-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

ADAPTIVE ASSESSMENT

IN THE CLASS OF PROGRAMMING

TEXT AZTIOAOTHEHZ

EKITATAEYTIKOX

ENMTKOINGNIA

RACKGROUND

00000

Dimitra I. Chatzopoulou A.M. 06/18
Supervisor Instructor: Anastasios A. Economides

Information Systems Department, University of Macedonia.

2009

https://core.ac.uk/display/292384441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INDEX

ADSIIACT.ccuueeieeiiieninnneninneneensencteeseessessnesssesssnssssesssassssesssassssssssassssasssssssasssssssssassnns 3
1. INErOdUCTION . .cccceeeecieiecieeecineeeisnteessntecssanecsssnecssssessssessssssssssnessssesssssesssssessssanssssssssss 3
2. Computerized Testing of Programming SKillS.........cceceerueevruensernsnenseccseecsnecnnnes 4
2.1. Computerized Testing using Code WTiting €XerciSes.........ccververrreerveerueenveennns 5
2.2. Computerized Testing using Multiple Choice QuUestionsccceeeeveeereveennneen. 7
3. Presentation of P.A.T. : Programming Assessment Testingcceeceercuercrcnnrcsenes 9
4. Questions in P.A.T. 10
4.1 MOl STIUCLUTEoueeieniieiiieiie ettt ettt ettt et saeeeaeeas 12
5. RESUILS «uuueieieinnieeiiinneeciisntiecsssneecssssnnescsssseessssssseesssssssesssssssassssssssnssssssssssssssssnsssssns 13
5.1 Analysis of the results from the teachers’ point of VIiewcccceevieniiecnne 13
5.1.1 High Programming Skills’ students...........c.ccccueeeiieriieniencieenieeieeeieeieene 14
5.1.2 Medium Programming Skills’ studentscccccecenieneniinieninncnicnens 15
5.1.3 Low Programming SKills’ students............ccceecueeeiieriieniienieeniiecieeieeeveene 17

5.2 Analysis of the results from the students’ point of VIiewWcccceevieniienennne. 19

6. Prediction of students’ classification in National EXamsccccecveeivecccnercnnnns 20
7. Strengths and Weakness 0f P.ALT. ...uiioeiiiieicisninisnisssncsssnncsssnncsssssssssssssssssssnns 22
8. Conclusions and Future Goals 22
APPENDIX . ..ccouiieiniirnisensaicssisesssissssssssssssssssssssssssassssssssssssns w..23
A) EXAMPLES OF P.A.T. QUESTIONScoiiiiiiieieieeeeeeeeeeee e 23
B) PRESENTATION OF P.A.T. ..ottt 29
REFERENCES.......uconiiiiinnininninssissssssssssisss 38

ADAPTIVE ASSESSMENT IN THE CLASS OF PROGRAMMING

Dimitra I. Chatzopoulou and Anastasios A. Economides
Information Systems Department
University of Macedonia, Greece

Abstract

This paper presents P.A.T. (Programming Adaptive Testing), a computerized adaptive
testing system for assessing students’ programming knowledge. P.A.T. was used in
two high school programming classes by 73 students. After research was carried out,
it was found helpful in increasing students’ cognitive domain skills. In addition, it
assists them to discover their shortcomings in the teaching material. P.A.T. helps
teachers to assess their pupils with objectivity. Finally, P.A.T. classifies students
according to their programming skills in three Levels of knowledge and research
results showed that it successfully predicts students’ performance in the National
Exams.

Keywords: computerized adaptive testing, adaptive assessment, programming testing,
programming assessment, programming skills.

1. Introduction

Programming comprises a broad scientific field that demands not just immaculate
theoretical knowledge, but also deep understanding of the framework of Structured
Programming. Moreover, students need to have a deep understanding of the syntax of
the language they are called upon to learn, in order to practice. People involved in
Programming realize that the Science of Programming requires perfect handling of the
Logic behind the idea, rather than ability of memorizing the syntax of different
languages.

It is not uncommon that several students, upon completing a year of study on
Programming, exhibit serious shortcomings on basic Programming knowledge
(McCracken et al., 2001). It was found that students with little or no practical work
were able to produce a piece of code in the final traditional way of assessment through
memorization and achieve a “good” grade in the course (Woit & Mason, 2003).
Furthermore, it is difficult to closely observe the progress of a particular student,
especially in large classes. This happens because there is not enough available time
for the teacher to interact personally with every student. Teaching and learning
Programming has created significant difficulties to both teachers and students (Wang
& Wong, 2008). Innovative ways are needed in order to improve the effectiveness of
teaching Programming. Assessing the students’ programming knowledge using
computers in a regular and continuous basis could help. The assessment results could
be used for continuous improvement of teaching effectiveness and learning quality
(Khamis, Indris, Ahmad and Idris, 2008).

The assessment should be carefully designed according to pedagogical theories. Lister
and Leaney (2003a) encouraged teachers to design assignments according to the
cognitive levels defined in the Taxonomy of Educational Objectives (Bloom, 1956).
These levels are the following (from lowest to highest): 1) Recall of data, 2)

Comprehension, 3) Application, 4) Analysis, 5) Synthesis, and 6) Evaluation.
However, it is difficult to categorize a question into the proper cognitive level
(Thomson at al., 2008). Bloom’s Taxonomy can be also used in the course design
(Scott, 2003). Oliver and Dobele (2007) argued that the lower cognitive levels (Recall
of data, Comprehension, and Application) should be gained during the first year of
studies. Subsequently, the students could become able to move onto assessments that
require higher cognitive levels (Analysis, Synthesis and Evaluation). Otherwise the
assessment will have a negative effect on students to make “upward progress”.

This study presents P.A.T., a computerized adaptive testing system for assessing
students’ programming skills. The questions are categorized both into three difficulty
levels and into three cognitive levels (Recall of data, Comprehension, and
Application). If a student answers correctly a question, the next question is more
difficult. Otherwise, the next question is easier.

The next section 2, presents types of computerized assessment. Section 3 presents
P.A.T., a multiple choice questions testing system, which was developed and used in a
high school programming class for novice programmers. In section 4 the questions
content is presented and how we classify them. Research results are performed in
section 5. The most significant section is 6 where P.A.T. achievement is presented in
which students are classified according to their programming skills in order to predict
their performance in National Exams. Finally in section 7 the strengths and weakness
of the model are illustrated.

2. Computerized Testing of Programming Skills

Computerized assessment offers speed, availability, consistency and objectivity of the
assessment (Ala-Mutka, 2005). In order to assess programming skills, two types of
computerized assessment could be used: 1) Code Writing, and 2) Multiple Choice
Questions (MCQs).

One of the problems faced by Computer Science instructors is bridging the following
two gaps: 1) gap between the course and what to teach, and 2) gap between what the
students had been taught and how to assess this knowledge (Starr, Manaris and
Stavley, 2008). This means that even if two schools offer the same course in
Computer Science, the assessment can be different from one school to other because
the teachers’ objectives and teaching as well the students’ demands may vary.

Whalley et al. (2006) showed that novice programmers were not yet able to work at
fully “abstract level” (high cognitive level). So, students that can not read a short
piece of code and describe it are not capable intellectually to write code by
themselves. Thus, it is better to assess novice programmers using MCQs. On the other
hand, if the students are at an advanced level and the course focus is on developing
the students’ programming skills then it is better to use Code Writing Assessment. Of
course, a combination of both types of assessment could be also used.

Next, both types of computerized testing of the students’ programming skills are
presented.

2.1. Computerized Testing using Code Writing exercises

There are many ways to solve a problem in a programming language and more
specifically in high level programming languages. So, many instructors prefer to
correct manually the “solutions” given by the students. Ala-Mutka (2005) found that
74% of instructors preferred the “practical work of assessment”. However, the manual
inspection of the code is inefficient and the possibility to over or under estimate a
student is increased (Kolb, 1984) depending on the number of students.

