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1.1 Introduction 

Taxonomy of Gallus 
Birds and mammals evolved separately from their common ancestor approximately 

310 million years ago [1]. Four species of the genus Gallus are known to modern 

ornithology and currently exist as wild populations [2] (Figure 1.1). The Gallus 

lafayetii (Sri Lanka Junglefowl) lives in Sri Lanka, the Gallus sonneratii (Grey 

Junglefowl) in western and southern India, the Gallus varius (Green Junglefowl) in 

Indonesia (Java and neighboring islands), and the Gallus gallus (Red Junglefowl) in a 

large part of Asia, including Northeast India, Southern China, and Southeast Asia. 

Based on observations described by Darwin, crosses between these species result 

in infertile offspring [3]. However, additional hybridization experiments performed 

in the mid-19th century between Gallus gallus and Gallus sonneratii [4] and Gallus 

gallus and Gallus varius [5] resulted in fertile offspring.  

 

 
 

Figure 1.1 The four Gallus species. A) Gallus lafayetii. B) Gallus sonneratii. C) Gallus varius.  

D) Gallus gallus. Source: the pictures are provided by Stichting Fonds voor Pluimveebelangen 

in the Netherlands. 
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The widely spread Gallus gallus (G.g.) consists of five subspecies; the G.g. gallus in 

Indochina, the G.g. bankiva in Java (Indonesia), the G.g. jabouillei in Vietnam, the 

G.g. murghi in India, and the G.g. spadiceus in Burma. There are no subspecies 

known for the G. lafayetii, G. sonneratii, and G. varius.  

 

The domesticated chicken 

Charles Darwin proposed that the domesticated chicken originated exclusively from 

Gallus gallus [3]. The domestic chicken is, therefore, classified as G.g. domesticus. 

Although the single-origin was supported by many studies (e.g. [6,7,8,9,10], it was 

debated by others [11,12]. Molecular genetic evidence supports multiple instances 

and multiple regions of domestication of the chicken from Red Junglefowl. 

Moreover, recent evidence supports genetic contributions from other Junglefowl 

species to current domesticated chickens. For instance, the yellow skin locus 

present in several domestic chicken breeds most likely originated from the Gallus 

sonneratii [13]. Archeological findings, moreover, suggest that multiple 

domestication events were involved in the establishment of the domesticated 

chicken [14,15,16]. Archeological findings suggest that one of the domestication 

events in chickens occurred 8000 BP in Southeast Asia [17].  

The chicken may initially not have been domesticated as a new food resource, but 

mainly for cultural reasons such as religion, decoration, and cock fighting [2]. The 

domesticated chicken gradually spread to other regions of the world. Each of these 

regions had their own culture and environment, thereby influencing the evolution 

of the domesticated chicken. In the 19th century the so called ‘hen craze’ in Europe 

and the Americas also had a large influence on the evolution of the chicken [18]. 

Chicken became very popular for hobby purposes to royalty and upper classes and 

most breeds currently in existence in Europe and the Americas were developed in 

that period [2]. 

 

The commercial chicken breeds 

Although selective breeding of chickens as a food resource has been documented 

to occur by the time of the Roman Empire [2], the strongest artificial selection most 

likely took place in the 20th century by commercial breeding companies. 

Specialized lines, intensely selected on either growth traits (meat production) or 

reproductive traits (egg-laying) led to a massive increase in these production traits 

[19,20,21]. At the present time there are essentially four different commercial 

breeds; white egg-layers, brown egg-layers, broiler (meat-type chicken) sire lines 

and broiler dam lines (Figure 1.2). All white egg-layers are based on the white 

leghorn breed that originated from Livorno in Tuscany, Italy [2,22]. Brown egg-
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layers are mainly based on Rhode Island Red and White Plymouth rock breeds [22]. 

Within the broiler lines, there are two distinct lines known as sire and dam lines. 

The sire lines are specifically selected on growth performance traits, while the dam 

lines are selected on growth and fertility traits. This distinct separation is necessary 

because of the negative pleiotropic effect between growth and fertility. Broiler sire 

lines are based on the Cornish breed, while broiler dam lines are based on several 

different breeds such as the White Plymouth rock, Barred Plymouth rock, and New 

Hampshire breeds [22]. All commercial lines are essentially closed and no gene-

flow occurs between commercial and non-commercial breeds [22].  

The spectacular progresses in both egg and meat production traits of commercial 

chickens are, however, also associated with an increased occurrence of undesirable 

traits such as reduced fertility [23], reduced resistance to infectious disease [24], 

skeletal deformities [25], congenital disorders [20], osteoporosis [26], and the 

pulmonary hypertension syndrome [21,27,28,29]. 

 
Figure 1.2 Origin of the four commercial breeds. Source: the pictures of the G. gallus, G. 

sonneratii, White leghorn, Rhode Island Red, White Plymouth rock, Barred Plymouth rock, 

New Hampshire, and Cornish are provided by Stichting Fonds voor Pluimveebelangen in the 

Netherlands. The White egg-layer and Brown egg-layer pictures are provided by ISA BV, 

Boxmeer, the Netherlands. The Broiler Dam and Sire pictures are provided by Cobb-Vantress 

Inc., Arkansas, USA.  
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The need for improvement of chicken breeds 

In the past half-century the worldwide food production has increased 

tremendously [30] (Table 1.1). With a massive production increase in the last half-

century (over 1000%) the chicken currently provides more than a quarter of the 

worldwide meat production. Furthermore, the worldwide egg production is still 

solely provided by the chicken (Table 1.1). The global human population will 

continue to grow and therefore an increased food production is needed in the near 

future [30]. Further improvements in meat and egg production traits in the chicken 

will contribute to this future need. However, to improve on these production traits 

animal breeders need to focus on the increased occurrence of undesired traits as 

these will increase production costs and reduce production progress [20]. 

Undesired traits should, moreover, be reduced to meet future demands for food 

safety (i.e. decreased use of chemicals and antibiotics to treat diseases) and to 

improve animal welfare.   

 

Table 1.1 Production quantity of meat and eggs (tonnes) in 1961 and 2009. 
 

Meat 1961 2009 Production increase (%) 

Pig meat 24798970 (34.7) 106069157 (37.7) 428 

Chicken meat 7555887 (10.6) 79595987 (28.3) 1053 

Cattle meat 27684560 (38.8) 61837770 (22.0) 223 

Sheep meat 4930305   (6.9) 8109219   (2.9) 164 

Turkey meat 900630   (1.3) 5319748   (1.9) 591 

Goat meat 1101886   (1.5) 4938655   (1.8) 448 

Total meat 71410007  (100) 281559122  (100) 394 

    

Eggs 
   

Hen eggs 14409313 (95.2) 62426378 (92.6) 433 

Other birds 725645   (4.8) 4981371   (7.4) 686 

Total eggs 15134959  (100) 67407749  (100) 445 

 

For the meat production, only the major livestock species are included in this table. Meat 

total includes all species contribution to meat production. The percentage of total 

production is given between brackets. Information obtained from FAOSTAT webpage 

(http://faostat.fao.org/). 
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Although traditional phenotypic based breeding has proven to be successful, 

progress can be slow for traits that can only be measured later in life, in one sex, 

after slaughter, or if phenotypic measurements are expensive, for instance by 

requiring experimental facilities to challenge disease development [31]. The 

identification of genetic variation underlying the production and disease traits will 

replace the need for phenotypic measurements in each generation, thereby 

reducing costs, and enhancing genetical progress. 

Once the genetic variation is identified, marker assisted selection (MAS) 

[32,33,34,35] or genomic selection (GS) [36] can aid in the improvement of 

production traits and disease resistance. The detection of causative variant 

underlying traits will, moreover, provide valuable insight in the biological 

mechanisms (for instance genes and biochemical pathways) of production and 

disease traits. Insights in the biological mechanisms could assist in further 

improvement of production due to more effective disease treatments and 

improved nutrients or housing conditions. The biological insights will, moreover, 

provide information for disease treatments in other livestock species or humans.  

 

Genomic resources in the chicken 

Besides an important livestock species, the chicken is also an important model 

species for biological research [37]. The chicken is a model species for classical 

genetics, developmental biology, immunology and evolutionary biology [38]. A 

large number of genomic resources have been developed for the chicken. These 

resources include linkage maps (e.g. [39,40,41,42,43,44,45]), radiation hybrid maps 

(e.g.[46,47,48]), EST and cDNA libraries [49,50], BAC libraries (e.g. [51,52]), clone 

based physical maps [53,54,55] and a large number of genetic markers such as 

SNPs and microsatellites (e.g. [56,57,58]). The chicken was the first livestock 

species to have its genome completely sequenced and annotated [59]. The total 

size of the chicken genome is approximately 1,1 giga base pairs, which is roughly 

one third of mammalian genomes [59]. 

The available linkage, radiation and physical maps assisted in the genome 

assembly, and the EST and cDNA libraries assisted in the gene annotation of the 

genome. In parallel with the sequencing project, more than 2.8 million SNPs were 

detected between the sequenced RJF and a single individual from Silkie, broiler and 

white egg-layer breeds [58]. In November 2010, the number of SNPs identified in 

chicken increased to more than 11 million, thereby being the third species after 

human and mouse with the highest number of SNPs in the dbSNP database 

(www.ncbi.nlm.nih.gov/projects/SNP/). 
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Despite the availability of a reference genome, further improvements are still 

needed for the chicken genome assembly. Within the first genome assembly, 11 

out of the 40 chromosomes were underrepresented or completely missing. 

Moreover, it was estimated that 5-10% of all genes in the chicken genome are 

truncated or completely missing in the first assembly [59]. In May 2006 the second 

build (WASHUC2) of the chicken genome was released (www.ensembl.org). 

Although improvements were made in this assembly, the same 11 chromosomes 

remained underrepresented or were still completely missing. Moreover, numerous 

false segmental duplications in the chicken reference genome caused by mis-

assembly were identified [60]. The third assembly of the chicken genome is 

expected to be released in 2011. In this third build the false segmental duplications 

have been corrected and, additional sequencing efforts by advanced sequencing 

technologies have resulted in closing sequence gaps. Both, the high resolution 

linkage map described in chapter 2 of this thesis [45], and the linkage map 

described by Groenen et al. [44] were used to improve this new assembly. 

Besides assisting in the sequence assembly of genomes, linkage maps are 

important to study recombination rates and recombination hotspots within the 

genome. Accurate detection of recombination rates are, for instance, important for 

coalescence simulations used in hitch-hiking mapping [61]. In linkage maps the 

distance between markers is based on the recombination frequency between 

marker pairs rather than on the physical distance in base pairs. The distance in 

genetic maps is measured in centiMorgans (cM). The first linkage maps in the 

chicken were based on random amplified polymorphic DNA, chicken repeat 

element 1, restriction fragment length polymorphism, amplified fragment length 

polymorphism and microsatellite markers (e.g. [39,41,42,43]). The most recent 

linkage maps are mainly based on SNP markers [44,45]. 

 

Monogenic and polygenic traits 

In genetics a distinction is made between traits that are either caused by a single 

gene variant (monogenic trait) or influenced by multiple genes and environmental 

factors (polygenic, quantitative or complex trait). A monogenic trait is caused by a 

single gene, can be either recessive or dominant, and follows patterns of 

Mendelian inheritance. The causative variant in monogenic diseases therefore 

explains 100% of the phenotypic variation of a trait.  

There have been several successes in the detection of the causative variant in 

monogenic traits in livestock species. In chicken for instance, several variants were 

identified that are involved in plumage color [62,63,64] and fishy odor in eggs [65]. 

Moreover, several causative variants have been described in several other livestock 
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species, including various coat color traits in pig, cattle, dog and horse (e.g. 

[66,67,68,69,70], muscular hypertrophy in cattle [71] and sheep [72], malignant 

hyperthermia in pig [73], glycogen content in skeletal muscle in pig [74], and 

narcolepsy in dogs [75]. 

The causative variants underlying most of these monogenic traits were detected in 

a similar two tier approach. The first step includes linkage analysis (LA) to map the 

trait on a chromosome or linkage group. LA makes use of the fact that regions on 

the genome co-segregate with the trait phenotype in pedigrees over multiple 

generations or in independent families [76]. Association is found based on this co-

segregation (linkage) between the phenotype and alleles of genetic markers such 

as RFLP, microsatellite, or SNPs. The second step generally includes fine-mapping of 

the associated region, comparative mapping to identify genes within the associated 

region, followed by the sequencing of (functional) candidate genes to identify 

causative variants.  

Although several successes were obtained with LA, there are also severe limitations 

of this method. The confident intervals of the mapped QTLs are generally large and 

usually contain many candidate genes thereby hampering the identification of 

underlying causative variants. Moreover, the power to detect variants that have 

modest or low phenotypic effect is low unless an unrealistic large number of 

families is used for the analysis [77]. Most variants involved in polygenic traits have, 

however, low or modest phenotypic effect [78]. Therefore, LA is not particularly 

usefull to detect variants in polygenic traits [79].  

A polygenic (or quantitative) trait has a complex background and is influenced by 

environmental factors and multiple quantitative trait loci (QTL) each having a 

phenotypic effect on the trait phenotype [80]. Polygenic traits do not follow 

patterns of Mendelian inheritance. These complex traits include, for instance, 

growth, fertility, behavior, and diseases such as hypertension, schizophrenia and 

diabetes. Because most important production and disease traits in livestock species 

have a polygenic background [80], improved mapping methods are required to 

identify QTLs. With the increased genomic resources and rapid developments in 

high-throughput genotyping and sequencing techniques, new methods based on 

genome-wide marker assays such as linkage disequilibrium and hitch-hiking 

mapping have become available.  
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Linkage disequilibrium and genome-wide assays 

With the increased genomic resources in chicken and the rapid developments in 

high-throughput genotyping techniques, genotyping assays including tens of 

thousands of SNPs became available for mapping studies [44,81]. Due to the 

existence of linkage disequilibrium (LD), only a limited number of genetic markers 

are needed to capture all genetic variation of the genome. LD refers to the non-

random association of alleles at different loci [82] (Box 1). Markers are in LD when 

the combination of alleles occurs more frequently than would be expected based 

on their individual allele frequency. If two markers are in perfect LD, one marker 

can be used to capture the genetic information of the other. A group of two or 

more genetic markers in high LD is also known as a haplotype block, or haploblock. 

A haplotype is the combination of two or more alleles on the same chromosome 

that tend to be inherited together. Careful selection of markers within a haploblock 

– known as tag-SNPs – can provide information of all haplotypes within the block 

[83]. Thus, with a limited set of tag-SNPs it is possible to capture all genetic 

variation within the genome.  

Recombination and mutation rates can vary throughout the genome, resulting in 

low LD at regions containing hotspots of recombination or regions prone to 

mutations (i.e. regions with many CpG dinucleotides) [76]. The variability in 

recombination is particularly strong in the chicken genome as it consists of macro- 

and microchromosomes that show distinct differences. Microchromosomes have a 

much higher recombination rate compared to macrochromosomes [44,84]. Megens 

et al. [85] detected reduced LD in microchromosomes and showed that this 

reduction was almost completely explained by differences in recombination rate. It 

was also shown that LD differed greatly between different commercial breeds in 

chicken [86]. In order to design marker assays that accurately cover the whole 

genome it is, therefore, essential to understand the LD structure and 

recombination patterns of the genome [85]. This understanding is needed to 

interpret results obtained from these genome-wide assays. However, due to 

limited knowledge on the LD structure of the genome the first genome-wide assays 

developed in livestock species were not based on tag-SNPs, but on common SNPs 

that are evenly spaced throughout the genome. The capacity of these first genome-

wide assays, furthermore, was limited and did not allow for complete coverage of 

the genome. 
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Box 1. Linkage disequilibrium and genetic hitch-hiking. 

 

 
 

Linkage disequilibrium  

Consider a hypothetical population in which two chromosomes are segregating (yellow and 

blue) (top left). If a mutation occurs (Q) in one chromosome (blue), the wildtype allele (q) 

will remain in the other chromosome (yellow) (top right). This new mutation will create 

linkage disequilibrium because all alleles specific for the blue chromosome will be exclusively 

found in combination with Q and the allele specifically found in the yellow chromosome will 

be exclusively found with q. However, due to recombination events over multiple 

generations, recombinants between the blue and yellow chromosomes will occur (middle 

right) and LD will decrease. In the red boxed chromosomal segments, however, Q remains 

exclusively found in combination with the blue and q with the yellow chromosome 

segments. These blue and yellow segments in the red box are identical-by-descent. Besides 

recombination events, LD can also be decreased due to the occurrence of new mutations. LD 

can, however, also increase as a result of selection (either natural or artificial), genetic drift 

(i.e. loss of haplotypes), population growth, admixture of populations, population structure, 

and gene conversions [105].  

 

Genetic hitch-hiking  

Selection on Q will lead to an increased frequency of this allele in the population (before 

selection there are 7 Q and 7 q alleles, after selection 13 Q and only one q). When an allele 

increases in frequency, the heterozygosity at that particular locus will reduce. However, due 

to the existence of LD, the nucleotide diversity (allelic heterozygosity) will also be reduced at 

surrounding loci (green inset on the left). This loss of nucleotide diversity at and near the 

selected loci is also known as genetic hitch-hiking [94,95,96]. Hitch-hiking mapping aims to 

detect these regions of low nucleotide diversity within the genome.  
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Genome wide association studies 

Genome-wide association (GWA) mapping makes use of the genome-wide 

genotyping assays, and is the logical extension of linkage analysis. It is currently a 

widely applied method for the detection of genetic variation underlying traits in 

livestock and humans. The aim of GWA studies is to detect statistical association 

between the phenotype under investigation and assayed markers, with the 

assumption that the assayed markers are in high LD with the causative variants. 

The design of a GWA study, especially in complex diseases in human, is typically a 

case-control design in which healthy individuals are compared to affected 

individuals. However, for quantitative traits the complete phenotypic distribution 

for a trait could also be used in the study. In animal genetics, a linear model is 

typically used to analyze each SNP individually. This linear model usually includes 

the effect of a SNP, fixed effects, and breeding values of each animal [31]. 

Unlike linkage analysis, GWA studies do not rely on pedigrees and as a 

consequence there is no limitation on the number of individuals that can be 

included in the study. This increased number of individuals will lead to an increased 

statistical power to detect QTLs with small phenotypic effect and is therefore useful 

in QTL mapping of traits with a polygenic background [87]. Moreover, as individuals 

within or between populations will be more distantly related from each other than 

individuals within a family, more recombination events will have occurred in the 

original haplotype containing the causative variant. This reduces the shared 

haplotype that is identical by decent (Box 1) between the individuals, thereby 

refining the map position of the QTL. 

One of the first GWA study in livestock species was published in 2008 using assays 

containing either 25k or 60k SNPs [88]. The authors identified loci involved in five 

different monogenic recessive diseases in cattle and for three of them the 

causative variant was identified after sequencing candidate genes.  

 

Hitch-hiking mapping 

Another recently developed method is hitch-hiking  mapping [89,90] or selective 

sweep mapping [91,92,93] (Box 1). Genetic hitch-hiking refers to the process that 

decreases nucleotide diversity surrounding a selected variant [94,95,96]. Selection 

on a desirable variant will lead to a reduced or even complete loss of nucleotide 

diversity at and near the selected locus as non-carrier haplotypes are not selected 

for in future generations. Hitch-hiking mapping aims to detect regions under 

selection with the assumption that they must have a functional importance [61]. 

The challenge of hitch-hiking mapping is to discriminate between regions of 

selection that are the result of true selection and not from stochastic effect such as 
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genetic drift [91,92].  Because hitch-hiking mapping is focused on the genetic 

variation within the genome, it does not require measurable phenotypic 

information and could, therefore, aid in the detection of genomic regions for traits 

where phenotypic measurements are difficult, expensive or unethical [90]. Due to 

the absence of phenotypic information it will, however, not be possible to establish 

a direct phenotype – genotype relationship [97]. 

 

From associated genomic regions to causative variants 

Because of the existence of LD, linked markers (assayed marker in LD with the 

causative variant) can be used for MAS and GS without the need to identify the 

true causative variant. There are, however, some disadvantages of using these 

linked markers in breeding. First, linkage between assayed markers and causative 

variants might not be the same in different populations. This means that for each 

breeding population, independent studies should be performed to determine the 

phenotypic effect of assayed markers. Secondly, haplotype decay due to 

recombination events will decrease LD between linked markers and the causative 

variant in time. Therefore, new phenotypic based studies are needed every few 

generation to reexamine the phenotypic effect of the linked markers. The 

disadvantages for linked markers will be circumvented if direct markers (causative 

variants) are used in breeding. Direct markers detected in one population will likely 

have similar phenotypic effects in other populations and recurrent phenotypic 

studies are not needed. The identification of causative variants is, moreover, 

essential to understand the biological mechanisms underlying production and 

disease traits. 

The methodology to identify causative variants is straightforward, but nevertheless 

has proven to be challenging. The first step is to map genomic regions that 

influence the trait of interest. For large genomic regions fine-mapping might be 

necessary to reduce the size and number of candidate genes. Fine-mapping could 

be performed by increasing the marker density within the regions or by including 

information from additional breeds to identify the minimum haplotype shared 

identical-by-decent between the breeds [97]. Subsequently genes and other 

functional elements located within the fine-mapped region are sequenced to 

detect genetic variants. The identified genetic variants are then subjected to 

follow-up studies to identify and verify the true functional causative variant. These 

studies involve screening for clear deleterious variants in genes (such as non-

synonymous and frameshift mutations), or will include expression studies or other 

functional assays. 
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However, limited successes have been achieved in the detection of causative 

variants underlying traits in livestock species. Despite the availability of numerous 

QTL studies, there are currently 12,635 QTLs detected for 1,199 traits in Cattle, Pig, 

Chicken and Sheep (http://www.animalgenome.org, accessed October 2010), only 

a limited number of causative variants underlying these QTLs are known [98]. Well 

known examples of variants underlying QTLs are the SNP in intron 3 of the IGF2 

gene that influences muscle growth in swine [99], and the missense mutation in 

DGAT1 that has a major influence on milk yield and composition in cattle [100].  

The limited successes to detect causative variants underlying QTLs can be largely 

contributed to low mapping resolution - most QTL studies are based on linkage 

analysis- resulting in QTLs mapped to large intervals in the genome. The high costs 

and labor intensity of traditional Sanger sequencing limited researchers in the 

detection of all genetic variation located within these QTL regions. To reduce costs, 

genes with relevant biological function were usually prioritized over genes with 

unrelated or unknown functions, which could have resulted in neglecting possible 

important genes. Sequencing efforts were also mainly focused on coding regions, 

thereby missing possible functional variants in intergenic or regulatory regions. 

Although the mapping resolution of GWA studies is increased compared to linkage 

analysis, the identification of underlying causative variants still requires extensive 

sequencing efforts. However, recent technological developments will provide a 

rapid and cost effective solution. ‘Next generation sequencing’ and targeted DNA 

capture technologies will allow cost effective re-sequencing of entire QTL regions in 

order to detect underlying genetic variation.  

 

Next generation sequencing technologies 

The throughput limitations of classical sequencing using the Sanger enzymatic 

dideoxy technique [101] initiated efforts to develop new high-throughput 

sequencing methods for massive parallel sequencing (MPS). Several ‘second 

generation sequencing’ technologies are currently available (Roche 454 Life 

Sciences, Illumina, Life Technologies SOLiD, Helicos Biosciences, Complete 

Genomics). Each of these technologies is capable of generating millions of short 

DNA sequences (36-400 bp) in a single run [102,103,104]. The new HiSeq 2000 

sequencing platform from Illumina, for instance, is capable of generating up to 350 

giga base pairs in one run that takes around 8 days. One run on this platform has 

the capability to re-sequence the whole genome of nine individual chickens (or 

three individuals of human, cattle or swine) with a coverage of 30 reads per 

nucleotide. Developments in MPS technologies are fast and ‘third generation 

sequencing’ technologies are currently under development (e.g. Pacific Biosciences, 
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Ion Torrent, and Oxford Nanopore). These third generation technologies will 

provide single molecule sequencing, higher throughput capacity, longer reads, and 

reduced costs and run times.  

MPS based strategies are increasingly applied to detect causative variants 

underlying monogenic and polygenic traits. For instance, MPS has already been 

used for hitch-hiking mapping in the chicken and for the detection of causative 

variants involved in monogenic traits in human and polygenic traits in yeast (Box 2). 

 

Box 2. MPS in hitch-hiking mapping, QTL mapping and causative variant 

detection.  

 

Hitch-hiking mapping  

Recently, hitch-hiking mapping using a MPS strategy was performed to detect regions under 

selection during chicken domestication [106]. In this study, DNA samples of multiple 

individuals (n=8-11) were pooled to represent the nucleotide diversity within the breeds. 

These DNA pools were subsequently sequenced by MPS at a low coverage of 4-5 times. In 

this study, 8 domesticated and 1 non-domesticated breeds were sequenced. In a sliding 

window approach, several genomic regions were identified where the heterozygosity was 

substantially deviating from the average of the genome. A putative region under selection at 

the TSHR gene was confirmed by additional analysis in 271 domesticated breeds. The 

authors, moreover, identified a non-conservative non-synonymous variant in the TSHR gene. 

This variant was identified in the MPS data and was confirmed by Sanger sequencing. The 

authors suggest that the selection on TSHR might be involved in the absence of strict 

regulation of seasonal reproduction observed in domestic chickens.   

 

Monogenic traits 

Whole exome sequencing: 

There has, recently, been a rapid increase in the number of papers describing the detection 

of causative variants involved in monogenic traits in humans [107,108,109,110]. In these 

studies, the exome of one or more affected and unaffected individuals were re-sequenced to 

identify causative variants in coding regions of the genome. The exome was isolated from 

genomic DNA using hybridization based capture methods subsequently followed by MPS. To 

reduce the number of candidate causative variants, filters were applied to all genetic 

variants identified. These filters generally included functional importance (non-synonymous, 

splice acceptor and donor site variants, or indels), absence in non-affected individuals, and 

allele frequencies in the population (for instance, common variants are likely not to be 

involved in rare diseases). As an example, Ng [109] identified the causative gene for Miller 

syndrome, a rare recessive syndrome in humans. Exome sequencing of 4 affected individuals 

resulted in 1,525 candidate genes in which two or more functional important variants were 

detected. In the study eight non-affected individuals were also re-sequenced with MPS. 

After applying a filter for common SNPs, and absence or presence in the non-affected 

individuals, only one gene - DHODH - remained as a candidate gene. Additional sequencing 

efforts in affected individuals resulted in the identification of 12 causative variants within 

this gene.  
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Box 2. Continued...  
 

Whole genome re-sequencing (family based): 

Roach et al. [111] re-sequenced the whole genome of a family of four, consisting of two 

affected offspring and their non-affected parents. Both affected offspring were affected by 

the homozygous diseases Miller syndrome and primary ciliary dyskinesia, of which causative 

genes had already been identified. The family structure enabled inheritance analysis, which 

led to the identification of sequencing errors and precise locations of recombination events. 

Because both offspring were affected with a recessive trait, follow-up studies were limited 

to 22% of the genome in which both offspring were identical. The recessive inheritance of 

the disease, moreover, requires that both non-affected parents are heterozygous for the 

causative variant (either heterozygous for the same causative variant, or compound 

heterozygous variants within the same gene). Focusing only on rare variants, four candidate 

genes remained, including the previously known causative genes for Miller syndrome and 

primary ciliary dyskinesia.  
 

