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Abstract Intensively managed grasslands are occa-
sionally chemically killed with herbicide and ploughed
in order to grow an arable crop. After this management,
large N mineralization rates with large losses to the
environment are commonly observed. However, it
remains to be determined to what extent the chemical
killing contribute to increased N mineralization. In this
study the potential nitrogen (N) mineralization from
grasslands, that were killed with herbicides but
otherwise undisturbed, was investigated in a labora-
tory experiment with undisturbed soil columns.
Subsequently we assessed the predictive value of
several laboratory indices for N mineralization after
chemically killing of the grass. Mineralization rates
varied from 0.5 to 3.0 g N m−2 wk−1. The contents of
total N, total C, dissolved organic carbon (DOC) and
hot-KCl extractable NH4

+ were best related to N
mineralization rates (R2=50, 48, 38 and 47%, respec-
tively). In combination with information on the N
content of the roots and stubble and the age of
grassland at destruction, up to 62% of the variation in
N mineralization rates could be explained. Although
previous studies suggested that dissolved organic
nitrogen (DON) is a good indicator for mineralization

rates, this was not the case after chemically killing
grass in the current study.
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Introduction

European intensive dairy production systems are often
based on rotations of grasslands and arable crops (Taube
and Conijn 2004). In these systems, grasslands are
occasionally treated with herbicides and ploughed in
order to grow an arable crop or for reseeding with high
yielding grass varieties. As result of grassland destruc-
tion, the content of mineral N in the soil strongly
increases (up to more than 200 kg N ha-1) (Besnard et
al. 2007; Bommelé 2007; Davies et al. 2001; Eriksen
and Jensen 2001; Johnston et al. 1994; Nevens and
Reheul 2002). This increase in mineral N content is
caused by a combination of mineralization of the grass
biomass (stubbles and roots) and by enhanced miner-
alization of organic N that accumulated under the
forage grass. When periods with high soil mineral N
contents coincide with wet conditions, the risk on
NO3

− leaching, denitrification losses and the emission
of the greenhouse gas nitrous oxide (N2O) is high
(Adams and Jan 1999; Ball et al. 2007; Hansen et al.
2007; Lloyd 1992; Shepherd et al. 2001).
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As ploughing generally has a strong effect on the
soil mineral N content through mineralization of soil
organic matter, chemically killing of grassland with-
out ploughing may be a strategy to decrease the risk
of N losses. Fine-tuning the rates and timing of N
fertilizer applications to the following crop, taking
into account predicted N mineralization of the killed
sward, might help to reduce N losses. For example,
Aarts et al. (2001) and Nevens and Reheul (2002)
showed that N fertilizer can be withheld without yield
loss for maize in the first year after grassland
ploughing. However, this requires quantitative insight
in the N mineralization rates after killing the sward
and the availability of N in the soil, both directly after
the sward has been killed and later on.

There are several options to gain this insight in
mineralization rates. Published studies on predicting
plant available N in the soil focus either on biological
(incubation) or chemical (extraction) laboratory indi-
ces (Keeney 1982), on models (Bhogal et al. 2001;
Thornley and Verberne 1989), or on field methods
(Bhogal et al. 1999; Hatch et al. 2000; Wienhold
2007; Besnard et al. 2007). Field methods have the
advantage that they may determine the N mineraliza-
tion rates under realistic conditions, but their results
may be difficult to generalize. Moreover, these
methods are much more time consuming than
laboratory indices that can be implemented as routine
analyses in laboratories. Published laboratory indica-
tors for N mineralization rates in permanent arable
and grassland soils include total N and C contents
(Accoe et al. 2004; Hassink 1995), hot KCl extract-
able NH4

+ (Gianello and Bremner 1986), and soluble
organic N (DON) (Groot and Houba 1995). DON has
shown to be a promising indicator in other studies
(Murphy et al. 2000). However, these studies used
mixed soil material. To study the effects of chemically
killing the sward, the soil should not be disturbed or
mixed. However, it is unknown to what extent the
known methods predict N mineralization rates in
undisturbed soils containing large quantities of plant
residues. Therefore the predictive value of the indices
has to be determined in this study.

