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[1] A monitoring scheme has been designed to test whether the space‐time mean
concentration total Nitrogen (N‐total) in the surface water in the Northern Frisian
Woodlands (NFW, The Netherlands) complies with standards of the European Water
Framework directive. Since in statistical testing for compliance monitoring valid
estimators for the mean and its variance are important, a design‐based method is preferred
above a model‐based method. In the NFW‐area the surface water depth varies in both
space and time and can periodically equal zero, due to variation in precipitation and
evapotranspiration. To account for this, space‐time mean concentrations are estimated
by the ratio of the estimated total mass of nutrient and the estimated total volume of
water. The method is applied in the period from 1 April to 30 September 2008 to four
hydrologically different subareas. Besides, the aim was to use the information on the
spatial and temporal variance of N‐total concentrations to optimize the numbers of
sampling rounds and sampling locations per sampling round in future monitoring
campaigns, given budgetary constraints. A bootstrap procedure was applied to account for
uncertainty about the temporal and spatial variances in estimating the optimal number
of sampling rounds and sampling locations. For two subareas the accuracy of the estimated
space‐time means can be improved by sampling more frequently at less locations
(compared to the design applied in 2008), whereas for one subarea sampling less
frequently at more locations increases the precision. For one subarea the sample data were
rather inconclusive about the optimal sample sizes.

Citation: Knotters, M., and D. J. Brus (2010), Estimating space‐time mean concentrations of nutrients in surface waters of
variable depth, Water Resour. Res., 46, W08502, doi:10.1029/2009WR008350.

1. Introduction

[2] Although Dutch farmers generally endorse the goals
of manure policy, they increasingly question the measures
dictated by law to achieve these goals. As an alternative to
obeying rules on the way of manure application, a farmers
cooperative in the Northern Frisian Woodlands (NFW) in
the Netherlands was given the responsibility for reaching the
environmental goals in their region, by applying innovative
management systems for sustainable forms of agriculture
[Bouma et al., 2008, pp. 216–217]. A monitoring scheme
had to be designed to test whether the environmental goals
are reached or not. One of these goals is that the surface
water quality complies with the standards of the European
Water Framework directive [Council of the European
Communities, 2000]. To this end the space‐time mean
concentrations of nutrients in surface water were tested
against standards. In statistical testing it is important to
obtain valid estimates of the mean (total) and its error var-
iance. Validity means that the outcome of the test does not

depend on the quality of model assumptions. Therefore, a
design‐based method is preferred above a model‐based
method, because in a design‐based method no assumptions
on the variation of the concentrations in space and in time
are made.
[3] Dobbie et al. [2008] reviewed model‐based and