Computerized testing could help in achieving accurate estimation of the student’s
knowledge. However, the design of a Code Correction and Assessment system
presents many difficulties regarding its objectivity (Schwieren et al., 2006).
Furthermore, both instructors and students should become familiar with such a
system.

Code Writing Assessment systems could be divided into fully automatic and semi-
automatic systems (Ahoniemy et al., 2008). The semi-automatic systems are used if
the students are novice in this experience. In this case, they need a feedback from a
human. Also, the quality and efficiency of the source code are very hard or unfeasible
to be evaluated via a fully automated system. Next, the following semi-automatic
tools are presented: ALOHA, Sakai, EMMA, ASSYST and TRY.

ALOHA (Ahoniemy et al., 2008) bases its objectivity' on the use of “rubrics”
(Becker, 2003). ALOHA provides to the grader the work list (list of students’
submissions). The teacher is responsible for adding grades into the rubric that defines
not only the grading process but also some template feedback phrases. Finally, the
ALOHA'’s objectivity is examined using statistical analysis of the grading distribution
of the graders using Aloha (Ahoniemi and Reinikainen, 2006).

Sakai is used in a Java course assessment (Suleman, 2008). Assignments can be
compiled, tested, executed and scored without human intervention. This means that
the workload is reduced and all the submissions are marked with exactly the same
criteria. Also, the feedback helps the students to learn from their mistakes. The
submitted assignments are sent to the Automatic Marker which compares the output
to a predefined one. If the solution is not correct then the student is given a list of the
produced output and the expected one.

EMMA is a web-based tool and is used in a Java course assessment (Tanaka-Ishii et
al., 2004). Students’ programs are executed and tested on different inputs. Then they
are examined and graded by several teachers and graduate students. Furthermore,
“notable results” can be seen by all the students.

In ASSYST (Jackson & Usher (1997), the students submit their assignments via e-
mail. Instructors run the system which tests and marks the submitted programs. Then
the students receive an evaluation report. The final mark is based on the quality of the
source code, the efficiency (e.g. lines of code) and the effectiveness of the submitted
program.

' According to Habeshaw et al. (1992) the objectivity can be achieved only through Multiple Choice
Questions.

In TRY (Reek, 1989), the students submit their programs and the instructors test
them. The output evaluation is based on textual comparison.

Next, the following fully-automatic tools are presented: PASS3, Oto Marmoset, and
BOSS.

PASS3 provides both immediate feedback to the student regarding his/her submission
and a detailed performance statistic regarding his/her progress (Choy et al., 2008).
The difference with the previous version of PASS (Yu et al., 2006) is that there
multiple levels of difficulty regarding the programming activities and a student selects
the level according to his/her capabilities (Wang & Wong, 2008). In addition, the
system can help the student by presenting to him pre-stored hints. It offers a learning
environment in contrast to others which support an environment for assignments
(Tanaka-Ishii et al., 2004).

Oto is a marking tool that provides support for submission and marking of
assignments in a programming course (Tremblay et al., 2007). First, it tests the
student’s submission (i.e. program) to ensure that it exhibits correct behavior. Then it
evaluates its structure and style to ensure that the appropriate standards have been
followed. Finally, it sends the grade and the marking report to the student.

Marmoset monitors the student’s progress and sends a feedback to both the student
and the instructor (Spacco et al., 2006). It can be used in several programming courses
(e.g. C, Java). The assignments are sent by the Submit Server and tested by the Build
Server.

BOSS (Joy et al., 2005) supports both submission and testing of programs in various
programming languages (e.g. Java). It compares the student’s submission to the
correct one.

The aforementioned tools helped to the creation of the xIx System (Schwieren et al.,
2006). The code of this system can be evaluated through Static and Dynamic control.
The Static control checks the source code for syntactic errors. The Dynamic control
additionally examines the code’s performance, structure and output produced after its
execution, in relation to a standard code.

In a semi-automatic system, the grading is performed by a human. In a fully-
automatic system, a student’s program that does not meet the assessment’s criteria can
not get partial marks (Suleman, 2008). Also, the assignment can be examined with
respect to the correctness of the output but not to the styling (readability) and
efficiency’. The common disadvantages of both semi-automatic and fully-automatic
tools are that the complexity of the level of programming must be simple enough in
order to be measurable and that they can not examine students’ programs at an
abstract level (e.g. meaningfulness of variables). Furthermore, the student must follow
strict steps in order to complete his/her assessment.

% According Hwang et al. (2008) the efficiency is testified if program runs correctly. The elements that
measure efficiency are “algorithms and data structure”.

2.2. Computerized Testing using Multiple Choice Questions

It is a common belief among many (Traynor & Gibson, 2005) in the field of education
that multiple choice questions tests are the easy and the lazy way to assess students.
However, research (Lister & Leaney, 2003b) has proved that quality multiple choice
questions is by no means “the work of the lazy”.

According to Lister (2005), Assessment through Multiple Choice Questions can be
effectively administered to beginner programmers, who have acquired basic skills. If a
student scores poorly or averagely on basic skills, s/he is bound to fail on final exams,
which are comparatively more demanding and require more knowledge. However,
well-structured multiple-choice testing can be successfully used to test more complex
skills (Jones, 1997; Kolstad, 1994; Wilson, 1991). Research has suggested (Rhodes et
al., 2004) that Multiple Choice Testing comprises a feasible assessment method, if the
questions are qualitative in order to provoke students’ knowledge and understanding
of teaching material.

According to Denenberg (1981), evaluation results, questioning and structure must all
be based on quality; otherwise the assessment results are of little value. Multiple
choice testing comprises a reliable evaluation method, not only in the theoretical field
of Information Science but also in Programming. In addition, the test’s complexity
could be increased in parallel with the increase of the number of suggested answers or
with the addition of short-length answer questions.

Multiple choice questions are divided into two categories (Denenberg, 1981):

1. Knowledge Questions: they consist of questions on theoretical knowledge
like gap-filling, true/ false and multiple choice.

2. Programming ability questions: they consist of code behavior
questions to examine the capability of students to comprehend the logic of
programming. More specifically, Denenberg (1981) suggests that students
should be able to:

e read a program (e.g. find the output of the program),

e read a logical diagram (comprehension of its flows and operations),
e convert a logical diagram to a code,

e write a program (e.g. find commands from missing code).

Before exams are carried out, students should be fully informed on what they are
supposed to do and how they are supposed to be graded.

Furthermore Traynor & Gibson (2005), determined the requirements for effective
Multiple Choice Questions:

e “Good Quality Code”: the code presented to the students should be of
high standards. Unstructured code should not be used.

e “No tricks”: the questions should focus on the normal behavior of the
programs.

e “Quality Distractors”: the erroneous answers given as alternatives should
be appropriate and of high feasibility, so as to ensure the sense of
correctness in answers.

Next, some Educational software which are based on Assessment using Multiple
Choice Questions are presented.

Traynor et al., (2006) developed an automated assessment system for Java
Programming. They found a correlation between traditional and multiple choice
testing methods. In both methods only well-prepared students succeeded.
Parameterization of inputs determine the length, difficulty and the topic of the
question. Similar code-behavior questions are presented by Lister and Leaney
(2003b). The students must execute the program (trace) and select its behavior
through 5 possible answers.

Brusilovsky and Sosnovsky, (2005) developed QuizPACK. Its aim was to produce
and evaluate parameterized questions for student practice and assessment in
Programming I. The student has to fill in the answer and hit the “submit” button. Then
an immediate feedback of correct/erroneous answer is presented. There is Possibility
of repeating a previous question. Each student is tested in different tests in Random
question occurrence, through parameterization of the values of given’code variables.
At the end a Final Score is reported.

Traynor and Gibson (2005) developed an intelligent MCQs Test. The students are
called to find the output of a program. The questions are presented randomly and the
students must choose one correct among five possible answers.