Whole genome re-sequencing combined with linkage analysis: 

Sobreira et al. [112] combined MPS with classical linkage analysis to reduce the number of 

individuals that needed to be fully sequenced. Linkage analysis using genome-wide SNPs 

assays in a family of 12 members (7 affected) resulted in the association of six genomic 

regions (42 Mb in total) associated with the autosomal dominant trait metachondromatosis. 

Whole genome sequencing (32X coverage) of a single affected individual within this family 

provided the identification of a single deleterious variant - an 11bp deletion in PTNP11 

resulting in a frameshift and premature stop codon - within one of the six associated regions. 

Subsequent sequencing of PTNP11 in the other affected individuals resulted in the 

conformation of this variant. Subsequently, sequencing the PTNP11 gene in a second family 

with metachondromatosis resulted in the identification of nonsynonymous variant that also 

resulted in a premature stop. Without the linkage analysis, follow-up studies to determine 

the causative gene and underlying variants would have been much more complicated. 

Instead of the single candidate variant identified in the 42 Mb of associated regions, the 

authors would have needed follow-up analysis on each of the 109 protein-truncating 

variants identified within the genome of this individual. 
 

Polygenic traits 

Extreme QTL mapping or extreme-trait re-sequencing involves the selection of a small 

number of individuals or DNA pools with extreme phenotypes - for instance disease resistant 

or estimated breeding values - of the trait of interest [113]. Ehrenreich et al. [114] applied 

this extreme QTL mapping in order to identify loci involved in sensitivity to 4-nitroquiloline 

(4-NQO), a polygenic trait in yeast. Two previously identified loci only explained a small part 

of the genetic variation of sensitivity to 4-NQO, implying that additional loci must exist for 

this trait. In the study, DNA pools of two yeast cultures with different phenotypes were re-

sequenced with MPS. The ‘resistant’ culture was grown on medium containing 4-NQO and 

therefore contained only yeast that were resistant to 4-NQO. The ‘control’ group was grown 

on normal medium and therefore contained yeast both susceptible and resistant to 4-NQO. 

For both cultures, DNA was extracted and subsequently sequenced by MPS. Comparison 

between the two cultures resulted in the detection of 14 loci where the allele frequency of 

the resistant culture was significantly different from the control culture. The 14 loci, 
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including the two previously identified loci, explained 70% of the total genetic variance of 

the trait. 

1.2 Aim and outline of this thesis 

The research described in this thesis aimed to investigate the utility of several 

molecular approaches to (i) to identify causative variants underlying monogenic 

(chapter 3) or polygenic traits (chapter 4), (ii) map genomic regions that are or have 

been under selection in the chicken genome (chapter 5), and (iii) to improve and 

increase available genomic resources in the chicken (chapter 2 and 4).  

In chapter 2 of this thesis, we describe the construction of a new high resolution 

linkage map of the chicken genome based on 1,617 animals of two broiler 

population of which each individual was genotyped with a genome-wide assay 

containing 17,790 SNPs. The main goals of this linkage map were to assist in the 

improvement of the current genome assembly by mapping 613 previously 

unmapped markers and to provide a high resolution linkage map for linkage 

analysis and association studies. The high resolution linkage map generated in this 

chapter, moreover, allowed us to discuss on recombination rates across the 

genome between the two mapping populations. In chapter 3, we describe the 

molecular characterization of the locus causing the late feathering phenotype; a 

monogenic trait in chicken that results in a delayed emergence of flight feathers at 

hatch. The late feathering phenotype is beneficial to breeders as it can be used for 

sex typing at hatch. The locus has, therefore, been extensively used in diverse 

commercial chicken breeds. However, a retrovirus closely linked to the late 

feathering allele causes a negative pleiotropic effect of this locus on egg production 

and viral infections. The identification of the causative variant underlying the late 

feathering phenotype will allow screening for recombinants between the beneficial 

late feathering allele and the undesired retrovirus. Within this chapter we describe 

the identification of a 180 kb tandem duplication in the late feathering allele using 

a quantitative PCR approach. We, moreover, describe a molecular test to 

specifically detect this duplication, also in heterozygous individuals. In chapter 4, 

we combined a GWA study with MPS to detect causative variants underlying the 

pulmonary hypertension syndrome (PHS) in chicken. PHS is a polygenic trait that 

causes substantial financial losses in the poultry industry and results in reduced 

animal welfare. In this study we performed a GWA study to detect QTLs associated 

with PHS. For variant detection, we used MPS to sequence the genomes of twelve 

broiler chickens. To maximize the occurrence of variants involved in PHS, we 

selected 6 animals with an extreme low estimated breeding value, and 6 animals 

with an extreme high estimated breeding value. Within this study we focused on 

protein affecting variants located within the QTL regions. In addition, this chapter 
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describes the identification of 7.62 million SNPs that will aid in improving future 

genome-wide assays. We describe a hitch-hiking mapping method in chapter 5 to 

detect signatures of selection in the genome of 67 commercial and non-commercial 

chicken breeds. For this mapping strategy we genotyped pooled DNA samples from 

each breed using a genome-wide assay including nearly 60,000 SNPs. In this 

chapter we discuss on several regions under selection that were identified, and we 

discuss on underlying candidate genes that might be involved in production or 

disease traits. Finally, in the general discussion described in chapter 6, I discuss on 

the main findings of this thesis and comment on the strategies to identify causative 

variants underlying production and disease traits.  

  

Definitions 

Variant: 

Any allele that is inherited by Mendelian laws, and includes single nucleotide 

polymorphisms (SNP), indels, structural variations and irreversible epigenetic 

modifications.  

 

Structural variation: 

Copy number variations (CNV, large (>1kb) insertions, deletions, and duplications) 

and copy neutral variation (inversions and translocations).  

 

Causative variant:  

A variant that is the true underlying cause of a phenotypic effect.  

 

Trait: 

Any phenotypic observation that can be made within an organism. In this thesis a 

trait mainly refers to production traits, fitness traits, and disease resistance or 

susceptibility.  

 

Selection:  

Directional selection, either natural or artificial, that results in either an increased 

or decreased frequency of the variant under selection.  
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Abstract 

 

Although several genetic linkage maps of the chicken genome have been published, 

the resolution of these maps is limited and does not allow the precise identification 

of recombination hotspots. The availability of more than 3.2 million SNPs in the 

chicken genome and the recent advances in high throughput genotyping 

techniques enabled us to increase marker density for the construction of a high-

resolution linkage map of the chicken genome. This high-resolution linkage map 

allowed us to study recombination hotspots across the genome between two 

chicken populations: a purebred broiler line and a broiler x broiler cross. In total, 

1,619 animals from the two different broiler populations were genotyped with 

17,790 SNPs. 

The resulting linkage map comprises 13,340 SNPs. Although 360 polymorphic SNPs 

that had not been assigned to a known chromosome on chicken genome build 

WASHUC2 were included in this study, no new linkage groups were found. The 

resulting linkage map is composed of 31 linkage groups, with a total length of 3,054 

cM for the sex-average map of the combined population. The sex-average linkage 

map of the purebred broiler line is 686 cM smaller than the linkage map of the 

broiler x broiler cross.  

In this study, we present a linkage map of the chicken genome at a substantially 

higher resolution than previously published linkage maps. Regional differences in 

recombination hotspots between the two mapping populations were observed in 

several chromosomes near the telomere of the p arm; the sex-specific analysis 

revealed that these regional differences were mainly caused by female-specific 

recombination hotspots in the broiler x broiler cross.  
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2.1 Introduction 

Genetic linkage maps are essential to identify genomic regions that influence 

complex phenotypes (quantitative trait loci), to assist in the sequence assembly of 

genomes, and to study recombination across the genome. Linkage analysis and 

genome-wide association studies not only require high marker densities, but also 

accurate linkage maps in order to detect quantitative trait loci [1]. High-density 

linkage maps have been described for humans [2-4], mice [5], rats [6], and chickens 

[7]. Chicken linkage maps have been published ranging from 100 RFLP markers [8] 

to a high-density map comprising thousands of markers, most of which are single 

nucleotide polymorphisms (SNP) [7].  

In combination with a physical BAC contig map [9], linkage maps of the chicken [10-

12] were used to construct the draft genome sequence of the chicken. The draft 

sequence of the chicken genome, published in 2004, comprises 1.05 Gb [13]. In 

chicken genome build WASHUC2 (May 2006) there were a total of 997 Mb of 

assigned sequences, which covered the two sex chromosomes (Z and W) and 29 of 

the 38 autosomes. The unassembled sequences that remained were combined in 

chromosome unassigned. The most recent linkage map, published in 2009 by 

Groenen et al., consists of 34 different linkage groups (including GGAZ); thus, at 

least five autosomal chromosomes are still entirely unrepresented [7]. 

Differences in the sizes of the linkage map were found among several chicken 

populations [7, 10, 11, 14, 15]. In these studies, domesticated populations tended 

to have increased recombination compared to nondomesticated populations. This 

finding was in agreement with the hypothesis that selection leads to higher rates of 

recombination [16]. Due to the limited resolution of the published chicken linkage 

maps the specific underlying regions where recombination differs among the 

chicken populations could not be identified. Moreover, these studies mainly 

focused on sex-average recombination, and did not take into account the influence 

of sex on recombination in chickens. 

The availability of more than 3.2 million SNPs in the chicken genome (dbSNP build 

128 and [17]) and the recent advances in high-throughput genotyping techniques 

makes it feasible to increase marker density for linkage analysis and genome-wide 

association studies and to study recombination rates across the genome in the 

chicken.  

In this study, we present a high-resolution linkage map of the chicken genome 

based on data from a cross between two different broiler lines (n= 306) and on 

data from a different single purebred broiler line (n= 1313). Both populations were 

genotyped with an 18K SNP Illumina Infinium iSelect Beadchip. The high-resolution 
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linkage maps generated in this study allowed us to study regions of recombination 

hotspots between the two mapping populations and between the sexes. 

 

2.2 Methods 

Marker selection 

In total, 17,790 markers were included on the Illumina Infinium iSelect Beadchip 

(Additional File 1). Markers were selected from dbSNP build 122. The Beadchip 

consisted of 17,177 markers that had been mapped and 613 markers that had not 

been mapped to a chromosome or linkage group. Markers were distributed evenly 

across each chromosome, with marker densities based on the size of the 

chromosome. For GGA1–GGA5 and GGAZ, markers were selected every 50 kb; for 

GGA6–GGA10 every 36 kb; for GGA11–GGA20 every 25 kb; and for GGA21–GGA28 

every 15.5 kb. Two additional linkage groups, which were not assigned to a 

chromosome, were also included on the beadchip: LGE22C19W28_E50C23 (from 

here on called LGE22) and LGE64. The unmapped markers were located on contigs 

larger than 100,000 bp, which were found in the unassigned sequences of the draft 

sequence (chromosome unassigned). The 613 markers were selected randomly, 

except for the size of the contig in which they were located. 

Genotyping was performed using the standard protocol for Infinium iSelect 

Beadchips. Data were analyzed with Beadstudio Genotyping v3.0.19.0, and quality 

control was performed according to the guidelines from the Infinium genotyping 

data analysis protocol [18]. 

 

Populations 

In total, 1,619 animals from two populations were genotyped with the 18K SNP 

beadchip. Blood and DNA sample collection was carried out by licensed and 

authorized personnel under approval of Hendrix Genetics. Population 1 was an 

advanced intercross line derived from a cross between two broiler dam lines [19, 

20]. The maternal line was selected for reproduction (egg numbers as the most 

important trait, as well as hatching of fertile eggs) and, to a lesser extent, body 

weight. The maternal line was not selected for feed conversion rate and breast 

meat percentage. The paternal line was selected for growth and feed conversion 

rate (almost equally important), and selection with regard to reproduction was 

performed to keep performance constant (it also compensated the negative effects 

of selection for growth). The paternal line, moreover, was also subject to some 

selection for conformation. There was no selection for breast meat percentage for 

this line. The maternal and paternal lines both originated from the White Plymouth 

Rock breed. Population 1 was used previously for quantitative trait loci mapping of 



2 Recombination hotspots 

 

 

39 
 

pulmonary hypertension syndrome [19, 21]; fatness traits in broilers [22]; and 

bodyweight, growth rate and feed efficiency [23, 24]. Combined with other 

populations, a subset of population 1 has previously been used to construct the 

consensus linkage map of the chicken genome [7, 12]. In total, 306 animals were 

genotyped from population 1: 10 full-sib families of generation 1; 20 parents (10 

males and 10 females) and 50 offspring (11 males and 39 females); and 37 full- and 

half-sib families of generation 6 or 7; 66 parents (32 males and 34 females) and 170 

offspring (61 males, 67 females, and 42 of unknown sex). Population 2 consisted of 

a third purebred commercial broiler dam line that was selected for breast meat 

percentage. This population also originated from the White Plymouth Rock breed. 

In total, 1,313 animals were genotyped from population 2: 266 parents (68 males 

and 198 females) and 1,047 offspring (107 males and 940 females).  

 

Linkage analysis 

The linkage map was constructed with a modified version of CRI-MAP [25]. This 

modified version can handle large datasets and was provided by Drs. Liu and Grosz 

of Monsanto Company (St. Louis, MO, USA). During construction of the linkage 

map, a marker was considered to be informative if it had at least 20 informative 

meiosis. The linkage map was constructed with the use of five options: 

AUTOGROUP, BUILD, CHROMPIC, FLIPSN, and FIXED. AUTOGROUP was used to 

check each chromosome unassigned marker for linkage to a known chromosomes 

or linkage groups (thresholds used: LOD = 4, informative meiosis = 0, different 

chromosomes = 5, and linkage ratio = 0.5). Markers were assigned to a specific 

chromosome if linkage was found, or remained in chromosome unassigned if no 

linkage was found. The initial marker order was similar to the order in which the 

markers were located on the physical map (WASHUC2 build, May 2006). The BUILD 

option was used to determine the most likely position of the newly assigned 

markers in the marker order. Markers were mapped to a specific position if BUILD 

incorporated the marker at one specific position only (threshold LOD = 3). If 

multiple positions were found, the best position was based on three criteria: (1) if 

the sequence of the contig in which the marker was located showed a (partial) 

BLAST hit against one of the possible locations indicated by BUILD, (2) if one of the 

positions in the BUILD output had a higher LOD score (>1) than all other positions 

and, (3) if a gap was found between two (super) contigs on the physical map. If no 

specific position was found using these criteria, the marker was excluded from the 

analysis. The BUILD output was, furthermore, used to determine potential errors in 

the marker order. Markers that showed high recombination rates compared to 

flanking markers (>3cM on both sides) were taken out of the map and reanalyzed 
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by BUILD. CHROMPIC was used to identify double recombinants, which, at the 

marker density used, are a good indication of marker order errors or genotype 

errors. Double-recombinant markers were reanalyzed by BUILD to determine the 

most likely position. Double recombinants that could not be resolved after 

repositioning were most likely caused by genotyping errors, and were therefore 

removed from the dataset. FLIPSN (n = 5) was also used to correct errors in the 

marker order. If an alternative marker order was more likely than the initial one 

(LOD increased by >1), the new marker order was used. To decrease errors and 

increase the accuracy of the map, the CHROMPIC, BUILD, and FLIPSN options were 

used repeatedly for each chromosome until no double recombinants were 

observed and the most likely marker order was achieved for the remaining 

markers. Finally, the FIXED option was used to construct the sex-specific and sex-

average linkage maps. For the markers that remained in the chromosome 

unassigned, TWOPOINT analyses were performed to find linkage between the 

markers (LOD = 3).  

 

Recombination rate  

Recombination rates were calculated for nonoverlapping bins of approximately 

500kb. Linkage maps for population 1 and 2 were constructed with all of the 

markers that were informative in at least one of the populations. The 

recombination rate of each bin is expressed as the genetic length in centimorgans 

divided by the genomic length in mega base pairs. 

 

Statistical Analysis  

To test if differences in map distances between populations differed significantly 

we assumed that 1 cM equals a recombination fraction of 0.01 and calculated the 

Z-test statistic as 
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where 

θ1 = the recombination fraction in population 1, 

θ2 = the recombination fraction in population 2, 

n1 = the average number of informative meiosis in population 1, 

n2 = the average number of informative meiosis in population 2. 

p–values were obtained from a standard normal distribution. Recombination 

fractions were determined for sliding windows consisting of eight bins. When 



2 Recombination hotspots 

 

 

41 
 

differences in recombination fractions between males and females were tested, it 

was assumed that both sexes contributed equally to the number of informative 

meiosis. We considered a nominal p<0.01 as suggestive evidence for differences in 

recombination fraction. Further, for results to be significant, a more stringent 

significance criteria p< 2.46*10
-4

 was defined that accounts for multiple testing 

along the genome. Multiple testing was accounted for by applying a Bonferroni 

correction assuming 203 independent tests and a nominal α=0.05. For in total 1624 

“windows” differences in recombination were determined, however, as a result of 

the sliding window approach (a window consisting of eight bins), every 8
th

 sliding 

window is truly independent which results in 203 independent tests. 

 

2.3 Results 

Linkage analysis 

In total, 13,340 informative markers (75% of all markers on the SNP beadchip) and 

1,619 individuals were used to construct the combined linkage map of the two 

populations (Additional Files 2 and 3). In total, 613 markers that had not been 

mapped to a known chromosome or linkage group were included on the beadchip. 

Of the 613 unassigned markers, 103 did not pass quality control, 150 were 

homozygous, and 360 were informative (Additional Files 3 and 4). Of the 

informative markers, 343 could be assigned to a known chromosome or linkage 

group, and 17 could not. These 17 markers also showed no linkage to each other, 

even when the LOD score threshold was set to 2. From the 343 markers that were 

assigned to a known chromosome with AUTOGROUP, 230 were included in the 

final linkage map. No specific position on a chromosome could be determined for 

the remaining 110 markers (three GGW assigned markers were not included in the 

analysis), and they were therefore not included in the linkage map. 

As a starting point for building the linkage map, we used the marker order based on 

the position of the markers on the sequence map. In general, this order appeared 

to be in agreement with the most likely marker order for the linkage map. Some 

adjustments, nevertheless, were made: on GGA5, a block of thirteen markers was 

inverted, which resulted in a 1.4 cM decrease in the size of the map; on GGA13, five 

markers were inverted, which resulted in a 1.5 cM decrease in the size of the map; 

in linkage group LGE22, rearranged markers resulted in a decrease of 3.1 cM; and in 

linkage group LGE64, rearranged markers resulted in a decrease of 9.4 cM.  
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Table 2.1 The linkage map lengths and recombination rates for the chicken chromosomes of 

the combined populations. 
 

Chromosome Length
1
 Sex-average Sex-specific Recombination 

   
Female Male rate 

 
(Mb) (cM) (cM) (cM) (cM/Mb) 

GGA1 200.9 413.5 377.1 455.3 2.1 

GGA2 154.8 281.3 259.9 303.5 1.8 

GGA3 113.6 236.9 225.6 250.2 2.1 

GGA4 94.2 195.2 182.5 207.7 2.1 

GGA5 62.2 154.4 154.9 155.1 2.5 

GGA6 37.3 93.8 85.0 102.4 2.5 

GGA7 38.3 103.1 99.0 107.3 2.7 

GGA8 30.6 96.6 94.2 98.9 3.2 

GGA9 25.5 88.1 85.4 91.1 3.5 

GGA10 22.5 80.6 79.6 81.1 3.6 

GGA11 21.9 64.0 63.3 64.9 2.9 

GGA12 20.5 69.1 67.9 70.7 3.4 

GGA13 18.9 62.7 63.8 61.6 3.3 

GGA14 15.8 67.4 72.5 65.2 4.3 

GGA15 13.0 53.6 52.9 54.2 4.1 

GGA16 0.4 55.6 59.1 53.5   n.d.
2
 

GGA17 11.2 50.9 51.5 51.0 4.6 

GGA18 10.9 51.7 49.9 53.5 4.7 

GGA19 9.9 52.3 53.2 52.0 5.3 

GGA20 13.9 55.1 55.2 54.8 4.0 

GGA21 6.9 56.9 57.2 56.5 8.2 

GGA22 3.9 56.4 59.9 52.4 14.3 

GGA23 6.0 52.3 51.4 53.0 8.7 

GGA24 6.4 53.2 53.4 52.4 8.3 

GGA25 2.0 57.1 54.0 59.4   n.d.
2
 

GGA26 5.1 52.3 51.4 52.9 10.3 

GGA27 4.7 51.0 50.6 51.5 10.8 

GGA28 4.5 53.6 52.5 54.3 11.9 

LGE22 0.9 59.3 58.5 64.5   n.d.
2
 

LGE64 0.0 8.4 6.7 8.7   n.d.
2
 

GGAZ 74.6 227.7 - 227.1 3.0 

Total autosomal 956.9 2826.4 2728.1 2939.6 3.0 

Total length 1031.5 3053.5 2728.0 3166.7 3.0 
 
1
 Physical length of the chromosome was based on the position of the last marker in the 

WASHUC2 build.  
2
 n.d.= not determined, as the chromosome showed clear evidence of sequence gaps. 

 

The number of informative meiosis per mapped marker for the combined linkage 

map ranged from 20 to 1,242, with an average of 517. The total length of the sex-

average map was 3,053.5 cM (Table 2.1). The female sex-specific map was 211.5 
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cM smaller than the male sex-specific map, with a female-to-male ratio of 0.93. On 

average, the recombination rate of the combined map was 3.0 cM/Mb. The 

average recombination rate decreased as the length of the chromosome increased; 

for the macrochromosomes, a lower recombination rate (about 2 cM/Mb) was 

observed compared to the microchromosomes (3–14 cM/Mb). 

To study the populations separately, linkage maps were calculated for both 

populations independently (Table 2.2 and 2.3). The linkage map for population 1 

consisted of 12,617 markers (95% of the markers used in the combined map) 

(Additional File 2), and included 306 animals in 42 full- and half-sib families (n =7–

13 per family). The number of informative meiosis per mapped marker for 

population 1 ranged from 20 to 231, with an average of 120. The total length of the 

sex-average map of population 1 was 3,498.6 cM (Table 2.2). The female sex-

specific map was 211.8 cM smaller than the male sex-specific map, with a female-

to-male ratio of 0.93. The linkage map of population 2 consisted of 9,803 markers 

(73% of the markers used in the combined map) (Additional File 2), and included 

1,313 animals in 68 full- and half-sib families (n = 6–43 per family). The number of 

informative meiosis per mapped marker for population 2 ranged from 20 to 1,118, 

with an average of 551. The total length of the sex-average map of population 2 

was 2,812.3 cM (Table 2.3). The female sex-specific map was 198.6 cM smaller than 

the male sex-specific map, with a female-to-male ratio of 0.93, which was similar to 

population 1. 

 

Recombination rate 

To analyze the recombination frequency along the different chromosomes, the 

genome was divided into 1,819 nonoverlapping bins with an average size of 560 kb 

(Additional File 5). For both populations, the sex-average linkage map data were 

used to calculate the recombination rates of these bins (Figure 2.1). Recombination 

rates varied from 0 to 60 cM/Mb in population 1 and from 0 to 74 cM/Mb in 

population 2. Overall, the recombination rates observed between the two 

populations showed similar trends. Nevertheless, several regions were observed 

where the two populations diverged with regard to recombination rates (Figure 2.1 

and Additional File 5). On GGA 6, 11, 12, and 13, these regions exceeded the 

stringent Bonferroni threshold when accounting for multiple testing. On these four 

chromosomes, the regional difference in recombination rate between the two 

populations was observed at the telomere of the p arm. Similar observations were 

made in other chromosomes where the two populations diverged with suggestive 

significance (p<0.01).  
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Table 2.2 The linkage map lengths and recombination rates for the chicken chromosomes of 

population 1. 
 

Chromosome Length
1
 Sex-average Sex-specific Recombination 

   
Female Male rate 

 
(Mb) (cM) (cM) (cM) (cM/Mb) 

GGA1 200.9 504 471 541.6 2.5 

GGA2 154.8 341.4 321.1 363.5 2.2 

GGA3 113.6 288.8 269.5 309.2 2.5 

GGA4 94.2 237.6 227.5 247.3 2.5 

GGA5 62.2 176.8 175.7 178.5 2.8 

GGA6 37.3 110.5 97.9 122.2 3.0 

GGA7 38.3 117.1 119.7 118.3 3.1 

GGA8 30.6 107.5 103.1 111.3 3.5 

GGA9 25.5 97.1 99.0 95.9 3.8 

GGA10 22.5 94.5 91.6 97.9 4.2 

GGA11 21.9 87.1 86.8 87.7 4.0 

GGA12 20.5 89.0 90.3 88.5 4.3 

GGA13 18.9 74.1 76.7 71.6 3.9 

GGA14 15.8 75.2 74.9 75.4 4.8 

GGA15 13.0 59.7 57.0 62.0 4.6 

GGA16 0.4 55.4 59.1 53.1   n.d.
2
 

GGA17 11.2 54.6 52.4 57.3 4.9 

GGA18 10.9 58.1 56.5 60.1 5.3 

GGA19 9.9 49.7 52.2 47.9 5.0 

GGA20 13.9 58.4 55.8 60.5 4.2 

GGA21 6.9 58.9 56.0 61.8 8.5 

GGA22 3.9 51.6 55.4 46.5 13.1 

GGA23 6.0 48.4 49.1 47.8 8.0 

GGA24 6.4 51.2 49.0 53.7 8.0 

GGA25 2.0 57.5 56.7 58.5   n.d.
2
 

GGA26 5.1 50.6 50.1 50.5 9.9 

GGA27 4.7 49.0 47.0 51.3 10.4 

GGA28 4.5 52.9 56.8 50.9 11.7 

LGE22 0.9 55.6 48.5 62.0   n.d.
2
 

LGE64 0.02 23.5 27.4 22.8   n.d.
2
 

GGAZ 74.6 262.8 - 262.8 3.5 

Total autosomal 956.9 3,235.8 3,133.8 3,355.6 3.4 

Total length 1,031.5 3,498.6 3,133.8 3,618.4 3.4 
 
1
 Physical length of the chromosome was based on the position of the last marker in the 

WASHUC2 build.  
2
 n.d.= not determined, as the chromosome showed clear evidence of sequence gaps. 
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Table 2.3 The linkage map lengths and recombination rates for the chicken chromosomes of 

population 2. 
 

