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Defining the magnitude of additive genetic effects  
The goal of animal breeding is to generate response to selection. Thus a key question is: 
“what are the additive effects that can be used to generate response”. Response to selection 
follows from regressing the genetic mean of the population on the selection criterion, giving 

GG iP ρσ=∆ ,     (1) 

where i is intensity, ρ accuracy and Gσ  the standard deviation of G-values among 

individuals. Beware that G is defined here as the heritable effect determining the population 
mean, not to be confused with G = A + D + I. Equation [1] applies to any selection strategy 
and inheritance model, since it equals the first term of Price’s Theorem (Price 1970).  

The issue here is: what is the Gσ  in Equation 1? In the classical model, where P = A + E, 

response equals the change in mean breeding value, APG ∆=∆ , so that G ≡ A, and 22
AG σσ ≡ . 

Moreover, since 222
EAP σσσ += , 2

Gσ  also equals the (additive) genetic component of 

phenotypic variance, )(PVarG  = 2
Gσ . Thus, with P = A + E, a variance partitioning 

perspective and a response to selection perspective yield the same definition of genetic 
variance. 
Things become different, however, when trait are affected by multiple individuals, for 
example with maternal effects or social interactions. With maternal effects, where 

EAAP idamMiDi ++= )(,, , i denoting the individual and dam(i) its mother, response equals 

MDG AAP ∆+∆=∆ . Therefore, iMiDi AAG ,, += , which is entirely a heritable property of i, 

because i transmits its own genes, not those of its dam. Thus 222 2
MDMD AAAG σσσσ ++= , 

which differs from 22)(
MDMD AAAG PVar σσσ ++= . Hence, the genetic variance determining 

response to selection, 2Gσ , differs from the genetic component of phenotypic variance, 

)(PVarG , while GiG ρσ=∆  and )(PVariG Gρ≠∆  (Eaglen and Bijma, 2009). In general, 

therefore, the genetic variance determining response cannot be obtained by partitioning 

phenotypic variance into a genetic and residual component. One consequence is that 2
Gσ  

may exceed 2
Pσ , at least in theory. (With maternal effects, the GiG ρσ=∆  may not surface 

immediately in the next generation. Nevertheless, because genes mix in the population over 
time, Equation 1 represents the ultimate response originating from the change in allele 
frequency due to a cycle of selection.) 
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For genetic improvement, the relevant definition of genetic variance is “the variance among 

individuals of the heritable effect determining the mean trait value of a population”. This 2Gσ  

follows from linearizing the population mean trait value into additive genetic effects, and 
taking the variance thereof, treating it as a property of a single individual. (This is an analogy 
of the variance in an aggregate genotype). As a somewhat extreme example, consider a sow 
line for integrated pork production. Interest is in total amount of meat produced from a sow, 
which is the product of number of offspring and carcass meat yield of those offspring, P = 
nC. The n is a trait of the sow, whereas C may have both a direct and a maternal genetic 
component. Linearization yields .constnCCnP iii ++≈  Response due to selection in the 

sow line equals GP∆  = )( 2
1

MD CC AAn ∆+∆  + nAC ∆ , where D and M indicate direct and 

maternal effects, respectively, and the ½ indicates that the sow line contributes half of the 
genes in the offspring. Thus the genetic term relevant for response equals iG  =  

)( ,,2
1

iCiC MD
AAn +  + inAC , , so that GPG ∆=∆ . Taking its variance yields 2

Gσ  = 

)(2
4

1
DCAVarn  + ),(2

MD CC AACovn  + )(2
MCAVarn  + ),( nC AACovCn

D
 + 

),(2 nC AACovCn
M

 + )(2
nAVarC , where variances and covariances represent the ordinary 

additive genetic variances and covariances. Hence, response equals GG iP ρσ=∆ , where ρ is 

the correlation between the selection criterion and the G-values in the candidates for 
selection. 
In conclusion, the above approach summarizes all heritable components of a trait, such as 

direct, maternal and social, into a single 2
Gσ  expressing the overall opportunity for genetic 

improvement of the trait. Moreover, it yields a singe accuracy, expressing the overall quality 
of the information recorded. The approach rests on the variance of the additive genetic 
components of the trait mean, rather than the additive genetic component of the trait 
variance.  

