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Abstract Anaerobic processes for treatment of low and
high strength wastewaters and solid wastes constitute the
core method in the natural biological mineralization
(NBM) treatment concept. When adequately combined
with the complementary NBM-systems and modern clean
water saving practices in wastewater collection and
transport, they represent a feasible route to sustainable
environmental protection (EPsus), in essence even towards
a more sustainable society. Despite the development and
implementation of modern high rate Anaerobic Waste-
water Treatment (AnWT-) systems and complementary
innovative NBM-processes, the considerable progress
made since the seventies in fundamental insights in
microbiology, biochemistry and process technology, still
numerous challenging improvements in the NBM-field can
be realized. This contribution is mainly based on the
insights attained from wide ranging literature evaluations
and the results of experimental research conducted by
numerous PhD students who participated in our group over
the last four decades. An attempt is made here to identify
major facets on which an improved insight can, and
consequently should, be obtained in order to accomplish
more optimal operation and design of various types of
Anaerobic Degradation (AnDeg-) processes.

Keywords sustainability, environmental protection, anae-
robic treatment, micro-aerobic treatment, natural biological
mineralization concept, traces elements, macro-nutrients

1 Introduction

It would be fortunate if mankind could succeed in
accomplishing a fully sustainable protection of the
environment (EPsus) on a global scale. The habitats for
flora, fauna and humans need to be protected through the

lowest possible input of resources, labor, and capital by
using technologically and economically affordable, plain
and robust concepts and technologies. Since practically all
the tools required for the implementation of this vision lie
ready ‘on the shelf’, it is an imperative to implement these
EPsus concepts. There are certainly reasons for optimism.
However, at the same time there are doubts as well. The
principal question is “Are we capable of implementing
them in time?”. And in the case that we are, then we need
to ask “Is the extent of environmental deterioration already
not too dramatic?”, and “can we get the mechanisms under
control, which lead to excessive world population
growth?”, and “what actions need to be put in place to
mitigate extreme urbanization and the dramatic deteriora-
tion of living conditions, in, for example, rural areas?”.
More than 20 years ago the Brundtland Committee [1]

emphasized the need to realize drastic changes in society.
Severe threats in society need to be eliminated, such as
continued prevailing extreme poverty, dramatic environ-
mental deterioration, and the excessive growth of world
population. ‘Sustainability in Society’ stands for “Absence
of man-made scarcity with respect to all primary needs and
prevention of any form of wasting”. Figure 1 depicts the
high ambitions of what Brundtland meant by ‘Sustain-
ability’. In all respects Brundtland goes much further than
the superficial interpretations of the vast majority of
contemporary political leaders, multinational enterprises
and many scientists. In essence Brundtland’s message is
that scientific, technological and cultural achievements of
mankind should be made available for all world citizens
without any restrictions.
Is it an almost hopeless mission to achieve sustainability

in society? Not entirely. History teaches that drastic
beneficial shifts occasionally occur when conditions in
society suddenly become mature for change. This may
happen as a result of any ‘success’ on the route towards
greater sustainability, as for instance in the field of EP.
Once citizens understand that such a progress indeed
serves the well-being of all people, they will become eager
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to force political leaders to initiate drastic changes. And
one of the more crucial needs for the quality of life of
citizens undoubtedly comprises a clean and secure living
environment for all people, i.e., EPsus. In order to make
progress in achieving the high goals of EPsus the focus
needs to be put on i) ‘Pollution Problem Prevention (P3)’
and ii) the achievement of the recognition of a maximum of
valuation of domestic residues (‘wastes’) and optimal reuse
of effluents (treated wastewater) from treatment systems.
As a result of preventing the waste of clean water in the
collection and transport of waste (water), and in order to
achieve the valuation issue, conventional treatment
systems need to be substituted by systems based on the
Natural Biological Mineralization (NBM) route [2,3].
Anaerobic Wastewater Treatment (AnWT) processes

comprise the core method in NBM-treatment concepts,
because i) they offer the unique advantage of realising a
maximum recovery of resources from wastes (e.g., energy
and nutrients), while ii) at the same time they lead to
substantial savings of fossil energy, compared with
conventional waste treatment technologies. Consequently,
in order to achieve progress toward EPsus we need to
substitute conventional ‘Centralized Sanitation’ concepts
(CENSA) for modern “Decentralized Sanitation and
Resource Recovery & Reuse” concepts, utilizing the
very promising DESAR3.