Chromosome Length
1
 Sex-average Sex-specific Recombination 

   
Female Male rate 

 
(Mb) (cM) (cM) (cM) (cM/Mb) 

GGA1 200.9 387.1 351.8 428 1.9 

GGA2 154.8 267.7 245.9 289.4 1.7 

GGA3 113.6 224.8 215.6 236.4 2.0 

GGA4 94.2 183.7 171.5 196.5 1.9 

GGA5 62.2 148.6 149.1 149.6 2.4 

GGA6 37.3 89.8 81.6 97.3 2.4 

GGA7 38.3 99.5 93.7 105.2 2.6 

GGA8 30.6 94.0 91.9 95.6 3.1 

GGA9 25.5 85.2 81.5 88.8 3.3 

GGA10 22.5 75.4 73.7 76.3 3.4 

GGA11 21.9 58.8 58.4 59.6 2.7 

GGA12 20.5 64.3 62.6 66.6 3.1 

GGA13 18.9 58.1 58 58.2 3.1 

GGA14 15.8 64.2 66.5 61.6 4.1 

GGA15 13.0 52.3 51.9 52.4 4.0 

GGA16 0.4 0.3 0.5 0.0   n.d.
2
 

GGA17 11.2 50.2 51.6 49.3 4.5 

GGA18 10.9 49.2 47.8 50.6 4.5 

GGA19 9.9 52.7 53.4 52.5 5.3 

GGA20 13.9 53.9 54.9 52.9 3.9 

GGA21 6.9 56.2 57.2 54.9 8.1 

GGA22 3.9 53.6 56 51.9 13.6 

GGA23 6.0 53.1 52.2 53.9 8.8 

GGA24 6.4 53.7 54.5 52.1 8.4 

GGA25 2.0 57.3 54.1 59.4   n.d.
2
 

GGA26 5.1 52.6 51.7 53.5 10.3 

GGA27 4.7 51.5 52.1 51.3 10.9 

GGA28 4.5 53.7 52 55.2 11.9 

LGE22 0.9 46.9 54.4 46   n.d.
2
 

LGE64 0.02 4.1 4.1 3.8   n.d.
2
 

GGAZ 74.6 169.8 - 169.8 2.3 

Total autosomal 956.9 2,642.5 2,550.2 2,748.8 2.8 

Total length 1,031.5 2,812.3 2,550.2 2,918.6 2.7 
 
1
 Physical length of the chromosome was based on the position of the last marker in the 

WASHUC2 build.  
2
 n.d.= not determined, as the chromosome showed clear evidence of sequence gaps. 
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The sex-specific linkage maps enabled us to study the effect of sex on 

recombination. Recombination rates were calculated for nonoverlapping bins 

based on the recombination rates found in the sex-specific linkage maps of both 

populations (Figure 2.2 and Additional File 5). Overall, the recombination rates 

observed between the two sexes of the two populations showed similar trends. 

However, in the regions on GGA 6, 11, 12 and 13, where the recombination rate of 

two populations significantly diverged, this difference appeared to be caused by a 

difference in female recombination rate and not due to male recombination rate 

(Figure 2.2 and Additional File 5). For the regions where the two populations 

diverged with suggestive significance (p<0.01), the difference in female 

recombination rate often exceeded the Bonferroni threshold, while there was no 

statistical evidence for difference in male recombination rate. 

  

2.4 Discussion 

The high accuracy of the SNP genotyping, the large number of markers (n = 13,340), 

and the large number of animals (n = 1,619) resulted in a high-resolution linkage 

map of the chicken genome, which significantly exceeds the resolution of 

previously published linkage maps [7, 10-12]. The current map consists of 13,340 

markers, which is an increase of 43.9% compared to the latest consensus map, 

which comprises 9,268 markers [7]. In total, 2,819 SNP markers overlapped 

between the two studies. The increased marker density enabled us to efficiently 

detect genotype errors, thereby increasing the accuracy of the linkage map 

compared to the latest consensus map. 

The use of a large number of animals in the current study resulted in a 6-fold 

increase (517 vs. 85) in the average number of informative meiosis per mapped 

marker, thereby increasing the resolution of the current map compared to the 

latest published linkage map [7]. The higher resolution enabled us, moreover, to 

order closely linked markers. The linkage map comprises 31 linkage groups, with a 

total length of 3053.5 cM for the sex-average map of the combined population 

(Table 2.1). This length is comparable to previous estimates [7]. 

The construction of separate linkage maps for both populations enabled us to study 

differences in recombination between the two populations. The sex-average 

linkage map of population 1 (broiler x broiler cross, 3,498.6 cM) is 24.4% larger 

than the map of population 2 (purebred broiler line, 2,812.3 cM) (Table 2.2 and 

2.3). The difference between the two populations has a biological origin, although 

differences in informative markers occasionally contributed to the difference 

between the two maps. An extreme example is GGA16; in population 1, the single 
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marker located at the end of the chromosome (55.4 cM) was uninformative in 

population 2, and resulted in a chromosome length of only 0.3 cM in this 

population. Roughly one third of the difference between the two populations on 

the autosomal chromosomes is explained by the telomeric regions (defined as 10% 

of the chromosome length at both telomeres). A clear example is GGAZ, where the 

difference between the two populations (93 cM) is primarily caused by the 

telomeric regions. In previous studies, large differences in the length of this 

chromosome have been reported, varying from 193 to 284 cM [7, 26]. In both 

populations used in this study, the female specific linkage map was approximately 

200 cM smaller than the male specific linkage map. However, for the sex-specific 

linkage map of population 1, no difference was found between female and male in 

the latest published linkage map. In addition to having more markers in this study, 

we also selected more animals and included extra generations of population 1 

compared to the last published linkage map. The increased marker density, 

additional animals, and generations were not expected to have an influence on the 

(sex-specific) linkage map between the two studies. Nevertheless, the increased 

number of animals in the current study (and therefore the increased amount of 

informativity) most likely resulted in a more accurate linkage map, so that the 200 

cM difference between female and male recombination could be determined. The 

200 cM difference between female and male recombination is, moreover, also seen 

in population 2, indicating that the female map in chickens is indeed smaller. 

Burt and Bell hypothesized that selection leads to high rates of recombination [16]. 

Although the selection criteria were based on different traits, all three lines used in 

this study experienced similar selection pressure (personal communication A. 

Vereijken of Breeding Research and Technology Centre, Hendrix Genetics). We 

therefore conclude that the difference in recombination between the two 

populations was not caused by selection pressure per se. The linkage map length of 

the purebred broiler line (population 2) was very similar to that of other chicken 

populations such as the East Lansing population (partially inbred Red Jungle Fowl x 

highly inbred White Leghorn cross) and the Uppsala population (Red Jungle Fowl x 

White Leghorn cross) [7]. Therefore, it appears that the broiler x broiler cross 

deviates from the other chicken populations by having a high recombination rate. 

Although not caused by selection, the high recombination rate in this cross could 

be the result of either a high recombination rate in one or both of the parental 

lines, or by as-yet unidentified genomic differences between the two lines of this 

cross.  
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Figure 2.1 Sex-average recombination rate for populations 1 and 2. Recombination rate was 

calculated for 500 kb nonoverlapping bins, and plotted using a sliding window of eight bins. 

Population 1 is shown in red and population 2 is shown in blue. On the x-axis, the genomic 
position is given in million base pairs. On the y-axis, the recombination rate is given in cM/Mb. If 

known, the position of the centromer is indicated by a solid black line. GGA16, GGA21–GGA28, 
LGE22, and LGE64 were not included in this figure, because the graphs of these 11 small 

chromosomes were uninformative. Note that the scale of the y-axis of GGA1 is twice as high as for 
the other chromosomes. 

 

The high-resolution linkage map enabled us to study recombination hotspots 

within the two populations and the two sexes (Figures 2.1 and 2.2). Excluding bins 

with apparent sequence gaps, the recombination rate for the nonoverlapping bins 

varied from 0 to 20 cM/Mb. This range is in agreement with previous findings in the 

chicken genome [7]. Overall, recombination rates tended to be similar between the 

two populations (Figures 2.1 and 2.2). However, when regional differences in 

recombination hotspots were observed between the two populations, the location 

of these hotspots were mainly located at the telomere of the p arm (Figure 2.1 and 

Additional File 5). Moreover, the differences in recombination rate at the telomere 

appeared to be caused by female-specific recombination hot spots (Figure 2.2 and 

Additional File 5). Because the broiler x broiler cross (population 1) appears to 

deviates from other chicken populations, as described above, we conclude that this 

population had an increased female recombination rate near the telomere of the p 

arm. 
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To improve the current genome build, 613 unassigned markers were included on 

the 18K Illumina iSelect Beadchip. At the time, we assumed that these markers 

would have a high likelihood of being located on one of the missing 

microchromosomes, or in sequence gaps that still exist in the current genome 

build. In total, 59% (n = 360) of all unassigned markers were informative in at least 

one of our two mapping populations. For the markers that had already been 

mapped to a chromosome, these values were considerably higher: 77% (n = 

13,250). An explanation for the difference in informativity is that chromosome 

unassigned is known to be mainly comprised of sequences with lower quality, 

genome duplications and gene families (e.g. MHC). In particular, genome 

duplications and gene families are likely to result in the alignment of paralogous 

sequences, resulting in a higher frequency of false-positive SNPs. These false-

positive SNPs contribute to the decreased informativity of the chromosome 

unassigned markers. 

The majority of the informative unassigned SNPs on the beadchip were mapped in 

sequence gaps of chromosomes or linkage groups that were already covered by the 

WASHUC2 build. Only 17 SNPs did not appear to be located on any of these 

chromosomes; however, there was no linkage among these SNPs. The genome 

coverage for the microchromosomes is, therefore, not extended by the current 

linkage map. The fact that no new linkage groups were found is in agreement with 

previous findings that the sequences from the missing chromosomes may be 

difficult to clone and propagate in E.coli; therefore they are missing in the current 

draft sequence of the chicken genome [7, 13]. 

In addition to the new markers that were added to improve the current genome 

build, the high-resolution linkage map presented in this study can be used to 

correct mistakes in the order of sequences in the current genome assembly. A 

marker order in the linkage map that is different from the physical map may 

indicate mistakes in genome assembly. Although the marker order of the linkage 

map was mainly in agreement with the order of these markers on the physical map, 

some changes were observed. For the microchromosomes and the two linkage 

groups, these changes were not unexpected, because several of these 

chromosomes were known to be poorly assembled. On GGA5 and GGA13, the 

changed marker order suggests an incorrect genome assembly or a possible 

inversion in the broiler populations compared to the reference sequence (Red 

Jungle Fowl). In our data, the inversed marker order on GGA5 led to a 1.6 cM 

decrease in the length of the population 2, although no reduction in map length 

was seen in population 1. Similarly, on GGA13, the inversed marker order resulted 
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in a 1.8 cM decrease in the map of population 2, but had no influence on the map 

length of population 1. 

 

 
 

Figure 2.2 Sex-specific recombination rate for populations 1 and 2. Recombination rate was 

calculated for 500 kb nonoverlapping bins, and plotted using a sliding window of eight bins. 

The female map of population 1 is shown in blue, and the male map of population 1 is 

shown in red. The female map of population 2 is shown in purple, and the male map of 

population 2 is shown in green. On the x-axis, the genomic position is given in million base 

pairs. On the y-axis, the recombination rate is given in cM/Mb. If known, the position of the 

centromer is indicated by a solid black line. GGA16, GGA21–GGA28, LGE22, and LGE64 were 

not included in this figure, because the graphs of these 11 small chromosomes were 

uninformative. Note that the scale of the y-axis of GGA1 is twice as high as for the other 

chromosomes. 

 

2.5 Conclusions 

In this study, we present a linkage map of the chicken genome at a substantially 

higher resolution than previously published linkage maps. The increased resolution 

enabled us to study underlying recombination hotspots. There were regional 

difference in recombination hotspots between the two mapping populations in 

several chromosomes near the telomere of the p arm, and sex-specific analysis 

revealed that these regional differences were caused mainly by female-specific 

recombination hotspots in the broiler x broiler cross.  
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rates. It includes the bins for both populations (sex-average, female- and male-

specific), and the Z and p-values of the eight bin sliding windows. 
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Abstract 

One of the loci responsible for feather development in chickens is K. The K allele is 

partially dominant to the k+ allele and causes a retard in the emergence of flight 

feathers at hatch. The K locus is sex linked and located on the Z chromosome. 

Therefore, the locus can be utilized to produce phenotypes that identify the sexes 

of chicks at hatch. Previous studies on the organization of the K allele concluded 

the integration of endogenous retrovirus 21 (ev21) into one of two large 

homologous segments located on the Z chromosome of late feathering chickens. In 

this study, a detailed molecular analysis of the K locus and a DNA test to distinguish 

between homozygous and heterozygous late feathering males are presented. 

The K locus was investigated with quantitative PCR by examining copy number 

variations in a total of fourteen markers surrounding the ev21 integration site. The 

results showed a duplication at the K allele and sequence analysis of the breakpoint 

junction indicated a tandem duplication of 176,324 basepairs. The tandem 

duplication of this region results in the partial duplication of two genes; the 

prolactin receptor and the gene encoding sperm flagellar protein 2. Sequence 

analysis revealed that the duplication is similar in Broiler and White Leghorn. In 

addition, twelve late feathering animals, including Broiler, White Leghorn, and 

Brown Layer lines, contained a 78 bp breakpoint junction fragment, indicating that 

the duplication is similar in all breeds. The breakpoint junction was used to develop 

a TaqMan-based quantitative PCR test to allow distinction between homozygous 

and heterozygous late feathering males. In total, 85.3% of the animals tested were 

correctly assigned, 14.7% were unassigned and no animals were incorrectly 

assigned. 

The detailed molecular analysis presented in this study revealed the presence of a 

tandem duplication in the K allele. The duplication resulted in the partial 

duplication of two genes; the prolactin receptor and the gene encoding sperm 

flagellar protein 2. Furthermore, a DNA test was developed to distinguish between 

homozygous and heterozygous late feathering males.  
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3.1 Introduction 

One of the loci responsible for feather development in chickens was described by 

Serebrovsky in 1922 [1] and is designated by the symbol K, standing for ‘kürzer 

flügel’ (short wing) [2]. The K allele is associated with the late feathering phenotype 

(LF) that causes a retard in the emergence of primary and secondary flight feathers. 

The k+ allele is associated with the early feathering phenotype (EF), resulting in the 

earliest emergence of feathers. The K allele appears to be incompletely dominant 

to k+, resulting in phenotypes with different intensities due to a dosage effect of 

the locus [3]. For more detailed information about the feathering loci, see the 

extensive review by Chambers et al. [4].  

In birds, sex is determined by two chromosomes, Z and W. Males are homozygous 

ZZ and females are hemizygous ZW. The K locus is located on the Z chromosome 

and can be utilized to produce phenotypes that distinguish between the sexes of 

chicks at hatching, but also at the embryonic stage [5, 6]. This method of sexing 

based on differences in the rate of feather growth provides a convenient and 

inexpensive approach. 

Although the LF phenotype facilitates the sexing of chicks, the K allele is also 

associated with a reduction in egg production, an increase in infection by lymphoid 

leucosis virus [7], and an increase in the mortality rate [8]. These negative side 

effects may be caused by the presence of the endogenous retrovirus 21 (ev21) [8]. 

Concordance between expression of ev21 and the LF phenotype indicated a linkage 

of less than 0.3 cM between K and the ev21 locus [9, 10]. The ev21 locus consists of 

an integration site that can be occupied (ev21+) or unoccupied (ev21-). EF animals 

were found to have only one unoccupied site per Z chromosome; whereas, LF 

animals have at least one Z chromosome with an unoccupied and an occupied site 

[11]. A study on the organization of the K allele concluded the integration of ev21 

into one of two large homologous segments located on the Z chromosome of LF 

chickens [12]. EF revertants carrying an occupied site have been observed; 

therefore, it was concluded that ev21 itself could not be the sole cause of the LF 

phenotype [13]. 

Several tests have been developed to identify the EF and LF alleles [12, 14, 15]. 

These tests focused on the presence of the occupied and unoccupied site in the 

genome. Unfortunately, even if these methods are fully informative when applied 

to females, they do not allow for differentiation between homozygous and 

heterozygous males. Furthermore, the existence of ev21-positive EF animals will 

give false-positive results with these tests.  
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In this study we present a detailed molecular analysis of the K locus and develop a 

DNA test to distinguish between homozygous and heterozygous late feathering 

males. 

 

3.2 Results 

Molecular analysis of the K locus  

A quantitative PCR (qPCR) approach, as described by Weksberg et al. [16], was used 

to investigate the K locus. Copy number variation was determined at fourteen 

markers (STS_1-STS_14) designed to surround the ev21 integration site (Table 3.1). 

In two chickens, the most likely location of the duplicated block was mapped 

between markers STS_6 and STS_13 (Table 3.2). Marker STS_5 and marker STS_6 

gave ambiguous results (Table 3.2).  

To determine the size and orientation of the duplicated block, forward and reverse 

primers were designed for both ends (between marker STS_6 and STS_7, and 

between markers STS_13 and STS_14). A 1238 bp product was obtained spanning 

the breakpoint junction (marker STS_junction) in two late feathering males. With 

this marker, no PCR product was obtained from the DNA of the two EF birds. 

Sequence analysis of the PCR product obtained from the two LF males provided the 

exact breaking point. Based on the WASHUC2 assembly, the total length of the 

tandem duplication is 176,324 bp (GGAZ 9,966,364-10,142,688 bp). The tandem 

duplication of this region results in the partial duplication of two genes: the 

prolactin receptor (PRLR) and the gene encoding sperm flagellar protein 2 (SPEF2, 

also known as KPL2). The duplicated block included exons 1 to 11 and 558 bp of 

exon 12 of PRLR, and exons 1 to 5 of SPEF2 (Figure 3.1). No differences in the 

nucleotide sequences of the breakpoint junction fragments were observed 

between the Broiler and White Leghorn animals. 

To validate the duplication, a PCR reaction was performed with a new marker 

spanning the breakpoint junction (STS_break). The experiment was performed on 

twelve EF and twelve LF animals from eight different lines. No band was observed 

for the EF animals; whereas, all LF animals showed the 78 bp band corresponding 

to the breakpoint junction. 

To obtain information about possible aberrations at the ends of the duplication, 

both regions were sequenced (markers STS_5block and STS_3block). No sequence 

differences were found between the LF and wildtype (EF) animals. 
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Table 3.1 STS markers used in the molecular analysis of the K locus. 
 

Marker 

Name 

Location
1
 

(bp) 

Position Sequence Length 

(bp) 

STS_0 80092619 
2
 Forward CACACAGAAGACGGTGGATG 170 

 
80092788 

2
 Reverse TGGCTCCTACCTCCTGACAC 

 
STS_1 9764119 Forward GAAGGAGAGCCTGTTTGCTG 207 

 
9764325 Reverse CTTGTGGTGGTGAAGTGGTG 

 
STS_2 9862778 Forward AAGTGGGACAACGGAAAGAC 345 

 
9863122 Reverse AGGTCAAAGAAGGCACAAGG 

 
STS_3 9913200 Forward AGCCAGAAACAAAAGCCAAA 148 

 
9913347 Reverse TCAGCCTCGACACAGAAAAA 

 
STS_4 9933229 Forward AGTGTCAGTGTGCCTCTTGG 170 

 
9933398 Reverse CACGGCATTTATGAGATTGG 

 
STS_5 9950543 Forward AATCAGAGTTGCAGGGGTTG 135 

 
9950677 Reverse TTGACTGGGGCTCAATAAGG 

 
STS_6 9960545 Forward TCTCCCTCCCTGTCTTCTCA 215 

 
9960759 Reverse TGGCCTTGAAAATCCTCTTG 

 
STS_7 9973781 Forward TAGCAGACAAGGGCATTCAG 198 

 
9973584 Reverse GCATTTGTAGGGCTGGATTTG 

 
STS_8 9996871 Forward ACCAAAGCGTCCAAAATGTC 198 

 
9997068 Reverse TACCAGGGGAGAGCATGAAG 

 
STS_9 10038160 Forward AAATAGGCACGAGGGAAGC 176 

 
10037985 Reverse AACCATCAAGACTGGCTCAAC 

 
STS_10 10078039 Forward GCCCTCTAAGTGCCTGACTG 182 

 
10078220 Reverse TTTCATGCGTAGGAGCTGTG 

 
STS_11 10106858 Forward CACTTCCAGGGTTGGTGACT 343 

 
10107200 Reverse GAGGGCATCCATCACATCTC 

 
STS_12 10135701 Forward TGGAGCTGAGGAAAGAATCC 105 

 
10135805 Reverse TGCTTGCAGGTTTGAGTGTC 

 
STS_13 10168014 Forward TCCACTTGTCATGCACTTCC 179 

 
10168192 Reverse AAGTTCCCCAAAAATACTGCTG 

 
STS_14 10181226 Forward TGTGAGCAATTCCATTCTGG 216 

 
10181441 Reverse TTGGTTCAGTTTGGTCATCG 

 
STS_Junction 10141819 Forward CTGAGAGTGTTGTCCCAGCA 1432 

3
 

 
9966922 Reverse TGTTGAGTGCTCTTGGTTGC 

 
STS_Control 9899810 Forward ACGCTGGCTTTCCCAACAG 70 

 
9899879 Reverse AGACTGCCACATACCAGAAGCA 

 
STS_Break 10142644 Forward ACAAGTGTCAGACTAGGGCTAGCA 783 

 
9966396 Reverse TGAAACCATCCCTGGAGAGATG 

 
STS_5block 9965590 Forward ACCATTTCCACATTCCCTTCT 1333 

 
9966922 Reverse TGTTGAGTGCTCTTGGTTGC 

 
STS_3block 10141819 Forward CTGAGAGTGTTGTCCCAGCA 1289 

 
10143107 Reverse CGGGCCATTATTTCATTTTG 

 
 
1
) Genomic location on the Z-chromosome in basepairs (WASHUC2 assembly).            

2
) Marker STS_0 is located on chromosome 1.  

3
) In late feathering animals only. 
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DNA test to distinguish between homozygous and heterozygous late 

feathering males  

The breakpoint junction was used to develop a TaqMan-based DNA test that can 

distinguish between homozygous and heterozygous LF males (further referred to as 

the TaqMan K test). Two TaqMan markers were used: one outside the duplicated 

block (marker STS_control) was used as a control and one spanning the breakpoint 

junction (marker STS_break) was used for investigating the duplication (Table 3.1). 

Two minor groove binding (MGB)-probes were designed for these markers, the 

MGB-control probe (TCTGTCCAAACATTTATTTG) was labeled with the fluorescent 

dye VIC and used for the control marker STS_control, and the MGB-Break probe 

(CCCTTAAATGCCTTGCTT) was labeled with the fluorescent dye FAM and used for 

the breakpoint junction marker STS_break.   

To validate the TaqMan K test, 25 animals were tested in duplicate. Eight randomly 

selected reference animals (four K/K and four K/k+) were used to determine the 

range of K/K and K/k+ animals in each experiment (Table 3.3). Seventeen animals 

with known genotypes were used to validate the ranges (Table 3.4). In the first 

experiment, an animal was considered K/K if the ΔCt was between 0.68 and 1.43 or 

K/k+ if the ΔCt was between 1.75 and 2.50. For the second experiment, the range 

of ΔCt for K/K was between 0.63 and 1.24 and between 1.50 and 2.10 for K/k+. 

Based on these calculations, 94.1% of the animals in the first experiment were 

within the ranges of their known genotype (correctly assigned), and 5.9% were 

outside either range (unassigned). No animals were false positive (incorrectly 

assigned). In the second experiment, 76.5% of the animals were correctly assigned, 

23.5% were unassigned and no animals were incorrectly assigned. In total, 29 of 

the 34 validation animals (85.3%) were correctly assigned, 5 animals (14.7%) were 

unassigned and no animals were incorrectly assigned. 
 

Table 3.2 The ΔKCt values for the STS markers in two chickens. 
 

Breed
1
 Sex STS_1 STS_2 STS_3 STS_4 STS_5 STS_6 STS_7 

BR Male 0.05 0.20 0.21 0.11 0.40 0.20 1.17 

WL Male -0.03 -0.04 0.33 -0.04 0.01 0.38 1.24 

         

Breed
1
 Sex STS_8 STS_9 STS_10 STS_11 STS_12 STS_13 STS_14 

BR Male 1.49 1.52 1.71 1.19 1.36 0.29 0.14 

WL Male 1.11 1.21 1.62 1.13 1.23 0.13 0.15 

 

1 
BR: Broiler, WL: White Leghorn. Normal font indicates a ΔKCt ≤0.35.   

An italic font indicates a ΔKCt >0.35 and <0.65.  A bold font indicates a ΔKCt ≥0.65.   
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Figure 3.1 The organization of the k+ and K alleles. The k+ allele contains two genes; PRLR 

(purple exons) and SPEF2 (black exons). The K allele contains the original genes and the two 

partial duplicate genes, dPRLR and dSPEF2. The green box indicates the unoccupied ev21 

integration site. One of the red boxes indicates an unoccupied and the other an occupied 

ev21 integration site. The large yellow and blue boxes indicate the 176.3kb duplicated block. 

The grey arrows indicate transcriptional start and stop. The question mark indicates a 

transcript of unknown length. 

 

3.3 Discussion 

The detailed molecular analysis presented in this study confirmed the presence of 

the duplication first described by Iraqi and Smith [12]. The total size of the tandem 

duplication is 176,324 bp, which is in agreement with the estimated 180kb [12]. 

Sequence analysis found that the duplication is similar in both Broiler and White 

Leghorn lines, and all 12 LF animals showed the 78 bp breakpoint junction fragment 

(marker STS_break in the current study) indicating that the duplication is similar in 

all animals. This suggests that the duplication was of the same origin for all three 

breeds, and that the duplication most likely occurred in a common ancestor. On the 

other hand, since the K allele is extensively used by breeders, it is also likely that 

this particular allele was introduced into all three breeds.  

In theory, the values of unaffected and duplicated markers should be equal to 0 or 

1, respectively, in the qPCR experiments. However, ΔKCt varied from -0.04 to 1.71, 

and markers STS_5 and STS_6 had ambiguous results (Table 3.2). This variation is 

likely to be due to biological variations and the fact that the experiment was only 

performed once with two animals.  

The observed duplication could be the result of an unequal recombination event in 

the Z chromosome. However, no apparent sequence homologies are found in the 

two areas involved in the duplication. Therefore, the unequal recombination event 

is not supported by our data, although a nonhomologous recombination event 

cannot be excluded. Alternatively, integration of ev21 resulted in the duplication at 

the K locus. This raises the possibility of additional duplications at other locations in 

the chicken genome, which contains approximately 12,000 copies of long terminal 
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repeats (1.3%) belonging to the vertebrate-specific class of retroviruses [17]. 

However, the actual ends of the duplicated block are located approximately 70kb 

upstream and 103kb downstream of the ev21 integration site, making this 

possibility less likely. 

A PCR amplicon spanning the breakpoint junction is sufficient for distinguishing LF 

birds from EF birds. In males however, the challenge was to be able to differentiate 

between LF homozygous (K/K) and LF heterozygous (K/k+) animals. In this study, 

we found that the duplicated block is specific for the K allele and it was used to 

develop a DNA test based on the breakpoint junction. Since the PCR reactions in 

the TaqMan K test are performed in a multiplex, the concentration of DNA, 

theoretically, has no influence on the ΔCt. This contributes to the robustness of the 

test since variations in the concentration of DNA between and within test and 

control animals does not have an influence on the results. The ΔCt value gives an 

indication of the haplotype of an animal. In theory, when ΔCt is equal to 1, the 

animal is heterozygous, and when ΔCt is equal to 0, the animal is homozygous 

(Figure 3.2). In the TaqMan K test experiments, the homozygous reference animals 

had an average ΔCt of 1.06 and 0.94, and the heterozygous reference animals had 

an average ΔCt of 2.13 and 1.80 (Table 3.3). This difference from the theoretical 

value was most likely caused by the different efficiencies of the markers.   

 

Table 3.3 The TaqMan-based DNA test for the K allele on reference animals. 
 

