
 

Deriving space-time variograms from space-time autoregressive 
(STAR) model specifications 

 
Daniel A. Griffith1, Gerard B.M. Heuvelink2 

 
1Ashbel Smith Professor, University of Texas at Dallas 

Email: dagriffith@utdallas.edu 
2Wageningen University and Research Centre 

Email: gerard.heuvelink@wur.nl 
 
KEY WORDS: additive semi-variogram, autoregressive model, multiplicative semi-variogram, space, space-time, STAR, time 
 
ABSTRACT: 
 
Many geospatial science subdisciplines analyze variables that vary over both space and time. The space-time autoregressive 
(STAR) model is one specification formulated to describe such data. This paper summarizes STAR specifications that parallel 
geostatistical model specifications commonly used to describe space-time variation, with the goal of establishing synergies between 
these two modeling approaches. Resulting expressions for space-time correlograms derived from 1st-order STAR models are solved 
numerically, and then linked to appropriate space-time semivariogram models. 
 

1. Introduction 
 
Geostatistics furnishes techniques for modeling the covari-
ance matrix, whereas spatial autoregression furnishes tech-
niques for modeling the inverse covariance matrix, for a set 
of n geographically distributed values of a single random 
function. Both seek to capture spatial autocorrelation effects 
in georeferenced data. 

Although, in practice, both geostatistics and spatial auto-
correlation techniques mostly are applied to static spatial 
variables, a growing interest among researchers is to utilize 
these techniques to address change over both space and time. 
Incorporating time is more than just adding another dimen-
sion, because the behavior of a variable over time differs 
from its behavior over space, and characteristics of temporal 
processes often are known to some degree. Accordingly, a 
space-time geostatistical or autoregressive model must cap-
ture the fundamental differences between spatial and tempo-
ral variation, and must include these differences in its struc-
ture and parameterization. 

The purpose of this paper is to establish the basis for a 
synergy between space-time geostatistics and autoregressive 
(STAR) approaches to the modeling of correlation structures 
latent in space-time data. The mutually advantageous con-
junction of these two approaches follows that established for 
the static case by Griffith and Csillag (1993) and Griffith and 
Layne (1997), and seeks to create an enhanced combined 
approach to the modeling of space-time correlation struc-
tures. Simple 1st- and 2nd-order geographic neighbor direct 
dependency structures are addressed, with conceptualizations 
furnished by especially Gasim (1988) allowing them to be 
extended to larger neighborhoods. In doing so, we exploit the 
notion that a space-time semivariogram is valid (i.e., non-
negative definite) when any linear combination of values of 
the associated random function at any finite number of 
space-time points has non-negative variance. 
 
2. The Configurational Structure of Georeferenced Data 

 
Consider a variable Z = {Z(s, t) | s∈S, t∈T} that varies 
within a spatial domain S and a time horizon T. Let Z be 
observed at n space-time points (si, tj), i = 1, 2, ..., m and j = 
1, 2, …, k, where n = mk. These space-time observations 
constitute a time series of length k at each of the m spatial 

locations, and imply the use of a regular sampling scheme 
(i.e., the observations are uniformly spaced over time at each 
spatial location). 

The set of n points can be converted to a surface partition-
ing by constructing its associated set of Thiessen (Voronoi) 
polygons; these become volumes in three dimensions. This 
conversion allow the generation of a Delauany triangulation 
(the dual graph) that furnishes a topology-based articulation 
of the configurational structure of the set of n points. Inter-
point distances furnish another. Suppose variable Z is an 
areal unit aggregate observed for m regions in time, where k 
is the frequency of observations per region over time. Let 
these areal units form a mutually exclusive and collectively 
exhaustive partitioning of a surface. If these polygons are 
convex hulls (all internal angles < 180o), then the geometric 
centroid of each polygon can be computed, and this set of 
points can be used both to convert the surface partitioning 
into a geographic distributions of points, and to construct a 
dual graph (similar to a Delaunay triangulation). This graph 
commonly is constructed using criteria based on chess piece 
movements: the rook’s case (i.e., links connect points for 
polygons that share a common non-zero length boundary), 
and the queen’s case (i.e., links connect points for polygons 
that share a common zero—i.e., point—or non-zero length 
boundary). For concave hulls (e.g., polygons with at least 
one internal angle > 180o) or for nested areal units (e.g., one 
contained completely inside another), a judiciously selected 
arbitrary point may be the dual graph node. Meanwhile, time 
can be represented with a simple line graph comprising a 
linear sequence of links and points.  

