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Abstract 

Error propagation analysis with soil process models requires realistic quantification of errors in model inputs, 

model parameters and model structure. Once this is achieved, the error propagation analysis itself is 

relatively straightforward, and can for instance be done by employing a Monte Carlo simulation approach. 

Input error assessment is often complicated because it must include spatial, temporal and cross-correlations 

of input errors and must assess these at the right spatio-temporal support. Data-driven methods are preferred, 

but when data availability is poor, a people-driven method using expert elicitation can be used. Errors in 

model parameters can best be derived using Bayesian calibration, which requires that sufficient model output 

observations are available at the right support, and that the calibration procedure accounts for model input 

and structural errors. Bayesian model averaging is advocated for model structural error quantification, but 

this will only work when multiple models are available that cover the entire space of plausible models. If this 

cannot be guaranteed, a more sensible approach is to use a stochastic model that incorporates model 

structural error as system noise. 
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Introduction 

Soil scientists know better than anyone else that the outputs of soil process models are not perfect. The 

reasons are well known: there are errors in the model input, model parameters and model structure. These 

errors propagate through the model in ways that often cannot easily be predicted without the help of specific 

tools. Therefore, in the past decades many approaches have been developed, implemented and applied to 

analyse error propagation in environmental and soil process models (e.g. Hyvonen et al. 1998; Bishop et al. 

2006; Brown and Heuvelink 2007; Castrignano et al. 2008; Dean et al. 2009; Heuvelink et al. 2009). The 

most flexible and most often used approach is the Monte Carlo method, which is remarkably simple and 

easily implemented. First, the errors about the various ‘inputs’ to the model are characterized by probability 

distributions. Next, a pseudo-random number generator is used to sample from these distributions, and the 

model is run with the sampled inputs. This process is repeated many times, each time running the model with 

a new sample of inputs and storing the result. The spread in the so-obtained set of model outputs 

characterizes the model output error. 

 

Although error propagation analysis with the Monte Carlo method may look simple and straightforward, it 

turns out to be difficult when concepts are to be put into practice. Important challenges are: 

• realistic quantification of error in model inputs, parameters and model structure; 

• keeping the required computation time within acceptable bounds; 

• ensuring that all important error sources are included in the analysis; 

• controlling the Monte Carlo sampling error; 

• assessing the contribution of individual error sources to the output error; 

• assessing error in spatio-temporal aggregates of model outputs; 

• validation of the outcome of an error propagation analysis. 

 

In this paper we only address the first of these challenges, because this is arguably the most crucial problem 

and space limitations prohibit a comprehensive analysis of all challenges. However, it should be noted that 

all are important and deserve attention. Also, the list may not be exhaustive. 

 

Realistic quantification of error in model inputs, parameters and model structure 
Although the distinction between model inputs and model parameters is not always obvious and models may 

have ‘inputs’ that are in the ‘grey zone’ between input and parameter (e.g. hydraulic conductivity, 
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weathering rate), it is useful to separate error assessment for inputs from that for parameters. Inputs are 

defined as real-world properties that exist regardless of the model and can in principle be observed. 

Parameters are only defined within the context of a model and loose their meaning when there is no model 

(e.g. regression coefficients). 

 

Input error assessment 

Probability distributions associated with errors in model inputs can be derived in various ways, such as by 

analysing replicates in a laboratory to quantify laboratory measurement error, comparison of ground-truth 

data with mapped data to assess generalisation and classification errors, and use of geostatistics to quantify 

spatial interpolation error. These ‘data-driven’ methods are well-developed and are continuously improved, 

such as in geostatistics where the ordinary kriging paradigm has gradually been replaced by more elaborate 

approaches such as regression kriging (Hengl et al. 2004) and generalized linear models for geostatistical 

data (Diggle and Ribeiro 2007). Basically, improvement focuses on making more realistic assumptions. For 

instance, ordinary kriging assumes that the soil property of interest is a realization of a second-order 

stationary random function that has a constant mean (Webster 2000), whereas regression kriging allows the 

mean of the soil property to depend on external explanatory variables. Note, however, that assumptions must 

always be made, because the amount of data is insufficient to uniquely derive the entire probability 

distribution of the input error, which should include spatial, temporal and cross-correlations when relevant. 

One important issue that is rarely addressed in data-driven approaches but that needs attention is that the data 

used to quantify the error in the model input may have non-negligible observation error. Input error will be 

systematically overestimated if this is ignored. Pedometricians know that the ‘support’ of the observations is 

also crucially important when deriving error distributions. For instance, the error associated with the nitrate 

concentration of the soil solution at a ‘point’ in space and time is much larger than that associated with the 

annual average of an entire field because ‘hot spots’ in time and space will average out over the larger 

support. Thus, it is imperative that input error quantification is done at the support required by the model 

(Heuvelink 1998). Data-driven approaches are less developed for categorical soil properties. Only few 

approaches exist that derive the entire probability distribution of spatially distributed categorical variables 

(e.g. Finke et al. 1999; Hartman 2006; Brus et al. 2008), and most of these are cumbersome, make unrealistic 

assumptions or have severe limitations. 

