(7),duration(9),quality(2),flexibility(6),in([[17,4],

[65,12]]),out([[26,13]]),mutual_exclusions([])).

task(id(32),cost(6),revenue(5),duration(10),quality(7),flexibility(7),in([[64,14],[73,6]]),out([[21,19],[37,13],

[42,3]]),mutual_exclusions([])).

task(id(33),cost(12),revenue(10),duration(5),quality(1),flexibility(6),in([[7,1],[35,19],[41,13]]),out([[39,9],

[62,6]]),mutual_exclusions([])).

task(id(34),cost(12),revenue(10),duration(9),quality(7),flexibility(5),in([[17,18],[69,9],[73,17]]),out([[26,6],[27,3],

[49,3]]),mutual_exclusions([])).

task(id(35),cost(13),revenue(7),duration(8),quality(4),flexibility(3),in([[29,4],[54,16]]),out([[14,10],[46,14],

[69,7]]),mutual_exclusions([])).

task(id(36),cost(17),revenue(11),duration(12),quality(3),flexibility(4),in([[25,5],[36,10],[52,18],[54,9],

[63,5]]),out([[7,8],[8,2],[65,11]]),mutual_exclusions([])).

task(id(37),cost(8),revenue(6),duration(6),quality(5),flexibility(4),in([[9,15],[34,4],[67,9]]),out([[34,4],

[54,13]]),mutual_exclusions([])).

task(id(38),cost(15),revenue(12),duration(8),quality(6),flexibility(6),in([[12,13],[28,11],[30,2],[36,7]]),out([[12,18],

[43,17],[52,7]]),mutual_exclusions([])).

task(id(39),cost(8),revenue(3),duration(12),quality(4),flexibility(3),in([[10,6],[25,16],[33,11],

[66,16]]),out([[22,16]]),mutual_exclusions([])).

93

task(id(40),cost(13),revenue(7),duration(6),quality(1),flexibility(6),in([[5,15],[23,18],[55,7],[64,3]]),out([[8,1],[21,14],

[69,6]]),mutual_exclusions([])).

task(id(41),cost(16),revenue(13),duration(10),quality(6),flexibility(1),in([[8,14],

[19,4]]),out([[63,18]]),mutual_exclusions([])).

task(id(42),cost(16),revenue(13),duration(8),quality(6),flexibility(5),in([[5,1],[13,17],[33,18],[51,6],

[72,18]]),out([[25,11],[71,10]]),mutual_exclusions([])).

task(id(43),cost(9),revenue(4),duration(7),quality(2),flexibility(2),in([[7,18],[29,2],[42,10],[67,1]]),out([[2,5],

[29,14]]),mutual_exclusions([])).

task(id(44),cost(6),revenue(5),duration(9),quality(1),flexibility(3),in([[11,17],[47,10]]),out([[51,7],

[71,19]]),mutual_exclusions([])).

task(id(45),cost(13),revenue(7),duration(7),quality(1),flexibility(6),in([[3,13],[6,2],[19,3],[65,16],

[68,18]]),out([[19,19],[21,6],[42,4]]),mutual_exclusions([])).

task(id(46),cost(9),revenue(4),duration(7),quality(6),flexibility(6),in([[5,17],[19,16],[28,19],[41,17],

[73,11]]),out([[10,12],[24,19]]),mutual_exclusions([])).

task(id(47),cost(10),revenue(8),duration(4),quality(5),flexibility(7),in([[44,10],

[74,7]]),out([[30,19]]),mutual_exclusions([])).

task(id(48),cost(14),revenue(11),duration(12),quality(6),flexibility(6),in([[36,15],

[62,6]]),out([[72,19]]),mutual_exclusions([])).

task(id(49),cost(11),revenue(9),duration(11),quality(0),flexibility(3),in([[17,5],[19,6],[42,1],[43,7]]),out([[14,19],

[70,14]]),mutual_exclusions([])).

task(id(50),cost(10),revenue(5),duration(4),quality(0),flexibility(7),in([[6,17],[8,5],[48,17],[61,6]]),out([[41,13],

[72,19]]),mutual_exclusions([])).

task(id(51),cost(12),revenue(10),duration(9),quality(3),flexibility(3),in([[6,9],[18,17],[27,11],

[42,11]]),out([[2,6]]),mutual_exclusions([])).

task(id(52),cost(17),revenue(14),duration(5),quality(7),flexibility(7),in([[18,12],[41,3],[65,11]]),out([[2,6],[47,8],

[74,17]]),mutual_exclusions([])).

task(id(53),cost(9),revenue(4),duration(7),quality(6),flexibility(3),in([[22,16],[35,8],[49,2],[55,18],

[74,12]]),out([[32,19]]),mutual_exclusions([])).

task(id(54),cost(17),revenue(14),duration(9),quality(0),flexibility(3),in([[22,10],[23,4],[30,2],[63,8],

[74,1]]),out([[31,5],[49,11]]),mutual_exclusions([])).

task(id(55),cost(11),revenue(9),duration(13),quality(3),flexibility(7),in([[11,9],[18,9],[22,3],[31,9],

[56,12]]),out([[12,13],[29,19],[62,7]]),mutual_exclusions([])).

task(id(56),cost(10),revenue(5),duration(10),quality(6),flexibility(3),in([[38,7],[41,5],[53,6],[59,1],

[67,15]]),out([[24,9],[30,9],[37,5]]),mutual_exclusions([])).

task(id(57),cost(11),revenue(9),duration(8),quality(5),flexibility(2),in([[26,16],[32,9],[34,11],[47,1],

[52,14]]),out([[39,1],[53,5]]),mutual_exclusions([])).

task(id(58),cost(11),revenue(6),duration(5),quality(2),flexibility(0),in([[25,14],[33,8],[34,2],[37,18],

[46,14]]),out([[40,12],[41,5],[73,9]]),mutual_exclusions([])).

task(id(59),cost(6),revenue(2),duration(6),quality(3),flexibility(6),in([[15,8],[16,15],[38,15],[45,8]]),out([[12,7],

[69,8]]),mutual_exclusions([])).

task(id(60),cost(15),revenue(12),duration(9),quality(1),flexibility(1),in([[39,17],[40,4],[46,19]]),out([[34,5],[46,3],

[52,16]]),mutual_exclusions([])).

task(id(61),cost(16),revenue(10),duration(8),quality(5),flexibility(1),in([[29,18],[32,8],[36,11],[62,3],

[68,6]]),out([[59,10],[61,4],[67,17]]),mutual_exclusions([])).

94

task(id(62),cost(15),revenue(9),duration(10),quality(1),flexibility(2),in([[52,10],[55,12]]),out([[25,14],

[38,2]]),mutual_exclusions([])).

task(id(63),cost(16),revenue(10),duration(5),quality(3),flexibility(2),in([[22,5],[32,12],[54,11],[58,6]]),out([[7,9],

[27,4],[60,1]]),mutual_exclusions([])).

task(id(64),cost(9),revenue(4),duration(8),quality(6),flexibility(4),in([[50,7],[63,13]]),out([[30,1],

[56,4]]),mutual_exclusions([])).

task(id(65),cost(14),revenue(11),duration(8),quality(4),flexibility(1),in([[33,12],[35,10],[57,11]]),out([[46,7],

[55,11]]),mutual_exclusions([])).

task(id(66),cost(16),revenue(13),duration(13),quality(3),flexibility(0),in([[11,17],[18,14],

[44,5]]),out([[55,6]]),mutual_exclusions([])).

task(id(67),cost(11),revenue(6),duration(9),quality(0),flexibility(1),in([[20,13],[51,3],[61,11]]),out([[9,18],[33,10],

[59,14]]),mutual_exclusions([])).