design‐based strategies for monitoring stream networks and
discussed the differences between both approaches. In a
design‐based approach sampling units (locations and/or
instants of time) are selected by probability sampling. The
sampling design determines the probabilities (for infinite
populations probability densities) that a sampling unit is
included in the sample, as well as the inclusion probabilities
for pairs of sampling units. All sampling units in the uni-
verse must have a positive probability of being selected. The
inference (e.g. estimating the mean and the sampling vari-
ance of the estimated mean) is based on the inclusion
probabilities and thus on the sampling design. In a model‐
based approach there are no requirements on the method
used for selecting the sampling units. The sampling units
can be selected purposively, such that the prediction error
variance is minimized. Regular grids and spatial coverage
samples are commonly used spatial sampling patterns for
model‐based methods. A model for spatial and or temporal
variation, including a random error term, is used for pre-
dicting the target quantity (e.g. point values, a spatio‐
temporal mean or a temporal trend), and for estimating the
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prediction error variance of this quantity. The quality of
these predictions depends on the quality of this model.
Brus and de Gruijter [1997] discussed the advantages and
disadvantages of the design‐based and the model‐based
approach, and how to choose between them. In contrast to
model‐based methods, in design‐based methods no model
of variation in space and or time is used. Therefore a
design‐based approach has better validity properties, i.e the
quality of the result is independent of the quality of model
assumptions. Dobbie et al. [2008] concluded that most of
the model‐based approaches in the literature they consid-
ered were applied in two‐dimensional domains, and only a
few in linear systems such as streams. Besides, they
observed that some recent developments in probability‐
based designs were motivated by applications in monitor-
ing large‐scale natural resource systems such as stream
networks. Furthermore they concluded that “probability‐
based design approaches appear to be better suited both
theoretically and practically for the sparse sampling of
stream networks”, and mention the generalized random‐
tessellation stratified (GRTS) sampling design [Stevens and
Olsen, 2003, 2004] as a promising approach for sampling
large‐scale stream networks. Southerland et al. [2009]
preferred probability‐based sampling above “ad hoc”
(targeted) sampling of stream segments in assessment of
biological water quality standards in Maryland, because
conditions at a watershed scale cannot be reliably inferred
from “ad hoc” sampling. Peterson et al. [1998] described the
advantages of probability sampling over non‐random sam-
pling in assessment of lake trophic states in the Northeastern
United States. An advantage is in the fact that inference is
objectively based on the probability sampling design. The
probability‐based design permits sample findings to be
inferred to the entire lake population. Assessment programs
based on probability sampling in space as described by
(amongst others) Southerland et al. [2009] and Peterson
et al. [1998], followed from the US Clean Water Act
[U.S. Environmental Protection Agency, 2002], which has
similar aims as the European Water Framework Directive.
[4] Brus and Knotters [2008] presented a design‐based

method to test space‐time mean concentrations of nutrients
in the surface water of a polder area. In this fully design‐
based method both sampling rounds and sampling locations
are selected by probability sampling. Random selection of
sampling rounds is relatively new. Random selection of
sampling times for monitoring the quality of surface water
has been applied before by Thomas [1985] and Thomas and
Lewis [1995].
[5] For the polder area in the study by Brus and Knotters

[2008] the water depth was assumed to be constant in space
and in time, which was realistic because a constant water
level was maintained during the monitoring period. In the
NFW‐area the surface water depth varies in both space and
time and can periodically equal zero, due to variation in
precipitation and evapotranspiration. Therefore, the estima-
tion method presented by Brus and Knotters [2008] cannot
be applied straightforwardly in this case and must be
adapted to account for this variable depth. We will show that
in this case space‐time mean concentrations can be esti-
mated by the estimator for the ratio of the total mass of
nutrient and the total volume of water [Cochran, 1977,
p. 30–34].

[6] The aim of this study is to estimate space‐time mean
concentrations of total Nitrogen (N‐total) in surface water
with a depth varying in space and time. The method is
applied to four hydrologically different subareas of the
NFW‐area. Besides, the aim was to use the information on
the spatial and temporal variance of N‐total concentrations
to optimize the numbers of sampling rounds and sampling
locations per sampling round in future monitoring cam-
paigns, with the costs of the executed campaign as bud-
getary constraint.

2. Sampling Procedure

[7] Figure 1 shows the study area. Four subareas of the
NFW‐area have been selected to develop a monitoring
procedure which can be applied to larger areas in a later
stage. Subarea 1 (approximately 22.4 hectares of surface
water) is situated in a polder with peat soils and relatively
constant water levels. Subarea 2 (1.5 hectares) is located in a
slightly undulating area with cover sands overlaying boulder
clay, and gravitational discharge. Subarea 3 (4.2 hectares)
covers a gradient from sandy to peaty soils, with gravita-
tional discharge. Subarea 4 (9.8 hectares) is in a polder with
clay soils. The aim was to estimate the space‐time mean
concentrations for all four subareas, and not merely the
space‐time mean concentration for the area as a whole.
[8] The Dutch Maximum Allowable Risk (MAR) stan-