In all three geographic cases, the graphs in question can be 
converted to adjacency matrices, C, which are binary 0-1 
matrices with all diagonal entries being 0. Because these 
graphs are planar or near-planar and connected, the number 
of ones in the m-by-m matrices representing geographic 
arrangement is at least 2(m-1), usually does not exceed 3(m-
2), and never exceeds 8m. These matrices are symmetric 
here, in part because geographic dependencies are being cast 
as non-directional. The number of ones in the k-by-k time 
sequencing matrix is 2(k-1). This set of matrices furnishes 
the building blocks of n-by-n space-time data matrices. 
Eigenfunctions extracted from each of these binary matrices 
can be used to summarize their respective structure. 
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3. STAR Model Specifications 
 
STAR model specifications (see Cliff et al. 1975) are explicit 
formulations describing how a variable Z varies in space s = 
(x, y) and time (t) in some joint fashion (x, y, t). The follow-
ing two linear discrete cases are of interest here: 
 
 

Z(x, y, t) = a⋅Z(x, y, t-Δt) + b⋅{Z(x-Δx, y, t-Δt) + Z(x+Δx, 
y, t-Δt) +Z(x, y-Δy, t-Δt) + Z(x, y+Δy, t-Δt)} + ε(x, y, t) , (1) 

 
 
and 
 
 

Z(x, y, t) = a⋅ Z(x, y, t-Δt) + b⋅{Z(x-Δx, y, t) + Z(x+Δx, y, 
t) + Z(x, y-Δy, t)+Z(x, y+Δy, t)} + ε(x, y, t) . (2) 

 
 
Equation (1) specifies a value at location (x, y, t) as a func-
tion of the preceding in situ value (time t-Δt) as well as the 
preceding neighboring values, a lagged specification. Equa-
tion (2) specifies a value at location (x, y, t) as a function of 
the preceding in situ value (time t-Δt) as well as the contem-
poraneous neighboring values, a spatially contemporaneous 
specification. The random process ε is white noise, which is 
uncorrelated in space and time. In the STAR model, correla-
tion in space and time is captured by the autoregressive 
structure of the model (i.e., the response variable appears in 
both sides of the equations). Feedback loops or cycles make 
equation (2) fundamentally different from equation (1). An 
initial field for t = 0 and spatial boundary conditions are 
needed in these formulations. In this paper, interest is in the 
case where sufficient time has transpired and the spatial 
extent is sufficiently large to allow negligible effects from 
boundary conditions. 
 
3.1 Theoretical Space-time Correlations 
 
Theoretical correlations can be posited for equations (1) and 
(2). Consider an infinite regular square (i.e., equal-sized 
pixels) tessellation lattice for which spatial adjacency (i.e., 
geographic neighbors) is defined by whether or not two 
square cells share a non-zero length common boundary (i.e., 
the rook’s definition). Let {Z(s)} be a Gaussian random 
variable distributed across the vector of locations s (i.e., 
cells), such that {Z(s)} and {Z(s+h)}, for locations shifted by 
h units, are stochastically equivalent (i.e., complete stationar-
ity). Spectral theory (Bartlett 1975; Haining 1978) reveals 
that the appropriate correlation function for the additive 
specification [i.e., equation (1)] is given by 
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whereas that for the multiplicative specification [i.e., equa-
tion (2)] is given by 
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for temporal lag h (h = 0, 1, …), and spatial lags g (g = 0, 1, 
…) and k (k = 0, 1, …), where a positive integer value of η  

yields a -order model,  is the spatial and  is the 
temporal autoregressive parameter, and (h, g, k) denotes the 
space-time lag involved. 

thη sρ Tρ

 
3.2 Space-time Autoregressive Structures 
 
The eigenvalues of the n-by-n connectivity matrix C for a 
linear surface partitioning containing P cells are 

