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Abstract 

 

ABSTRACT 

Increasing agricultural production and preventing further losses in biodiversity are 

both legitimate objectives, but they compete strongly in the developing world. In this 

study, current tensions between agricultural production and environmental 

conservation were described and analysed in Mbire District, an agricultural frontier 

shared with wildlife that lies in the Mid-Zambezi Valley, in the northern fringe of 

Zimbabwe. The potential of conservation agriculture (CA) to intensify agricultural 

production with minimum negative environmental effects was then explored. The 

population of Mbire District almost doubled between 1992 and 2002, while the 

livestock densities increased at rates above 15% in the early 1990s and the late 

2000s. From 1980 to 2007, the expansion of farmland over the years was described 

by an exponential relationship. It was suggested that these changes affected 

elephant and buffalo numbers negatively. Increase in human population, increase in 

cattle population, and expansion of cotton farming were all drivers on the observed 

land use change. However, cotton farming was demonstrated to be paramount, 

enabling cattle accumulation and expansion of plough-based agriculture. The 

‘environmental footprint’ per farm was increasing significantly with the area under 

cotton and with the number of draught animals owned. A kilogram of seed cotton 

required 50% more land, removed twice as much N, 50% more K and 20% more P 

than a kilogram of cereal. However, except for pesticide, one man-day invested in 

cotton production had a smaller environmental footprint than a man-day invested in 

cereal production. As farming in Mbire District is limited by labour more than by land, 

specialising in cereal production would increase the total area occupied by crops and 

fallows, whilst specializing in cotton production would reduce this area. Therefore, 

maintaining or increasing the relative profitability of cotton vs. cereal may ‘spare land’ 

for nature. Compared with current farmers’ cropping practices (CP), CA had no effect 

on cotton productivity during years that received average or above average rainfall. 

During a drier year, however, CA was found to have a slightly negative effect (110 kg 

ha-1 less in on-farm trials and 220 kg ha-1 less in farmers’ cotton fields). Most soils in 

the study area are coarse-textured soils, on which runoff were significantly greater 
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with CA than with CP. For these reasons, farmers perceived ploughing as necessary 

during drier years to maximize water infiltration, but saw CA as beneficial during 

wetter years as a means to ‘shed water’ and avoid waterlogging. In Zimbabwe, the 

approach used in the extension of CA appears to differ little from an earlier attempt to 

intensify smallholder agricultural production almost a century earlier: the Alvord 

model. In particular, the rationale of African smallholder farming has been persistently 

ignored. The analysis of smallholder farming practices in Mbire District showed how 

the socio-economic constraints they faced predisposed them towards extensification. 

In particular, labour availability for weeding was found to be a major limiting factor in 

the area. The increased weed pressure in CA is therefore a major reason preventing 

smallholders from embracing it. As a conclusion, mitigating conflicts between 

agricultural production and biodiversity conservation will require major innovations, 

far beyond CA. CA should be seen as part of a larger basket of technologies aiming 

at ‘ecological intensification’. In parallel to the development of technical innovations, 

local institutions should be empowered and strong regulations put in place. 

 

Key words: agricultural frontier; smallholder; intensification; semi-arid area; wildlife; 

conservation agriculture; cotton; Zimbabwe. 
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1.1. BACKGROUND 

Competing claims for land are acute in developing countries (Giller at al., 2008). 

Reducing the number of undernourished people, estimated to be 1.02 billion (FAO, 

2009a), not only requires a reduction in poverty and more equity in food access, but 

also an increase in food production. Meeting this goal comes at a cost for some of 

the last biodiversity-rich areas on Earth. The need to slow down deforestation and 

extinction rates appears more pressing as the links between biodiversity and 

ecosystem processes on which human existence depends become better understood 

(Vitousek et al., 1997; Chapin et al., 2000; Loreau et al., 2001). Increasing 

agricultural production and at the same time minimizing the negative consequences 

of agriculture on biodiversity constitute probably one of the greatest challenges 

ahead for developing countries. Meeting this challenge will not be short of a new 

revolution (Tilman, 1998; Gregory et al., 2002).  

 

Conversion of rainforest to palm plantations in Southeast Asian and its acceleration 

due to demand for biofuel is prominent in the media (e.g. Fargione et al., 2008). For 

African savannas, the consequences of the increased demand for food, fiber and fuel 

on the habitat of the emblematic megafauna is of equal importance. In this study, I 

analyse competing claims on land between agriculture and conservation in an African 

savanna shared by people and wildlife: the Mid-Zambezi Valley, in northern 

Zimbabwe. 

 

1.2. NEED FOR INNOVATION 

Agriculture affects biodiversity directly through changes in land use. Wild species are 

actively removed, controlled by the release of synthetic biocides or affected by 

disturbances associated to farming (Figure 1). The loss of a given species, 

particularly in the case of ‘keystone species’, may lead to further extinctions in trophic 

chains (Mills et al., 1993; Pace et al., 1999). In addition to these local impacts, 

agriculture may affect biodiversity regionally or globally through indirect changes 

(Figure 1). First, agriculture will often affect the biodiversity of adjacent landscapes 

through habitat fragmentation and fragment isolation (Pimm et al., 1995; Fischer and 

Lindenmayer, 2007). Second, agriculture affects hydrological and biogeochemical 

cycles, which may have far-reaching consequences on distant biodiversity. Farmland 
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runoffs may cause siltation of distant streams, lakes, estuaries and coral reefs 

(Farella et al., 2001). Similarly, mobile nutrients such as nitrate and pesticides may 

contaminate regions downstream or downwind (Pimentel, 1995; Almasri and 

Kaluarachchi, 2004). The conversion of natural ecosystems to agriculture also 

releases CO2, which may contribute to global climate change and affect global 

biodiversity (Dixon et al., 1994; Vitousek et al., 1997).  

 

Altered 
Habitat

Alteration of 
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Cycles

Altered 
Biogeochemical 
Cycles (N, P, C)

Biodiversity 
Loss

Biotic 
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(domestic 
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Biotic 
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competitors, 
predators, pests, 

diseases)

Release of 
Synthetic 
Biocides

Change in 
Species Traits

Increased 
Disturbances
(e.g. tillage, fire, 

grazing)

Harvest of a Greater 
Proportion of the 

Primary Production

Altered 
Primary 

Production

Altered Soil 
Cover (standing 
biomass, litter)

Release 
of limiting 
elements 

(N, P)

 

Figure 1. Direct and indirect effects of agriculture on biodiversity (after Vitousek et al., 
1997; Chapin et al., 2000; Tilman et al., 2001) 
 

How can agricultural production be increased with minimum negative consequences 

for biodiversity? Two main approaches can be distinguished. The first approach, 

‘wildlife-friendly farming’, proposes to use little or no external input and to retain 

natural and semi-natural patches within farmlands (i.e. extensive agriculture; Krebs et 

al., 1999; Green et al., 2005). It is based on a land use model integrating production 

and conservation in the same land units. The alternative approach, ‘land-sparing’, 

proposes to maximize yield on existing farmland, hence reducing the need to expand 

into remaining wild nature (i.e. intensification, Ausubel, 2000; Green et al., 2005). It is 
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based on a land use model separating production and conservation in distinct land 

units. 

 

From an ecological perspective, Green et al. (2005) suggest that the choice between 

wildlife-friendly farming and land-sparing can be made by considering species-

specific density-yield functions (Figure 2). Given species (such as many European 

birds) can be maintained at low farming intensity and harbour a convex (upward) 

density-yield function: these species can be effectively conserved through wildlife-

friendly farming. The population density of other species drops quickly with increasing 

farming intensity. These species harbour a concave (upward) density-yield function 

and would benefit more from land sparing combined with maximum-yield agriculture 

than from wildlife-friendly farming. Most species in the developing world are likely to 

belong to the second category. Unlike European birds, these species have not co-

evolved in heterogeneous farmland habitats created and maintained by low-input 

agriculture and extensive livestock rearing (Benton et al., 2003), but are rather 

‘agriculturally naïve’. For example, half or more of all species occurring in unmodified 

habitats of the developing world are absent even from low-intensity farmland (Green 

et al., 2005).  

 

For a given agricultural landscape, the choice between intensification (wildlife-friendly 

farming) or extensification (land sparing) is a product of individual farmers’ decisions. 

These decisions are influenced by complex interactions amongst factors such as 

population density (influencing land availability), resource endowment (capital and 

labour), technological options (land-saving and/or labour-saving), input and output 

markets, and policies (Boserup, 1965; Woodhouse, 2002; Bamire and Manyong, 

2003; Mattison and Norris, 2005; White et al., 2005; Erenstein, 2006) 
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Figure 2. Yield-density relationship describing how the population density of a given 
species of interest varies along an agricultural yield gradient. Wildlife-friendly farming 
is the most appropriate strategy for species that remain at a density similar to the 
density in natural habitat under low-intensity agriculture. Land sparing is the most 
appropriate technology for species that can not maintain themselves in farmland, 
even under low intensity agriculture (from Green et al., 2005). 
 

1.3. THE PROMISE OF CONSERVATION AGRICULTURE 

Innovative farming technologies using the principles of ‘conservation agriculture’ (CA) 

have recently spread in various areas of the world, with the aim of intensifying 

agriculture with minimum negative consequences for the environment. It is defined by 

the Food and Agriculture Organization of the United Nations (FAO) as the 

simultaneous application of minimal soil disturbance, permanent soil cover through a 

mulch of crop residues or living plants, and crop rotation (www.fao.org/ag/ca). CA 

has mainly been adopted in the Americas and to a lesser extent in Australia and New 

Zealand (http://www.rolf-derpsch.com/globaloverview.pdf). Recently, it has also been 

vigorously promoted by international agencies and their donors in southern Africa. 

During the 2009-10 season, 180,000 and 110,000 smallholders were financially 
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supported to adopt some form of CA in Zambia (www.conservationagriculture.org) 

and Zimbabwe (www.prpzim.info), respectively. 

 

Can CA be a technical innovation helping developing countries to intensify their 

agriculture and minimize environmental degradation and biodiversity loss? CA seeks 

to improve water and nutrient use efficiency (Hobbs et al., 2008; Gowing and Palmer, 

2008) by controlling horizontal losses (e.g. water runoff, nutrient losses through 

erosion) and vertical losses (e.g. deep percolation of water, nutrient leaching; Figure 

3). Thus, CA is seen as a pathway to what is sometimes referred to as ‘ecological 

intensification’ or ‘eco-efficient agriculture’ – i.e. a form of agriculture that achieves 

high production levels, in terms of quantity and quality, and uses land, water, 

nutrients, energy, labour, and capital as efficiently as possible, thus causing minimum 

environmental damage (Cassman, 1999; Keating et al., 2010). This study focuses on 

the following question: can CA increase agricultural productivity and reduce wildlife 

decline in Mbire District? 

 

Figure 3. Hypothetical nitrogen (N) cycle (a) in a ‘conventional’ system, with 
extraction of a great fraction of the residues produced, high losses through erosion as 
a result of a quasi-bare soil, and high losses through leaching; and (b) in a system 
managed through conservation agriculture, where crop residues are retained as 
mulch, reducing loss through erosion, and where a deep-rooted secondary crop is 
associated to the main crop, recycling nitrogen. 
 

1.4. THE MID-ZAMBEZI VALLEY: AN AGRICULTURAL FRONTIER SHARED 

WITH WILDLIFE 

The Mid-Zambezi Valley is a low-land area along the Zambezi River, encompassing 

the Zimbabwe-Zambia border and part of northwestern Mozambique (Figure 3). The 
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Mid-Zambezi Valley hosts 1,500-2,000 plant species, which reflects its wide range of 

habitats, over 400 bird species, and a relatively intact and diverse mammal fauna 

including large carnivores (e.g. lion, leopard, spotted hyena), major populations of 

elephant, hippopotamus and buffalo, as well as a small concentration of black 

rhinoceros (Gumbo et al., 2003). It is a priority area for conservation, as 

demonstrated by its inclusion in various regional landscape conservation initiatives, 

such as the ‘Zambezi Heartland’ of the African Wildlife Foundation (Muruthi, 2005) 

and the ‘Mid-Zambezi Valley Area of Biological Significance’ of the World Wide Fund 

for conservation of nature (WWF Ecoregion Conservation Programme, 2003). At the 

heart of the Mid-Zambezi Valley, lies a network of protected area that straddles the 

Zimbabwe-Zambia border (Figure 4). This network includes a complex formed by 

Mana Pools National Park, Sapi Safari Area and Chewore Safari Area, which 

together form a world heritage site since 1984. Communal areas – i.e. state-owned 

land aimed at small-scale family farming - adjacent to these protected areas, such as 

Mbire District, also sustain significant wildlife populations (Gaidet et al., 2003). Mbire 

District was one of the first sites in which the world-renowned Communal Area 

Management Programme for Indigenous Resources (CAMPFIRE) was initiated in 

1989 (Taylor, 2009). CAMPFIRE has been one of the earliest initiatives expressing 

the ‘new conservation approach’, which departs from the ‘fortress conservation 

approach’ by inviting local people to manage wildlife as an economic asset for rural 

development (Hulme and Murphree, 1999).  

 

The area is characterised by wildlife abundance since until recently Mbire District was 

considered as marginal for agriculture. It receives low and erratic rainfall and was 

historically part of the so-called ‘common fly-belt’ where the abundance of tsetse fly 

prevented cattle keeping (Pollock, 1991). After Zimbabwe’s independence in 1980, 

however, the new government was committed to stimulate smallholder agricultural 

development. Large-scale tsetse eradication campaigns and smallholder 

resettlement schemes were funded by the government and international donors. 

Cotton was identified as the most suitable cash crop for the area, due to its 

adaptation to hot temperatures and low rainfall (Parry, 1986). Cotton farming was 

aggressively promoted through extension, and access to credit was facilitated (Aubin, 

1997). Starting in the late 1980s, a ‘cotton boom’ changed Mbire District from a 
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wildlife area to an agricultural frontier. As a result, wildlife habitat has shrunk and 

wildlife numbers have been reported to decline (Biodiversity Project, 2001), 

representing the loss of both a global asset and a secondary source of income, 

through CAMPFIRE. 

 

Figure 4. Location of the Mid-Zambezi Valley 

 

1.5. STUDY OBJECTIVES AND METHODOLOGY 

Although the understanding of the relations between agricultural production and 

environmental conservation has greatly progressed in the past decades, this 

knowledge has been compartmentalised by discipline (e.g. ecology, geography, 

social science, agronomy) and by scale (e.g. landscape, farm, plot). This renders the 

mobilisation of current knowledge difficult to answer pragmatic societal needs related 

to competing claims between agriculture and biodiversity conservation. With the 

development of remote sensing, spatial ecologists have immensely contributed to our 

understanding of the dynamics of land use and land cover change at regional and 

global levels. These studies, however, often fail to connect observed patterns with 
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the diversity and the dynamics of individual land users. Social scientists have 

improved our understanding of the social, economic, and cultural circumstances that 

influence current land uses. These studies offer insight to their rationale, but lack the 

biophysical understanding necessary to propose and explore alternatives. 

Agronomists have improved our knowledge of the mechanisms governing the 

productivity and the efficiency of crop and livestock systems and have designed 

innovative technical packages (including CA). These studies are often carried at the 

level of the plot or herd, and little is known about the likely impact of their adoption at 

farm or landscape level or socio-economic environment in which they are likely to be 

adopted.  

 

In this study, I attempt to integrate insights from various disciplines and spatial 

dimensions to (1) describe and analyse current tensions between agricultural 

production and environmental conservation; and (2) explore the potential of CA to 

intensify agricultural production with minimum negative environmental effects.  

 

Specific objectives of the study were to: 

1. Quantify land use changes that have occurred in the Mid-Zambezi Valley and 

analyse the contribution of different possible drivers 

2. Describe the heterogeneity of farms in the Mid-Zambezi Valley and assess 

their impact on the environment 

3. Compare the performance of conservation agriculture to the performance of 

current cropping practices in smallholder rainfed agriculture in the Mid-

Zambezi Valley 

4. Gain an understanding of smallholders’ farm development pathways in terms 

of intensification or extensification, and how these are shaped by the socio-

economic environment, on-farm constraints and opportunities and farmers’ 

production orientations.  

 

Objective 1 and Objective 2 aim at describing and analysing the current situation at 

landscape-level and farm-level, respectively (Figure 5). Objective 3 and Objective 4 

aim at exploring the consequences of adopting CA, at the plot-level and at farm level.  
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Figure 5. Methodology used in our research, with a ‘zoom in’ describing and 
analysing the current situation (from landscape level to farm-level and plot-level) and 
a ‘zoom out’ exploring the potential consequences of adopting conservation 
agriculture. Numbers correspond to the four specific objectives of this study, and their 
positions correspond to the level at which these objectives were fulfilled. 
 

1.6. THESIS OUTLINE 

Chapter 2 quantifies the land use changes that have occurred in Mbire District, in the 

Mid-Zambezi Valley, since 1980 and analyses the contribution of three major 

potential drivers: increase in human population; increase in cattle population (and the 

expansion of associated plough-based agriculture), and expansion of cotton farming 

(Objective 1). In Chapter 3 the ‘environmental footprint’ of the diversity of smallholder 

farmers in Mbire District is quantified, and the ‘environmental footprint’ of cotton 

production is compared with that of cereal production (Objective 2). Chapter 4 

explores the possibility of CA to improve the productivity and efficiency of the cotton-

cereal systems of Mbire District, under typical smallholder farm conditions (Objective 

3). Chapter 5 evaluates how CA fits in the farming systems of Mbire District, from an 

understanding of the rationale of farmers (Objective 4). Conclusions from a 

discussion of the findings in the previous chapters are drawn in the final chapter, 
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which also presents a decision-making tree on the suitability of the components of 

CA in African smallholder cotton systems, develops a simple conceptual model 

simulating the dynamics of farming systems in agricultural frontiers and proposes an 

approach integrating agricultural intensification and payment for environmental 

services at landscape level. 
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Delineating the drivers of waning wildlife habitat: The predominance of cotton 

farming on the fringe of protected areas in the Mid-Zambezi Valley, Zimbabwe 
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ABSTRACT 

Zimbabwe’s Mid-Zambezi Valley is of global importance for the emblematic mega-fauna of 

Africa. Over the past 30 years rapid land use change in this area has substantially reduced 

wildlife habitat. Tsetse control operations are often blamed for this. In this study, we quantify 

this change for the Dande Communal Area, Mbire District, of the Mid-Zambezi Valley and 

analyse the contribution of three major potential drivers: (1) increase in human population; 

(2) increase in cattle population (and the expansion of associated plough-based agriculture), 

and; (3) expansion of cotton farming. Although direct effects of land use change on wildlife 

densities could not be proven, our study suggests that the consequences for elephant and 

buffalo numbers are negative. All three of the above drivers have contributed to the observed 

land use change. However, we found farmland to have expanded faster than the human 

population, and to have followed a similar rate of expansion in cattle sparse, tsetse infested 

areas as in tsetse free areas where cattle-drawn plough agriculture dominates. This implies 

the existence of a paramount driver, which we demonstrate to be cotton farming. Contrary to 

common belief, we argue that tsetse control was not the major trigger behind the dramatic 

land use change observed, but merely alleviated a constraint to cattle accumulation. We 

argue that without the presence of a cash crop (cotton), land use change would have been 

neither as extensive nor as rapid as has been observed. Therefore, conservation agencies 

should be as concerned by the way people farm as they are by population increase. 

Conserving biodiversity without jeopardizing agricultural production will require the 

development of innovative technological and institutional options in association with policy 

and market interventions. 

 

Keywords: Zimbabwe; agricultural frontier; wildlife; livelihood; tsetse fly; cotton. 
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2.1. INTRODUCTION 

Globally, agricultural expansion represents the most significant threat to biodiversity 

(Vitousek et al., 1997), which is affected directly through biotic additions and 

removals, and indirectly through modifications of the biogeochemical cycles. 

Conversion to agriculture disturbs flows of energy, material and organisms within a 

wider ecological unit and may reduce, through isolation, the capacity of a protected 

area to support biodiversity (DeFries et al., 2007). The consequences of 

fragmentation on wildlife populations can take several generations to be fully 

manifested, and land use change may represent an “extinction debt” for the future 

(Tilman et al., 1994; Cowlishaw, 1999).  

 

Today, agricultural expansion occurs mostly in the developing world (Gibbs et al., 

2010): whereas cropland area shrank in the developed world, the total area of 

cropland in the developing world increased by more than 20% between 1961 and 

1999 (Green et al., 2005). Population growth is an important driver of this expansion, 

but often neither the only nor the main one (Lambin et al., 2001). Policy and markets 

increasingly shape farming practices, (Mattison and Norris, 2005), rendering a 

Malthusian framework – stressing population growth and assuming subsistence-

oriented agricultural production – too limited for the understanding of the drivers of 

land use change (Angelsen, 1999; Madhusan, 2003). 

 

Agricultural policies are often at odds with conservation objectives. For instance, 

policies which improved market access, subsidized farm gate prices, and provided 

extension services in Zimbabwe in the early 1980s, contributed to an expansion of 

land cultivated to maize and, to a lesser extent, cotton (Chipika and Kowero, 2000). 

Interventions in urban centres may also have important consequences for land use 

change, due to rural-urban ties (Jones and O’Neill, 1994). Finally, macro-economic 

policy may indirectly increase the pressure on wildlife habitats, as has been noticed 

in the case of several developing countries after policy reforms included in economic 

liberalization and adjustment programmes (Angelsen and Kaimowitz, 1999). Land 

use change is thus driven by a wide range of factors which have locally specific 

impacts (Scriesciu, 2007). Conservation practices and strategies, therefore, should 
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be based on an intimate understanding of the dynamics, and the drivers of these 

dynamics, within the area they target.  