2 Features of a sustainable environmental
protection (EPsus)

The P3 and R3 pillars of EPsus, imply the focus of the EP-
measures to be taken in society merely on tackling
pollution problems, which originate from the inevitable
natural disasters, e.g., earthquakes, floods, storms, future
drastic changes in climate, etc. In combating environ-
mental pollution, exclusive use should be made of robust
concepts and technologies; history teaches that disastrous
environmental damage generally originates from inevitable
natural disasters and/or from all kinds of man-made

catastrophes, frequently due to the collapse of far too
vulnerable EP-facilities or their destruction on purpose,
e.g., in military events. Therefore, robust methods of
environmental protection are required, which neither rely
on advanced and expensive transport and treatment
technologies, nor on complex infrastructural provisions,
such as the power supply and highly specialized
technicians or institutions.
In nature, wastes do not exist; almost everything is part

of the eternal life cycle. It would be wise to imitate nature,
particularly in the protection of the environment, for
example by closing water and material loops through using
the economically most affordable and sustainable techno-
logical and conceptual means, all directed on waste
valorization. When realized at on-site and/or at regional
level, it will enable communities, towns, villages, cities
and regions, and even countries, to accomplish a maximum
extent of self-suffienciency in EP; this then will have a very
positive spin-off in other fields. Such an EPsus-tackle
obviously requires a holistic attack of the ‘real’ problems.
In order to achieve that, all presently available relevant
knowledge needs to be transferred free of charge to
potential users in order to enable them the implementation
of the required systems/concepts properly. Then, con-
comitantly, all kinds of challenging opportunities will
evolve in other fields, for instance in local (urban)
agricultural practices. In this way, step by step a more
sustainable society will be attained, enabling all citizens to
employ presently available technical, scientific and cultural
achievements. As a result humanity can ultimately release
itself from serious threats from the obscure past such as its
immense social insecurity, a disease inherited from the
past! However, all kinds of established groups, institutions,
etc., generally are extremely reluctant to abandon their
privileged positions; this seriously frustrates the smooth
implementation of the EPsus-concepts. The latter is
particularly true for the public sanitation sector. The
main bottlenecks for implementation in this sector can be
found in the lack of ‘political’ willingness and/or courage,
absence of proper ‘market incentives’ and/or lack of a

Fig. 1 Three ‘pillars of sustainability’ in society and some tools to achieve it
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‘well established logistic, educational and decision making
infrastructures’. Moreover, despite the enormous potentials
of the envisaged EPsus-tackle, the industrialized world
tends to look for highly advanced, generally expensive
solutions, which leads to more rather than less dependency
on specialists and vulnerable infrastructures like that of
supply of energy; this virtually is the case for almost any
sector in society. These developments are enhanced by a
dramatic lack in social and entrepeneuring security in
society. The question is how to escape from this threat.

3 NBM-route based waste (water)
treatment tackles in EPsus

It is well known that under natural conditions the
recuperation of polluted surface waters proceeds via a
sequential anaerobic, micro-aerobic and fully aerobic bio-
degradation of the pollutants, on the basis of processes
proceeding according to the biological C-,N and S-cycle,
together with associated chemical and physical processes.
As clearly demonstrated in ‘aging experiments’ with
sewage samples [4] this Natural Biological Mineralization
(NBM) route of organic matter, depicted in Fig. 2,
ultimately leads to the complete recuperation of the
polluted water. However, at the same time this technolo-
gically undemanding R3-directed treatment concept for
wastes and wastewaters enables recovery of useful by-
products, provided that those responsible are capable of
deploying them wisely. In essence the various NBM-
treatment systems are available for use, although their
microbiology and (bio) chemistry may be designated as

‘complex’, and certainly not fully understood yet. Perhaps
some of them never will be understood fully either, but
working with a partial ‘black box’ does not represent a real
bottleneck for optimal applications. The NBM-treatment
route meets practically all criteria for EPsus [2].
Apart from the fact that NBM-treatment systems enable

an almost complete removal of organic pollutants from the
wastewater(s), they provide ideal conditions for conser-
ving/recovering resources in the form of fertilizers, soil
conditioners and renewable energy. This specific feature
can be attributed particularly to the renowned potential of
Anaerobic Degradation (AnDegr) steps, consisting of:
i) Anaerobic digestion (AnDi) processes, which convert

biodegradable organic compounds into a mixture of
methane and carbon dioxide,
ii) Sulfate reduction (SuRe) processes, which take care

of the conversion of oxidized forms of sulfur into H2S,
AnDegr-processes constitute the ideal mineralization

tackle for organic matter; they therefore should constitute
the first treatment step. AnDi-systems for stabilizing very
high strength wastewater(s) and/or slurries can consist of
conventional low or high rate digesters, or innovative high
rate digesters complemented with specific physical-
chemical pre-treatment systems. For the treatment of
medium and (very) low strength wastewaters, modern
high rate anaerobic wastewater treatment (AnWT) systems
have become available since the ninety-seventies; so far,
generally they have found application mainly in ‘one-step’
reactor configurations. Nowadays, the most popular
AnWT-systems comprise stationary upward or downward
flow Anaerobic Filter (AF) systems, (re)introduced in the
sixties in the USA [3,5], and Upflow Anaerobic Sludge