dards are defined for the space‐time mean concentration of
N‐total in surface water up to 50 cm depth, during the
summer period from April 1 to September 30. For this
period in 2008 we applied a synchronous sampling pattern
[de Gruijter et al., 2006; Brus and Knotters, 2008], with
stratified simple random sampling (STSI) in time and simple
random sampling (SI) in space. The spatial SI sample of a
given sampling round was selected independently from the
SI samples of the other rounds. This is referred to as inde-
pendent synchronous sampling. As shown by Brus and
Knotters [2008] this space‐time sample can be analyzed as
a two‐stage sample, with sampling rounds as primary
sampling units (psu’s), and sampling locations as secondary
sampling units (ssu’s).
[9] Six sampling rounds were selected by STSI, with

temporal strata of two months length and two sampling
rounds per stratum, so that temporal coverage is improved
as compared to simple random sampling. The selected
datums are April 2, April 23, June 6, July 24, September 25
and September 26. Next, for each sampling round sampling
points were selected by SI. The numbers of sampling
locations per sampling round were 18 points in subarea 1, 6
points in subarea 2, 6 points in subarea 3 and 10 points in
subarea 4. These numbers are approximately proportional
to the area of surface water in the subareas. Figure 1 shows
the positions of the sampling points for the first sampling
round at April 2. At each sampling event (combination of
sampling location and sampling time) an aliquot of the
surface water was taken over the full depth, up to a
maximum of 50 cm. If a randomly selected location hap-
pened to fall in a dry ditch, then an extra location was
randomly selected, until the number of aliquots of surface
water per sampling round was 18, 6, 6, and 10 for subareas
1, 2, 3 and 4, respectively. Water depths at the sampling
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locations were measured when the aliquots were taken.
These water depths are used in the estimation procedure
for volume weighting.

3. Estimation Procedure

3.1. Target Parameter

[10] The space‐time mean concentration of N‐total is
defined as:

y ¼
R
t2T

R
s2S yðs; tÞ � lðs; tÞdsdtR

t2T
R
s2S lðs; tÞdsdt

; ð1Þ

with y(s,t) the concentration of N‐total at location s and time
t (averaged over the water depth), l(s,t) the water depth at
location s and time t, S the (two‐dimensional) area, and
T the monitoring period. In this definition it is assumed that
the area S is constant over time. This implies that the water
volume only varies with water depth, which is a reasonable
assumption given the dimensions of the surface waters
(mainly ditches) in the study area. We use two bars (y ) to
indicate that the target quantity is an average over both space
and time. Note that

R
s2Sl(s,t) equals the volume of water at

time t. This target parameter is a volume‐weighted average
concentration.

Figure 1. Study area. The dots indicate the sampling locations during the first sampling round, 2 April
2008.
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3.2. Estimation of a Ratio

3.2.1. SI in Time and SI in Space
[11] First, we describe the estimation procedure for SI in

time and SI in space. In section 3.2.2 we extend the esti-
mation procedure to STSI in time and SI in space, which
was applied in this study. Note that the denominator in
equation (1), the volume of water at time t integrated over
the monitoring period, is unknown and must be estimated
from the sample. This implies that the space‐time mean
must be estimated by estimating the numerator and the
denominator of the ratio of equation (1). For SI sampling in
time and SI sampling in space this estimator equals:

ŷSI;SI ¼
T
n

Pn
i¼1

A
mi

Pmi
j¼1 yij � lij

T
n

Pn
i¼1

A
mi

Pmi
j¼1 lij

ð2Þ

with T the length of the monitoring period, n the number of
selected sampling times (psu’s), A the (surface) area of the
study area, mi the number of selected sampling locations
(ssu’s) in the ith psu, yij the concentration at the ith selected
psu and the jth selected ssu, and lij the water depth at that
time and location. With t̂i(y) = A

mi
Sj=1
mi yij · lij the estimated

total mass of N‐total in the ith psu and V̂ i = A
mi

Sj=1
mi lij the

estimated water volume in that psu, equation (2) reduces to

ŷSI;SI ¼
Pn

i¼1 t̂iðyÞPn
i¼1 V̂i

ð3Þ

[12] The variance of ŷSI,SI can be estimated by [Cochran,
1977, p. 32, equation (2.45)]