Lister (2005) developed a Multiple Choice Test to assess first semester students in
Java Programming. The students are examined on thirteen questions of understanding
the basics of Object-Oriented Programming concepts of classes, events and methods.
Five questions involve comprehending basic structures such as sequence, condition,
repetition and unknown code. Eight questions involve arrays including searching and
sorting algorithms in known code prior to exam. The possible answers are 4 or 5 and
the pass mark is both 50% and 70%. In the beginning the pass mark was 70% but as
over half the class scored less than 18 out of 26, the pass mark was reduced to the
traditional 50%.

Rhodes et al. (2004) developed ExamGen. A Multiple Choice question may contain 3,
4 or 5 possible answers. Questions are stored in a Microsoft Access Data Base. Also
there is possibility of backward movement. Navigation is achieved through the
Previous and Next buttons.

So, many researchers believe that Multiple-Choice Questions could be used of not
only for the students’ assessment but also for students’ practice on basic knowledge of
Programming. Moreover, the fact that correction and evaluation are carried out
through the use of a computer renders the results objective and precise. For example,
when a teacher has 100 papers to correct, there is the slight chance that s/he may over-
or under-estimate somebody’s work. According to Habeshaw et al. (1992) the only
way to examine students with objectivity is by the use of Multiple Choice
Questions.

3 The same code is used in multiple questions and simply the variable values are renewed.

3. Presentation of P.A.T. : Programming Assessment Testing

P.A.T., a Web-based fully automated assessment system was developed for the
Course of Application Development in a Programming Environment (Bakali et.
al, 2004). It was developed with the use of a Flash MX tool. The programming was
conducted in ActionScript and the final files were extracted in html format. P.A.T. is
not only a software to assess novice students in Programming but also it can predict
their classification in National Exams. Programming comprises a core course in the
Technological direction of the General Lykeion, as it is nationally examined for the
admission to the Greek Universities (not necessarily only for Computer Science). This
course is taught twice a week on a theoretical level and if there is enough time,
students are encouraged to carry out practice training, i.e. code writing in a real
programming environment” or other pedagogical software. Instructors assess students
in two semesters’. The second semester tests include all the teaching material.
Semesters tests and Panhellenic (National) exams® consist of paper-tests, involving
True/ False, correspondence, output finding from a given code, conversion of logical
diagrams into code or the opposite and code writing questions.

The emphasis concerning Semester tests or the Panhellenic (National) exams, is
placed more on programming ability and knowledge questions (60%) than code
writing (40%). It should be pointed out that students are examined in code writing
only on paper. So, most of the students do not have the experience of solving
problems in a real programming environment.

Since these students are novice programmers, the most effective assessment method
involves the use of Multiple Choice Questions instead of Code Writing. As we have
already mentioned, Code Writing requires for students to exhibit an advanced level of
knowledge, in order to cope with the demanding material. Moreover, P.A.T. could be
used in a Summative Assessment (Khamis, Indris, Ahmad and Indris, 2008) which
could be used to assess the level of learning at the end of the course.

P.A.T. was used in the schools computer lab, under the supervision of the teaching
staff, it takes approximately 45 minutes (one teaching hour). Students were assessed
on 30 questions at the end of 2" Semester and before the Panhellenic (National)
exams. The students could use P.A.T. in the schools’ computer laboratory or via Web
from their home or elsewhere.

During May 2009, 73 students from two schools (43 students from 1% unit and 30
students from 2™ unit) used P.A.T.. Also they answered evaluation Questionnaires
regarding P.A.T.’s Environment, Question Content and Usefulness. Results show that
61 students out of 73 found the experience positive and the tool very useful to
increase their depth of knowledge in programming course and that they have been
helped to discover their shortcomings. However most of them think that they were
under estimated by P.A.T. comparison to traditional exams. In our opinion this

* They use a pseudo-language named “Glossa” which can be best described as a Greek translation of
Pascal.

> At the end of the year the average between first and second semester is computed which determines
the final grade for this lesson in the school certificate.

% These exams determine if the students are going to continue their studies in a High Educational
Institution (University or Technological Educational Institution).

happens because they do not have the experience in computerized exams. Most of the
students (especially, low performance students) preferred to use P.A.T. for learning
and self-assessment than for testing.

Below are presented the reasons for using P.A.T.

e Students will be able to practice and be assessed in Knowledge and
Programming Ability Questions.

e Most of the teachers who teach the programming course complain about the
fact that teaching hours suffice only for teaching the exams material, leaving
little time for practice. Through P.A.T. students will be able to practice more
frequently, not just in the laboratory environment but also via the Web.

e Through the use of P.A.T., students will be able to discover their shortcomings
in order to be prepared for the National Exams.

e P.AT.s friendliness will attract students of all levels to participate and
practice as frequently as possible in order to increase their programming skills.

4. Questions in P.A.T.

The book’s structure is such, so that the exam material is repeated (Bakali et. al,
2004). Chapters 1, 4 and 6 are theoretical and serve as an introduction on the necessity
of Programming; Chapter 7 refers to the basic Programming elements and a presents
the pseudo-language (GLOSSA); chapters 2 and 8 are an introduction to the structure
of Sequence, Choice and Repetition; chapters 3 and 9 present Data Structures, with an
emphasis on Tables; finally, chapter 10 deals with Sub-Programs.

Each question belong to a difficulty level: A = easy question, B = moderate question,
C = difficult question. The content of questions in P.A.T. was designed according to
the low levels of Bloom’s Taxonomy (Bloom, 1956).

The following Categories of Questions were developed:

e Recall of data : Knowledge questions on the Theory of the course, the Syntax
and Function of Frameworks of Structured Programming and of Sub-Programs
in True/False and Multiple Choice Question format (Level A, B and C). Such
questions examine students’ memorization capability.

e Comprehension: A piece of code and a question involving the behavior of the
code (finding the output after the execution of a program). Such questions
have been found efficient (Lister, 2001) as far as students assessment on their
ability to read and comprehend the code’s Semantic (level B and C).

e Application: Exercises to examine students’ skills to apply prior knowledge to
new problems. Three types of exercises were used; 1) A piece of code, which
can be realized through a Structure of Process or Choice or Repetition, where
a student is called to choose an equivalent command for the execution of the
above functions (level B). 2) Also a Logical Diagram is given, where the
student is called upon to find the equivalent command to express one or more
functions (level C). 3) Gap filling in a piece of code or program according to
some expressions (Lister and Leaney, 2003a). Program gap filling (level B and
mostly level C) is the most difficult activity and needs much more
consideration and capabilities, also it helps students in increasing their power
of solving sub-problems (Hwang et al., 2008).

10

The students were not examined at high levels of Blooms’ Taxonomy. Oliver and
Dobele (2007) showed that the pass rates of courses with higher cognitive demands
(Analysis, Synthesis and Evaluation) were increased in relation with lower cognitive
demands (Recall of data, Comprehension and Application). This means that if first
year experience in programming has a high cognitive level of assessment then weaker
students are prevented to continue their studies in this science.

The following Table 1 and Graph 1 show the number of questions which respect to
Blooms’ Taxonomy and difficulty level.

Total Questions per
A B C Blooms’ Taxonomy
Recall of data 186 93 30 309
Comprehension 0 35 18 53
Application 0 20 61 81
Total Questions per
difficulty level 186 148 109 443

Table 1: Number of questions which respect to Blooms’ Taxonomy and
difficulty level.

Recall of data

O Application

0% 20% 40% 60% 80% 100%

Graph 1: Percentages of questions which respect to Blooms’ Taxonomy and
difficulty level.

Another criterion which increases the difficulty of question and demands of the depth

of knowledge is the number of possible answers. Table2 presents the number of
possible answers per difficulty level.