Fig. 2 The natural biological mineralization (NBM) route as treatment concept for waste and wastewater valorization
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Bed reactors (UASB), developed in the early seventies in
the Netherlands [6,7,8]. The very promising next devel-
opments are the Expanded Granular Sludge Bed (EGSB),
developed in the Netherlands in the early eighties, and the
Attached Fixed Film Expanded Bed (AFFEB) system,
developed in the USA [9]. The Sequential Anaerobic
Batch Reactors (SABR) and Baffled Anaerobic reactor
systems [10,11], and various types of hybrid reactors may
also undoubtedly hold out some promise.
These systems, particularly the UASB and EGSB-

process [8], have found a wide application for a large
variety of industrial effluents, although so far mainly under
optimal mesophilic conditions. Since the late nineties these
systems have been applied to the pre-treatment of raw
sewage in a number of tropical countries. In the last
decades insight into the reactor and process technology has
improved significantly.
Compared to UASB-systems, EGSB-systems possess

significantly better potential for removing toxic biodegrad-
able compounds like lauric and capric acids [12–14],
higher fatty acids [15–17], formaldehyde [18,19] and/or
complex compounds present in paper pulping effluent [20].
This feature of the EGSB-reactor system which is very
attractive for practice, can be attributed to i) the
significantly better contact attained in EGSB-systems as
a result of the high upward liquid velocities and ii) the low
concentration of these compounds maintained in the
reactor liquid phase as a result of the imposed high
effluent (so-called ‘upfront dilution’) recycle factors. In
view of the prevailing high substrate transport rates in
EGSB-systems, they even are well suited for the treatment
of very low strength wastewaters, i.e., down to about
200 mg COD/L, both under mesophilic and psychrophilic
conditions [21–27]. Clear experimental evidence was
obtained that the methanogenic activity of the retained
biomass still increased under these extreme conditions,
indicating that the wash-out of viable methanogenic
organisms due to erosion of granules remained exception-
ally low! The potentials of the EGSB-concepts therefore
look exceptionally promising, provided the stability and
the size of the sludge grains can be maintained in the
optimal region. The latter condition certainly cannot
always be met. Therefore, in specific cases, for example
effluents containing triglyceride emulsions, a modified,
more sophisticated, Gas-Solids Separator device needs to
be installed in order prevent problems due to floating
granular sludge [13]. Nevertheless, undoubtedly challen-
ging developments for EGSB-reactor systems lie in front
of us.
Although modern versions of high rate AnWT-systems

only became popular starting in the seventies, the AF-
system already was introduced at the Massachusetts
experimental station almost 1.5 centuries ago [5]. The
first full-scale AF-system, consisting of a bed of sand, was
put in operation at that experimental station in 1887 for
sewage treatment. In one of the AF-reactors, up to 89 %

removal of the organic impurities was obtained at a pore
space detention time of about 8 days; in a second AF-
system, using 0.5–2 inch diameter broken stone, 85%
organic matter removal from domestic wastewater was
achieved at a loading rate of about 2 m/d. However,
contrary to ‘ancient’ AnWT/AnDi-systems of the septic
tank and Imhoff tank type and despite the promising results
obtained, the AF-system apparently could not conquer the
required popularity. Although in essence all these ‘ancient’
AnWT and AnDi systems at that time were “black box
reactor systems”, the vast majority of them probably
performed reasonably satisfactorily, even despite the
presence of volatile obnoxious compounds in the effluent.
But undoubtedly many of them suffered from severe
overloading. Consequently, they became unwelcome in the
neighborhood. Nevertheless, despite their ‘bad smell’ and
complete lack of understanding of the microbiology, and of
technological aspects from the side of the sanitary
engineering world, their use fortunately has never been
abandoned. In many countries and regions these systems
still have a very important role in environmental protec-
tion. Moreover, it is very likely that promising innovative
versions will soon become available, because the insight
into the microbiology, biochemistry and reactor technol-
ogy of the anaerobic digestion process which has been
improved very substantially over the last decades. The
revival of these systems in modern DESAR3-concepts in
the public sanitation sector lies ahead of us. For billions of
citizens suffering from lack of any adequate sanitation this
is a matter of the utmost importance. But undoubtedly this
also will become true for prosperous citizens since
everybody ultimately wants a robust and sustainable type
of EP.
The major role of the micro-Aerobic Wastewater

