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Abstract
Purpose In order to provide highly effective yet relatively
inexpensive strategies for the remediation of recalcitrant
organic contaminants, research has focused on in situ
treatment technologies. Recent investigation has shown
that coupling two common treatments—in situ chemical
oxidation (ISCO) and in situ bioremediation—is not only
feasible but in many cases provides more efficient and
extensive cleanup of contaminated subsurfaces. However,
the combination of aggressive chemical oxidants with
delicate microbial activity requires a thorough understand-
ing of the impact of each step on soil geochemistry, biota,
and contaminant dynamics. In an attempt to optimize
coupled chemical and biological remediation, investigations
have focused on elucidating parameters that are necessary
to successful treatment. In the case of ISCO, the impacts of
chemical oxidant type and quantity on bacterial populations
and contaminant biodegradability have been considered.
Similarly, biostimulation, that is, the adjustment of redox
conditions and amendment with electron donors, acceptors,
and nutrients, and bioaugmentation have been used to
expedite the regeneration of biodegradation following
oxidation. The purpose of this review is to integrate recent

results on coupled ISCO and bioremediation with the goal
of identifying parameters necessary to an optimized
biphasic treatment and areas that require additional focus.
Conclusions and recommendations Although a biphasic
treatment consisting of ISCO and bioremediation is a
feasible in situ remediation technology, a thorough under-
standing of the impact of chemical oxidation on subsequent
microbial activity is required. Such an understanding is
essential as coupled chemical and biological remediation
technologies are further optimized.

Keywords Bioremediation . Biostimulation . Contaminant
remediation . In situ chemical oxidation . Subsurface
contamination

1 Introduction

Subsurface and groundwater contamination of recalcitrant
organic compounds has created a large industry for
technologies able to clean up polluted sites. The interna-
tional market for the remediation sector is valued at US
$50–60 billion (Singh 2009). Conventional technologies
focus on ex situ or on-site removal of contaminants through
excavation or by so-called pump-and-treat remediation of
groundwater. However, the high costs and health risks
associated with removal of contaminated material have
spurred a shift toward in situ technologies, where decom-
position of xenobiotic compounds via chemical or biolog-
ical pathways is contained within the subsurface
environment (EPA 1998). Of the pool of remediation
strategies, in situ bioremediation and, more recently, in situ
chemical oxidation (ISCO) are arguably the most common-
ly used in situ treatments, adaptable to a variety of
subsurface conditions and contaminant types.
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During an ISCO treatment, chemical oxidants are
pumped into the subsurface to oxidize organic pollutants.
This aggressive treatment removes source zone contami-
nants either sorbed to soil organic matter or pure product
present as nonaqueous phase liquids (Seol et al. 2003;
Watts and Teel 2005). Typical treatments include Fenton’s
reagent with hydrogen peroxide and ferrous iron, the less
acidic modified Fenton’s reagent, permanganate, persulfate,
and ozone injection (Table 1). A number of review articles
provide insight into the chemistry and proper application of
oxidation regimens (Gates and Siegrist 1995; Kubal et al.
2008; Rivas 2006; Seol et al. 2003; Tsai et al. 2008; Watts
and Teel 2005). ISCO has been successfully used to oxidize
and thus lower the concentration of petroleum-derived
hydrocarbons (total petroleum hydrocarbons, TPH, Crimi
and Taylor 2007; Gates and Siegrist 1995; Huang et al. 2005;
Jung et al. 2005; Lee and Kim 2002), polyaromatic hydro-
carbons (PAH; Lee and Hosomi 2001; Masten and Davies
1997; Nam et al. 2001; Watts et al. 2002), and chlorinated
hydrocarbons (Huang et al. 1999, 2005; Hunkeler et al.
2003; Northup and Cassidy 2008; Ormad et al. 1994;
Schnarr et al. 1998; Siegrist et al. 1999; Vella and Veronda
1993; Watts et al. 1990). ISCO is a versatile remediation
strategy, providing rapid and extensive removal of both light
and dense recalcitrant compounds in pure phase.

Biological-based remediation technologies require lon-
ger time spans than chemical oxidation techniques and are
more appropriate for the bioavailable plume section of a
contaminated site (Singh 2009). Whereas fungi and plants
alike can mediate removal of recalcitrant compounds, here
we focus on biodegradation by bacterial populations. The
ubiquity of hydrocarbon-utilizing bacteria indicates that
natural attenuation, that is, the inherent biodegrading ability
of contaminated soils, will, in most cases, occur without
intervention (Surridge et al. 2009). That said, a number of
technologies aim to increase the rate of bioremediation,
either by increasing the bioavailability of contaminants
through the application of surfactants (Menendez-Vega et
al. 2007; Tsai et al. 2009c; Volkering et al. 1998) or by
creating conditions ideal for general microbial growth and
for specific reactivity to a compound. In the case of
petroleum-based hydrocarbons, these include biostimula-
tion with nutrients (Gallego et al. 2001; Menendez-Vega et
al. 2007) and electron acceptor addition, for example, by
bioventing to provide oxygen to accelerate aerobic degra-
dation pathways (Hoeppel et al. 1991; Malina and
Grotenhuis 2000). Microbial dechlorination of highly
chlorinated compounds occurs under anaerobic conditions.
Thus, stimulation includes the addition of an appropriate
electron donor and nutrients to create ideal (redox)
conditions (Aulenta et al. 2006; Hoelen et al. 2006; Song
et al. 2002). Bioaugmentation with a bacterial enrichment
or culture able to break down the contaminant of interest