task(id(68),cost(7),revenue(3),duration(10),quality(6),flexibility(4),in([[29,15],[33,14],[37,5],[42,17],

[47,4]]),out([[67,11]]),mutual_exclusions([])).

task(id(69),cost(12),revenue(10),duration(5),quality(6),flexibility(6),in([[16,6],[49,18],[58,1]]),out([[26,8],

[38,16]]),mutual_exclusions([])).

task(id(70),cost(16),revenue(13),duration(7),quality(6),flexibility(0),in([[6,14],

[21,6]]),out([[16,4]]),mutual_exclusions([])).

task(id(71),cost(15),revenue(12),duration(9),quality(6),flexibility(6),in([[13,3],[69,3]]),out([[12,10],

[34,3]]),mutual_exclusions([])).

task(id(72),cost(13),revenue(10),duration(9),quality(5),flexibility(6),in([[2,14],[34,13],[41,14],

[68,14]]),out([[29,17]]),mutual_exclusions([])).

task(id(73),cost(6),revenue(5),duration(9),quality(3),flexibility(6),in([[25,9],[42,12],[49,5],[65,11]]),out([[4,14],[16,7],

[71,10]]),mutual_exclusions([])).

task(id(74),cost(7),revenue(6),duration(4),quality(7),flexibility(4),in([[26,19],[48,15],[60,4],[63,15]]),out([[25,8],

[50,16],[64,9]]),mutual_exclusions([])).

task(id(75),cost(15),revenue(9),duration(4),quality(4),flexibility(4),in([[28,19],

[46,2]]),out([[13,9]]),mutual_exclusions([])).

task(id(76),cost(14),revenue(8),duration(13),quality(2),flexibility(4),in([[3,15],[6,4],[20,12],[67,1],

[70,13]]),out([[19,4],[45,1],[50,2]]),mutual_exclusions([])).

task(id(77),cost(16),revenue(13),duration(7),quality(3),flexibility(3),in([[13,11],[21,15],[44,15],[50,6],

[67,13]]),out([[13,18],[29,13],[48,19]]),mutual_exclusions([])).

task(id(78),cost(15),revenue(12),duration(6),quality(7),flexibility(1),in([[11,5],[13,13],[72,3],[74,1]]),out([[3,9],[7,4],

[57,9]]),mutual_exclusions([])).

task(id(79),cost(17),revenue(11),duration(9),quality(0),flexibility(0),in([[13,16],[15,19],[29,12],[43,11],

[62,14]]),out([[12,19],[72,4]]),mutual_exclusions([])).

task(id(80),cost(7),revenue(6),duration(13),quality(4),flexibility(2),in([[1,11],[13,7],[18,7],[63,3]]),out([[20,3],[35,6],

[42,17]]),mutual_exclusions([])).

task(id(81),cost(13),revenue(10),duration(8),quality(1),flexibility(0),in([[21,8],

[58,10]]),out([[47,12]]),mutual_exclusions([])).

task(id(82),cost(13),revenue(7),duration(7),quality(2),flexibility(2),in([[5,6],[7,15],[25,14]]),out([[16,1],

[45,14]]),mutual_exclusions([])).

task(id(83),cost(16),revenue(10),duration(12),quality(7),flexibility(3),in([[16,2],[54,5],[59,14]]),out([[7,6],

[28,10]]),mutual_exclusions([])).

95

task(id(84),cost(7),revenue(3),duration(5),quality(1),flexibility(4),in([[18,16],[47,12],[54,13]]),out([[7,18],[24,5],

[66,3]]),mutual_exclusions([])).

task(id(85),cost(15),revenue(9),duration(10),quality(1),flexibility(6),in([[24,7],

[35,9]]),out([[2,15]]),mutual_exclusions([])).

task(id(86),cost(6),revenue(5),duration(12),quality(3),flexibility(0),in([[9,5],[13,17],[54,10]]),out([[38,2],[61,13],

[72,19]]),mutual_exclusions([])).

task(id(87),cost(16),revenue(10),duration(5),quality(3),flexibility(3),in([[30,14],[31,13],[41,7],[56,6],

[69,17]]),out([[2,11],[12,2],[42,13]]),mutual_exclusions([])).

task(id(88),cost(15),revenue(12),duration(10),quality(7),flexibility(0),in([[13,19],[16,16],[22,14],[45,4],

[50,3]]),out([[61,16],[67,19]]),mutual_exclusions([])).

task(id(89),cost(12),revenue(7),duration(4),quality(6),flexibility(7),in([[19,5],[50,15],[61,13]]),out([[18,6],

[37,4]]),mutual_exclusions([])).

task(id(90),cost(10),revenue(8),duration(9),quality(2),flexibility(5),in([[48,18],[65,12]]),out([[12,6],

[45,13]]),mutual_exclusions([])).

task(id(91),cost(13),revenue(10),duration(10),quality(0),flexibility(1),in([[6,1],[8,12],[63,3]]),out([[29,17],

[54,18]]),mutual_exclusions([])).

task(id(92),cost(11),revenue(9),duration(5),quality(0),flexibility(2),in([[28,6],[52,4],

[74,17]]),out([[18,19]]),mutual_exclusions([])).

task(id(93),cost(15),revenue(9),duration(6),quality(7),flexibility(1),in([[9,11],[36,11],[42,5],[51,19],

[66,17]]),out([[11,15],[15,4],[73,11]]),mutual_exclusions([])).

task(id(94),cost(13),revenue(10),duration(13),quality(2),flexibility(6),in([[2,6],[12,12],[23,4],[42,17],

[74,10]]),out([[23,12],[69,4]]),mutual_exclusions([])).

task(id(95),cost(15),revenue(9),duration(10),quality(2),flexibility(2),in([[3,12],[46,15],[52,6]]),out([[38,17],

[68,11]]),mutual_exclusions([])).

task(id(96),cost(15),revenue(9),duration(8),quality(0),flexibility(5),in([[3,11],[38,19],[53,7],[55,8]]),out([[29,10],

[43,2],[62,2]]),mutual_exclusions([])).

task(id(97),cost(10),revenue(5),duration(7),quality(4),flexibility(2),in([[16,5],[39,9],[55,5]]),out([[2,18],[45,8],

[59,11]]),mutual_exclusions([])).

task(id(98),cost(8),revenue(3),duration(9),quality(5),flexibility(3),in([[4,2],[20,13],[36,11]]),out([[33,2],[59,17],

[63,4]]),mutual_exclusions([])).

task(id(99),cost(14),revenue(8),duration(4),quality(1),flexibility(2),in([[20,11],[51,10],[52,7],[66,1]]),out([[8,19],

[50,19],[51,4]]),mutual_exclusions([])).

task(id(100),cost(17),revenue(14),duration(12),quality(3),flexibility(3),in([[3,6],[7,18],[20,3],[53,3],

[73,14]]),out([[1,14],[51,3],[55,3]]),mutual_exclusions([])).

task(id(101),cost(12),revenue(10),duration(10),quality(5),flexibility(5),in([[2,9],[12,8],[31,4],

[72,17]]),out([[21,18]]),mutual_exclusions([])).

task(id(102),cost(14),revenue(8),duration(12),quality(4),flexibility(3),in([[32,16],

[42,11]]),out([[25,18]]),mutual_exclusions([])).

task(id(103),cost(11),revenue(6),duration(7),quality(1),flexibility(0),in([[7,13],[18,4],[25,15],[54,5],

[72,10]]),out([[8,2]]),mutual_exclusions([])).

task(id(104),cost(9),revenue(4),duration(4),quality(2),flexibility(6),in([[10,5],[48,17],[64,1]]),out([[25,14],[27,12],

[63,2]]),mutual_exclusions([])).

task(id(105),cost(7),revenue(3),duration(12),quality(1),flexibility(0),in([[30,8],[47,7],[48,19]]),out([[4,14],[41,13],

[73,2]]),mutual_exclusions([])).