Utilizing social genetic effects  
Interest in social genetic effects is on the increase, as there is evidence that such effects can 

contribute substantially to 2
Gσ  (Craig & Muir, 1996; Chen et al., 2008; reviewed in Muir 

2005). When individuals are kept in groups of n members, socially affected traits may be 
modeled as a sum of direct and social effects, EAAP n jSiDi in  terms1 ,, ++= ∑ − , where DA  

and SA  are direct and social breeding values, and the sum is over the n−1 group members j 

of individual i (Griffing, 1967). Thus response equals SDG AnAP ∆−+∆=∆ )1( , so that 

SD AnAG )1( −+= , and genetic variance relevant for response to selection equals (Bijma et 

al., 2007) 
2222 )1()1(2

SDSD AAAG nn σσσσ −+−+= .    

The term 2)1( −n  shows that, even when 2
SAσ is very small relative to 2

Pσ , social effects 

may contribute substantially to 2Gσ  when estimates come from data with large groups. A 



Figure 1: Accuracy of selection for survival in 
cannibalistic laying hens, as a function of 
relatedness between group members (r) and / 
or the degree of group selection (g). Parameters 
taken from Peeters et al., (this congress). Solid 
line: r = 0, g varies; dotted line: g = 0, r varies; 
dashed line: r = g varies; crosses: g = 1, r varies; 
boxes: optimum index of own performance and 
group members. 
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number of studies have suggested large contributions of social effects to 2

Gσ  (e.g., Bergsma 

et al., 2008). Theoretically, one expects genes of social effect to harbor more sequence 
variation than genes of direct effect, because natural selection targets social effects to a lesser 
extent (Denison et al., 2003). Indeed, Cruickshank and Wade (2008) observed greater 
sequence variation maternal-effect genes than in direct-effect genes in Drosophila.  
Utilization of social genetic effects requires adjustment of selection strategies. Traditional 
selection on individual trait value or EBV targets direct effects only, yielding suboptimal or 
even negative response (Griffing, 1967). Between-group selection and the use of groups 
composed of relatives have been advocated as solutions (Griffing, 1976 & 1977). The 
following investigates the accuracy of those selection methods. 
A selection criterion allowing for a varying degree of between-group selection is (Bijma et 
al. 2007) 

∑
−

=
+=

1

1

n

j
jii PgPSC ,      

where n is group size, the sum is over the n−1 group members j of individual i, and g is the 
degree of between-group selection, with ].1...0[∈g  A g = 0 yields ii PSC = , indicating 

individual mass selection. A  g = 1 yields ∑
=

=
n

j
ji PSC

1
, the summed phenotypes of all n 

group members, indicating full between-group selection. Accuracy of selection on SC yields 
(derivation not shown) 

[ ] [ ]
GSC

AAG DSD
nrggrnrg

rg
σσ

σσσ
ρ

)1()1)(1()2(
),(

22 −+−−+−++
= ,   

where r is relatedness between group 
members. The first term in the numerator 
shows that relatedness and group selection act 

directly on 2
Gσ , and thus contribute to 

positive accuracy. The second term in the 
numerator illustrates the risk of negative 
accuracy of individual selection when direct 
and social genetic effects are negatively 
correlated (Griffing, 1967). The numerator is 
symmetric in g and r, indicating that they have 
similar effects. Figure 1 illustrates the effects 
of group selection and relatedness on 
accuracy, using genetic parameters for 
survival time in cannibalistic laying hens 
(Peeters et al., this congress). Accuracy 
increases less with group selection than with 
relatedness, because greater g yields greater 