)cos( 2 1P
  πp
+ , p = 1, 2, …, P. The 2 can be absorbed into the 

autoregressive parameter values, , doubling the size of 

each feasible. This solution can be extended to two- and 
three-dimensional regular square lattice structures. Ord 
(1975) first reported the eigenvalues of the PQ-by-PQ con-
nectivity matrix for a square tessellation surface partitioning 
forming a P-by-Q (n = PQ) complete rectangular region as 

jρ

)]cos(  )[cos( 2 1Q
  πq

1P
  πp

++ + , p = 1, 2, …, P, and q = 1, 2, …, 

Q. Gasim (1988) presents extensions to Ord’s results. And, 
Basilevsky (1983) summarizes the conventional time-series 
results. Here the three-dimensional matrix representation is 
given by 
 
 

,ρρ sTTsTssT ICCIIIC ⊗−⊗−⊗=  

 

 

where ⊗  denotes Kronecker product, IT denotes the T-by-T 
identify matrix, Is denotes the PQ-by-PQ identity matrix, and 

,  PQQs ICIC PC ⊗+⊗= for a P-by-Q rectangular square 

lattice, where Cj is a matrix of 0s except for the upper- and 
lower-off diagonals, which contain 1s (j = P, Q, and T). CP 
and CQ have the same structure as CT.  

Equation (3) describes the correlogram values for space-
time data characterized by equation (1), whereas equation (4) 
describes space-time data characterized by equation (2). The 
three-dimensional connectivity matrix representation is given 
by 
 
 

sTTsTssT ρρ ICCCIIC ⊗−⊗−⊗=  , 
 
 
where 1 -  are the limiting 
eigenvalues of the space-time connectivity matrix C. Addi-
tional discussion of this topic appears in Griffith (1996). 

}ρcos(v)][cos(u)cos(t){ρ Ts ++

Because the eigenvalues define the spectrum of a matrix, 
they appear in the denominator of equations (3) and (4); 
these denominators are based upon the limiting eigenvalues 
of the connectivity matrix representation of the space-time 
three-dimensional structure of data. In addition, Griffith and 
Csillag (1993) note, in contrast to the current thinking of that 
time, that a simultaneous autoregressive model can be por-

 



 

trayed by letting η  = 2 in the denominator of equations (3) 
and (4)─it becom s a 2nd-order covariance specification; 
Bartlett (1975, pp. 19, 25) reports this result. Furthermore, 
Griffith and Layne (1997) summarize the close numerical 
connections between the spatial-only form of equations (3) 
and (4) and geostatistical semivariogram models. 
 

e

.3 Space-time Covariance Functions in Geostatistics 

n important issue in the space-time geostatistical literature 

tein (2005) furnishes an overview of space-time covari-
an

6) 
st

C(h, u) = CS(h)·CT(u) . (5) 
 

ne non-separable specification expresses the space-time 

C(h, u) = CS(h) + CT(u) + p CS(h)·CT(u) , (6) 
 

hich is statistically valid if both CS(h) and CT(u) are valid 

rnative is the metric model (Dimitrakopou-
los a

3
 
A
concerns whether or not the space and the time components 
of a formulated function are: separable such that they factor 
(Gneiting et al., 2006); or, nonseparable such that they form 
a linear combination (Ma 2008). Mitchell et al. (2005) pro-
pose a modified multivariate repeated measures likelihood 
ratio test coupled with bootstrapping for this purpose. Brown 
et al. (2001) note that separability requires that the expected 
value for some random variable at location (x, y) in time t+1, 
given its values in a neighborhood of location (x, y) in time t, 
must equal the conditional expectation just for location (x, 
y). 

S
ce and aspects of spatial-temporal interaction, and pro-

poses a new class of space-time covariances. Ma (2003, 
2008) presents methods for constructing spatio-temporal 
stationary covariance models, and supplements the set pre-
sented by Kolovos et al. (2004). Gneiting et al. (2006) posit 
theorems for symmetric and separable specifications, the 
Cressie-Huang and the Gneiting model, and stationarity. 
Fuentes et al. (2008) propose a nonstationary and nonsepa-
rable spectral density specification for which separability is a 
special case. Finally, Calder (2007) proposes a Bayesian 
specification that includes priors on initial points in time. 