96

task(id(106),cost(7),revenue(3),duration(4),quality(4),flexibility(6),in([[4,1],[17,13],[28,3],

[71,3]]),out([[62,16]]),mutual_exclusions([])).

task(id(107),cost(8),revenue(6),duration(10),quality(0),flexibility(7),in([[7,3],[16,11]]),out([[23,14],

[72,17]]),mutual_exclusions([])).

task(id(108),cost(11),revenue(9),duration(5),quality(2),flexibility(7),in([[25,12],[38,1],[53,3],[57,11],

[65,12]]),out([[65,14]]),mutual_exclusions([])).

task(id(109),cost(8),revenue(6),duration(8),quality(0),flexibility(0),in([[6,3],[22,8],[40,17]]),out([[4,10],

[29,11]]),mutual_exclusions([])).

task(id(110),cost(11),revenue(6),duration(7),quality(2),flexibility(5),in([[1,10],[20,6],[43,4],

[46,19]]),out([[46,15]]),mutual_exclusions([])).

task(id(111),cost(6),revenue(5),duration(6),quality(5),flexibility(5),in([[1,10],[51,17],

[54,8]]),out([[52,11]]),mutual_exclusions([])).

task(id(112),cost(8),revenue(3),duration(6),quality(2),flexibility(1),in([[4,7],[9,17],[22,10],[31,17],

[69,11]]),out([[19,5]]),mutual_exclusions([])).

task(id(113),cost(7),revenue(6),duration(7),quality(6),flexibility(1),in([[18,18],[36,5],[60,14],[62,16]]),out([[1,8],

[20,16],[40,12]]),mutual_exclusions([])).

task(id(114),cost(16),revenue(10),duration(7),quality(6),flexibility(0),in([[46,14],[48,5],

[56,12]]),out([[69,7]]),mutual_exclusions([])).

task(id(115),cost(12),revenue(7),duration(12),quality(0),flexibility(5),in([[26,11],[56,8],

[58,14]]),out([[21,18]]),mutual_exclusions([])).

task(id(116),cost(14),revenue(11),duration(9),quality(2),flexibility(4),in([[42,8],[61,4]]),out([[17,13],[22,2],

[50,6]]),mutual_exclusions([])).

task(id(117),cost(6),revenue(5),duration(12),quality(2),flexibility(2),in([[34,1],[59,12]]),out([[14,19],

[74,18]]),mutual_exclusions([])).

task(id(118),cost(6),revenue(2),duration(8),quality(2),flexibility(1),in([[7,13],[8,3],[47,9],[63,2]]),out([[1,6],[6,7],

[16,17]]),mutual_exclusions([])).

task(id(119),cost(11),revenue(9),duration(12),quality(3),flexibility(2),in([[58,12],[60,1]]),out([[31,16],

[39,19]]),mutual_exclusions([])).

task(id(120),cost(14),revenue(11),duration(12),quality(5),flexibility(5),in([[36,13],[42,4],[62,15],[69,5],

[70,17]]),out([[10,1],[59,17]]),mutual_exclusions([])).

task(id(121),cost(6),revenue(5),duration(12),quality(3),flexibility(2),in([[5,16],[21,5],[35,16],

[57,7]]),out([[48,13]]),mutual_exclusions([])).

task(id(122),cost(8),revenue(6),duration(9),quality(1),flexibility(4),in([[29,7],[63,2],[72,4]]),out([[9,19],

[63,8]]),mutual_exclusions([])).

task(id(123),cost(16),revenue(13),duration(4),quality(3),flexibility(6),in([[7,14],[32,6],[33,18]]),out([[28,9],[65,1],

[66,2]]),mutual_exclusions([])).

task(id(124),cost(10),revenue(5),duration(8),quality(3),flexibility(3),in([[17,14],[26,12],[32,5]]),out([[7,9],

[43,1]]),mutual_exclusions([])).

task(id(125),cost(9),revenue(7),duration(7),quality(6),flexibility(5),in([[10,9],

[32,17]]),out([[3,1]]),mutual_exclusions([])).

task(id(126),cost(12),revenue(10),duration(6),quality(2),flexibility(3),in([[4,7],[25,19],[56,11],[68,11],

[70,7]]),out([[2,6],[4,6],[49,5]]),mutual_exclusions([])).

task(id(127),cost(6),revenue(5),duration(11),quality(0),flexibility(3),in([[60,16],[71,7]]),out([[5,10],

[8,1]]),mutual_exclusions([])).

97

task(id(128),cost(17),revenue(11),duration(13),quality(7),flexibility(0),in([[8,2],[19,19],[36,7],[53,9],

[70,12]]),out([[6,15]]),mutual_exclusions([])).

task(id(129),cost(11),revenue(6),duration(6),quality(3),flexibility(0),in([[16,3],[27,2],[43,14]]),out([[7,16],[23,15],

[36,5]]),mutual_exclusions([])).

task(id(130),cost(9),revenue(7),duration(5),quality(1),flexibility(4),in([[13,9],[16,1]]),out([[1,14],[2,19],

[14,5]]),mutual_exclusions([])).

task(id(131),cost(7),revenue(3),duration(11),quality(7),flexibility(6),in([[2,7],[11,19],[17,7],[43,2],

[71,7]]),out([[23,13]]),mutual_exclusions([])).

task(id(132),cost(11),revenue(6),duration(12),quality(0),flexibility(5),in([[27,7],[33,1],[39,14],[70,13],

[73,17]]),out([[9,8],[25,15],[42,16]]),mutual_exclusions([])).

task(id(133),cost(8),revenue(3),duration(11),quality(7),flexibility(6),in([[25,2],[40,2],[55,6]]),out([[15,10],

[64,18]]),mutual_exclusions([])).

task(id(134),cost(9),revenue(4),duration(9),quality(0),flexibility(3),in([[9,15],[31,2]]),out([[37,17],

[54,18]]),mutual_exclusions([])).

task(id(135),cost(10),revenue(5),duration(9),quality(3),flexibility(1),in([[12,4],[51,16],[67,18]]),out([[15,14],[25,15],

[73,5]]),mutual_exclusions([])).

task(id(136),cost(13),revenue(10),duration(4),quality(4),flexibility(1),in([[9,7],[23,10],[30,1],[61,5]]),out([[34,1],

[65,4],[68,5]]),mutual_exclusions([])).

task(id(137),cost(7),revenue(3),duration(5),quality(6),flexibility(6),in([[21,11],[45,3]]),out([[5,7],

[50,13]]),mutual_exclusions([])).

task(id(138),cost(9),revenue(4),duration(9),quality(3),flexibility(6),in([[23,4],[48,1],[64,16],[68,18]]),out([[6,6],

[71,11]]),mutual_exclusions([])).

task(id(139),cost(16),revenue(10),duration(9),quality(3),flexibility(4),in([[12,16],[43,8],[48,9],[57,1],

[73,18]]),out([[1,19],[45,10],[48,3]]),mutual_exclusions([])).

task(id(140),cost(16),revenue(13),duration(6),quality(6),flexibility(1),in([[51,6],[68,4]]),out([[20,1],

[48,10]]),mutual_exclusions([])).

task(id(141),cost(17),revenue(14),duration(13),quality(5),flexibility(1),in([[3,17],[56,2]]),out([[43,12],[52,2],

[57,8]]),mutual_exclusions([])).