 

In this study, we illustrate this complexity with the particular case of the Dande 

Communal Land in the Mid-Zambezi Valley. As in many areas of sub-Saharan Africa, 

operations of tsetse control enabled the expansion of human settlements, reinforcing 

the common perception that tsetse fly is an ally of conservation (Happold, 1995). The 

Mid-Zambezi Valley is shared between Mozambique, Zambia and Zimbabwe. It is 

home to all the emblematic African mega-fauna, with the notable exception of the 

Black Rhinoceros (Diceros bicornis Linnaeus) which became locally extinct due to 

extensive poaching between 1989 and 1991 (Cumming and Lynam, 1997). It is a 

priority area for conservation, as demonstrated by its inclusion in various regional 

landscape conservation initiatives, such as the “Zambezi Heartland” of the African 

Wildlife Foundation (Muruthi, 2005) and the “Mid-Zambezi Valley Area of Biological 

Significance” of the World Wide Fund for conservation of nature (WWF Ecoregion 

Conservation Programme, 2003). At the heart of the Mid-Zambezi Valley, wildlife is 

well-preserved in a complex of protected areas formed by Mana Pools National Park, 

Sapi Safari Area and Chewore Safari Area – a world heritage site since 1984. 

However, smallholder farming areas adjacent to these protected areas, such as the 

Dande Communal Area in Mbire District, also sustain significant wildlife populations 

(Gaidet et al., 2003). This landscape shared between people and wildlife, was one of 

the first sites in which the world-renowned Communal Area Management Programme 

for Indigenous Resources (CAMPFIRE) was initiated in 1989. CAMPFIRE aims to 

finance rural development through the sustainable use of wildlife and other natural 

resources (Taylor, 2009). Around 90% of CAMPFIRE revenues in the study area are 

derived from elephant and buffalo (Gaidet et al., 2006). 

 

Wildlife abundance in the Mbire District is at least partially the result of the area being 

part of the so-called “common fly-belt” extending from Zimbabwe into Mozambique, 

Zambia and Malawi. Until the late 1980s, it remained infested by tsetse flies 

(Glossina morsitans morsitans Westwood and G. pallipides Austen), vectors of 

trypanosomiasis. Of low risk to humans, this disease is lethal for cattle (Pollock, 

1991). After Zimbabwe’s independence in 1980, the new government sought to 
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stimulate smallholder agricultural development. As tsetse fly was perceived as the 

major limiting factor to such development in the then sparsely populated Mid-

Zambezi Valley, large-scale operations of aerial and ground spraying of insecticides 

were conducted in the mid-1980s, and gradually replaced by the more 

environmental-friendly method of deploying target traps (RTTCP, 1995). Tsetse 

eradication has often been presented as the single most important factor causing the 

dramatic decrease of prime wildlife area in Dande Communal Area since the 1980s, 

threatening a remarkable biodiversity and eroding the revenues generated by 

CAMPFIRE (Aubin, 1997; Cumming and Lynam, 1997; Biodiversity Project, 2002). 

 

The objectives of this study were to quantify land use changes that occurred since 

independence in a pilot zone of the Dande Communal Area neighbouring the Mana 

Pools-Sapi-Chewore complex and to review three possible drivers: population growth 

(including state-planned resettlement), the expansion of plough-based agriculture 

(made possible by tsetse eradication), and the expansion of cotton farming.  

 

2.2. MATERIALS AND METHODS 

2.2.1. Site description 

The study focused on the Mid-Zambezi Valley, Northern Zimbabwe, between 30°00 

and 31°45 longitude east and 16°00 and 16°30 latitude south. It is designated 

Communal Area (Dande Communal Area), which is state-owned land that may be 

used for small-scale farming and residential purposes by individual households 

whose access is regulated by customary arrangements. The area studied is 

comprised of three wards (Wards 2, 3 and 9), which are administrative sub-divisions 

of districts that, in the case of Mbire district, comprise some 10 to 15 villages (Figure 

1). In this paper, we define “West Ward 2” as the part of Ward 2 West of the Angwa 

river, “East Ward 2” as the area of Ward 2 East of the Angwa river, and “Wards 3 and 

9” as the area formed by Ward 3 and Ward 9. Angwa growth point lies at the centre 

of Ward 2 and Mushumbi Pools at the heart of Wards 3 and 9. The area lies in the 

former floodplains of the Zambezi River, at an average altitude of 400 m above sea 

level, and is drained by two main rivers: the Angwa and the Manyame. It has a dry 

tropical climate, with low and very variable annual rainfall (on average between 450 

and 650 mm year-1) and a mean annual temperature of 25°C. Two seasons are 
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clearly defined: a rainy season from December to March and a long dry season from 

April to November. 

 

 

Figure 1. Location of the study area in northern Zimbabwe (NP: National Park) 
 

The natural land cover is deciduous dry savanna, dominated by Mopane trees 

(Colophospermum mopane (J.Kirk ex J.Léonard)). The local biodiversity is relatively 

intact, with more than 40 large mammal, 200 bird and 700 plant species (Biodiversity 

Project, 2002). In 2002, a total of 71,000 people lived in this area of 4,100 km2, but 

population densities vary considerably: 5.7, 29.2 and 42.9 inhab km-2 in Wards 2, 3 

and 9 respectively (Central Statistical Office, 2002). Settlements occur predominantly 

along the main rivers and the major activity is dryland farming of cotton, maize and 

sorghum. 

 

2.2.2. Development of a land use data base 

Land use change was assessed in terms of conversion of natural vegetation to 

agriculture for the period 1980 to 2007. For this, expansion of farmland, which was 
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defined as any surface that has been cleared for cultivation or residential purpose 

(i.e. homesteads, cultivated fields and fallows) was analysed through remote 

sensing.  

 

We used Landsat Thematic Mapper (Landsat) of 2007, “Système Pour l’Observation 

de la Terre” (SPOT) Multispectral (XS) satellite images of 1990, 1997 and 2001, as 

well as aerial photographs of 1980, all taken during the dry season between July and 

September, to estimate farmland areas. Landsat has a spatial resolution of 30 m, 

while SPOT XS has a 20 m spatial resolution. Aerial photographs that we used have 

a spatial resolution of 5 m. Aerial photographs and SPOT (XS) satellite images were 

re-sampled to 30 m to be compatible with the Landsat images and all images were 

geo-referenced. 

 

Farmland was determined through on-screen visual interpretation and digitization in a 

Geographical Information System: fields, fallows and homesteads can clearly be 

delineated when images are displayed in pseudo-natural colours, as they appear 

near regular, light toned and relatively smooth. We assessed the accuracy of the 

visual interpretations of the 1990 and 1997 SPOT (XS) images using farmland 

classifications from aerial photographs of 1990 and 1997. We use SPOT images in 

Google earth of 2007 to assess the accuracy of the 2007 Landsat image visual 

interpretation (as in Knorn et al., 2009). The Kappa statistics obtained were 0.93 for 

1990 with 88 samples, 0.87 for 1997 with 108 samples, 0.77 in 2001 with 100 

samples, and 0.94 for 2007 with 130 samples. For a given ward and a given year, we 

then calculated the proportions of farmland. Differences were tested using 

comparison of proportion tests. We calculated 95 % confidence intervals using 

standard error and the Z value i.e. 1.96.  

 

2.2.3. Secondary data on population dynamics: people, livestock and wildlife. 

In order to relate land use changes in Mbire District to demographic changes, cattle 

numbers and farming practices, secondary data were extracted from reports issued 

by the Rural District Councils of the Mbire and Guruve governmental departments - 

Department of Veterinary Service (DVS), Agricultural Technical Extension services 

(AGRITEX) - the Regional Tsetse and Trypanosomiasis Control Programme 
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(RTTCP), cotton companies (Cottco, Cargill, Olam, Alliance Ginneries), the Central 

Statistical Office and the Biodiversity Project of the French Agricultural Research 

Centre for International Development (CIRAD).  

 

In addition, to relate the effect of land use change on wildlife population in this 

unprotected area, we used data of the aerial censuses conducted by WWF for the 

years 1982, 1983, 1984, 1986, 1988, 1989, 1992, 1996 (all provided by Cumming 

and Lynam, 1997), 1997 (Mackie, 1998), 1999 (Davies, 1999) and 2001 (Mackie, 

2002) and data of the aerial census conducted by African Wildlife Foundation (AWF) 

for the year 2003 (Dunham, 2004). WWF and AWF censuses used similar strata: 

Chapoto, Masoka Hills, Kanyurira, Chisunga, Dande Safari Area and Kadze, the 

study area being encompassed by the last 4 strata. WWF and AWF censuses also 

used the same general survey methodology, with sampling done around September 

in parallel transects with a fixed-wing aircraft at a speed of about 160 km h-1 and 

about 300 feet above ground (Dunham, 2004). The surface surveyed from one year 

to another was not always the same (varying between 905 and 1032 km2 for the 

years 1982, 1983, 1984 and 1986; between 2331 and 2465 km2 for the years 1988, 

1989 and 1992; and between 3623 and 4611 km2 between the years 1995 and 

2003), but always centred around the Dande Safari Area. We also use wildlife count 

data of the Biodiversity Project coordinated by CIRAD (Gaidet et al., 2006). This data 

was collected along transects covered by observers on bicycles and can be used to 

estimate densities or indices of abundance. 

 

2.2.4. Participatory Rural Appraisal: leader and community meetings. 

 

To gain an understanding of the processes that governed land use change in the 

area since independence and of the biophysical and socio-economic heterogeneity in 

the study area, participatory rural appraisal (PRA) sessions were conducted. PRA is 

an approach and a set of techniques designed for local people to share, enhance 

and analyse their knowledge of life and conditions, but also to plan and to act 

(Chambers, 1994). PRA sessions were held in West Ward 2, East Ward 2 and Wards 

3 and 9. 
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In each site, the PRA was divided into two half-days: a leaders meeting, and a 

community meeting. Participants of leaders meetings included, amongst others, 

traditional leaders, elected representatives of the local government, extension 

officers, representatives of churches, representatives of clubs, etc (between 10 and 

30 people). Community meetings included all members of the community who wished 

to participate (between 100 and 250 people). Leaders meetings focused on broad 

issues related to the history of the area (e.g. human immigrations), the spatial 

organization of the area (e.g. land use), the social organization of the area (e.g. 

access rules and management of natural resources) and institutional linkages and 

support (e.g. credit, extension, non-governmental organizations, marketing, input 

supply, farmer cooperatives). Community meetings discussed issues raised during 

the leaders meeting in more depth. These meetings also produced tangible outputs 

such as area resource maps and household self-categorizations (such as a wealth 

ranking), as we expected that different farms and resource use practices influence 

the rate of expansion of farmland. 

 

2.2.5. Individual interviews 

To better understand the dynamics at farm level and their spatial footprints, as 

suggested by the PRA sessions, we surveyed a sample of farms representative of 

the heterogeneity found in the area. We assumed that the distance from the main 

rivers was a major factor differentiating farms and spatial footprints because of two 

features. (1) The PRA sessions revealed that soil types differ with distance to the 

river. Soils close to the rivers are deep sandy loam soils (locally named “bandate”), 

while in the interfluves loamy sand soils (locally named “shapa”) or shallow sandy 

clay loam soils (locally named “mutapo”) occur. These different soil types have 

different production potentials, which have an impact on farmland expansion (2). The 

PRA sessions also revealed that there was a relationship between the farmer’s origin 

(i.e. autochthon versus immigrant) and distance of the farm from the rivers. The first 

settlers preferentially occupied land along the major rivers on the fertile alluvial 

terraces, while land further away from the rivers was settled later. For these reasons, 

we decided to sample farms using transects perpendicular to the major rivers, i.e. 

designed to include the fixed effect of distance to the main rivers, whereas other 

factors occur at random. We thus walked three transects of 30 to 40 km from the 
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Mana Pools-Chewore-Sapi complex towards more populated areas to the south-

east-east (Figure 1). We also hypothesized that the distance from the protected 

areas would influence livelihood options. Moreover, with Mushumbi Pools growth 

point being the centre of the district and hosting cotton depots and other agro-

services, the three transects were oriented along a gradient of increased access to 

markets i.e. better accessibility to farm inputs and reduced transport costs for the 

purchase of farm inputs and/or sale of farm outputs.  

 

Farms that had at least one cultivated field on one of the transects in the 2006-7 

growing season, were selected for the survey. This resulted in a sample of 176 

farms, of which some could be located several kilometres away from their field on the 

transect. Household heads of these farms were interviewed using a standardised 

questionnaire (with open questions). The questionnaire addressed size, composition 

and history of the household, production capital (e.g. land, equipment), crop and 

livestock management, income generating activities, cash needs, food security, and 

interactions with wildlife. A more detailed characterization of a sub-sample of 40 

farms was conducted, in particular to gather information on farm history and farm 

development pathways. 

 

2.2.6. Statistical analysis 

Quantitative data was tested for normal distribution using Kolmogorov-Smirnov tests, 

and was log-transformed when needed. When testing for differences between 

geographic zones or farm types, means of quantitative data were compared by 

Fisher tests and medians using Kruskal-Wallis (non-parametric) tests. When testing 

for correlations between quantitative data, Pearson correlations were used. For the 

qualitative data, proportions were compared using Chi-square tests. All analyses 

were carried out with the software Statgraphic (Version XV). 

 

2.3. RESULTS 

2.3.1. Pattern of land use change 

The area of farmland, calculated using remote sensing, expanded dramatically since 

1980 (Figure 2b-f). Farmland is concentrated along the major rivers. From the PRA 

we learned that riverbank cultivation is crucial for food security in the area. Between 
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1980 and 1990 farmland expanded mainly along the major rivers, but from 1990 

onwards agriculture stretched into the interfluves (Figure 2b-f). 

 

Between 1980 and 1993 the proportion of farmland in Ward 2 increased relatively 

slowly from 1% to 3% of the total area, followed by a sharp increase up to 14% of the 

total area by 2007 (Figure 3). A similar trend was observed in Ward 3, but with 

greater proportions of farmland: an increase from 5% to 15% of the total area 

between 1980 and 1993, followed by a rapid expansion thereafter to 47% of the total 

area in 2007. In both wards, an exponential relationship describes the expansion of 

farmland over the years.  
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Figure 3. Increase in the area of farmland (FL) in Wards 2 and 3, and of the 
proportion of the total Ward surface it represents. Open symbols: Ward 2, closed 
symbols: Ward 3, bars: proportions, squares: FL. The lines represent exponential 
models: FLwd2 = exp(-195 + 0.10 × T), R2 = 0.95; FLwd3 = exp(-175 + 0.09 × T), R2 
= 0.95; with FLwd2 the surface in km2 of agricultural land in Ward 2, FLwd3 the 
surface in km2 of agricultural land in Ward 3 and T the time in years. 
 

2.3.2. Immigration, planned settlements and spontaneous settlements 

To assess the relative importance of different drivers of land use change in the study 

area, we first looked at human population growth and its consequences for land use. 

The population in Dande Communal Area almost doubled between 1992 and 2002 

(Table 1). This increase varied between the different wards, and was 1.5 times 

greater in Ward 3 and 9 than in Ward 2 (Wards 3 and 9 were a single ward in 1992).  
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Table 1. Population figures and associated densities in 1992 and 2002 in the 
study area (CA: Communal Area; Source: Central Statistic Office, Harare) 

 
 
 
 
 
 

 

The majority of interviewed household heads (64% of the 176 farms sampled) were 

immigrants, that is they were not born in Dande Communal Area (Table 2). We found 

a statistically significant difference in the proportion of immigrants in the three 

geographic areas (P < 0.01): 35% in West Ward 2, 61% in Wards 3 and 9 and 86% in 

East Ward 2.  

 

Table 2. Numbers and proportions (%) of planned vs. spontaneous settlements and of 
migrants vs. long-term residents in the three geographic areas (total sample n = 176): 
West Ward 2 (n = 26; 15% of the total sample), East Ward 2 (n = 49; 28% of the total 
sample) and Wards 3 and 9 (n = 101; 57% of the total sample). 
  West Ward 2 East Ward 2 Wards 3 and 9  Whole area

 No. of 
farms 

% 
No. of  
farms

%
No. of 
farms

%  
No. of 
farms 

%

Planned 
settlementsa 

 
0 0 0 0 51 51  51 29

Spontaneous 
settlements 

 
26 100 49 100 50 49  125 71

Migrantsb 
 

9 35 42 86 62 61  113 64

Long-term 
residents 

 
17 65 7 14 39 39  63 36

aSettlements recognized and demarcated by the Mid-Zambezi Valley Resettlement and Development 
Project 
bHeads of households who were not born in Dande Communal Land 

 

Immigrant farmers cultivated significantly larger areas than autochthons, 3.2 and 2.2 

ha respectively (differences statistically significant in the mean log-transformed 

values; t = -2.88; P < 0.005). Similarly, immigrant farmers tended to cultivate larger 

areas of cotton than autochthons (2.0 ha and 1.4 ha respectively, with a statistically 

significant difference in the mean log-transformed values; t = -2.25; P < 0.05). From 

the sample of households, 38% had been resettled by the state-sponsored Mid-

Zambezi Resettlement Development Project, or MZRDP (Table 2). The majority of 

settlements in the study area, however, were of unplanned spontaneous origin by the 

Years 

 Population (number of inhabitants) Densities (inhabitants km-2) 
 

Ward 2 
Wards 3 

and 9 
 

Dande 
CA

Ward 2
Wards 3

and 9
 

Dande 
CA 

1992  2,707 7,762  36,074 3.1 14.3  8.8 

2002  4,886 18,362  71,096 5.7 33.9  17.3 
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time of the study in 2007. In particular, all the immigrants who settled in East Ward 2 

and West Ward 2, areas not targeted by the MZRDP, were spontaneous immigrants 

who may be recognized by the traditional authority, but not by state institutions. We 

did not find any significant difference in area cropped, number of livestock or number 

of months the household is food secured between spontaneous and state-sponsored 

planned resettlements. Through our PRA, we found that the five eastern-most 

villages of East Ward 2 (of a total of 10 villages) were all created between 1985 and 

2002 by spontaneous immigrants originating mostly from Masvingo Province, in 

Southern Zimbabwe.,  

 

2.3.3. Increase in cattle population and expansion of plough-based agriculture 

As the use of animal traction allows farmers to cultivate larger areas, we need to 

consider changes in the numbers of cattle as a potential driver of land use change. 

The livestock population in the Dande Communal Area increased tremendously since 

the late 1980s, with particularly high annual growth rates (above 15%) in 1990, 1991, 

1992, 1994 and 2006 (Figure 4). Similarly, results from aerial censuses carried by 

WWF and AWF illustrate a linear increase in cattle population from 1995 onwards 

(Figure 5a). The population of sheep and goats also increased tremendously since 

1992, but seemed to plateau by 1999 (Figure 5b). 

 

As expected, the average number of cattle per farm increased from West Ward 2 to 

East Ward 2 and Wards 3 and 9, as tsetse fly density decreased (F = 10.32; P < 

0.0005): the average number of cattle per farm was 0.00, 0.91 and 2.65 heads 

respectively (Figure 6a). 

 

The relative mortality rate of draught animals due to trypanosomiasis is of prime 

importance in explaining the heterogeneity of farming systems across the study area. 

Selected characteristics of households in West Ward 2, East Ward 2 and Wards 3 

and 9 from the 176 questionnaires administered along the 3 transects, are presented 

in Table 3. The average surface per farm increased from an average farm surface of 

1.56 ha in West Ward 2 to 3.03 ha in East Ward 2 and 3.66 ha in Wards 3 and 9 

(Figure 6b; differences statistically significant between the means of the log-

transformed values; F = 20.82; P < 0.0001).  
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Hence, whereas tsetse eradication enabled ox-drawn ploughing – and thus a further 

expansion of farmed land per households in Wards 3 and 9, and to a degree in East 

Ward 2, it had no impact on the expansion of the area of farmland in West Ward 2. 
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Figure 4. Increase in the cattle population in Dande Communal Area. The dotted 
lines represent linear regression: C = 1371 × T between 1989 and 1999, R2 = 0.99; C 
= 7371 × T, between 2004 and 2007, R2 =0.94; with C the cattle population in 
number of heads and T the time in years. Source: Department of Veterinary 
Services, Mushumbi Pools. (Cattle numbers were not recorded during the years 
2000, 2001, 2002 and 2003 due to internal problems in DVS during these years of 
political instability.) 
 
2.3.4. Animal draught power and cropping pattern 

During the PRA sessions, participants mentioned the number of spans of draught 

animals and the surface area dedicated to cotton farming as the major determinants 

of farm heterogeneity in the study area. Therefore, we divided the total sample of 176 

interviewees into 4 groups: a group of farmers without draught power using hand-

hoes who do not grow cotton (49 farmers), a group of farmers without draught power 

using hand-hoes who grow cotton (29 farmers), a group of farmers owning less than 

4 draught animals and growing cotton (38 farmers), and a group of farmers owning 4 
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draught animals or more and growing cotton (60 farmers). We found statistically 

significant differences between these four groups for the mean (log-transformed) total 

land area cultivated (F = 19.49; P < 0.0001) and the mean (log-transformed) land 

area under cotton (F =105.66; P < 0.0001) (Figure 7a). However, no differences were 

found for the (log-transformed) land area under cereals (Figure 7a). There were also 

significant differences between the 4 farm classes in the (log-transformed) number of 

adult cattle (F = 117.77; P < 0.0001) and the (log-transformed) number of sheep and 

goats (F = 19.49; P < 0.0001), both of which are good indicators of wealth (Figure 

7b). Finally, we found statistically significant differences between the 4 farm classes 

in the number of months the household is food secured (F = 5.44; P < 0.0001). 

 

The difference between farms in cultivated area per farm was also apparent when 

comparing the three geographic areas – West Ward 2, East Ward 2 and Wards 3 and 

9. Cotton farming was less developed in West Ward 2, with a mean area of cotton 

per farm of 0.31 ha, than in East Ward 2 and Wards 3 and 9 which had 1.74 and 1.82 

ha respectively (Figure 6c). These differences were statistically significant (F = 29.78; 

P < 0.0001).  