Treatment (AemicroWT) systems is to accomplish the
required first post-treatment, comprising particularly the
removal of volatile mal-odorous compounds. These
innovative methods constitute the ideal complementary
treatment step to AnWT. The idea underlying AemicroWT is
that by supplying minor amounts of oxygen in the
anaerobic effluent, a ‘perfect’ environment is created for
a variety of specific micro-aerobic organisms. The
organisms will take care of i) the high-rate conversion of
reduced (highly odiferous and toxic) S-compounds into
elementary sulfur, ii) the removal of part of the remaining,
easily biodegradable organic pollutants; iii) the oxidation
of specific reduced inorganic compounds (e.g., FeII) and
iv) the removal of colloidal matter (including dispersed
pathogenic organisms, i.e., via a coagulation and/or bio-
film entrapment process. Moreover, since the content of
biodegradable matter in the effluent of the anaerobic (pre-)
treatment step is low, the AemicroWT step pairs minor
energy demands with a very low excess sludge production.
According to the findings of Tawlik et al. [28–30] a one-
and/or two-step micro-aerophilic Rotating Biodisk Con-
tactor (RBC-reactor) system is capable of removing
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dissolved mal-odorous compounds and reduce inorganic
compounds efficiently from an anaerobically pre-treated
sewage at hydraulic retention time (HRT) values of only
15 min. However, the elimination of soluble biodegradable
(CODbiod) and colloidal matter, including indicator organ-
isms for pathogens, needs more time, for example in the
range of 30–150 min, depending on the quality of the
effluent.
Undoubtedly, the major innovative development of the

AemicroWT-system lies in its capacity to convert reduced S-
compounds into elementary sulfur [31–37]; the system
enables a high rate and low-cost bio-conversion of volatile
S-compounds like H2S and methanethiol from polluted
gases, e.g., from Liquefied petroleum gas (LPG) [38–41]
and from natural gas and/or biogas. The system is effective
up to removal capacities of 50 tons H2S/day; for higher
loads tentatively the well-proven amine/Claus process still
looks more attractive [40].
This manipulated oxidative section of the Sbio-cycle

comprises, when properly combined with its reductive
part, an attractive piece of equipment for the remediation of
Zn-contaminated soils (already applied at full-scale) and
soils likely to be contaminated with other heavy metals.
The Sbiol-cycle is also effective for the treatment of
aqueous solutions (acid mine drain water) contaminated
with heavy metals and for the treatment of SO2-polluted
air. The elementary biological-sulfur ultimately recovered
in the process, and comprising one of the many allotropes
of elementary sulfur, possesses peculiar features; it is
hydrophilic and dispersible in water, can be used as
fertilizer, fungicide and raw material in the industry;
consequently, it will become an attractive by-product.
The remaining function for aerobic treatment (AeWT)

lies mainly in i) the polishing of the effluent of the
AemicroWT step, i.e., the removal of the (very) small
amounts of remaining biodegradable matter, and ii) as the
nitrification step of dissolved ammonia, in case N-removal
should be needed. In the latter case a complementary de-
nitrification step also needs to be incorporated, or possibly
better, the innovative systems Anammox process [42].
However, in case when sufficient land is available for
agricultural purposes, it will be a much more valuable use
of the dissolved nutrients to apply them as fertilizer, e.g. for
cultivating biomass in algae or duckweed generating ponds
[43,44].
As in the case of the treatment of wastewaters, AeWT-

systems should be abandoned as the primary step for the
‘stabilization’ of solid organic wastes/residues; conven-
tional composting systems do not lead to best use of solid
organic residues. However, subsequent to a first AnDi-
step, they can be quite useful as composting step.
Regarding the merits of the NBM-concept it is obvious
that old-fashioned sanitary engineering practices like land-
filling need to be abandoned, due to potential pollution
problems.

In order to achieve an optimal value for the pollutants,
NBM-systems can be supplemented/complemented with
proper physical-chemical (PC) removal/recovery steps,
e.g., stripping-absorption processes for ammonia (and
phosphate) recovery, precipitation processes for insoluble
phosphate and ammonia-salts (struvite), membrane pro-
cesses and UV-radiation in order to produce potable or
process water.
The NBM-treatment concept, at some time in the future,

will undoubtedly bring a definite end to episode of the
‘advanced’ AeWT secondary treatment tackle and the
‘clean water wasting’ centralized sanitation (CENSA)
approaches in the public sanitation (PuSan) sector. These
conventional systems simply suffer from too numerous
serious drawbacks [2], they are far too complex and too
expensive, and for those reasons are often abandoned in
developing countries soon after having been installed,
with all the dramatic consequences for the environment!
NBM-systems are simply by far superior (see Table 1–
Advantages).
The established ‘advanced AeWT system’ is a heritage

from the late nineteenth and early twentieth centuries; the
first activated plants were put into operation in 1917 in
Manchester and in Houston [11], and the first trickling
filter was already established in 1893 in the UK; the system
became particularly popular in USA. The AeWT-system
superseded the promising house and community on-site
AnWT pre-treatment approach introduced around 1900,
possibly because of their complete ‘black box’ character.