task(id(142),cost(13),revenue(10),duration(10),quality(2),flexibility(5),in([[8,1],[24,9],[52,5],[68,6]]),out([[15,12],

[58,18],[60,13]]),mutual_exclusions([])).

task(id(143),cost(8),revenue(6),duration(6),quality(2),flexibility(5),in([[20,9],[31,11],[45,4],[48,8],

[67,19]]),out([[12,4],[45,6]]),mutual_exclusions([])).

task(id(144),cost(11),revenue(9),duration(6),quality(5),flexibility(4),in([[33,9],[38,11],[44,18],[71,15],

[72,9]]),out([[2,15],[37,14],[51,12]]),mutual_exclusions([])).

task(id(145),cost(8),revenue(3),duration(4),quality(0),flexibility(0),in([[20,8],[59,5],

[69,17]]),out([[69,11]]),mutual_exclusions([])).

task(id(146),cost(12),revenue(7),duration(7),quality(4),flexibility(5),in([[8,16],[10,19],[31,7]]),out([[5,1],[18,7],

[63,11]]),mutual_exclusions([])).

task(id(147),cost(15),revenue(9),duration(11),quality(7),flexibility(6),in([[29,7],[42,13],[53,6],[69,7]]),out([[39,5],

[41,15]]),mutual_exclusions([])).

task(id(148),cost(16),revenue(10),duration(7),quality(7),flexibility(1),in([[11,2],[37,1],[47,7],[49,6]]),out([[19,18],

[20,19],[40,9]]),mutual_exclusions([])).

task(id(149),cost(8),revenue(6),duration(13),quality(5),flexibility(1),in([[9,4],[37,13],[53,5],[56,13]]),out([[4,16],

[9,15],[73,16]]),mutual_exclusions([])).

98

task(id(150),cost(9),revenue(7),duration(13),quality(1),flexibility(7),in([[29,2],

[38,13]]),out([[4,10]]),mutual_exclusions([])).

task(id(151),cost(16),revenue(13),duration(9),quality(1),flexibility(6),in([[17,13],[37,19],[38,2],[62,9]]),out([[11,18],

[45,19],[65,12]]),mutual_exclusions([])).

task(id(152),cost(8),revenue(6),duration(11),quality(6),flexibility(2),in([[11,8],[57,9]]),out([[48,7],

[54,1]]),mutual_exclusions([])).

task(id(153),cost(17),revenue(11),duration(11),quality(7),flexibility(7),in([[8,1],[25,13],[36,10],[65,18],

[66,14]]),out([[19,5],[36,14],[74,17]]),mutual_exclusions([])).

task(id(154),cost(6),revenue(2),duration(4),quality(0),flexibility(1),in([[15,11],[33,9]]),out([[36,9],

[60,8]]),mutual_exclusions([])).

task(id(155),cost(17),revenue(11),duration(12),quality(7),flexibility(4),in([[34,4],[72,9]]),out([[3,4],

[72,3]]),mutual_exclusions([])).

task(id(156),cost(7),revenue(6),duration(5),quality(1),flexibility(2),in([[20,4],[34,13],[45,14],[59,13],

[62,12]]),out([[52,19]]),mutual_exclusions([])).

task(id(157),cost(11),revenue(6),duration(5),quality(0),flexibility(1),in([[1,18],[4,2],[7,7],[24,11]]),out([[7,18],

[73,14]]),mutual_exclusions([])).

task(id(158),cost(6),revenue(2),duration(9),quality(4),flexibility(5),in([[3,10],[17,17]]),out([[11,18],[37,16],

[57,3]]),mutual_exclusions([])).

task(id(159),cost(9),revenue(4),duration(4),quality(5),flexibility(0),in([[9,8],[22,2],[30,16],[31,17],

[44,5]]),out([[24,7]]),mutual_exclusions([])).

task(id(160),cost(6),revenue(2),duration(12),quality(5),flexibility(7),in([[33,10],[34,7],[44,3],[56,2]]),out([[4,14],

[11,15],[63,16]]),mutual_exclusions([])).

task(id(161),cost(10),revenue(8),duration(5),quality(6),flexibility(1),in([[3,12],[4,13],

[51,18]]),out([[33,5]]),mutual_exclusions([])).

task(id(162),cost(6),revenue(2),duration(8),quality(1),flexibility(3),in([[14,16],[50,5],[52,12]]),out([[5,16],

[60,17]]),mutual_exclusions([])).

task(id(163),cost(15),revenue(9),duration(7),quality(7),flexibility(7),in([[9,15],[16,11],[21,1],[25,18]]),out([[2,18],

[8,15],[73,2]]),mutual_exclusions([])).

task(id(164),cost(17),revenue(14),duration(8),quality(0),flexibility(4),in([[13,2],[26,5],[40,2],[47,9],

[65,17]]),out([[4,6],[14,13]]),mutual_exclusions([])).

task(id(165),cost(12),revenue(7),duration(6),quality(5),flexibility(3),in([[33,18],[34,14],

[44,18]]),out([[74,18]]),mutual_exclusions([])).

task(id(166),cost(9),revenue(4),duration(8),quality(7),flexibility(4),in([[51,3],

[55,15]]),out([[30,18]]),mutual_exclusions([])).

task(id(167),cost(7),revenue(3),duration(10),quality(6),flexibility(2),in([[7,12],[29,1],[35,3],[61,13]]),out([[28,6],

[29,6]]),mutual_exclusions([])).

task(id(168),cost(9),revenue(7),duration(9),quality(6),flexibility(1),in([[1,6],[16,5],[19,14],

[72,3]]),out([[29,3]]),mutual_exclusions([])).

task(id(169),cost(14),revenue(8),duration(13),quality(2),flexibility(0),in([[44,5],[68,1]]),out([[9,13],[34,10],

[68,17]]),mutual_exclusions([])).

task(id(170),cost(16),revenue(13),duration(5),quality(4),flexibility(0),in([[39,3],[54,14],[62,8],[71,5],

[73,2]]),out([[36,4],[37,16],[58,7]]),mutual_exclusions([])).

task(id(171),cost(7),revenue(6),duration(7),quality(7),flexibility(3),in([[50,5],[60,11]]),out([[15,4],[25,5],

[32,11]]),mutual_exclusions([])).

99

task(id(172),cost(14),revenue(8),duration(6),quality(7),flexibility(7),in([[9,11],[12,1],[43,3]]),out([[33,13],[34,2],

[64,2]]),mutual_exclusions([])).

task(id(173),cost(12),revenue(10),duration(7),quality(0),flexibility(7),in([[6,16],[11,4],

[13,13]]),out([[32,1]]),mutual_exclusions([])).

task(id(174),cost(13),revenue(7),duration(6),quality(1),flexibility(0),in([[3,9],[58,6]]),out([[10,17],

[55,9]]),mutual_exclusions([])).

task(id(175),cost(11),revenue(6),duration(10),quality(0),flexibility(2),in([[14,17],[16,8],

[26,8]]),out([[67,11]]),mutual_exclusions([])).

task(id(176),cost(11),revenue(6),duration(9),quality(2),flexibility(0),in([[4,19],[18,7],[48,1]]),out([[18,5],

[21,6]]),mutual_exclusions([])).

task(id(177),cost(6),revenue(5),duration(8),quality(2),flexibility(6),in([[13,14],[34,17]]),out([[10,6],

[56,12]]),mutual_exclusions([])).

task(id(178),cost(11),revenue(6),duration(4),quality(6),flexibility(6),in([[43,18],[55,15],

[74,8]]),out([[13,14]]),mutual_exclusions([])).

task(id(179),cost(7),revenue(3),duration(11),quality(2),flexibility(0),in([[37,14],[39,8],[48,15],[56,13],