SCσ  which limits the increase (solid vs dotted 

line). 
Often keeping candidates in groups is 
undesirable, e.g., when recording individual 



feed intake or egg number, and breeding relies on phenotypes of relatives. For that case, 
Ellen et al. (2007) showed that positive accuracies are guaranteed when keeping the relatives 
in family groups, and that limiting accuracies are the same as in classical theory, being 0.5 
for HS, 0.71 for FS and 1 for progeny.  
When genetic parameters are known, accuracies can be further improved by using BLUP and 

selecting on iSiD AnAG ,,
ˆ)1(ˆˆ −+=  (Muir, 2005). The use of BLUP, however, does not 

remove the benefit of using related group members (Muir et al., this congress). Moreover, 
selection index calculations indicate that, when using related group members, BLUP and 
group selection can yield similar accuracy. In Figure 1, for example, accuracy of group 
selection and of an optimum index are similar when r = 0.5. Hence, when group members are 
related, benefits of BLUP may primarily come from better accounting for fixed effects and 
selection, rather than from optimum weighting of direct and social effects (Muir et al., this 
congress). Furthermore, BLUP may be beneficial with common litter covariances among 
sibs. Using pseudo-BLUP selection index theory (Wray and Hill, 1989), deterministic 
prediction of the accuracy of BLUP is feasible, but complex with social effects (not shown). 

Inherited variability 
Breeders have long been interested in increasing uniformity. In the classical model, where P 
= A + E, opportunities for genetic changes in variability are very limited. At best, breeders 

can approach 02 ≈Aσ , which reduces phenotypic standard deviation by only ~16% when 

3.02 ≈h . There is, however, increasing evidence that 2
Eσ  is under direct genetic control 

(e.g. Rowe et al., 2006; Ibanez-Escriche et al. 2008). In the literature, two classes of models 
exist. First, models specifying an additive effect on the residual variance, 

addadd vE AE += 2σχ , where χ is a standard normal deviate, and 
addvA  is an additive 

breeding value for environmental variance (Hill and Zhang, 2004). Second, exponential 

models, where )])(ln(exp[ exp,
2

exp,2
1

vE AE += σχ  (SanCristobal-Gaudy et al., 1998). The 

relationship between both models is that 
exp

2
vEv AA

add
σ≈ , indicating that the exponential 

model specifies a multiplicative effect on 2Eσ . Hence, estimates from both models are easily 

interconverted (Mulder et al., 2007). Both models have pros and cons. The exponential 

model is statistically more correct, since it ensures 2
Eσ  > 0, whereas vE A+2σ  is defined 

only for 02 >+ vE Aσ . The additive model, however, fits more easily in quantitative genetic 

models of inheritance and response to selection.  

Heritability of 2
Eσ , defined as the regression coefficient of 2

Eσ  on 2P , appears to be low 

(~0.03). The genetic coefficient of variation, in contrast, 2/ EAv
σσ  appears to be substantial 

(~0.3; Mulder et al., 2007). Thus 2
Eσ  can in principle be changed considerably relative to its 

current mean, but it is difficult to obtain high accuracy of selection for 2
Eσ .  



When 2
Eσ  is heritable, directional mass selection with p < 50% tends to increase 2Eσ , 

because individuals with high vA  are more likely to be in the tail of the distribution. Hence, 

mass selection may unintentionally increase variability. Directional selection on a family 
mean puts much less pressure on vA , particularly when families are large. Stabilizing 

selection tends to reduce 2Eσ , but a lower bound of −1 for selection intensity limits response. 

Disruptive selection, on the other hand, allows for high positive selection intensities. Hence, 
when selection relies on own performance information, increasing variability seems feasible, 
but decreasing it is difficult (Mulder et al., 2007).  
Genetic improvement of uniformity, therefore, requires the use of family information. The 
key information source for vA  is the within-family variance. Mulder et al. (2007) show that 

accuracy of selection on within-family variance is similar to classical expressions for 
accuracy of selection based on relatives. Hence, limiting accuracies for large numbers of 
relatives, may approach ~0.5 for HS, ~0.7 for FS and ~1 for progeny. Given the low 

heritability of 2
Eσ , however, very large families are needed to approach those limits. 