 

The positive interaction between cotton farming and cattle numbers suggested by our 

data is confirmed by the fact that 15 respondents out of a sample of 17 interviewees 

representative of the heterogeneity of immigrants in the study area came to Dande 

Communal Area without cattle or donkeys, but purchased them with income 

generated from cotton or to a lesser extent, from maize cropping (data not shown). 

Cotton is the major source of income for 76% of the farms in the study area (Table 3). 

The area each farm cropped with cotton was also significantly correlated with the 

number of months during which the farm was food secure (r = 0.22; P < 0.005) 
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(a) (b) 

(c) (d) 

West Wd 2 East Wd 2 Wd 3 and 9 

West Wd 2 East Wd 2 Wd 3 and 9 

West Wd 2 East Wd 2 Wd 3 and 9 

West Wd 2 East Wd 2 Wd 3 and 9 
 

Figure 6. Box and whisker plots comparing: (a) number of adult cattle per household, 
(b) cultivated area per household, (c) land area cropped with cotton per household 
and (d) surface area under native vegetation per household, in the three geographic 
areas; West Ward 2, East Ward 2 and Ward 3 and 9 (boxes are drawn extending 
from the lower quartile to the upper quartile; whiskers are drawn from the edges of 
the box to the largest and smallest data values, excluding outside points i.e. points 
that are more than 1.5 times the box width above or below the box limits; outside 
points are represented by squares, medians are represented by vertical lines; 
means are represented by crosses). 
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Figure 7. (a) Mean total cultivated area, cotton area and cereal area for 4 farm 
groups of increasing production capacity (n = 176; Type 1:  manual farms not 
growing cotton; Type 2: manual farms growing cotton; Type 3: farms owning less 
than 4 draught animals and growing cotton; Type 4: farms owning 4 draught animals 
or more and growing cotton); (b) mean number of cattle and sheep and goats for the 
same farm classes. 
 

2.3.5. Trends in wildlife populations 

The relative abundance of wildlife across the study area can be assessed by the 

proportion of farmers reporting human-wildlife conflicts, which we found to be 

statistically different between the three geographic areas (P < 0.01). In West Ward 2, 

all heads of households interviewed reported crop losses due to wildlife, whereas 

only 86% of the farmers in East Ward 2 and 57 % in Wards 3 and 9 reported such 

losses (Table 3). This suggests a clear decrease in the intensity of crop destruction 

by wildlife from West Ward 2 to Wards 3 and 9. Not surprisingly, the proportion of 

farmers guarding their fields against wildlife was statistically different between the 

three geographic areas (P < 0.01): in West Ward 2, all interviewed farmers indicated 

that they guarded their fields against wildlife every night of the cropping season, 

compared with, respectively, 77% and 54% of the farmers in East Ward 2 and Wards 
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3 and 9. The interviewees mentioned elephant and buffalo as the major species 

causing crop destruction (Table 3).  

 

Data from counts on bicycle transects carried out in the study area in 1999 (Gaidet et 

al., 2003) – and re-conducted in 2002 according to the same protocol – demonstrates 

significantly (P < 0.05) higher elephant and buffalo densities in Ward 2 compared 

with the more deforested Ward 3 (Table 4). Aerial census results (Cumming and 

Lynam, 1997; Mackie, 1998; Davies, 1999; Mackie, 2002; Dunham, 2004) surveying 

an area larger than the study area (an area encompassing the Dande Communal 

Land and the Dande Safari Area) do not show any significant trend in elephant 

populations between 1982 and 2003 (Figure 5c). In contrast, the density of buffalo 

appears to have decreased in the same area and during the same period (Figure 5d). 

An analysis of species with a smaller home range - zebra, kudu and sable – showed 

no trends (data not shown). 

 

Table 4. Density estimates and their 95% confidence 
intervals for elephant and buffalo, for the years 1999 
and 2002 in Ward 2 and Ward 3, based on 
observations from six bicycle transects. 
Stratum   Estimate   95% Confidence Interval

Elephant 

 1999 

  Ward 2  1.93  1.39 2.68

  Ward 3  0.59  0.34 1.03

 2002 

  Ward 2  1.48  0.93 2.34

  Ward 3  0.88  0.49 1.58

Buffalo 

 1999 

  Ward 2  6.09  3.95 9.39

  Ward 3  1.02  0.63 1.67

 2002 

  Ward 2  7.02  3.76 13.13

    Ward 3   1.12   0.68  1.85

 

2.4. DISCUSSION 

2.4.1. Expansion of farmland from the major rivers into the interfluves 

Between 1980 and 2007, farmland expanded exponentially in the study area (Figure 

3). This was driven, at least in part, by the migration-fuelled growth in the human 
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population. Since independence, the area can be described as an agricultural frontier 

(Cumming and Lynam, 1997; Biodiversity Project, 2002; CIRAD, 2004). 

 

We found farmland to be concentrated along the major rivers, which is consistent 

with the findings of Cumming and Lynam (1997), who observed that 74% of 

household activities in 1997 occurred within 1 km of the major rivers. Easy access to 

water is probably a major factor that determines the pattern of settlements in the 

study area. Rivers not only provide freshwater for people and livestock but also a 

number of natural resources, such as wild fruits (in particular “masau”: Ziziphus 

mauritania Lam.), reeds for making mats, fish, as well as wildlife that is attracted to 

these permanent water sources during the dry season. Riverbanks also provide 

deep, fertile soils that are easy to till manually and that hold receding moisture during 

the dry season. Despite the legal interdiction to “cultivate (…) land within thirty metres 

of the naturally defined banks of a public stream” (Natural Resource Protection 

Regulations, 1991), cultivation of river banks, and even of the river beds during the 

dry season, remains a common practice in Dande Communal Area (Laigneau, 1999). 

 

Since the 1990s, farmland started to expand into the interfluves. This “herring-bone” 

pattern of expansion differs from that found in the Brazilian Amazon where land 

clearing occurs from roads outwards (Laurance et al., 1998). The difference arises 

probably because the Mid-Zambezi Valley is a semi-arid area where access to water 

limits agricultural expansion more than access to markets via roads. Drilling of 

boreholes in the interfluves between 1988 and 1994 has no doubt been an important 

driver of the expansion of settlements there (Figure 2a). This must have been 

particularly the case in Ward 2, where boreholes have been drilled away from the 

major rivers. In Wards 3 and 9, boreholes were drilled close to the Manyame river by 

the MZRDP, and such increased access to water would have been a less important 

driver of land use change (Figure 2a).  

 

In the following sections we discuss the main drivers of this expansion of farmland 

considering immigration and land use planning, the expansion of plough-based 

agriculture (due to tsetse eradication), and the expansion of cotton production. 
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2.4.2. Immigration and the Mid-Zambezi Valley Resettlement and Development 

Project 

Between 1992 and 2002, the human population increased 6% per annum in Ward 2 

and 9% per annum in Wards 3 and 9 (Table 1), mainly due to immigration. Less 

important immigration in Ward 2 may be the consequence of a number of factors, 

among which the very partial control of tsetse fly, the abundance of destructive 

wildlife and the remoteness from input and output markets. Exclusion of Ward 2 from 

the MZRDP is another factor that led to this differentiation between wards. 

 

The MZRDP started in 1986, and was funded by the African Development Bank and 

the Government of Zimbabwe. It sought to develop the Mid-Zambezi Valley by 

resettling 3,000 families from crowded and degraded Communal Lands elsewhere in 

the country, in addition to an estimated 4,600 resident families (Derman, 1996). Each 

family, resettled or resident, was provided with a 0.5 ha residential plot, 4.5 ha arable 

land and 0.1 ha of vegetable garden area in demarcated residential and farming 

blocks. In addition, each family was restricted to own a maximum of two livestock 

units (LU), one head of cattle being equivalent to 0.7 LU and one goat to 0.09 LU 

(RTTCP, 1995; Ivy, 1998).  

 

However, the programme’s planning and implementation was problematic. Firstly, 

land capability classifications for crop and livestock production were only compiled 

after resettlement, from 1993 onwards, and financial difficulties within the AGRITEX 

Planning Branch prevented the development of proper planning in several areas, for 

example the area between the Manyame and Angwa rivers (RTTCP, 1995). 

Secondly, the MZRDP under-estimated the resident population, in particular by 

overlooking the demographic consequences of the liberation war: numerous 

residents of the Valley had fled the war and were coming back gradually, a number of 

freedom fighters remained and settled after independence, and many former 

commercial farm workers had settled in the Valley around 1980 when the (colonial) 

state’s control over land use was minimal and openly contested. (Derman, 1996). 

Thirdly, the resident population was reluctant to move to their newly-allocated plots 

(RTTCP, 1995; Spierenburg, 1995). Many of the autochthons continue to cultivate 

their old plots illegally until the present day. Fourthly, many resident households were 
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not recorded and even entire villages (in particular the whole of Ward 2), were not 

recognized by the MZRDP. Their inhabitants were identified as “squatters”, 

permanently under threat of being chased away by government authorities (Aubin, 

1997). Illegal settlements, regrouped in illegal villages, welcomed spontaneous 

settlers, possibly driven by the assumption that large villages would be harder to 

evict. Local leaders turned a blind eye to spontaneous immigration as the population 

size of one’s constituency is a basis of political power, and can be used to argue for 

the development of new infrastructures (e.g. schools, clinics, roads, buses) and to 

scare away animals (Derman, 1996). Fifthly, planning took no account of natural 

population growth. Official settlements were not meant to be sub-divided and the next 

generation was expected to seek employment away from the settlement scheme 

(Chimhowu and Hulme, 2006). Finally, settlers found several ways to circumvent the 

rules and access more land than the 4.5 ha which was set as the maximum per 

household, for example by having unmarried sons applying for a 4.5 ha plot and 

adding the surface to the parental farm. The confusion thus created by the MZRDP 

resulted in the plans not being respected, and only accelerated spontaneous 

immigration, both in villages targeted by the MZRDP and in “illegal” villages. 

Government planning thus contributed to land use change. 

 

Immigrants tend to farm larger surfaces than autochthons: on average the total area 

they cultivate is almost 50% larger than that of autochthons. However, spontaneous 

immigrant households and MZRDP resettled households do not differ in this respect, 

nor in other resource endowment indicators, despite of the fact that MZRDP resettled 

households received inputs and tillage services during their first year under the 

programme, and despite that spontaneous immigrant household where considered to 

be illegal. This supports the conclusion of Chimhowu and Hulme (2006): “in some 

cases state-sponsored resettlement has merely been an expensive way of 

reproducing the livelihoods of communal lands”. That both types of immigrants seem 

to strategically appropriate land (Demont et al., 2007), is also suggested by a socio-

economic survey conducted in the area in 1997. It found that 83% of the interviewees 

who migrated to Dande after 1993 mentioned “accessing more crop land” as their 

primary reason for moving (RTTCP, 1997).  
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State planned and spontaneous immigration thus explains an important part of the 

land use change observed in Dande Communal Area. However, the area of farmland 

increased much faster than the human population, and far beyond the area planned 

by the MZRDP. In Ward 2 for example, farmland increased by 263% between 1993 

and 2001 (Figure 3), whilst its population grew by only 80% from 1992-2002 (Table 

2). This suggests land use change in the Mid-Zambezi Valley cannot be reduced to 

immigration-fuelled population growth. We have to consider other drivers to 

understand the rapid changes in land use. In the following sections we discuss 

changes in farming practices: the increase in plough-based agriculture and the 

expansion of cotton farming.  

 

2.4.3. Increased cattle population and expansion of plough-based agriculture 

The increased use of animal draught power may be a driver of land use change, 

since this labour-saving technology increases the area that a farming household can 

cultivate. Similarly to the area of farmland, the livestock population in Dande 

Communal Area increased faster than the human population: the average number of 

cattle per person was 0 in 1980, 0.20 in 1992 and 0.28 in 2002. High annual growth 

rates (above 15%) in 1990, 1991, 1992 and 1994, suggest that residents of Dande 

purchased cattle after the tsetse eradication campaigns of the 1980s, and/or that new 

immigrants came with their cattle. The first factor is likely to have been more 

important, as we found that most immigrants in the study area came to Dande 

Communal Area without cattle or donkeys, and purchased them with income 

generated from cropping (data not shown). The exceptionally rapid growth rate of the 

cattle herd in 2006 may be understood as the combined effect of: a massive 

purchase of cattle by residents, errors in data capture by the DVS, a change in the 

zoning used by the DVS (e.g. addition of villages) or a reduction in cattle off-take 

(less sales, slaughter and/or mortality).  

 

Spatially heterogeneous interventions of tsetse control generated a gradient of tsetse 

fly abundance, from west to east. The successful tsetse eradication in the Wards 3 

and 9 area has probably been a consequence of both active control measures and 

the large expansion of farmland that reduced the habitat of wildlife (the vector of the 

fly) and of the fly itself.  
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The distribution of tsetse fly across the study area has a great impact on the 

possibility to use plough-based agriculture. However, we found that the rates of 

increase in the area of farmland between 1980 and 2007 were similar in Ward 2, 

which is still tsetse infested, and in Ward 3, which is tsetse free: 0.10 and 0.09 km2 

per year respectively (Figure 3). We therefore conclude that tsetse control was not 

paramount in driving the expansion of farmland in the study area. Other factors must 

have had a stronger influence. Other authors (such as Barrett, 1994 and Derman, 

1996) have argued that the presence of tsetse flies has not been a barrier to the 

expansion of livestock, as cattle were present in the Valley in the 1920s, long before 

any tsetse control operation. According to Barrett (1994), the cattle population 

peaked in 1972. Moreover, the fact that growth in the cattle population followed the 

same trend as the sheep and goat population (Figure 5b), more tsetse-resistant 

domestic species, suggests that the increase in cattle population happened more as 

a result of wealth accumulation than tsetse control. Cattle breeds found in the Mid-

Zambezi Valley before independence may have been different from those found 

today in the area, probably smaller and more tsetse resistant.  

 

2.4.4. The development of cotton farming 

We suggest that the development of cotton farming has been the major driver of both 

land use change and the growth in cattle numbers. This cash crop has allowed 

households to accumulate livestock (cattle, sheep and goats) and to purchase farm 

inputs and implements. Figure 7a demonstrates that land use change was driven by 

cotton production rather than cereal production (maize and sorghum being the two 

other major crops): as the wealth of a farming household increases (in terms of 

production assets), so does investment in cotton production rather than cereal 

production. Similarly, the average area per farm of cotton, not cereals, increases 

along a gradient from West Ward 2 to Wards 3 and 9; and immigrants cultivate 

significantly more cotton than autochthons whilst no difference in the average cereal 

surface can be observed. Our PRA sessions also suggest that farmers consider the 

clay soils in the interfluves (locally named “mutapo”), which have a high permanent 

wilting point, to be more suited for cotton production than the alluvial soils (locally 

named “bandate”). This is another demonstration of the role of cotton, rather than 
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cereal production, driving the expansion of farmland, as it occurred mainly in the 

interfluves since 1990 (Figure 2b-f). 

 

We found positive interactions between cotton farming and livestock numbers. Cotton 

generates the cash needed to purchase cattle, and cattle provide the draught power 

necessary for cotton expansion (Figure 7a). Moreover, household needs are covered 

primarily by cash generated through cotton production, reducing the need to sell 

cattle, sheep and goats and allowing further accumulation of livestock (Figure 7b). 

Having 2 spans of cattle or donkeys rather than one significantly accelerates 

livestock accumulation in cotton farms. Farms that have more than 4 draught animals 

own on average more than 8 times more cattle than farms with less than 4 draught 

animals (8.1 and 0.9 respectively; Figure 7b). Similarly, farms with more than 4 

draught animals own on average almost three times as many sheep and goats than 

farms with less than 4 draught animals (9.1 and 3.4 respectively; Figure 7b). Cash 

generated by cotton may also allow investment in inputs (e.g. fertiliser, hybrid seeds), 

implements (e.g. ploughs, cultivators) and other production factors, improving not 

only cotton productivity, but also that of other crops. The positive correlation between 

the land area per farm on which cotton is cultivated and the number of months the 

farming household is food secure supports this conclusion. It exemplifies the 

complementarity of cash and food crops that has been demonstrated in many other 

parts of sub-Saharan Africa (see, for example, Demont et al., 2007). A number of 

spill-over effects of cotton production on cereal production (Govereh and Jayne, 

2003) may occur at household level (e.g. access to fertilisers on credit benefiting 

cereals in the rotation cycle or being used directly on cereals; use of knowledge 

acquired in cotton promotion activities for the production of cereals) and at regional 

level (e.g. market infrastructures developed by cotton companies and benefiting 

markets of other commodities).  

 

Therefore, our conclusion supports the RTTCP (1997) report that sees tsetse control 

as only one of the factors that “may have facilitated or accelerated” land use change 

in Dande Communal Area. Tsetse control enhanced the presence of cattle in the 

area, but cotton farming was the main driver of increased cattle numbers as well as 

the clearing of natural vegetation for agriculture.  
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2.4.5. Implications for wildlife conservation in the Mid-Zambezi Valley 

The decrease in crop damage by wildlife (mainly buffalo and elephant) along the 

anthropogenic gradient from West Ward 2 area to Wards 3 and 9 suggests lower 

wildlife densities in the eastern part of the study area compared with its less 

deforested western part (Table 3). This is consistent with the findings of Hoare (1999) 

who demonstrated a positive correlation between a “problem elephant index”, defined 

as the average number of incidents in a ward per surface of cropped land, and the 

distance from a protected area. Similar findings have been reported in the 

neighbouring district of Muzarabani (Parker and Osborne, 2001).  

 

Results from counts on bicycle transects point to the same conclusion, with 

significantly less elephant and buffalo sightings in Ward 3 than in the less deforested 

Ward 2 in both 1999 and 2002 (Table 4). However, no changes were seen between 

the two sampling times for either species or area. 

 

Data from aerial censuses from WWF and AWF cover a longer period, but are less 

precise (variances are high due to the small number of transects per stratum) and 

can only detect large mammals. However, conclusions may still be drawn for species 

with a large home range such as elephant and buffalo. Results from these aerial 

censuses do not point to a decline in the population of elephants in the study area 

(Figure 5c), despite the increase in human settlements and in the area under 

farmland. It may be that changes in elephant population couldn’t be detected by 

aerial censuses, due to the large scale at which they were conducted, and the large 

confidence intervals of the estimated densities. It may also be that a critical threshold 

of human density affecting elephant populations has not yet been reached. Taylor 

(1999) estimates this threshold to be around 15 to 20 inhabitants per km2 (and up to 

30 inhabitants per km2 under intensely managed conditions) whilst the human density 

for the whole of Dande Communal Area in 2002 was 17 inhabitants per km2. Finally, 

the elephant population may also have remained stable due to the presence of large 

protected areas in the western part of the study area that act as wildlife reservoirs.  

Despite the limitations of the methods, data from aerial censuses suggest that buffalo 

densities have diminished between 1982 and 1992 (Figure 5b). Reduction of habitat 

is only one possible cause of declining buffalo numbers. Poaching for bushmeat is 



Chapter 2 

44 

common in the study area (Murindagomo, 1988, Chardonnet, 1995) and buffalo is 

sought after. Poorly managed sport hunting in the area may also have contributed to 

the decline in buffalo population: a recent study has shown that hunting quotas were 

too high and that the industry was targeting animals that were too young on average 

for sustainable management of the buffalo population (Taylor, 2005). We cannot link 

directly the decline of buffalo population in the study area to land use change. 

However, analysis of satellite images clearly shows increasing isolation of the Angwa 

and Manyame rivers from uncultivated areas. Wildlife thus became excluded from dry 

season water sources and key riparian habitats. Fritz et al. (2003) found negative 

correlations between dry season frequentation of both the Angwa River and 

Manyame River by wildlife and the intensity of cultivation along these rivers. 

Cumming and Lynam (1997) also argued that cultivation along the rivers reduces the 

effective use by wildlife of large unsettled areas away from rivers that are unsuitable 

for agriculture. From the 1990s to date, the expansion of farmland into the interfluves 

reinforced this barrier effect.  

 

2.4.6. What future for the Mid-Zambezi Valley, “wildlife-friendly farming” or 

“land sparing”? 

Farmers in the study areas use fallows to renew farmland productivity. This extensive 

form of agriculture could be typified as “wildlife-friendly farming”, a form of agriculture 

based on the use of little or no external input and the retention of patches of natural 

and semi-natural extensively cultivated patches (Green et al., 2005). Wildlife-friendly 

farming is strongly supported in Europe, through agri-environmental payments 

(Potter and Burney, 2002), as this set of practices was demonstrated not only to be 

benign for European wildlife, birds in particular, but also to be necessary for their 

survival. Most European landscapes are man-made, and the majority of wildlife 

species surviving in these areas have evolved within the heterogeneous farmland 

habitats created and maintained by low-input agriculture and extensive livestock 

rearing (Benton et al., 2003).  

 

The situation is different in most countries of sub-Saharan Africa, where the history of 

farming is shorter and most wildlife species are “agriculturally naïve” i.e. they cannot 

be maintained in farmland, even at low farming intensity (Green et al., 2005). This is 
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probably the case for the emblematic African mega-fauna in the Mid-Zambezi Valley. 

Fritz et al. (2003), for instance, found the number of individuals recorded per 

segment of riverbed to decrease with increasing cultivated areas for all the major 

ungulate and small and medium-sized carnivore species. Moreover, African mega-

herbivores and large carnivores, the main species of interest to conservation in the 

Mid-Zambezi Valley, generally represent a threat to human lives and their presence 

in farmland may be undesirable. Finally, although wildlife-friendly farming is beneficial 

for farmland biodiversity, it often results in less production and therefore requires a 

larger area of farmland to meet any production target (Green et al., 2005).  