11

Level of Possible Answers in True/ False Questions
Questions Multiple Choice Questions (2 possible answers)
A 3 EXIST
B 4 EXIST
C 5 NOT EXIST

Table2: Number of possible answers per difficulty level

4.1 Model Structure

e A random presentation of 30 questions from all Chapters of the exam material,
depending on the students’ level. Each student is tested on different questions
at different levels. This ensures the quality of the exams as far as cheating is
concerned, since students sit in close proximity in computer laboratories.

e The student moves from one difficulty level to another according to his/her
answer (Figure 1). At the end of the test, the total number of correct answers
per level, in relation to the total number of questions presented per level, is
shown.

e Questions at level A test students on knowledge. A correct answer to a
question A leads to question at level B, which includes Programming Ability
Questions too. If student answers correctly level B question then question
from level C is appeared. Students at level C are tested mostly in
Programming Ability Questions.

e Question counter per chapter.

e Wrong answer counter per chapter.

e At the end of the test, the Total number of correct answers out of 30 and the
students’ classification are presented.

e Also a Final Score, which depends on the level of questions correctly
answered, is presented.

STRUCTURE OF THE ASSESSMENT MODEL

) troe true) troe
A —F, ans —™ B [, ang — & ans —™
3

false

false

false ¥

Figure 1:
Adaptive Sequence of question in P.A.T.

12

5. Results

Significant weight was placed on Feedback. P.A.T. seeks to serve both the teacher and
the student. As far as the student is concerned, P.A.T. not only serves as a means of
practice on the exam material, but also as a means of feedback on his/her
shortcomings per chapter. As far as the teacher is concerned, P.A.T. functions as a
means of assessing the students’ Level which indicates how well they are prepared for
Panhellenic (National) exams and if it is possible to help them to overcome their
weakness until then.

5.1 Analysis of the results from the teachers’ point of view

If, following the aforementioned structure (Figure 1), the student correctly
answers all 30 questions (from 0 to 29), s/he will obtain the following best
performance sequence

A) B’ C7 C’ C’ C’ C’ C’ C, CJ C’ C7 C’ C’ C’ C, CJ C, CJ C, C) C’ C’ C’ C’ C’ C, CJ
C.

On the contrary, if the student answers all 30 questions incorrectly, the worst
performance sequence will be as follows:

A, AA A A A A A A AAAAAAAAANAAAAAAAAA,
A, AA.

In the Results printout, the answers given by the student will be characterized by
the letter of the level and the corresponding question number, LQn, where L is the
difficulty level (A, B or C) and Qn is the number of the question at the
corresponding Level (Qn= 0..185 for Level A, Qn=0..147 for Level B and
Qn=0..108 for Level C). For example:

AS, B7, C3, B33, Al2, Bl1, C77, C4, C100, B18, C5, C7, B22, A23, A27, A34,
A47, A61, B75, C62, C55, C59, B81, C80, C19, B9, CO, C41, B29, A30.

This Questions’ sequence helps the teacher to immediately recognize which
questions the student failed. Regarding the example’s questions sequence, the
student answered wrongly the following questions:

C3: because a Level B question follows
B33: because a Level A question follows
Also C100, C7, B22, A23, A27, A34, A47, C59, C19, C41 and B29.

At the end of the test, the following results are presented for each student:

(a) Total Results: Number of the correct answers out of 30, (b) Number of the
Correct Answers per Level in relation to the total number of questions per
Level, (c) Final Score given by the following formula :

13

Final Score = 1* Number of Correct Answers at Level A+
2* Number of Correct Answers at Level B+
3* Number of Correct Answers at Level C

(d) Classification of student which depends both of the Final Score and the Total
Result

Based on our research using 73 students we present 3 classifications:

5.1.1 High Programming Skills’ students

We consider that student could be classified as High Programming Skills’ student
if s/he answered, at least correctly 21 questions and obtain Final Score at least
52/87 (60%). If the student answers all questions correctly, the question sequence
will be:

ABCCCCCcCCcCccCccCccccececcecceccecceccecccecceccecceccecc

s/he achieves the following:
Final Score = 1*1 + 1*2 + 28*3 = 87/87

and the corresponding Total Result will be 30/30.

A High Programming Skills’ student will answer correctly questions mostly at
Level C (Graph 2).

25

20 - —

10

ZJ_ T] r__r r_[_

1 2 3 4 5 6 7 8 9 10 11 12 13

O correct answers Level A @ correct answers Level B @ correct answers Level C

Graph 2: Correct answers per Level by High Programming Skills’ students
(13 students out of 73)

In order to support our argument for High Programming Skills’ students, the
following Table 3 is presented:

14

Mean StDev

correct answers from
Level A 2,077 1,115

correct answers from
Level B 6,077 1,320

correct answers from
Level C 14,846 2,764

Table 3: Correct answers per Level by the 13 High Programming Skills’
students

where Mean is the average number of correct answers per High Programming
Skills student and StDev is the standard deviation of the number of correct
answers per student. As we can observe from Table 3 these students answered
correctly in average 15 out of 30 (50%) questions from Level C.

Example 1-High Programming SKills’ student with the lowest Total Result
and Final Score

AABCBAABCBCCCCCBCCBCCCCBCCBCCC

The student has 2 correct answers on Level A, 7 correct answers on Level B and
12 on Level C. His/her
Final Score =2*1 +7%2 +12*3 =2+ 14 + 36 = 52/87,

and the corresponding Total Result = 21/30.

The majority of answers correctly answered (12) belong to Level C.

5.1.2 Medium Programming Skills’ students

If a student performed well in Knowledge Questions and at a moderate level in
Programming ability Questions, s/he will be classified as a Medium Programming
Skills student. In our sample most of the students answered correctly questions
mostly to Level B and C (Graph 3).

In order for the student to be classified as a Medium Programming Skills’ student
s’he will have to score at least 34/87 (39%) and achieve a Total Result of at least
16/30. The highest grade for a Medium Programming Skills’ student is 20/30 for
the Total Result and 51/87 (58,6%) for the Final Score.

15

14
12
10

O N B O ®©

AR AL

Ml

Il

'Iﬁ

w
N
ul
o]
~
o]

9 10 11 12 13 14 15 16 17 18 19 20

O correct answers Level A @ correct answers Level B O correct answers Level C

Graph 3: Correct answers per Level by Medium Programming Skills’

students (20 students out of 73)

In order to support our argument for Medium Programming Skills’ students, the

following Table 4 is presented:
Mean StDev
correct answers from
Level A 4,55 1,234
correct answers from
Level B 6,55 1,82
correct answers from
Level C 7,25 2,468
Table 4: Correct answers per Level by the 20 Medium Programming Skills’

students

As we can see from the table the number of correct answers is spread across all
Levels but the majority of them are from Level B and C (14 out of 30,
approximately 50%).

Example 1- Medium Programming Skills’ student with most correct

answers from level B

AABCCBCCBABABCCBAABCBCCCCBABCB

The student has 5 correct answers on Level A, 7 correct answers on Level B and
6 on Level C. His/her

Final Score =5*1 +7*2 + 6*3 =5+ 14 + 18 =37/87,

and the corresponding Total Result = 18/30.

16

Example 2- Medium Programming Skills’ student with most correct
answers from level C

AABCBCBCBABCCCBABCBABCCCCCCCCC

The student has 4 correct answers on Level A, 6 on Level B and 10 on Level C.
His/her

Final Score =4*1 + 6*2 +10*3 =4 + 12 + 30 = 46/87,

and the corresponding Total Result = 20/30.

This means that the majority of answers correctly answered (10) belong to Level
C but this is not enough to place the student at High Programming Skills. As we
can observe the student answers wrongly 10 out of 30 questions and as a result

s/he is properly placed as a Medium Programming Skills’ student.

