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INTRODUCTION 

The deplorable state of natural resources in many parts of the World has prompted a renewed 
interest in farming systems designed to maximize sustainable use of natural processes, thus minimizing 
the reliance on external inputs. This has been an important topic in the EULACIAS project. In addition 
to farm-internal ecological processes, farms may benefit from natural processes operating at scales 
beyond the single farm. For example pest suppression by natural enemies is higher in small-scale 
landscapes where agricultural fields are intermixed with semi-natural elements than in large-scale 
landscapes (Bianchi et al., 2006). Shading of cattle (West, 2003) is an example that supports cattle 
production and also contributes to animal welfare, timber production, general biodiversity and 
landscape quality. These ‘multiple roles of agriculture’ (Bresciani et al., 2004) cover environmental 
services as well as contributions of agriculture to development challenges like food security, poverty 
alleviation, social welfare and cultural heritage.  

In an influential paper De Groot (2006) defined ecosystem functions as ‘the capacity of natural 
processes and components to provide goods and services that satisfy human needs directly or 
indirectly’. He distinguished five primary categories of ecosystem functions: regulation (with services 
such as water regulation, pest control), habitat (e.g. refugium), production (e.g. food, medicinal 
resources), information (e.g. esthetics, education) and carrier (e.g. habitation). A substantial number of 
these functions rely on spatial relations in the landscape. For instance, water regulation depends on the 
relations between locations in a watershed; pest suppression is a function of the spatial pattern of 
susceptible cultivars; and landscape perception depends on the pattern of landscape elements. 
Improving ecosystem functions requires considering multiple levels of organization: field, farm, and 
landscape. At each level, different indicators may describe the performance of the ecosystem, some 
spatially explicit, others spatially implicit or non-spatial.  

Scientific efforts to improve agro-ecosystem functioning thus need to rely on methodology that 
deals with multiple objectives and multiple scales. In addition, various categories of stakeholders are 
usually involved and negotiate about solutions. Kröger and Knickel (2005; www.multagri.net) reported 
to the European Commission on an inventory of concepts, tools and approaches for assessing the 
multifunctionality of agriculture. They conclude that more holistic analytical frameworks are needed to 
address ecosystem functions, along with more integrative research tools, as well as more attention for 
education and training in inter- or transdisciplinary work.  

In this paper, we present a spatially explicit, GIS-based land-use exploration methodology named 
Landscape IMAGES (Interactive Multi-goal Agricultural Landscape Generation and Evaluation 
System). The approach combines agronomic, economic and environmental indicators with biodiversity 
and landscape quality indicators operating at different scales, ranging from the field to the landscape. 
The framework has been applied in different studies in a region in the Netherlands, one of which was 
executed in close interaction with stakeholders. Here, we present an illustration based on Groot et al. 
(2007) to demonstrate analyses at the production – environment - landscape interface. Other 
applications addressed economy – landscape ecology – landscape quality aspects (Groot et al., 2010) 



and the relation between supply and citizen’s demand for ecosystem functions (Parra-Lopez et al., 
2009). 

 
CASE STUDY 

The case study was located in the north of the Netherlands, in an area of in total several thousand 
hectares of small-scale hedgerow and pasture landscape. The hedgerows and field shapes reflect the 
historical development pattern and are cherished by farmers, inhabitants and tourists as a unique 
cultural-historical landscape. Field sizes of 2 ha on average often lined by hedgerows conflict with 
large-scale production-oriented dairy husbandry. Maintenance of landscape and nature values was 
achieved through institutional arrangements, especially so-called environmental cooperatives and 
subsidies to compensate for production loss, and through adapted management at field scale. An 
integrated assessment would allow putting the current situation into perspective and would enable 
exploration of alternatives in terms of agronomic, economic and environmental objectives. The 
integrated assessment was carried out in a subarea of 232 ha, comprising 3 farms. For the purpose of 
developing the assessment framework location specific data were replaced by data estimated from a 
range of studies carried out in the area. 

 
DESCRIPTION OF THE Landscape IMAGES FRAMEWORK 

A goal-oriented explorative modeling approach was adopted, in which goals or objectives of 
ecosystem management drive the way the model is developed. Four objectives were formulated: 1) 
maximize gross margin; 2) minimize loss of nitrogen to the environment; 3) maximize nature value of 
fields and borders; 4) maximize variation in the landscape. These objectives were translated into 
quantifiable indicators. Objective 1 was calculated as the sum of returns and subsidies minus variable 
costs per field. Subsidies are related to loss of grass production for nature conservation, and are linked 
to specific management packages. Returns were calculated in terms of milk production per ha by 
converting grass production to milk, based on energy content. Nitrogen loss (objective 2) was 
calculated as the sum over all fields of the difference between N application and uptake by grass (Fig. 
1b). Nature value (objective 3) was interpreted as species abundance in the grass swards and was 
calculated from an empirical relation describing the relation between N availability in the soil and 
maximum number of species (Oomes, 1992; Fig. 1c). These relations were assumed to apply both to 
fields and field borders. Finally, landscape quality (objective 4) was equated to variation in the number 
of species between fields and to variation in the occupation of field boundaries by hedgerows, which 
according to local sources is typical for the area. 