var ŷSI;SI
� �

¼ 1

n V̂
� �2

Pn
i¼1 t̂iðyÞ � ŷSI;SIV̂i

h i2
n� 1

¼ 1

n V̂
� �2

Pn
i¼1 t̂iðeÞ½ �2

n� 1

¼ s2 t̂ðeÞ½ �

n V̂
� �2 ; ð4Þ

with t̂i(e) the estimated residual in total mass of N‐total
(estimated residual mass) for the ith psu, s2[̂t(e)] the esti-
mated temporal variance of these estimated total residuals
per psu, and V̂ = 1

nSi=1
n V̂ i the estimated water volume

averaged over the psu’s.
3.2.2. STSI in Time and SI in Space
[13] The space‐time universe was stratified along the

time‐axis, to improve temporal coverage. For STSI sam-
pling of times (psu’s) and SI sampling of locations (ssu’s),
the space‐time mean can be estimated by

ŷSTSI;SI ¼
P‘

h¼1
Th
nh

Pnh
i¼1

A
mhi

Pmhi
j¼1 yhij � lhijP‘

h¼1
Th
nh

Pnh
i¼1

A
mhi

Pmhi
j¼1 lhij

: ð5Þ

In this combined ratio estimator the numerator and
denominator are estimates of totals for the entire universe.
[14] The three time‐strata are equally sized (61 days each).

In each stratum two psu’s were selected. The resulting
sampling design is self‐weighting, which implies that
equation (2) can be used as an estimator of the space‐

time mean concentration, i.e., in this particular case
ŷSTSI,SI = ŷSI,SI.
[15] To estimate the variance of ŷSTSI,SI we first calculate

the residuals in mass of N‐total per psu, analogous to
[Cochran, 1977, p. 32]:

t̂hiðeÞ ¼ t̂hiðyÞ � ŷSTSI;SI � V̂hi; ð6Þ

with t̂hi(y) = A
mh

Sj=1
mh (yhij · lhij) the estimated mass of N‐total

for the ith psu in stratum h, and V̂ hi = A
mh

Sj=1
mh lhij the esti-

mated water volume of that psu. The variance of ŷSTSI,SI can
then be estimated by

var ŷSTSI;SI
� �

¼
P‘

h¼1 w
2
h � varh t̂ðeÞ

h i
V̂

� �2 ; ð7Þ

with

varh t̂ðeÞ
h i

¼ 1

nhðnh � 1Þ
Xnh
i¼1

t̂hiðeÞ½ �2¼ s2h t̂ðeÞ½ �
nh

; ð8Þ

and

V̂ ¼
X‘

h¼1

wh � V̂ h: ð9Þ

3.3. Optimization of Numbers of Sampling Rounds
and of Sampling Locations per Sampling Round

[16] In equation (8) sh
2[̂t(e)] is the estimated temporal

variance of the estimated residual mass of N‐total per pri-
mary unit. This temporal variance automatically includes the
uncertainty in the estimated residual amount due to spatial
variation of the residuals per sampling location. This explains
that the number of sampling locations per sampling round
mh does not show up in equation (8). For optimization of the
number of sampling rounds and the number of sampling
locations per sampling round, we decompose sh

2[ t̂(e)] in
equation (8) in a temporal variance and a spatial variance
component as follows:

s2h t̂ðeÞ½ � ¼ s2T h tðeÞ½ � þ A2 s
2
ShðeÞ
mh

ð10Þ

with sT h

2 [t(e)] the temporal variance within stratum h of the
(errorless) total residuals per primary unit, and sSh

2 (e) the
spatial variance within stratum h of the residuals at point
locations. Inserting equation (10), and noting that for pro-
portional allocation to temporal strata of equal length nh = n

‘
and wh = 1

‘, equation (7) can be rewritten as:

var ŷSTSI;SI
� �

¼
P‘

h¼1 s
2
T h tðeÞ½ �

‘ V̂
� �2

1

n
þ A2

P‘
h¼1 s

2
ShðeÞ

‘ V̂
� �2

1

nm
: ð11Þ

As we have rather sparse information on the temporal var-
iance and spatial variance, we assumed that the temporal and
spatial variances within strata are equal for the three tem-
poral strata, so that the observations of all three strata can be
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used in estimating sT h