The space-time separability assumption (Bogaert 199
ates that the space-time covariance function C(h, u) can be 

written as a product of a spatial, CS(h), and a temporal, 
CT(u), covariance function, such that 
 
 

 
O
covariance function as a linear combination of these two 
components (De Cesare et al. 2001), such that  
 
 

 
w
covariance functions and parameter p satisfies certain condi-
tions (De Cesare et al. 2001). This product-sum model ap-
pears to perform well in practice (De Iaco et al. 2003, Geth-
ing et al. 2007). 

Another alte
nd Luo 1994), which reduces the space-time covariance 

function to 
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hose essential characteristic is that distance in space is 
made comparable to distance in time through the scaling 
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parameter α. Equation (7) is rather restrictive because it 
assumes that the variances in time and space are equal. The 
following more flexible specification results from combining 
equation (6) with p = 0 and equation (7): 
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he third term in the right-hand side represents a joint space-
me interaction effect. 

erical Experiments 

Only numerical integration solutions to the definite integrals 
 equations (3) and (4) are available here. Because this 

ted in terms of their fits to these numeri-
ca

5. Conclusions 

In summary, numerical evaluation suggests that the STAR 
odel equations (1) and (2) yield the metric model equa-

T
ti
 

4. Num
 

in
integration is numerical intensive, and 1st- and 2nd-order 
results are similar, only 1st-order models are assessed. Be-
cause the exponent in the denominators of the integrands is 
1, equations (1) and (2) refer to a space-time conditional 
autoregressive (CAR) specification. Numerical results for 
equations (3) and (4) were calculated for time lags h = 0, 1, 
…, 65 and space lags g and k = 0, 1, …, 50, using the auto-
regressive parameter pairs {( Ts ρ,ρ ): (0.49, 0.01), (0.40, 
0.19), (0.30, 0.39), (0.20, 0.59), (0.10, 0.79), (0.01, 0.97)} 
(see Table 1). Theoretical nugget and sill values for equa-
tions (5)-(8) respectively are 0 and 1. Deviations from these 
values represent specification error; the numerical integration 
error is negligible. 

The stable, the Bessel, and the exponential variogram 
models were evalua

l data, with the exponential variogram model performing 
the best. Estimation results for this model appear in Tables 1 
and 2, and suggest that equation (5) does not furnish a good 
description of the space-time structure generated by equa-
tions (1) and (2). Equation (8) fails to provide any improve-
ment in the description furnished by equation (7), because 
equations (1) and (2) generate realizations from a random 
function that have the same sill (variance) in time and space; 
in cases where the variances differ, equation (8) will almost 
surely do better than equation (7). Equation (7) appears to 
yield a marginally better description than the one provided 
by equation (6). The principal difference between the rela-
tionship between equation (7) and equations (1) and (2) is the 
estimated α parameter, the anisotropic weight attached to the 
time distance in order to differentiate it from space distance, 
which is included in the specification of equation (7), but not 
equations (1) and (2). 
 

 

m
tion (7) with exponential-shaped variograms. However, real-
world processes may, in addition to the space-time models 
characterized by equations (1) and (2), have purely spatial 
and purely temporal components. Whittle (1954) shows that 
purely spatial AR models have Bessel function-shaped co-
variance functions, whereas linear one-dimensional time 
series models have exponential variograms. Thus, processes 
that also have purely temporal and/or spatial components 
should be characterized by variogram models given by equa-

 



 

 

tion (8) rather than equation (7). Assuming that the generat-
ing 



 

 

 
Table 1. Parameter estimates for the exponential variogram model and contemporaneous spatial dependence 

space time space-time 
sρ  Tρ  C0 C1 r C0 C1 r a RESS C0 C1 r 

Equation (5) 
0.01 0.97 1.2052 0.0992 0.5212 0.7661 0.0006 4.9569 0.8594 
0.10 0.79 1.2315 0.0514 0.7712 0.7788 0.0007 2.7328 0.9279 
0.20 0.59 1.3987 0.0459 0.8321 0.6917 0.0006 2.4328 0.9451 
0.30 0.39 1.1825 0.1004 0.0000 0.7787 0.0008 1.9168 0.9986 
0.40 0.19 1.2671 0.0309 0.8431 0.7697 0.0007 1.6549 0.9620 
0.49 0.01 1.3535 0.0283 0.8041 0.7231 0.0006 1.3169 