[72,8]]),out([[6,7],[47,17],[51,10]]),mutual_exclusions([])).

task(id(180),cost(11),revenue(9),duration(10),quality(6),flexibility(7),in([[11,13],

[18,9]]),out([[13,3]]),mutual_exclusions([])).

task(id(181),cost(16),revenue(13),duration(9),quality(0),flexibility(2),in([[27,2],[28,19],[38,3],[56,4],

[59,17]]),out([[7,8],[58,15]]),mutual_exclusions([])).

task(id(182),cost(15),revenue(12),duration(9),quality(0),flexibility(6),in([[2,13],[16,9],[26,14],[32,2],

[64,6]]),out([[61,9]]),mutual_exclusions([])).

task(id(183),cost(8),revenue(6),duration(9),quality(5),flexibility(2),in([[2,6],[25,12]]),out([[40,19],

[58,1]]),mutual_exclusions([])).

task(id(184),cost(12),revenue(10),duration(4),quality(7),flexibility(7),in([[20,10],[29,8],[46,13],[65,17],

[73,11]]),out([[7,1],[39,4],[54,9]]),mutual_exclusions([])).

task(id(185),cost(8),revenue(6),duration(13),quality(4),flexibility(0),in([[5,13],[7,4]]),out([[7,6],[12,8],

[62,13]]),mutual_exclusions([])).

task(id(186),cost(15),revenue(9),duration(7),quality(0),flexibility(2),in([[29,13],[30,8]]),out([[12,4],[31,9],

[38,19]]),mutual_exclusions([])).

task(id(187),cost(11),revenue(9),duration(10),quality(2),flexibility(1),in([[17,11],[18,9],[37,3],

[54,4]]),out([[69,15]]),mutual_exclusions([])).

task(id(188),cost(15),revenue(12),duration(12),quality(5),flexibility(3),in([[33,2],[34,10],[43,1],[57,18],

[62,8]]),out([[69,5],[74,12]]),mutual_exclusions([])).

task(id(189),cost(7),revenue(3),duration(12),quality(0),flexibility(2),in([[44,19],[54,13],[57,14]]),out([[26,16],[50,4],

[74,1]]),mutual_exclusions([])).

task(id(190),cost(13),revenue(7),duration(10),quality(6),flexibility(2),in([[25,17],[26,15],[45,17],

[51,19]]),out([[54,19]]),mutual_exclusions([])).

task(id(191),cost(10),revenue(8),duration(6),quality(2),flexibility(7),in([[7,18],[17,3],[35,10],[38,10],

[52,7]]),out([[65,5]]),mutual_exclusions([])).

task(id(192),cost(10),revenue(5),duration(10),quality(7),flexibility(0),in([[7,6],[22,7],[40,6],[51,13],

[70,17]]),out([[8,18]]),mutual_exclusions([])).

task(id(193),cost(6),revenue(2),duration(5),quality(7),flexibility(7),in([[37,2],[51,10],

[68,14]]),out([[29,4]]),mutual_exclusions([])).

100

task(id(194),cost(12),revenue(10),duration(10),quality(4),flexibility(7),in([[1,16],[16,16],[59,5],

[70,5]]),out([[38,10]]),mutual_exclusions([])).

task(id(195),cost(12),revenue(10),duration(4),quality(4),flexibility(7),in([[8,7],[27,16],[44,17],[51,19]]),out([[17,1],

[33,1]]),mutual_exclusions([])).

task(id(196),cost(10),revenue(5),duration(5),quality(0),flexibility(4),in([[4,16],

[51,10]]),out([[64,8]]),mutual_exclusions([])).

task(id(197),cost(9),revenue(7),duration(8),quality(7),flexibility(6),in([[20,5],[36,6]]),out([[49,3],[66,14],

[73,2]]),mutual_exclusions([])).

task(id(198),cost(10),revenue(8),duration(7),quality(2),flexibility(2),in([[5,4],

[61,13]]),out([[47,6]]),mutual_exclusions([])).

task(id(199),cost(15),revenue(12),duration(12),quality(3),flexibility(5),in([[2,9],[39,18],[58,10]]),out([[17,1],[44,8],

[55,2]]),mutual_exclusions([])).

task(id(200),cost(6),revenue(2),duration(12),quality(3),flexibility(3),in([[13,17],[35,18],[54,16],[64,2],

[68,16]]),out([[2,9]]),mutual_exclusions([])).

task(id(201),cost(11),revenue(6),duration(7),quality(6),flexibility(1),in([[7,11],[11,3],[34,14],[47,14]]),out([[2,7],

[20,16],[27,7]]),mutual_exclusions([])).

task(id(202),cost(17),revenue(11),duration(13),quality(7),flexibility(7),in([[6,14],[30,17],[49,10],[61,13],

[67,8]]),out([[7,7],[63,8],[65,11]]),mutual_exclusions([])).

task(id(203),cost(16),revenue(13),duration(10),quality(4),flexibility(3),in([[8,11],[20,11],[38,7],[58,6]]),out([[16,12],

[20,11],[73,7]]),mutual_exclusions([])).

task(id(204),cost(17),revenue(14),duration(5),quality(4),flexibility(0),in([[45,5],

[53,18]]),out([[74,2]]),mutual_exclusions([])).

task(id(205),cost(11),revenue(9),duration(10),quality(3),flexibility(7),in([[26,8],[54,7],[58,12],[62,18]]),out([[25,8],

[54,18]]),mutual_exclusions([])).

task(id(206),cost(11),revenue(9),duration(10),quality(0),flexibility(7),in([[5,8],[24,17],[25,6],[52,7]]),out([[50,19],

[66,9]]),mutual_exclusions([])).

task(id(207),cost(16),revenue(10),duration(10),quality(3),flexibility(7),in([[26,3],[30,7],[34,3],[57,13]]),out([[8,7],

[56,3],[73,19]]),mutual_exclusions([])).

task(id(208),cost(12),revenue(7),duration(13),quality(5),flexibility(6),in([[26,8],[63,9]]),out([[42,1],

[71,18]]),mutual_exclusions([])).

task(id(209),cost(14),revenue(11),duration(10),quality(0),flexibility(0),in([[51,15],[57,1],[59,11],[73,1]]),out([[22,17],

[27,6]]),mutual_exclusions([])).

task(id(210),cost(13),revenue(10),duration(6),quality(3),flexibility(2),in([[19,5],[26,17],[27,15],[67,2]]),out([[7,16],

[21,2]]),mutual_exclusions([])).

task(id(211),cost(7),revenue(6),duration(10),quality(4),flexibility(4),in([[19,13],

[35,2]]),out([[74,6]]),mutual_exclusions([])).

task(id(212),cost(11),revenue(9),duration(6),quality(0),flexibility(7),in([[17,14],[19,3],[30,12],[73,2]]),out([[4,7],

[42,11]]),mutual_exclusions([])).

task(id(213),cost(6),revenue(5),duration(13),quality(0),flexibility(4),in([[1,12],[45,15],[62,5]]),out([[23,9],

[31,14]]),mutual_exclusions([])).

task(id(214),cost(16),revenue(13),duration(12),quality(0),flexibility(4),in([[13,17],[19,3],[37,4],[44,1],

[71,13]]),out([[6,16],[60,3],[69,11]]),mutual_exclusions([])).

task(id(215),cost(7),revenue(3),duration(5),quality(0),flexibility(5),in([[12,19],[22,18],[40,10],[69,6]]),out([[27,5],

[68,14]]),mutual_exclusions([])).