Example 3- Medium Programming SKkills’ student with the lowest Final
Score

ABCBAABCBCCCBABCBABCBCBCCCBCBC

The student has 4 correct answers on Level A, 9 correct answers on Level B and
4 on Level C. His/her

Final Score =4*1 +9*2 + 4*3 =4+ 18 + 12 = 34/87,

and the corresponding Total Result = 17/30.

5.1.3 Low Programming Skills’ students

A Low Programming Skills’ student needs to study more. The majority of his /her
correct answers do not necessarily belong to level A. However, the percentage of
level C correct answers must be lower than that of Level A and B. Otherwise the
student has problem in questions that requires memorization.

Nevertheless most of the students’ correct answers were from Level A (recall of
data), 31 students out of 40 show that frequency (Graph 4).

17

10

N I

h

LG VIR bRk

|

|

I

1 23 456 7 8 9 10111213141516 171819 2021 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40

‘D correct answers Level A O correct answ ers Level B O correct answers Level C ‘

Graph 4: Correct answers per Level by Low Programming SKkills’ students
(40 students out of 73)

The highest Total Result that can be achieved is 17/30. Also the highest Final
Score is 33/87.

In order to support our argument for Low Programming Skills’ student, the Table
5 is presented:

Mean StDev

correct answers from
Level A 7 1,301

correct answers from
Level B 4,2 2,301

correct answers from
Level C 1,45 1,449

Table 5: Correct answers per Level by the 40 Low Programming Skills’
students

The above table (Table 4) shows that the majority of correct answers are mostly
from Level A. Also the average number of correct answers from Level C is poor
performed.

Example 1 -Low Programming SKkills’ student with most correct answers
from level A

AAAAAAABABAABAAAAAABAABAAABAAB
This student only has 7 correct answers at Level A. His/her
Final Score = 1*7 =7/87

and the corresponding Total Result = 7/30.

18

Example 2-Low Programming SKkills’ student with most correct answers
from level B

AAABCBAAABABCBCBCCBCBCBCBABAAB

The student has 5 correct answers on Level A, 8 correct answers on Level B and
1 on Level C. His/her

Final Score =5*%1+8*2+1%*3=5+16 +3 =24/87

and the corresponding Total Result = 14/30. This student has answered
correctly most of the questions from level A (5/10) and B (8/12) but s/he
answered correctly only 1 question out of 8 from level C.

Finally, the Application Menu also includes the choice “teacher”. The teacher can
provide an appropriate user name and password and have the ability to read or
print all the questions according to level and per chapter. Through this choice, the
teacher can evaluate the students’ shortcomings in detail (which questions and
what chapters).

5.2 Analysis of the results from the students’ point of view

Upon completion of the 30-question test, the result section produces the
following: (a) Total Result (b) Final Score (c) Classification and (d) Analytical
Results. More specifically:

(a) Total Result: number of correct answers out of 30 (x/30).

(b) Final Score: it depends on the number of Correct Answers per questions level.
(c) Classification: according to the Total Result (x) and the Final Score (y).

if (0<=x<=17) and (0<=y<=33) >

TRY HARDER - LOW PROGRAMMING SKILLS!
if (16<=x<=20) and (34<=y<=51)>

GOOD - MODERATE PROGRAMMING SKILLS!!
if 21<=x<=30) and (52<=y<=87)>

VERY GOOD - HIGH PROGRAMMING SKILLS!!!

In order for a student to have excellent results, his’her Total Result must be at
least 21 out of 30, with the characterization “VERY GOOD”/ HIGH
PROGRAMMING SKILLS and his/her Final Score must be at least 52/87
(60%). Furthermore a satisfied result in order for a student to be successful,
his/her Total Result must between 16 to 20 out of 30, with the characterization ,
“GOOD”/ MODERATE PROGRAMMING SKILLS and his/her Final Score
must be between 34 (39%) to 51/87.

(d) Analytical Results: this section contains all Questions presented to the student
per chapter during the test and the Total Incorrect Answers per chapter. This
facilitates the student’s feedback process, as s/he can study again the chapters
with the most incorrect answers.

19

An example of a Result Section template is presented (Figure 2):

Name : John Surname : Papadopoulos Class : G2

Your Total Resultis : 6 /30 Final Score: 6 /876 %

TRY HARDER!
LOW PROGRAMMING SKILLS

SPECIFICALLY

Correct Answers in Level A: 6 /24
Correct Answers in Level B: 0 /6

Correct Answers in Level C: o /0

QUESTIONS WRONG ANSWERS QUESTIONS / ANSWERS

1

1

.

;

1

1

1

1

.

;

i
CHAPTER1 2 2 E 62 i Al30 a
CHAPTER2 7 6 AT b B2 d
: AGD ' Al03 a
CHAPTER3 3 2 ' A185 a AS6 b
CHAPTER4 1 1 | A0 : B133 €
: Al33 b Al4l a
CHAPTER6 3 2 ' As9 a A75 a
CHAPTER7 1 1 , Bl6 c A3 a
: All9 a B8O b
CHAPTERS 3 1 ! Bl45 b A60 c
CHAPTERY 7 5 i a AT2 a
: A28 o A32 b
CHAPTER 10 3 3 ' B70 d Al3 c
: A24 a AT2 a
loAs < All4 a

Figure 2
RESULT TEMPLATE : TRY HARDER/ LOW PROGRAMMING
ABILITY

Upon closer observation of the Result Section template, it can be inferred that the
majority of the student’s correct answers belong to Level A (6 Questions: A89,
A119, A28, A139, A56, A3) and his Total Result is 6 correct questions out of 30
questions examined in total. So, the student was unsuccessful in most of questions.

The student’s Final Score is 6/87 (6%). More specifically, of the 24 Level A
Questions he answered correctly only 6.

Final Score = 6*1 + 0*2 + 0*3 =6 + 0 + 0 = 6 out of 87
It is obvious that he is a Low Programming Skills student.

6. Prediction of students’ classification in National Exams

The results of 73 students that took the test on P.A.T. (Graph 5) indicate that 45%
performed well. However, 55% of them need to practice more in order to achieve
better grade in Panhellenic (National) exams (Low Programming Skills). Most of the
students do not practice often. They memorize instead of comprehending the logic of
programming.

20

High
Pragramming Skillz
18%

Moderate by

Programming Skillz

e
I o

L

i

LC I':!I
Programming Skillz

ccor
- G

Graph S: Classification of students using P.A.T.

The relation between P.A.T. classification and their performance in National Exams is
presented in the following Table 5.

Programming | Total Final Performance in
Skills Result Score National Exams
High 21-30 52-87 18-20
Medium 16-20 34-51 12-17,9

Low 0-17 0-33 0-11,9

Table 6: Correspondence between P.A.T. classification, Total Result, Final
Score and Performance in National Exams

Using P.A.T. classification, in the two high schools where this study was carried out,
we predicted that in the 2009 — National Exams, 55% of students will score below
11,9, 27% between 12 and 17,9 and 18% between 18 and 20.

The Reliability and Objectivity of P.A.T. is confirmed when we compare the
expected performance with the results in the National Exams (Table 7).

Programming Performance in P.A.T. classification National Exams
Skills National Exams classification
High 18-20 18% 45% 17% 44%
Medium 12-17,9 27% 27%

Low 0-11,9 55% 56%

Table 7: Correspondence between P.A.T. Assessment and National Exams

Assessment

21

7. Strengths and Weakness of P.A.T.
Strengths

Adaptation to the students’ programming skills.

Successful classification of students.

Prediction of students’ performance in National Exams.

Efficiency, Objectivity and Reliability.

Automated Assessment Process.

Speed in Results production.

Large library of questions, possibility of Test repetition with renewed interest.

It contains 443 questions.

Memorization of questions by students is rendered difficult.

e Indication of students’ sufficient preparation for participation in Panhellenic
(National) exams.

e Exposure of students’ weaknesses per chapter of the exam curriculum.

e Pleasant and usable Graphic Work Environment (it was developed with
FlashMx).

e Convenience of practice in school laboratories (local), but also the Web.

e The execution of P.A.T. software requires only the installation of a browser

and one can run the program from any hard disk device even without Internet

Connection.