Table 1 Advantages of the NBM-WT route relative to conventional

contemporary WT-practices

No. advantages

1 Instead of being energy demanding, they generate energy.

2 Leading to ‘waste’ and water recovery, i.e., waste as a valuable
resource, urban agricultural practices.

3 Very low production of—well stabilized and concentrated—excess
sludge.

4 Very low space requirements.

5 Low in investment, operational, and maintenance costs.

6 Simple in operation and maintenance, consequently hardly depending
on specialists.

7 Use of technically simple and generally locally manufacturable
equipment.

8 Long life-time of installations and auxiliary equipment.

9 Applicable at almost any scale and at almost any location.

10 Very robust, e.g., absence of any need for any complex infrastructures,
e.g., for power supply.

11 Almost absence of any mal-odor nuisance problems.

12 Formation of recalcitrant organic compounds (e.g., humic acids) can be
avoided.

13 Efficient in degrading various resistant compounds like azo-dyes, poly-
aromatic compounds (PAC’s), and nitro-aromatics.
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4 Challenging expected future operational
developments in NBM-based treatment

Obviously, the first priority for achieving a more sustain-
able EP is to accomplish the required conceptual
innovations (paradigm shifts) in the sector. However, this
comprises a task of immense difficulty, because the
interests of the established sanitary engineering world are
generally opposite, i.e., particularly directed to pursuing
further technological innovations within the well estab-
lished CENSA-concepts and the further world-wide
implementation of these systems. However, regarding the
urgent need to realize more sustainability in society, all
possible emphasis needs to be put on the implementation,
optimal application and the further improvement of NBM-
based systems. Despite the very significant progress
already made, still much more can be achieved by
improving the insights in the microbiology, ecology and
(bio)chemistry and reactor- and process technology of the
various NMB systems. As far as AnWT/AnDi systems are
concerned, numerous challenging innovations can be
accomplished. This certainly is not limited to modern
high rate AnWT-systems for wastewater treatment and
conventional AnDi-systems for slurry stabilisation and
energy production [2,45], but also for so-called “outdated”
systems, like septic tanks and latrines. And as far as
AnDeg-processes in the wider context are concerned,
particularly the Sbiol-cycle based systems are open for
creative innovations. Regarding NBM-systems, interesting
innovation undoubtedly can be expected for both high rate
AemicroWT-based post-treatment systems and AeWT-
based systems as well. The requirement for applying
‘post-treatment of anaerobic effluents’ is of a recent date.
Furthermore, it is clear that there will evolve an increasing
opportunity for nutrient recovery systems applicable for
wastes, wastewaters and energy crops.
Process and operational technological improvements in
AnDi and AnWT
Many improvements undoubtedly can be achieved by

conducting a thorough evaluation of the enormous amount
of relevant information available in literature. Unfortu-
nately, literature search frequently receives far less priority
than experimental research; it looks less prestigious.
Nevertheless, still numerous issues only can be elucidated
on the basis of comprehensive experimental investigations,
and some of them, regarding their enormous complexity,
even need a very well coordinated multidisciplinary attack
over prolonged periods of time.
Below process and technological improvements in AnDi

and AnWT will be discussed, viz. including operational
temperature, high operational pressures, mixing condi-
tions, occurrence of chemical precipitation, extreme salt
concentrations, trace elements and macronutrients, use of
electron and redox mediators, and biological sulphate
reduction.

Operational temperature
The potentials of both psychrophilic and thermophilic
AnDi and AnWT-systems are significant. It should be
emphasized here that these systems offer the greatest
potential when applied in their optimal physiological
temperature ranges. However, it should be emphasized
here that their application become especially useful under
temperature conditions far below the optimal physiological
operating temperature and, of greater importance, under
varying temperature conditions as well. In this connection
it should be understood that the required process-stability
of AnWT-systems, when applied under whatever opera-
tional conditions, including sub-optimal, always needs
careful adjustment of the imposed organic load.
The feasibility of high-rate psychrophilic EGSB-