101

task(id(216),cost(6),revenue(2),duration(11),quality(1),flexibility(0),in([[5,6],[40,9],[41,8],[71,4]]),out([[15,6],[29,10],

[47,16]]),mutual_exclusions([])).

task(id(217),cost(12),revenue(10),duration(10),quality(4),flexibility(1),in([[6,19],[8,12],[10,11],[61,2],

[72,12]]),out([[11,16],[14,8],[48,7]]),mutual_exclusions([])).

task(id(218),cost(8),revenue(3),duration(11),quality(5),flexibility(6),in([[21,7],[40,2],[50,19],[61,14]]),out([[45,14],

[52,10],[66,18]]),mutual_exclusions([])).

task(id(219),cost(6),revenue(5),duration(10),quality(7),flexibility(4),in([[3,16],[20,5],[39,7]]),out([[50,3],

[68,19]]),mutual_exclusions([])).

task(id(220),cost(14),revenue(8),duration(9),quality(3),flexibility(2),in([[22,2],[26,3],[28,7],[34,5],

[70,17]]),out([[25,9],[31,5],[46,15]]),mutual_exclusions([])).

task(id(221),cost(15),revenue(9),duration(9),quality(1),flexibility(4),in([[18,2],[20,12],[56,15]]),out([[1,6],[17,5],

[24,8]]),mutual_exclusions([])).

task(id(222),cost(7),revenue(6),duration(9),quality(2),flexibility(4),in([[23,8],[55,15]]),out([[14,16],[53,9],

[70,10]]),mutual_exclusions([])).

task(id(223),cost(15),revenue(9),duration(12),quality(6),flexibility(1),in([[10,1],[21,8],[61,5],[63,8]]),out([[21,18],

[42,18]]),mutual_exclusions([])).

task(id(224),cost(14),revenue(11),duration(7),quality(1),flexibility(5),in([[11,11],[43,18]]),out([[40,18],[41,17],

[51,12]]),mutual_exclusions([])).

task(id(225),cost(8),revenue(6),duration(9),quality(4),flexibility(4),in([[18,7],[69,17],

[74,7]]),out([[65,1]]),mutual_exclusions([])).

task(id(226),cost(11),revenue(9),duration(12),quality(1),flexibility(7),in([[6,2],[31,15],[37,17],[52,11]]),out([[16,16],

[31,5]]),mutual_exclusions([])).

task(id(227),cost(15),revenue(12),duration(11),quality(3),flexibility(4),in([[6,4],[18,8],[24,4],[40,9],

[72,11]]),out([[61,11]]),mutual_exclusions([])).

task(id(228),cost(7),revenue(6),duration(6),quality(7),flexibility(6),in([[25,19],

[32,5]]),out([[71,12]]),mutual_exclusions([])).

task(id(229),cost(17),revenue(11),duration(8),quality(7),flexibility(2),in([[19,5],[26,4],[69,9]]),out([[7,4],[15,12],

[20,8]]),mutual_exclusions([])).

task(id(230),cost(12),revenue(7),duration(4),quality(4),flexibility(3),in([[16,13],[34,17],[36,6]]),out([[11,12],[55,10],

[67,12]]),mutual_exclusions([])).

task(id(231),cost(13),revenue(7),duration(4),quality(5),flexibility(2),in([[32,13],

[72,13]]),out([[43,7]]),mutual_exclusions([])).

task(id(232),cost(11),revenue(9),duration(9),quality(0),flexibility(6),in([[2,6],[24,16],

[46,5]]),out([[59,13]]),mutual_exclusions([])).

task(id(233),cost(10),revenue(8),duration(13),quality(5),flexibility(1),in([[2,15],[15,12],[37,7],[41,5],

[48,1]]),out([[13,3],[14,10],[28,17]]),mutual_exclusions([])).

task(id(234),cost(15),revenue(12),duration(5),quality(1),flexibility(3),in([[17,4],[25,6],

[33,10]]),out([[4,18]]),mutual_exclusions([])).

task(id(235),cost(13),revenue(7),duration(7),quality(7),flexibility(7),in([[18,12],[48,13],[64,18]]),out([[5,14],

[15,18]]),mutual_exclusions([])).

task(id(236),cost(9),revenue(7),duration(12),quality(7),flexibility(0),in([[14,4],[55,19],[57,2],[61,15],

[71,7]]),out([[5,16]]),mutual_exclusions([])).

task(id(237),cost(8),revenue(6),duration(8),quality(6),flexibility(5),in([[4,16],[6,9],[25,4],[30,4],

[69,5]]),out([[47,13]]),mutual_exclusions([])).

102

task(id(238),cost(15),revenue(9),duration(4),quality(5),flexibility(7),in([[10,18],[22,6],[33,13],[64,8],

[72,9]]),out([[36,2]]),mutual_exclusions([])).

task(id(239),cost(15),revenue(9),duration(11),quality(5),flexibility(3),in([[42,17],[56,9]]),out([[20,2],[64,17],

[73,1]]),mutual_exclusions([])).

task(id(240),cost(11),revenue(9),duration(12),quality(1),flexibility(4),in([[12,12],[18,19],[36,3],[49,4]]),out([[22,12],

[28,18],[52,4]]),mutual_exclusions([])).

task(id(241),cost(7),revenue(6),duration(6),quality(1),flexibility(0),in([[22,4],[39,9],[54,1]]),out([[20,5],[31,10],

[54,6]]),mutual_exclusions([])).

task(id(242),cost(17),revenue(14),duration(7),quality(7),flexibility(0),in([[57,9],[67,15]]),out([[6,5],[21,10],

[51,12]]),mutual_exclusions([])).

task(id(243),cost(14),revenue(8),duration(6),quality(5),flexibility(0),in([[1,9],[38,8]]),out([[40,4],

[74,19]]),mutual_exclusions([])).

task(id(244),cost(14),revenue(8),duration(9),quality(1),flexibility(0),in([[18,17],

[46,18]]),out([[5,6]]),mutual_exclusions([])).

task(id(245),cost(6),revenue(5),duration(6),quality(3),flexibility(2),in([[30,15],[52,15],

[53,19]]),out([[30,15]]),mutual_exclusions([])).

task(id(246),cost(17),revenue(11),duration(6),quality(3),flexibility(3),in([[19,9],[20,6],

[24,1]]),out([[27,15]]),mutual_exclusions([])).

task(id(247),cost(8),revenue(3),duration(12),quality(4),flexibility(0),in([[16,10],[38,13],

[40,7]]),out([[11,15]]),mutual_exclusions([])).

task(id(248),cost(7),revenue(3),duration(10),quality(7),flexibility(3),in([[24,6],[28,6],[44,2],[50,3],[52,9]]),out([[7,13],

[47,19],[53,2]]),mutual_exclusions([])).

task(id(249),cost(17),revenue(14),duration(8),quality(5),flexibility(2),in([[13,12],[18,7],[26,11],[38,14],

[69,15]]),out([[63,5]]),mutual_exclusions([])).

task(id(250),cost(17),revenue(14),duration(6),quality(0),flexibility(5),in([[34,3],[35,7],[66,14]]),out([[8,3],[36,5],

[61,10]]),mutual_exclusions([])).

task(id(251),cost(9),revenue(7),duration(5),quality(7),flexibility(6),in([[33,11],[51,18],

[59,14]]),out([[12,1]]),mutual_exclusions([])).

task(id(252),cost(15),revenue(12),duration(13),quality(1),flexibility(6),in([[14,6],

[63,9]]),out([[62,19]]),mutual_exclusions([])).

task(id(253),cost(14),revenue(8),duration(6),quality(4),flexibility(7),in([[33,10],

[56,11]]),out([[8,18]]),mutual_exclusions([])).

task(id(254),cost(6),revenue(2),duration(5),quality(3),flexibility(2),in([[1,15],[17,10],[27,10],[34,19]]),out([[9,15],

[24,10],[71,10]]),mutual_exclusions([])).

task(id(255),cost(12),revenue(10),duration(8),quality(6),flexibility(7),in([[11,13],[31,17],[65,16],[69,17]]),out([[39,7],

[65,14],[67,19]]),mutual_exclusions([])).

task(id(256),cost(12),revenue(10),duration(11),quality(1),flexibility(7),in([[4,4],[9,1],[24,10],[61,2],

[69,13]]),out([[4,18],[56,7]]),mutual_exclusions([])).

task(id(257),cost(16),revenue(13),duration(8),quality(0),flexibility(4),in([[18,1],[26,7],[27,1],[40,13],

[58,1]]),out([[53,19],[59,4]]),mutual_exclusions([])).

task(id(258),cost(10),revenue(8),duration(12),quality(1),flexibility(3),in([[4,9],[51,1]]),out([[50,4],

[69,7]]),mutual_exclusions([])).

task(id(259),cost(15),revenue(9),duration(8),quality(1),flexibility(2),in([[38,13],[44,2],[62,6],

[65,13]]),out([[23,19]]),mutual_exclusions([])).