has been used to improve bioremediation of (chlorinated)
hydrocarbon contaminants (Demque et al. 1997; Pu and
Cutright 2007; Salanitro et al. 2000; Smith et al. 2005;
Straube et al. 2003). This strategy is most commonly used
to accelerate conversion of tetrachloroethene (PCE) to
harmless ethene through the addition of cultures enriched
with Dehalococcoides spp., the only bacterial group known
to perform the complete chain of metabolic halorespiration
reactions to produce ethene (Adamson et al. 2003; Hood et
al. 2008; Krumins et al. 2009; Major et al. 2002; Scheutz et
al. 2008; Tas et al. 2009).

Conventional wisdom dictates that chemical oxidation is
not compatible with biological-based remediation techni-
ques. The oxidative stress, increase or decrease in pH
(persulfate and Fenton’s reagent, respectively), and change
in redox conditions caused by ISCO treatments significant-
ly alter subsurface conditions and are toxic to microbial
populations (Buyuksonmez et al. 1998; Macbeth et al.
2007; Miller et al. 1996). However, recent work indicates
that, although chemical oxidation can temporarily reduce
microbial activity, bacterial populations do regenerate
contaminant degradation ability both in the field (Jones et
al. 2009; Koch et al. 2007; Ladaa et al. 2008; Luhrs et al.
2006; Macbeth et al. 2005; Studer et al. 2009) and in
laboratory experiments (Aunola et al. 2006; Hood et al.
2006; Kao and Wu 2000; Kulik et al. 2006; Ndjou’ou et al.
2006). In many cases, it has been concluded that ISCO
pretreatment appears to improve overall remediation by (1)
decreasing the concentration of pollutants to levels less
toxic for the soil biota (Chapelle et al. 2005), (2) improving
bioavailability of the parent compound (Kulik et al. 2006;
Miller et al. 1996), (3) producing bioavailable and
biodegradable oxidized daughter compounds (Lee and
Hosomi 2001; Marley et al. 2003; Miller et al. 1996; Nam
et al. 2001), or (4) providing oxygen for aerobic biological
transformation of contaminants (Kulik et al. 2006). It has
recently been suggested that, as ISCO treatment is not able
to access and oxidize all residual contaminants, biological
polishing is required to fully remediate a site (Cassidy et al.
2009).

This statement reflects the new direction of coupled
chemical and biological treatment. Previous reviews echoed
the “wait and see” mentality common to earlier experi-
ments, where, following chemical oxidation, the regenera-
tion of biomass was merely monitored without stimulation
(Sahl and Munakata-Marr 2006; Waddell and Mayer 2003).
However, in the open system encountered in situ, even local
sterilization with chemical oxidants will eventually be
reversed as groundwater upstream will always transport
indigenous microorganisms (Brown et al. 2009). This
acceptance of microbial resilience is reflected in a recent
shift in the literature toward more studies investigating
which parameters are essential to a biphasic remediation
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strategy and how these parameters can be manipulated.
Here, we first consider the ISCO step, summarizing work in
which aspects of chemical oxidation are tested for their
influence on biodegradation and thus the overall remedia-
tion process. Secondly, we will review literature in which
parameters essential to the rebound of an actively bio-
remediating microbial population are examined.

2 Improving ISCO treatment to enhance bioremediation

Conditions created during ISCO can significantly influence
the effectiveness and efficiency of subsequent biodegrada-
tion of residual contaminants. As summarized in Table 1,
chemical oxidation can create adverse environments in
terms of pH and oxidation potential that inhibit general
microbial growth and function. Recent work has indicated
that the type (Cassidy et al. 2009; Kulik et al. 2006; Xie
and Barcelona 2003) and quantity (Buyuksonmez et al.
1999; Jung et al. 2005; Palmroth et al. 2006a; Sahl et al.
2007; Valderrama et al. 2009) of chemical treatment have
repercussions on soil geochemistry and bacterial popula-
tions and thus on the success of continued bioremediation.
Additionally, the ISCO step oxidizes a specific fraction of
the contamination, producing a range of oxidized sub-
strates. The variety of compounds remaining after chemical
oxidation must be bioavailable and biodegradable in order
to ensure an effective bioremediation step.