Animal ID Genotype Experiment 1 Experiment 2 

  
Δ Ct Δ Ct 

6333 K/K 0.92 0.79 

4148 K/K 1.14 0.77 

4384 K/K 1.16 1.13 

6323 K/K 1.00 1.05 

    
949 K/k+ 2.15 1.76 

6182 K/k+ 2.09 1.62 

2636 K/k+ 1.90 1.66 

  947 K/k+ 2.38 2.14 

Average K/K 1.06 0.94 

 
K/k+ 1.80 2.13 
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The aim was to develop a highly reliable test that is convenient for intensive use. 

The reliability of the test was defined by the percentage of correctly and incorrectly 

assigned animals. The TaqMan K test was validated using eight reference and 

seventeen validation animals in duplicate. Of the validation animals tested, 85.3% 

were identified correctly, 14.7% were unassigned, and no animals were incorrectly 

assigned (Table 3.4). Based on the literature, no previous test has been capable of 

identifying LF homozygous and LF heterozygous males with this level of reliability.  

Although the LF phenotype facilitates the sexing of chicks at hatching, expression of 

ev21 is associated with the negative side effects of the K allele [7,8]. The 

establishment of a line where late-feathering is not associated with decreased egg 

production and tolerance to exogenous avian leucosis virus infection would be of 

prime commercial interest. Obviously, the search for the K allele lacking the 

occupied site is an effective approach. This search for revertants and the 

establishment of a line can be done by combining the TaqMan K test and the ev21 

test proposed by Tixier-Boichard [15]. 

The observed duplication resulted in the partial duplication of two genes: PRLR and 

SPEF2 (Figure 3.1). The genes are oriented in opposite directions; therefore, the 

duplication event does not result in a fusion gene. However, alternative transcripts 

of the partially duplicated genes may be found. Interestingly, the transcript of both 

partially duplicated genes could contain the antisense sequence of the other gene, 

which could lead to RNA interference and influence the translation of both the 

duplicated and original genes.      

The membrane-bound PRLR is closely related to the growth hormone receptor and 

is a member of the cytokine receptor family [18]. The pituitary hormone, prolactin 

(PRL), is a ligand of PRLR. More than 300 separate biological activities have been 

attributed to PRL: reproduction, endocrine signaling and metabolism, control of 

water and electrolyte balance, growth and development, neurotransmission and 

behavior, and immunoregulation and protection [19]. More detailed functions of 

PRL include involvement in the control of seasonal pelage cycles [20, 21, 22], egg 

production [23], and the induction of molting [24]. Furthermore, PRL is involved in 

the immune system [25], autoimmune diseases, and the growth of different forms 

of cancer [18]. In PRLR (-/-) knockout studies on mice, the normal progression of 

hair replacement and follicle development have been observed [26]. These 

knockout mice showed a change in the timing of hair replacement and molting, and 

both phenotypes are advanced compared to the wild type. It was concluded that 

knocking out PRLR shortens the telogen phase of the hair cycle and advances the 

anagen phase of hair follicles [26, 27]. Therefore, it can be suggested that PRLR 

plays an inhibitory role in follicle activation.  
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The relatively unknown protein, SPEF2, is believed to play an important role in the 

differentiation of axoneme-containing cells [28].
 
 Truncation of the SPEF2 protein 

results in immotile short-tail sperm in pigs [29]. Due to the presence of an ATP/GTP 

binding site and a proline rich domain, it was suggested that SPEF2 might be 

involved in signal transmission [28]. 

 

Table 3.4 The TaqMan-based DNA test for the K allele validated on late feathering K/K and 

K/k+ animals.  
 

Animal ID Known Experiment
 
1 Experiment

 
2 

 
 Genotype ΔCt Genotype ΔCt Genotype 

 

2864 K/k+ 0.76 K/k+ 0.64 K/k+ 
 

B2L4 K/k+ 0.68 K/k+ 0.49 unassigned 
 

942 K/k+ 0.90 K/k+ 1.01 K/k+ 
 

2855 K/k+ 0.98 K/k+ 0.87 K/k+ 
 

4117 K/k+ 1.10 K/k+ 0.40 unassigned 
 

4118 K/k+ 0.98 K/k+ 0.83 K/k+ 
 

4332 K/k+ 1.31 K/k+ 1.14 K/k+ 
 

6388 K/k+ 1.06 K/k+ 0.77 K/k+ 
 

6324 K/k+ 1.12 K/k+ 0.91 K/k+ 
 

       
6130 K/K 2.44 K/K 1.84 K/K 

 
6297 K/K 2.09 K/K 1.40 unassigned 

 
952 K/K 2.09 K/K 1.74 K/K 

 
1030 K/K 1.83 K/K 1.9 K/K 

 
2849 K/K 2.26 K/K 1.64 K/K 

 
6187 K/K 2.10 K/K 1.85 K/K 

 
6242 K/K 1.73 unassigned 1.50 K/K 

 
6172 K/K 1.93 K/K 1.47 unassigned 

 

 
Experiment 1 Experiment 2 Total 

 

Animals 

(n=17) 

% Animals 

(n=17) 

% Animals 

(n=34) 

% 

Correct 16 94.1 13 76.5 29 85.3 

Incorrect 0 0 0 0 0 0 

Unassigned 1 5.9 4 23.5 5 14.7 

 

The seventeen animals were validated based on the ranges found for K/K and K/k+. For 

experiment 1, the Δ Ct range for K/K was 0.68-1.43 and for K/k+ 1.75-2.50. For experiment 2, 

the Δ Ct range for K/K was 0.63-1.24 and for K/k+ 1.50-2.10. 
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The actual cause of delayed feathering is still unknown. It can be speculated that 

PRLR, due to its inhibitory role in follicle activation, is the major candidate gene 

involved in this delay. SPEF2 may be involved in the transmission of signals in the 

feather growth pathway. Further research is needed to confirm the involvement of 

these genes, which could focus on 1) the truncated proteins formed by PRLR or 

SPEF2 as a result of the partial duplication, 2) the transcripts of the partially 

duplicated genes and their influence on the expression and translation of the two 

original genes, and 3) the expression of (partially duplicated) PRLR and SPEF2 that 

may have changed due to the rearrangement, duplication, or deletion of regulatory 

elements. 

 

 
 

Figure 3.2 Difference in the Ct values of homozygous early feathering (EF), heterozygous late 

feathering (LF), and homozygous LF animals. A) Comparison of K locus components on the Z 

chromosomes of different genotypes. The red striped box and blue striped box indicate the 

duplicated blocks of genetic sequence. The dark blue line is marker STS_control and the 

green line is marker STS_break. B) The theoretical curves of the qPCR. In k+/k+ animals the 

difference between Ct (Break) and Ct (Control) will be –Ct (Control). For k+/K animals the 

theoretical difference will be 1 Cycle. For K/K animals the difference will be 0. 

 

Although it has been extensively described that ev21 causes the negative side 

effects of the K allele, the findings of this study might also indicate involvement of 

PRLR. As described above, prolactin and its receptor are involved in the growth of 

different forms of cancer [18], egg production [23], and in the immune system [25].  

Because the negative side effects of the K allele include an increase in infection by 

lymphoid leucosis virus, an increased mortality, and a reduction in egg production, 

it can be speculated that the partial duplication, altered expression, or altered 

translation of PRLR might also be involved in the negative side effects. If the partial 
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duplication of PRLR is responsible for the delay in feather growth, and contributes 

to the negative side effects, it will not be possible to separate the advantageous 

and disadvantageous effects of the K allele. 

 

3.4 Conclusions 

The detailed molecular analysis presented in this study indicates the presence of a 

176,324 bp tandem duplication in the K allele. An identical duplicated block is 

found in Broiler, White Leghorn, and Brown Layer lines. The duplication results in 

the partial duplication of two genes: PRLR and SPEF2. Due to its inhibitory role in 

follicle activation, PRLR is the most likely candidate gene involved in the delay of 

feather growth. However, SPEF2 may be involved in the transmission of signals in 

the feather growth pathway.  

In addition to the characterization of the K locus, a DNA test was developed to 

distinguish between homozygous and heterozygous late feathering males. The 

percentage of animals correctly assigned was 85.3%, while 14.7% were unassigned. 

No animals were incorrectly assigned. To date, this is the most reliable and robust 

DNA test developed to differentiate between LF homozygous and LF heterozygous 

males, and would be indispensable in decreasing errors generated by crossing 

animals with incorrect genotypes. 

 

3.5 Methods 

DNA collection 

Chicken genomic DNA was extracted from the blood of EF and LF animals provided 

by Hendrix Genetics (the Netherlands) using the Puregene DNA purification blood 

kit (Gentra System, USA). DNA concentration and quality were measured using the 

Nanodrop ND-1000 spectrophotometer. In total, 14 homozygous EF males (k+/k+), 

23 homozygous LF males (K/K), three LF females (K/W), and 12 heterozygous LF 

males (K/k+) from three different lines (Broiler, White Leghorn, and Brown Layer) 

were used. The genotypes were determined by examining the feathering 

phenotypes of their offspring. 

 

Primers and probes 

The TaqMan primers and probes were designed using Primer Express 3.0 (Applied 

Biosystems) and all other primers were designed using Primer3 [30]. All primers 

were designed using sequence information from assembly WASHUC2 (may 2006), 

available on the Ensembl website [31].  
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Molecular analysis of the K locus  

For the 15 STS markers (STS_0 to STS_14), the criteria for primer design were as 

follows: amplicons of 100 to 250bp, primer melting temperature ranging from 58
o
C 

to 62
o
C, primer length ranging from 19 to 22 bp, and primer G/C content ranging 

from 40% to 60%. Slope values were calculated using software from Applied 

Biosystems (SDS1.2) and an input of 50, 5, 0.5, and 0.05 ng (10
2

 - 10
-2

) DNA was 

used in duplicate. The slope values of all markers were within the range of -3.32 ± 

0.25 [16] and the R
2 

of all markers was above 0.994. Marker STS_0, designed in the 

glyceraldehyde-3-phosphate dehydrogenase gene, was used to normalize the data. 

The qPCR experiment was performed with the Real-time PCR 7500 from Applied 

Biosystems. Each 25 µl qPCR reaction was comprised of 12.5 µl IQ SYBR GREEN 

mastermix (Biorad), 300 nM of each primer, and 20 ng of genomic DNA. Genomic 

DNA from two EF (one Broiler and one White Leghorn) and two LF animals (one 

Broiler and one White Leghorn) were tested once for all markers. The PCR program 

was 50
o
C for 2 min, a 10 min denaturation at 95

o
C, then 40 cycles of 95

o
C for 15 sec 

and combined annealing and extension at 60
o
C for 60 sec. At the end, a 

dissociation step was included to confirm the specificity of the product. Results 

were expressed in the number of cycles (Ct value) at a threshold of 100,000 ΔRn. 

The method described by Sijben et al. [32] was used to normalize the Ct values 

(KCt). All data was normalized against the Ct values of marker STS_0. Slope values 

were included in the calculations.  

For all markers, the average KCt was calculated for both EF animals and substracted 

from the KCt of each LF animal (ΔKCt). When the ΔKCt of a marker was less than 

0.35, no duplication was observed; when ΔKCt was between 0.35 and 0.65, the 

result was ambiguous and no conclusion could be given; and when ΔKCt was more 

than 0.65, it indicated a gain of one copy and, therefore, a duplicated marker [16].  

In order to obtain the exact breakpoint, and to identify specific SNPs in this region, 

the PCR reaction was performed on one EF male and one LF male from two breeds 

(Broiler and White Leghorn). The PTC-100 Thermal Controller (MJ Research, Inc.) 

was used. The PCR reaction (10 µl total volume) was comprised of 5 µl ABgene PCR 

mastermix, 400 nM of each primer, and 20 ng of genomic DNA. The PCR program 

was 95 
o
C for 5 min, followed by 36 cycles of 95 

o
C for 30 sec, 60 

o
C for 45 sec, and 

72 
o
C for 1 min 30 sec, with a final extension at 72 

o
C for 10 min. Amplified products 

were separated at 115 V for 45 min on a 1.5% agarose gel. The products of marker 

STS_Junction, STS_5Block, and STS_3Block were amplified and sequenced using the 

Applied Biosystems 3730 DNA analyzer. The standard protocol of the Big Dye 

Terminator Cycle Sequencing Kit v3.1 (ABI) was used. Sequence data was analyzed 

using Pregap4 and Gap4 of the Staden Software Package [33]. The Pregap4 
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modules were used to prepare the sequence data for assembly (quality analysis). 

Gap4 was used for the final sequence assembly of the Pregap4 output files (normal 

shotgun assembly). 

In addition, PCR reactions were performed on the breakpoint junction in twelve EF 

and twelve LF animals using the breakpoint junction marker STS_break (Table 3.1). 

Eight different lines were used: four EF and four LF lines consisting of four Broiler, 

two White Leghorn, and two Brown Layer lines. From each line, three animals were 

used in the experiment. The three LF White Leghorn animals were female. The PCR 

method was similar to that described above. 

 

The TaqMan K test 

Standard curves were generated using the SDS1.2 software from Applied 

Biosystems with a DNA concentration of 5, 0.5, and 0.05 ng in triplicate. Marker 

STS_control had a R
2

 value of 0.995 and a slope of -3.36. Marker STS_break had a R
2
 

of 0.977 and a slope of -4.31. For marker STS_break, no marker could be developed 

with a higher R
2 

or a higher slope. Each 25 µl qPCR reaction was comprised of 12.5 

µl ABgene PCR master mix, 300 nM of each primer, 100 nM of each probe, and 5 ng 

genomic DNA. The breakpoint junction and control primers and probes were used 

in multiplex within one reaction. The experiments were performed using the same 

PCR program used in the qPCR experiments, but without a dissociation step. Based 

on the results, the threshold was kept at 9200 ΔRn for all calculations. The 

difference in the number of cycles between the breakpoint junction and control 

marker was calculated (ΔCt = Ct FAM – Ct VIC). The difference between the average 

ΔCt of eight reference animals (four K/K and four K/k+) was used to calculate the 

DΔCt (DΔCt = ΔCt K/K - ΔCt K/k). This DΔCt was then used to calculate a range of 

ΔCt values to distinguish between K/K and K/k+ (Figure 3.3). An animal was 

assigned as homozygous (K/K) if the ΔCt was in the range of -35% to +35% DΔCt of 

the average from the homozygous reference animals. An animal was assigned as 

heterozygous (K/k+) if the ΔCt was in the range of -35% or +35% DΔCt of the 

average from the heterozygous reference animals. The ΔCt values outside these 

ranges were considered to be unassigned and when a tested animal was placed 

into the wrong genotype it was considered to be incorrectly assigned (false 

positive). 

 

  



3 Late feathering 

 

 

69 
 

 
 

Figure 3.3 Range of ΔCt used to identify the genotype of the tested animals. 
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Abstract 

The recent advances in massive parallel sequencing technologies have enabled 

rapid and cost-effective detection of all genetic variants within genomes. The 

detection of all genetic variants within a genome has further increased our ability 

to identify causative variants underlying quantitative trait loci (QTL). In this study, 

we combined a genome-wide association study with whole-genome resequencing 

to identify causative variants underlying the pulmonary hypertension syndrome 

(PHS) in chicken. PHS is a metabolic disease that has been linked to intense 

selection on growth rate and feed conversion ratio of modern broilers (meat-type 

chicken). PHS has become one of the most frequent causes of mortality within the 

broiler industry and leads to substantial economic losses and reduced animal 

welfare. In total, 18 QTL regions were identified in the genome-wide association 

study. In order to detect causative variants underlying these QTL regions, we 

sequenced the genomes of twelve individuals. To maximize the detection of 

causative variants we selected the individuals based on extreme phenotypes for 

PHS. In total 70 potential protein function affecting SNPs were detected in 28 genes 

within 13 out of the 18 QTL regions. Within 10 genes, at least one variant is 

predicted to affect the protein function and several genes have a clear functional 

relationship with PHS. 
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4.1 Introduction 

The Pulmonary Hypertension Syndrome (PHS, also reffered to as Ascites Syndrome) 

is a metabolic disease that has been linked to intense selection on growth rate and 

feed conversion ratio of modern broilers (meat-type chicken) [1,2]. PHS has 

become one of the most frequent causes of mortality within the broiler industry 

and leads to substantial economic losses and reduced animal welfare [3,4]. Right 

ventricular failure as a result of pulmonary hypertension is the most frequent cause 

of PHS [5]. PHS resulting from right ventricular failure is characterized by a flaccid 

heart due to dilation and right ventricular hypertrophy, liver abnormalities, and 

ascites fluid excretion in the pericardium and abdominal cavity (Figure 4.1) 

[1,2,6,7,8]. The incidence of PHS can be influenced by factors that increase the 

oxygen demand, metabolic rate, heat production or resistance to blood flow in the 

lung [1,9,10,11]. Environmental conditions including altitude, temperature, lighting 

and ventilation can also contribute to increased PHS occurrence [2]. The main 

contributor to PHS is believed to be hypoxia that results from a disproportion 

between oxygen requirement and the cardiovascular ability to supply oxygen 

[7,12,13].  

 

 
 

Figure 4.1 Clinical signs of PHS. A) A healthy chicken heart and a severely affected chicken 

heart due to PHS. Note that the PHS heart is flaccid and has an enlarged right ventricle. B) 

Dissected chicken suffering from PHS. The arrow (a) indicates ascites fluid in the abdominal 

cavity. C) Dissected chicken suffering from PHS after removal of ascites fluid and the ribcage. 

Arrow b indicates liver abnormality and arrow c indicates fluid in the pericardium cavity.  
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Despite intense research for several decades the molecular etiology of PHS remains 

unclear. Several QTLs have been identified in linkage analysis studies, thereby 

suggesting a polygenic and complex background for PHS [14]. Large confidence 

intervals of the identified QTLs resulted in a large number of potential candidate 

genes. Although for several genes the coding regions were sequenced using 

traditional Sanger sequencing, no causative variants were detected that 

contributed to PHS (Elferink unpublished results).  

The development of high density genome-wide SNP assays has enabled genome-

wide association studies (GWAS) [15]. Because GWAS does not need to be 

performed on a within family basis, which is the case for classical linkage analysis, 

large sample sizes can be used. These large sample sizes results in increased 

statistical power to identify [16] and map [15,17] QTLs, which is required for 

polygenic traits. GWAS has successfully identified QTLs involved in both monogenic 

and polygenic traits and diseases in human [18] and livestock species 

[19,20,21,22,23]. 

Recent developments in massive parallel sequencing (MPS) technologies 

[24,25,26,27] have enabled high-throughput identification of causative variants 

underlying a variety of traits and diseases [28,29,30,31,32,33]. Although currently 

too expensive for large sample sizes, costs can be reduced by careful selection of a 

small subset of individuals with a priori knowledge of the trait under investigation 

to maximize the detection of (rare) causative variants [34]. 

In this study, we performed a GWAS based on 895 animals genotyped with 17,790 

SNPs and phenotypic observation from 8,158 offspring. In order to detect causative 

variants underlying the GWAS signals we re-sequenced the individual genomes of 

12 of the 895 genotyped parents. To maximize the detection of variants involved in 

PHS, we selected 6 animals with extreme low and 6 animals with extreme high 

estimated breeding values (EBV) for RATIO, an indicator trait for PHS. In this paper 

we describe the first phase towards the detection of causative variants underlying 

PHS, in which we focus on the detection of potential protein affecting SNPs closely 

located near the most significant GWAS signals. 

 

4.2 Material & Methods 

GWAS 

The animal population used, was a purebred broiler dam line originating from the 

White Plymouth Rock breed. The main selection criterion for this population was 

breast meat percentage. The effective population size of this population is 

approximately 100. The dataset for the GWAS consisted of 895 parents genotyped 
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with an Illumina Infinium iSelect Beadchip with 17,790 SNPs and 8,158 offspring 

that were phenotyped for the PHS indicator trait RATIO (right ventricular weight / 

total ventricular weight). RATIO is an indicator for the amount of right ventricular 

hypertrophy, and has been suggested as a good indicator trait for PHS [12,35,36]. 

All phenotyped chickens were kept under a cold temperature regime and increased 

CO2 levels to challenge PHS development. The chickens were group housed with 20 

birds/m2, had ad libitum access to commercial broiler feed containing 12,970 

KJ/kg, and were exposed to 23h of light per day during the entire experiment. 

Except for the applied temperature schedule and increased CO2 level, the chickens 

were kept under conditions that closely resemble commercial practice. All animals 

that died during the experiment were phenotyped on PHS traits. Surviving animals 

were sacrificed at 7 weeks of age and thereafter phenotyped for PHS related traits. 

The experiment was carried out by licensed and authorized personnel under 

approval of Hendrix Genetics, Boxmeer, the Netherlands.  

ASReml software [37] was used to calculate associations between each SNP and 

indicator trait RATIO. For the analysis, only SNPs located on autosomal 

chromosomes were used. The following mixed model was used: 

ijk
e

j
animal

i
SNPμ

ijk
y +++= , where 

 

yijk=   the average adjusted trait value of the 895 parents. The 

phenotypes of the offspring were adjusted for systematic 

environmental effects sex and the batch by stable interaction. The 

adjusted trait values were corrected for the contribution of the 

mate, averaged and assigned to a parent, 

SNPi=  the fixed effect of the SNP genotype. A single SNP analysis was 

performed,  

animalj=  the random genetic effect of Animal j. ( )2
aA0,N~Animal σ . A is 

the additive genetic relationship matrix accounting for all family 

relationships.  

eijk=   the random residual effect with ( )2
eW0,N~e σ . W is a diagonal 

matrix containing weights for each observation. The weight for 

each observation is the number of progeny of a parent. 
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The following model was used to calculate estimated breeding values: 

ijklmnookjjklmno e  animal  stable*batch  sex   y ++++= µ
, where

 

yijklmnop=   the phenotype of individual ijklmnop, i.e. observations on 8,158 

offspring,  

sexj,=  effect of gender of the bird (j= 1,2, male or female), 

batch*stablek=  effect of the interaction between batch and stable (k= 1, 2….,10). 

There were 5 batches and 2 stables, 

animalj=  is the random genetic effect of Animal j. ( )2
aA0,N~Animal σ . A 

is the additive genetic relationship matrix accounting for all family 

relationships, 

 eijk=   is random residual effect with ( )2
eI0,N~e σ . 

Estimated breeding values for the 895 parents were selected from the file 

containing solutions for all animals in the pedigree file. 

 

Table 4.1 Estimated breeding values and alignment statistics for the selected animals. 
 

Animal 

ID 

Sire  

ID 

Dam 

ID 

# Off 
1
 EBV 

RATIO 

Sequence 

coverage
2
 

Assembly 

coverage
3
 

Assembly 

coverage 4X
4
 

     (fold) (%) (%) 

9668 1966 2403 145 -6.4 12.5 91.9 88.1 

9259 3742 4697 48 -6.1 7.7 91.5 81.6 

8699 9538 8915 41 -5.8 11.9 92.0 88.6 

9660 1242 1097 146 -5.4 11.9 92.0 88.3 

9439 5140 4957 73 -5.1 11.4 92.2 88.3 

9653 1229 1873 33 -5.1 10.9 92.0 88.0 

        
9841 9614 9636 56 3.9 13.9 92.1 88.9 

9801 9056 9583 112 4.0 11.5 91.9 87.8 

8993 6459 6654 56 4.5 16.1 92.3 89.9 

8711 9538 9854 156 4.7 14.2 92.2 89.3 

9869 1831 8516 179 5.7 14.4 92.7 89.0 

8788 901 8947 38 7.8 12.2 92.3 88.7 
 
1
 # off = number of phenotyped offspring on which the EBV for RATIO was calculated. 

2 
The 

average sequence depth of each base in the reference genome that is covered by at least 1 

read. The used reference genome without chrUn_random and the artificial centromeres is 

1,016,609,635 bp. 
3 

Percentage of the reference genome that is covered by at least one read. 
4
 Percentage of the reference genome that is covered by at least 4 reads.  
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Whole-genome resequencing and SNP discovery 

In total, twelve animals were selected for whole-genome resequencing based on 

their breeding values for RATIO (Table 4.1). Six animals had extreme low breeding 

values and six animals had extreme high breeding values. Animals within one of the 

extreme phenotype groups were not allowed to be full- or half-sibs. Due to our 

experimental design, sires had much more offspring compared to dams. As 

breeding values for animals with a low number of offspring are regressed towards 

the mean, extreme animals, i.e. the animals selected for resequencing, were all 

male. DNA was extracted from whole-blood using the Gentra DNA extraction kit 

(Qiagen). The DNA was randomly sheared and libraries were made from fragments 

with an average length of 200 bp. Each animal was sequenced (100 bp, paired-end) 

in one lane of a flow cell on the Illumina HiSeq 2000 platform. The workflow for 

SNP discovery was as follows. Custom made python scripts were used to trim the 

read on base quality. If three bases in row had a base quality of less than 20, the 

read was trimmed from the first base that was below this threshold. Both mates of 

the paired-end reads were required to be at least 36 base pairs in size. MOSAIK 

assembler software [38] was used to align the paired-end reads to the reference 

genome of the chicken (build WASHUC2). Except for chromosome unassigned, all 

known chromosomes and linkage groups were used (total length 1,016,609,635 

bp). Alignment parameters were as follows: hash size= 15, maximum percentage of 

mismatches allowed= 7%, alignment candidate threshold= 30, maximum hash 

position= 100. The option ‘aligned read length to count mismatches’ (-mmal) was 

applied, and the threshold for the minimum percentage of read length that needs 

to be aligned (-minp) was set to 50%. To increase the alignment the banded Smith-

Waterman algorithm was used (bw= 41) and the reference genome was converted 

to a jump database. Alignment files were sorted using MosaikSort with the ‘allow 

all fragments lengths evaluating unique read pairs’ option.  

The mpileup function of SamTools version 0.1.12a [39] was used to call variants for 

all twelve animals simultaneous. The view option of bcftools [39]) was used to call 

the genotype at each variant for each animal. Custom made python scripts were 

used to remove genotype calls per animal with a genotype quality less than 20, 

with a base coverage less than 4 or more than 30, and for tri-allelic SNPs. In this 

study, we focused on SNPs only and, therefore, removed all genotype call for 

indels. Each SNP position where at least 4 animals had a genotype call that passed 

filter criteria, was regarded as a putative SNP.  

In order to estimate the SNP false discovery rate (FDR), we focused on a large 

region in the genome in which all animals were clearly homozygous for at least one 

haplotype. We regarded each heterozygous SNP call within this homozygous region 
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to be a false positive. For each animal, the FDR was calculated by dividing the 

number of heterozygous SNP within this homozygous region by the number of 

bases that were sufficiently covered for genotype calling (4 - 30 fold coverage). In 

order to estimate the false negative rate (FNR), we compered the genotype data 

for the 18k SNP assay with the genotype call from MPS, and for each animal 

separately. More specifically, a SNP was considered a false negative if a 

heterozygous call in the 18k assay was called homozygous within the MPS data.  

 

Functional annotation of SNPs  

The gene-based analysis of ANNOVAR software [40] was used to functionally 

annotate the putative SNPs. For each putative SNP, the position (exonic, intronic, 

intergenic, 5’UTR, 3’UTR, splice acceptor or donor site, downstream, or upstream) 

and the functional annotation (nonsynonymous, synonymous, stop codon gain, 

stop codon lost) were determined based on the reference genome (WASHUC2) and 

gene annotation from Ensembl [41]. Standard setting for gene-based analysis of 

ANNOVAR were used. 