2 (e) and sSh
2 (e). In this case equation

(11) reduces to

var ŷSTSI;SI
� �

¼ s2T h tðeÞ½ �
V̂

2

1

n
þ A2 � s2ShðeÞ

V̂
2

1

nm
: ð12Þ

[17] We estimated the multivariate sampling distribution
of sT h

2 [t(e)], sSh
2 (e) and V̂ 2 by a bootstrap procedure [Efron

and Tibshirani, 2006], see Appendix A. The estimated
multivariate sampling distribution is used to account for the
uncertainty about the temporal and variances sT h

2 [t(e)] and
sSh
2 (e) and the volume V in optimizing the number of sam-
pling rounds and sampling locations.
[18] We now postulate a simple linear cost model:

C ¼ c1nþ c2nm; ð13Þ

with c1 the costs per sampling round and c2 the costs per
sampling location. The sample sizes minimizing the vari-
ance under the constraint that the total costs does not exceed
a budget Cmax can be found by the Lagrange multiplier
method:

n ¼ CmaxS1
S2

ffiffiffiffiffiffiffiffiffi
c1c2

p þ S1c1
ð14Þ

and

m ¼ S2
S1

ffiffiffiffiffi
c1
c2

r
ð15Þ

with

S1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2T h tðeÞ½ �

V̂
2

s
ð16Þ

and

S2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2s2ShðeÞ

V̂
2

s
; ð17Þ

The numbers obtained with equations (14) and (15) are
reals. These reals were rounded to the nearest integers, and
we searched in the neighborhood of these integers for the
optimal sample sizes, i.e. the number of sampling rounds n
and the number of sampling locations m for which the
variance var(ŷSTSI,SI) is minimal and the costs C are smaller
than Cmax. The bootstrap procedure thus results into 10,000
estimates of the optimal values for n and m.

4. Results

4.1. Descriptive Statistics

[19] Table 1 summarizes the collected sample data. In the
subareas 1, 2 and 3 ditches frequently dried up. In subareas
2 and 3 the concentrations N‐total showed relative large
variations. After removing the outlying value of 51.1 mg·l−1

in subarea 3 from the data set, the maximum concentration
for September 25 was 8.4 mg·l−1. Note that the number of
sampling locations per sampling round, mhi, varied,

Table 1. Summary of the Collected Data in Four Subareas of the Northern Frisian Woodlands in the Period April 1, 2008 to
September 30, 2008a

Temporal Stratum Datum (Day‐Month)

Subarea

1 2

mhi

l y

mhi

l y

Min. Max. Min. Max. Min. Max. Min. Max.

1 2‐4 18 20 50 1.1 4.3 6 10 40 1.5 7.8
1 23‐4 18 5 50 0.73 4.5 6 5 20 1.8 5.0
2 11‐6 18 5 50 1.3 5.7 6 5 20 2.2 5.3
2 24‐7 18 10 50 0.63 2.7 10 0 50 0. 3.6
3 25‐9 19 0 50 0. 9.7 12 0 50 0. 23.9
3 26‐9 19 0 50 0. 6.9 7 0 20 0. 3.3

Temporal Stratum Datum (Day‐Month)

Subarea

3 4

mhi

l y

mhi

l y

Min. Max. Min. Max. Min. Max. Min. Max.

1 2‐4 6 10 35 1.2 4.0 10 10 25 1.0 2.9
1 23‐4 8 0 20 0. 7.4 10 5 50 1.3 4.5
2 11‐6 6 5 35 0.69 20.0 10 20 35 1.6 5.8
2 24‐7 9 0 50 0. 3.0 10 15 30 1.0 7.0
3 25‐9 8 0 50 0. 51.1 10 5 20 1.1 5.5
3 26‐9 7 0 50 0. 4.2 10 5 30 1.3 5.0

aSee Figure 1. mhi is the number of sampling locations per observation round. l is surface water depth in cm, up to 50 cm. y is concentration N‐total
in mg·l−1.