The main objective of our study is to quantify the
potential N mineralization rates in grasslands on a
range of grassland soils that were chemically killed
with herbicide but otherwise undisturbed. As fine-
tuning N fertilizing in the subsequent crop to N
mineralization rates may contribute to reducing N

losses, our second aim is to assess a series of
laboratory indices as predictors of N mineralization
rates in the same set of soils.

Materials and methods

Field selection and sampling

In the Netherlands, grassland renewal occurs on both
clay soils and sandy soils and includes grasslands of
different ages (Schils et al. 2002). Grasslands on
sandy soils are on average ploughed every 5 years and
grasslands on clay soils every 10 years. A total of 42
grassland fields, varying in soil organic matter content
and grassland age, were selected within 13 dairy
farms where management records were accurate and
easily available. Seven farms were located on sandy
(to sandy loam) soils and the other six on clayey (silt
loam to heavy clay) soils. Grassland ages were
recorded, except for a few old grassland fields
(>20 years old) where the exact age was not known
and therefore estimated. For statistical analysis,
grassland ages for the old fields were set to 30 years.
The texture of the soils was estimated based on the
guidelines for soil description (FAO-ISRIC 1990).

As our study was on chemically killed, but
otherwise undisturbed swards, our experimental set-
up differed markedly from most of previous studies
quantifying mineralization rates in sieved soil after
removal of fresh crop residues. In each field, two
undisturbed soil columns of 19.5 cm diameter and
15.0 cm height (including the grass/sward that
remained after cutting) were sampled within 15 cm
from each other. Sampling was performed immedi-
ately after the first grass cut in April and before
application of fertilizers. Destruction of grasslands in
the Netherlands generally takes place in this period.
Six of the farms were sampled in May 2005, the rest
in May 2006. In both years, an identical sampling
procedure was followed.

Experimental set-up

One of the two soil columns per field was used for
soil and plant analyses and was vertically divided in
two halves. This was done within one or 2 days after
sampling. One half, used for measuring soil parame-
ters at the start of the experiment, was dried at 40°C,
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weighed and ground after biomass (stubbles and
roots) was removed from soil by sieving over a
2 mm sieve. The other half, used for measuring and
analyzing plant biomass, was rinsed with water in
order to remove all soil particles from grass stubbles
and roots. The biomass was dried at 70°C, weighed
and ground.

The remaining column for each field was stored in a
6-liter Mitscherlich pot for determination of net N
mineralization in undisturbed soil. In all columns,
moisture contents were kept below field capacity
during the incubation (gravimetric soil moisture
0.20–0.40 g g−1 corresponding to water-filled pore
space (WFPS) of 24–29% and 29–35% for the sandy
and clayey soils, respectively). Samples were gravi-
metrically adjusted to a soil moisture content of
0.20 g g−1.

The grass in the columns was chemically killed
using glyphosate, which is the common chemical
used for grassland destruction in the Netherlands. The
columns were kept at 15°C for 2 weeks and were
exposed to light during this period, in order to
facilitate the initial enhanced growth of grass after
glyphosate that is usually observed. After this period
of 2 weeks, when the grass was dead, three small soil
cores (1 cm diameter and 15 cm length) were sampled
and combined. These soil samples were analysed for
contents of NO3

−, NH4
+, DON and DOC, using the

methods as described below. The columns were
subsequently incubated at 20°C for 12 weeks. Sam-
pling and soil analysis was repeated after 2, 6 and
12 weeks, using the same procedure of taking small
cores. The holes were filled with plastic tubes to
prevent the soil from drying.