SIFT software version 4.0.3 [42] was used to determine the effect of 

nonsynonymous variants on protein function. SIFT software predicts whether an 

amino acid substitution affects protein function based on sequence homology and 

the physical properties of amino acids. Standard setting for SIFT predictions were 

used – a prediction score of less than 0.05 was regarded to affect protein function - 

and sequence prediction were based on the NCBI nonredundant database (2008). 

 

4.3 Results 

GWAS 

In total, 9,653 autosomal SNPs (chromosome 1-28) segregating within the 

population were used for the single SNP association analysis (Figure 4.2). We 

decided to focus on the most significant SNPs within our analysis and choose a –

log10(p-value) threshold of 3 which corresponds to a FDR ≤ 0.38. In total, 25 SNPs 

passed this threshold (Table 4.2). Three of these SNPs exceeded a –log10(p-value) 

of 4 which corresponds to a FDR ≤ 0.24. In order to detect potential causative 

variants, we decided to focus on a window of 200kb surrounding each of the 25 

SNPs (100kb upstream and downstream of each SNP). However, if a gene was 

partially located within the window, the window size was increased in order to 

include the entire gene. Overlapping windows were merged, which resulted in 18 

different chromosomal regions, hereafter referred to as QTL regions (Table 4.2). 

Out of the 18 QTL regions, 14 regions contained a single SNP with high significance 

and 4 regions contained 2 to 4 SNPs with high significance (Table 4.2). 
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Figure 4.2 Genome-wide plot of all SNPs used in the association study. On the y-axis the        

–log10(p-value) is given. On the x-axis the chromosome location is given (GGA1-28, only 

uneven chromosomes are labeled). The dashed grey line indicates the –log10(p-value) 

threshold of 3.  

 

Whole-genome resequencing and SNP discovery 

DNA of each individual animal was sequenced in a single lane of a flow cell resulting 

in 7.8 - 16.4 Gb of sequence per animal. After quality trimming and alignment of 

the short reads, the percentage of bases in the reference genome covered by at 

least one read varied between 91.5% and 92.7% for the 12 animals sequenced 

(Table 4.1). The percentage of bases in the reference genome covered by at least 

four reads, and therefore sufficient for genotype calling, varied between 81.6% and 

89.9% (Table 4.1). The average sequence depth for each covered base in the 

reference genome varied between 7.1 and 14.9 (Table 4.1).  

In total, 7.62 million putative SNPs were detected compared to the reference 

genome (Table 4.3). Of these SNPs, 6.17 million SNPs were segregating within the 

twelve animals. On average, 4.56 million SNPs were detected in each individual 

compared to the reference genome (that is, the individual is either heterozygous or 

homozygous for the non-reference allele) (Table 4.3). Within each animal, on 

average, two million heterozygous SNPs are detected (ranging from 1.69-2.58 

million). The SNP FDR was estimated based on the number of heterozygote SNP 

calls within a 4.73 Mb large regions on chromosome 1 (129,085,000-133,815,000 

bp), for which all animals clearly are homozygous for a single haplotype (Figure 

4.3). Based on this region, we estimate the SNP FDR to be 0.0013% per nucleotide 

position in the reference genome (ranging from 0.0009-0.0018%). This indicates 

that, on average 12,794 false positive heterozygous SNPs will be detected per 

individual in the entire genome. Based on the heterozygous SNP calls from the 18k 

SNP assay, we estimate the SNP FNR to be 12.3% per heterozygous genotype call 

within entire genome (ranging from 6.5-24.5%). This indicates that, on average, 

282,937 heterozygous SNPs are missed per individual (ranging from 157,672-

548,131). In total, corrected for the FDR, and the FNR, each individual contains, on 

average, 2.27 million heterozygous SNPs in the entire genome (ranging from 1.86-
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3.03 million). The average heterozygous SNP frequency per individual is 2.24 SNPs 

kb
-1 

(ranging from 1.83-2.98 SNPs kb
-1

). 

 

Table 4.2 The most significant SNPs detected in the GWAS. 
 

SNP ID Chr Position Region (+/- 100kb)
1
 -log10(p-value) FDR 

rs14789557 1 2,124,738 2,024,738 2,224,738 3.26 0.38 

rs16079719 1 7,880,128 7,780,128 7,980,128 4.10 0.24 

rs13841399 1 27,984,448 27,884,448 28,084,448 3.00 0.38 

rs13747646 1 28,523,801 28,423,801 28,632,749 3.00 0.38 

rs14811108 1 37,855,143 37,725,119 37,955,143 3.00 0.38 

rs15236245 1 38,231,869 38,117,669 38,331,869 3.15 0.38 

rs14899763 1 148,951,482 
148,754,342 149,273,569 

3.91 0.24 

rs13952858 1 149,173,569 3.81 0.24 

rs14218633 2 92,844,355 92,738,644 92,981,551 3.00 0.38 

rs15257935 3 3,581,789 3,462,639 3,742,795 3.00 0.38 

rs16225894 3 7,578,369 

7,478,369 7,930,821 

3.88 0.24 

rs15272751 3 7,646,096 3.51 0.27 

rs14317011 3 7,804,975 3.22 0.38 

rs14617579 7 25,555,092 25,228,473 25,655,092 3.00 0.38 

rs13599609 7 33,065,420 32,965,420 33,165,420 3.00 0.38 

rs16615527 7 37,568,883 37,468,883 37,668,883 3.15 0.38 

rs15920819 8 19,019,021 18,919,021 19,119,021 3.00 0.38 

rs15921649 8 19,584,685 19,484,685 19,684,685 4.50 0.24 

rs15580567 10 13,992,236 13,885,340 14,092,236 3.00 0.38 

rs14965732 11 15,491,746 
15,431,743 15,946,571 

3.55 0.27 

rs14965814 11 15,744,074 3.69 0.26 

rs15187369 22 531,582 

421,583 1,006,582 

3.66 0.26 

rs16183544 22 557,110 3.21 0.38 

rs16183608 22 786,138 4.19 0.24 

rs15187555 22 906,582 3.58 0.27 

 
1
 The region of interest was determined +/- 100kb of the position of the SNP, unless genes 

were partially located at one of the ends. In that case, the window size was increased in 

order to include the entire gene. FDR= false discovery rate. 
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Table 4.3 Number of SNPs detected. 
 

 
Reference Reference Segregating 

 
total

1
 Individual

2
 total

3
 

Nonsynonymous 23,568 13,193 18,492 

Synonymous 59,947 34,266 48,822 

Stop gain 275 137 222 

Stop lost 19 10 12 

Splice acceptor or donor site 761 440 567 

    
5'UTR/3'UTR 32,398 18,798 26,468 

downstream/upstream 178,299 99,995 144,668 

Intronic 3,028,208 1,794,167 2,487,645 

Intergenic 4,301,335 2,601,017 3,446,460 

ncRNA 613 321 489 

Total 7,625,423 4,562,343 6,173,845 
 
1 

The total number of SNPs detected compared to the reference genome in which the non-

reference allele is detected in at least 1 of the twelve animals. 
2 

The average number of SNPs 

detected in each animal compared to the reference genome (the individual is either 

heterozygous or homozygous for the non-reference allele). 
3 

The total number of SNPs 

detected segregating within the 12 animals.  

 

Functional annotation of SNPs  

Within the 18 QTL regions a total of 37,024 SNPs are detected that segregated 

within the twelve animals. Of these SNPs, 340 are located in coding regions and 4 

are located in splice acceptor or donor sites. The 340 coding SNPs include 64 

nonsynonymous, 2 premature stops, and 274 synonymous SNPs. The 

nonsynonymous, stop codon affecting, and splice acceptor or donor site SNPs are 

located within 28 different genes in 13 of the 18 QTL regions (Table 4.4). Of the 64 

nonsynonymous SNPs (NS-SNPs) that were submitted to SIFT, 14 are predicted to 

affect protein function (6 with low confidence), and 46 are predicted to have no 

effect on protein function. For 4 NS-SNPs no prediction could be made as there are 

no orthologs found in the database. One of the NS-SNPs is highly significant in the 

GWAS (rs13952858, chr1 149,173,569 bp, -log10(p-value)= 3.81). This SNP is 

located in DOCK9 and predicted not to affect protein function. The 14 SNPs that are 

predicted to affect protein function are located in 8 genes (Table 4.4). Four genes 

contain a single SNP that is predicted to affect protein function (PTPRB, CAPN13, 

Q5ZHW0, KIAA1199), and four genes have two or three of these SNPs (DMTF1= 2, 

KIZ= 3, GTF2A1L= 2, and CAPN14= 3). The two premature stops are detected in two 

different genes (ZNF236 and LOC771515).  
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Figure 4.3 Heterozygosity across chromosome 1 for the 12 individuals. On the x-axis the 

chromosomal position is shown in Mb. On the y-axis the heterozygosity is given as a 

percentage of heterozygous SNP within a 5000 kb window, correct for the number of bases 

covered. Note the clear homozygous region at 129-133 Mb.   

 

The allele frequency difference between the low and high EBV groups is, in general, 

not very high for all 16 variants that are predicted to affect protein function (14 NS-

SNPs and the 2 premature stops). A notable exception is the premature stop in 

ZNF236 in which an allele frequency difference of 33% is found between the two 

groups. This variant is, moreover, heterozygous in all high EBV individuals. 

For six genes, the allele that is predicted to affect protein function is exclusively 

found in one of the two EBV groups. Seven variants in 5 genes are detected 

exclusively in the low EBV group; DMTF1 (7,930,486 bp), KIZ (all three variants), 

GTF2A1L (7,569,531 bp), CAPN14 (7,652,889 bp), and KIAA119 (13,945,539 bp). All 

three variants in KIZ are detected within a single individual (ID= 9668). Two variants 

located 2 different genes are detected exclusively in the high EBV group; CAPN14 

(7,662,958 bp), and the premature stop in LOC771515.  

 

4.4 Discussion 

In this study, we combined the power of genome-wide association studies with the 

high-throughput capacity of massive parallel sequencing to detect potential 

variants involved in PHS, a polygenic trait in chicken. In the first phase to achieve 

this goal, we focused on possible protein affecting SNPs located near the most 

significant GWAS signals.  

 The SNP genotypes obtained by the whole-genome sequencing efforts are of high 

quality and cover nearly the complete reference genome. The high quality of the 

SNP genotypes is reflected by the low FDR. The average heterozygous SNP 

frequency per individual of 2.24 SNPs kb
-1

 is substantially lower than the 4.28 SNPs 

kb
-1

 previously detected within a single broiler animal [43]. This difference is likely 

caused by the effective population size of the broiler line used in that study (n= 

800) and the population used in our study (n= 100). Due to the small effective 

population size it is expected that the nucleotide diversity is lower.  
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Table 4.4 Predicted effect of the amino acid change of the coding SNPs within the QTL 

regions. 
 

Chr Position SNP Gene AA 

change
1
 

SIFT 

Prediction
2
 

Genotype 
3
 DIF 

4
 

1 7,847,975 T/C LOC776661 L>S TOL 0.23 (3,2,0),(0,4,1) 0.40 

1 7,879,238 C/T DCR1C R>K TOL 0.21 (3,1,1),(2,3,0) 0.00 

1 7,930,486 C/T DMTF1 E>K AFF
*
 0.03

*
 (4,2,0),(6,0,0) 0.17 

1 7,930,888 C/T DMTF1 C>Y AFF
*
 0.05

*
 (0,2,1),(0,3,0) 0.17 

1 28,584,789 T/C CG060 SS ND ND (3,2,0),(4,1,0) 0.10 

1 28,614,315 A/G TMEM168 I>V TOL 0.33 (2,4,0),(2,2,0) 0.08 

1 28,614,471 G/A TMEM168 V>I TOL 1.00 (0,3,1),(2,2,1) 0.23 

1 28,614,567 A/G TMEM168 I>V TOL 1.00 (2,4,0),(3,1,1) 0.03 

1 28,632,203 A/G TMEM168 SS ND ND (1,0,0),(1,2,0) 0.33 

1 28,632,375 A/G TMEM168 I>V TOL 1.00 (2,1,0),(1,2,1) 0.33 

1 37,746,299 C/T PTPRB R>Q TOL 0.68 (4,2,0),(3,1,1) 0.13 

1 37,747,443 C/T PTPRB R>Q TOL 0.38 (4,2,0),(3,1,1) 0.13 

1 37,755,710 G/A PTPRB L>F TOL 0.06 (1,2,0),(2,2,0) 0.08 

1 37,758,309 C/T PTPRB A>T AFF 0.01 (4,2,0),(4,1,1) 0.08 

1 37,759,225 A/G PTPRB I>T TOL 1.00 (4,1,0),(4,1,1) 0.15 

1 38,196,684 A/G LGR5 N>S TOL 0.28 (5,1,0),(6,0,0) 0.08 

1 38,229,608 G/A CCDC131 T>I TOL 0.22 (5,1,0),(6,0,0) 0.08 

1 38,231,432 C/T CCDC131 S>N TOL 0.68 (2,3,0),(3,1,1) 0.00 

1 148,802,881 A/G EBI2 T>A TOL 0.11 (4,2,0),(2,3,0) 0.13 

1 148,947,512 G/A DOCK9 V>I TOL 0.37 (4,1,0),(6,0,0) 0.10 

1 148,947,924 A/G DOCK9 N>S TOL 0.15 (6,0,0),(4,2,0) 0.17 

1 148,951,482
**

 T/G DOCK9 F>L TOL 1.00 (0,0,6),(1,3,2) 0.42 

1 148,952,612 A/G DOCK9 I>V TOL 0.64 (2,3,1),(1,2,1) 0.08 

1 149,022,744 C/T Q90WH8 P>L TOL 0.07 (1,4,0),(4,0,0) 0.40 

1 149,039,177 G/T Q90WH8 E>D TOL 0.42 (3,0,0),(0,2,1) 0.67 

1 149,040,341 C/T Q90WH8 S>L TOL 0.81 (4,1,0),(5,1,0) 0.02 

1 149,163,240 A/G FARP1 SS ND ND (2,3,0),(5,1,0) 0.22 

1 149,167,822 T/A FARP1 E>D TOL 1.00 (4,1,0),(6,0,0) 0.10 

2 92,922,982 G/A ZNF236 R>X SC ND (4,2,0),(0,6,0) 0.33 

2 92,946,985 C/A ZNF236 E>D TOL 0.12 (0,2,4),(0,6,0) 0.33 

2 92,955,528 T/C ZNF236 N>S TOL 0.48 (0,5,0),(3,3,0) 0.25 

2 92,962,465 T/C ZNF236 K>R TOL 0.16 (3,1,0),(0,6,0) 0.38 

2 92,962,565 C/T ZNF236 A>T TOL 0.42 (1,3,1),(0,6,0) 0.00 

2 92,981,520 C/T ZNF236 R>H TOL 0.14 (0,4,0),(1,5,0) 0.08 

3 3,542,561 G/A KIZ P>L AFF 0.01 (4,1,0),(6,0,0) 0.10 

3 3,544,499 C/T KIZ R>H AFF 0.01 (5,1,0),(5,0,0) 0.08 

3 3,544,604 C/T KIZ R>H AFF 0.01 (5,1,0),(6,0,0) 0.08 

3 3,636,817 A/G C20orf74 I>V TOL 1.00 (4,1,0),(6,0,0) 0.10 

3 3,686,313 G/A C20orf74 V>I TOL 0.52 (2,3,0),(5,1,0) 0.22 
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Table 4.4 continued… 
 

Chr Position SNP Gene AA 

change
1
 

SIFT 

Prediction
2
 

Genotype 
3
 DIF 

4
 

3 7,568,423 A/G GTF2A1L S>P AFF 0.03 (0,3,3),(0,3,2) 0.05 

3 7,569,191 T/G GTF2A1L N>H TOL 0.10 (0,3,1),(1,3,2) 0.04 

3 7,569,531 G/T GTF2A1L S>R AFF
*
 0.01

*
 (5,1,0),(5,0,0) 0.08 

3 7,652,889 C/T CAPN14 P>L AFF 0.00 (5,1,0),(5,0,0) 0.08 

3 7,662,958 A/G CAPN14 N>S AFF 0.00 (2,0,0),(1,1,0) 0.25 

3 7,664,707 A/C CAPN14 Q>P AFF
*
 0.02

*
 (0,3,2),(1,1,3) 0.00 

3 7,696,520 A/G EN23741
***

 Y>C NO ND (4,1,0),(6,0,0) 0.10 

3 7,772,411 C/T CAPN13 P>L AFF
*
 0.00

*
 (3,3,0),(3,2,1) 0.08 

3 7,785,156 G/A CAPN13 S>N TOL 0.18 (0,2,1),(0,2,1) 0.00 

3 7,787,010 A/T CAPN13 H>L TOL 0.29 (4,1,0),(3,3,0) 0.15 

3 7,792,019 G/A CAPN13 V>M TOL 0.05 (5,1,0),(6,0,0) 0.08 

7 33,008,112 G/A SPOPL G>E TOL 0.58 (5,1,0),(5,1,0) 0.00 

7 33,106,861 C/T LOC771515 A>T NO ND (4,0,0),(2,1,0) 0.17 

7 33,106,873 G/A LOC771515 Q>X SC ND (4,0,0),(2,2,0) 0.25 

7 33,106,894 C/T LOC771515 A>T NO ND (2,1,0),(3,1,0) 0.04 

7 33,106,920 C/G LOC771515 W>S NO ND (0,1,3),(0,1,3) 0.00 

8 19,573,784 T/A DNAJB4 Y>F TOL 0.35 (0,2,4),(0,5,1) 0.25 

8 19,600,476 C/T Q5ZHW0 R>C AFF
*
 0.01

*
 (4,2,0),(2,4,0) 0.17 

8 19,629,146 C/T NEXN S>N TOL 0.27 (6,0,0),(5,1,0) 0.08 

8 19,629,305 A/T NEXN M>K TOL 0.70 (6,0,0),(5,1,0) 0.08 

10 13,945,539 T/C KIAA1199 I>M AFF 0.01 (1,3,0),(5,0,0) 0.38 

10 13,947,792 T/C KIAA1199 I>V TOL 0.32 (1,3,1),(5,0,1) 0.33 

10 13,977,136 C/T KIAA1199 R>Q TOL 0.44 (5,1,0),(3,2,0) 0.12 

10 13,985,305 T/C KIAA1199 SS ND ND (1,3,0),(4,0,1) 0.18 

10 13,985,916 C/G KIAA1199 A>P TOL 0.37 (1,4,1),(1,3,1) 0.00 

10 13,987,625 T/C KIAA1199 E>G TOL 0.38 (4,1,0),(3,3,0) 0.15 

10 14,001,168 C/T TMEM2 V>I TOL 0.39 (0,2,1),(1,2,2) 0.07 

10 14,021,565 T/G TMEM2 K>Q TOL 0.19 (1,3,1),(1,3,1) 0.00 

10 14,038,198 T/C TMEM2 I>V TOL 1.00 (5,1,0),(3,3,0) 0.17 

11 15,558,407 A/G WWOX I>V TOL 1.00 (0,4,2),(0,4,0) 0.17 

22 851,431 C/T DOCK5 A>T TOL 0.38 (1,3,0),(0,6,0) 0.13 
 
1
 AA change= amino acid change. 

2
 SIFT predictions of AA change. Values below 0.05 are 

predicted to affect protein function and above 0.05 are tolerated. 
3
 Genotype of the SNP in 

either low EBV (brackets left) or high EBV (brackets right). For both, the left value indicates 

the number of animals homozygous for the reference allele, the middle indicates the 

number of heterozygous animals, and the right value indicates the number of animals 

homozygous for the non-reference allele. 
4
 DIF= allele frequency difference between the low 

and high EBV phenotype groups. 
*
prediction with low confidence due to either a low number 

of orthologous sequences or due to low sequence diversity of the orthologous sequences. 
**

SNP rs13952858, -log10(p-value)= 3.81 in the GWAS. 
***

abbreviation for 

ENSGALG00000023741. TOL= tolerated. AFF= affected. SC= stop codon. NO= no ortholog. 

ND= not determined. SNP= reference allele/ non-reference allele.  EBV= estimated breeding 

value. Grey shaded areas correspond to chromosomal regions at significant GWAS SNPs. SS= 

splice acceptor or donor site. 
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Within the GWAS we identified 18 QTL regions associated with PHS. These results 

suggest that PHS is a polygenic trait influenced by a large number of loci each with 

a small phenotypic effect (Figure 4.2, Table 4.2). This observation is in agreement 

with a previous linkage mapping study [14], although other studies have proposed 

that major genes are involved in PHS [44,45,46]. However, these studies were 

based on different broiler populations, and it is possible that other alleles – possibly 

with large phenotypic effects - are segregating in those populations. Moreover, we 

cannot exclude the presence of additional loci, either with small or large 

phenotypic effect, located on chromosomes that were not included in the 

association analysis such as chromosome Z, and the microchromosomes that are 

absent from the reference genome [47,48,49]. Furthermore, loci might have been 

undetected due to missing or insufficient linkage disequilibrium with assayed 

markers. Based on LD measurements it has been suggested that genome-wide 

assays in broiler populations need to include at least 100k SNPs to cover all 

haplotypes within the genome [50]. The SNP assay used in this study existed of 18k 

SNPs and, therefore, it is likely that some regions in the genome will not be 

sufficiently covered.  

There are three QTL regions in our study that overlap, or are closely located to, 

previously identified QTL regions [14]. Although two QTL regions in our study do 

not physically overlap with the previously identified QTL regions, it has to be 

mentioned that the confidence intervals in the linkage mapping study of Rabie et 

al. (2005) are large. Therefore, the QTL regions identified in both studies might be 

associated with the same underlying causative variant(s). The QTL region on 

chromosome 2 (92.8 Mb) is near significant QTL regions for right ventricular weight 

as percentage of body weight, total ventricular weight as percentage of body 

weight, and RATIO. The QTL identified on chromosome 8 (19.0 Mb) is near 

significant QTL regions for total ventricular weight as percentage of body weight, 

and body weight at 5 weeks under PHS inducing conditions. The third QTL region, 

located on chromosome 10 (13.9 Mb), co-localizes with significant QTLs for the trait 

mortality due to PHS, and body weight at 5 weeks under PHS inducing conditions.  

To detect causative variants that underlie the QTL regions identified in our GWAS, 

we decided to re-sequence the genomes of 12 individuals. To maximize the 

detection of variants involved in PHS, we decided to select 6 animals at both 

extremes of the estimated breeding value distribution. In this study we decided to 

focus on SNPs that could affect protein function - such as nonsynonymous, splice 

acceptor or donor site, and stop codons – located within 100kb up- or downstream 

of the GWAS signals. We are aware that other sources of variants, such as small 

insertion/deletions (indels) and large structural variations (insertions, deletions, 
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duplications, inversions and translocations) may also contribute to phenotypic 

variation by affecting coding regions or even entire genes. Moreover, synonymous 

variants in genes can result in changes in gene expression due to changed efficiency 

of translation (referred to as codon bias [51]) and intronic variants can alter gene 

expression [52] or result in alternative splicing [53]. Variants located in intergenic 

regions, such as promoter, enhancer, and silencer regions, can also result in altered 

gene expression. In addition, most variants involved in complex diseases -in 

humans- are involved in gene regulation and are not located within coding regions 

[54]. Furthermore, true causative variants - especially rare variants - can be located 

several megabases away from GWAS signals [55]. Nevertheless, in the current 

study, we decided to first focus on SNPs that affect protein function as they are 

relatively easy to detect with existing tools. Moreover, we decided to use a 

relatively small window size as we assume that most causative variants are located 

near the original GWAS signals.  

In total, 28 genes contained at least one NS-SNP, premature stop, or splice 

acceptor or donor site SNPs (Table 4.4). Within 10 genes at least one variant is 

predicted to affect protein function. The known biological functions of two genes - 

PTPRB and ZNF236 - could be directly related to PHS. The gene encoding protein-

tyrosine phosphatase receptor-type beta (PTPRB) is expressed in endothelium, 

developing outflow tract of the heart, and developing heart valves in mice [56]. 

PTPRB is, moreover, essential for cardiovascular development [56]. Because the 

aetiology of PHS might be traced back as far as the embryonic stage [57], genes 

involved in cardiac development are obvious candidates. In addition, PTPRB activity 

is essential for maintenance and remodelling of blood vessels in mice [58]. Vascular 

remodelling is a well-known mechanism involved in hypertension [59,60]. The SNP 

variant that is predicted to affect protein function is an alanine to threonine 

substitution in amino acid 362 (protein ID= ENSGALP00000016311). This amino acid 

substitution is located within one of the 16 fibronectin type 3 domains located 

within the protein. These domains are part of the extracellular receptor-like 

domain of the protein. 

 ZNF236 is a Kruppel-like zinc-finger gene that is upregulated in human mesangial 

cells in response to elevated levels of d-glucose [61]. Mesangial cells are smooth 

muscle cells around blood vessels in the kidney that regulate blood flow though the 

capillaries. Although knowledge on the true function of ZNF236 is limited, the 

regulation by d-glucose and its expression in cells that regulate blood flow are 

interesting with respect to PHS. The premature stop affects only the very last 

amino acid of the protein (arginine>stop in amino acid 1848, protein ID= 

ENSGALP00000022167), which could indicate that the premature stop will likely 
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have a limited influence on the protein structure and function. Nevertheless, we 

did not observe animals that were homozygous for this premature stop, thereby 

suggesting that the homozygous state might be lethal and thus affects protein 

function. If a variant is lethal, deviation from Hardy-Weinberg equilibrium (HWE) is 

expected. However, because the number of animals sequenced is small, the 

absence of homozygotes for these variants appears not to significantly deviate 

from HWE (p-value ZNF236= 0.34, calculation done with Haploview software 

[62,63]). Noticeably, all six animals in the high EBV group (PHS susceptible) are 

heterozygous for the premature stop in ZNF236, while only two (out of six) are 

heterozygous in the low EBV groups. This observation suggests that the premature 

stop in ZNF236 might contribute to PHS susceptibility. However, large sample sizes 

are needed to confirm this observation.  

Although 18 genes did not contain variants that are predicted to affect protein 

function, two of them - NEXN and WWOX – have biological functions that can be 

directly related to PHS. Variants in the gene encoding Nexilin (NEXN) are known to 

cause dilated and hypertrophic cardiomyopathy in human [64,65]. These 

cardiovascular diseases show similar characteristics to PHS in chicken, such as 

hypertrophy of the heart and congestive heart failure [66]. A study on the gene 

encoding WW domain-containing oxidoreductase (WWOX) shows a contribution of 

WWOX to aerobic metabolism and the regulation of reactive oxygen species [67]. 

Reactive oxygen species have been suggested to be involved in the aetiology of PHS 

[68]. The involvement of WWOX to aerobic metabolism could be linked to 

contribution of oxygen demand and metabolic rate that are involved in PHS 

development [1,9,12]. Both NEXN and WWOX did not contain variants that are 

predicted to affect protein function. The coding variants that are detected in these 

genes did not have a large allele frequency difference between the two EBV 

groups, although both variants in NEXN were exclusively detected within the high 

EBV group. Although NEXN has an acceptable coverage throughout the coding 

regions of the gene, exons 1 and 9 of WWOX are poorly or not covered by 

sequence reads. For WWOX additional sequencing efforts will be needed to detect 

all SNPs within this gene. Furthermore, both genes are obvious targets for in depth 

studies on regulatory variants and gene expression.  