2.1 Impact of chemical oxidant type on subsequent
bioremediation

It has been shown that known ISCO treatments are
versatile, able to oxidize a wide variety of substrates. Thus,

rather than choosing chemical oxidation regimens based
primarily on the contaminant type, treatments can be
designed that cater to the requirements of the microbial
population. This strategy generally improves the overall
removal efficiency.

For example, the high sulfate concentrations that remain
following persulfate oxidation can stimulate sulfate-
reducing bacteria. To avoid the evolution of the toxic
H2S, Cassidy and Hampton (2009) investigated the poten-
tial of activating persulfate with calcium peroxide at
alkaline pHs, which favor production of the dissolved
hydrosulfide ion (HS−). This strategy not only reduced H2S
production but also minimized the presence of toxic
mercury ions through precipitation of stable mercury
sulfide.

Studies have been performed to screen various oxidants to
determine their impact on biological activity. Treatments of
permanganate, modified Fenton’s reagent, a calcium
peroxide-based product, and ferric iron-activated persulfate
were used to oxidize tetrachloroethylene- and ethylbenzene-
spiked samples (Bou-Nasr and Hampton 2006). From
overall contaminant removal and cell number, it was
concluded that calcium peroxide resulted in the largest
mass removal of the two contaminants, 96% and 95%,
respectively, and an order of magnitude increase in the
number of culturable heterotrophic microbes.

However, in most cases, the ISCO treatment providing
the highest mass removal shows the largest negative impact
on microbial activity and thus on the overall remediation
efficiency (Fig. 1). Cassidy et al. (2009) tested the
feasibility of coupling pre-oxidation by ozone, modified
Fenton’s reagent, or sodium persulfate with bioremediation
of soil contaminated with 2,4-dinitrotoluene (2,4-DNT). It
was determined that, although sodium persulfate less

Table 1 Conditions and reactions associated with common ISCO treatments (ITRC 2005; Teel et al. 2009; Tsitonaki et al. 2010)

ISCO treatment Important reactions Optimal pH Oxidation potential (V) Type of injection

Fenton’s reagent and H2O2 + Fe2+ → OH· OH− +Fe3+ 3–4 2.8 Liquid

Modified Fenton’s reagent H2O2 + OH·→HO2·+ H2O Neutral Hydroxyl radical Liquid
HO2·→O2

−· + H+ (OH−·)
2H2O2→2H2O + O2

Activated persulfate

Metal activated Mn+ + S2O8
2−→SO4

−· + SO4
2− + Mn+1 3–4 2.6 Solution

Heat activated S2O8
2− + heat→2SO4

−· Neutral Sulfate radical

Alkaline activated Reaction unknown >10.5 (SO4
–·)

Ozone O3 + OH−→O2 + 2OH· Neutral 2.1 Gas

Permanganate MnO4
− + 2H2O + 3e−→MnO2(s) + 4OH− Neutral 1.7 Solution

2KMnO4 + C2HCl3→2CO2 + 2MnO2(s)
+ 3Cl− + H+ + 2 K+
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effectively oxidized 2,4-DNT, overall remediation occurred
within 14 days, as compared to 30–90 days for modified
Fenton’s reagent and ozone, respectively. This result was
explained by the fact that pre-oxidation with persulfate
showed a minimal impact on the 2,4-DNT-degrading
portion of the microbial population, both in terms of
number of degraders and the time required for bacterial
degradation to rebound. In experiments where permanga-
nate, Fenton’s reagent, or an oxygen-release compound
containing MgO2 were paired with bioremediation on jet
fuel contaminated soil, similar results were found (Xie and
Barcelona 2003). Permanganate was the oxidant that
showed the highest mass reduction, but did not provide
the greatest overall remediation efficiency. Rather, by using
the less aggressive oxygen-release compound, minimal
disruption of microbial activity was observed, allowing
for overall removal of up to 80% of the oil-derived
hydrocarbons.

The interaction between various soil matrices, a number
of ISCO treatments, and subsequent bioremediation has
also been investigated (Kulik et al. 2006). Sand and peat
samples spiked with creosote were treated with ozone and
hydrogen peroxide, with and without the addition of ferrous
iron. Whereas pre-oxidation steps showed an overall greater
efficiency in organic-poor sand samples, biodegradation of
PAH contaminants was greater in peat experiments,
especially when ferrous iron was added to the ISCO
treatment. It was concluded that traditional Fenton’s reagent
was the most effective pre-oxidation step for PAH-spiked

sand, whereas ozone was more effective in the case of peat
samples. Although it is known that the efficiency of
chemical oxidation is related to the matrix, this work
indicates that soil type to some extent dictates the
effectiveness of coupled chemical and biological treatment.