systems has been demonstrated for the treatment of
volatile fatty acids containing wastewaters in bench scale
experiments at temperatures down to 4°C[46]. Contrary to
acidified substrates, direct application of high-rate AnWT-
systems is not feasible for soluble carbohydrate waste-
waters under psychrophilic conditions; a complementary
acidogenic pre-treatment process step then needs to be
incorporated in order to achieve the required pre-
acidification [26]. However, such a complementary
acidogenic reactor can probably be omitted when treating
soluble protein containing wastewaters, because the yield
of acidogenic sludge in that case is significantly lower than
for carbohydrate substrates.
Direct application of a high rate AnWT-system under

psychrophilic conditions also is not feasible for the
stabilisation of insoluble organic matter; the very low
rate of the hydrolysis step becomes restrictive at
temperatures below 15°C–17°C High-rate AnWT-systems
for treating such types of complex types of wastewaters
under low ambient temperature conditions are viable only
by incorporating a conventional digester, operated under
optimal mesophilic temperatures, and in parallel with the
high-rate reactor. The function of this complementary
digester is to achieve i) a sufficient stabilization of the
insoluble organic matter entrapped in the high rate reactor
and ii) to enable maintenance of a satisfactory methano-
genic activity in that reactor, which is accomplished by
returning part of the stabilized sludge from the digester into
it. This integrated UASB-AnDi-reactor concept offers
promise for sewage pre-treatment under winter time
conditions in moderate climate regions.
High operational pressures
So far, very little relevant information is available
concerning the practical feasibility of AnDeg-systems at
pressures exceeding 100 bars. However, regarding the
existence of anaerobic organisms in the deep oceans, the
development and implementation of ‘pressurized’ AnDi
systems might offer promise, e.g., for energy generation
purposes, particularly when they can be optimized by
adjusting the operational temperature.
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Mixing conditions
Because anaerobic organisms have a strong preference to
form ‘balanced’ micro-ecosystems, heavy mixing in
anaerobic reactors should be avoided. A gentle mode of
mixing comprises a basic condition underlying the UASB-
system, also of other modern high rate AnWT-reactors.
However, in various earlier versions of the ‘Anaerobic
Contact’ process, applied around the nineteen fifties and
sixties for treatment of high strength industrial effluents,
this condition was insufficiently met. It is probable that this
also was/is not the case in many conventional sludge
digesters.
Moreover, apart from enhancing process performance,

the minimization of mechanical agitation will reduce the
energy requirements, and thus also the investment costs.
Occurrence of chemical precipitation (e.g., CaCO3,

MgNH4PO4, and metal sulphides)
Chemical precipitates in and/or around immobilized films,
sludge aggregates affect the performance of an AnWT
quite detrimentally when during the operation of the
system i) the active biomass will become scaled-in a tight
CaCO3-layer, ii) the sludge aggregates become far too
heavy and/or iii) when it leads to ‘cementing’ of the sludge
bed [47–51]. On the other hand, in case it is possible to
control the precipitation process adequately, e.g., by
maintaining the PO 3 –

4 -concentration at about 5 mg/L or
by using small granules, a heavy (high ash-content)
granular sludge will retain a high activity. This was
demonstrated during the start-up of an 800 m3 full scale
UASB-reactor treating corn starch wastewater (COD: 1.5–
11 g/L, Ca2+ up to 800 mg/L). It was the second full scale
reactor implemented in the Netherlands, designed and
commissioned according to criteria developed at our
department [52]. A typical needle shaped, 60% ash-
content, fine granular sludge evolved.
The benefit of a high ash-content granular sludge is that

it enables the application of very high superficial
velocities, e.g. as applied in EGSB-reactors [53]. It is
interesting to note that this specific feature is not unique for
high rate AnWT-processes, it also offers great potential for
high rate upflow granular sludge Aemicro-reactors for post-
treatment purposes [54], very likely for high-rate granular
sludge bed nitrification systems, even for granular sludge
bed AeWT-systems for post-treatment, but possible even
for direct treatment of sewage.
Extreme salt concentrations
Regarding the high salt content of many industrial
effluents, especially in situations where water loops have
been closed to a large extent, an increasing need evolves
for AnWT-systems that can cope with high salt concentra-
tions. Particularly, a need arises for AnWT-systems that
can cope with high sulphate concentrations, i.e., systems
capable of reducing sulphate under conditions of high salt
concentrations. According to findings by Vallero et al. [55–
59] the potentials of such systems are substantial.