In conclusion, we combined the power of genome-wide association with high-

throughput capacity of massive parallel sequencing to detect 70 potential protein 

function affecting SNPs that might affect susceptibility or resistance to PHS. Within 

10 genes, at least one variant is predicted to affect the protein function. 
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Abstract 

The identification of genomic regions that have undergone selection will aid in 

understanding the domestication and selection history of the domesticated 

chicken. Furthermore, the identification of important genes underlying these 

regions of selection will aid in improvement of production traits and disease 

resistance. In the current study, we aimed to make a broad assessment of the 

effects of selection histories in domesticated chicken. Towards this end, we 

sampled commercial chickens representing all major breeding goals from multiple 

breeding companies. In addition, we sampled non-commercial chicken diversity by 

sampling almost all recognized traditional breeds The Netherlands, and a 

representative sample of breeds from China. This broad sample of 67 commercial 

and non-commercial breeds was assessed for signatures of selection in the genome 

using information of 57,636 SNPs that were genotyped on pooled DNA samples. 

We identified 396 regions of putative selection within the chicken genome of which 

26 show strong evidence of selection. Our approach demonstrates the strength of 

including many different populations with similar, and breed groups with different 

selection histories to reduce stochastic effects based on single populations. The 

detection of the regions of putative selection resulted in the identification of 

several candidate genes that could aid in further improvement of production traits 

and disease resistance. 
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5.1 Introduction 

The domesticated chicken exhibits a large variety of phenotypes differing in 

morphology, physiology and behavior [1]. Traditional breeds are nowadays mostly 

kept for ornamental purposes and show a large diversity in morphological 

phenotypes between breeds. Charles Darwin already noticed the large diversity of 

phenotypes within the chicken and assumed a single-origin for the domesticated 

chicken descending from Gallus gallus (Red Junglefowl) [2]. Although the single-

origin was supported by many studies (e.g. [3,4,5,6]), it was debated by others 

[7,8]. Molecular genetic evidence supports multiple instances and multiple regions 

of domestication of the chicken from Red Junglefowl. Moreover, recent evidence 

supports genetic contributions from other Junglefowl species to current 

domesticated chickens. For instance, the yellow skin locus present in several 

domestic chicken breeds most likely originated from the Gallus sonneratii (Grey 

Junglefowl) [9]. Archeological findings, moreover, suggest that multiple 

domestication events were involved in the establishment of the domesticated 

chicken [10,11,12]. 

The chicken may initially not have been domesticated as a new food resource, but 

mainly for cultural reasons such as religion, decoration, and cock fighting [13]. 

Although selective breeding of chickens as a food resource has been documented 

to occur by the time of the Roman Empire [13], the strongest artificial selection 

most likely took place in the 20
th

 century by commercial breeding companies. 

Specialized breeding lines, intensely selected on either growth traits (meat 

production) or reproductive traits (egg-laying) led to a massive selection response 

to those breeding goals [13,14,15]. The vast majority of chickens alive today in 

Europe and Northern America are bred for commercial purposes and are derived 

from only a handful of breeds. Although non-commercial breeds are still present, 

effective population sizes generally are estimated to be very small, and many 

breeds are threatened with inbreeding or extinction, thereby enhancing the loss of 

biodiversity in chicken [6]. 

Domestication of the chicken resulted in population bottlenecks, population 

growth, admixture of populations, inbreeding, genetic drift, and selective breeding. 

As a consequence of these events the genetic variation within the chicken genome 

must have changed from its ancestral state. Selection on desirable alleles will lead 

to a reduction or loss in nucleotide diversity at and near the selected locus, often 

referred to hitch-hiking or selective sweep [16,17]. The progress of production 

traits made in commercial breeds due to selective breeding has unfortunately also 

led to an increase in the occurrence of undesirable traits and diseases such as 
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reduced resistance to infectious disease [18], skeletal deformities [19], 

osteoporosis [20], and the pulmonary hypertension syndrome [21,22,23,24]. These 

undesirable traits and diseases may be the result of negative pleiotropic effects of 

the alleles under selection or from genetic hitch-hiking of undesirable alleles with 

the alleles under selection. To better understand these hitch-hiking effects on 

genetic diversity and negative pleiotropy, it is essential to identify regions and 

genes that have undergone a selective sweep. Furthermore, this information 

should aid in understanding the domestication and selection history of the 

domesticated chicken, and how molecular pathways may have been altered 

compared to the ancestral state, thereby facilitating the discovery of important 

genes and further improvement of production traits.  

A recent study identified regions and genes putatively under selection during 

chicken domestication using a massive parallel sequencing strategy [1]. This study, 

however, only focused on a small number of breeds, making generalizations on 

selection history throughout the domesticated and wild chickens uncertain.  

In the current study, we aimed to make a broad assessment of the effects of 

selection histories in domesticated chicken. Towards this end, we sampled 

commercial chickens representing all major breeding goals from multiple breeding 

companies. In addition, we sampled non-commercial chicken diversity by sampling 

almost all recognized traditional breeds from a Western-European country (The 

Netherlands), and a representative sample of breeds from China. In addition, 

several non-domesticated chicken populations were sampled, as well as related 

non-domesticated species (Gallus lafayetii). This broad sample of 67 commercial 

and non-commercial breeds was assessed for signatures of selection in the genome 

using information of 57,636 SNPs that were genotyped on pooled DNA samples. 

Having multiple populations for each breed should aid in decreasing the influence 

of stochastic effects such as genetic drift that may result from using just a single 

population. Furthermore, this strategy may reveal larger scale breed or breeding 

goal specific selection histories, rather than population-specific selection histories, 

potentially making it easier to interpret signatures of selection. 

 

5.2 Materials and Methods 

Study breeds 

Individual blood samples were collected from 67 different chicken breeds varying 

from 8 to 75 individuals per breed (Table 5.1). Pools were made by either adding 

equal amounts of blood before DNA extraction, or by adding equal amounts of DNA 

after extraction, for each individual within each breed. DNA concentrations were 

measured by a NanoDrop spectrophotometer. Pooled DNA samples can be used to 
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calculate allele frequencies of SNPs [25,26]. Final DNA concentration of the pooled 

samples was 50-100 ng/ul. 

The 67 breeds represent multiple populations of commercial broiler dam (n=5) and 

sire (n=8) lines, commercial white (n=11) and brown (n=11) egg-layers, Dutch 

traditional breeds (n=19), and Chinese breeds (n=10) (Table 5.1). Two subspecies 

from Gallus gallus (Gallus gallus gallus, Gallus gallus spadiceus) were also included 

as well as the Gallus lafayetii that was used as an outgroup (Table 5.1). 

 

Table 5.1 Information on the breeds genotyped. 
 

 
Breed name # ind

1
 Hp

2
 Origin

3
 Breed groups

4
 

Junglefowls G. lafayetii 11 0.04 Sri Lanka Outgroup 

 
G. g. gallus

5
 30 0.37 Thailand NDM 

 
G. g. spadiceus

5
 30 0.36 Thailand NDM 

Broiler Broiler sire 1 75 0.42 commercial DM CM BR BRS 

sire line Broiler sire 2 75 0.43 commercial DM CM BR BRS 

 
Broiler sire 3 75 0.43 commercial DM CM BR BRS 

 
Broiler sire 4 75 0.42 commercial DM CM BR BRS 

 
Broiler sire 5 75 0.39 commercial DM CM BR BRS 

 
Broiler sire 6 75 0.41 commercial DM CM BR BRS 

 
Broiler sire 7 75 0.42 commercial DM CM BR BRS 

 
Broiler sire 8 48 0.39 commercial DM CM BR BRS 

Broiler Broiler dam 1 75 0.36 commercial DM CM BR BRD 

dam line Broiler dam 2 75 0.35 commercial DM CM BR BRD 

 
Broiler dam 3 75 0.40 commercial DM CM BR BRD 

 
Broiler dam 4 75 0.41 commercial DM CM BR BRD 

 
Broiler dam 5 75 0.42 commercial DM CM BR BRD 

White White layer 1 75 0.24 commercial DM CM LR WL 

egg-layer White layer 2 75 0.27 commercial DM CM LR WL 

 
White layer 3 75 0.26 commercial DM CM LR WL 

 
White layer 4 75 0.25 commercial DM CM LR WL 

 
White layer 5 75 0.28 commercial DM CM LR WL 

 
White layer 6 75 0.21 commercial DM CM LR WL 

 
White layer 7 75 0.26 commercial DM CM LR WL 

 
White layer 8 75 0.29 commercial DM CM LR WL 

 
White layer 9 75 0.27 commercial DM CM LR WL 

 
White layer 10 75 0.22 commercial DM CM LR WL 

 
White layer 11 75 0.28 commercial DM CM LR WL 

Brown Brown layer 1 75 0.31 commercial DM CM LR BL 

egg-layer Brown layer 2 75 0.32 commercial DM CM LR BL 

 
Brown layer 3 75 0.32 commercial DM CM LR BL 

 
Brown layer 4 75 0.31 commercial DM CM LR BL 

 
Brown layer 5 75 0.37 commercial DM CM LR BL 

 
Brown layer 6 75 0.31 commercial DM CM LR BL 

 
Brown layer 7 75 0.32 commercial DM CM LR BL 

 
Brown layer 8 75 0.35 commercial DM CM LR BL 

 
Brown layer 9 75 0.32 commercial DM CM LR BL 

 
Brown layer 10 75 0.34 commercial DM CM LR BL 

 
Brown layer 11 75 0.32 commercial DM CM LR BL 
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Table 5.1 Continued… 
 

 
Breed name # ind

1
 Hp

2
 Origin

3
 Breed groups

4
 

Dutch Groninger mew 

bantam 
21 0.30 the Netherlands DM NCM DU DCF 

 
Groninger mew 22 0.28 the Netherlands DM NCM DU DCF 

 
Lakenvelder 46 0.27 the Netherlands DM NCM DU DCF 

 
Drente fowl 13 0.33 the Netherlands DM NCM DU DCF 

 
Assendelf fowl 22 0.28 the Netherlands DM NCM DU DCF 

 
Friesian fowl  9 0.33 the Netherlands DM NCM DU DCF 

 
Hamburgh 50 0.30 the Netherlands DM NCM DU DCF 

 
Polish bearded 30 0.24 the Netherlands DM NCM DU DPB 

 
Owl-bearded Dutch  8 0.33 the Netherlands DM NCM DU DPB 

 
Polish non-bearded 49 0.16 the Netherlands DM NCM DU DPB 

 
Breda fowl 13 0.33 the Netherlands DM NCM DU DPB 

 
Brabanter 50 0.34 the Netherlands DM NCM DU DPB 

 
Dutch bantam 23 0.32 the Netherlands DM NCM DU DPB 

 
Booted bantam 12 0.32 the Netherlands DM NCM DU DPB 

 
Barnevelder 11 0.29 the Netherlands DM NCM DU DNB 

 
Welsumer 41 0.31 the Netherlands DM NCM DU DNB 

 
North-Holland blue 34 0.33 the Netherlands DM NCM DU DNB 

 
Kraienkoppe 48 0.32 the Netherlands DM NCM DU DNB 

 
Schijndelaar 12 0.33 the Netherlands DM NCM DU DNB 

Chinese Bian 21 0.41 China (In. Mongolia) DM NCM CH 
 

 
Chahua 34 0.33 China (Yunnan) DM NCM CH 

 

 
Chongren Ma 40 0.35 China (Jiangxi) DM NCM CH 

 

 
Henan Game 25 0.33 China (Henan) DM NCM CH 

 

 
Gushi 29 0.36 China (Henan) DM NCM CH 

 

 
Luyuan 30 0.38 China (Jiangsu) DM NCM CH 

 

 
Wenchang 35 0.42 China (Hainan) DM NCM CH 

 

 
Wahui 32 0.41 China (Jiangxi) DM NCM CH 

 

 
Xianju 48 0.36 China (Zhejiang) DM NCM CH 

 

 
Xiaoshan 32 0.38 China (Zhejiang) DM NCM CH 

 
 
1
 Number of individuals in genotyped DNA pool. 

2
 Average Hp based on all markers. 

3
 Name 

of country (province) of origin. 
4
 Breed groups for the breeds, DM =domesticated, NDM = 

non-domesticated, CM= commercial, NCM= non-commercial, BR= broiler, LR= layer, DU= 

Dutch, CH= Chinese, BRS= broiler sire line, BRD= broiler dam line, WL= white egg-layer, BL= 

brown egg-layer, DCF= Dutch countryfowls, DPB= Dutch polish and bearded, and DNB= 

Dutch new breeds. 
5
 These breeds are part of the AvianDiv project [6]. G. g. gallus = 

Aviandiv102 and G. g. spadiceus = Aviandiv101. 

 
Marker selection and allele frequency calculations 

In total, 57,636 SNPs were included on the Illumina Infinium iSelect Beadchip (Table 

S1). For GGA1–GGA5 and GGAZ, markers were selected every 15 kb; for GGA6–

GGA10 every 10 kb; for GGA11–GGA20 every 7.5 kb; and for GGA21–GGA28, 

GGAW and the two linkage groups LGE22C19W28_E50C23 (reffered to as LGE22) 

and LGE64, every 5 kb. Genotyping was performed using the standard protocol for 

Infinium iSelect Beadchips and raw data were analyzed with GenomeStudio 

v2009.2. Markers with a normalized R value of less than 0.15 were not included in 
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further analysis. For the DNA pools, the normalized allele frequency np̂  was 

calculated by combining the heterozygote correction equation of Hoogendoorn et 

al. [27] with the “normalization 4” equation of Peiris et al. [25];  
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p , where XRAW is the raw intensity of allele A, XRAW is the 

raw intensity of allele B, and κ is the ratio of the average XRAW and YRAW intensities 

based on heterozygote individuals. 0β̂  is the intercept and 1β̂  is the slope of a 

simple linear regression of the observed mean heterozygote-corrected frequencies 

based on individuals with genotype AA, AB and BB on their expected frequencies of 

1, 0.5 and 0, respectively. κ , 0β̂  and 1β̂  values were calculated from a panel of 

458 individuals, including white and brown egg-layers, broilers, Dutch traditional 

breeds, Gallus gallus spadiceus, and Gallus lafayetii. If the heterozygous genotype 

class was missing, heterozygote correction was not performed and κ  was set to 1. 

SNPs that were homozygous in all individual animals were removed from the data. 

To avoid genotype mistakes made due to technical errors, a genotype class had to 

contain at least three individual animals to be included in the calculation of κ , 0β̂  

and 1β̂ . Animals from the Gallus lafayetii were genotyped individually and 

genotypes were pooled in silico to estimate allele frequencies for this population. 

 

Genetic distance calculations 

PHYLIP software (version 3.69; [28]) was used to calculate pairwise genetic 

distances between the breeds. Nei genetic distance was used as a measure for 

genetic distance [29]. Because PHYLIP is unable to deal with missing data, distance 

calculations for each pair of breeds were based on the marker data that these 

breeds had in common [30]. Mega 4.0 software [31] was used for hierarchical 

clustering using the Neighbor-Joining procedures on the genetic distance matrix for 

all breeds. Gallus lafayetii was used to root the tree. 

 

Signatures of selection  

To decrease the influence of stochastic effects such as genetic drift, analysis on 

signatures of selection were performed on pooled data of groups of breeds. The 

breeds were grouped in fourteen different breed groups in four levels (Table 5.1). 

The first level included all domesticated breeds (DM, n=64). The two non-
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domesticated breeds were not grouped and analyzed because the group size was 

too small. The second level was based on their commercial background and 

included commercial (CM, n=35) and non-commercial (NCM, n=29) breeds. The 

third level was based on either their general commercial purpose or geographical 

location and included broiler (BR, n=13), layer (LR, n=22), Dutch traditional (DU, 

n=19) and Chinese (CH, n=10) breeds. The fourth level was based on either their 

position in the dendrogram (Figure 5.1) and included the broiler sire lines (BRS, 

n=8), broiler dam lines (BRD, n=5), white egg-layers (WL, n=11) and brown egg-

layers (BL, n=11), or were based on their classical classification and included the 

Dutch countryfowls (DCF, n= 8), Dutch polish and bearded (DPB, n= 5), and Dutch 

new breeds (DNB, n=6). 

  

Figure 5.1 Dendrogram for the 67 breeds based on Nei genetic distance. Accolades indicate 

the breed groups for the clusters as used in this study. 
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To identify regions under selection the “Z transformed heterozygosity” (ZHp) 

approach of Rubin et al. [1] was used. In an overlapping sliding window approach 

the heterozygosity pH  was calculated as: ( )2

2

∑ ∑
∑ ∑

+
=
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MINMAJ
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nn

nn
H

, where

∑ MAJn is the sum of major allele frequencies, and ∑ MINn  is the sum of the 

minor allele frequency within a window. Individual pH values were Z-transformed: 
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= , where pHµ  is the overall average heterozygosity and 

pHσ  is the standard deviation for all windows within one breed. In this study we 

focus on the extreme lower end of the ZHp distribution and considered windows 

with ZHp values less or equal to -6 to show strong evidence of selection. Windows 

with ZHp values less or equal to -4 were considered to show weak evidence of 

selection. 

 

5.3 Results 

From the 57,636 SNPs that were included on the chip, 51,080 were used for 

analysis. Because the breed pools included both female and male individuals, the 

analysis were only performed on autosomal markers and therefore the 3,023 

markers located on chromosome W and Z were excluded from the analysis. 

Moreover, 1,144 markers were unmapped on the current genome build and were 

therefore also excluded from the analysis. A total of 2,389 markers were excluded 

as they were either homozygous in all individual animals (n= 2,146) or did not pass 

the quality control (n= 243). 

The 51,080 autosomal SNPs were used to construct a tree representing genetic 

distances between 67 breeds (Figure 5.1). The two RJF subspecies and Gallus 

lafayetii cluster separate from the domesticated breeds. The domesticated breeds 

are divided in two branches. Brown egg-layers, broilers and Chinese breeds cluster 

together in one branch, while white-egg layers and Dutch traditional breeds cluster 

in the other. Within the broiler cluster, a clear distinction was found between the 

broiler sire and broiler dam lines. The Dutch traditional breeds cluster together 

according to their classical classification with a few exceptions.  

To identify regions that are likely to be or have been under selection, Hp and ZHp 

values were calculated for a number of different marker window sizes for all 

fourteen breed groups (data not shown). Based on these analyses we decided to 
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focus on a size of 5 markers per window (Figure 5.2, Figure 5.3, Table S2). This size 

enabled us to obtain a normal distribution for the Hp values (Figure S1) while still 

remaining a relatively high resolution to detect candidate genes. Moreover, a 

marker window size of five enabled us to detect the empirically proven selective 

sweep at the BCDO2 locus [9] while an increased number of markers per window 

resulted in the loss of detection of this locus. The ZHp threshold values for weak 

(ZHp less or equal to -4) and strong (ZHp less or equal to -6) evidence were chosen 

because these represent the extreme lower end of the distribution (Figure S2). 

After merging consecutive windows, 396 regions were identified where at least one 

breed group showed weak evidence of selection (Table S3). In total, 26 regions 

showed strong evidence of selection (Table 5.2). Three of these regions (R11, R25, 

and R26) were found exclusively within in the broiler breed groups. All three 

showed strong evidence of selection in the broiler sire line and R11 also showed 

weak evidence in the broiler dam line. Region R1 showed strong evidence for 

selection exclusively within the broiler sire breed group. Region R8 showed strong 

evidence of selection exclusively within the Chinese breed group. Linkage group 

LGE64 consisted of only 4 markers and was not included in further analysis. The 

average overall heterozygosity ( pHµ ) and standard deviation ( pHσ ) for the 

fourteen breed groups are shown in Supplementary Table 4 (Table S4). The average 

heterozygosity for each breed based on all markers is shown in Table 5.1. Average 

sizes for the 5 markers windows were; 97 kb for GGA1-5, 71 kb for GGA6-10, 46 kb 

for GGA11-20, and 31 kb for GGA21-GGA28 and linkage groups LGE22. 

With a marker window size of five, no region with strong evidence of selection was 

identified in the Dutch (DU, DCF, DPB, and DNB), white egg-layers (WL) and brown 

egg-layer (BL) breed groups. Increasing the number of markers per window 

resulted in the detection of regions with strong evidence in these breed groups 

although these regions were large and contained many genes (data not shown). For 

example, we detected one region with strong evidence of selection in the white 

egg-layer breed group at a window size of 110 markers. This region on 

chromosome 20 (5.32-7.69 Mb) is 2.36 Mb in size and contains 46 genes. Note that 

this region is also observed in the five marker window data as a continuous stretch 

of low ZHp values (Figure 5.3). 

 
5.4 Discussion 

The position of the breeds in the dendrogram (Figure 5.1) is largely in agreement 

with previous published data [32]. Our data, moreover, fits with the putative 

historical origin of the breeds. The broilers, and brown egg-layers cluster between 
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the Chinese breeds on one side and the Dutch and white egg-layers on the other 

side. The broiler and brown egg-layer breeds were established in the late 19
th

 and 

early 20
th

 century by crossing European breeds with Asian breeds [13] [33] and 

molecular evidence of this Asian introgression was published recently [34]. The 

Dutch traditional and white egg-layer breeds both have their origin in Europe 

[13,33]. We used an in silico pooling approach of populations, defining groups 

based on overall genetic relatedness to decrease stochastic effects such as genetic 

drift in our analysis. If a region under selection is present in only one breed, it will 

be averaged out due to a high diversity in the other breeds included in the same 

breed group. However, if a region is present in all breeds, the confidence that this 

region is truly under selection will increase.  

Although we identified regions of strong selection within most breed groups we 

were not able to identify these regions within the Dutch breed groups (either 

separate or in the classification breed groups) nor did we in the white- and brown 

egg-layer breed groups. For the Dutch breeds, we might have been unable to 

detect regions with strong evidence of selection as these breeds are genetically too 

diverse. Each Dutch breed has been intensely selected for specific phenotypic 

characteristics and there might be very little overlap in selected regions between 

the breeds within the breed group. The lack of identification of regions under 

selection within the white and brown egg-layers breed groups most likely results 

from the origin of the breeds. Both the white and brown egg-layers were created 

using a small base population and this founder effect resulted in a major 

population bottleneck [33]. Regions with low genetic diversity caused by the 

bottleneck will exist in all breeds derived from the base population. Our method 

determines if the heterozygosity of a given marker window is an outlier compared 

to the average heterozygosity of the genome. Because the existence of many low 

diversity regions will lower the average heterozygosity and increase the standard 

deviation, we were not able to detect outlier genomic regions. To decrease the 

standard deviation we analyzed our data with an increased number of markers per 

windows. Although this indeed resulted in the detection of regions with strong 

evidence of selection within the Dutch, brown and white egg-layer breed groups, 

these regions were generally large and contained many genes. Because of the 

decreased resolution to detect candidate genes we decided to focus on small 

window size only. Five markers per window provided a good resolution to detect 

genes while retaining a normal distribution for the Hp values (Figure S1). 
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Figure 5.2 ZHp values for seven breed groups using a sliding window of five markers across 

the genome. Odd chromosomes numbers (and LGE22) are shown in black and even 

chromosome numbers are shown in yellow. The grey dotted line indicates a ZHp threshold 

value of -4 or -6. For the regions with strong evidence of selection the ID is shown beneath 

the plot. 
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Figure 5.3 ZHp values for seven breed groups using a sliding window of five markers across 

the genome. Odd chromosomes numbers (and LGE22) are shown in black and even 

chromosome numbers are shown in yellow. The grey dotted line indicates a ZHp threshold 

value of -4 or -6. For the regions with strong evidence of selection the ID is shown beneath 

the plot. 

 



5 Signatures of selection 

 

 

110 

 

In order to detect regions under selection in the egg-layers, we combined the two 

breed groups of the white and brown egg-layers. Both egg-layers have been 

selected for similar production traits related to egg production and therefore 

combining these two breeds groups could lead to the identification of the same 

genomic regions independently being selected for similar egg production traits.  

Of the 26 regions that show strong evidence of selection (Table S3), 13 were 

previously described [1]. The identification of these regions in two independent 

studies with various detection methods implies that these regions have strong 

signatures of selection and are likely to be true positives. Some of these regions 

contain genes with biological functions that were previously related to traits under 

selection in the chicken. Region R1 includes insulin-like growth factor 1 (IGF1) that 

is associated with growth, body composition, and skeleton integrity in chicken 

[35,36], and pro-melanin-concentrating hormone (PMCH) that is involved in body 

weight and feed intake in mice [37]. The gene encoding beta-carotene oxygenase 2 

(BCDO2), which is involved in the yellow skin phenotype in chicken [9], is found in 

R22 and has strong evidence of selection in commercial breeds. In addition, several 

other genes with biological functions that could be related to (production) traits 

are found in other regions of putative selection. Region R6, detected in broiler 

breed groups, contains the HNF4G gene. HNF4G -/- knockout mice have a 

significant higher bodyweight at 7 weeks compared to normal mice, presumably 

caused by decreased energy expenditure that results from a reduced locomotor 

activity [38]. Moreover, feed and water intake is also significantly lower in the 

knockout mice [38]. The biological function suggests that selection on HNF4G might 

be involved in the selection on bodyweight or feed conversion ratio in the chicken. 

This view is strengthened by the fact that the strongest selection was observed in 

broilers (sire as well as dam lines) (Table 5.2). Moreover, a significant QTL for 

bodyweight overlaps with region R6 and was found to explain about 7% of 

bodyweight in broilers from 3 to 7 weeks of age [39]. Region R11, detected in 

broiler sire (strong evidence) and broiler dam (weak evidence), is embedded within 

the gene encoding NEL-like 1 (NELL1). NELL1 is involved in bone tissue formation 

and NELL1-deficient mice have skeletal defects in the cranial vault, vertebral 

column and ribcage [40,41]. The biological functions of NELL1, combined with the 

evidence of selection, might relate to selection on the skeletal integrity of modern 

broilers. Skeletal integrity might have been co-selected with growth rate and meat 

yield as the skeleton had to support the weight of the modern broiler [42]. Animals 

not capable of dealing with the increasing bodyweight could develop defects such 

as tibial dyschondroplasia, valgus-varus deformity, and spondylolisthesis [19] and 

will be rejected from the breeding program. This rejection will essentially lead to a 
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positive selection for skeletal integrity. Heavy birds are more prone to develop 

these leg-problems and therefore it is expected that selection will have been 

strongest in the heavier breeds. This is agreement with region R11 shows strong 

evidence of selection in the heavy broiler sire lines and weak evidence in the 

slightly less heavy broiler dam lines. In previous studies no significant QTLs 

associated with bone or skeletal traits were found near region R11 [43]. 

Besides the 13 regions that were previously described we also identified 13 

additional regions with strong evidence of selection. On the other hand, several 

regions with strong evidence of selection found previously [1] are not identified in 

our study. These differences in the identified regions may in part result from 

different methodological approaches used in both studies. While our study was 

based on many breeds genotyped with a SNP genotyping assay, the study of Rubin 

et al. [1] was based on low coverage whole genome re-sequencing of a small 

number of breeds. Regions detected in our study might be poorly covered in the 

massive parallel sequencing strategy or might have been not be detected simply 

because the breeds were not included. In addition, we included more breeds per 

breed group that might result in less false positive regions found as a result of 

genetic drift. 