Laboratory analyses on indicators in soil and biomass

Several indicators were quantified on all soil samples.
Total N contents were measured spectrophotometrically
after digestion with a mixture of sulphuric acid, salicylic
acid, Se and H2O2; total C contents were determined
spectrophotometrically according to Kurmies (Houba
et al. 1997; Temminghoff 2000). The contents of
NH4

+, NO3
+, soluble organic C (DOC) and soluble

organic N (DON) in soil were analysed after extraction
in a 1:10 (v/v) ratio with 0.01 M CaCl2 (Houba et al.
2000). The NO3

− and NH4
+ concentrations were

determined using standard segmented-flow analysis.
Total content of DON was calculated as the

difference between total dissolved N and mineral N
(i.e. NH4

+-N+NO3
−-N). The release of NH4 during

boiling of soil at 100°C in KCl has shown to be a
promising indicator for N mineralization rates (Curtin
et al. 2006; Gianello and Bremner 1986; Smith and
Li 1993). Hot KCl extraction was carried out on soil
and biomass through a 4 h extraction of 6 g air dry
soil with 40 ml 2 M KCl in 100 ml incubation bottles
placed in a water bath of 100°C The bottles were
regularly stirred during the extraction. The extraction
solution was filtered over a 5-µm filter and analysed
for NO3

− and NH4
+ using standard segmented-flow

analysis techniques. The hot KCl extractable NH4
+

was calculated as the difference between NH4 after
boiling with 2 M KCl and the NH4

+ content derived
from the 0.01 M CaCl2 extraction data.

Data analyses

A t-test showed no significant differences in N
mineralization rates between the samples of both
years. All samples were therefore treated as one
population and jointly analyzed. To determine the net
N mineralization rate during the 12 week incubation
period, a linear regression line was fitted through the
mineral N after 0, 2, 6, and 12 weeks. Data analyses
were both performed per soil type and on all data
combined. Correlations among soil parameters were
determined by Pearson’s correlation analyses. In order
to find an indicator that predicts total net mineraliza-
tion after 12 weeks, single and multiple linear
regression analyses were performed with all measured
soil and biomass parameters (total C, total N, DOC,
DON, Hot-KCl extractable NH4 in soil and total N in
crop). The age of grassland and soil type were also
included in the multiple regression analysis,. All
statistical analyses were carried out with SPSS 15.0.

Results

N mineralization rates

The mineral N contents during the 12 weeks of
incubation could be modelled using linear regression
(Table 1). Mineralization rates varied from 0.5 to
3.0 g N m−2 week−1. Mineralization rates did not
differ significantly (p=0.066) between sandy soils
(mean 1.2 ± standard deviation of 0.5 g N m−2 wk−1)
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and clay soils (1.5±0.6 g N m−2 wk−1), and were not
related to the soil textural classes (Table 1). Though
very variable inside a class of age, the mineralization
rates tended to increase from short term- (1–2 years)
to mid term (3–5 years and 6–10 years) grasslands,
but decreased in long term grasslands (10–19 years)
and were highest after destruction of old grasslands
(≥20 years) (Table 2). When all samples were used, a
significant positive relationship between N minerali-
zation and grassland age was observed. This relation
was not significant when only grassland younger than
20 years were considered.

Biomass parameters

Grass biomass (roots and stubbles combined) after
cutting varied widely among fields (Table 1). However,
this might partly have been caused by differences in
the height of the stubble (which was not recorded). On
average, the amount of N in the biomass equalled 11
and 13 g N m−2 in clay soils and sandy soils,
respectively. C:N ratios of the biomass (Table 1) varied

widely (between 13 to 39). This might have been
caused by different stubble to root ratios (not analysed,
as stubbles and roots were processed jointly). There
was no clear effect of grassland age or soil type on the
C:N ratio of the remaining biomass (Table 2).