 

The alternative approach to wildlife-friendly farming is “land sparing” i.e. increasing 

yield on existing farmland, reducing at the same time the need to expand on 

remaining wild nature. The validity of a land sparing approach is confirmed by 

country-based evidence of yield increases and declines in cultivated areas (Rudel et 

al., 2005). For instance, US farmers, by raising grain yields, have spared about 150 

million hectares since 1940 (Ausubel, 2000). Similarly, increases in crop yields in 

developing countries (Green et al., 2005), have reduced deforestation rates (Ewers 

et al., 2009). Therefore, land use intensification, i.e. yield increase, may constitute an 

opportunity for the conservation of wildlife in the Mid-Zambezi Valley, especially if the 

human population continues to increase.  

 

2.5. CONCLUSIONS 

The image of the Mid-Zambezi Valley that emerges from our research is that of an 

agricultural frontier that attracted opportunity-seeking farmers, and where large-scale 

land use changes were mainly driven by cotton farming. Tsetse control has played an 

important role in catalysing these changes, but they would not have been as fast and 

extensive without the presence of a cash crop such as cotton. We argue that this 

situation is common in agricultural frontiers in developing countries – i.e. that land 

use change is driven by cash cropping and the economic revenue derived, and not 

only by alleviation of farming constraints (e.g. deforestation in Sumatra driven by 

coffee prices, Gaveau et al., 2009; deforestation of the Amazonia driven by beef and 

soyabean prices, Barona et al., 2010). Farmers’ response to changing economic 

conditions, mediated by institutions and increasingly influenced by global forces, is a 



Chapter 2 

46 

major driver of global land use and land cover changes worldwide (Lambin et al., 

2001). 

 

Although direct effects of land use change on wildlife density could not be proven, 

our study suggests that the consequences for elephant and buffalo numbers are 

negative. Other factors – and in particular poaching and sport hunting – may 

contribute to wildlife decline. In any case, if the observed rates of change – in terms 

of human demography, farmland and cattle population - are to continue unabated, 

the consequences for the role the Dande Communal Area in the maintenance of 

wildlife in the wider Mid-Zambezi Valley ecosystem will probably be negative. For 

Dande Communal Area to continue to support wildlife population without jeopardizing 

agricultural production, intensification of land use will be needed in order to “spare” 

land for wildlife. This will require an integrated approach including technical and 

institutional innovation and the development and enforcement of policies and 

regulations to promote sustainable intensification and constrain further clearance of 

land for agriculture. 
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Chapter 3 

What kind of farming can save wild nature? Environmental footprint of farms in 

the Mid-Zambezi Valley, Zimbabwe 
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ABSTRACT 

Environmental footprints of producing food or cash crops adjacent to a conservation area of 

global importance were compared using ten indicators: cropped area, fallow area, pesticide 

use, plant diversity loss, C loss, N, P and K removal, calorific deficit and forage deficit. The 

study was conducted across a gradient of increasing farming intensity in Mbire district, 

Northern Zimbabwe. The environmental footprint of the farms increased strongly along a 

continuum of cereal-based to cotton-based farms. A kilogram of seed cotton required about 

60% more land, removed twice as much N, 50% more K and 20% more P than a kilogram of 

cereal grain. Except for pesticide use and N removal, one man-day invested in cotton 

production had a smaller environmental footprint than a man-day invested in cereal 

production. Consequently, if farmers specialised in cereal production, the cropped area 

would increase by more than 20% and the fallow area by more the 35%. In contrast, if all 

farmers were to specialise in cotton production, the total cropped area would decrease by 

more than 30% and the fallow area by more than 20%. Therefore, maintaining the relative 

profitability of cotton may ‘spare land’ for nature. For this ‘land sparing’ to be effective, 

however, further immigration and land clearance would have to be regulated.  

 

Keywords: Zimbabwe; cotton; cereal; footprint; productivity; efficiency.  
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3.1. INTRODUCTION 

Over the last four decades of the twentieth century, the total area of cropland 

decreased in the developed world but increased by 20% in the developing world 

(Green et al., 2005). Production of agricultural commodities is a major contributing 

factor for this expansion and overrules the effect of population growth (Angelsen, 

1999; Lambin et al., 2001, Searchinger et al. 2009). For instance, deforestation is 

partly driven by oil palm production in Indonesia and Malaysia (Koh and Wilcove, 

2008), by beef cattle production and soya farming in the Amazon (Barona et al., 

2010), and by cotton farming in the African savannahs (Baudron et al., 2009; Chapter 

2). These regions of the developing world are some of the last biodiversity-rich areas 

on the planet (Myers et al., 2000; Gibbs et al., 2010). As our understanding of the 

role of biodiversity in maintaining ecosystem processes improves (Chapin et al., 

2000), the urgency to reduce current rates of deforestation becomes more evident 

(Pimm et al., 1995). Moreover, cash cropping relies more heavily on external inputs 

of pesticides and fertilisers than food cropping (Bamire and Manyong, 2003; 

Erenstein, 2006), which may represent an environmental threat locally and regionally 

(Matson et al., 1997). Cotton – the main cash crop in the African savannahs – is 

considered to be one of the most polluting annual crops due to use of pesticides such 

as endosulfan and deltamethrin that are classified as hazardous by the World Health 

Organization (EJF, 2007; WWF, 2007). 

 

Cash cropping has driven major shifts in land use in several parts of the developing 

world previously dominated by food production (Lambin et al., 2001). This may affect 

the environmental impact of farming, as different crops require different land area, 

labour, and external inputs, and hence differ in their environmental impacts. This 

article focuses on a region of the Mid-Zambezi Valley, in northern Zimbabwe, where 

smallholder farming has expanded rapidly. In the late 1980s, this biodiversity-rich 

region was hit by a cotton boom that transformed the farming systems that were 

previously dominated by cereal farming. Cotton farming permits access to external 

inputs on credit (mineral fertiliser and pesticides) and generates income to purchase 

draught power and implements (Baudron et al., 2009; Chapter 2). Depending on 

resource endowment (e.g. labour), the agro-ecological circumstances in which they 

farm (e.g. abundance of tsetse fly determining the possibility to keep draught 
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animals, see below), and when they first engaged in cotton farming, farmers did not 

benefit equally from the cotton boom. Moreover, no farm fully specialised in cotton 

farming, as being self-sufficient for one's food requirement is a strong socio-cultural 

force in many rural societies (van Donge et al., 2001). Therefore, the study area 

presents a continuum of farms, from cereal-based to cotton-based systems.  

 

The concept of ‘ecological footprint’ allows for an integrated evaluation of the 

environmental impact of a social unit, such as a farming community. It is defined as 

“the amount of biologically productive land and sea area needed to regenerate the 

resources a human population consumes and to absorb and render harmless the 

corresponding waste” (Wackernagel and Rees, 1996). In this paper, a slightly 

different interpretation of the environmental footprint is used. Environmental impact 

from farming was not expressed as a land area, but assessed using locally-relevant 

environmental indicators i.e. adapted to the assessment of the environmental 

footprint of rainfed farming by African smallholder farmers. For example, the risk of 

pollution by pesticides was simply estimated through the quantity of pesticides used. 

The indicators used can be divided in indicators of direct and indirect impact on the 

environment. Direct impacts include the conversion of natural vegetation into 

farmland (cropped land and fallow land), the loss of in situ plant biodiversity, the 

pollution by synthetic biocides and the depletion of nutrient stocks (e.g. N, P, K). 

Indirect impacts have effects on the environment outside the farm boundaries. In this 

study, this included an indicator of the household food requirements that are not 

fulfilled by on-farm production, and that must be fulfilled by food produced off-farm 

(natural resources from neighbouring wild lands or food produced in other farms, 

sometimes even in other farming areas or other countries); and an indicator of  

livestock forage requirements that are not fulfilled by on-farm production, and that 

must be fulfilled by off-farm grazing in the neighbouring natural vegetation and/or on 

other farms. 

 

The objectives of this paper were (i) to assess the current environmental footprint of 

farming in the Mid-Zambezi Valley, along a continuum of farms from cereal-based to 

cotton-based farming, and (ii) to explore possible consequences on the 
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environmental footprint of farming under various scenarios including change in farm 

distribution along this continuum and increased cotton or cereal specialisation.  

 

3.2. MATERIALS AND METHODS 

3.2.1. Study area 

The study area covers three wards (Ward 2, Ward 3 and Ward 9) of Mbire District 

located in northern Zimbabwe between 30°00 and 31°45 longitude East and 16°00 

and 16°30 latitude South (Figure 1). Human population is still relatively sparse and 

there is no land scarcity: in 2002 a total of 23,250 people lived in these three wards 

that cover a total area of 1,400 km2. It is part of the Mid-Zambezi Valley, which is 

formed by the former floodplains of the Zambezi River between the Victoria Falls and 

Cabora Bassa Lake, at an average altitude of 400 m above sea level. It has a dry 

tropical climate, with low and very variable annual rainfall (on average between 450 

and 650 mm year-1) and a mean annual temperature of about 25°C. Two seasons are 

clearly defined: a rainy season from December to March and a long dry season from 

April to November. Smallholder agriculture abuts wildlife conservation areas 

comprised of national parks and safari (hunting) areas. Cotton, sorghum and maize 

are the major crops grown in the region. Minor crops include groundnut, cowpea and 

sunflower. Since the post-2000 economic crisis, the cultivation of maize diminished, 

and remained mostly concentrated along river banks, while more drought-tolerant 

sorghum became the major cereal grown on the interfluves. 

 

The study area is characterised by an agricultural intensification gradient, from north-

west-west to south-east-east. Along this gradient, three geographic zones can be 

distinguished: 1) ‘West Angwa’, on the western end of the gradient, corresponds to 

the western part of Ward 2 and is a sparsely populated zone, where tsetse fly 

remains abundant, large wild mammals are numerous, cattle is absent and cotton is 

cultivated on relatively small areas; 2) ‘Mushumbi Pools’, on the eastern end of the 

gradient, corresponds to Ward 3 and Ward 9 and is a more densely settled zone 

where tsetse fly has been eradicated, large wild mammals are few, cattle population 

is comparatively large, and cotton is cultivated on relatively large areas; 3) ‘East 

Angwa’, in the middle of the gradient, corresponds to the eastern part of Ward 2 and 

represents an intermediate situation (Chapter 2; Figure 1). 



Chapter 3 

54 

Figure 1. Map of the study area indicating the three geographic zones located on an 
agricultural intensification gradient oriented north-west-west to south-east-east, and 
the locations of farmers interviewed during the general and detailed farm 
characterization surveys. 
 

3.2.2. A continuum of farms: from cereal-based to cotton-based systems 

To describe and analyse the continuum of farms between the two ideal-typical ends – 

cereal-based farming that is poorly linked to the market and market-oriented cotton-

based farming – a farm typology was constructed and the functioning of each farm 

type was analysed, following a two step methodology. The first step aimed at 

describing broadly, and mainly from a structural point of view, a relatively large 

sample of farms (n = 176). The aim of the second step was to describe in more detail 

and from a functional perspective a sub-sample of 37 farms chosen to represent the 

diversity of farms identified in step one. 
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3.2.2.1. General characterisation 

Farms were surveyed along three transects of 30 to 40 km cutting across the study 

area in a direction parallel to the agricultural intensification gradient (Figure 1). We 

hereby assumed that the position on the gradient was a major factor influencing the 

farm types. Land uses were classified into four categories: cropland (fields and 

homestead surroundings), fallow land (fallows, grazing areas and degraded 

woodlands), natural vegetation and other types of land uses (e.g. main river beds). 

Along the three transects, coordinates of the transitions between different land uses 

were recorded using a global positioning system and distances between two 

contiguous transitions were calculated. From the proportion of total transect length 

under different land covers, the proportions of the area occupied by fields, fallows 

and natural vegetation in the three geographic zones were estimated. Using the 

transect lengths under cropland and the total length of transect under fallow land as 

proxies, Ruthenberg coefficients (R) were calculated as R = C/(C+F); where C is the 

area under cultivation and F the surface under fallow at any time (Ruthenberg, 1980). 

Farms that had at least one cultivated field on one of the transects in the 2006-07 

growing season were selected for the general farm characterisation (Figure 1). This 

resulted in a sample of 176 farms, of which some homesteads were located several 

kilometres away from their field on the transect, with 26 farms in West Angwa, 49 in 

East Angwa and 101 in Mushumbi Pools. Household heads were interviewed using a 

standardised questionnaire, which addressed size, composition and history of the 

household, production capital (e.g. land, equipment), crop and livestock 

management, income generating activities, cash needs, and food security. For each 

farm, some secondary variables were calculated, such as the total livestock per farm 

(in tropical livestock units) or the land:labour ratio (in ha. person-1). 

 

3.2.2.2. Detailed characterisation 

From the data gathered during the survey for the general farm characterisation, a 

simple typology made of four farm types of increasing resource endowments was 

developed. The surveyed farms were first grouped into farmers that were not growing 

cotton (Type 1) versus farmers growing cotton. The latter group was further divided in 

hand-hoe farmers (Type 2) and ploughing farmers using oxen or donkeys. The group 

of ploughing farmers was finally divided in farmers owning less that two pairs of 
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draught animals (Type 3) and farmers owning two pairs or more (Type 4). The terms 

‘Type 1’, ‘Type 2’, ‘Type 3’ and ‘Type 4’ are used in the rest of the paper to describe 

this typology. The typology was used to select a stratified sample of farmers in each 

geographic zone. In total, 37 farmers were selected and interviewed during the 2008-

09 cropping season, which received above average rainfall (around 1000 mm) well 

distributed over the growing season. The interviews aimed at gathering detailed 

information on farm history, crop management and productivity and resource 

allocation in space and time, with an emphasis on indicators of environmental impact. 

The area of each field at the selected farms was first measured using a global 

positioning system. Information was then gathered on the nature and quantity of 

external inputs applied and the amount of labour invested in each field. For each 

farm, the crop harvests and the proportions of crop residues kept as mulch, ploughed 

in, burnt, grazed by livestock, grazed by wildlife and being decomposed on the soil 

surface during the dry season, were estimated with the corresponding farmer. Finally, 

the farm history was discussed with a focus on major events - such as shift in 

cropped area and technological changes (e.g. cultivation of new crops, use of animal 

traction, use of pesticides) – and on changes in the labour available on-farm, the 

number of draught animals (adult cattle and donkeys) and the areas for the 

cultivation of the different crops.  

 

3.2.3. Indicators of environmental footprint 

A total of ten indicators were used in this study, namely: ‘cropped area’, ‘fallow area’, 

‘pesticide use’, ‘plant diversity loss’, ‘C loss’, ‘N removal value’, ‘P removal value’, ‘K 

removal value’, ‘calorific deficit’, and ‘forage deficit’. The description and calculation 

for these indicators are given in Table 1. To calculate these indicators, only the fields 

cultivated to cotton, maize and sorghum were considered. As the areas dedicated to 

other crops (e.g. cowpea, groundnut, sunflower) were minor in comparison, these 

were ignored in the analyses. 

 

3.2.3.1. ‘Cropped area’ 

The indicator ‘cropped area’ corresponds to the sum of land (in ha) occupied by 

cotton, maize and sorghum in a given farm, and the indicator ‘fallow area’ correspond 
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to the land area (in ha) that is under fallow. Land areas were measured directly 

during the detailed characterisation.  

 

3.2.3.2. ‘Pesticide use’ 

The indicator ‘pesticide use’ denotes the sum of the quantities of active ingredient (in 

g) being used by a given farm. The quantity of each active ingredient was calculated 

as the product of the rate of application of a pesticide (in L or g) and its concentration 

in active ingredient (g L-1 or g g-1). Cotton was the only crop treated with pesticides. 

Rates of application of the different pesticides were obtained during the detailed 

characterisation. Concentrations of active ingredients were obtained from cotton 

companies or manufacturers. Active ingredients used included carbaryl, carbon 

sulphate, fenvalerate, lambdacyhalothrin, acetamiprid, and dimethoate. 

 

3.2.3.3. ‘Plant diversity loss’ 

The indicator ‘plant diversity loss’ was calculated as the mean value of the plant 

diversity loss (in species ha-1) in the different fields, weighed by the area of these 

fields. The value of plant diversity loss in cotton, maize and sorghum fields was 

obtained by measuring plant diversity per area in the fields of nine farms (three in 

each of the three geographic zones) using a reference value of 19 (the measured 

value of the maximum plant diversity per surface area in a field). In each cotton, 

maize and sorghum field of these nine farms, 5 m × 5 m quadrats were placed 

randomly. The number of quadrats set in each field depended on the size of the field, 

with the aim of sampling roughly 1% of the total field area. Samples of plants that 

could not be identified in the field were dried and identified with a reference 

herbarium at the Harare Botanical Garden.  
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3.2.3.4. ‘C loss’ 

The indicator ‘C loss’ is an estimate of the mean annual loss of total soil organic 

carbon to a depth of 40 cm for the whole farm after 40 years (the approximate 

lifetime of a farm in years). For each farm, the proportion of land under cultivation, 

based on the measured cropped area and fallow area, was first calculated. This 

proportion was assumed to be equal to the frequency a given piece of land was put 

to cultivation, and each farm was further assumed to neither expand nor reduce its 

cropped area and fallow area from on year to the next. For example, in a farm where 

2/5th of the total farm area was occupied by crops, it was assumed that any given 

piece of land was being cultivated for two years and put to fallow for 3 years. Thus 

we assumed for this example that the farm consisted at any given time of one section 

cultivated for one year, one section cultivated for two years, one section put to fallow 

for one year, one section put to fallow for two years and one section put to fallow for 

three years. For each of these sections the long-term total soil carbon to a depth of 

40 cm - i.e. after ten crop-fallow cycles - was then estimated, assuming an 

exponential decline in soil organic carbon in fields and a linear increase in fallow.  

 

The exponential decline function of soil organic matter for cultivated fields was 

obtained by fitting an exponential model to the measured data from a sample of 33 

fields (including 3 plots under natural vegetation) representing a chronosequence of 

22 years of cultivation. Three pits were dug in each field of the chronosequence, and 

three undisturbed samples were collected at 0-10, 10-20 and 20-40 cm depth. For 

each field, the nine samples from each depth (each about 100 g) were bulked 

together to form a composite sample that was air-dried and sieved to pass 2 mm. 

Total carbon content was measured in laboratory using a CN auto-analyser 

(Thermoscientific Flash EA 1112 series). Under fallow, the annual rate of total soil 

organic carbon increase to a depth of 40 cm was estimated to be 0.6 t ha-1 year-1 

(Piéri, 1991). For the whole farm, the total soil organic carbon to a depth of 40 cm 

after 40 years was then calculated as the mean value of the total soil organic carbon 

to a depth of 40 cm considering the different sections of fields and fallows of different 

ages. Annual ‘C loss’ was calculated by subtracting this value from 5535 kg ha-1 (the 

measured value of the total soil organic carbon at a depth of 40 cm under natural 
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vegetation in the most common soil type in the study area) and dividing the result by 

40, the number of years. 

 

3.2.3.5. ‘N, P, K removal’ 

The indicators ‘nutrient removal’ (for N, P, K) are calculated from partial nutrient 

balances for the whole farm i.e. the aggregation of the balances of the different fields. 

For a given field, nutrient removal is defined as the difference of the sum of all 

nutrient outputs and the sum of all inputs. In this study, nutrient balances are partial 

in the sense that losses through erosion, leaching and under gaseous forms and 

input through atmospheric deposition and nitrogen fixation (symbiotic and non-

symbiotic) were not considered. Thus, nutrient input used in our calculations was 

only through mineral fertilisers and animal manure, whilst nutrient output was 

exclusively as harvested products of the crops and removal of residues by fire, 

livestock, wildlife and decomposition. It was assumed that all N contained in residues 

was lost in gaseous form during burning, while P and K was retained in the field as 

ashes. During the 2008-09 season, none of the farmers included in the detailed 

characterisation used animal manure and only four farmers used mineral fertiliser: 

Compound L (4% N, 7.48% P, 9.13% K), Compound D (7% N, 6.16% P, 5.81% K), 

ammonium-nitrate (34.5% N) and/or Folifert (51 g N L-1, 34.76 g P L-1, 17.43 g K L-1). 

Harvest indexes of 0.25, 0.5 and 0.43 were used for cotton, maize and sorghum, 

respectively, and mean N, P and K contents provided by Nijhof (1987) were used for 

residues and harvested products. 

 

3.2.3.6. ‘Calorific deficit’ 

The indicator ‘calorific deficit’ is defined as the difference between calorific 

requirements and production of a given farming household. The calorific requirement 

per person and per year was estimated at 3450 kcal person-1 year-1 (which is the 

daily average energy requirement of men aged between 30 and 60 years, weighing 

60 kg and having a vigorously active lifestyle, after FAO (2001)). Annual on-farm 

calorific production was estimated solely on the basis of annual cereal production, 

considering 3690 kcal kg-1 cereal grain (http://www.fao.org/docrep/003, visited 20 

March 2011). Although farming households consumed other minor crop products 

(e.g. cowpea, groundnut) and animal products (milk and occasionally meat), these 
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are negligible on-farm sources of energy compared with cereals, which are 

consumed in the form of a thick porridge (‘sadza’). 

 

3.2.3.7. Forage deficit 

The indicator ‘forage deficit’ is defined as the difference between the amount of dry 

matter required by the livestock on a given farm and the amount of dry matter 

available for grazing on this farm. For each farm, cattle, goat and sheep numbers 

were converted into tropical livestock units (TLU), which is defined as a hypothetical 

animal of 250 kg live weight, and which is equivalent to 1.5 cattle, 12 goats or 10 

sheep (Le Hourou and Hoste, 1977). The annual forage requirement per TLU was 

estimated at 2050 kg DM TLU-1 year-1 (Breman and de Ridder, 1991). Biomass 

production in fallows was estimated at 3000 kg DM ha-1 year-1 (Baudron et al., 

unpublished). The amount of crop residues available for grazing was calculated from 

data of crop biomass production and residue use (i.e. fraction grazed by livestock) 

that were collected during the detailed characterisation. 