Table 2. Estimated Space‐Time Mean Concentrations of Total
Nitrate in Surface Water in Four Subareas of the Northern Frisian
Woodlands in the Period April 1, 2008 to September 30, 2008a

Subarea ŷSTSI,SI (mg·l−1) var( ŷSTSI,SI) mg2·l−2

1 (peat soils) 2.45 0.017
2 (sandy soils) 3.44 0.493
3 (sandy and peaty soils) 2.23 0.066
4 (clay soils) 2.31 0.030

aSee Figure 1.
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because extra locations were selected if locations were
situated in dry ditches (see section 2).

4.2. Space‐Time Mean Concentrations of N‐Total

[20] Table 2 presents the estimated space‐time mean
concentrations of N‐total and their standard errors. In sub-
area 3 an outlying value of 51.1 mg·l−1 was observed at
September 25, 2008. This outlier was omitted in the cal-
culations. If this outlying observation would be included,
the space‐time mean concentration for subarea 3 is esti-
mated at 3.77 mg·l−1, with a variance of 3.416 mg2·l−2.
[21] The estimated space‐timemean concentrations exceed

the legal MAR standard for N‐total of 2.2 mg·l−1 in all four

subareas. It should be noted, however, that theMAR standard
is defined for stagnant open waters, like lakes, whereas the
surface water in the study area consists of a system of small
ditches draining land that is mainly used for dairy farming.

4.3. Optimal Number of Sampling Rounds and
Sampling Locations

[22] We optimized the total number of sampling rounds
n = Sh=1

‘ nh and the number of sampling locations per
sampling round m for the STSI‐SI design, for a budget that
equals the costs of the monitoring project executed in 2008.
These costs were computed with equation (13). For c2 we
took the costs of one laboratory analysis of N‐total concen-
tration, being € 158.50 per aliquot. The costs of a sampling
round (costs of analyses not included), c1 in equation (13)
equaled € 430. This resulted into a costs of € 19,698 for
subarea 1, € 8,286 for subareas 2 and 3, and € 12,090 for
subarea 4. Table 3 gives the optimized numbers of sampling
rounds and sampling locations per sampling round for the
four subareas. The optimized numbers are calculated on the
basis of the monitoring data collected in 2008 directly, as
well as on the basis of the multivariate sampling distribution
of sT h

2 [t(e)], sSh
2 (e) and V̂ 2 as estimated from the monitoring

data collected in 2008, see section 3.3.
[23] For subarea 1 (peat soils) the optimal total number of

sampling rounds, nopt, and optimal number of sampling
locations per sampling round, mopt, equaled 16 and 5,
respectively, following from the monitoring data collected
in 2008. The bootstrap shows that we are rather uncertain
about the optimal numbers of sampling rounds and locations
per round. Nevertheless, the bootstrap results seem to con-
firm that the precision of the estimated space‐time mean can
be potentially increased by sampling more frequently and
less densely: the solutions with 16 sampling rounds or more
have a cumulative probability of 63%. Note that for 24% of
the bootstrap samples the optimal sample size was 21 rounds
of 3 locations per round, which is somewhat different from
the optimal solution based on the estimated spatial and
temporal variance. This difference can be explained by the
nonlinear relation between the sample sizes n and m and the
spatial and temporal variance. Finally, note that for 14% of
the bootstrap sample the optimal sample size was three
rounds of 38 locations per round, which is pretty large. This
underpins the need for more precise information on the
spatial and temporal variance in order to determine the
optimal sample size.
[24] Note that for proportional allocation of the sampling

rounds to the three temporal strata of equal length the total
number of sampling rounds must be divisible by 3. So, for
subarea 1 we conclude that the accuracy can be increased by
sampling more often at less locations: 18 or 21 sampling
rounds with respectively 4 or 3 locations per round is close
to optimal.
[25] For subarea 2 (sandy soils) the bootstrap results

indicate that given the maximum budget the precision can be
improved by increasing the number of sampling rounds
from 6 to 9, and reducing the number of sampling locations
per round from 6 to 3. For subarea 3 both the results based
on the estimated spatial and the temporal variance, and
based on the bootstrap procedure indicate that given the
maximum budget the accuracy can be improved by reducing
the number of sampling rounds to 3, with 14 locations per