2.2 Optimizing the quantity of chemical oxidant

Just as the type of chemical oxidant impacts bioremediation
to varying degrees, the quantity and concentration of ISCO
compounds also influence subsequent biological degrada-
tion of recalcitrant contaminants. Similar to the aforemen-
tioned section addressing the type of chemical oxidants,
investigations into the impact of the amount of oxidants on
bioremediation found that less aggressive mass removal in
the chemical phase allowed for overall more efficient
remediation (see Fig. 1). In the case of column experiments
on diesel-containing soil that was ozonated at 30 mg/L for
time intervals between 60 and 900 min, the extent of
biodegradation was found to be inversely proportional to
the ozonation time (Jung et al. 2005). Whereas the highest
chemical TPH removal was 50% for 900 min of ozonation,
no further biodegradation occurred upon incubation for
9 weeks. However, the 180-min treatment oxidized initially
only 37% of TPH but ultimately removed more contami-
nation as a coupled treatment. Similar results were obtained
when various ratios of hydrogen peroxide to iron were used
to oxidize creosote in aged natural samples (Valderrama et
al. 2009). It was determined that a H2O2/Fe ratio of 20:1
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Fig. 1 Summary of removal efficiency for combined chemical and
biological remediation in instances where a variety of ISCO treatments
were tested. Data from A (Valderrama et al. 2009), where labels
indicate the H2O2/Fe ratio used for treatment; B (Xie and Barcelona
2003), where labels indicate the type of chemical oxidant used prior to

incubation for 134 days; C (Cassidy et al. 2009), where labels indicate
the type of chemical oxidant, including modified Fenton’s reagent and
iron-activated sodium persulfate (SPS), and data are for the first
20 days of experimentation; and D (Jung et al. 2005), where labels
indicate the duration of ozone treatment
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(mol/mol) was aggressive enough to remove 43% of
contaminants without impeding further bioremediation,
which led to a total removal of 75% of PAHs.

Column experiments, which may more accurately
represent the injection of ISCO chemicals in the field, have
highlighted the influence of oxidant concentration and
volumetric flux on further bioremediation at a given
location in the column. Working with columns containing
PAH-contaminated (3,318 mg/kg), iron-rich (16.4 g/kg)
soils, Palmroth et al. (2006a) first applied a total of 0.4 g
hydrogen peroxide per gram soil over the course of either 4
or 10 days. Subsequently, column sections were separately
incubated in batch experiments to determine the potential
for bioremediation. Averaging 36% removal of PAH,
coupled treatment did not perform significantly better than
control setups without chemical oxidation, in which 20–
30% of PAHs were biodegraded. However, the largest mass
removal (54%) was found in a microcosm-containing soil
from the lower part of the column that received the
hydrogen peroxide treatment spread over 10 days. A
different study with PCE-spiked sand columns, in which
the amount of permanganate and velocity of injection were
adjusted, investigated the potential for coupled chemical
oxidation and reductive microbial dechlorination (Sahl et
al. 2007). The best results were obtained when a large
quantity of oxidant with a low concentration was rapidly
injected into the column—31.5 pore volumes of 0.63 mM
KMnO4 at a rate of 120 cm/day. From each of these studies,
it can be concluded that through minimizing the amount of
direct contact that bacteria have with concentrated chemical
oxidants, the biological impact of oxidation is reduced; in
general, less aggressive oxidation improves the overall
remediation efficiency.

2.3 Bioavailability and biodegradability of contaminants
following ISCO

In addition to optimizing the ISCO step to reduce biological
impacts, it is essential to understand the influence of
chemical oxidation on the biodegradability and bioavail-
ability of the remaining contaminant pool (Lee and Hosomi
2001; Miller et al. 1996; Nam et al. 2001). Although most
ISCO treatments increase bioavailability, oxidation with
permanganate can reduce bacterial access to contaminants.
Upon reaction with organic compounds, precipitation of
manganese oxide occurs, which reduces soil permeability
(Siegrist et al. 2002) and can encapsulate contaminants
present as nonaqueous phase liquids (MacKinnon and
Thomson 2002). As a result, this portion of the pollutant
remains inaccessible to either bacterial degradation or
dissolution into the aqueous phase. In previous lab studies,
increased bioremediation was associated with setups with a
low concentration permanganate solution which was

injected at high velocity (Sahl et al. 2007). Although
regeneration of microbial activity could occur more rapidly
under less oxidizing conditions, improved overall remedi-
ation efficiency may also be attributed to higher bioavail-
ability of the remaining contaminant concentration under
lower permanganate concentrations. This work reinforces
the importance of considering whether post-ISCO condi-
tions are amenable to bacterial polishing when planning a
chemical oxidation strategy.