103

task(id(260),cost(12),revenue(10),duration(9),quality(1),flexibility(5),in([[10,4],[64,1]]),out([[13,1],

[15,19]]),mutual_exclusions([])).

task(id(261),cost(10),revenue(5),duration(11),quality(3),flexibility(1),in([[28,17],[36,1],[70,10],

[74,6]]),out([[20,4]]),mutual_exclusions([])).

task(id(262),cost(11),revenue(9),duration(13),quality(5),flexibility(7),in([[2,17],[3,3],

[4,17]]),out([[73,18]]),mutual_exclusions([])).

task(id(263),cost(6),revenue(2),duration(7),quality(6),flexibility(4),in([[14,3],[16,15],[53,15],[55,18],

[72,1]]),out([[50,17]]),mutual_exclusions([])).

task(id(264),cost(8),revenue(3),duration(12),quality(4),flexibility(2),in([[49,1],[53,10],

[62,14]]),out([[41,9]]),mutual_exclusions([])).

task(id(265),cost(13),revenue(10),duration(8),quality(3),flexibility(4),in([[8,18],[43,2],[58,13],[68,2]]),out([[41,2],

[70,12]]),mutual_exclusions([])).

task(id(266),cost(15),revenue(9),duration(13),quality(0),flexibility(7),in([[6,4],[31,8],[32,8],[49,1]]),out([[29,7],

[64,18],[68,13]]),mutual_exclusions([])).

task(id(267),cost(8),revenue(6),duration(6),quality(5),flexibility(0),in([[31,2],[59,8]]),out([[19,7],

[55,5]]),mutual_exclusions([])).

task(id(268),cost(13),revenue(10),duration(7),quality(6),flexibility(7),in([[11,3],[21,9],[30,14],[63,3],

[71,12]]),out([[29,15],[60,19]]),mutual_exclusions([])).

task(id(269),cost(6),revenue(2),duration(13),quality(2),flexibility(0),in([[10,9],

[52,14]]),out([[50,6]]),mutual_exclusions([])).

task(id(270),cost(9),revenue(7),duration(5),quality(0),flexibility(4),in([[17,9],[27,9],[34,11],[35,5]]),out([[56,7],

[66,16]]),mutual_exclusions([])).

task(id(271),cost(14),revenue(8),duration(4),quality(0),flexibility(4),in([[21,7],[61,18]]),out([[33,4],

[67,9]]),mutual_exclusions([])).

task(id(272),cost(11),revenue(9),duration(10),quality(7),flexibility(3),in([[5,12],[9,4],

[53,17]]),out([[35,17]]),mutual_exclusions([])).

task(id(273),cost(15),revenue(9),duration(11),quality(2),flexibility(4),in([[50,12],[52,6],[54,7],[65,3]]),out([[14,15],

[40,5]]),mutual_exclusions([])).

task(id(274),cost(16),revenue(10),duration(8),quality(7),flexibility(6),in([[24,18],[30,17],[33,2],

[34,2]]),out([[32,12]]),mutual_exclusions([])).

task(id(275),cost(13),revenue(10),duration(13),quality(7),flexibility(7),in([[9,13],[23,13],[38,12],

[56,11]]),out([[11,16],[68,18]]),mutual_exclusions([])).

task(id(276),cost(14),revenue(11),duration(4),quality(3),flexibility(2),in([[29,5],[31,5],[48,3],[51,19],

[68,11]]),out([[27,18],[62,19]]),mutual_exclusions([])).

task(id(277),cost(16),revenue(10),duration(12),quality(1),flexibility(1),in([[18,11],[21,8],[22,10],[30,9]]),out([[13,19],

[23,5],[72,8]]),mutual_exclusions([])).

task(id(278),cost(16),revenue(10),duration(9),quality(2),flexibility(3),in([[1,9],[31,9],[33,8],[45,9]]),out([[29,16],

[41,8],[64,10]]),mutual_exclusions([])).

task(id(279),cost(11),revenue(9),duration(7),quality(7),flexibility(5),in([[22,4],[28,11],[40,15],[61,10],

[62,11]]),out([[20,13]]),mutual_exclusions([])).

task(id(280),cost(14),revenue(8),duration(8),quality(0),flexibility(4),in([[30,15],[35,2],[47,7],[58,11],

[70,14]]),out([[39,8],[56,11]]),mutual_exclusions([])).

task(id(281),cost(14),revenue(11),duration(7),quality(4),flexibility(7),in([[68,7],[69,15],

[74,18]]),out([[64,13]]),mutual_exclusions([])).

104

task(id(282),cost(13),revenue(10),duration(11),quality(2),flexibility(6),in([[48,14],[67,19]]),out([[8,8],[39,19],

[66,3]]),mutual_exclusions([])).

task(id(283),cost(9),revenue(7),duration(13),quality(4),flexibility(6),in([[15,6],[27,4],[71,16],[72,16],

[73,9]]),out([[28,8],[30,2],[59,17]]),mutual_exclusions([])).

task(id(284),cost(12),revenue(7),duration(5),quality(4),flexibility(6),in([[7,6],[17,12],[39,3]]),out([[17,18],

[71,2]]),mutual_exclusions([])).

task(id(285),cost(12),revenue(7),duration(11),quality(3),flexibility(3),in([[18,9],[24,4],[26,18],[73,18]]),out([[13,11],

[54,5]]),mutual_exclusions([])).

task(id(286),cost(16),revenue(10),duration(12),quality(4),flexibility(7),in([[3,5],[19,9],[29,2]]),out([[65,5],

[71,11]]),mutual_exclusions([])).

task(id(287),cost(8),revenue(3),duration(9),quality(5),flexibility(6),in([[5,8],[16,9],[60,15]]),out([[3,6],[8,8],

[60,4]]),mutual_exclusions([])).

task(id(288),cost(7),revenue(6),duration(7),quality(5),flexibility(1),in([[50,7],

[56,7]]),out([[62,18]]),mutual_exclusions([])).

task(id(289),cost(14),revenue(11),duration(10),quality(4),flexibility(3),in([[9,1],

[48,11]]),out([[49,9]]),mutual_exclusions([])).

task(id(290),cost(17),revenue(14),duration(11),quality(2),flexibility(2),in([[23,1],[67,14],

[70,16]]),out([[66,19]]),mutual_exclusions([])).

task(id(291),cost(10),revenue(8),duration(4),quality(3),flexibility(7),in([[48,9],[57,15]]),out([[18,6],[35,8],

[51,9]]),mutual_exclusions([])).