The system was described in a spatially explicit manner. On a map, individual fields, field 
borders, farm houses and roads were distinguished. A range of ‘production activities’ was defined for 
the fields, defined as the cultivation of grass in a particular environment, completely defined by its 
inputs and outputs (Van Ittersum and Rabbinge, 1997). The field borders could contain hedgerows or 
not. Farm houses and roads were assumed to be fixed. A constraint was set on minimum proportion of 
grazed herbage per farm to avoid full reliance on zero grazing with is not common in the area at the 
moment. A soil nutrient gradient was assumed across the region, reflected in 5 levels of soil-N 
mineralization ranging from 140 to 180 kg N ha-1. 

An agro-ecological engineering approach was used to describe the set of possible production 
activities per field. Fertilizer rate and harvesting regime were taken as ‘design criteria’ since they 
impact strongly on gross margin, N-losses and nature value. In total 11 levels of fertilizer input were 
defined, together with agronomically feasible combinations of 0 to 5 mowing cuts, each with 0 to 5 
grazing periods and 3 dates of first harvest (earlier dates resulting in higher yearly dry matter yields). 
This resulted in a total of 98 to 114 feasible production activities per field, depending on soil fertility. 



Outputs of the field-based production activities were described in terms of kg milk ha-1, nature value 
and nitrogen loss. 

Finding optimal combinations of the around 100 possible production activities per field and the 2 
activities per field border (yes or no hedgerow) constitutes a large combinatorial optimization problem. 
We solved this using a heuristic optimization method called an evolutionary algorithm. This approach 
generates a population of solutions, in this case landscapes with specific land use per field and field 
border, and improves this population by changing the solutions according to rules inspired on genetic 
evolution. The optimization criterion was the Pareto rank of a landscape. A Pareto rank 1 indicates that 
in the population no landscapes exist which are better in at least one of the objectives and not worse in 
any of the others. Subsequent Pareto ranking of all solutions allows combination of the four objectives 
into one criterion, without any subjective a priori weighting. For details see Groot et al. (2007). 

 
RESULTS AND DISCUSSION 

In Fig. 2 Pareto-optimal solutions are shown after 12,000 iterations of the algorithm in terms of 
the objectives and an example landscape. The relations between the objectives can be seen as trade-
offs, showing how much has to be sacrificed in one objective to achieve more in the other. Landscapes 
I and II in Fig. 2a represent extremes in the trade-off between gross margin and nature value. 
Landscape I (low gross margin, high nature value) is dominated by fields with production activities 
characterized by high species numbers and low nutrient losses as a consequence of low fertilizer inputs. 
Landscape II (high gross margin, low nature value) comprises more production activities where low 
species numbers occur. However, it also contains 14 low-input fields with production activities 
characterized by high species numbers where subsidies are earned. In this landscape, nutrient loss 
levels per field varied strongly. The strategy is to use lesser quality fields for nature conservation. From 
an ecological perspective, the question is whether the resulting network is effective for species 
conservation. This aspect was addressed in a follow-up study (Groot et al., 2010). 

The effect of scale of observation is shown in Fig. 3 for nature value. Fig. 3a shows the large 
variation in nature value for the field level production activities. At the level of farms, averaging over 
fields removes extremes (Fig. 3b). Clear differences between farms were found (Fig 3b). Farm B 
exhibited a much larger range of species – gross margin combinations than farms A and C. The reason 
was that the minimum proportion of grazed herbage on farm B was smaller, leading to more solutions 
with mowing regimes which increased gross margin. The solution set for farm A appears shifted ‘to the 
left’ compared to those for B and C (Fig. 3b), most likely due to the lower overall soil fertility of farm 
A compared to farms B and C. This result emphasizes that development options of farms may be highly 
context-specific, requiring tailor-made solutions when negotiating change with farmers. 

Landscape IMAGES provided the research team and the participating stakeholders with a 
framework for thinking about different objectives across different scales, taking into account where 
activities take place. The stakeholders were particularly interested in the degree of conflict between 
objectives to obtain more insight in their ‘negotiation space’. Another useful feature that was developed 
with the stakeholder was the link between solutions and the map showing the spatial consequences.  

We propose the Landscape IMAGES framework as a way to link agronomic knowledge to other 
knowledge domains and to stakeholder needs, in order to progress towards farming systems that are 
able to combine internal and landscape-scale ecosystem services as part of sustainable development. 
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Fig. 1. Main agroecological relations used in the study.  Fig. 3. Gross margin – nature relations at the 

field (a) and farm (b) level. A, B and C refer to 
3 different farms (see map in Fig. 2). 

 

  

Fig. 2. Landscape scale trade-off curves between gross margin (€ per ha) and nature value (a), gross margin and 
landscape value (b) and gross margin and nitrogen losses (kg N per ha, c) after 12,000 generations of 
optimization (●). Four selected landscapes are numbered I-IV; the landscape associated with solution III is 
shown on the right. Extreme solutions obtained by single-objective optimization are indicated (+). 
 