Whereas chemical oxidation can either positively or
negatively impact bioavailability, ISCO generally improves
biodegrability of the contaminant pool. A number of
studies have investigated which parent and daughter
compounds within a mix of substrates are broken down
during the chemical or biological remediation steps in an
effort to determine how to optimally treat the whole
contamination. Some work has suggested that the readily
biodegradable fraction of PAHs was chemically removed in
the course of Fenton’s reagent oxidation, thus impeding
further bioremediation (Aunola et al. 2006). However,
other research has found that pre-ozonation produced short
chain daughter compounds that were more easily biode-
gradable (Liang et al. 2009). Similarly, Fenton’s reagent
treatment of spiked benz(a)anthracene samples oxidized
43% of the contamination to produce benz(a)anthracene-
7,12-dione (Lee and Hosomi 2001). During 63 days of
incubation, 98% of the daughter compound was removed,
as compared to only 12% of the parent compound, for an
overall 54% removal of benz(a)anthracene. Manipulation of
the ISCO phase to optimize the removal of the less
biodegradable fraction of the contaminant was not further
discussed.

Work on weathered crude oil samples indicated that
pretreatment with permanganate influenced the biodegra-
dation efficiency of different components of the contami-
nation (Wrenn et al. 2007). Biological degradation of the
resin and aromatic fractions increased following permanga-
nate treatment, while bioremediation of the aliphatic
fraction was reduced by 50–60%. Similarly, when optimiz-
ing Fenton’s reagent dosages for subsequent bioremediation
of PAH-contaminated soil, it was noted that chemical
treatment parameters had an influence on the fraction of
ring sizes removed (Valderrama et al. 2009). More of the
less biodegradable five-ring PAHs were chemically oxi-
dized in treatments with higher hydrogen peroxide concen-
trations. However, optimal oxidant ratios for five-ring PAH
removal (60:1 H2O2/Fe) had a negative effect on the
regeneration of the bioremediating microbial community.
Thus, this study does indicate the potential for designing
optimized treatment strategies in which the costs in terms of
regeneration of the bacterial population are balanced with
the benefits associated with removal of less biodegradable
compounds.
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3 Optimizing microbial regeneration following ISCO

Ideally, the last moment of ISCO coincides with the first
moment of bioremediation. In practice, regeneration of
microbial activity is a process. Just as the microbiology,
geochemistry, and residual contaminant concentrations of
soil must be considered during chemical oxidation, a
number of parameters can be manipulated at the beginning
of bioremediation. After ISCO, the naturally occurring
degradation processes inherent to the subsurface, so-called
natural attenuation, have been disturbed. In the process of
enhanced or stimulated natural attenuation, optimal con-
ditions for bioremediation are recreated through the
addition of electron acceptors or donors, nutrients, and
bacteria (bioaugmentation). Significant work has investi-
gated biostimulation, bioaugmentation, and natural attenu-
ation. However, in view of the fact that chemical oxidation
can have profound impacts on soil characteristics and biota,
we consider here only work in which pre-oxidation occurs.
Biostimulation in terms of the adjustment of redox
conditions to promote either aerobic or anaerobic bioreme-
diation (Section 3.1) and amendment with electron donors
and nutrients (Section 3.2) are techniques that have been
used to ensure the proper activity of biodegrading
microbes. Bioaugmentation to re-inoculate soils with
depleted microbial populations will also be considered. A
summary of conditions set for aerobic and anaerobic
bioremediation in chemically pre-oxidized soils is given in
Tables 2 and 3.

3.1 Redox process conditions in pre-oxidized soils

Creating and maintaining aerobic or anaerobic environ-
ments for rapid removal of a particular contaminant is
challenging. Aerobic conditions are generally conducive to
biodegradation of petroleum-based hydrocarbons and less
halogenated compounds, whereas anaerobic conditions are
required for microbial mediation of highly halogenated
compounds. Chemical oxidation and aerobic bioremedia-
tion can be combined relatively easily. Bioventing and
aerobic flushing to encourage bioremediation of petroleum-
derived hydrocarbons are practices common to the current
subsurface remediation market and which in research have
been mimicked in the lab by maintaining oxygen saturation
in column or microcosm experiments (Cassidy et al. 2009;
Jung et al. 2005; Kulik et al. 2006; Palmroth et al. 2006b).
Often increased biological degradation has been attributed
to aerobic conditions created by chemical oxidation (Kulik
et al. 2006; Palmroth et al. 2006a). Studies have shown that
low concentrations of hydrogen peroxide can be used
instead of air flushing to meet biological oxygen demands
for oil degradation in soils pretreated with Fenton’s reagent
(Tsai et al. 2009b). Other work associated an increase in

hydrogen peroxide concentrations, from 100 to 900 mg/L,
with TPH removal efficiencies improving from 47% to
69%, respectively (Tsai et al. 2009a). In field applications,
this has led to the development of a variety of commercially
available oxygenating products that both mobilize and
partially oxidize contaminants while simultaneously pro-
viding oxygen to stimulate aerobic biodegradation (Baird
and Knight 2008; Blondel et al. 2007; Lessard et al. 2007;
Ochs and Singh 2007).