 
Figure 1.  Error in annual N2O emission (kg N/ha) from 1 ha plots on arable land on clay soils across Europe, 

independently estimated by five experts. The probability distribution of the error is characterized by the 25 

(triangle point up), 50 (square) and 75 (triangle point down) percentiles. 

 

Although the data-driven approach is the preferred option, in many practical cases it may fail for lack of 

sufficient data, leaving the ‘people-driven’ approach as the only alternative (Brown and Heuvelink 2005). 

Here, expert elicitation is used to derive probability distributions of model inputs. As an example, Figure 1 

reports the quantified error about the annual nitrous-oxide emission (kg N/ha) for 1 ha plots on arable land 

on clay soils across Europe, estimated independently by five experts (Shang 2009). There is much 

disagreement between experts, which makes it difficult to merge their assessments. Figure 1 also shows that 

it is risky to rely on just one expert, which seems to be the common approach in people-driven assessment of 

input error (e.g. De Vries et al. 2003; Lesschen et al. 2007). It is imperative that we learn more about expert 

elicitation, which is well-developed in the risk analysis literature (e.g. Kaplan 1992; Ayyub 2001; Cooke and 

Goossens 2004). It must be adapted to the type of applications which pertain to soil science and extended to 

the quantification of support-dependent spatial- and cross-correlations. 
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Parameter error assessment 

Errors in model parameters can only be realistically assessed by inverse methods, in which model predictions 

are compared with model output observations and parameter error is assigned such that it explains the 

observed differences. Common approaches are PEST (http://www.sspa.com/pest/) and GLUE (Dean et al. 

2009). Recently, Bayesian calibration was introduced to the environmental sciences and also to soil science 

(Reinds et al. 2007). Starting with user-defined a priori probability distributions, Bayesian calibration uses 

Markov Chain Monte Carlo methods to update these distributions with information derived from the 

observations. Bayesian calibration is attractive because it is flexible, mathematically sound, easily 

implemented, and yields the full joint probability distribution of the model parameters. It is computationally 

demanding and standard application ignores the contribution of errors in inputs, model structure and 

parameters not included in the analysis. Also, the decision whether to assume that parameters are constant or 

variable in space and/or time turns out to be crucial (e.g. Reinds et al. 2007). Pedometricians and soil process 

modellers must take a closer look at these issues and ensure that the methodology is properly applied. 

 

Model structure error assessment 

Bayesian calibration has been extended to include model structural error. This is known as Bayesian model 

comparison or Bayesian model averaging (Raftery et al. 1997). Multiple models are considered and each gets 

assigned a prior probability of being the ‘true’ model. Next these prior probabilities are updated to posterior 

probabilities based on the amount of agreement between observed and predicted model outputs. The 

methodology works well with statistical (regression) models, where a large number of candidate models can 

easily be formulated simply by including or excluding explanatory variables, but extension to physically-

based models is cumbersome. Refsgaard et al. (2006) present a framework for dealing with model structural 

error in hydrological modelling that uses multiple model structures, but acknowledge that the range of 

models must span the entire space of plausible models. The latter will be difficult in practice, because most 

models borrow concepts from each other, are built by people that have the same education, meet at 

conferences and read each others work. In addition, the development of a complex soil process model is a 

time consuming affair that may involve many man years of work. These are all disadvantages of the 

Bayesian model averaging approach to soil process modelling. The advantage of Bayesian model averaging 

is that it can help choosing the optimal degree of model complexity, which is a persistent problem in soil 

process modelling that as yet has not been satisfactorily resolved. 

 

As an alternative to Bayesian model averaging, we may fall back to models that represent structural errors as 

(additive) noise terms. This leads to stochastic models or so-called state-space models, for which a rich 

theory has been developed (e.g. Pugachev and Sinitsyn 2002). Perhaps these models are somewhat restrictive 

in the way that structural error is represented, but the practical advantages are evident. Also, stochasticity can 

be defined at the level of the underlying differential equations, which seems physically plausible. The use of 

stochastic models and associated data assimilation methods, such as ensemble Kalman filtering and particle 

filtering, is abundant in disciplines such as hydrology, meteorology and oceanography. However, in soil 

science their use has been very restricted. There is no reason to believe that model structural error is less 

important in soil science, and if we want to address it thoroughly we need to get more involved in these 

approaches. 

 

Conclusion 
Quantification of error in the inputs, parameters and structure of soil process models needs more attention 

because model outputs should be accompanied by accuracy measures and realistic assessment of these errors 

is indispensible for sound error propagation analysis. In this respect, soil science still lags behind compared 

to other disciplines within the earth and environmental sciences. Most published studies only focus on the 

propagation of errors in model input, but this is only one component of the total error. Also, input error 

assessment must benefit more from developments in the expert elicitation literature. Bayesian inverse 

modelling approaches for quantification of errors in parameters and model structure are useful too, but it is 

important that these make comparisons at the right support and include all error sources (errors in inputs, 

parameters, structure and in observations of model output), because otherwise error estimates for individual 

error sources will be flawed. 
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