Table 3. Optimized Numbers of Sampling Rounds (n) and
Sampling Locations per Sampling Round (m) in the Period
April 1 to September 30a

Subarea

Based on Sample Based on Bootstrap Procedure

n m n m
Relative
Frequency

1 (peat soils) 16 5 3 38 0.14
4 28 0.01
5 22 0.01
6 18 0.01
7 15 0.02
8 12 0.01
9 11 0.03
10 9 0.02
11 8 0.03
12 7 0.03
14 6 0.07
16 5 0.11
18 4 0.15
21 3 0.24
26 2 0.13
29 1 0.00

2 (sandy soils) 5 7 3 14 0.18
4 10 0.06
5 7 0.04
6 6 0.15
7 4 0.18
9 3 0.27
11 2 0.11
14 1 0.02

3 (sandy and
peaty soils) 3 14 3 14 0.31

4 10 0.05
5 7 0.03
6 6 0.15
7 4 0.16
9 3 0.22
11 2 0.06
14 1 0.00

4 (clay soils) 7 8 3 22 0.23
4 14 0.02
5 12 0.02
6 10 0.04
7 8 0.08
8 6 0.09
9 5 0.09
11 4 0.22
13 3 0.15
16 2 0.05
20 1 0.00

aThe optimized sample sizes are estimated from the results obtained in
2008. The uncertainty about the input parameters, such as the spatial and
temporal variance, see equation (12), is quantified by the bootstrap pro-
cedure. The last column shows the relative frequency for which the sample
sizes n and m were optimal, as computed from 10,000 bootstrap samples.
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sampling round. For subarea 4 the optimum number of
sampling rounds was 7 with 8 locations per round. How-
ever, the bootstrap indicated two optima: 3 sampling rounds
with 22 locations per round and 11 sampling rounds with 4
locations per round, showing that we cannot draw definite
conclusions about the optimal sample size.

5. Discussion and Conclusions

[26] This paper presents a fully design‐based method to
estimate space‐time means, in which both sampling rounds
and sampling locations are selected by probability sampling.
A design‐based approach is preferable above a model‐based
approach if valid estimates of the mean (total) and its
accuracy are required, as in testing against standards in
compliance monitoring. In that case it is important that the
quality of the test results does not depend on the quality of
model assumptions [de Gruijter et al., 2006].
[27] We estimated the space‐time mean concentration of

N‐total in surface waters with variable depth by estimating
the ratio of the estimated total mass of nutrient and the
estimated total volume of water. It is important to note that
in this procedure the sampling units selected in dry ditches
are not removed from the data set. The water depth lhij at
these locations equals 0, and so is the amount of N‐total at
that location, yhij · lhij.
[28] In this way an unbiased estimate of the space‐time

mean concentration in surface waters with varying depths is
obtained. The method applied in this study is a valuable
extension to the method described by Brus and Knotters
[2008], because the surface water depth may vary in many
areas.
[29] The evaluation of the number of sampling rounds and

sampling locations indicated that for subareas 1 and 2 the
precision of the estimated space‐time means can possibly be
increased by sampling more frequently at less locations.
This is particularly true for subarea 1, the peat area. For
subarea 3 the accuracy can be improved by sampling less
frequently at more locations. The bootstrap shows that we
are rather uncertain about the optimal numbers of sampling
rounds and locations per round. This is especially true for
subarea 4.
[30] We emphasize that the number of sampling rounds

and sampling locations is evaluated with respect to accurate
design‐based estimation of space‐time mean concentrations,
since testing these space‐time means against legal standards
is the objective of the compliance monitoring described in
this study. If, for example, tracing locations and periods at
which critical conditions occur were the objective, a model‐
based approach with purposively selected samples would
have been recommendable. In that case the number of
sampling rounds and sampling locations, as well as the
temporal and spatial co‐ordinates, are optimized aiming for
maximizing the probability of tracing critical conditions.
[31] As an alternative to stratified simple random sam-