Soil parameters

Organic matter content of the soil varied from 10 to
77 g C kg−1 (Table 1) Although C contents of the
old grasslands on clay soil were relatively high
(>67 g kg−1), there was in general no relation
between C content and age of the grassland. In clay
soils initial DOC was strongly related to total C, and
DON to total N, while in sandy soils these relation-
ships were less pronounced. In sandy soils the C:N
ratios was generally higher (average of 18) than in
clay soils (on average 11).

Contents of DON and DOC were lower in the sandy
soil than in the clay soil (Table 1). During the 12 week
incubation, DON and DOC content in the sandy soils
did not change. In clay soils, DOC slightly decreased
during the first 2 weeks while the grass died, but
remained constant during the incubation period. DON
decreased from 36 mg N kg−1 (±18 mg N kg−1) in the
non-treated samples to 26 mg N kg−1 (±14 mg kg−1)
after 12 weeks of incubation.

Indicators for net N-mineralisation

Soil and plant biomass parameters were tested as
possible indicators for mineralization, both for the
complete data set and for sandy soils and clay soils
separately (Table 3 and Fig. 1). The regression lines
for clay soils showed a better fit (i.e. higher R2) than

Table 3 Single regression analyses with net mineralization as dependent variables (y in g N m−2 wk−1) and the potential indicators as
independent variables (x)

Potential indicator Clay soil fitted line R2 Sandy soil fitted line R2 All samples fitted line R2

Biomass N (g N m−2) n.s y=0.056 x+0.450 0.38 y=0.043 x+0.840 0.10

Total C (g C kg−1) y=0.027 x+0.260 0.59 y=0.016 x+0.730 0.22 y=0.022 x+0.522 0.48

Total N (g N kg−1) y=0.258 x+0.423 0.66 y=0.339 x+0.620 0.28 y=0.204 x+0.749 0.50

C/N y=−0.358 x+5.600 0.67 n.s y=−0.063 x+2.250 0.17

DOC (mg kg−1) y=0.002 x+0.676 0.52 y=0.004 x+0.698 0.16 y=0.001 x+0.940 0.38

DON (mg kg−1) y=0.021 x+0.752 0.38 n.s y=0.018 x+0.919 0.32

DOC/DON y=0.101 x+0.190 0.23 n.s y=0.101 x+0.200 0.23

hot-KCL (mg NH4-N kg−1) y=0.023 x+0.507 0.59 y=0.033 x+0.547 0.24 y=0.020 x+0.712 0.47

Table 2 Mean values (sd) for mineralization rates, biomass and
C:N ratio of the biomass for different classes of grassland age.
Significant differences between age classes are indicated by
different characters within a column

Age class n Mineralization
rates g Nm−2 wk−1

Biomass g
(d.m.) m−2

C:N in
biomass

1–2 years 9 0.92 (0.31)a 527 (221)a 26 (7)a

3–5 years 9 1.15 (0.43)ab 660 (234)a 24 (6)a

6–10 years 12 1.54 (0.42)b 818 (303)b 25 (6)a

11–19 years 6 1.23 (0.44)ab 959 (298)b 28 (6)a

>20 years 6 2.08 (0.66)c 695 (82)ab 25 (4)a
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for sandy soils. When data of both soil types were
combined, all indicators in Table 3 were signifi-
cantly related to net N-mineralization, although there
was a large difference in fit between the indicators.
Total C, total N, DOC and hot-KCl extractable NH4

+

were considered good predictors, as these indicators
were significantly related with N mineralization for
both soil types (Table 3). Total N appeared to be the
best indicator for both soil types and the combined
data. Total C and hot-KCl extractable NH4

+ per-
formed second best. DON was significantly related
with N mineralization for clay soils and the combi-
nation of both soil types, but not for sandy soils.