Nevertheless, meaningful accuracies can be obtained based on within-family variance, 

which, combined with the large estimates for 2/ EAv
σσ , suggest that 2

Eσ  can be reduced 

considerably relative to its current value when selecting for lower within-family variance. A 
selection experiment for lower variability in body weight of broilers would be very useful to 
test whether realized response agrees approximately with theoretical predictions.  
The mechanisms underlying inherited variability are largely unknown at present. 
Theoretically, there exists a relationship between genotype×environment-interaction and 
inherited variability. This follows from a simple reaction-norm model, Ey |  = µ  + LA  + 

EAS  + e , where LA  and SA  are breeding values for level and slope, and E is the 

environmental variable. Greater SA  indicates greater environmental sensitivity. With 

),( SL AACov  = 0 and )(E E  = 0, phenotypic variance of a genotype equals ),|( SL AAyVar  = 
22
ESA σ  + 2

eσ , which increases with SA . Hence, when such GxE-interaction is not explicitly 

modeled, e.g. because E is unknown, then genotypes of greater environmental sensitivity 
appear to have greater residual variance. Thus statistical analysis of inherited variability may 
pick up hidden GxE-interaction. 
From a GxE-interaction perspective, sensitive genotypes in good environments are in the 
upper-tail of the distribution, so that directional mass selection in good environments tends to 
increase sensitivity. From an inherited variability perspective, variable genotypes are 
overrepresented in the tails of the distribution, so that directional mass selection tends to 
increase variability. Hence, both perspectives agree on the consequences of directional 
selection; with inherited variability originating from hidden GxE-interaction, directional 
mass selection favors the sensitive genotypes present in the good environments.  
There also seems to be a link between inherited variability and social interactions. In 
aquaculture, competition for feed inflates size variation among individuals. To limit size 
variation, regular grading of fish is common. Hence, competition seems to increase 
variability. In current models of social genetic effects (see above), however, phenotypic 
variance is independent of the average social breeding value. Hence, in current models, a 



reduction in phenotypic variance due to decreased competition seems to require a reduction 
in social genetic variance. This may largely be an empirical, rather than theoretical, issue.  

Optimum selection criteria 
In the absence of molecular genetic information, the optimum selection procedures are well 
known. Breeding value estimation should focus on maximizing accuracy, and selection 
should focus on maximizing the genetic selection differential while restricting the rate of 
increase in mean kinship (e.g. Meuwissen, 1997). Given a restriction on the rate of kinship, 
minimum coancestry and factorial mating increase response, particularly in small schemes. 
When restricting the rate of kinship, there appears to be little trade-off between short-term 
response, i.e., maximizing today’s genetic selection differential, and long-term response.  
This is different with molecular information. Maximizing today’s genetic selection 
differential implies maximizing accuracy. Accuracy is maximized when ]|[ˆ datagEg = , g 

denoting a marker effect, which requires that apparently smaller effects are regressed 
stronger (Fernando and Gianola, 1986). Hence, maximizing accuracy of genome wide 
evaluation requires putting lower weight on smaller effects, such as with BayesB 
(Meuwissen et al., 2001). Moreover, maximizing accuracy requires putting lower weight on 
rare alleles, which occurs implicitly in methods giving equal a priori weight to all loci, such 
as genomic-BLUP (Meuwissen et al., 2001). (This is analogous to estimating sire breeding 
values from progeny averages; progeny averages are regressed stronger when progeny are 
fewer). Hence, maximizing accuracy requires lower weights on rare alleles and/or alleles of 
small effect.  
This is precisely opposite to maximizing long-term response. First, expressed relative to their 
contribution to genetic variance, alleles of smaller effect contribute more to long-term 
response. Response is proportional to allelic effect, whereas variance is proportional to the 
square of allelic effect. Hence, the ratio of response over variance due to an additive allele is 
inversely proportional to the effect of the allele, indicating that most long-term response 
comes from alleles of small effect. Second, since variance due to an allele is maximal when 
allele frequency equals 0.5, selection favoring rare alleles increases genetic variance over 
time, thereby increasing response in later generations. In contrast, selection for alleles 
currently explaining most variance, i.e. those at allele frequency of ~0.5, reduces genetic 
variance over time.    
Hence, with genomic selection, there appears to be a trade-off between short and long-term 
response (beyond the classical trade-off of response versus rate of inbreeding). Experience in 
dairy cattle suggests that the theoretically expected short-term superiority of BayesB/C over 
BLUP does not always happen (VanRaden et al. 2009; S. de Roos, pers. comm.), which may 
be related to the true number of qtl vs. the effective number of chromosome segments 
(Daetwyler et al., in press). When both methods are identical in the short term, one expects 
BLUP to be superior in the long-term response since it puts more weight on alleles of small 
effect. In addition, to balance short and long-term response, it might be beneficial to put 
some more weight on rare alleles. This would be opposite to current practice, where rare 
alleles are sometime omitted because they may reflect typing errors. Stochastic simulations, 
including simulation of typing errors, may be useful to better understand how to weigh 
markers depending on their frequency and apparent effect, so as to better balance short vs. 
longer term response.  