Trace elements and macro-nutrients
Macro-nutrients (N and P) and numerous trace elements
(Co, Mn, Ni, etc) are essential growth factors [60–64].
They therefore represent a unique tool for minimizing or
maximizing bacterial growth, that is to say the fractional
conversion of biodegradable substrate into either new
biomass or methane. However, before this kind of
‘steering’ really can become practically fully applicable,
still a lot of supplementary research needs to be done.
Aspects to be elucidated with respect to the impact of trace
element concern assessment of the effect of concentration,
composition, mode and rate of supply, and their bio-
availability, both chemical and physical. With respect to
their bio-availability, the presence/absence of various types
of chelating agents is of great importance.
Despite the extreme complexity of the issue of trace

elements, neverless relevant information for practice has
already been obtained nevertheless from laboratory
investigations with respect to questions like ‘Which are
the really essential elements?’ and ‘In what amounts and
how to supply them?’ Based on the insights obtained, to
some extent the excessive spreading of trace elements over
the environment can be prevented, while concomitantly the
operational cost of AnWT can be reduced. The studies
conducted in our department so far particularly have been
addressed to the assessment of the effect of trace elements
on the anaerobic conversion of i) substrates/wastewaters
originating from potato, and ii) of methanol, in the latter
case both under mesophilic [65–67] and thermophilic
conditions [68]. Comprehensive investigations of Flor-
encio et al. [65–67,69] with methanol, lead to the insight
that at low methanol and bicarbonate concentrations, and
exceptionally low cobalt-concentration (< 0.0001 mg/L)
methanogens predominate over acidogens in the methanol
conversion. Methanol is converted into methane directly,
not via the intermediate formation of Volatile Fatty Acid
(VFA). However, acidogenesis on methanol can predomi-
nate over methanogenesis at a relatively high concentration
of methanol (i.e., overloading, poor treatment efficiency),
when bicarbonate is supplied to the system, when Co is
available and methanogens are inhibited due to the
presence of undissociated VFA (for example) or an
excessively low pH in the system. Through these findings,
by now a stable performance of AnWT on methanolic
solutions is possible.
The extraordinary complex character of the trace

element issue has been more recently elaborated in
comprehensive multidisciplinary investigations by Gonza-
lez-Gil et al. [19]. They investigated the effect of the mode
of supply of trace element cocktails and found that a
continuous supply is significantly more efficient than a
slug-delivered supply. Comprehensive studies of Zand-
voort et al. [70–74], conducted in close cooperation with
the departments of Physical & Colloid Chemistry (e.g.,
Jansen, Van Leeuwen, et al., [75]), revealed the detrimental
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effect of reduced bio-availability of the trace elements,
e.g., due to their precipitation as sulphides. As remedial
action the supply of chelating agents such as nitrilotriacetic
acid (NTA), ethylenediaminetetraacetic acid (EDTA) and
citrate were found promising; these compounds can restrict
metal-sulphide precipitation, so that sufficient trace
elements remain bio-available. However, it is again a
very complex matter, because the chelating compound
should not be easily biodegradable nor be a too strong
chelating compound. Moreover, big differences in beha-
viour were observed between crushed and uncrushed
granular sludge samples.
A category of chelating agents of eminent importance

undoubtedly comprise ‘humic acids’. They represent a
class of natural—chemically very complex—aromatic
compounds, non-biodegradable and with strong chelating
characteristics. They are of extraordinary importance for
life. The first time we were faced with their presence/
absence in AnWT- and AnDi-experiments was with potato
derived substrates/wastewaters. In digestion experiments
with solid matter of potato (but without peelings) and with
real potato starch wastewater conducted in UASB-pilot
plants, we observed an almost 100% conversion of the
substrate-COD into methane-COD. Apparently, any bac-
terial growth in these experiments did not occur. Bacterial
growth only could be realized by supplying a trace element
cocktail to the system! These observations, made in the late
seventies, ultimately made the board of the Potato Starch
Company decide to implement the UASB-system for the
treatment of the effluents of their factories, which were for
decades heavily polluting the environment. The imple-
mentation was a great success. However, looking back, it
has been a delicate matter, in the sense that the success
indeed depended highly on the (rough) insight obtained on
the effect of presence/supply of trace elements during the
previous years of research. The point in this connection is
that in the preliminary laboratory experiments conducted
in the early seventies with freshly prepared potato juice
(i.e., in fact comprising the effluent of the potato starch
industry) in AF-systems, we did not observe any need to
supply a trace element cocktail, nor was any retarded
bacterial growth observed.
This surprising discrepancy in behaviour between

freshly prepared potato juice solutions and real potato
starch wastewater may in our view be attributed to the
presence of humic acids in the real wastewater and absence
in freshly prepared potato juice solutions. According to
Field et al. [76] humic type compounds are easily formed
from the highly reduced phenolic compounds via con-
densation reactions under the influence of free oxygen.
These phenolic compounds are present in most plant
juices, especially in potato juice. In potato starch
production, these compounds become exposed to air
once released to the wastewater. Since they are strongly
chelating agents, and are present in relatively high
concentrations in many wastewaters, e.g., potato starch

wastewater, they undoubtedly seriously can reduce the bio-
availability of essential trace elements.
The above evidence illustrates sufficiently that clarifica-