Since correlations among soil parameters were
significant (data not presented), only one soil param-
eter at a time was included in the multiple regression
analyses. So several stepwise multiple regressions
were conducted, each with a combination of one soil
parameter and either biomass N, age (log trans-
formed), texture or soil type were tested (Table 4).
Total soil N again gave best results. Including
grassland age and plant biomass N improved the fit
of the model, but hardly decreased the standard error
of the estimate. With total N in soil, grassland age and
N contents in the remaining biomass after cutting
(roots and stubbles), 62% of the variance in N
mineralization rate could be explained. Including soil
type or texture class in the multiple regression
analyses did not improve the results.

Discussion

Nitrogen mineralization

The first aim of this study was to quantify the potential
mineralization after the grass was chemically killed.
Nitrogen mineralization ranged from 59 to 361 kg N
per ha in 12 weeks. Possible differences in moisture
contents were not expected to cause differences in N
mineralization since Nmineralization is at maximum at
a relatively broad range of moisture contents around
field capacity (e.g. Antonopoulos 1999) and as long
moisture content is at least 50% of field capacity, it is
not a major factor controlling the mineralization rates
(Gonçalves and Carlyle 1994). Only at dry or very
wet conditions, a significant decrease in N minerali-
zation may occur and those conditions were avoided.
Mineralization rates were obtained at relatively high
temperatures (20°C). The average temperature in the
period half May to half August in the Netherlands is
16°C. In this period N uptake by the crop is highest.
For a good comparison of the laboratory results with
field conditions a correction factor of about 0.75 is
appropriate, assuming a Q10 relationship of 2 (i.e. the
mineralization increases with a factor 2 when temper-
ature increases with 10°C; Stanford et al. 1973). Thus,
the N mineralization corrected for field temperature
ranges from 45 to 275 kg N ha−1 in the 12-week period
of the incubation experiment.

Model R2 Standard error of estimate

y=0.750+0.204*Ntotal 0.50 0.41

y=0.543+0.160*Ntotal+0.187*ln(age) 0.59 0.37

y=0.288+0.171*Ntotal+0.128*ln(age)+0.027*Nbiomass 0.62 0.36

y=0.521+0.022*Ctotal 0.48 0.41

y=0.329+0.018*Ctotal+0.204*ln(age) 0.59 0.37

y=0.209+0.018*Ctotal+0.18*ln(age)+0.013*Nbiomass 0.60 0.37

y=0.920+0.018*DON 0.32 0.47

y=0.612+0.013*DON+0.241*ln(age) 0.48 0.42

y=0.307+0.015*DON+0.170*ln(age)+0.031*Nbiomass 0.52 0.41

y=0.941+0.001*DOC 0.38 0.45

y=0.637+0.001*DOC+0.227*ln(age) 0.52 0.40

y=0.335+0.001*DOC+0.161*ln(age)+0.030*Nbiomass 0.56 0.39

y=0.714+0.020*hot-KCL NH4 0.47 0.42

y=0.505+0.015*hot-KCL NH4+0.197*ln(age) 0.57 0.38

y=0.213+0.017*hot-KCL NH4+0.130*ln(age)+0.030*Nbiomass 0.60 0.37

Table 4 Results of multiple
regression analyses with
net mineralization in all
samples (n=42) as
dependent variables (y in
g N m−2 wk−1) and total N
(g kg−1), total C (g kg−1),
DON (mg kg−1), DOC
(mg kg−1), and hot-KCl
extractable NH4

+

(mg N kg−1) in combination
with ln-transformed age
(years) and the N content in
the biomass (g m−2) as
independent variable
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Since we found no other studies on mineralization
rates in chemically killed but otherwise undisturbed
swards, it is not possible to compare these figures to
other studies that were comparable in setup. However,
N mineralization rates in our study were in range of
data from studies where grasslands were ploughed
(Aarts et al. 2001; Johnston et al. 1994; Vertès et al.
2007; Whitehead et al. 1990). Those studies report a
wide range of annual N mineralization rates (100 to
400 kg N ha−1 yr−1) in the first year after grassland
ploughing. This wide range may be due to large
differences in experimental conditions (soil type, soil
organic matter content, N management, sward age,
crop type and management) and in the method of
estimation of N mineralization (N balance, models, N
uptake, and in-situ or laboratory incubations). High
mineralization rates in our study and the linear
increase in mineral N during the incubation period
may indicate that we only determined the peak of N
mineralization during several months after killing the
sward. This is comparable to Vertès et al. (2007), who
indicated that the N mineralization kinetics after
ploughing of grassland consists of a first phase of
several months with rapid and high N mineralization,
followed by a period with much smaller N mineral-
ization rates. This effect remained significant for
several years, depending on the age the grassland.