Anaerobic in situ biodegradation of halogenated organic
contaminants dissolved in groundwater by adding electron
donors and nutrients has been proven and widely applied in
the last decade (Aulenta et al. 2006; Hoelen et al. 2006;
Song et al. 2002). However, the reduced bioavailability of
pure product in the source zone and adsorption to the
organic-rich fraction of the solid phase matrix impedes full
bioremediation (Semple et al. 2003). For these recalcitrant
source areas, chemical oxidation pretreatment followed by
anaerobic bioremediation may offer a solution. In contrast
to aerobic bioremediation, rapid recreation of anaerobic
conditions for dehalogenation in pre-oxidized soils can be
challenging. Work in the field has confirmed the rebound of
anaerobic dechlorination by molecular techniques in tri-
chloroethylene (TCE)-contaminated sites pre-oxidized with
permanganate (Jones et al. 2009) and persulfate (Studer et
al. 2009). The regeneration of anoxic conditions amenable
to dehalogenation generally requires input of electron
donors. In the field, such an increase in available electron
donors has been attributed to the mobilization of soil
organic matter by chemical oxidation (Westersund et al.
2006). In soils and engineered lab systems with less organic
matter content, addition of carbon substrates is often required
(see Table 3; Hrapovic et al. 2005; Sahl et al. 2007).

Although providing proper and ample carbon and
nutrient sources is essential to microbial activity, the redox
process conditions required for bioremediation must be
considered when choosing an ISCO treatment. Thus,
chemical oxidants, such as hydrogen peroxide, that produce
molecular oxygen are better suited to the aerobic biodeg-
radation phases. In contrast, permanganate oxidation occurs
via direct electron transfer without the generation of oxygen
(Wiberg and Saegebarth 1957); however, the by-product of
chemical oxidation, manganese oxide, can inhibit reductive
dechlorination by acting as an alternative electron acceptor
(Hood et al. 2006). In spite of this, permanganate is often
preferred for studies where anaerobic conditions must be
regenerated (Hrapovic et al. 2005; Jones et al. 2009; Sahl et
al. 2007; Tsai et al. 2009c).

Addition of carbon substrates has been used to increase the
rates of both aerobic and anaerobic bioremediation pathways
(see Tables 2 and 3). In batch experiments with fuel oil-
spiked soil, increased biodegradation was observed when
microcosms were supplemented with cane molasses in the

J Soils Sediments



presence of excess oxygen (Tsai et al. 2009a). Similarly,
carbon sources, such as ethanol and acetate (each 100 mg/L;
Hrapovic et al. 2005) and methanol (2.0 mM; Sahl et al.
2007) have been added as electron donors to increase the
rate of anaerobic halorespiration. Whereas regeneration of
anaerobic TCE dechlorination activity was successful in the

former citation, multiple attempts by Hrapovic et al. to
biostimulate with electron donors proved fruitless. As
elaborated upon in Section 3.3, biological degradation of
TCE did occur upon flushing with natural groundwater,
indicating that electron donor sources were sufficiently
present and other factors were impeding halorespiration,

Table 2 Summary of investigations on the feasibility and optimal conditions for combined chemical oxidation and aerobic bioremediation

Reference Contaminant type
and initial concentration

ISCO treatment (length
of treatment)

Conditions set for bioremediation
(length of incubation)

Removal efficiency

Cassidy et al.
2009

2.4-Dinitrotoluene Ozone (48 h) Aerobic incubation (2–14 weeks) 98%
11,450 mg/kg Modified Fenton’s reagent

(one treatment)
Amendment with NH4 and PO4

Iron-activated sodium
persulfate (one treatment)

Jung et al. 2005 Diesel Ozone (3–15 h) Aerobic incubation (9 weeks) >50%, exact value not
reported2,700 mg/kg TPH

Kulik et al. 2006 PAH Fenton’s reagent (24 h) Aerobic incubation (8 weeks) 75–94% (sand samples)

1,419 mg/kg
(sand samples)

Ozone (2–5 h) 55–75% (peat samples)

2,370 mg/kg
(peat samples)

Liang et al. 2009 Crude oil Ozone (6 h) Aerobic incubation (18 weeks) 35–40% (ozone +
bioremediation)28,000 mg/kg

(before ozonation)
Amendment with nutrients
Bioaugmentation

Palmroth et al.
2006a

PAH Modified Fenton’s reagent
(4–10 days)

Aerobic incubation (5–16 weeks) 36–54%
3,960 mg/kg

Palmroth et al.
2006b

PAH Modified Fenton’s reagent
(10 days)

Aerobic incubation (8–16 weeks) 43–59%
3,318 mg/kg

Tsai et al. 2009a Fuel oil Fenton’s reagent (one treatment) Aerobic incubation (17 weeks) 47–75%
5,000 mg/kg TPH Amendment with N, P, and carbon

source

Tsai et al. 2009b Fuel oil Fenton’s reagent (one treatment) Aerobic incubation (17 weeks) 100% in 3 step process with
flushing with surfactant,
ISCO, and bioremediation

1,000 mg/kg TPH

5,000 mg/kg TPH

10,000 mg/kg TPH

Valderrama et al.
2009

PAH Fenton’s reagent (0.5 h) Aerobic incubation
(length unclear)

75%
1,203 mg/kg

Amendment with nutrients

Bioaugmentation

Xie and Barcelona
2003

Jet fuel Permanganate (25 days) Aerobic incubation (19 weeks) 15–80% dependent upon
fraction of oil27 mg/L TPH Hydrogen peroxide (25 days) Amendment with nutrients, carbon

source, and trace elementsMagnesium peroxide (oxygen-
release compound) (25 days) Bioaugmentation

J Soils Sediments



such as nutrient availability and the presence of a microbial
population acclimated to biodegradation.