Weaknesses

e P.A.T. was developed to test novice programmers, only.
e P.A.T. was developed to test student’s programming skills on “Glossa”, a
pseudo-language for Greek students.

8. Conclusions and Future Goals

P.A.T. is not only an Assessment tool but also it can predict the students’
classification in National Exams too. Different schools in different countries have
different requirements for teaching computer programming. We developed P.A.T., for
helping Greek high school students and teachers to evaluate students’ programming
skills. P.A.T. could be executed so that a student can choose the chapter and the level
that s/he wishes to be examined. So P.A.T. could be used as a Learning tool too. Also,
it could enable the teachers to upload their own questions. In addition, it would be
interesting if the system produces some statistics results about students’ performance
which will be available to both students and teachers. At the end another achievement
would be students be able to practice in simple code writing exercises too.

22

APPENDIX

A) EXAMPLES OF P.A.T. QUESTIONS

1) LEVEL C - DIFFICULT QUESTIONS

EXAMPLE 1 - KNOWLEDGE
C53) Mg tov 6po Odnyovuevn amod to ['eyovog Ipoypappoticpd evvoovue
a) T dvvatodtta onpovpyiag Bacemv Aedopévav.

b) Tn dvvatdTTa Vo SNUOVPYOVLE YPAPIKE OAOKANPO TO TEPPAALOV TNG
Epappoyng.

¢) Tn duvatdtnta dnpovpyiog Aiktvak®dv Eeappoyov.

d) Tn dvvatdtnTa Vo evepyomolovvtal Aettovpyieg tov [lpoypappatog pe tnv
extéleon evog I'eyovorog.

e) Tn dvvatdtta onovpyiag Europikav Epapuoyav.

EXAMPLE 2 - COMPREHENSION
C18) T1 0a tunwoet o mapoakdatom AlyopOpog yuo x= -1;

Alybép1Bpog Zuvaptnon
Awapoce x

Av x<1 101¢
fx<-(16/(x-1)"2)div 2
AlMadg_av x=1 101¢
fx<-2

AlMdg

fx<-16/(x-1)"3
Téhog_av

Téhog Xuvaptnon

23

EXAMPLE 3 - APPLICATION

C70)Me mota amd T1g TopakdT® eVIOAES VAOTOlEiTOL 1) Aopun TG Emdoyng tov
Aoyikov Aloypdppatog mov cog dlvetor;

Apym

b

AIABATE
n

'

Nm

1

op R € (- 1} "
ITPAYE
T
A
[T&hog

a)AN) <= 0 TOTE tyn <-(-1) * 7w I'PAYE tyun TEAOZ AN

b)AN 1t <=0 TOTE tiun <-(-1) * yuq TEAOZ AN

¢)AN) <= 0 TOTE typn <-(-1) * ryuq AAAIQE I'PAYE myu TEAOX AN

d)EMIAEEE ty IEPIIITQSH <=0 tipf| <-(-1) * tywi TEAOS,_EIMIAOTQN

e)AN 1y > 0 TOTE Ty <-(-1) * yuq TEAOX AN

24

EXAMPLE 4 - APPLICATION

C94)Zvuninpwoe ta kevd oto mapakato [pdypappa, to onoio dafdalet 2 aképaiovg

Kot vroroyilel to Méyioto Koo Awopétn pe tnv xpron e Zuvaptnong.

TTPOTPAMMA MKAI

METABAHTEX

AKEPAIEZ:A, B, MKA

APXH

TPAYE ' AQYE TOYE 2 APIOMOYY!

ATABASE A, B

MKA<- (1)

TPAYE 'METTETOX KOINOE AIAIPETHE:', MKA
TEAOX_ITPOTPAMMATOS MKALI

YYNAPTHZH (2) (AP1, AP2): (3)
METABAHTEX
AKEPAIES:AP1, AP2, TTHA, YIIOA
APXH

APXH_ETTIANAAHYHE
TTHA<-AP1 DIV AP2

YITOA<- AP1 MOD AP2

AN (4) TOTE

AP1<- AP2

AP2<-YTIOA

TEAOX AN

MEXPIZ OTOY YITOA=0

YIT MKA<- (5)

TEAOYX SYNAPTHZHE

a)(1)=YTI MKA(A,B),(2)=YII_ MKA ,(3)=AKEPAIA,(4)=YTIOA <>0,(5)=AP2

b)(1)=YTIT MKA(AP1,AP2),(2)=YTI MKA ,(3)=ITPATMATIKH,(4)=YTIOA
<>0,(5)=AP1

¢)()=YTI MKA(A,B),(2)=MKA ,(3)=AKEPAIA,(4)=YTIOA <>1,(5)=AP2

d)(1)=MKA(A,B),(2)=YII MKA ,(3)=AKEPAIA,(4)=YTIOA <>0,(5)=AP1

e)(1)=MKA(A,B),(2)=MKA ,(3)=ITPATMATIKH,(4)=YTIOA <>0,(5)=YTIOA

25

2)LEVEL B - MODERATE QUESTIONS
EXAMPLE 1 - KNOWLEDGE
B93)To amotélecpa tng EVIOANG EKYM®PNOTG Eivat

a) H avtikatdotaon g tpéyovsog Tiung g HetafAntg (0e€id) pe tnv T g
TOPAGTOGNG TOL VILAPYEL APLOTEPA.

b) H avtikatdotaon g tp€yovcag TG g LETAPANTNS (aptotepd) e TNV TIUY TG
TAPAGTACNG OV LILAPYEL OELA.

¢) H avénon g tpé€yovoag Tiung g petaffAntng (aptotepd) e TNV T TNG
TOPAoTOGNS TOL VILAPYEL OEELE.

d) H av&non g tpéyovcag Tiung g petaAntg (0e€id) pe v Tiun mg
TOPACTOGTG TOL VILAPYEL APLOTEPA.

EXAMPLE 2 - COMPREHENSION
B58)Tt Ba Tundoet to mapakdto Tunqpe Alyopibuov yio k=3;

AwPace K

Mo iamo 1 péypt 3

Ali]<-i+2

TéNog_emavainyng

Mo i amo 2 péypt 2

Av Ali]=x 16t ExtOnwoe "A"
AlMdg_av Ali]=k+1 16te Extdnmwoe "B"
AAMoc_av Afi]=k+2 Extonwoeg "C"
Téhog_av

Téhog_emavainyng

a)A,B
b) A
c)C

d) B

26

EXAMPLE 3 - APPLICATION

B107)[Iwg aAlmdg pmopodv vo, S1aturtmBodv 1 mopakdto eVIOAES (o(ETIKO

mopaodetypa oto Pipiio oel. 38);

AN Bépog < 80 TOTE

AN"Yyog < 1.70 TOTE I'PAYE 'sha@pig - kovtog'
TEAOX AN

TEAOX AN

a) AN (Bapog <80) KAI (Yyog<1.70) TOTE
I'PAYE 'ehagpic - kovtog TEAOX AN

b) AN (Bdapog <80)H (Yyog<1.70) TOTE
I'PAYE 'ehagpig - kovtog TEAOZ AN

¢) AN Bépog < 80 TOTE I'PAVYE 'ehagpdc TEAOX AN
AN"Yyoc < 1.70 TOTETPAYE 'kovtog TEAOX AN

d) AN (Bépoc <80) TOTE I'PAYE 'ehagpic - kovtog'
TEAOX AN
3) LEVEL A - EASY QUESTIONS

EXAMPLE 1 - KNOWLEDGE
A2)IToa etvon Tar 6TASIOL AVTILETMOTIONG EVOG TPOPANUATOC;
a) Avéivon kou Emidvon.
b) Katavonon, Avaivon kot Exilvon.
¢) Katavonon ko Enidvon.