tion of the mysteries of the ‘trace element matter’ goes far
beyond human capabilities. On the other hand, as pointed
out, it is a matter of crucial importance at least to attempt to
make relevant information available, even though it is very
superficial.
A similar story applies for macro-nutrients such as

phosphate or ammonia. The absence (or serious lack) of
these macro-nutrients [77,78] will result in a severely
retarded growth, although without affecting the treatment
efficiency detrimentally for prolonged periods of time.
However, for this category of essential nutrients few
important aspects have been conclusively researched,
leaving gaps in our knowledge. Compared to the issue of
trace elements, it is certainly less complex.
Summarizing the above, it is evident that improving the

insight into the effect of trace elements and macro-
nutrients represents a matter of enormous practical impact
for i) the quality of the environment, ii) for achieving an
optimal performance of many biotechnological processes,
and it is a matter of great scientific importance, e.g., for
improving insight into natural life in general. Regarding
the extraordinary complex character of this matter it
implies that a lot of long-term, very well coordinated
multidisciplinary research activities need to be initiated.
Use of electron and redox mediators
Compounds like humic acids, activated-carbon, quinones,
e.g., anthraquinone disulfonate (AQDS), anthraquinone-2-
sulphonate (AQS) catalyze the anaerobic degradation
reactions of numerous recalcitrant compounds; they
facilitate electron transport in the degradation of, e.g.,
azo dyes [79–87], and reductive de-halogenation [88].
However, as with the issue of ‘trace elements’ in this
particular field, a better understanding is required which
will lead to a wider and more optimal application of
AnWT.
Biological sulphate reduction (SubioRed)
Numerous efforts have been made in the past and continue
to be made in the sanitation world to suppress the
occurrence of sulfate reduction (SuRed), viz. rather than
attempting to take all possible benefits from it, which
would be much more worthwhile. Since the late eighties
numerous useful applications have already been discov-
ered and implemented [89–92], under both mesophilic
[93–97] and thermophilic conditions [58,98–101]. In
several of these studies, issues such as immobilization,
substrate competition between SuRed-organisms and
methanogens, and exposure to high salt concentrations
have been addressed.
Fascinating applications can be envisaged by combining

the reductive and oxidative parts of the Sbiol-cycle, which
to some extent already have been developed and
implemented. Tempting examples are the removal of
sulphate from wastewater, of SO2 from exhaust gases, of

130 Front. Environ. Sci. Engin. China 2010, 4(2): 123–134



the removal and recovery of heavy metals from con-
taminated soils or from acid mine drain water. But still
substantial optimizations can be attained, e.g. with respect
to the type of electron donors to be used, applicable
process conditions and the immobilization of the involved
organisms.
Immobilization of anaerobic microbial consortia in

granules and films comprises a phenomenon of extra-
ordinary importance and certainly not only for high rate
AnWTs. Numerous biological processes can benefit from
it. Since the first observation of the sludge aggregation
phenomenon in AF-experiments [102] and in UASB-
experiments in the early seventies and understanding its
great importance for the UASB-process [6], many
researchers have attempted to elucidate the mechanism of
the phenomenon, e.g., Hulshoff Pol et al. [89,103,104],
McHugh et al. [5,8], Fang et al. [105], resulting in a
number of ‘theories’. However, to date insufficient
attention has been afforded to the effect of kinetic factors
such as death, decay and growth rate of organisms
participating in the immobilization process. Also, a
number of other important questions so far have been
relatively poorly addressed, such as that of i) the
mechanism of the granular sludge augmentation (increase
of the volume) in AnWT-reactors, ii) how to incorporate
specific organisms in an existing granular sludge in order
to enable the degradation of various kinds of complex
compounds, and iii) the cultivation of specific types of
granular sludge by using pure cultures. Numerous
challenging questions remain to be resolved; it will need
well coordinated interdisciplinary research.

5 Conclusions

1) In order to attain the required sustainable protection of
the environment and consequently a more sustainable
society, all already available means needed for that should
be disseminated without any restriction to all world
citizens.
2) With the various types of available NBM-based

treatment systems and complementary clean water saving
methods for waste & wastewater collection and transport,
the major means to attain EPsus lie ready ‘on the shelf ’.
3) In order to accomplish the optimal application of

NBM-based treatment systems there is still a lot of
challenging work to be done. The efforts to be made to
generate that knowledge should not remain restricted to
experimental laboratory work, but particularly also should
be directed to thorough evaluations of the significant
amount of relevant information already available in the
literature.
4) With respect to the required continued experimental

research on various complex issues a much better
coordinated multidisciplinary tackle should be realized
over prolonged periods of time.
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