While the approach described in this study has several strong advantages – the 

ability to include many different populations cost-effectively being among the most 

important – the application of SNP based assays has limitations, notably 

ascertainment bias and low marker resolution. The SNPs selected in our study were 

discovered in two independent studies. One study is based on comparing the G. 

gallus genome sequence derived from a single RJF to that of one Silkie, one white 

egg-layer, or one broiler [44]. The second study is based on massively parallel 

sequencing of four pools of commercial chicken (two broiler lines, a white egg layer 

line, and a brown egg layer line (MAMG, unpublished). A SNP was discovered when 

a single nucleotide polymorphism was observed between the reference RJF and 

one of the four discovery breeds. Therefore, it is possible that breed, or animal, 

specific SNPs were selected for the genotyping assay. Breed specific markers will 

not segregate in other breeds, thereby resulting in a false positive signal of 

selection in the other breeds. The selection of markers that eventually are included 

in the genotyping assay also introduces a bias. Selection criteria for the SNPs are 

mainly based on their minor allele frequency (MAF) and position on the genome. 

SNPs that are near fixation in the four SNP discovery breeds will have a low MAF, 

also when they are nearly fixed for the non-reference allele. Because all four SNP 

discovery breeds represent domesticated breeds, particularly regions under 
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selection due to domestication will be underrepresented since SNPs within these 

regions will have low MAF and are not included in the genotyping assay.  
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Although markers are selected evenly throughout the whole genome, the 

resolution of the assay will not be sufficient to identify all regions of selection. The 

genomic size of selective sweeps is positively correlated to selection pressure, and 

negatively with recombination rate. Genomic regions under strong and recent 

directional selection located in relatively lowly recombining regions of the genome 

(e.g. the macro-chromosomes in birds compared to the micro-chromosomes 

[45,46,47]) will be much more readily detectable. Although the TSHR selective 

sweep is fixed for almost 40 kb in most domestic breeds [1], we were unable to 

identify this locus. In our analysis this 40 kb region is covered by only a single SNP 

and although this SNP is fixed in almost all domesticated breeds, the window that 

included this SNP never reached significance as the other markers in the window 

are segregating in relatively high frequencies. Although the massive parallel 

strategy does not suffer from the ascertainment bias described above, the high 

costs of this method restrict the number of breeds that can be included in the 

analysis. In this study, we specifically choose the less expensive SNPs assays in 

order to increase the total number of breeds. Not only are we able to comment on 

a wide variety of breeds, the increased amount of breed within a breed group 

enabled us to decrease the influence of stochastic effects such as genetic drift. 

In our data we identified five regions (R1, R8, R11, R25, and R26) that are specific 

for one breed group (Table 5.2). Because these regions are not subjected to the 

possible bias of breed specific markers (if that was the case, we would expect to 

see the signature of selection in all but one breed group) we consider these to be 

reliable. Two regions (R1 and R11) have already been discussed above. R8 shows 

strong evidence of selection and is specific for the Chinese breeds. R8 includes two 

genes; platelet derived growth factor C (PDGFC) and the glycine receptor beta 

subunit (GLRB). Platelet derived growth factors are major mitogens and stimulants 

of motility in mesenchymal cells [48,49]. Mesenchymal cells can differentiate into a 

variety of cell types including bone and fat cells. In mice, PDGFC is widely expressed 

in mesenchymal precursors and the myoblast of the smooth and skeletal muscles 

[50]. Knockout studies in mice demonstrate that PDGFC is essential for 

palatogenesis, a process that forms the palate (roof of the mouth) and separates 

the oral cavity from the nasal cavity [51]. GLRB is involved in an important 

fertilization event, the sperm acrosome reaction which is the process facilitating 

entry of the spermatozoa into the oocyte [52,53]. GLRB is also associated with the 

neurological disorder hyperekplexia (startle syndrome) in human [54] and 

myoclonus (involuntary twitching of muscle) in mice [55]. A number of QTL regions 

are found in the chicken QTL database that cover region R8, although none were 

identified specifically in Chinese breeds [43]. These QTL regions are associated with 
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Marek's disease [56], residual feed intake [57], fear-related behavior [58], feed 

conversion ratio [59], residual feed intake [59], creatine kinase level [60], shank 

length [61], tibia strength [61], conformation score [62], and thigh muscle weight 

[63] [64]. The QTL for shank length and tibia strength appear most interesting when 

compared to the biological function of PDGFC. R25 and R26 show strong evidence 

of selection in broilers, and specifically in broiler sire lines. R25 includes three 

genes: SIN3 homolog B (SIN3B), HAUS augmin-like complex, subunit 8 (HAUS8), and 

C3 and PZP-like alpha-2-macroglobulin domain containing 8 (CPAMD8). SIN3B is a 

global regulator of transcription [65] and is essential for embryonic development 

[66]. mSin3B-/- knockout studies in mice indicated that knockout embryos 

displayed growth retardation [67]. HAUS8 is a microtubule-associated protein 

required for maintenance of spindle integrity and chromosomal stability in human 

cells [68]. CPAMD8 is a member of the complement 3/alpha2-macroglobulin family 

of proteins that are involved in innate immunity and damage control [69]. Several 

QTL regions are found in the chicken QTL database [43] that cover region R25. 

These QTL regions are associated with abdominal fat weight [70], skin fat weight 

[70], tibia cortex width [61], body weight (21 and 42 days) [71], breast muscle 

weight [71], carcass weight [64], and right ventricular weight as percentage of body 

weight [24] Due to the broad biological functions of the genes located within R25, it 

is difficult to comment on a possible relation between the associated QTLs and the 

genes located within R25. Region R26 includes evolutionary conserved regions with 

unknown function but does not contain any known genes. Region S26 is closely 

linked to R25, and the QTLs described for R25 also cover region R26. 

In conclusion, we identified 396 regions of putative selection within the chicken 

genome and 26 of these regions show strong evidence of selection in at least one 

of the fourteen breed groups. Our approach demonstrates the strength of including 

many different populations with similar, and breed groups with different selection 

histories to reduce stochastic effects based on single populations. The detection of 

the regions of putative selection resulted in the identification of several candidate 

genes that could aid in further improvement of production traits and disease 

resistance. 
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Figure S1. Distribution of Hp values for all windows of five markers. 

 

Figure S2. Distribution of ZHp values for all windows of five markers. 

 

Table S1. Information on all SNP markers used. Chromosomal locations are based 

on the position in the WASHUC2 build. 

 

Table S2. Hp and ZHp values for all windows of five markers. Chromosomal 

locations are based on the position in the WASHUC2 build. DM =domesticated, 

CM= commercial, NCM= non-commercial, BR= broiler, LR= layer, DU= Dutch, CH= 

Chinese, BRS= broiler sire line, BRD= broiler dam line, WL= white egg-layer, BL= 

brown egg-layer, DCF= Dutch countryfowls, DPB= Dutch polish and bearded, and 

DNB= Dutch new breeds. 

 

Table S3. All regions of putative selection found and their underlying genes. 

Chromosomal locations are based on the position in the WASHUC2 build. Size 

refers to the total size of the merged windows. # windows refer to the number of 

merged windows. Region ID refers to the region with strong evidence of selection 

as described in this manuscript. DM =domesticated, CM= commercial, NCM= non-

commercial, BR= broiler, LR= layer, DU= Dutch, CH= Chinese, BRS= broiler sire line, 

BRD= broiler dam line, WL= white egg-layer, BL= brown egg-layer, DCF= Dutch 

countryfowls, DPB= Dutch polish and bearded, and DNB= Dutch new breeds. Values 

of Rubin et al. refers to ZHP values found in a previous study [1]. The ‘genes’ 

column include information of the genes included in the region of putative 
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selection. For each gene the location within the region is given followed by the 

Ensembl chicken ID and human orthologs name if known. (1) gene is located within 

region, (2) region is located within gene, (3) region overlaps 5’ end of gene, and (4) 

region overlaps 3’end of gene. *) human 1:many orthologs **) human many:many 

orthologs. 

 

Table S4. The average overall heterozygosity and standard deviation for all 

fourteen breed groups.  
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6.1 Introduction 

For future improvements in production traits and animal welfare as well as to 

address future consumer demands, it is necessary to understand the etiology and 

biology underlying production traits and diseases. The primary aim of the research 

described in this thesis was to investigate the utility of several molecular 

approaches to identify causative variants underlying a variety of traits in the 

chicken. The identification of causative variants is a multistep process that is 

essentially similar for both monogenic and polygenic traits. The first step involves 

mapping to identify genomic regions that are associated with a particular trait or 

show evidence for selection. After the identification of these genomic regions, the 

next steps are the identification of all variants linked to these regions, and to obtain 

(biological relevant) evidence to identify the true causative variant(s).  

Successful mapping is dependent on many different characteristics of the causative 

variants including the allele frequency, size of the phenotypic effect, evolutionary 

age, and the amount of selective pressure that the variant underwent (Figure 6.1). 

The phenotypic effect and allele frequency both influence the sample size needed 

to obtain sufficient statistical evidence for association. The evolutionary age of, and 

selective pressure on variants, as well as population demography, such as 

bottlenecks, expansion, admixture, inbreeding, and genetic drift, will affect the size 

of the haplotype in which the variant is located. The size of the haplotype 

influences the marker density needed for mapping. Due to the availability of 

reference genomes, high numbers of SNP markers, and high-throughput 

genotyping techniques, genome-wide assays with high marker densities became 

available in the last decade. This increased marker density lead to the development 

of genome-wide association (GWA) studies in addition to classical linkage mapping. 

Furthermore, the recent developments in massive parallel sequencing (MPS) 

technologies have increased the mapping resolution to a single base pair.  

Successful detection of the true causative variant(s) relies on the mapping 

resolution, type of variants, knowledge on biological mechanisms involved in the 

trait, and on accurate gene annotation. If the mapping resolution is low, detection 

of causative variants becomes challenging due to a large numbers of possible 

candidate genes. Each type of variant such as SNP, small indel, copy number, and 

copy neutral variant, requires different methods for optimal detection. For 

instance, sequencing both alleles of the coding regions of PRLR and SPEF2 would 

not have resulted in the detection of the CNV at the late feathering locus (Chapter 

3). Detailed knowledge about the biological mechanisms involved in the trait under 

investigation, combined with accurate gene annotation permits more accurate 
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identification of candidate genes, even if the mapping resolution is low. However, 

accurate gene annotation in many species is often lacking, and gene functions are 

often based on orthologous genes in species such as human or mice. Predicting the 

gene function based on other species can introduce a bias. If the evolutionary 

distance is large, such as between chicken and human, divergent evolution might 

have resulted in different functions for the same ortholog.  

The optimal strategy to identify causative variant(s) affecting a trait will be 

different for monogenic or polygenic traits. Moreover, these strategies will also 

depend on differences in population demography. In this final chapter, I discuss the 

implementation of currently available methods to detect causative variants with 

small and large phenotypic effects in monogenic or polygenic traits.  

 

 

  

Figure 6.1 General overview of the strategies needed for causative variant mapping. Left 

part: the sample size needed for mapping will increase with decreasing phenotypic effect of 

variants. The sample size is moreover influenced by selective pressure on the variant, 

population demography such as inbreeding and genetic drift, and the evolutionary age of the 

variant. Right part: the different methods and assay types most appropriate for monogenic 

or polygenic traits.  
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6.2 Monogenic traits 

A causative variant underlying a monogenic trait explains 100% of the phenotypic 

effect of the trait. As a result of this large effect, a small sample size and a low 

marker density are sufficient to successfully map the causative variant. However, 

linkage analysis with a low marker density will result in large confidence intervals, 

and subsequently a large number of candidate genes. The identification of 

causative variants will, therefore, heavily depend on the existence of clear 

functional candidate genes. For example, several studies successfully applied 

linkage analysis with small sample sizes and a limited number of markers, such as 

the double muscle phenotype in cattle [1] and the trait ‘fishy taint of eggs’ in 

chicken [2]. Both studies successfully detected the true causative variant of the 

trait because there was a clear functional candidate gene based on the function in 

human or mice. For the double muscle phenotype in cattle, knockout studies of a 

candidate gene, MSTN, resulted in a similar phenotype in mice. Likewise, for the 

‘fishy taint of eggs’ trait, one candidate gene, FMO3, was known to be involved in 

trimethylaminuria, a disorder in human which results in odor reminiscent of rotting 

fish.  

Nevertheless, for many linkage analysis studies obvious functional candidate genes 

are not immediately evident. Functional candidate genes may be difficult to 

identify because the biochemical pathways underlying the traits are not fully 

understood, or because gene annotation is incomplete. Sequencing all genes within 

the confidence intervals of associated regions is usually not achievable (at least 

before MPS) and, therefore, fine-mapping is needed to reduce the number of 

candidate genes. This fine-mapping includes, for instance, increased marker density 

in associated regions, LD mapping, backcrossing, advanced intercross lines, and 

identical-by-decent mapping [3]. Even after fine-mapping, extensive sequencing 

efforts are needed to detect the true causative variant within the remaining 

candidate genes. Although several examples exist that lead to easy identification of 

the causative variant, linkage mapping with low marker density is generally labor 

intensive due to the  linkage mapping, fine-mapping, and extensive sequencing 

efforts needed. 

The developments in genome-wide assays contribute to more powerful and 

efficient mapping of variants involved in different monogenic traits as shown by 

Charlier et al. [4]. Genome-wide SNP assays were successfully implemented to 

identify homozygous regions shared between affected individuals for five 

monogenic recessive traits in cattle. The benefit of the increased marker density is 

shown by the fact that for three of the five monogenic traits, linkage analysis and 
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association studies using a panel of 400 microsatellite markers did not result in 

successful mapping. Sequencing functional candidate genes within the associated 

regions lead to the identification of the causative variant in three out of the five 

monogenic traits. For all three monogenic traits in which the causative variant was 

detected, a clear relationship could be established between the gene function in 

human and the phenotypic characteristics of the trait in cattle, once again 

emphasizing that successful and quick identification of causative variants are aided 

by clear functional relationships between genes and traits. For one of the two 

traits, the crooked tail syndrome for which no causative variant was identified, 

none of the nineteen genes within the associated region had a function that could 

be related to the trait. Although this number of genes within the associated region 

is much less than typically found in linkage analysis studies, fine-mapping was still 

needed to reduce the number of candidate genes because sequencing all genes 

was labor intensive and expensive. A follow-up study using fine-mapping with 

additional markers and cases resulted in a region that comprised 7 genes [5]. 

Sequencing of the coding regions of these genes resulted in the identification of the 

causative variant underlying the crooked tail syndrome. Although genome-wide 

assays will increase the mapping resolution, identification of the causative variant 

still requires additional fine-mapping and sequencing efforts, especially when there 

are no obvious candidate genes. 

Recent developments show that massive parallel sequencing (MPS) is likely going 

to replace the genome-wide assays in future studies that aim to detect causative 

variants underlying monogenic traits. One major benefit for MPS based strategies is 

the power to detect the causative variant in a single study, which eliminates fine 

mapping and sequencing of candidate genes. The power of MPS to detect causative 

variants in monogenic traits based on a small number of affected individuals has 

recently been demonstrated in humans (see box 2 in Chapter 1 for more details). 

Monogenic traits are often caused by coding variants and, therefore, the earliest of 

these studies applied targeted re-sequencing of the exome to detect coding SNPs 

(e.g. [6,7,8,9]). This targeted sequence capture was needed to increase the 

sequence coverage per base - and therefore the reliability of variant calling – 

because adequate coverage in whole-genome re-sequencing was too expensive. 

The costs of MPS are rapidly decreasing and, therefore, it is expected that costs for 

whole-genome re-sequencing will become similar to that for exome sequencing 

combined with sequence capture. The difference in costs between whole-genome 

and exome sequencing in livestock species is momentarily already small because 

exome capture arrays or assays are not commercially available and, therefore, 

more expensive. In addition, exome sequencing is only targeted to coding regions, 
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and is less usefull for copy number variation (CNV) detection because of biases in 

the read depth due to the capturing steps. Whole-genome re-sequencing for 

chicken is cost-effective due to the small size of the genome and provides an 

increased coverage per base compared to, for instance, human (3 fold increase). In 

the remaining part of this discussion I will refer to whole-genome sequencing for 

MPS based sequencing strategies in the chicken.  

Despite the decreasing costs, whole-genome sequencing is still expensive 

compared to genome-wide assays. Recently, Sobreira et al. [10] successfully 

detected the causative variant involved in a monogenic trait in human by 

combining data from a linkage analysis based on genome-wide assays with 

sequencing data of a single affected individual. In essence, the single individual was 

re-sequenced to identify all possible causative variants (109 protein affecting 

variants in total), and linkage analysis was used for fine-mapping (1 protein 

affecting variant in the associated regions). A similar approach is currently feasible 

and cost-effective in the chicken. Nevertheless, MPS costs will further decrease in 

the coming years and therefore the preferred method will become whole-genome 

re-sequencing of families with affected and unaffected individuals, or unrelated 

individuals with opposite phenotypes for the monogenic trait.  

All the studies described above were focused on the identification of (coding) SNPs 

or small indels. Structural variants (SV), such as CNVs (insertions and deletions) and 

copy neutral variants (inversions and translocations), are increasingly being 

recognized to affect phenotypic variation. One example of a CNV has been 

described in chapter 3 where we describe the identification of a 180 kb tandem 

duplication as the causative variant for the late feathering phenotype. Another 

example of a SV that underlies a monogenic trait is the 3.2 kb CNV located within 

the gene Sox5 that causes the Pea comb phenotype in chicken [11]. Therefore, 

future studies that aim to detect causative variants need to include SV 

identification. Array-based comparative genomic hybridization (aCGH) is a method 

that enables genome-wide CNV detection. Recently, two studies were performed in 

the chicken that used this method [12] [13]. Although both studies detected the 

large tandem duplication in the late feathering phenotype, both failed to detect the 

small CNV in Sox5 due to insufficient resolution. Moreover, with aCGH it is not 

possible to determine the exact number of copies within a CNV, nor is it possible to 

determine the genomic organization of the SV. In addition, copy neutral variants 

such as inversions and translocations can also not be detected with aCGH. Although 

the intensity signals of SNPs in genome-wide SNP assays can also be used for the 

detection of CNVs, these assays suffer from the same shortcoming as aCGH. 

Furthermore, SNP assays suffer from ascertainment bias, particularly for SNPs 
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located within SV regions. SNPs located in SV regions are often excluded from the 

assay due to non-Mendelian inheritance. The shortcomings of aCGH and SNP 

assays for the detection of SV can be circumvented by MPS. Read depth analysis 

provides exact copy numbers [14,15], split reads analysis provides information with 

regard to the location of breakpoint(s) [16], and paired-end mapping allows the 

detection of both copy number and copy neutral variants [17,18]. Moreover, the 

resolution is much higher compared to either aCGH or SNP assays. Nevertheless, 

even with MPS based strategies reconstruction of complex SV remains challenging. 

In summary, existing methods and techniques are currently available to perform 

cost effective studies to detect causative variants underlying monogenic traits. At 

the moment, combining the relatively cheap genome-wide assays with expensive 

MPS will be the preferred method for cost-effective yet powerful detection of 

causative variants. However, if the costs of sequencing will decrease in the near 

future, the preferred method for future studies will be solely based on MPS.  

  

6.3 Polygenic traits 

Although strategies to detect causative variants underlying monogenic trait are 

currently powerful and affordable, most important production traits and genetic 

diseases in livestock species have a polygenic background [19]. Here I will address 

the implementation of current methods to detect causative variants underlying 

polygenic traits, with a distinction between polygenic traits with or without the 

presence of (a) major gene(s). 

 

Polygenic traits with major genes 

Major genes are variants that explain a substantial part of the phenotypic variance 

of a trait and are nearly following the pattern of Mendelian inheritance [20]. 

Therefore, the strategy used to detect causative variants in major genes is similar 

to the strategy used for monogenic traits. However, the genotype - phenotype 

relation is not absolute and, therefore, larger sample sizes are needed for 

association. The additional genotyping, phenotyping, and data-analysis required 

results in more expensive studies compared to those in monogenic traits. 

 In livestock species, there are several successes in the identification of causative 

variants in major genes with strategies similar to those used for monogenic traits. 

Examples are the missense variant in DGAT1 involved in milk yield and composition 

[21], a regulatory variant in IGF2 involved in muscle growth in pigs [22], and a 

regulatory variant in GDF8 involved in muscularity in sheep [23]. For all these 

studies, a genome-wide linkage analysis was performed with a few hundred 

microsatellite markers, subsequently followed by fine-mapping and candidate gene 
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sequencing. While most detected variants in monogenic traits are located in the 

coding regions, two out of the three causative variants within the major genes are 

in the regulatory part of the gene. In general, such variants will require more 

sophisticated, time consuming, and expensive follow-up studies to determine the 

true causative variant.  

Several studies have suggested the involvement of one or two major genes in the 

pulmonary hypertension syndrome (PHS) [24,25,26]. We have described a large 

experiment aimed at the genetic characterization of PHS and in our study we do 

not have any indications for the involvement of major genes in PHS (Chapter 4). 

Instead, our results show that PHS is influenced by large number of genes each 

with small phenotypic effects. This is in agreement with the results of a previous 

linkage mapping study [27] and recently performed GWA study (personal 

communication R. Okimoto, Cobb-Vantress Inc.). A recent study suggests that at 

least 100k SNPs are needed to capture the majority of haplotypes within a broiler 

population [28]. Both GWA studies have only included a fraction of this number 

and, therefore, it cannot be excluded that (major) genes are undetected due to 

insufficient marker resolution (resulting in no or insufficient LD between assayed 

markers and the causative variant). In addition, for the gaps and missing 

microchromosomes in the reference genome [29], markers are lacking in the 

assays, resulting in additional uncovered regions of the genome. For example, 

NOS3 (endothelial nitric oxide synthase) has been suggested to be involved in PHS 

susceptibility [30]. Although it is known that eNOS is present in chicken - eNOS 

mRNA is expressed in chicken - the gene it not present in the current genome build. 

Because eNOS is missing from the reference genome of chicken, markers within 

this gene are not included in the genome-wide assay. 

The uncovered regions in GWA studies, especially the missing microchromosomes, 

emphasize the need to improve the current reference genome. Improvements are 

also essential for MPS based strategies because short read alignment currently 

depends on the reference genome. This dependency will remain until accurate de 

novo assemblies based on MPS become possible. Although several methods are 

developed for de novo assembly of MPS data, the most recent de novo assemblies 

of the human genome are not very accurate [31]. Alkan et al. [31] compared two de 

novo assemblies of a human genome (Li 2010) to the human reference genome and 

detected that the de novo assemblies were 16.2% shorter, and that 420 Mb of 

common repeats, 99.1% of verified segmental duplication, and 2,377 coding exon 

were missing. In the genome-wide SNP assay used to construct the linkage map 

described in chapter 2, we included several hundred markers that had previously 

not been mapped to the reference genome. We anticipated that these markers had 
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a high likelihood of being located on one of the missing microchromosomes or in 

sequence gaps in the reference genome. The majority of informative markers were 

successfully mapped to gaps in the reference genome, thereby facilitating 

improvements that can be used in future genome builds. However, no new linkage 

groups were detected that represented one of the missing microchromosomes. 

New MPS efforts were recently undertaken to close these gaps in the reference 

genome [32]. The study resulted in successful mapping of additional sequences to 

gaps in known chromosomes. Moreover, two new linkage groups were identified 

that might represent missing microchromosomes. Nevertheless, several 

microchromosomes are still missing or underrepresented in the improved 

reference genome. New efforts to close the remaining gaps should be attempted in 

the near future. It is not clear why the sequences of the several microchromosomes 

are completely missing in the current draft sequence of the chicken genome. One 

assumption is that the sequences are missing because they are difficult to clone 

and propagate in E.coli [33]. If this cloning step is indeed the problem, MPS based 

strategies should have been more successful which, apart from the two new 

linkage groups identified, appears not to be the case. It is, therefore, likely that the 

sequencing of the missing microchromosomes will not be solved with current 

second generation MPS technologies alone. Other explanations for the difficulties 

in sequencing these microchromosomes are the high GC nucleotide contents [29] 

that results in PCR amplication difficulties. Third generation sequencing techniques 

provide a solution if PCR amplification is difficult because single molecule 

sequencing does not include PCR amplification steps. The assembly of the 

microchromosomes might be assisted by techniques such as optical mapping 

[34,35,36]. In optical mapping it is possible to obtain the restriction pattern for 

single chromosomes. This restriction pattern can assist in accurate assembly of 

contigs found for the new chromosomes. However, because contigs need to 

include multiple restriction sites for accurate mapping the size of these contigs 

need to be large. Large contigs are generally not feasible with second generation 

MPS and, therefore, require third generation sequencing. 

 

Polygenic traits without major genes  

While the detection of causative variants underlying monogenic and polygenic 

traits with major genes have seen a number of successes, the detection of variants 

involved in polygenic traits has proven to be extremely challenging. For instance, 

less than 1% of 2,000 identified QTLs have been characterized at a molecular level 

in crosses of inbred strains of mice and rats, and almost all variants had large 

phenotypic effects [37]. Polygenic traits influenced by many variants with small 
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phenotypic effects do not follow Mendelian inheritance and, therefore, linkage 

analysis is excluded as a method to map variants. Instead, (genome-wide) 

association mapping is needed. The small phenotypic effect of these variants is 

difficult to distinguish from neutral variants and therefore requires large sample 

sizes for sufficient statistical power. Moreover, the selective pressure on each of 

the variants is typically low and the variants are often located in small haplotypes. 

In order to detect these haplotypes a high resolution assay is needed.  

GWA studies in human indicated that even high resolution SNP assays combined 

with huge sample sizes may not be sufficient to detect all variants involved in 

polygenic traits. For example, a study on height in humans based on 180,000 

individuals with 2.8 million (common) SNPs, resulted in the identified of hundreds 

of genetic variants each with a very small phenotypic effect [38]. Despite this large 

number of variants identified, all variants combined explained only 10% of the 

phenotypic variation of human height. Because it is estimated that approximately 

80% of the total variation in human height is attributed to additive genetic factors 

[39], a large part of the heritability of human height remains undetected. This 

missing heritability might, at least partially, be explained by (rare) causative 

variants that could not be captured by the common SNPs used for the genome-

wide assays. This suggests that future association studies for some polygenic traits 

will require whole-genome re-sequencing of a large number of phenotyped 

individuals. Although technically feasible, the extreme high costs for sequencing, 

data-analysis, and phenotyping make such studies unrealistic. 

One possibility to achieve cost-effective yet powerful studies is to combine the 

power of MPS and the affordability of genome-wide assays in genotype imputation. 

Genotype imputation refers to the prediction of missing genotypes in individuals 

genotyped at a relative low resolution, based on genotype information of a 

reference population in which individuals are genotyped at high resolution, for 

instance by whole-genome re-sequencing [40,41,42,43]. The central thought 

behind genotype imputation is that genotyping or sequencing a small part of the 

population (the so called reference population) results in the detection of the 

majority of haplotypes segregating within the entire population. The haplotype 

information in the reference population can, subsequently, be used to predict 

haplotypes in individuals that are genotyped at a lower resolution (the sample 

population) (Figure 6.2). Recently, a large number of genomes was sequenced to 

establish such a reference population for human [42] and illustrated the power of 

imputation for existing GWA studies. Near the original signal of the GWA study, 

several imputed genotypes had a substantial higher association signal. In addition, 

the size of the associated region could be reduced because only a subset of 
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imputed genotypes showed these high signals. Thus, genotype imputation results 

in increased power to detect variants, and enables further fine-mapping of the 

associated regions. Although current imputation methods are limited to SNP 

imputation, it is expected that upcoming methods will also be capable to impute 

indels and SV. 