EXAMPLE 2 - KNOWLEDGE
A24)O1 tedeotéc +, -, *, /,~ ovopdlovtat
a) Aoywoi.
b) Zvykprrikoi.

¢) ApiBuntwcoi.

27

EXAMPLE 3 - KNOWLEDGE
AS52)Yrapyer AlyopiBpog yio v Zyedioon Alyopibumv;
a) Anbng

b) Yevong

28

B) PRESENTATION OF P.A.T.

B1) INTRO

e ANANTYEH

- <&
: E®APMOT'ON

-
L

, & (@ =

e
>

/OPOTPAMMATIZTIKO

o
‘..

IIEPIBANNON
—_—
DHITHEAR |. XATZO00VHOL —
LIAR=MIATIEH EACAREIR METAATEXIAKOY
Erm
MTNHEOEOFRIAKR ZYZTHITTATA
MANERIETHAIIO MAKEDONIRE
cao9

29

B2) MAIN MENU

TEXT AZIOAOI'HEHE

EKITAIAEYTIKOX

ETNTKOINQNIA

ERCKLROUND

DD D D D AHMUTPA L XATZONOYAOY

30

B3) CHOICE “TEXT AZIOAOI'HXHX”

B3.1) STUDENT DETAILS

TEET AZIOAOTHEZHE

. MNAHKTPC HETE TA NAPAKATO ETOIXEIA -
'|_',E'I'H EYMNEXEIA NATHETE TO KOYMM{BUTTON) SEND

B ui).\m MAGHTH:

ETMMOETO MASHTH:

TMHMA:

AHMNTFA L XATAOHNMY ADY

31

B3.2) P.A.T.

AT41)Tote mpémer va ypnoporowipe Eva Mivoxo;

aJOtay £oupe mohid Acdopiva Tou idrov THmow 1
dapopeTikod THITOL

b)YOrav fyoups L1 Asdopiva SLuQopeETice) THTOU.
cfOrov £youps Toiid Acdopive Tov idwu THTOUL.

C aTa PHBOPTAK A VL]

.-"tl'[ﬁf\-"'l’l'tﬁl]: I ’ Rill{:]’l'llﬁ'lll 1 /30 (ANEIETHMIO MAKEAONIAL)

32

B3.3) RESULT TEMPLATE

Ovopa : Enibzto : Tpipa

Tuvolikoé Arotéieopa @ 15 /30 Teiako Exop: 30 /87 =34 %

MPOXMA®HEIE NMEPIZZOTEPO!

YAMHAEL. Lootic Amevrioas oto A erinedo: 5 /12

£ £

MPOrPAMMATIETIKEE IKANOTHTEX Lootig Amavtiong oto B eninedo: 5 /9
Lootis Anavrioss oto C enfnedo: 5 /9

1
[}
1
[}
1
1
1
1
I
1
i
!
ANAAYTIKOTEPA : EPQTHEIFIE [AIIANTHEEIE |
1
EPQTHIEIZ AA@OL AIANTHEEIEL | A4 . i .
| A68 c41
KEDAAAIOL 2 1 | ™ =
| B1§ B C31 a
1
KEDAAAIO2Z 4 3 ' AS6 a c61 d
| Al02 a B72 a
KEDAAAIOZ 3 1 '
| A0 c csa .
KEMAAAIO 4 1] I AGT a BO4 &
[}
1
KEDAAAIO6 7 4 , Al67 2 Alos a
' BI139 a BSO c
KEDAAAIO 7 2 2 Cl a A47 a
1
1 -5
KEDAAAIOS 4 2 ;e b Ald o
| cad a BSS a
i
1
KEDAAAIO 10 3 1 , co a A6 a
' B2 ¢ B102 a

AEPMEITPA 1 NATEOROY Ay

33

B4) CHOICE “EKITAIAEYTIKOX”

www.ypepth.gr

User name:

Password :

34

ETimedo
B

35

KUTAGTOG 1) 00
b)Mio xotaotoon 1 onoia
) AGTEGT 1) OO0

1DEPOLACTE [1E TOV 6po Aojur)
IPEPODE TYT)

L TOV PLEPT).
0 GOGTUTIKG TOV PEPT), GTO EMPEPOVE TRIHETA TOV TO CroTeR0DY Kobdg EXIGNC Kl GTOV TPGTO JIE TOV 000 BUTA TO PEPT] GUVEEOVTOL PETHED TOVC.

omyopise mpoPAnpdte
a)Embioe, Avorkra km Alvro.

36

B4) CHOICE “EIIIKOINQNIA”

B Nio privupa
Apyzio Encfepyocia MpoBoly Ewooywyry Moperd Epyak 2 g

»

AnooTohn BRoKonT) BTy pon ERIEGAAROT
And: |dimitra_x30@hnl.gr {pop3.hol.ar) w
Mpoc: |dirnitra x30@hotmail. com
(R Karv.: |
Bepa: I
2 R A ==

1

|
4

37

REFERENCES

Ahoniemi, T. and Reinikainen, T. (2006). ALOHA — A grading tool for semi —
automatic assessment of mass programming courses. Proceeding, Koli
Calling2006, pp. 139-140.

Ahoniemi, T., Lahtinen, E. and Reinikainen, T. (2008). Improving pedagogical
feedback and objective grading. 39 Symposium on Computer Science
Education, Special Interest Group on Computer Science Education’08, March
12-15, 2008, Portland, Oregon, USA, pp.72-76.

Ala-Mutka, K.M. (2005). A survey of automated assessment approaches for
programming assignments. Vol. 15, No. 2, June 2005, pp.83-102.

Arnow, D. and Barshay, O. (1999). On-line programming examinations using Web
to teach. Innovation and Technology in Computer Science Education "99,
6/99 Cracow, Poland, pp. 21-24.

Bakali, A., Giannopoulos, 1., loannidis, N., Kilias, C., Malamas, K., Manolopoulos, J.
and Politis, P. (2004). Application development in programming environment,
third class in General senior high school of Greece. Organization of school
books publications, Athens. Edition 5™, pp. 1-35, 51-66, 79-83, 115-216.

Becker, K. (2003). Grading programming assignment using rubrics. Innovation and
Technology in Computer Science Education’03, Proceeding of the 8" annual
conference of Innovation and technology in Computer science education,
New York, USA, 2003, Association for Computer Machinery Press, pp. 253

Berry, R.E. and Meekings, B.A.E. (1985). A style analysis of C programs.
Communications of Association for Computer Machinery,28(1), pp. 80-88.

Bloom, B.S. (1956). Taxonomy of educational objectives. Handbook I.
Cognitive Domain, Longmans, Green and Company, pp. 201-207.

Brusilovsky, P. and Sosnovsky, S. (2005). Engaging students to work with self-
assessment questions: A study of two approaches. Innovation and Technology
in Computer Science Education ‘05, June 27-29, Monte de Caparica, Portugal,
pp. 251-255.

Califf, M.E. and Goodwin, M. (2002). Testing skills and knowledge: Introducing a
laboratory exam in CS1. 33™ Symposium on Computer Science Education,
Special Interest Group on Computer Science Education ‘02,February 27-
March 3, Covington, Kentucky, USA, pp. 217-221.

Carter, J., Ala-Mutka, K., Fuller, U., Dick, M., English J., Fone, W. & Sheard, J.
(2003). How shall we assess this?. Working Group Reports in Innovation and
Technology in Computer Science Education ’03, Association for Computer
Machinery Press, New York, NY, USA, pp. 107-123.

38

Choy, M., Lam, S., Poon, C.K., Wang, F.L., Yu, Y.T. and Yuen, L. (2008). Design
and implementation of an automated system for assessment of computer

programming assignments, The 6" International Conference on Web-based
Learning(2007), (LNCS 4823), pp. 584-596.