 

0.9721 

 

Equation (6) 
0.01 0.97 0.0000 1.0000 0.4543 0.0096 0.9892 4.4235 -1.0000 0.0054 
0.10 0.79 0.0008 0.9992 0.5960 0.0281 0.9685 1.9877 -1.0000 0.0441 
0.20 0.59 0.0000 1.0000 0.5964 0.0270 0.9691 1.3773 -1.0000 0.0684 
0.30 0.39 0.0105 0.9894 0.5675 0.0106 0.9852 1.0190 -1.0000 0.0739 
0.40 0.19 0.0079 0.9920 0.5076 0.0049 0.9907 0.7222 -1.0000 0.0673 
0.49 0.01 0.0006 0.9992 0.2962 0.0000 0.9952 0.3038 -1.0000 0.1187 

 

Equation (7) 
0.01 0.97 0.0078 0.0029 0.0052 0.9948 0.3869 
0.10 0.79 0.0714 0.0340 0.0208 0.9792 0.5214 
0.20 0.59 0.1585 0.0560 0.0207 0.9793 0.5414 
0.30 0.39 0.2784 0.0601 0.0174 0.9826 0.5381 
0.40 0.19 0.4727 0.0526 0.0126 0.9874 0.5145 
0.49 0.01 

 

0.8494 0.1137 0.0044 0.9956 0.8494 
Equation (8) a 

0.01 0.97 0 *** *** 0 0.0014 *** 0.0792 0.0029 0 0.9986 0.3869 
0.10 0.79 0 0.0001 32.9987 0 0.0029 1.9357 0.0737 0.0337 0 0.9970 0.5135 
0.20 0.59 0 0.0001 16.0388 0 0.0034 2.1593 0.1635 0.0552 0 0.9966 0.5317 
0.30 0.39 0 0.0001 13.7028 0 0.0035 2.2861 0.2857 0.0588 0 0.9964 0.5280 
0.40 0.19 0 0.0001 10.1898 0 0.0037 2.2348 0.4825 0.0509 0 0.9963 0.5046 
0.49 0.01 0 0.0002 7.2160 0 0.0044 2.1385 0.8653 0.1112 0 0.9954 0.3806 
a The three C0 terms were set equal to 0—the theoretical value— in order to achieve convergence. 
NOTE:  *** denotes an estimate at the limit of the numerically calculated space-time data cube. 
 
processes satisfies the linear ARMA model, the temporal 
and spatio-temporal variograms may be described with 
exponential functions, whereas the spatial component 
may be described with a Bessel function. 
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0.40 0.19 1.0732 0.0826 0.0000 1.0000 0.7076 
0.49 0.01 

 

10.3725 0.1179 0.0000 1.0000 0.9785 
Equation (8) a 

0.01 0.97 0 *** *** 0 0.0014 *** 0.0080 0.0030 0 0.9986 0.3880 
0.10 0.79 0 0.0001 18.4139 0 0.0019 3.2382 0.0802 0.1187 0 0.9981 0.5319 
0.20 0.59 0 0.0001 19.6642 0 0.0017 2.6567 0.2029 0.1005 0 0.9982 0.5830 
0.30 0.39 0 0.0001 8.1486 0 0.0019 2.9423 0.4382 0.0570 0 0.9981 0.6274 
0.40 0.19 0 0.0001 7.6018 0 0.0010 3.6334 1.0772 0.0824 0 0.9989 0.7054 
0.49 0.01 0 0.0003 0.7745 0 0.0002 7.8400 10.3960 0.1178 0 0.9996 0.9770 
a The three C0 terms were set equal to 0—the theoretical value— in order to achieve convergence. 
NOTE:  *** denotes an estimate at the limit of the numerically calculated space-time data cube. 
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