 

3.2.4. Environmental footprint at different scales 

The environmental footprint for a farm was estimated using the ten indicators 

described above. The same indicators – except ‘plant diversity loss’, ‘calorific deficit’ 

and ‘forage deficit’ - were used to estimate the environmental footprint for cotton and 

cereal production on each farm, by respectively only considering the cotton and 

cereal fields. By dividing the indicator values by the corresponding economic yield 

(kg ha-1) or quantity of labour invested per area (man-day ha-1), the environmental 

footprint of cotton and cereal per unit of output and per unit of labour were obtained.  

 

Finally, average indicator values per farm type were aggregated for each geographic 

zone, from the distribution of farm types in each zone (obtained from the general 

characterisation data) and the number of farm units in each zone in 2007 - i.e. at the 

time of the general characterisation. The latter was estimated from census data of 

1992 and 2002, assuming that population increased with the same rates between 

2002 and 2007, and assuming that the number of farms of West Angwa represented 

1/3 of the total number of the farms of Ward 2.  
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3.2.5. Scenario analysis 

The environmental footprints per geographic zone in 2007 are referred to as ‘current’ 

footprints. These ‘current’ footprints were compared with four scenarios. ‘Scenario 1’ 

assumed a general loss in wealth that would shift all farmers down one farm type in 

the typology (Type 1-4). ‘Scenario 2’ assumed a gain in wealth that would shift all 

farmers up one type in the typology. In these two scenarios, environmental footprints 

were recalculated using alternative distributions of farm types, but assuming that the 

footprint per farm type remained unchanged. Scenario 1 is informed by the farm 

development that occurred in the late 1980s and in the 1990s, whilst Scenario 2 is 

informed by the increased vulnerability observed since 2000. ‘Scenario 3’ assumed 

that all farms would shift to growing cereals only, while under ‘Scenario 4’ it was 

assumed that all farms would grow only cotton. In these two scenarios, the 

distribution of farm types in each geographic zone was assumed to be unchanged, 

whilst indicators per farm type were recalculated as follows. First, the total labour 

used in farming (in man-day), the labour requirements of cereal production and 

cotton production (in man-day ha-1) were calculated for each farm, from data 

obtained during the detailed characterisation. Second, for each farm, the surface 

area in cereal and in cotton was recalculated under ‘Scenario 3’ and ‘Scenario 4’, 

assuming that all available labour was used to produce only cereal or cotton. Finally, 

the value of each indicator of the environmental footprint was recalculated for each 

farm, assuming that cropped area:fallow area ratios, fertilisation and pesticide 

application rates, and residues utilisation for each crop remained unchanged. 

Scenario 3 was informed by the increased tendency of farm units to specialise in 

cotton production since the late 1980s, while Scenario 4 simulated the long-term 

decline in cotton profitability and the recent liberalisation of the national cereal 

market, creating a new opportunity for cereal as a cash crop. The study area is still 

sparsely populated and can be considered an agricultural frontier, as farming is 

limited by labour (manpower and animal draught power) more than by land (Chapter 

5). Therefore, a change in the profitability of cotton vs. cereal may trigger a change in 

labour allocation, which may in turn trigger a change in cropping patterns. 
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3.3. RESULTS 

3.3.1. Description of the farm typology 

There were significant (P < 0.001) differences in the mean total area cultivated and 

the area under cotton (P < 0.001), both increasing significantly from Type 1 to Type 4 

farms (Table 2). The four farm types also differed significantly (P < 0.01) in the size of 

the household, Type 4 farmers having a family with significantly (P < 0.01) more 

members than other types, and in the number of implements owned, which increased 

significantly (P < 0.001) from Type 1 and 2 (hand-hoe farmers) to Type 3, and to 

Type 4. The land:labour ratio was significantly (P < 0.001) different between the four 

farm types, increasing from Type 1 (0.40 ha person-1) to Type 2 (0.50 ha person-1),  

Type 3 (0.64 ha person-1) and Type 4 (0.81 ha person-1). There were also significant 

differences in livestock ownership: the number of sheep and goats (P < 0.001) and 

cattle (P < 0.001) increased significantly from Type 1 to 4 (Table 2). Most farmers of 

Type 1 (72%) sold their labour out, whilst only few of them hired external labour. The 

opposite was observed for Type 4 farmers, most of them (73%) hired labour. Type 2 

and 3 were in an intermediate situation. Although the average farm in the study area 

experienced a calorific deficit of 3.0 106 (± 4.3 106) kcal year-1, which is equivalent to 

0.81 (± 1.66) t cereal year-1, Type 3 and 4 farmers (ploughing farmers) were food 

self-sufficient during a significantly (P < 0.001). longer period of the year than Type 1 

and 2 farmers (hand-hoe farmers). 

 

The distribution of the different farm types varied along the intensification gradient 

(Table 2). Types 3 and 4 were confined to East Angwa and Mushumbi Pools, and 

their proportion was greater in Mushumbi Pools than in East Angwa. West Angwa 

hosted only Type 1 and 2, farmers and the proportion of Type 1 and 2 farmers 

decreased from West to East in the three geographic zones along the intensification 

gradient (Figure 1). The presence of cattle is a fundamental factor determining 

farming type in the study area. No cattle was found in the tsetse infested area of 

West Angwa (cf. Figure 2b), limiting farm diversity to Types 1 and 2 (cf. Table 2). 

Along the intensification gradient, the maximum area cultivated per farm – in 

particular cotton – is constrained by the availability of animal draught power, whilst 

the number of livestock per farm was to a large extent controlled by animal diseases 

– in particular trypanosomiasis and tick-borne diseases (Figure 2a and 2b). 
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Table 2 – Main characteristics (proportions and means ± standard errors) of the four 
farm types identified in the study area, from data collected through general 
characterization during the 2006-07 season (n = 176).  

Farm characteristics 
Farm types 

Type 1 Type 2 Type 3  Type 4

Composition of the smallholder 
community 

 

 In West Angwa 62 % 38 % 0 %  0 %

 In East Angwa 33 % 14 % 20 %  33 %

 In Mushumbi Pools 17 % 12 % 28%  44%

Proportion of farms    

 Selling labour out 72 %  58 %  49 %   22 %

 Hiring labour in 12 %  25 %  56 %   73 %

Nr. of household members* 5.1 ± 2.2 5.4 ± 2.7 6.3 ± 3.2  7.7 ± 4.1

Area under cotton (ha) 0.0 1.1 ± 0.7 2.0 ± 1.3  3.7 ± 3.1

Area under maize (ha) 0.6 ± 0.2 0.6 ± 0.6 0.6 ± 0.6  0.9 ± 0.8

Area under sorghum (ha) 0.7 ± 0.3 0.5 ± 0.4 0.5 ± 0.5  0.7 ± 0.8

Number of adult cattle (heads) 0.0 0.0 0.9 ± 1.1  8.1 ± 7.2

Number of sheep and goats 0.7 ± 1.1 3.0 ± 4.6 3.4 ± 3.3  9.1 ± 7.3

*Living and eating within the farm household 

 

Beyond the differences in resource availability between farm types, the magnitude of 

resource flows and use efficiencies were also different. From the data gathered 

during the detailed characterisation (n = 37), the mean cereal and cotton yields 

differed between Type 1 and Type 4 (Table 3). No farm type applied P and K fertiliser 

on cereals, and only Type 4 applied very small amounts of fertiliser N on the cereal 

crop (mean of 0.7 kg ha-1). All farm types applied limited amounts of fertiliser N, P 

and K on their cotton crops. The main difference in nutrient resource management 

between the four farm types was through residue management (Figure 3). Between 

57 and 76% of cotton residues were burnt, as cotton residues have to be destroyed 

for phytosanitary reasons in Zimbabwe. In West Angwa, the fraction of cotton 

residues not burnt was almost entirely grazed by wildlife, whilst in Mushumbi Pool 

they were almost entirely grazed by livestock (Figure 3). Cereal residue management 

was not only influenced by the presence of wildlife and livestock, but also by the 

mode of land preparation: between 13 and 18% of cereal residues were incorporated 

into the soil through ox- or donkey-ploughing in East Angwa and Mushumbi Pools; 
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whilst hand-hoe farmers burnt a greater fraction of cereal residues – around a quarter 

– than ploughing farmers did. Moreover, grazing of cereal residues by wildlife was 

only important in West Angwa – about a third – and to a lesser extent in the fields of 

hand-hoe farmers of East Angwa. Grazing of cereal residues by livestock was 

negligible in West Angwa, small in the fields of hand-hoe farmers in East Angwa and 

more important in the fields of ox- and donkey-ploughing farmers in East Angwa and 

in Mushumbi Pools – between 40 and 50 %. Between 19 and 24% of cereal residues 

were decomposed on the soil surface during the dry season. 
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Figure 2. (a) Total cultivated area and area under cotton, and; (b) number of 
livestock, along the intensification gradient (WA: West Angwa; EA: East Angwa; MP: 
Mushumbi Pools). 
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3.3.2. Impact of farming on the environment 

3.3.2.1 Cropped and fallow area  

The proportion of fallow land was found to be identical in the three geographic zones 

(Figure 4). However, the proportion of cropland was three times greater in Mushumbi 

Pools than in East Angwa and West Angwa. R values of 0.37, 0.40 and 0.67 were 

found for West Angwa, East Angwa and Mushumbi Pools, respectively. While R 

values comprised between 0.33 and 0.66 indicate fallow cultivation, i.e. fertility 

renewed through fallowing, values above 0.66 indicate permanent cultivation, 

implying that soil fertility has to be renewed by nutrient inputs (Ruthenberg, 1980).  

 

0%

20%

40%

60%

80%

100%

West Angwa East Angwa Mushumbi Pools

P
ro

p
o

rt
io

n
 o

f 
c

u
m

u
la

te
d

 t
ra

n
s

e
c

t 
le

n
g

th

cropland fallow land natural vegetation other

Figure 4. Relative distribution of land cover types inventoried along three transects 
(of 44, 35 and 33 km length) across the three geographic zones of the study area 
(figures are mean percentages for the three transects; see text for details). 
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3.3.2.2 Pesticide use 

In the study area, 0.3, 1.2 and 7.7 kg active pesticide ingredient km-2 year-1 were 

estimated to be released in West Angwa, East Angwa and Mushumbi Pools, 

respectively (Figure 5a). Cotton was the only crop treated with pesticides. The 

average intensity of pesticide use per unit of cropped area was 428, 415 and 377 g 

active ingredient ha-1 year-1 in West Angwa, East Angwa and Mushumbi Pools, 

respectively. As a reference, the average national intensity of pesticide use per unit 

of arable land in 2001 was 135, 280, 365, 455, 1420 and 5900 g active matter ha-1 

year-1 in France, the United Kingdom, Brazil, the United States of America, the 

Netherlands and Japan, respectively (FAOSTAT, 

http://faostat.fao.org/site/423/default.aspx#ancor, visited 20 March 2011). 

 

3.3.2.3 Plant species diversity 

While the geographic zone had no influence on the plant diversity per unit of cropped 

area, the crop cultivated in the field (P < 0.05) and the mode of land preparation (P < 

0.1) had a statistically significant influence. Plant diversity was largest in maize fields 

planted with hand-hoes (mean of 18.7 species) and lowest in ploughed sorghum 

fields (mean of 8.6 plant species). Ploughing decreased plant diversity significantly in 

maize and sorghum fields, but not in cotton fields (Table 4).  

 

Table 4 – Mean in-field plant diversity (number of plant 
species per hectare) as a function of mode of land 
preparation, measured on fields cultivated with cotton, 
maize or sorghum. Standard errors are given in 
parentheses.  

Present crop  Unploughed Ploughed

Cotton  12.3 (±4.0) 12.1 (±1.7)

Maize  18.7* (±2.6) 12.9* (±3.4)

Sorghum  14.4** (±2.0) 8.6** (±0.8)
* indicates differences in means statistically significant at P < 0.1 
** indicates differences in means statistically significant at P < 0.05 
 

3.3.2.4 Soil carbon stocks 

Total soil carbon to a depth of 40 cm decreased exponentially with the period of 

cultivation (time since land clearance) along a chronosequence of 22 years (Figure 

6). Such changes were described by the function TSC (t ha-1) = 34.4 + 15.9 × 
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0.7945T (RMSE = 5.6 t ha-1; R2 = 38%; P < 0.001) – where TSC is the total soil 

carbon and T the period of cultivation in years. According to this model, around 15 t 

ha-1 of total soil carbon to a depth of 40 cm was lost before an apparent equilibrium 

was reached, after about 10 years of cultivation. Using the fitted function of 

exponential decrease of total soil carbon in fields (above) and assuming a linear 

increase of 0.6 t ha-1 year-1 in fallow, an estimated 0.4, 1.5 and 8.9 t soil organic 

carbon km-2 year-1 was lost in West Angwa, East Angwa and Mushumbi Pools, 

respectively (Figure 5a).  
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Figure 6 – Change in total carbon content in the surface 40 cm of the soil profile 
(TSC) against length of period under cultivation (T) on a typical sandy loam soil for 
the study area. The line represents the fitted exponential function: TSC = 34.4 + 15.9 
× 0.795T (root mean squared error = 5.6; R2 = 0.38; P < 0.001). 
 

3.3.2.5 Soil nutrient depletion 

Due to low fertilisation rates, partial nutrient balances were negative in the study area 

(Table 5). Cotton, maize and sorghum have different total biomass and economic 

yields, and N, P and K concentrations in their harvested products and residues, all of 
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which determine their respective partial nutrient balances. Although cotton received 

far more N fertiliser than maize or sorghum (cf. Table 3), it is the crop which removed 

the largest quantities of N, partly due to burning of its crop resides (cf. Figure 3). The 

three crops removed similar quantities of P and K nutrients. The estimated removal of 

N due to farming was 0.3, 1.5, and 9.2 t km-2 year-1 in West Angwa, East Angwa and 

Mushumbi Pools, respectively (Figure 5a). The estimated removal of K was about 

half these values: 0.1, 0.8, and 5.0 t km-2 year-1 in West Angwa, East Angwa and 

Mushumbi Pools, respectively. The estimated removal of P was very small compared 

to N and K: 0.0, 0.2, and 1.4 t km-2 year-1 in West Angwa, East Angwa and Mushumbi 

Pools, respectively.  

 

3.3.2.6 Caloric deficit 

Over the 37 farms included in the detailed characterisation, only 7 experienced a 

caloric deficit, up to 100% of their annual requirements. For the three geographic 

zones, the aggregated caloric deficit equivalent in cereal grain was found to be 0.8, 

1.0, and 4.8 t km-2 year-1 in West Angwa, East Angwa and Mushumbi Pools, 

respectively (Figure 5a).  

 

3.3.2.6 Forage deficit 

Fourteen of the 37 farms experienced a forage deficit, up to a maximum of 15 t DM 

year-1. For the three geographic zones, there was no aggregated forage deficit for 

East Angwa and West Angwa, and an estimated forage deficit of 6.3 t DM km-2 year-1 

in Mushumbi Pools (Figure 5a).  
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3.3.3. Diverse farms, diverse environmental footprints 

The environmental footprints of the different farm types are shown using radar 

diagrams that represent the 10 indicators. For graphical reasons, the indicators 

‘calorific deficit’ and ‘forage deficit’ were set to be equal to zero when negative (i.e. 

when a surplus was realised). All indicators were expressing negative impact on the 

environment; thus, the greater the surface in these diagrams the greater the 

corresponding environmental footprint. 

 

3.3.3.1. Environmental impact per farm type along the intensification gradient 

Differences in cropping patterns and livestock endowment (Table 2, Table 4, Table 

5), crop yields, fertilisation rates (Table 3), residue management (Figure 3), and the 

mode of land preparation (Table 4) are the causes of different environmental 

footprints for the different farm types. Values of all environmental indicators 

increased along the cereal-based/cotton-based continuum, from Type 1 to 4, except 

for the indicator ‘area under fallow’, while the value for the indicator ‘caloric deficit’ 

decreased in the same direction (Figure 5b). Both Type 1 and Type 4 farmers had a 

mean fallow area of 1.8 ha, whilst Type 2 and Type 3 farmers had less than half of 

this amount (mean of 0.6 ha). Type 1 and Type 2 farms showed a greater calorific 

deficit (65 and 57% respectively) than Type 3 and Type 4 farms (32 and 25%). There 

was a clear trade-off between food self-sufficiency and environmental footprints.  

 

3.3.3.2. Environmental impact per cropping system along the intensification gradient 

Figure 7a and 7d show that for Type 2 and Type 3 farmers, and except for the 

indicator of pesticide use, cereal production per farm had a smaller environmental 

footprint than cotton production per farm. For Type 4 farmers, and except for the 

indicator of pesticide use and N removal, the opposite was found, with cereal 

production per farm having a greater environmental footprint than cotton production 

per farm.  

 

A unit output (kg) of cereal had a smaller environmental footprint than a unit output of 

cotton (Figure 7b and 7e). On average, a kilogram of cereal produced in the study 

area used 13 m2 of land, led to a loss of 392 g C, removed 27 g N, 6 g P, 17 g K and 

received no pesticide. For the production of a kilogram of seed cotton 20 m2 of land 
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were used, 598 g C were lost , 53 g N, 7 g P and 25 g K were removed and 2.6 g of 

active pesticide ingredient were released. The magnitude of the environmental 

footprint of a kilogram of cereal grain differed amongst farm types; for example a 

kilogram of cereal grain produced by Type 1 and 2 farmers required 4 m2 more 

cropped land than a kilogram of cereal produced by Type 3 and 4 farmers. However, 

in general the variation in environmental footprints of a kilogram of cereal grain 

produced by the different farm types was small compared with that of a kilogram of 

seed cotton (Figure 7b). The environmental footprint of a kilogram of seed cotton was 

markedly different for the different farm types (Figure 7e). For example, a kilogram of 

seed cotton produced by Type 2 farmers used more than twice the amount of 

pesticides, occupied more than twice the area of land and lost more than twice the 

amount of soil carbon, than a kilogram of seed cotton produced by Type 4 farmers. 

On the other hand, a kilogram of seed cotton produced by Type 4 farmers removed 

more N, P and K from the soil than a kilogram of seed cotton produced by Type 2 

farmers: the net removal was 30, 54 and 25% larger for Type 4 farmers than for Type 

2 farmers for N, P and K, respectively. There was thus an apparent trade-off in the 

production of a kilogram of seed cotton between, on one hand, the quantity of 

pesticide used, the surface area required and the quantity of carbon lost, and on the 

other hand the quantity of N, P and K removed. From Type 2 to 4, increased 

pesticide use efficiency (i.e. less pesticide per unit output) was found, as well as 

increased land productivity (i.e. less surface area required per unit output – which 

can also be deduced from yield data in Table 3). 

 

Except for pesticide use, a labour unit invested in cereal production had a larger 

environmental footprint than in cotton production (Figure 7c and 7f). On average, a 

man-day invested in cereal production consumed 68 m2 of land, 2.3 kg C, 198 g N, 

41 g P, 124 g K and no pesticide, whilst on average, a man-day invested in cotton 

production consumed 54 m2 of land, 1.9 kg C, 265 g N, 31 g P, 109 g K and required 

6.7 g of active pesticide ingredient. The difference between farm types was small for 

the environmental footprint of a labour unit invested in cotton production, but large for 

cereal production. The environmental footprint of a unit of labour invested in cereal 

was especially large for Type 4 farmers and, to a lesser extent, for Type 3 farmers.  
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3.3.4. Exploring scenarios: change in wealth and change in cropping patterns 

A comparison of the outcome of Scenario 1 (in which all farms shifted down one farm 

type in the typology) with the current situation shows that a general loss in wealth has 

a small impact on the environmental footprint of farming in the three geographic 

zones, particularly for West Angwa (Figure 8a). On the contrary, Scenario 2 shows 

that a general gain in wealth greatly increases the environmental footprint of farming 

in the three geographic zones (the value of most indicators would be approximately 

doubled in each geographic zone; Figure 8a).  

 

Scenario 3 and 4 show that a theoretical shift in cropping patterns towards 

specialisation in cereal (Scenario 3) or cotton production (Scenario 4) has little 

impact on the environmental footprint of West Angwa, except for pesticide use 

(Figure 8b). In East Angwa and Mushumbi Pools, a specialisation in cereal 

production (Scenario 3) does not affect P removal, but decreases N removal and K 

removal, and increases cropped area and fallow area. In particular, it increases the 

cropped area by more than 20% and the fallow area by more than 35% (Figure 8b). 

In East Angwa and Mushumbi Pools, a specialisation in cotton production (Scenario 

4) drastically reduces the environmental footprint of farming, except for the indicator 

of pesticide use (which increases). In particular, it reduces the cropped area by more 

than 30% and the fallow area by more than 20%. 
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3.4. DISCUSSION 

3.4.1. Competition of farming with environmental objectives 

Our study highlights the existing tensions between agriculture and environmental 

conservation in the Mid-Zambezi Valley ecosystem. Farming covers a large 

proportion of the land of the study area, particularly in Mushumbi Pools (Figure 4, 

Figure 5a). Cultivation reduces total soil organic carbon in the surface 40 cm of the 

soil profile (Figure 6). Around 15 t C ha-1 was estimated to be lost after 10 years of 

cultivation. This can probably be explained by the small quantities of organic 

materials that are returned to the soil (when compared with a natural ecosystem), 

destruction of protective aggregates by tillage and accelerated erosion (cultivated 

fields having a sparse ground cover compared to natural ecosystems). Farming also 

reduces in situ plant diversity. Ploughed fields had less plant diversity than fields 

planted after hand-hoe minimum-tillage. Ploughing is indeed known as an effective 

way to control ‘weeds’ (Vogel, 1996; Lal, 2009). Maize fields were found to have a 

greater plant diversity than cotton and sorghum fields. This is likely because of cotton 

being weeded more frequently than maize and sorghum, as it has a longer 

phenological cycle, whilst sorghum is known to have allelopathic properties (Cheema 

and Khaliq, 2000). 