It was assumed that only chemically killing the
grass might reduce the risk of N losses, since
ploughing is omitted. The effect of ploughing may
be described as a combination killing the sward,
chopping of the sward residues into smaller pieces,
better mixing the sward residues in the soil and better
aeration of the soil, but also disturbance of macro-
and micro aggregates (Six et al. 2004). However, the
high N mineralization rates in our experiment
suggests that killing of the sward is a major factor
controlling N mineralization in destroyed grasslands.
This last assumption is supported by results of Velthof
et al. (2009), who showed that mineral N contents in
the soil were similar or higher after only chemically
killing of the swards than after chemically killing and
ploughing of the sward. Arnott and Clement (1966)
found that N yields of crops following grassland that
was chemically killed (and not ploughed) were similar
to those obtained by ploughing (and not chemically
killed). Both studies suggests that soil cultivation after
chemically killing of the sward does not further
enhance N mineralization.

Relation between indicators and N mineralization

The results show that the contents of total N, total C,
DOC and hot KCl NH4

+ were the best indicators of
the N mineralization. Accoe et al. (2004) in Belgium
and Hassink (1995) in the Netherlands showed that
total N is also a good predictor of N mineralization of
undisturbed, but intensively managed grassland. It is
therefore used in N fertilizer recommendations for
grassland in the Netherlands. In a simple regression
model for predicting the N off take in newly resown
grassland (Hatch et al. 2004), total N content was also
a significant parameter, the other parameters being hot
KCl NH4

+, the clay content and the accumulated daily
temperature. Like Accoe et al. (2004) we found a
negative relationship between the C:N ratio and the N
mineralization, for the clay soil and the combined
data. In this study we only tested rapid chemical
methods as indices for mineralization. Our results and
conclusions only apply to these methods and not to
other measurements (e.g. on soil microbial biomass).

The results of the multiple regression analysis
showed that when the N content of the roots and
stubbles and the number of years since sowing is
known, the prediction of N mineralization could be
improved up to 62%. (Table 3). Although Johnston et
al. (1994) and Vertès et al. (2007) also reported a
tendency that N mineralization increases with increas-
ing age of ploughed grassland, we have to note that
this only applied when all samples were included. In
field situations it is unlikely that those very old
grassland will be destroyed for renovation. Although
we found that the prediction of N mineralization,
could be improved when the N content of the biomass
(both roots and stubbles) is known, it is a too difficult
and time-consuming method to suggest its determi-
nation as a standard and rapid method in laboratories
to provide farmers fertilizer recommendations on
basis of soil and plant tests.

Performance of DON as indicator for N
mineralization

Based on many studies (Appel and Mengel 1990,
1998; Bregliani et al. 2006; Groot and Houba 1995)
and an experiment in permanent (not killed) grass-
lands on sandy soils in the Netherlands (Velthof
2003), we expected DON (i.e. 0.01 M CaCl2
extractable organic N) to be a good index for
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mineralizable N. However, the exact role of DON in
mineralization is not clear. Mengel et al. (1999)
indicated that determination of the N compounds in
CaCl2-extractable organic N may improve its use as
an index, because amino N and the amino sugar N
were positively correlated with N mineralization. In
our experiment DON was significantly related with N
mineralization in the clay soil and the overall dataset,
but not for the sandy soil. We also expected that DON
and DOC contents would temporary increase, because
of decaying grass residues like in studies of Bhogal et
al. (2000) and Murphy et al. (2007), who showed
flushes of DON after residue incorporation. In our
experiment, the DON contents in sandy soils
remained constant during the incubation and de-
creased slightly in the clay soils.