Daly, C. and Horgan, J. (2001). Automatic plagiarism detection. proceedings of the
International Conference in Applied Informatics, pp. 255-259.

Daly, C. and Waldron, J. (2004). Assessing the assessment of programming ability.
35th Symposium on Computer Science Education, Special Interest Group on
Computer Science Education’04,March 3-7, Norfolk, Virgina, USA, pp.
210-213.

Denenberg, A.S. (1981). Test construction and administration strategies for large
introductory courses. Special Interest Group on Computer Science Education
Bulletin, v.13 n.1, Association for Computing Machinery (1981 ACM 0-
89791-036-2/81/0200/0235), pp. 235-243.

English, J. (2002). Experience with a computer-assisted frmal programming
examination. Innovation and Technology in Computer Science Education "02,
June 24-26, Aarhus, Denmark, pp. 51-54.

Habeshaw, S., Gibbs, G. and Habeshaw, T. (1992). 53 Problems with large
classes. Technical and Educational Services Ltd., Bristol, U.K.

Hwang, W-Y., Wang, C-Y., Hwang, G-J., Huang, Y-M. and Huang, S. (2008). A
web-based programming learning environment to support cognitive

development. Interacting with Computers, Volume 20, Issue 6, December
2008, p.p. 524-534.

Jackson, D. (2000). A semi-automated approach to online assessment, Dept. of
Computer Science. Innovation and Technology in Computer Science
Education 2000 7/00 Helinski, Finland (ACM2000), pp. 164-168.

Jackson, D. and Usher, M. (1997). Grading student programs using ASSYST.
Special Interest Group on Computer Science Education Bulletin , 29(1),
pp-335-339.

Jones, A. (1997). Setting objective tests. Journal of Geography in Higher Education,
21(1), pp. 104-106.

Joy, M., Griftiths, N. and Boyatt, R. The BOSS Online Submission and Assessment
System. (2005). Association for Computer Machinery Journal on Educational
Resources in Computing, Vol.5, No 3, September 2005. Article 2, pp. 1- 28.

Khamis, N., Idris, S., Ahmad, R. and Idris, N. (2008). Assessing object-oriented
programming skills in the core education of computer science and
information technology: Introducing new possible approach. WSEAS
Transactions on Computers, Issue 9, Volume 7, September 2008, pp.

39

1427-1436.

Kolstad, R.K.. (1994). Applications of conventional and non-restrictive multiple-
choice examination items. Clearing House, 67(6), pp. 315-317.

Lister, R. (2001). Objectives and objective assessment in CS1. Thirdy-second
Special Interest Group on Computer Science Education Technical Symposium
on Computer Science Education (ACM2001), pp. 292-296.

Lister, R. and Leaney, J. (2003a). First year programming let all the flowers bloom.
Fifth Australians Computing Education Conference (ACE2003), pp. 221-229.

Lister, R. and Leaney, J. (2003b). Indroductory programming criterion-referencing,
and Bloom. 34™ Technical Symposium on Computer Science Education
SIGCSE ’03 (ACM2003), pp. 143-147.

Lister, R. (2004). Teaching Java first experiments with a pigs-early pedagogy. Sixth
Australian Computing Education Conference (ACE 2004), Conference in
Research and Practice in Information Technology, pp. 177-183.

Lister, R. (2005). One small step toward a culture of peer review and multi-
institutional sharing of educational resources: A Multiple Choice exam for

first semester students. Australian Computing Education Conference 2005, pp.
155-164.

Mason, D.V. and Woit, D. (1998). Integrating technology into computer science
examinations. 29" technical symposium on Computer Science Education
Special Interest Group on Computer Science Education 98, in SIGCSE
Bulletin, 30(1), pp. 140-144.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
Laxer, C., Thomas, L., Utting, I. and Wilusz, T. (2001). A multi-national,
multi-institutional study of assessment of programming skills of first-year CS
students. Special Interest Group on Computer Science Education Bull., 33(4),
pp-125-180.

Oliver, D. and Dobele, T. (2007). First year courses in IT: A Bloom Rating. Journal
of Information Technology Education, Vol.6, pp. 347-359.

Reek, K. (1989). The TRY system-or-how to avoid testing student programs. Special
Interest Group on Computer Science Education Bulletin, 21(1), pp. 112-116.

Rhodes, A., Bower, A. and Bancroft, P. (2004). Managing large class assessment.
Sixth Australian Computing Education Conference (ACE2004), pp. 285-289.

Schwieren, J., Vossen, G. and Westerkamp, P. (2006). Using software testing
techniques for efficient handling of programming exercises in an e-Learning

platform. The Electronic Journal of e-Learning, Volume 4, Issue 1, pp. 87-94.

Scott, T. (2003). Bloom’s Taxonomy applied to testing in computer science

40

classes. Consortium for Computer Science in Colleges, pp. 267-271.

Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J.K. and Padua-Perez,
N. (2006). Experiences with Marmoset: Designing and using an advanced
submission and testing system for programming courses. Innovation and
Technology in Computer Science Education 06, June 26-28, Bologna, Italy,
pp. 13-17.

Starr, C.W., Manaris B. and Stavley R.H. (2008). Bloom’s Taxonomy revisited:
Specifying assessable Learning Objectives in Computer Science. 35t
Symposium on Computer Science Education Special Interest Group on
Computer Science Education’08 March 12-15, 2008, Portland, Oregon, USA,
p-p- 261-265.

Suleman, H. (2008). Automatic marking with Sakai. South African Institute of
Computer Scientists and Information Technologists 2008, 6-8 October 2008,
Wilderness Beach Hotel, Wilderness, South Africa, p.p. 229-236.

Tanaka-Ishii, K., Kakehi, K. and Takeichi, M. (2004). A Web-based report system
for programming course — automated verification and enhanced feedback.
Innovation and Technology in Computer Science Education’04, June 28-30,
2004, Leeds, United Kingdom, p.p. 278-285.

Thomson, E., Luxton-Reilly, A., Whalley, J.L., Hu, M., Robbins, P. (2008). Bloom’s
Taxonomy for CS assessment. Proc. 10™ Australian Computing Education
Conference (ACE2008), Wollongong, Australia, pp. 155-161.

Traynor, D. and Gibson, J.P. (2005). Synthesis and analysis of automatic
assessment methods in CS1. 35™ technical symposium on Computer Science
Education SIGCSE '05, February 23-27, St. Louis, Missouri, USA, pp. 495-
499.

Traynor, D., Bergin, S. and Gibson, J.P. (2006). Automated assessment in CS1.
Eighth Australian Computing Education Conference(ACE2006), pp. 1-6.

Tremblay, G., Guerin, A., Pons, A. And Salah, A.(2008). Oto, a generic and
extensible tool for marking programming assignments. Software:Practice
and Experience, Vol. 38, No. 3, p.p. 307-333

Wang, F.L. and Wong T.L. (2008). Designing programming exercises with computer
assisted instructions. International Conference on Hybrid Learning 2008,
LNCS 5169, pp. 283-293.

Whalley, J.L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P.K.A. and
Prasad, C. (2006). An Australasian study of reading and comprehension
skills in novice programmers, using Bloom and Solo Taxonomies.
8™ Australian Computing Education Conference, Hobart, Australia, p.p. 243-
252.

Woit, D. and Mason, D. (2003). Effectiveness of Online Assessment. 340

41

Symposium on Computer Science Education SIGCSE 03,
February 19-23, Reno, Nevada, USA, pp. 137-141.

Wilson, T.L. and Coyle, L. (1991). Improving multiple choice questioning: Preparing
students for standardized test. Clearing House, 64(6), pp. 421-423.

Yu, Y.T., Poon, C.K. and Choy, M. (2006). Experiences with PASS: Developing and

using a programming assignment assessment system. Proceedings of the
Sixth International Conference on Quality Software (QSIC’06), p.p. 360-368.

42