 

Although the environmental indicators of our study provide a useful illustration of the 

impact of farming on the Mid-Zambezi Valley ecosystem, they are based on a 

number of assumptions, except for cropped area and fallow area that were 

accurately measured. For instance, only a fraction of the quantity of the active 

pesticide ingredients sprayed represents an environmental threat: this fraction is 

affected by a complex interaction of factors such as the properties of the active 

ingredient considered, the spraying method, atmospheric conditions during and after 

spraying and soil conditions (Pimentel, 1995; Wijnands, 1997; Beulke et al., 2000). 

Our estimates of C loss do not take into account the facts that : (1) for a given farm, 

the proportion of the land area occupied by crops may change from one year to 

another, depending on rainfall, input availability (e.g. planting seeds) and labour 

availability. Whilst some farmers are in a phase of expansion (young farmers), others 

are in a phase of decline (elderly farmers); and (2) not all sections of the farm have 

the same fallow regime; particular sections– e.g. riverbanks or rich alluvial soils are 
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farmed more intensively. Moreover, actual values of N removal, P removal and K 

removal may be larger, as we ignored losses through erosion, leaching and gaseous 

forms. On the other hand, we also ignored inputs through atmospheric deposition 

and nitrogen fixation (by e.g. legume weeds).Values for food self-sufficiency also 

ignored on-farm sources of energy other than cereals (e.g. pulses, milk) whilst cereal 

harvested on the farm where considered to be used for household consumption only, 

ignoring sales, bartering, support to other dependant households and the use of 

cereals to hire food-unsecured labour. Finally, estimates of forage deficits were 

based on the assumption that farm residues are only accessible by livestock from the 

same farm, ignoring communal grazing. 

 

3.4.2. Environmental footprints along the cereal-based/cotton-based continuum 

of farms 

Figure 9 represents schematically the four farm types – Type 1 to Type 4 - identified 

along the cereal-based/cotton-based continuum of farms. During the late 1980s and 

the 1990s, farms who benefited from the ‘cotton boom’ ‘moved up’ along this 

continuum: from the 37 farmers interviewed, 17 were migrants, from which 15 had 

settled in the study area with no cattle or donkey (i.e. as Type 1 or 2 farmer) but 

since their settlement they had purchased some animals with their cotton income (i.e. 

they had became Type 3 or 4 farmers). From Type 1 to Type 4, the area under 

cereals did not change but the cotton area expanded significantly (Table 2). This was 

the result of the increase in the higher land:labour ratio, due to more animal draught 

power, less family labour being sold, and more external labour being hired in (Table 

2). Type 4 farmers were also endowed with significantly more family labour (Table 2). 

From Type 1 to Type 4, crop yields also increased for both cereal and cotton (Table 

3). Therefore, moving up the continuum in Figure 3 can be seen as both 

‘intensification’, defined as the adoption of yield increasing technologies (which are 

land-saving technologies), and ‘extensification’ as the adoption of labour-saving 

technologies (Erenstein, 2006).  
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Figure 9. Schematic representation of the four farm types identified in our study, 
along the cereal-based/cotton-based continuum (arrows represent labour: manpower 
and animal draught power). Moving up this continuum from Type 1 to Type 4, animal 
draught power increases, cotton area increases, labour sold out decreases, and 
hired labour increases. Cereal area does not change (although cereal yield 
increases, see text). Type 4 farms are also endowed with significantly more family 
labour than other types.  
 

Resource endowment (equipment, cattle, small ruminants) and food security 

increased from Type 1 to Type 4. Thus, enabling farms to move up the cereal-

based/cotton-based continuum appears to be a pathway for improving rural 

livelihoods in the study area. However, this ‘development objective’ appears to 

conflict strongly with the objective of environmental conservation, as the 

environmental footprint per farm increased significantly for Type 1 to Type 4 (except 

for caloric deficit and fallow area; Figure 5b). Thus, gain in wealth would increase the 

environmental footprint in all three geographic zones (Scenario 2, Figure 8a). The 

value of most indicators would roughly double in each zone, as better endowed 

farmers cultivate larger areas, with more area under cotton that requires more 

pesticides. Better endowed farmers also have a larger forage deficit.  
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Can these strong tradeoffs between improving rural livelihoods and minimising 

environmental degradation be turned into a win-win situation? As explored below, 

maintaining the profitability of cotton production may offer a possibility.  

 

3.4.3. Cotton: friend or foe of conservation? 

In the entire district of Mbire, about 10,000 t of seed cotton are purchased by the 

cotton industry every year, implying that the aggregated annual environmental impact 

of the industry for the district represents the use of about 200 km2 of land, the loss of 

about 6000 t C, the removal of about 530 t N, 70 t P, and 250 t K and the use of 26 t 

of active pesticide ingredient. From the results of this study, a kilogram of seed cotton 

requires on average about twice as much N, about 50% more land, C and K, and 

about 20% more P than a kilogram of cereal grain. Therefore, can the replacement of 

cotton by cereal as a cash crop be regarded as desirable? This question is explored 

through Scenarios 3 and 4. As cereal and cotton production have different labour 

productivities (Table 5) and different environmental footprints (Figure 7), a change in 

cropping pattern would have important consequences on the overall environmental 

footprints of the different farm types. 

 

Specialisation of farmers into cereal production (Scenario 3) would cut out pesticide 

use completely, but would increase the cropped area by more than 20% and the 

fallow area by more than 35% in East Angwa and Mushumbi Pools. Thus, the 

replacement of cotton as the main cash crop by cereals appears to be a direct threat 

for wildlife conservation areas. By contrast, specialisation of farmers into cotton 

production would not change the environmental footprint of farming in West Angwa 

substantially (except for pesticide use), but would drastically reduce the 

environmental footprint of farming in East Angwa and Mushumbi Pools (except for 

pesticide use). In particular, it would reduce the cropped area by more than 30% and 

the fallow area by more than 20% in Mushumbi Pools and East Angwa. Therefore, it 

appears that maintaining or increasing the relative profitability of cotton compared 

with cereals is an opportunity for conservation rather than a threat, provided the risk 

of pollution from pesticides is controlled. In particular, maintaining or increasing 

cotton production appears to ‘spare land’ for nature compared with specialisation in 

cereal production (Green et al., 2005). Of course, a major assumption under 
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Scenario 3 and Scenario 4 was that the shift in crop would not be accompanied by an 

increased investment in labour or in labour-saving technologies, resulting in an 

expansion of the cropped area. Moreover, full specialisation to produce only a single 

crop such as cotton is unlikely, as farmers rarely abandon cereal production for food 

security reasons. 

 

Improved access to mineral fertilisers (on credit) from cotton companies may reduce 

the environmental footprint of cotton farming, and of the farm as a whole, by 

compensating for nutrient removal and soil depletion. Ruthenberg coefficients 

indicate that fallowing is insufficient to rebuild soil fertility in Mushumbi Pools. Not 

burning cereal residues would only improve the current partial nutrient balances by 

less than 5 % (data not shown). Similarly, using manure available on-farm would only 

represent a substantial nutrient input for Type 4 farmers (improvement of 23% of the 

current partial nutrient balance) but is insignificant for other farm types (improvement 

of less than 4% of the current partial nutrient balance; data not shown). Therefore, 

increased use of mineral fertiliser represents the only option to maintain the 

productivity of croplands in Mushumbi Pools. The closest input agricultural markets 

are located more than 100 km from the study area, implying that virtually the only 

viable way for local farmers to access mineral fertilisers is through input credit 

schemes from cotton companies. At the time of this study, however, farmers were 

using little mineral fertiliser in their cotton fields, as cotton companies were providing 

limited quantities of mineral fertilisers through credit schemes (Table 3). The situation 

has since then improved, with the passing in August 2009 of a new legislation under 

which cotton companies have to provide adequate input packages to the farmers 

they contract.  

 

3.4.4. Towards ecological intensification of cotton production 

 

Cotton farming requires substantial quantities of pesticides compared with cereal 

farming, and these may become a threat to off-site biodiversity. Type 4 and Type 3 

farmers demonstrated higher pesticide use efficiencies than Type 2 farmers (Figure 

7e). This may simply be a result of the fact that pesticides are packed in units for a 

hectare, whilst many Type 2 farmers cultivate cotton fields much smaller than one 



Chapter 3 

84 

hectare (Table 2). The differences in the pesticide use efficiencies between Type 3 

and 4 farmers and Type 2 farmers may also be caused by better management of 

inputs by farmers specialised in cotton farming. Pesticide use efficiency could be 

further increased by use of ultra-low volume (ULV) spraying techniques (Cauquil, 

1987), or through spraying only when a certain threshold of pest attack is reached 

(Silvie et al. 2001), which would have positive consequences for both the 

environment and profitability.  

 

Specialisation in cotton farming may also lead to increased efficiency of use of other 

production inputs. Fertiliser use efficiency can be enhanced by increasing the fraction 

of nutrient captured by the crop and/or reducing the fraction lost by leaching, through 

use of improved germplasm, precision application in time and space, mulching, and 

recycling of nutrients by cover crops or agroforestry species. Deployment of these 

technologies could ultimately lead to what is sometimes referred to as ‘ecological 

intensification’ or ‘eco-efficient agriculture’ – agriculture that achieves high crop 

production, in terms of quantity and quality, and uses all resources as efficiently as 

possible, minimising environmental damage (Cassman, 1999; Keating et al., 2010). 

 

3.5. CONCLUSIONS 

Cotton has been the major driver of land use change in the Mid-Zambezi Valley 

(Chapter 2). For a particular farm, moving along the cereal-based/cotton-based 

continuum increases wealth and food security, but also increases the environmental 

footprint of the farm. Thus, cotton may be seen as the single biggest threat to the 

Mid-Zambezi Valley ecosystem. On the other hand, cotton farming is more labour 

intensive than cereal farming. Therefore, in areas were production is limited by labour 

more than by land, a farming unit specialised in cotton production occupies less 

space than a farming unit specialised in cereal production. Under circumstances 

where the profitability of cotton farming declines relatively to the profitability of cereal 

farming, encouraging cotton farming may provide an opportunity for conservation 

rather than a threat. However, for ‘land sparing’ to be effective, control of immigration 

is the first requirement (Scholte, 2003), and further clearance of ‘spared land’ will 

have to be prevented. Indeed, the greater environmental footprint of farming along 

the agricultural intensification gradient of our study area is not only due to a larger 
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proportion of farmers specialised in cotton production, but also to the greater human 

population. For intensification through cotton production to be a net benefit for the 

Mid-Zambezi Valley ecosystem, inputs must be used as efficiently as possible. The 

cotton sector has the potential to reduce the environmental footprint of farming by 

improving the effectiveness of pesticides and fertilisers which could be achieved with 

technologies aiming at ‘ecological intensification’. 
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ABSTRACT 

Conservation Agriculture (CA) is currently promoted in sub-humid and semi-arid areas of 

sub-Saharan Africa as a means to increase crop water use efficiency and stabilize yields. In 

this study, conducted during three consecutive seasons in a semi-arid area of Zimbabwe, the 

short-term performance of CA and current farming practice (CP) were compared in two multi-

locational experiments: (1) unfertilised on-farm trials with a cotton-sorghum rotation, and (2) 

farmers’ cotton fields receiving fertiliser provided on credit by cotton companies. In both 

cases, residues for mulch were produced in situ. In addition to biophysical measurements, 

farmers’ perceptions of the technology were appraised. CA did not affect cotton productivity 

during the first two years of experiment, which received average or above average rainfall. 

During the drier 2009-10 season CA had a negative effect on crop yield both in the on-farm 

trials (average yield of 730 and 820 kg ha-1 under CA and CP, respectively) and in farmers’ 

cotton fields (average yield of 1220 and 1440 kg ha-1 under CA and CP, respectively). There 

was no difference in water runoff between CA and CP on a relatively fine-textured soil, but 

significantly more runoff with CA on a coarser-textured soil (14 mm during the wetter 2008-09 

season), due to soil surface crusting. Most soils in the study area fall into this latter category. 

For these reasons, farmers perceived ploughing as necessary during drier years to maximize 

water infiltration, but perceived CA as beneficial during wetter years as a means to ‘shed 

water’ and avoid water-logging. This challenges the common description of CA as a water-

harvesting technology. Soil crusting may be avoided by the production of greater quantities 

of mulch than achieved in this study (average of 770 kg ha-1 in on-farm trials). The retention 

of sorghum residues and the inclusion of N2-fixing legumes resulted in less N being exported 

by cropping from the CA fields compared with the CP fields. This may result in long-term 

beneficial effects of CA on crop yields. The possibility to improve the sorghum-intercrop 

association to increase short-term benefits of CA is discussed. 

 

Key words: conservation agriculture; smallholder; semi-arid area; cotton; soil crusting. 

 



Conservation agriculture vs. current practices 

89 

4.1. INTRODUCTION 

Conservation agriculture (CA) is a set of cropping principles aiming at sustaining high 

crop yields with minimum negative consequences for the resource base - i.e. water, 

soil, and surrounding natural environment (Hobbs et al., 2008; Gowing and Palmer, 

2008). It is defined as the simultaneous application of minimal soil disturbance, 

permanent soil cover through a mulch of crop residues or living plants, and crop 

rotations (www.fao.org/ca). CA has received increasing attention in sub-Saharan 

Africa, as a means to increase food security and minimize environmental 

degradation, particularly in sub-humid and semi-arid areas that are characterised by 

frequent droughts and dry spells. More specifically, CA enables early planting, as 

land preparation is simplified and often carried out before the first effective rains 

(Haggblade and Tembo, 2003), which may result in more efficient use of rainfall, 

reducing the risk of crop failure when receiving below-average rainfall and stabilizing 

yields when rains are poorly distributed (Friedrich, 2008; Erenstein, 2002; 2003).  

 

Whilst the effect of mulching with crop residues on reducing water runoff and 

increasing infiltration is well known (e.g. Mannering and Meyer, 1963 and Thierfelder 

and Wall, 2009 for CA in southern Africa), it has been suggested that minimum tillage 

also increases water infiltration (McHugh et al., 2007; Rockström et al., 2009). The 

resulting increased soil water availability under CA is, for example, believed to extend 

the flowering period and yield of cotton in semi-arid areas (Naudin et al., 2010). Such 

arguments led international donors to vigorously promote CA in southern Africa. For 

example, during the 2009-10 growing season, respectively 180,000 and 110,000 

smallholders were financially supported to adopt some form of CA in Zambia 

(www.conservationagriculture.org) and Zimbabwe (www.prpzim.info),. 

 

While from on-station experiments there is ample evidence of the long-term positive 

impact of CA on crop water use efficiency (e.g. Nyamgumbo, 2002), less is known 

about the short-term impact under typical smallholder conditions. Filling this 

knowledge gap is crucial as smallholder farmers are concerned with meeting their 

immediate needs, and are therefore easily deterred from adopting technologies that 

entail no yield benefits in the short term (Giller et al., 2009). The inability to anticipate 
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the poor adoption of technologies that perform well in research stations often resides 

in the poor understanding of smallholders’ contexts and constraints.  

 

Most measurements of water runoff and infiltration as a function of mulch cover in 

southern Africa were done under controlled conditions, with amounts of mulch that 

are not feasible under typical smallholder conditions. For example, Thierfelder and 

Wall (2009) measured in experiments in Zimbabwe and Zambia water infiltration 

rates under CA that were at least twice those under current farm practices, but the 

amounts of mulch they used - more than 3 t ha-1 of maize stover – were produced 

due to high rates of mineral fertilizer applications and fencing the experimental plots 

to protect the biomass from grazing animals. In contrast, typically about 1 t ha-1 of 

crop residues are produced under smallholder conditions in southern Africa and 

these are become a public good available for communal grazing after harvest 

(Mtambanengwe and Mapfumo, 2005), leaving a sparse soil cover. In addition, 

importing residues from outside the field for mulching is often not an option because 

of the huge labour efforts it would entail. Also, whilst in CA research or demonstration 

plots the quantities of mineral fertilisers used are generally high (165 kg ha-1 basal 

fertiliser and 200 kg ha-1 ammonium nitrate in the study of Thierfelder and Wall, 

2009), no or little fertiliser is being used by smallholder farmers (average of 8 kg ha-1 

in sub-Saharan Africa according to Groot, 2009). As a result, comparisons between 

CA and current farmers’ cropping practices are often questionable, as the effect of 

CA per se (i.e. soil cover and minimum-tillage) is confounded with the effect of 

increased nutrient applications (Haggblade and Tembo, 2003).  

 

In this study, the performance of CA during its first years of implementation was 

compared under the farming conditions of the local smallholders in the semi-arid Mid-

Zambezi valley of Zimbabwe against the current farmers’ cropping practices. The 

comparison was done for the production of the two major crops of the region - cotton 

(Gossypium hirsutum L.) and sorghum (Sorghum bicolor (L.) Moench). Mulches 

under CA were produced in situ. On-farm trials were conducted during three 

consecutive seasons and farmers’ cotton fields were monitored during two seasons. 

The on-farm trials did not receive fertiliser, while the farmers’ cotton fields were 
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fertilised at various rates, depending on farmers’ judgements and their access to 

fertilizer through the cotton company. . 

 

4.2. MATERIAL AND METHODS 

4.2.1. Study area 

The study area is located in Mbire District, and is part of the Mid-Zambezi Valley in 

northern Zimbabwe, between 30°00 and 31°45 East and 16°00 and 16°30 South. 

The Mid-Zambezi Valley is characterized by the former floodplains of the Zambezi 

River between the Victoria Falls and Cabora Bassa Lake, at an average altitude of 

400 m above sea level. The area is part of the agro-ecological zone ‘Natural Region 

IV’ of Zimbabwe, which is characterized by low rainfall (450-650 mm), periodic 

seasonal droughts and severe dry spells during the growing season, resulting in a 

low agricultural potential (Vincent and Thoms, 1961; modified by Surveyor-General, 

1980). There are two clearly defined seasons: a short rainy season with between 110 

and 140 days of rainfall from December to March (Figure 1) and a long dry season 

from April to November. Rainfall is highly variable within seasons and across small 

distances due to localised storms (Figure 1) and mid-season dry spells of more than 

30 days often occur (see Figure 1, 2007-08 season). Cotton, sorghum and maize are 

the main crops. Sorghum is the major cereal crop and is grown on the interfluves, 

while maize is grown mostly along river banks. Farming takes place on three major 

soil types known in vernacular language as ‘shapa’ (sandy clay loam to sandy loam), 

‘bandate’ (sandy loam to loamy sand) and ‘mutapo’ (loamy sand) (Table 1). 

 

The study area has been an agricultural frontier since independence, when it was 

targeted with resettlement projects, tsetse fly control operations and promotion of 

cotton cropping (Chapter 2). However, these interventions were concentrated in the 

western part of the study area, which created a gradient of agricultural intensification 

from west to east: over a relatively short distance (30-40 km) the area under 

cultivation, cotton production, use of animal-drawn ploughs and livestock densities 

increase substantially (Chapter 2).  
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Figure 1. Rainfall distribution during three seasons, measured on two farms 5.3 km 
apart: Farm 1 (a) and Farm 2 (b) in Mbire District, Mid-Zambezi Valley. 
 

4.2.2. On-farm trials and farmers’ cotton fields 

During each of three consecutive seasons: 2007-08 (the first season), 2008-09 (the 

second season), and 2009-10 (the third season), a number of farms were selected to 

host trials that compared the performance of CA with farmers’ current cropping 

practices (CP). The population of cotton producers in the study area can be divided 

into hand-hoe farmers and ox- or donkey-ploughing farmers. The latter group can be 

subdivided into farmers owning less than two pairs of draught animals and those 

owning two pairs or more. A sample of farmers was selected to represent these 

different farmer types, the diversity of soil types (‘shapa’, ‘bandate’, ‘mutapo’), and 

the range of positions on the agricultural intensification gradient mentioned above. 