Obviously, the role of DON in mineralization and
processes controlling DON contents in the soil are yet
unclear. Possibly, DON is a better predictor for N
mineralization in sieved soil samples as in the study
of Velthof et al. (2009), than in undisturbed samples
containing crop residues. Because of the promising
results of DON as indicator for mineralization in
many studies and the fact that measurement of DON
is a rapid and easy method, further study on this topic
is needed.

Variability in mineralization and indices

Although total N, total C, DOC and hot KCl NH4
+

were significantly related to the N mineralization, the
R2 of 40–60% indicated that a considerable part of the
variance in N mineralization is not explained. Even
when some additional indicators like age or biomass
N were included, the explained variance never
exceeded 62%. There are several possible causes for
this. First, N mineralization is a complex process in
which many biological, chemical, physical factors
play a role. A practical (and therefore necessarily
simple) mineralization index can never account for all
these factors and thus part of the variance in N
mineralization will always be unaccounted for. Sec-
ondly, spatial variability of N parameters may have
played a role. Since we measured the N indicators in
one column, they may not always apply to mineral-
ization rates derived from measurements in the other
column. A third complicating factor may be the
variability within the columns. We used undisturbed
sward samples where the killing of the grass sward

may have introduced a significant source of variability
by mineralization of crop residues. Since determina-
tion of N mineralization was based on small soil cores
samples, the results may deviate from studies in which
incubations are carried out with well mixed composite
soil samples.

Some studies report higher correlations (up to
85%) between mineralization indices and measured
soil mineralization (e.g Gianello and Bremner 1986;
Groot and Houba 1995; Mengel et al. 1999), but in
those studies the effects of small scale spatial
variability are minimized by sieving and mixing the
soil, which is by definition impossible in undisturbed
soil cores. In some studies, the N yield from
unfertilized grassland is used as an indicator of
mineralization. The percentage of the variance in the
N off take explained by mineralization indices is
somewhat higher (60–90%) compared to our study
(Hassink 1995: total N; Hatch et al. 2004: hot KCl
NH4

+). This is mainly because the N off take is
measured by mowing of a relatively large grassland
area, which reduces spatial variability of N mineral-
ization compared to the small samples in our study.
However, it must be noted that grass growth may be
limited by climatic factors and that the N yield of
grassland is only an indicator for part of the N
mineralization. Large amounts of N (more than
100 kg N ha−1; Whitehead et al. 1990) needed for
the establishment of roots and stubbles are not taken
in account.

Conclusion: To a field indicator for mineralization?

In our study we focussed on rapid chemical indicators
for N mineralization in a laboratory experiment.
Tested indicators can be used to predict N minerali-
zation in order to better fine-tune N applications in
crops after chemically killing the grass. The labora-
tory study showed that contents of total N, total C,
DOC and hot KCl NH4

+, whether or not in combina-
tion with the N content of the biomass and the
number of years since sowing, are promising indica-
tors for mineralization in these grasslands. Studies are
needed to test the predictive value of these indicators
in the field.. In our laboratory study, DON was not
well related to N mineralization in chemically killed
grassland. This is, in contradiction with other studies
which showed that DON is a promising indicator for
mineralization.
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The high N mineralization rates (0.5 to 3.0 g N
m−2 week−1) in our experiment and results of the field
study of Velthof et al. (2009), suggest that killing the
sward is the major factor controlling N mineralization
in destroyed grasslands. Soil cultivation after killing
of the sward may not further enhance N mineraliza-
tion. Further experiments, either in the laboratory or
in the field, have to be carried out to get more insight
in N mineralization in destroyed grassland.
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