3.2 Nutrients and biodegradation in pre-oxidized soils

Nutrient amendment is a common approach to stimulate
bacterial growth and may be necessary in lab experiments
with nutrient-poor samples without natural influx of
nutrient-rich groundwater. Many batch experiments with
ISCO have been performed in a phosphate buffer, which
simultaneously controls the pH and provides phosphate to
microbes (Cassidy et al. 2009; Liang et al. 2009;
Valderrama et al. 2009). Ammonium may be added for
analytical reasons (Cassidy et al. 2009), or in conjunction
with ample trace metals, minerals, and vitamins to create
optimal conditions for biomass growth (Sahl et al. 2007;
Xie and Barcelona 2003). In experiments in which
ammonium and phosphate were either added to or absent
from microcosms with fuel oil-spiked samples, TPH
removal was 6–14% higher when nutrients were present
(Tsai et al. 2009a).

Although excess nutrients may improve bioremediation,
amendment may not always be necessary. It has been
suggested that through oxidizing soil organic matter,
chemical oxidants actually release nutrients (Sirguey et al.
2008; Westersund et al. 2006). Researchers investigating
the impact of ISCO on subsequent plant growth found that
phosphate concentrations increase in soils oxidized with
either Fenton’s reagent or permanganate due to oxidation
and release of soil organic matter (Sirguey et al. 2008).
Although ammonium concentrations increased up to 20-
fold upon treatment with Fenton’s reagent, overall concen-
trations of nitrate and organic carbon decreased; such

reductions in the availability of electron donors and
acceptors as well as nutrients would have repercussions
on biomass growth. Kulik et al. (2006) suggested that
increased bioremediation in pre-oxidized peat, as compared
to sand, was due to the high nutrient content in peat.
Further investigation is required to understand the relation-
ships between soil type, nutrient availability, and dynamics
thereof following chemical oxidation.

3.3 Bioaugmentation in pre-oxidized soils

Addition of bacterial cultures or enrichments frequently
occurs in laboratory experiments. This occasionally takes
place prior to chemical oxidation in order to ensure proper
bacterial function. Microbial populations are added after
ISCO to re-inoculate lab experiments and, arguably, to
simulate the processes encountered in the field. However,
work investigating bioremediation in pre-oxidized soils has
not yet conclusively shown the necessity of bioaugmenta-
tion. In two recent studies, experimental setups were
inoculated prior to ISCO treatment with either a dechlori-
nating microbial culture to guarantee PCE degradation
ability (Sahl et al. 2007) or a wastewater enrichment culture
to ensure sufficient biomass was available (Valderrama et
al. 2009). Both investigations saw successful regeneration
of bioremediation activity under some of the experimental
conditions tested. Other researchers investigated the influ-
ence of cell number on PCE degradation (Buyuksonmez et
al. 1999). Here, a culture of Xanthobacter flavus, a
hydrogen peroxide-resistant species known to degrade the
major by-product of Fenton’s reagent oxidation of PCE
(dichloroacetic acid), was grown under oxidative stress
prior to experimentation. Although results did identify

Table 3 Summary of investigations on the feasibility and optimal conditions for combined chemical oxidation and anaerobic bioremediation

Reference Contaminant type
and initial
concentration

ISCO treatment
(length of treatment)

Conditions set for bioremediation
(length of incubation)

Removal efficiency

Buyuksonmez
et al. 1999

Tetrachloroethene Fenton’s reagent (added
hourly for 5 h)

Anaerobic incubation (3 days) 17–74%
3–9 mg/L (setup
dependent)

Amendment with nutrients, trace
elements and vitamins

Bioaugmentation

Hrapovic et al.
2005

Trichloroethene Permanganate
(22 days)

Anaerobic incubation (290 days) Overall efficiency in terms of ethene
production not reportedUnclear, effluent

concentration of
~500 mg/L

Amendment with nutrients and
carbon sources Limited rebound of microbial

dechlorination following ISCO treatmentBioaugmentation

Addition of natural groundwater

Sahl et al.
2007

Tetrachloroethene Permanganate Anaerobic incubation (unclear) Overall efficiency in terms of
ethene production not reported82–232 mg/L

(column dependent)
(1.7–610 h) Amendment with nutrients, carbon

source, trace elements Degradation of PCE to cis-DCE observed
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optimal cell numbers associated with specific Fenton’s
reagent dosages, it would be nearly impossible to create
such specific conditions in a field setting.