Trials were planted by 24 farmers during the first season, 35 during the second 

season and 25 during the third season. Due to poor management and/or destruction 

by pests, livestock (e.g. free roaming goats) or wild animals (e.g. elephants), data 

was collected only from 12 farms during the first season, 28 during the second 

season (including 9 farms selected during the previous season) and 23 during the 

third season (all continued from the previous season). On-farm trials were a simple 

comparison of CA and CP for a sorghum-cotton rotation (Table 2). For sorghum, the 

CP treatment was a pure stand of sorghum sown after either ox- or donkey-drawn 

ploughing or hand-hoe minimum-tillage, depending on the mode of land preparation 

used by the hosting farmer. Hand-hoe minimum-tillage – i.e. opening of planting 

stations at the onset of the rainy season using a hand-hoe - is a common practice for 

farmers in the study area who have no access to draught animal power and ploughs. 
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The CA treatment consisted of sorghum sown in shallow planting holes made with a 

hand-hoe in association with a legume crop that was planted two to six weeks after 

the sorghum crop. Mixing crops is an important principle of CA; sorghum was 

intercropped with legumes to increase biomass production and N input through 

atmospheric N2-fixation. Four grain legumes - cowpea (Vigna unguiculata (L.) Walp.), 

jackbean (Canavalia ensiformis (L.) D.C.), lablab (Dolichos lablab (L.) Sweet), and 

pigeonpea (Cajanus cajan (L.) Millsp.) - and two green manures - sunnhemp 

(Crotalaria juncea (L.)) and velvet bean (Mucuna pruriens var. utilis (L.) DC.) were 

compared. Cotton under CP consisted of sole cotton sown after ox- or donkey-drawn 

ploughing or hand-hoe minimum-tillage, depending on the usual mode of land 

preparation used by the hosting farmer. For this treatment, residues of the previous 

sorghum crop were removed from the plot before planting, mimicking farmers’ 

practice of residue export, residue grazing and/or burning. The CA treatment 

consisted of cotton sown in shallow planting holes made with a hand-hoe. When the 

trial was in its second or third year, sorghum and legume residues from the previous 

year were retained as mulch in this treatment. After harvest of cotton, stalks were 

slashed, removed from the plot and burnt for both treatments, such practice being 

compulsory for phytosanitary reasons in Zimbabwe. In the CA treatment, the 

sorghum-legume phase of the crop rotation can be considered a phase of in situ 

biomass production for the following cotton crop. Each of the four plots in each trial 

had an area of 100 m2. As most farmers currently use little or no mineral fertiliser, no 

fertiliser was applied in any of the trials. Although the trials were not fenced, farmers 

chased roaming herds of livestock from them (as far as possible), both during the 

rainy and the dry seasons. Farmers were free to choose planting dates and the 

number and date of pesticide treatments. All plots were maintained weed free – i.e. 

weeds where hand pulled and/or removed by superficial hand hoeing before they 

reached a height of 10 cm. 
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Table 2. Agronomic management under current farm practice (CP) and conservation 
agriculture (CA), as compared in pairs in on-farm trials. 
Management 
factor 

 CP  CA 

 Cotton  Sorghum  Cotton  Sorghum 

Crop  Sole   Sole   Sole   
Intercropped 
with legumes 

Land 
preparation 

 
Ploughing or 

minimum-tillage 
 

Ploughing or 
minimum-tillage 

 Minimum-tillage  
Minimum-

tillage 

Soil cover  Bare soil  Bare soil  

Mulch of 
sorghum and 

legume 
residues 

 Bare soil 

 

Data was also collected from the main cotton field of a large sample of farmers in the 

study area over two seasons – 195 fields in 2008-09 and 346 in 2009-10. The area of 

the fields ranged between 0.1 and 5.2 ha. Farmers obtained external inputs – cotton 

seeds, fertilisers and pesticides – on credit from a cotton company. During the 2008-

09 season, the mean N, P and K fertilisation rates were 38 (± 31), 6 (± 7) and 6 (± 8) 

kg ha-1 respectively. During the 2009-10 season, they were 11 (± 20), 2 (± 4) and 2 (± 

5) kg ha-1 respectively. A subset of these fields (120 fields in 2008-09 and 170 fields 

in 2009-10) was sponsored by the EC-funded project PARSEL (Public-Private-

Community Partnerships to improve food security and livelihoods in South East 

Lowveld and Mid-Zambezi Valley). In these fields, farmers received technical 

assistance (e.g. equipment) and training to apply CA. Cotton was planted following 

either a cereal crop or an herbaceous fallow. All cereal crop residues and/or 

herbaceous biomass present in the field at the onset of the rainy season were 

retained as mulch. Cotton was planted either: (1) with an ox- or donkey-drawn 

Fitarelli direct-seeder, without any previous land preparation; (2) by hand after ripping 

with an ox- or donkey-drawn Magoye ripper; or (3) after hand-hoe minimum-tillage. 

The other subset of fields included in this analysis (75 fields in 2008-09 and 176 

fields in 2009-10) was managed using CP and used as control. In these fields, all 

crop residues and the herbaceous biomass were burnt prior to planting, and planting 

was done either after ploughing with an ox- or donkey-drawn mouldboard plough or 

after hand-hoe minimum-tillage.  

 

4.2.3. Measurements 

In the on-farm trials, planting dates, dates of first weeding, total number of weeding 

operations and total number of pesticide treatments were recorded for each crop in 
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farmers’ books. In 2007, soil was sampled in each trial (for each trial one 0-10 cm 

and one 10-20 cm depth composite sample bulked from 3 cores), oven-dried for 48 

hours at 60°C, sieved and stored for analysis. Crop yields and the amount of 

residues from the three crops (cotton, sorghum and legume) at harvest and at the 

end of the dry season were measured in each plot of each trial and samples were 

oven-dried for 48 hours at 60°C. During the 2008-09 season, grain and residue 

samples of sorghum, cotton and legumes were collected from 20 trials to determine 

their N and P concentrations using a colorimeter after Kjeldahl digestion with 

sulphuric acid (Parkinson and Allen, 1975). 

 

Four on-farm trials were selected to measure water runoff in the CP and CA cotton 

plots. Owners of these trials were equipped with a rain gauge and recorded rainfall 

on a daily basis. In each plot, water runoff from a 10 m × 0.9 m subplot was directed 

by iron sheets into a 200 L plastic drum buried below the soil surface. The drums 

were emptied with a hand-pump after each intense rainfall event (i.e. intense enough 

to generate over-land flow). The volume of water in each drum was measured and 

converted to cumulative water runoff in mm. Due to the destruction of the 

experimental set-up by a stormy rainfall at one site and theft of the iron sheets and 

drum at another site, runoff data from only two trials could be analysed. Both were 

located on a bandate soil with somewhat different soil textural characteristics: 10% 

clay, 12% silt, 78% sand versus 14% clay, 17% silt, 69% sand. 

 

Disappearance of sorghum residues during the dry season (November to April) was 

measured in three on-farm trials using litter bags. Litter bags of 1 and 5 mm mesh 

were filled with 150 g of oven-dried sorghum residues chopped into pieces no longer 

than 5 cm. The litter bags of 5 mm mesh size were expected to allow macro-fauna 

(e.g. termites) to enter, whilst those of 1 mm mesh size to exclude macro-fauna from 

the sorghum residues. Litter bags were placed on the soil surface of the sorghum CA 

plots of the three selected trials on the 1st of May 2008 i.e. when all harvesting was 

done. Every 1.5 month, two litter bags of both 1 mm and 5 mm mesh size were 

removed from each trial. The content of the litter bags was oven-dried during 48 h at 

60°C and its ash content was determined by combustion in a muffle furnace (up to a 

temperature of 550°C) to determine organic matter loss.  
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On the farmers’ cotton fields managed through CA, the proportion of soil covered by 

cereal residues and/or herbaceous biomass was estimated at five different locations 

in the field at the time of planting. An average value was calculated per field. All 

farmers from the sample of cotton fields (both under CP and CA) were interviewed 

about 2-3 months after planting to obtain information on soil type (five soil types were 

locally identified, with increasing clay content: shapa, bandate-shapa, bandate, 

mutapo-bandate, mutapo), the number of years of cultivation since forest clearance,  

the mode of land preparation, the type and quantities of fertilisers used in the field, 

and the date of first weeding operation. The same farmers were also interviewed 

after harvest on the cotton yield from the field (which was cross-checked with the 

records from the cotton companies’ officers), the total number of weeding operations 

and the total number of pesticide treatments. Each field area was measured using a 

global positioning system (GPS) to obtain the fertiliser applications and crop yields in 

kg ha-1.  

 

At the end of each growing season, group discussions with farmers were organized 

for a participatory evaluation of the performance of CA in comparison with CP. These 

discussions were organized at four locations along the intensification gradient of the 

study area: Masoka, Angwa, Mazambara and Mushumbi Pools. Farmers who had 

hosted the on-farm trials and chairpersons of farmers’ groups (groups of 15 to 20 

farmers) created by the PARSEL project were invited. Thus, each group discussion 

gathered between 30 and 50 individuals. Discussions focused on the benefits and 

problems associated with each component of CA, when compared with CP: 

minimum-tillage, mulching, and legume intercropping. Interactions between cropping 

practices, soil types and rainfall were also discussed. 

 

4.2.4. Calculations of N and P partial balances 

For the 20 on-farm trials that were sampled for analysis of N and P concentration in 

the grains and residues of sorghum, cotton and legumes, partial N and P balances 

considering the entire cotton-sorghum rotation were calculated. A nutrient balance is 

defined as the difference of the sum of all nutrient inputs and outputs. In this study, 

partial nutrient balances (kg ha-1) were calculated in the sense that only the readily-

measured input and output flows were included. Losses through erosion, leaching 
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and in gaseous forms and inputs through atmospheric deposition and non-symbiotic 

N2-fixation were not accounted for. Since no manure or fertiliser was used, the only 

nutrient inputs were atmospheric deposition (which is generally very small in Africa) 

and N2-fixation from the legumes, whilst nutrient outputs occurred via harvest (of 

seed-cotton, cereal and legume grains) and burning of residues (cotton residues 

present at the end of the dry season for CA and CP and sorghum residues present at 

the end of the dry season for CP). It was further assumed that (1) 80% of the N 

contained in legume biomass and grain originated from N2-fixation, (2) all the N and 

P contained in mulch of sorghum and legume residues in the cotton CA plot was 

retained in the field, (3) all the N contained in the residues burnt was lost in gaseous 

form and (4) all the P contained in the residues burnt was retained in the field as ash. 

‘N export’ and ‘P export’ are defined as the absolute value of the N and P partial 

balances when these were negative. 

 

4.2.5. Statistical analysis 

Generalized linear mixed models (GLMM) were used to assess the source of 

variability in cotton and sorghum yields (e.g. trial, season, soil) from the on-farm 

trials. The effect ‘trial’ is defined as the particular circumstances of a given 

experimental unit on a particular soil type and during a particular cropping season, 

chosen from a wider pool of experimental units on the same soil type and during the 

same cropping season i.e. the effect ‘trial’ in the models below is a random effect 

nested in the interaction season × soil. The effect ‘trial’ can be considered as the 

repetition. The effect ‘season’ was considered as a fixed rather than random effect 

due to the fact that there are only three cropping seasons in our dataset and that 

these three levels may not be representative of all the possible levels in the study 

area. The effect ‘soil’ was considered a fixed effect because the levels of this factor 

consist of the entire population of possible levels. 

 

Model 1 was used to describe both cotton and sorghum yields, Model 2 to describe 

cotton yield and Model 3 to describe sorghum yield. Model 1 aims at testing the 

general effect of the factor ‘treatment’ i.e. CA or CP on cotton and sorghum yields. In 

Model 2, the factor ‘treatment’ is further specified using three factors: the factor 

‘mode of land preparation’ (i.e. minimum-tillage or ploughing), the factor ‘log-
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transformed quantity of sorghum mulch’ and the factor ‘log-transformed quantity of 

legume mulch’, in order to specifically test their effects on cotton yield. In Model 3, 

the factor ‘treatment’ is further detailed using two factors: the factor ‘mode of land 

preparation’ (i.e. minimum-tillage or ploughing) and the factor ‘legume type’ (seven 

levels: no legume and six legume crops). The effect of the previous crop yield was 

not considered (no inter-seasonal effects) due to the high variability of the other 

factors. In the three models, cotton and sorghum yields were log-transformed. 

Kolmogorov-Smirnov test was used to ensure that log-transformed values of yields 

followed a normal distribution (P < 0.05). A probability of 0.05 was used to test the 

significance of the various factors. In each model, factors that had an F-value less 

than 0.1 were removed. Models were constructed as follows: 

 

(Model 1)  Yijklmn = α + β.SSi + γ.SLj + δ.TRkij(SSi × SLj) + ε.WFl + ζ.PFm + η.Tn + 

θ.PD + κ.WD + λ.SSi.Tn + μ.SLj.Tn + ν.WFl.Tn + ξ.PFm.Tn + R 

 

(Model 2)  Yijklmp = α + β.SSi + γ.SLj + δ.TRkij(SSi × SLj) + ε.WFl + ζ.PFm + π.LPp + 

ρ.MS + σ.ML + θ.PD + κ.WD + λ.SSi.LPp + μ.SLj.LPp + ν.WFl.LPp + 

ξ.PFm.LPp + R 

 

(Model 3)  Yijklmpq = α + β.SSi + γ.SLj + δ.TRkij(SSi × SLj) + ε.WFl + ζ.PFm + π.LPp + 

ω.LGq + θ.PD + κ.WD + λ.SSi.LPp + μ.SLj.LPp + ν.WFl.LPp + ξ.PFm.LPp 

+ R 

 

where Yijklmnpq represents the log-transformed value of the yield, SSj the ith 

season, SLj the jth soil type, TRkij the kth trial, WFl the lth frequency of weeding, 

PFm the mth frequency of pesticide treatments, Tn the nth treatment, LPp the pth 

mode of land preparation, LGq, the qth legume species, PD the log-transformed 

planting date (in number of days since the 1st of November), WD the log-

transformed date of first weeding operation (in number of days since planting), 

MS the log-transformed quantity of sorghum mulch, ML the log-transformed 

quantity of legume mulch, and R the residual, and where α, β, γ, δ, ε, ζ, η, π, ρ, 

σ, ω, θ, κ, λ, μ, ν and ξ represent fixed and random effects values.  
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To explain the response of cotton yield (as kg DM seed-cotton ha-1 or kg DM seed-

cotton per mm seasonal rainfall-1) to the various categorical and continuous 

(predictor) agronomic variables measured in the farmers’ cotton fields, classification 

trees were constructed using the software CART- Classification and regression tree 

analysis (Salford Systems Inc., San Diego, CA, USA).  

 

To further explore in more detail the contribution of biophysical and management 

factors to the variability of cotton productivity, the boundary line approach was used 

as adapted by Fermont et al. (2009). After ordering cotton yields (the target variable) 

in ascending order for independent variables expected to have a negative effect on 

productivity (e.g. planting date), and in descending order for independent variables 

expected to have a positive effect on productivity (e.g. quantity of N applied), 

boundary points i.e. the maximum cotton yield response for each level of the 

independent variable were identified. A logistic curve was then fitted through these 

boundary points (using Genstat 6.1, 2002). Boundary line analysis was performed for 

CA and CP independently and the curves compared using an F-test.  

 

4.3. RESULTS 

4.3.1. Crop productivity 

4.3.1.1. On-farm trials 

In the on-farm trials, only minor differences were observed between CA and CP for 

cotton and sorghum yields (Figure 2). There were no significant differences during 

the first and second season (Table 3). In the third season, cotton yields were 

significantly greater with CP (average of 820 kg ha-1) than with CA (average of 726 

kg ha-1), whilst sorghum yielded significantly less with CP (average of 688 kg ha-1) 

than with CA (average of 761 kg ha-1). The study area received approximately 30 mm 

more rainfall in 2008-09 than in 2009-10 with an extra 30 rainy days (Figure 1). 

Moreover, a marked dry spell was observed during the 2009-10 season, whilst 

rainfall was well distributed during the 2008-09 season. The 2008-09 seasonal 

rainfall was considered locally as ‘above average’ (i.e. wet year) and the 2009-10 

seasonal rainfall as a ‘below average’ (i.e. dry year). The 2007-08 season can be 

considered as an ‘average’ season, despite a mid-season dry spell. 
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Figure 2. Comparison of crop yields between current farm practices (CP) and 
conservation agriculture (CA), measured in multi-locational on-farm trials during three 
consecutive season on the three major soil types of the study area (‘shapa’, ‘bandate’ 
and ‘mutapo’) for cotton (a) and sorghum (b).  
 

Although there was no significant difference in the mean yield of cotton for the 

different soil types (whether comparing the three soil types or contrasting one soil 

type against the other two), the maximum yields attained on ‘shapa’ and ‘mutapo’ (up 

to 2500 kg ha-1) were larger than on ‘bandate’ soils (up to 1000 kg ha-1) (Figure 2a). 

The random factor ‘trial’ was found to be overruling in the three GLM models, both for 

cotton and for sorghum, and to some extent masked seasonal, soil and treatment 

effects (Table 4). For cotton, the interaction between ‘treatment’ and ‘season’ was 

significant in Model 1 (P < 0.05). The least squared mean yield (i.e. the mean 

adjusted for other factors) was similar between CP and CA during the first season 

(1051 and 1007 kg ha-1 respectively), significantly lower for CP than for CA during the 

second, wettest season (935 and 1129 kg ha-1 respectively), and significantly higher 

for CP than for CA during the third, driest season (519 and 449 kg ha-1 respectively). 

For cotton, a weakly significant (P < 0.1) interaction between land preparation 

(ploughing or minimum-tillage) and soil type was detected in Model 2. The mulch 

quantities of sorghum and legumes did not influence cotton yield. For sorghum, there 

was no significant effect of the mode of land preparation or legume intercropping (i.e. 

having or not a legume intercropped and the type of species used) on sorghum yield 

in Model 3.  
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Table 4. Summary of the results of the three GLM models (see text) for 
explaining the variability in cotton and sorghum yields in the on-farm trials. 
Significant effects (P < 0.1) are shown in bold (N° weeding: number of 
weeding operations; N° Pesticide: number of pesticide treatment; Land Prep: 
mode of land preparation) 
Model F P DF 
         

Model 1  
         

 Cotton 18.68 0.0000 65 
         

  Season 0.27 0.7625 2 
  Soil 1.69 0.1943 2 
  Trial(Season*Soil) 19.95 0.0000 49 
  Nb weeding 1.69 0.1956 2 
  Nb pesticide 0.42 0.6597 2 
  Treatment*Season 4.22 0.0203 2 
  Treatment*Soil 1.71 0.1921 2 
  Treatment*N° weeding 1.82 0.1731 2 
  Treatment*N° pesticide 1.52 0.2289 2 
         

 Sorghum 9.04 0.0000 62 
         

  Season 1.07 0.3519 2 
  Soil 0.49 0.6144 2 
  Trial(Season*Soil) 9.3 0.0000 50 
  Treatment*Season 1.17 0.3194 2 
  Treatment*Soil 0.54 0.5850 2 
  Treatment*N° weeding 0.4 0.6745 2 
         

Model 2  
         

 Cotton 16.15 0.0000 65 
         

  Season 0.17 0.8416 2 
  Trial(Season*Soil) 16.54 0.0000 49 
  Nb pesticide 0.8 0.4543 2 
  Log-Mulch sorghum 1.86 0.1756 1 
  Log-Mulch legume 0.12 0.7265 1 
  Land Prep 1.5 0.2297 2 
  Land Prep*Soil 2.5 0.0923 2 
  Land Prep*N° weeding 0.79 0.4561 2 
  Land Prep*N° pesticide 0.43 0.6518 2 
         

Model 3  
         

 Sorghum 9.53 0.0000 62 
         

  Season 1.53 0.2244 2 
  Soil 0.45 0.6398 2 
  Trial(Season*Soil) 10 0.0000 50 
  Land Prep 0.41 0.5215 2 
  Legume 0.42 0.8624 6 
  Land Prep*Season 0.87 0.4241 2 
  Land Prep*Soil 2.05 0.1338 2 
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4.3.1.2. Farmers’ cotton fields 

The variability of farmers’ cotton yields (n = 541) was explored using classification 

trees that used management variables (mode of land preparation, planting dates, 

fertiliser rates, etc.) as partitioning criteria, which allowed to evaluate the effect of CA 

compared with CP practices on cotton yields. The entire dataset was first split by the 

variable ‘season’ (2008-09 vs. 2009-10), indicating an overruling seasonal effect on 

cotton yields; with an average yield of 1 t ha-1 in 2008-09 and of 1.3 t ha-1 in 2009-10 

(Figure 3). A similar result was obtained when using rainfall use efficiency (kg DM 

mm-1 rain) instead of yield as target variable. The classification tree corresponding to 

the wettest 2008-2009 season (n = 195) was further split by the number of pesticide 

applications; fields that received more than 5 applications (n = 106) produced on 

average 0.2 t ha-1 more seed-cotton than the rest. This group was further split by the 

rate of K fertilizer application. The performance of the classification was poor for this 

season, with all terminal nodes having average yields fluctuating around 0.9 and 1.1 t 

ha-1, and neither the mode of land preparation (direct-seeding, ripping, hand hoe 

minimum-tillage, or ploughing) nor the proportion of soil covered by mulch appeared 

as a classification criterion. In contrast, during the driest 2009-10 season (n = 346) 

the mode of land preparation was paramount in explaining cotton yield, with an 

average yield that was 50% greater with ploughing (1.6 t ha-1) than with the three 

modes of minimum-tillage (1.1 t ha-1). Ploughed fields (n = 111) were further split by 

the rate of N fertilizer application, with a threshold of 22 kg N ha-1, below which 

average yield was 1.4 t ha-1, and above which yield was 1.8 t ha-1. The rate of P 

fertilizer application split the group of fields under minimum-tillage (n = 235) into a 

small group of 17 fields receiving higher application rates and yielding 1.6 t ha-1 on 

average, and a large group receiving less than 7.3 kg P ha-1 and yielding 1.1 t ha-1, 

which was further split by the mode of land preparation; fields managed with hand-

hoe minimum-tillage (n = 91) produced on average 0.2 t ha-1 more seed-cotton than 

fields managed through minimum-tillage using animal draught power (direct-seeding 

or ripping). 
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Using the data from farmers’ cotton fields, boundary line (BL) models were fitted 

between individual management variables and rainfall use efficiency - RUE (to 

reduce the effect of season). The analysis was done separately for CA and CP but 

the data from both seasons was pooled. Nitrogen, P and K fertilisation, fraction of the 

soil surface covered by mulch, time since vegetation clearance, planting date, date of 

first weeding operation, total number of weeding operations and total number of 

pesticide treatments were used as explanatory variables in the different models. 