pling of sampling rounds with temporal strata of equal
length, sampling rounds can be selected by systematic ran-
dom sampling (SY), i.e., at constant interval. For SY tem-
poral coverage is optimal, and it can be expected that this
improved temporal coverage compared to STSI leads to a
gain in precision of the estimated space‐time mean. A
drawback of SY is that no unbiased estimator of the sam-

pling variance exists. Estimating the sampling variance as if
the sample was selected by STSI will in general (slightly)
overestimate the sampling variance.
[32] We focused on four relatively small areas. If the aim

is statistical inference on the water quality in the streams of a
large area, random selection of stream segments can be done
for instance by Generalized Random Tessellation Sampling
[Stevens and Olsen, 2003, 2004]. Brus et al. [2002] pro-
posed to select sampling locations in a stream network by
stratified three‐stage sampling, using stream segments as
primary sampling units, transects perpendicular to the axis
of the watercourses as secondary units, and point‐locations
as tertiary sampling units. They illustrated how the sample
sizes can be optimized given a cost model and prior
knowledge on variance components.

Appendix A: Bootstrap Procedure

[33] The bootstrap procedure to estimate the multivariate
sampling distribution of sT h

2 [t(e)], sSh
2 (e) and V̂ 2 is as

follows:
[34] 1. Select by simple random sampling with replace-

ment (SIR) 6 psu’s out of the sample of 6 psu’s. Temporal
stratification has not been taken into account, because of the
small number of primary units within the strata (nh = 2).
[35] 2. Select from each selected psu of the previous

step by SIR mhi ssu’s (sampling locations), with mhi the
number of ssu’s that have been selected from the ith psu
in stratum h.
[36] 3. From the sample resulting from steps 1 and 2

compute ŷSTSI,SI (equation (3)) and V̂ 2 (equation (9)).
[37] 4. Compute residuals per ssu (sampling location) by

ehij ¼ yhij � lhij � ŷSTSI;SI � lhij: ðA1Þ

[38] 5. Estimate the spatial variances of residuals per ssu
within the psu’s by

s2hiðeÞ ¼
1

mhi � 1

Xmhi

j¼1

ehij � êhi
� �2

; ðA2Þ

and further estimate the sampling variance of the estimated
total residual per psu by

var t̂hiðeÞ½ � ¼ A2 s
2
hiðeÞ
mhi

: ðA3Þ

[39] 6. Estimate the temporal variance within strata of
estimated totals per psu by

s2h t̂ðeÞ½ � ¼ 1

nh � 1

Xnh
i¼1

t̂hiðeÞ � t̂hðeÞ
h i2

; ðA4Þ

and further pool the estimated sampling variances of esti-
mated totals per psu:

var t̂hðeÞ½ � ¼
Pnh

i¼1ðmhi � 1Þvar t̂hiðeÞ½ �Pnh
i¼1ðmhi � 1Þ ; ðA5Þ
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and finally, estimate the temporal variance within strata of
the errorless totals per psu by

s2h tðeÞ½ � ¼ s2h t̂ðeÞ½ � � var t̂hðeÞ½ �: ðA6Þ

[40] 7. Finally, compute the pooled spatial variance within
sampling rounds as

s2ShðeÞ ¼
P‘

h¼1

Pnh
i¼1ðmhi � 1Þs2hiðeÞP‘

h¼1

Pnh
i¼1ðmhi � 1Þ

; ðA7Þ

and estimate the temporal variance of errorless totals per
psu by

s2T h tðeÞ½ � ¼ 1

‘

X‘

h¼1

s2h tðeÞ½ �: ðA8Þ

The procedure described above is repeated 10,000 times,
resulting in 10,000 independent estimates of sSh

2 (e), sT h

2 [t(e)]
and V̂ 2.
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