task(id(292),cost(17),revenue(14),duration(8),quality(0),flexibility(3),in([[10,5],[17,18],[29,18],

[51,1]]),out([[33,1]]),mutual_exclusions([])).

task(id(293),cost(11),revenue(9),duration(13),quality(3),flexibility(7),in([[19,14],[47,15],[50,15],[64,11],

[67,13]]),out([[21,11],[22,8]]),mutual_exclusions([])).

task(id(294),cost(7),revenue(6),duration(4),quality(1),flexibility(6),in([[21,6],[52,2],

[56,10]]),out([[65,12]]),mutual_exclusions([])).

task(id(295),cost(16),revenue(10),duration(6),quality(7),flexibility(4),in([[8,10],[11,15],[43,6],[61,18],

[74,4]]),out([[23,3]]),mutual_exclusions([])).

task(id(296),cost(17),revenue(14),duration(5),quality(6),flexibility(1),in([[59,10],[63,15]]),out([[2,10],[23,1],

[64,13]]),mutual_exclusions([])).

task(id(297),cost(14),revenue(8),duration(11),quality(6),flexibility(2),in([[17,7],[53,2],[56,2]]),out([[20,9],

[42,17]]),mutual_exclusions([])).

task(id(298),cost(16),revenue(10),duration(8),quality(1),flexibility(2),in([[9,13],[26,10],[43,5],

[60,8]]),out([[61,5]]),mutual_exclusions([])).

task(id(299),cost(15),revenue(9),duration(13),quality(7),flexibility(3),in([[13,5],[35,10],[56,9],[57,4],

[71,15]]),out([[4,9]]),mutual_exclusions([])).

task(id(300),cost(11),revenue(9),duration(5),quality(0),flexibility(6),in([[14,12],

[60,10]]),out([[26,8]]),mutual_exclusions([])).

task(id(301),cost(17),revenue(14),duration(7),quality(1),flexibility(4),in([[9,11],[10,14],[23,6],[30,7],

[67,15]]),out([[17,12],[20,5],[39,12]]),mutual_exclusions([])).

task(id(302),cost(17),revenue(14),duration(6),quality(2),flexibility(5),in([[11,19],[26,10],[43,6]]),out([[15,5],[24,15],

[66,18]]),mutual_exclusions([])).

task(id(303),cost(15),revenue(9),duration(4),quality(1),flexibility(1),in([[4,12],[7,9],[35,6],[56,8]]),out([[16,16],

[23,10]]),mutual_exclusions([])).

105

task(id(304),cost(8),revenue(6),duration(7),quality(1),flexibility(0),in([[33,13],[35,13],[53,15],

[57,11]]),out([[74,4]]),mutual_exclusions([])).

task(id(305),cost(11),revenue(6),duration(5),quality(0),flexibility(4),in([[3,9],[22,12],[39,13],[44,7]]),out([[16,3],

[36,7]]),mutual_exclusions([])).

task(id(306),cost(10),revenue(8),duration(12),quality(4),flexibility(2),in([[21,7],[23,9],[57,16]]),out([[20,10],

[62,5]]),mutual_exclusions([])).

task(id(307),cost(13),revenue(7),duration(8),quality(5),flexibility(4),in([[22,14],[46,9],

[69,1]]),out([[29,9]]),mutual_exclusions([])).

task(id(308),cost(12),revenue(7),duration(8),quality(3),flexibility(0),in([[12,3],[66,7]]),out([[6,13],

[22,18]]),mutual_exclusions([])).

task(id(309),cost(9),revenue(4),duration(9),quality(7),flexibility(1),in([[23,15],[39,2],

[55,7]]),out([[38,19]]),mutual_exclusions([])).

task(id(310),cost(10),revenue(5),duration(6),quality(1),flexibility(5),in([[1,4],[25,17],

[45,11]]),out([[58,2]]),mutual_exclusions([])).

task(id(311),cost(8),revenue(3),duration(12),quality(6),flexibility(5),in([[13,3],[27,11],[71,5]]),out([[29,14],[30,14],

[62,16]]),mutual_exclusions([])).

task(id(312),cost(15),revenue(12),duration(4),quality(3),flexibility(0),in([[15,6],[40,7],[45,12],[69,1]]),out([[39,12],

[43,13],[66,7]]),mutual_exclusions([])).

task(id(313),cost(8),revenue(3),duration(7),quality(6),flexibility(6),in([[20,14],

[52,10]]),out([[18,8]]),mutual_exclusions([])).

task(id(314),cost(17),revenue(11),duration(4),quality(1),flexibility(0),in([[52,1],[55,17],[57,18],[60,9],

[65,8]]),out([[1,14],[20,7]]),mutual_exclusions([])).

task(id(315),cost(15),revenue(12),duration(12),quality(3),flexibility(1),in([[23,19],[35,17],[38,18],

[59,11]]),out([[41,6],[63,4]]),mutual_exclusions([])).

task(id(316),cost(15),revenue(12),duration(9),quality(0),flexibility(7),in([[9,17],[48,12],[62,9]]),out([[35,15],[64,5],

[70,19]]),mutual_exclusions([])).

task(id(317),cost(13),revenue(10),duration(5),quality(2),flexibility(1),in([[13,5],[23,17],[30,10],[50,11],

[52,19]]),out([[16,5],[58,15]]),mutual_exclusions([])).

task(id(318),cost(11),revenue(9),duration(9),quality(6),flexibility(6),in([[10,18],[54,15],[63,3],[72,17]]),out([[14,14],

[46,9]]),mutual_exclusions([])).

106

	1 Introduction
	1.1 Issue description
	1.2 Aim and objectives
	1.3 Problem formulation and contribution
	1.4 Thesis structure

	2 Literature review
	2.1 Business Process Management terminology
	2.1.1 Business Process
	2.1.2 Business Process Management (BPM)
	2.1.3 Business Process Optimization (BPO)

	2.2 Business process optimization approaches
	2.2.1 General management techniques
	2.2.2 BPM Frameworks
	2.2.2.1 Business process reengineering (BPR)
	2.2.2.2 Lean manufacturing
	2.2.2.3 Total Quality Management (TQM)
	2.2.2.4 Six Sigma
	2.2.2.5 Quality of Business Processes (QoBP)

	2.2.3 Algorithmic approaches
	2.2.3.1 Graphical approaches
	2.2.3.2 Evolutionary techniques
	2.2.3.3 Data mining approaches

	2.3 Research Gap
	2.4 Summary

	3 Mathematical foundation
	3.1 Resource Constraint Scheduling Problem (RCSP)
	3.2 Constraint Logic Programming (CLP)
	3.3 Binary search technique
	3.4 Summary

	4 Methodology
	4.1 Conceptual analysis of the evaluation criteria
	4.2 Problem formulation
	4.3 Task library
	4.4 Data reduction
	4.5 JAVA GUI and CLP program constructor
	4.5.1 Application’s architecture

	4.6 Engine of inference – ECLiPSe
	4.7 Visualization
	4.8 Asymptotic analysis
	4.9 Summary

	5 Task generator
	5.1 Notation and task representation
	5.2 Task generation algorithm
	5.2.1 Biased task set creation
	5.2.2 Arbitrary task set generator
	5.2.3 Auxiliary functionalities

	5.3 Process network construction
	5.4 Application architecture
	5.5 Experimental evaluation

	6 Experimental evaluation
	6.1 Execution example
	6.2 Performance evaluation
	6.2.1 Scheduling evaluation
	6.2.2 Searching and Scheduling evaluation

	6.3 Summary

	7 Conclusion
	7.1 Results
	7.2 Limitations
	7.3 Future research

	Bibliography
	Appendix A - Database
	Appendix B - Java GUI
	Appendix C - Arbitrary tasks