Accurate genotype imputation relies on two factors. The first factor is the number 

of individuals needed within the reference population to capture the majority of 

haplotypes segregating within a population. Haplotypes that are not detected in 

the reference populations are inaccurately imputed in the sample population. The 

second factor is the marker density needed for the genome-wide assay needed to 

genotype the sample population. If the design of these assays is not optimal, for 

instance because haplotypes detected within the reference population are not 

sufficiently covered by assayed markers, genotype imputation in the sample 

population will be inaccurate.  

 

 
 

Figure 6.2 Genotype imputation. The figure illustrated a simplified example of genotype 

imputation within an individual genotyped for two markers (black nucleotide). Based on the 

haplotypes in the reference population genotypes can be imputed (red nucleotides) in the 

individual. 
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The optimal number of individuals needed for reference populations in livestock 

species depends on the population demography (LD structure and effective 

population size), the pedigree structure, and the desired imputation error rate [44]. 

Except for the 1000 genome project in human, there are no studies published that 

used whole-genome re-sequencing data for genotype imputation. In layer 

populations, whole-genome re-sequencing studies are planned that are essentially 

based on pedigree structure only (A. Vereijken, personal communication). For the 

layer populations the strategy is to sequence the genome of all sires of a particular 

generation (25 individuals), and the fathers of all dams within this generation 

(another 25 individuals). Thus, by sequencing 50 individuals, at least 75% of all 

haplotypes within the population will be captured by this approach. For 

commercial broiler populations, a similar strategy requires whole-genome re-

sequencing of 80 individuals (A. Vereijken, personal communication).  

Although the data described in chapter 4 provide an excellent opportunity for 

genotype imputation, it is expected that only a fraction of all haplotypes within the 

complete population are captured by sequencing the genomes of twelve 

individuals. Moreover, due to the extent of LD within broilers it is not certain that 

the 18k SNP assay used (effectively 10k segregating markers within the PHS 

population) will be sufficient for accurate imputation. It has previously been 

suggested that genome-wide assays should contain at least 100k markers to 

capture all haplotypes within a broiler population [28]. Therefore, it is expected 

that a large part of the haplotypes within the population will not be properly 

imputed, even if the reference population is large.  

To examine potential shortcomings for genotype imputation based on the 18k SNP 

assay I focused on the haplotypes predicted within a 155 kb LD block on 

chromosome 27 (Figure 6.3). For this region, haplotypes were predicted in three 

datasets using Haploview [45]. The first dataset includes all 1,313 animals 

genotyped with the 18k SNP assay. The second data set includes a subset of this 

population, namely the 12 individuals that have been selected for whole-genome 

re-sequencing. The third dataset involved the genotypes for these 12 animals 

obtained with MPS (Chapter 4). Within the haploblock, based on the SNP 

genotypes of all 1,313 individuals, 10 haplotypes were predicted within the entire 

population. Only 40% of these haplotypes (4 out of 10) were detected in the twelve 

animals (genotyped with the 18k SNP assay) and, therefore, it is obvious that larger 

sample sizes are needed to capture all haplotypes within the population. 

Nevertheless, the 4 haplotypes present in the 12 animals represent 93.3% of the 

haplotype diversity present in the entire population, which indicates that for the 

majority of animals within this population accurate haplotypes can be imputed 
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based on the twelve animals. However, high resolution genotyping with MPS 

revealed that 12 haplotypes are actually underlying the 4 haplotypes predicted 

based on the 18k SNP assay. Thus, even for a region that is in high LD, the 18k SNP 

assay is inadequate to capture all underlying true haplotypes. For regions in the 

genome with low LD, it is expected that even much more haplotypes will be 

missed.  

 

 

Figure 6.3 Haplotype structure of the full population genotyped with 18k SNPs, and the 

haplotype structure of twelve animals based on either the 18k or MPS data. In the figure the 

LD structure of the haploblock is shown (left), and the underlying haplotypes with their 

corresponding frequency (right). The high LD region is located on chromosome 27 

(3,880,581-4,036,439 bp). All animals were considered unrelated in the Haploview analysis. 

Minor allele frequency per SNP > 0.05%. Note that for the MPS data haplotypes only the last 

few bases for the haplotype are shown, and that the bases are annotated 1 or 2 instead of 

the true nucleotides. The 12 animals genotyped with 18k are the same individuals as 

selected for whole-genome re-sequencing. 
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It is likely that the twelve sequenced genomes will not be particularly usefull to 

impute genotypes for individuals genotyped with the 18k SNP assay in the entire 

population. In the future, a better strategy for genotype imputation will be to first 

sequence the genomes of the reference population, subsequently followed by the 

development of a low resolution genome-wide assay in which SNPs should be 

selected to cover the majority of haplotypes within the genome. These ‘low 

resolution’ genome-wide assays nevertheless need to contain up 10-20k SNPs for a 

single layer population and 100k SNPs for a single broiler population as previously 

suggested [28].  

 

6.4 Hitch-hiking mapping 

Besides association based strategies, we applied a hitch-hiking mapping approach 

to identify regions in the chicken genome that are or have been under selection 

(sweep) (Chapter 5). The assumption underlying hitch-hiking mapping is that 

regions in the genome under selection must contain important functional variants. 

A well-known example is the selective sweep detected at the Lactase gene in 

human [46]. A variant located in the regulatory region of lactase gene (LCT) is 

involved in lactase persistence at adulthood [47]. This variant allowed adults to 

consume nutrition’s from dairy animals and, therefore, underwent rapid positive 

selection [48]. In the chicken, a recently performed hitch-hiking study based on 

MPS identified a non-synonymous variant in the TSHR gene that might be involved 

in the absence of strict regulation of seasonal reproduction observed in domestic 

chickens [49] (Chapter 1, box 2). 

Compared to association studies, hitch-hiking mapping does not require expensive 

phenotyping as it is based on exploiting the nucleotide variation within the 

genome. Instead, other criteria such as breeding goals or population characteristics 

can be used for initial interpretation of the function of the causative variant located 

in the sweeps. Unfortunately, these criteria are often rather vague, and include 

many possible pathways in which candidate genes might be involved. The 

identification of the true causative variant therefore remains a difficult task, 

especially when the size of the sweep is large and contains many genes. Because 

there is little a priori knowledge on the function of the gene under selection, each 

gene has to be considered as a potential candidate. A more sophisticated approach 

for hitch-hiking mapping is the use of selection lines for a particular trait, as 

recently shown by Burke et al. [50]. In this study, several genomic regions in 

Drosophila were identified that show strong allele frequency differentiation 

between a control population and a population selected for accelerated 

development. The identified regions are therefore instant target regions for the 
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trait under selection. The results of Burke et al. show that in specifically designed 

selection lines there is no need to phenotype individuals and to perform 

phenotypic based mapping studies. Disadvantages of this method are that the 

selection does not necessarily affect all variants underlying a trait, and that in 

particular variants with large phenotypic effects are identified. Moreover, selection 

lines are expensive and the design will take considerable time.  

In chapter 5, we discussed that the successful detection of regions under selection 

relies on both genotype resolution and population demography. The marker 

density used in this study was sufficient to detect haplotypes that underwent 

recent and strong directional selection. Nevertheless, a higher marker resolution is 

needed detect ‘ancient’ sweeps, because these sweeps are generally smaller in size 

due to recombination events that occurred after the initial sweep. Therefore, it is 

desirable to use MPS in future hitch-hiking mapping studies. Another advantage for 

MPS based hitch-hiking mapping is that this strategy removes the ascertainment 

bias of SNP selection in genome-wide assays [51]. Successful implementation of 

hitch-hiking mapping also depends on population demography. In populations with 

low nucleotide diversity it is difficult to distinguish true signals of selection from 

signals that result from genetic drift or a population bottleneck. The commercial 

white egg-layers, for instance, have many shared homozygous regions within the 

genome due to a major bottleneck that occurred when the lines were established 

from a small base population [52]. In order to distinguish true sweeps from genetic 

drift, additional information is needed from other breeds that share the same 

breeding goal, for instance egg production. If the same region is identified in both 

breeds, there is more confidence that the region is truly under selection. Because 

such studies need a relatively high number of individuals, hitch-hiking mapping 

studies based on MPS are still costly. To reduce costs, pooling the DNA of 

individuals per population provides a cost-effective approach [49]. The 

disadvantage of DNA pooling, however, is that haplotype information is lost. 

Haplotype information is required to detect incomplete sweeps and balancing 

selection [53]. With the increased throughput of sequencing platforms, tag-based 

pooling of individuals provides a good and less expensive alternative compared to 

DNA pooling, while retaining haplotype information [54].  
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6.5 Final thoughts 

Technological developments in the last decade have led to a true revolution in the 

field of genetics. Although many challenges lie ahead, strategies are available to 

successfully detect causative variants underlying monogenic or polygenic traits. The 

technologies for these strategies are currently available, although the 

implementation is often still limited by the size of the available budget. 

Nevertheless, combining different methods can result in cost-effective yet powerful 

studies. The costs for whole-genome re-sequencing are expected to reduce further 

in the near future, making it feasible to include more individuals and boost the 

power of association studies. However, increasingly the bottle-neck in association 

studies is the accuracy of the phenotypes available. Therefore, one has to consider 

whether it wouldn’t be better to spend the available budget to increase the power 

of association studies through more accurate phenotyping instead of increasing the 

sample sizes or marker densities. 

The recent technological developments contribute to more accurate mapping of 

traits. Subsequently, the future challenge will become the identification of the true 

(biological relevant) causative variants underlying the traits. In order to detect 

these causative variants it is essential to have a high quality reference genome with 

accurate gene annotation. For most livestock species, improvements are still 

needed in both areas. Fortunately, decreasing cost of MPS enables studies to 

improve gene annotation with methods such as RNA-seq [55]. For instance, whole 

transcriptome sequencing for many different tissues is currently affordable in all 

species.  

With the third generation sequencing technologies in sight, it is expected that the 

necessary improvements will be addressed in the near future. At the same time, it 

is important to realize that the developments of these third generation sequencing 

technologies will results in significant (computational) challenges in the near 

future. To handle the massive amounts of data that will be provided by these new 

sequencing methods, development in software and hardware are required, as well 

as researchers trained in bioinformatics. 
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Summary 

The chicken currently provides more than a quarter of the meat and nearly all eggs 

produced worldwide. For future improvements in production traits and animal 

welfare as well as to address future consumer demands it is necessary to 

understand the etiology and biology underlying production traits and diseases. The 

primary aim of the research described in this thesis was to investigate the utility of 

several molecular approaches to identify causative variants underlying a variety of 

traits in the chicken. 

The general introduction in chapter 1 provides an overview of the domestication 

history of the chicken - with a particular focus on commercial chicken breeds - and 

describes the importance to identify causative variants underlying production traits 

and diseases. Furthermore, several different molecular techniques and methods 

are introduced that are being used to detect causative variants underlying 

monogenic and polygenic traits.  

Linkage maps are essential for linkage analysis, important to study recombination 

rates and recombination hotspots within the genome and can assist in the 

sequence assembly of genomes. In chapter 2 we describe the construction of a 

new high-resolution linkage map of the chicken genome based on two chicken 

populations with a total of 1619 individuals. The two populations used are a 

purebred broiler line and a broiler x broiler cross. This high resolution allowed 

accurate identification of recombination hotspots in the chicken genome, including 

sex specific recombination. Furthermore, to improve the current reference genome 

(WASHUC2), 613 unmapped markers were included in the genome-wide assay that 

included a total of 17,790 SNPs. The resulting linkage map comprises 13,340 SNPs, 

of which 360 had not been assigned to a known chromosome on chicken genome 

build WASHUC2. The resulting linkage map is composed of 31 linkage groups, with 

a total length of 3,054 cM for the sex-average map of the combined population. 

Regional differences in recombination hotspots between the two mapping 

populations were observed for several chromosomes near the telomere of the p 

arm. The sex-specific analysis revealed that these regional differences were mainly 

caused by female-specific recombination hotspots in the broiler × broiler cross. 

In chapter 3 we describe the molecular characterization of the locus causing the 

late feathering phenotype; a monogenic trait in chicken that results in a delayed 

emergence of flight feathers at hatch. The late feathering phenotype is beneficial 

to breeders as it can be used for sex typing at hatch. The locus has, therefore, been 

extensively used in diverse commercial chicken breeds. However, a retrovirus 

closely linked to the late feathering allele causes a negative pleiotropic effect on 
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egg production and causes viral infections. Within this chapter we describe the 

identification of a 180 kb tandem duplication in the late feathering allele using a 

quantitative PCR approach. The tandem duplication results in the partial 

duplication of two genes; the prolactin receptor and the gene encoding sperm 

flagellar protein 2. Sequence analysis revealed that the duplication is identical in 

broiler, white egg-layer, and brown egg-layer lines. This information was also used 

to design a molecular test to detect this duplication, particularly in heterozygous 

individuals. 

The recent advances in massive parallel sequencing technologies have enabled 

rapid and cost-effective detection of all genetic variants within genomes. The 

detection of all genetic variants within a genome has further increased our ability 

to identify causative variants underlying quantitative trait loci (QTL). In chapter 4, 

we combined a genome-wide association study with whole-genome resequencing 

to identify causative variants underlying the pulmonary hypertension syndrome 

(PHS), a polygenic trait in chicken. PHS is a metabolic disease that has been linked 

to intense selection on growth rate and feed conversion ratio of modern broilers 

(meat-type chicken). PHS has become one of the most frequent causes of mortality 

within the broiler industry and leads to substantial economic losses and reduced 

animal welfare. In total, 18 QTL regions were identified in the genome-wide 

association study. In order to detect causative variants underlying these QTL 

regions, we sequenced the genomes of twelve individuals. To maximize the 

detection of causative variants we selected the individuals based on extreme 

phenotypes for PHS. Within 8 QTL regions we identified a total of 10 genes that 

contain at least one variant that is predicted to affect protein function. Moreover, 

7.62 million SNPs were detected within the twelve animals compared to the 

reference genome. These markers can be used in the development of future 

genome-wide assays. 

Genomic regions that have undergone selection should contain loci that influence 

important phenotypic traits and will, therefore, include causative variant(s) that 

could aid in further future improvement of production traits and disease resistance. 

In chapter 5, we applied hitch-hiking mapping to make a broad assessment of the 

effects of selection histories in domesticated chicken. Towards this end, we 

sampled commercial chickens representing all major breeding goals from multiple 

breeding companies. In addition, we sampled non-commercial chicken diversity by 

sampling almost all recognized traditional Dutch breeds and a representative 

sample of breeds from China. The broad sample of 67 commercial and non-

commercial breeds were assessed for signatures of selection in the genome using 

information of 57,636 SNPs that were genotyped on pooled DNA samples. Our 
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approach demonstrates the strength of including many different populations with 

similar, and breed groups with different selection histories to reduce stochastic 

effects based on single populations. The detection of regions of putative selection 

resulted in the identification of several candidate genes that could aid in further 

improvement of production traits and disease resistance. 

Finally, the general discussion in chapter 6 describes the main findings of this 

thesis. In this chapter recommendations are given for the best strategies to detect 

causative variants underlying monogenic or polygenic traits. All strategies can 

benefit substantially from the recent developments in massive parallel sequencing, 

although the high costs of this method currently prevent large scale studies. In 

order to perform powerful and cost-effective studies, several strategies are 

discussed that combine massive parallel sequencing with other existing methods 

and techniques. Furthermore, the limitations of the different strategies are 

addressed, as well as the improvements needed in the near future to identify 

causative variants underlying a variety of traits in, but not limited to, the chicken. 
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Samenvatting 

Wereldwijd wordt meer dan een kwart van het vlees en vrijwel alle eieren 

geproduceerd door kippen. Om in toekomstige voedsel behoeften te voorzien, het 

dierenwelzijn te verbeteren en te voldoen aan overige eisen van de consument, is 

het van belang om voor ziekten en productie eigenschappen de onderliggende 

genetische basis in kaart te brengen. Het doel van het onderzoek beschreven in dit 

proefschrift is het detecteren van genetische varianten die invloed hebben op, of 

de oorzaak zijn van, verschillende ziekten of productie eigenschappen in de kip. Om 

dit doel te bereiken hebben wij de bruikbaarheid van verschillende (nieuwe) 

moleculaire technieken onderzocht.  

In hoofdstuk 1 wordt een algemene introductie gegeven over de historie van de 

kip, met een nadrukkelijke focus op domesticatie en het opzetten van populaties 

die gespecialiseerd zijn in vlees en ei productie. Verder bevat dit hoofdstuk een 

overzicht van verschillende moleculaire technieken en methoden die gebruikt zijn, 

of kunnen worden, om genetische variatie te detecteren. 

Koppelingskaarten zijn essentieel voor ‘linkage mapping’ studies, belangrijk om 

recombinatie binnen het genoom te bestuderen, en bij het reconstrueren van 

genoom sequenties (bv. een referentie genoom). In hoofdstuk 2, beschrijven wij 

een nieuwe, hoge resolutie, koppelingskaart van het kippen genoom gebaseerd op 

1619 individuen van twee verschillende populaties. De twee populaties bestaan uit 

een vleeskippenlijn en een experimentele kruising tussen twee verschillende 

vleeskippenlijnen. De hoge resolutie van de koppelingskaart heeft er toe geleid dat 

wij recombinatie hotspots (plekken in het genoom waar veel recombinatie plaats 

vindt) in het genoom hebben kunnen opsporen. Bovendien hebben we voor 360 

genetische merkers, waarvan de positie in het genoom onbekend was, een positie 

bepaalt in het genoom. Deze nieuwe gepositioneerde merkers kunnen gebruikt 

worden om het referentie genoom van de kip te verbeteren. De uiteindelijke 

koppelingskaart bestaat uit 13.340 SNP merkers en vertegenwoordigt 31 

verschillende chromosomen. De totale lengte van de koppelingskaart voor de twee 

populatie tezamen is gemiddeld 3054 centiMorgans. De vergelijking tussen de 

koppelingskaarten van de twee afzonderlijke populaties toonde verschillende 

regio’s op verscheidene chromosomen waarin de mate van recombinatie 

significant verschilde tussen de twee populaties. Deze regio’s waren meestal 

gelegen op het telomerische uiteinde van de p-arm van een chromosoom. Op basis 

van de sekse specifieke koppelingskaart van beide populaties is gebleken dat de 

vrouwelijke recombinatie frequentie in de experimentele kruising afwijkend was. 
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In hoofdstuk 3 beschrijven wij de moleculaire karakterisering van het ‘late 

bevedering’ gen, een enkelvoudig kenmerk in de kip dat leidt tot een vertraagde 

groei van veren (voornamelijk slagpennen) in eendagskuikens. Omdat dieren 

zonder het late bevedering gen een normale groei van de slagpennen hebben 

(‘snelle beverding’), is er een duidelijk onderscheid te maken tussen kuikens die de 

verschillende gen varianten dragen. Omdat het gen op het sekschromosoom Z ligt, 

is het mogelijk om kruisingen te maken waarbij, bijvoorbeeld, alle kuikens met een 

langzame bevedering mannetjes zijn, terwijl alle kuikens met een snelle beverding 

vrouwtjes zijn. Doordat het ‘late beverding’ gen gebruikt kan worden voor sekse 

typering bij eendagskuikens wordt het gen veel gebruikt in de fokkerij. Het gen 

heeft echter ook een nadeel door de aanwezigheid van een dichtbij gelegen 

retroviraal virus. Dit retrovirus wordt vrijwel altijd samen gevonden met het gen 

voor late beverding. Het retrovirus heeft echter een nadelig effect op ei productie 

en veroorzaakt een verhoogd risico op virale infecties. Het identificeren van het 

‘late beverding’ gen zal er toe kunnen leiden om dieren te vinden die wel het 

gewenste ‘late bevedering’ gen dragen, maar niet het ongewenste retrovirus. In dit 

hoofdstuk hebben wij met behulp van kwantitatieve PCR een duplicatie van 

ongeveer 180.000 basenparen ontdekt dat de late bevedering veroorzaakt. Deze 

duplicatie resulteert in een (gedeeltelijke) duplicatie van twee genen die coderen 

voor de prolactine receptor (PRLR) en sperm flagellar protein 2 (SPEF2). Op basis 

van de sequentie analyses hebben wij een moleculaire test ontwikkeld waarmee 

getest kan worden of een dier een drager is van deze duplicatie. Samen met 

bestaande testen is het nu mogelijk om dieren te identificeren die wel het 

gewenste ‘late bevedering’ gen dragen, maar niet het ongewenste retrovirus. 

Door de recente ontwikkelingen in nieuwe (2
e
 generatie) sequentie technieken is 

het betaalbaar geworden om vrijwel alle genetische variatie binnen een genoom te 

detecteren binnen één enkel experiment. Door de 2
e
 generatie sequentie techniek 

is het gemakkelijker geworden om genetische varianten op te sporen die 

geassocieerd zijn met meervoudige kenmerken (een kenmerk of ziekte waarbij 

meerdere genen, elk met een kleine invloed op de ziekte, betrokken zijn). In 

hoofdstuk 4 hebben wij de 2
e
 generatie sequentie techniek gecombineerd met een 

genoomwijde associatie studie om genetische varianten te detecteren die invloed 

hebben op Pulmonary Hypertension Syndrome (PHS). PHS, ook wel Ascites 

genoemd, is een ziekte bij de kip die beïnvloed wordt door meerdere genen. PHS is 

de afgelopen jaren in frequentie toegenomen, waarschijnlijk door de selectie op 

snelle groei en efficiënte voedsel conversie in de vleeskip. Momenteel is PHS één 

van de grootste oorzaken van diersterfte in vleeskippen, hetgeen niet alleen 

financiële gevolgen heeft voor de fokkerij bedrijven en boeren, maar ook leidt tot 
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een verminderd dierwelzijn. Met behulp van de genoomwijde associatie studie 

hebben wij 18 chromosomale regio’s gevonden die mogelijk een invloed hebben op 

de ziekte. Om de onderliggende genetische oorzaak te vinden voor deze regio’s 

hebben wij door middel van de 2
e
 generatie sequentie techniek alle puntmutaties 

bepaald in het genoom van 12 individuen. Om zoveel mogelijk genetische varianten 

te detecteren hebben wij 6 individuen geselecteerd met veel zieke nakomelingen, 

en 6 individuen met veel gezonde nakomelingen. In 8 van de 18 chromosomale 

regio’s hebben wij in totaal 10 genen opgespoord die genetische varianten 

bevatten die er toe leiden dat het eiwit (het eindproduct van een gen) niet meer 

goed kan functioneren. Selectie tegen deze varianten kan mogelijk tot een afname 

van PHS leiden.  

Regio’s in het genoom waar selectie heeft plaatsgevonden bevatten naar alle 

waarschijnlijkheid genen die van invloed zijn op productie kenmerken of ziekten. 

Het opsporen van deze genen kan bijdragen tot het verbeteren van productie 

kenmerken en het verhogen van resistentie tegen bepaalde ziekten. In hoofdstuk 5 

hebben wij de techniek ‘hitch-hiking mapping’ toegepast om in een groot aantal 

kippenrassen regio’s te detecteren die onder selectie hebben gestaan. Wij hebben 

hiervoor niet alleen gekeken naar commerciële rassen (vlees- en legkippen), maar 

ook naar niet commerciële rassen uit Nederland en China. Bij 67 verschillende 

populaties binnen deze verschillende rassen hebben wij met behulp van een DNA 

SNP-chip (57.636 merkers) gekeken naar chromosomale regio’s met significante 

aanwijzingen voor selectie in het verleden. Ons onderzoek demonstreert de 

toegevoegde waarde van het gebruik van meerdere populaties per ras, en van 

verschillende rassen met dezelfde fokdoelen, om zodoende stochastische effecten 

te verminderen. Binnen de chromosomale regio’s die mogelijk onder selectie 

hebben gestaan, hebben wij verschillende genen gevonden die ook in de toekomst 

mogelijk van belang zijn voor het verbeteren van productie kenmerken en ziekte 

resistentie. 

In de algemene discussie in hoofdstuk 6 beschrijf ik de belangrijkste resultaten van 

dit proefschrift. In dit hoofdstuk worden aanbevelingen gedaan voor de beste 

strategieën om genetische varianten te detecteren voor zowel enkelvoudige als 

meervoudige kenmerken. Vrijwel alle strategieën kunnen profiteren van de 2
e
 

generatie sequentie technieken, al zal het uitvoeren van grootschalige 

experimenten momenteel nog gelimiteerd zijn door de hoge kosten van deze 

techniek. Bovendien bespreek ik in dit hoofdstuk de beperkingen van alle 

genoemde strategieën, en bediscussieer ik de verbeteringen die nodig zijn voor de 

toekomstige detectie van genetische varianten bij de kip en andere 

landbouwhuisdieren. 
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Dankwoord 

Het is dat de inhoud van de eerste vier pagina’s van mijn proefschrift verplicht zijn, 

anders had dit dankwoord daar gestaan. Het dankwoord is natuurlijk het 

belangrijkste gedeelte van het proefschrift, want zonder hulp is het bijna 

onmogelijk om een proefschrift succesvol af te ronden. Zo ook voor mij. Zonder de 

goede werksfeer in onze groep, en natuurlijk hulp en gezelligheid van vrienden en 

familie, zou mijn promotie traject een stuk minder leuk en succesvol zijn geweest.  

 

Tijdens het werk waren voor mij de koffiepauzes (ongeacht de kwaliteit van de 

koffie) een bron van ontspanning. Vooral zeer interessant waren de fantastische 

discussies over de tuinklauw goud, het smakelijk oerbrood, het wel of niet 

meedoen aan “Ter land, ter zee en in de lucht”, hot-swappen, kerstmarken, kippen, 

de TRA, de portal, de koffiekwaliteit, de kleur van het nieuwe tapijt, en natuurlijk 

voetbal (helaas ben ik wel de enige binnen de vakgroep met échte voetbalkennis). 

Ontspannende evenementen zoals de bieravonden, de we-day en personeelsuitjes 

hebben natuurlijk ook bijgedragen aan de geweldige sfeer binnen onze groep (ok, 

het was niet altijd even succesvol, en om maar te zwijgen over de lichamelijk 

gevolgen, of het moedwillig vermoorden van clubmascottes). Waarschijnlijk zal ik in 

de tekst hieronder niet iedereen noemen die bij heeft gedragen aan de werksfeer. 

Maar mocht je je aangesproken voelen door bovenstaande tekst: DANK!  

 

Natuurlijk zijn er ook vele personen die direct mee hebben geholpen aan mijn 

proefschrift. Allereerst wil ik mijn directe begeleiders Martien en Richard heel erg 

bedanken voor de kans die ik heb gekregen om na mijn afstudeervak bij jullie aan 

de slag kon gaan als AIO. Bedankt voor alle discussies, commentaren en vooral de 

motiverende woorden als het even tegen zat. Johan, ook al ben je niet direct 

betrokken bij mijn gedeelte van het project, bedankt voor alle hulp.  
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etentjes op maandag (pasta, bonenschotel óf nasi), sporten (naja…zoiets), fifa-

avonden (ik ben in potentie nog steeds de beste!), discussies over voetbal (gelukkig 
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