Solutions offered by genome-wide evaluation 
Since the introduction of AI, genomic-wide evaluation (GWE) is the most important 
development in livestock genetic improvement. Benefits of GWE are greatest in species 
where phenotypic data becomes available considerably after reproductive age (e.g. dairy 
cattle, not broilers), and for well-defined traits that cannot be recorded on the selection 
candidates themselves. GWE has become routine practice in dairy cattle, probably because 
of the value of the individual and because milk yield cannot be recorded on males.  
GWE provides solutions for a number of problems. When genotypes and phenotypes can be 
recorded on breeding goal traits expressed in commercial production environments, then 
GWE allows direct selection for breeding goal traits. An obvious application is direct 
breeding for crossbred performance recorded in commercial environments. This allows 
combining the efficiency of two-tier nucleus schemes with accurate EBVs for breeding goal 
traits, rather than relying on information of sibs or on purebred performance expressed in 
good environments. 
Benefit of direct selection for breeding goal traits compared to selection based on correlated 
traits is probably greater than apparent from a comparison of direct and correlated responses. 
This is because selection for correlated traits optimizes the organism for the wrong goal, 
leading to inefficiency. For example, increasing lean meat yield by selecting for growth rate 
will also increase fat in the carcass, which has no use but carries a cost. In general, selection 
for correlated traits will create costly changes to the organism, that have no use for the 
breeding goal. Such cost may go unnoticed when they surface only in commercial 
environments. Hence, when direct and correlated responses for the goal trait are similar, 
direct selection is to be preferred by far. Moreover, direct selection is much less sensitive to 
estimation errors in genetic parameters. Hence, GWE seems to be very useful in cases where 
direct selection is not possible in classical breeding schemes, probably more useful than 
suggested by selection index calculations. Furthermore, when GWE replaces sib-
information, benefits will be greater than suggested by the difference in accuracy, because 
GWE yields greater response than sib schemes when compared at the same rate of 
inbreeding. Hence, in pig and poultry breeding, large scale recording of crossbred 
phenotypes (an maybe genotypes) seems to be a condition for future commercial success of 
breeding companies. 
GWE extends readily to socially affected traits. A comparison of estimated genetic 
parameters for direct and social effects on survival in cannibalistic laying hens shows large 
differences between purebred parental lines (Ellen et al. 2008) and their crossbred offspring 
(Peeters et al, this congress). The genetic correlation between direct and social effects 
appears to be considerably negative in crossbreds, while around zero in purebreds. Moreover, 
estimated parameters differ between reciprocal crosses. Those result indicate GxE-
interaction between purebreds and crossbreds. GWE based on phenotypes recorded on 
crossbreds can be used to predict breeding values of nucleus individuals for direct and social 
effects referring to crossbred performance. Hence, combining GWE with social-effect 
models is promising to reduce mortality due to cannibalism in commercial herds.  
When genotyping becomes cheaper, GWE offers increased possibilities for having separate 
breeding programs for different environments, such as organic versus conventional farming 
or seasonal vs. year-round calving. Compared to traditional schemes relying on nucleus 
information, benefits of having separate breeding programs is greater with GWE because 
differences in response between environments will be greater. GWE combined with the shift 



of breeding goals towards more emphasis on functional traits may accelerate a trend towards 
more breeding programs, because functional traits often show greater GxE-interaction (e.g., 
compare longevity vs. yield in dairy cattle).  
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