Enrichments of indigenous soil microorganisms have
been used for re-inoculation following chemical oxidation.
In lab experiments where microcosms were autoclaved
prior to ISCO to ensure that all contaminant removal could
be attributed to chemical oxidation, it was clear that re-
inoculation was required to regenerate bioremediation (Xie
and Barcelona 2003). The impact of bioaugmentation has
been less conclusive in other studies testing this as a
variable in coupled chemical and biological remediation. In
one case, microbial community dynamics with or without
addition of an enriched mixed culture following ozonation
of soil with an initial oil concentration of 56 mg/g were
monitored on a microarray (Liang et al. 2009). Although
there was slightly less residual TPH following treatment,
namely 17 mg/g in the setup with added biomass versus
18 mg/g in the blank, this could not be explained by a
significant difference in the amount or variety of genes
measured by the microarray. In permanganate-pre-oxidized
TCE-spiked samples, no dechlorination was observed
following a variety of bioaugmentation steps with an
inoculation of a TCE-degrading Dehalococcoides sp. and
other species able to respire on hydrogen and the carbon
source provided (Hrapovic et al. 2005). However, once the
column was flushed with site groundwater, anaerobic
conditions developed and cis-dichloroethene (DCE) was
detected. Thus, it is not clear if bioremediation was initiated
by (1) biostimulation with specific nutrients present in the
site groundwater but not in synthetic groundwater, (2) the
introduction of dehalogenating bacteria from the site, or (3)
the addition of a groundwater bacterial consortium able to
create anaerobic conditions necessary for the activity of
cultured Dehalococcoides species. In work focused on
investigating bioremediation parameters, an enrichment
culture or native sediment slurry was added to all
experimental setups (Lee et al. 2008; Nam et al. 2001);
thus, the impact of biomass addition could not be assessed.
Clearly, future work is required to judge both the necessity
of and requirements for successful bioaugmentation in pre-
oxidized soils in the lab in order to ascertain the
transferability of this technique to the field.

4 Conclusions and future directions

Coupled ISCO and bioremediation is not only feasible but,
when properly implemented, can provide more extensive,
rapid, and cost-effective treatment than either chemical or
biological techniques alone. Although pre-oxidation
impacts microbial communities and may adversely alter
redox conditions, chemical oxidation can stimulate biore-

mediation through improving bioavailability and biode-
gradability of contaminant substrates, providing oxygen,
and in some cases releasing nutrients. In order to create a
balanced and optimized treatment strategy, a variety of
parameters within the chemical and biological remediation
phases must be considered.

ISCO regimens should be chosen and performed in a
manner that minimizes microbial interaction with concen-
trated chemical oxidants. When a variety of chemical
oxidant types, concentrations, or injection strategies were
tested, heightened chemical mass removal was not associ-
ated with overall increased efficiency. This was due to the
reduction in bioremediation potential from harsh chemical
treatments. Chemical oxidation can also be manipulated to
target the less biodegradable fraction of the contamination,
leaving bioavailable oxidized by-products for microbial
remediation. Future investigations should focus on further
optimizing the chemical treatment to reduce microbial
impact and improve the ease of substrate biodegradation.
To this end, it is essential that experimentation include (1)
more column setups which better recreate oxidant flow
dynamics in the lab and (2) naturally aged samples with
which the impact of field sorption of contaminants onto soil
particles can be assessed.

Adjustment of redox conditions, electron donors, and
electron acceptors; amendment with nutrients; and addi-
tion of bacterial cultures are techniques used to stimulate
the regeneration of microbial activity following ISCO.
Redox conditions have been manipulated (in some cases
with chemical oxidants) to encourage specific aerobic or
anaerobic biodegradation pathways. Conclusive evidence
for the necessity and/or success of bioaugmentation
remains illusive. As laboratory work with enriched
cultures under optimized conditions has proven to be
inconclusive, field application would obviously be even
more challenging; reliance on incomplete sterilization by
ISCO and a natural or geohydrologically enhanced re-
inoculation by groundwater flow may be more feasible
strategies. Through providing an excess of electron
donors and acceptors, rebound of biodegrading commu-
nities may also be encouraged.

In view of the fact that often the time required for
remediation increases or that the efficiency decreases
when technologies are transferred from the laboratory to
the field, a full understanding and optimization of the
processes essential to sequential chemical and biological
treatment are required to ensure success in field applica-
tions. Future work should focus on the implications of
chemical oxidation on nutrient dynamics in a given soil
matrix and on the bacterial requirements for regeneration.
Through concentrating on the aforementioned directions,
research-based, efficient, and cost-effective biphasic treat-
ment strategies can be designed. Once tested in the lab,
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optimized coupled ISCO and bioremediation can then be
further developed as an effective remediation technology
in the field.
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