Fertiliser application rates were weak explanatory variables due to the fact that most 

fields received no or little fertiliser (42% of the fields received no N fertiliser and 58% 

received no P or K fertiliser). The relationship between attainable crop RUE and the 

fraction of soil surface covered by mulch on the CA plots could be described by a 

boundary line model (data not shown). For the other factors used as independent 

variables (planting date, date of first weeding, number of weeding operations and 

number of pesticide treatments), statistically significant differences in the boundary 

lines were found between CA and CP (Figure 4). However, the differences between 

CA and CP in terms of attainable RUE at a given value of the explanatory variable 

appeared small when compared against the variability of the attainable RUE over the 

whole range of the explanatory variable (i.e. the shape of the boundary line prevailed 

over the differences between the CA and CP boundary lines). Both for CA and CP, 

the boundary line model showed a rapid decline in the attainable RUE with delayed 

planting and first weeding. Similarly, both for CA and CP, the boundary line shows a 

rapid increase of the attainable RUE with increasing number of weeding operations 

and pesticide treatments.  
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4.3.2. Water runoff and surface mulching 

In the two selected on-farm trials cumulative water runoff over the growing season 

ranged from 40 to 80 mm, and there was more runoff in the wetter 2008-09 season 

than in the drier 2009-10 season. More runoff was observed on the coarser-textured 

(Farm 1) than on the finer-textured soil (Farm 2) (Figure 5). There was significantly 

more runoff after each intense rainfall event under CA than CP in both seasons on 

Farm 1. The difference in cumulative runoff between CA and CP was negligible (2 

mm) in the 2009-10 season but greater (14 mm) during the 2008-10 season. No 

differences in runoff after each intense rainfall event were found on Farm 2 between 

CA and CP. 
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Figure 5. Cumulated water runoff measured from 10 m × 0.9 m subplots in the cotton 
plots under current farm practices (CP) and conservation agriculture (CA) during two 
seasons on two on-farm trials on bandate soil, one coarse textured (22% clay + silt; 
Farm 1) and one finer textured (31% clay + silt; Farm 2). On Farm 1, 1110 kg DM ha-

1 and 820 kg DM ha-1 were retained as mulch in the CA plot during the 2008-09 
season and the 2009-10 season respectively. On Farm 2, 810 kg DM ha-1 and 550 kg 
DM ha-1 were retained as mulch in the CA plot during the 2008-09 season and the 
2009-10 season respectively. The CP plots were ploughed and cotton was planted 
on a bare ground. For each graph, a summary of the paired T test comparing runoff 
under CA and under CP is given.  
 

The mean quantity of mulch (sorghum and legume residues) retained on the soil 

surface in the on-farm CA trials was small: 830 (± 1092) kg ha-1 in 2008-09 and 835 
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(± 979) kg ha-1 in 2009-10. There was no mulch during the first season of the 

experiment. The amount of sorghum residues had no effect on the yield of the 

subsequent cotton crop in on-farm trials (Figure 6a, see also GLMM Table 4). 

However, the ratio of the quantity of sorghum residues remaining in the field at the 

end of the dry season to the quantity of sorghum residues at harvest was high; 

ranging from 0.25 to 0.8 depending on the season (Figure 6b). This ratio was higher 

in the wetter year compared with the drier year (Figure 6b). Since grazing was 

controlled in the on-farm trials, the loss of residue biomass during the dry season 

was mainly due to decomposition. In several fields sorghum resprouted after harvest 

and contributed to the quantity of sorghum residues measured at the end of the dry 

season. This phenomenon is also noticeable from the fact that the ratio of the 

quantity of sorghum residues remaining in the field at the end of the dry season to 

that at harvest is higher than the proportion of sorghum residues that decomposed in 

litter bags over the dry season (Figure 6c). The disappearance rates of the sorghum 

residues from the 1 and 5 mm litter bags were similar. Termites were observed in 

both types of litter bags after only a few weeks. The mass fraction of sorghum 

residues remaining after 6 months varied between 0.2 and 0.6 (Figure 6c) with 

fastest disappearance rates during the first three months of the incubation 

experiment.  

 

Legumes contributed substantially to the quantity of residues present in the field in 

the CA treatment (Table 5), except during the 2007-08 season when the legume 

intercrop did not grow due to a mid-season dry spell (Figure 1). The increase in the 

quantity of residues was observed both at the time of sorghum harvesting and after 

the dry season (Table 5). When considering the CA plots in the two seasons, 2008-

09 and 2009-10, the average amount of residues produced by sorghum was 3284 ± 

1320 kg ha-1, whilst the average amount of residue produced by legumes was 825 

±1175 kg ha-1. At the end of the dry season, the amount of sorghum residues 

remaining was 2025 ± 1065 kg ha-1, roughly two thirds of the amount of harvest time. 

This amount was greater in 2009-10 than in 2008-2009. The amount of legume 

residue remaining at the end of the dry season was 773 ±1337 kg ha-1 i.e. almost the 

same amount than at the time of sorghum harvest. This is the net amount following 

the decomposition of senescent biomass and the production of new shoots, the latter 
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being significant for legume species with a long growing cycle such as pigeonpea. 

Thus, the quantity of legume residues found in CA plots at the end of the dry season 

differed between species, and was particularly high for pigeonpea: more than 2000 

kg ha-1 during both the 2008-09 and 2009-10 seasons. For the other species, it was 

less than 500 kg ha-1 during the 2008-09 season and less than 1500 kg ha-1 during 

the 2009-10 season. No cowpea residues remained in CA plots at the end of the dry 

season.  

 

4.3.3. Partial nutrient balances 

The partial N and P balances calculated for the entire cotton-sorghum rotation for the 

2008-09 season indicated net N and P export from most fields (Figure 7). While there 

was no significant difference between CP and CA in the amount of P exported from 

the field (Figure 7b), N export was statistically greater under CP than under CA 

(Figure 7a). The reduced removal of N with CA comes from the retention of a fraction 

of sorghum residues as mulch and the inclusion of N-rich legumes. Nitrogen 

concentration was on average 3 times higher in legume residues (2.1 ± 0.9) than in 

sorghum residues (0.7 ± 0.2 %). Given the small legume grain yield (between 0 and 

371 kg DM ha-1), the legume exported little N. Input of N from the intercropped 

legume is directly linked to its productivity: pigeonpea and velvet bean are therefore 

the best legumes in terms of contribution to improving the partial N balance (Table 5). 

Pigeonpea and jackbean are long-duration legumes which almost doubled their 

standing biomass between the harvest time of sorghum and the end of the dry 

season. In four fields, positive partial N balances for the sorghum-cotton rotation 

were actually observed under CA: two fields where pigeonpea was used as the 

intercropped legume and two fields with velvet bean. 
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Figure 7. (a) Comparison between conservation agriculture (CA) and current 
practices (CP) of the quantities of nutrients exported from the field for the entire 
cotton-sorghum rotation during the 2008-09 season– calculated as the absolute 
values of the partial nutrient balances – for the different legumes intercropped with 
sorghum under CA and for (a) N and (b) P. For each graph, a summary of the paired 
T test comparing export values under CA and under CP is given. 
 

4.3.4. Perceptions by farmers  

Farmers perceived minimum-tillage and retention of a mulch of crop residues as 

having both positive and negative consequences on crop yields, depending on 

complex interactions with the season and with soil type (Table 6). For example, 

farmers considered that minimum-tillage reduced loss of soil fertility, but that it led to 

soil compaction and soil crusting. Similarly, mulching was thought to reduce 

evaporation, increase infiltration and smother weeds on one hand, but also to carry 

weed seeds and pests and interfere with weeding activities. Finally, legume 

intercropping was thought to increase soil fertility and control weeds through the 

formation of a closed canopy, but also to compete with cereals in some instances 

and host pests. 
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Table 6. Perceived impacts of conservation agriculture (CA), ranked by farmers 
for each technological component of CA during the participatory evaluation in 
three sites along an anthropogenic gradient in the study area. Ranking was 
obtained by averaging scores obtained in the three sites. 
Perceived impacts 

Benefits  

 Minimum-tillage 

  1. Controls erosion 

  2. Saves labour during land preparation 

  3. Increases precision of input application (e.g. seeds) 

  4. Maintains fertility 

 Mulching 

  1. Reduces water evaporation 

  2. Increases nutrients available to the succeeding crop 

  3. Controls weed 

  4. Reduces erosion 

  5. Saves labour required for gathering and burning stover 

  6. Increases infiltration 

  7. Increases fertility by enhancing termite activity 

 Legume intercropping 

  1. Increases nutrients available to the succeeding crop 

  2. Increases land and labour productivity 

  3. Reduces weeds through the formation of a closed canopy 

Problems  

 Minimum-tillage 

  1. Increases abundance of weeds, particularly late in the season 

  2. Increases soil compaction (particularly of sandy soils) and surface crusting 

 Mulching 

  1. Increases termite and millipede destruction on the succeeding crop 

  2. Increases weeds (maintains seeds of weeds) 

  3. Complicates planting and weeding/cultivation 

  4. Exacerbates water-logging during wet seasons 

  5. Shelters snakes, scorpions and pests (e.g. mice) 

 Legume intercropping 

  1. Decreases cereal yield (particularly with velvet bean and creeping cowpea) 

  2. Hosts crop pests (e.g. crickets) 

 

Important comments were made during the participatory evaluations regarding the 

local adaptation of CA. First, the advantages of minimum-tillage were said to depend 

on soil type. Minimum-tillage was said to reduce water infiltration on sandy soils 

(Table 6), which are poorly structured and prone to surface crusting, but to give good 

results on heavy clay soils, which form cracks during the dry season. Clay soils are 

also hard to plough when wet. Second, the benefits of minimum-tillage on soils that 

crust – i.e. most soils in the study area - will depend on the rainy season. On these 

soils, ploughing was said to lead to waterlogging and depress yields during wet 
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years, but to maximize water infiltration and improve yields during dry years. 

Therefore, minimum-tillage was perceived as a way to minimize infiltration and ‘shed’ 

‘excess water’ during wet years, whilst ploughing was perceived as a way to 

maximize water infiltration during dry years. Third – whilst short-term benefits of 

ploughing were recognized (i.e. weed control, improved water infiltration, avoidance 

of compaction problems) – long-term benefits of minimum-tillage were also 

acknowledged (i.e. maintenance of soil structure and soil fertility). This was said to be 

particularly true for sandy soils, as clay soils were ‘resistant to the plough’. To capture 

both short-term benefits of ploughing and long-term benefits of minimum-tillage, a 

rotation between these two forms of land preparation was proposed, with a 

recommendation of 1-2 years of consecutive ploughing, followed by 2-5 years of 

minimum-tillage. Ploughing was said to be required after every 2 to 5 years to avoid 

compaction problems. 

 

4.4. DISCUSSION 

4.4.1. Good agronomy is more important than tillage or soil cover  

No beneficial or detrimental effect of CA compared with CP could be observed on 

cotton and sorghum yields in on-farm trials over the three seasons (Figure 2; Table 3; 

Table 4). In the three statistical models (GLMMs), a compelling effect of the factor 

‘trial’ was found on cotton and sorghum yields (Table 4). This factor represents farm-

specific circumstances, corrected for tillage, soil cover, legume intercropping, soil 

type, planting date, time and frequency of weeding and frequency of pesticide 

treatments. Thus, farm management appeared to have an overriding effect on cotton 

and sorghum productivity, above factors that differentiate CA and CP. 

 

The diversity of management practices was larger in farmers’ cotton fields than in the 

on-farm trials, in particular the fertilisation rates and the modes of minimum-tillage: 

direct-seeding using a Fitarelli seeder, ripping using a Magoye ripper, and opening of 

shallow planting holes by hand-hoe. Yet, in agreement with the results from the on-

farm trials, the analysis of farmers’ cotton fields demonstrated the importance of 

management factors other than tillage and soil cover in explaining cotton yields. For 

instance, differences between CA and CP in terms of attainable RUE, though 

significant, were negligible with respect to the variability of the attainable RUE as a 
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function of planting date, date of first weeding, number of weeding operations or 

number of pesticide treatments (Figure 4). Similarly, with the exception of land 

preparation during the wetter 2009-10 season, tillage and soil cover did not appear 

as import factors explaining the variability of cotton yields using classification trees. 

Therefore, our results suggest that good agronomy (i.e. adequate fertilisation, timely 

planting and weeding, adequate frequency of weeding operations and pesticide 

treatments) had a stronger effect on crop yield than the choice between CA or CP. 

The only exception was during the wetter season when CA caused decreased yields 

due to waterlogging.  

 

The lack of differences in cotton and sorghum yields between CA and CP is probably 

because the current farming practices used by many farmers, and particularly the 

poorer farmers, do in fact not differ much from CA in terms of tillage management. 

For instance, many farmers do not plough but plant using a form of hand-hoe 

minimum-tillage. The lack of differences between CA and CP can also be explained 

by the fact that water infiltration is not improved with CA under the conditions of our 

study (Figure 5). The study area is relatively flat, and water losses through runoff do 

not represent an important component of the water balance. Water runoff rates of 40 

to 80 mm per year were recorded (Figure 5) which represented only 6 to 8% of the 

total rainfall. Only small quantities of crop residues, or no residue at all in some 

instances, could be retained as mulch. On average there was 770 kg ha-1 (± 980 kg 

ha-1) of mulch in on-farm trials, and only 15% (± 17%) soil cover in farmers’ cotton 

fields managed using CA. Moreover, the residues decomposed rapidly after the first 

rains, due to the warm moist conditions and the presence of termites. Thus, surface 

mulches were not thick enough to alter water runoff and evaporation. Derpsch (1988) 

suggest that 4 to 6 t ha-1 of surface residues are required to alter rainwater crop 

productivity. Other studies in sub-Saharan Africa also noted the importance of 

mulching, as minimum-tillage on a bare soil often leads to yield penalties (Naudin et 

al.; 2010; Enfors et al., in press). The soils of the study area are prone to surface 

crusting, meaning that infiltration may be reduced by minimum-tillage compared with 

ploughing. 
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4.4.2. CA ‘sheds’ rather than harvests rainwater  

In this study, the quantities of residues that were retained as mulch were insufficient 

to avoid soil crusting. As a result, there was higher runoff under CA than under CP on 

the soil with a coarser texture (Farm 1, Figure 5). On the finer-textured soil less 

susceptible to crusting, no difference between CA or CP was found in the amount of 

runoff (Farm 2, Figure 5). Aina et al. (1991) suggested that minimum-tillage may be 

detrimental on soils susceptible to crusting, regardless of the amount of surface 

mulch. During the participatory evaluation of CA, farmers indicated that increased soil 

compaction and surface crusting were problems with minimum-tillage, particularly on 

sandy soils (Table 6). Farmers perceived CA as better adapted to clay soils. Pillai 

and McGarry (1999) suggest that naturally-occurring shrink and swell cycles in clay 

soils can maintain/increase infiltration, even in the absence of tillage. 

 

The proneness of soils in the study area to crusting when not tilled can lead to 

different crop yield responses to CA, depending on the rainy season. Our results 

suggest an important interaction between CA and season on cotton yield. During the 

drier 2009-10 season cotton yielded significantly more under CP than CA, in both the 

on-farm trials and in farmers’ cotton fields (Table 3). In contrast, no differences in 

cotton yield were observed during the two other wetter seasons, resulting in a 

significant season by treatment interaction (Table 4). Farmers suggested the same: 

CA was said to be detrimental – on the soils of the study area prone to crusting and 

compaction during dry years - i.e. when water is more limiting - due to reduced water 

infiltration and the resulting water stress. Ploughing was said to lead to better yields 

during these years, because it maximizes water infiltration. In contrast, the increased 

water runoff in the absence of ploughing was said to be an advantage during wet 

years, as it would prevent waterlogging. This goes against the usual claim that CA 

improves crop water-use efficiency (Scopel et al., 2004; Rockström et al., 2009; 

Thierfelder and Wall, 2009). For farmers of the study area, CA appears to be rather a 

‘water-shedding’ technology, than a water-harvesting technology. Similarly, Enfors et 

al. (in press) found a positive effect of CA on maize yield during good rainy seasons 

(i.e. with high and/or well distributed rainfall) but not during seasons with poor rainfall. 
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4.4.3. Benefits of residue retention and legume intercropping 

More crop residues were produced and retained in the fields managed through CA 

than through CP (Table 5). In particular, legume intercropping contributed 

significantly to the production of mulch for the subsequent cotton crop (Table 5). The 

legumes appeared not to compete with sorghum (Table 4), and legume biomass 

production can be considered a ‘bonus’ of the CA systems. Other studies in similar 

agro-ecologies have also demonstrated that crop biomass production can be doubled 

by intercropping a secondary crop with the cereal, without a yield penalty for the 

cereal (Naudin et al., 2010).  

 

Amongst the legumes tested, pigeonpea appears to be the legume best-suited for 

intercropping in CA as it produces large quantities of N-rich biomass during the dry 

season, most of which is still present in the field at the onset of the succeeding 

season. It also produces edible grain and the development of pigeonpea farming in 

Africa offers interesting market opportunities (Odeny, 2007). However, for these 

benefits to be realized, communal grazing during the dry season needs to be 

controlled. Legume intercropping may have additional short- and long-term benefits 

that were not directly measured in this study. First, it enables the formation of a 

closed canopy to control weeds (Table 6), as observed when crop density is 

increased (Olsen et al., 2005). Second, the mixing of N rich residues with N poor 

sorghum residues reduces the C:N ratio of the combined mulch, therefore avoiding 

potential problems of temporary N immobilization by micro-organisms (Palm et al., 

2001). Third, the additional organic input may increase the soil C content in the long-

term (Six et al., 2002; Stewart et al., 2007; Corbeels et al., 2006). There is increasing 

evidence that minimum-tillage alone is insufficient to increase soil C, and that 

increased inputs of organic material are required (Corbeels et al., 2006; Luo et al., 

2010). This is particularly the case in coarse-textured soils such as those prevalent in 

the study area, as sandy soils offer little structural (aggregate) protection (Chivenge 

et al., 2006). Minimum-tillage changes the distribution of soil C in the soil profile, 

concentrating it in the topsoil (Baker et al., 2007; Luo et al., 2010).  

 

The amount of sorghum and legume residues that remained in on-farm trials at the 

end of the dry season was relatively low- only 2025 ±1065 kg ha-1 and 773 ±1337 kg 



Conservation agriculture vs. current practices 

119 

ha-1. Larger quantities of mulch than those achieved may increase the short-term 

performance of CA, by stimulating macrofauna activity and thus preventing soil 

crusting (Lal, 1988; Mando et al., 1999). Through higher crop biomass production, it 

may be possible to increase the quantity of residues left in the field after the dry 

season, as a large fraction of the residues produced during the rainy season could be 

retained as mulch despite of the abundance of termites and the high prevailing 

temperatures in the study area (Figure 6). A prerequisite is the protection of the fields 

from grazing animals. Moreover, long-duration legumes produced the bulk of their 

residues during the dry season (Table 5). Therefore, better management (e.g. use of 

mineral fertilisers, timely weeding, crop protection) with e.g. the use of other 

intercrops can thus increase the quantity of mulch. For example, in a study 

conducted under similar agro-ecological conditions in northern Cameroon it was 

possible to produce up to 5 t ha-1 mulch with improved crop management practices 

(Naudin et al., 2010).  

 

4.5. CONCLUSIONS 

Under the existing farm conditions in the Zambezi Valley, CA had in general a neutral 

to negative effect on cotton and sorghum productivity compared with CP. Good 

agronomy, and in particular adequate fertilisation and crop protection appeared 

central for obtaining good yields rather than tillage and soil mulching. CA seems to 

be only beneficial in relatively intensive cropping systems, as a means to use 

external inputs and energy more efficiently. As Gowing and Palmer (2008) stated “CA 

does not overcome constraints on low-external-input systems”. CA reduced water 

infiltration during wetter years, contrary to what has been stated elsewhere (McHugh 

et al., 2007; Rockström et al., 2009; Thierfelder and Wall, 2009; Naudin et al., 2010). 

This was due to the susceptibility of the coarse-textured soils in the study area to 

surface crusting which resulted in a ‘water shedding effect’ during wet years that was 

perceived to be an advantage by farmers. During dry years however, a water 

harvesting effect was obtained with ploughing, not with CA. Such complex 

interactions between soil types, seasonal effects and tillage demonstrates the 

necessity of flexibility and pragmatism in the design, evaluation and diffusion of 

cropping systems based on the principles of CA. CA should not be seen as an 
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alternative to ploughing and other current farm management practices, but rather as 

an addition to the basket of technical options available to farmers.  
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ABSTRACT 
Agricultural intensification, or increasing yield, has been a persistent theme in policy 

interventions in African smallholder agriculture. This article focuses on two hegemonic policy 

models of such intensification: (1) the ‘Alvord model’ of plough-based, integrated crop-

livestock farming promoted in colonial Zimbabwe, and; (2) minimum-tillage mulch-based 

Conservation Agriculture (CA), as currently preached by a wide range of international 

agricultural research and development agencies. An analysis of smallholder farming 

practices in Zimbabwe’s Zambezi Valley reveals the limited inherent understanding of farmer 

practices in these models. It shows why many smallholder farmers in southern Africa are 

predisposed towards extensification rather than intensification, and suggests that widespread 

CA adoption is unlikely. 

 

Keywords: Zimbabwe; Alvord; conservation agriculture; intensification; extensification; 

labour. 
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5.1. INTRODUCTION 

“The Gospel of the Plow means working together with God, in order to get good crop yields 

while at the same time we take good care of the soil (…) In order to bring this about, a spirit 

of reverence for the soils must be created, which is… a sort of religion (…) The heathen 

African dug his land while standing trees, skeletons, stumps and fallen trees were scattered 

all about. …he planted the seed and trusted to the witchdoctors, rainmakers, ancestral spirits 

and demons to do the rest. (…) if those people could only be taught the Gospel of the 

Plow...” (Emery Alvord, Agriculturalist for Natives in Southern Rhodesia from 1926 to 1950)1 

 

“Conservation Agriculture [CA]… can be difficult for many people to accept because it goes 

against many of their cherished beliefs. How can crops be grown without plowing the land? 

Overcoming this mindset of the need for plowing is a major step in achieving successful CA 

systems.” (Zimbabwe Conservation Agriculture Taskforce, 2008:5)2 

 

“God has revealed a very simple conservation farming method with an implementation 

management teaching, which when applied, helps people to apply the Gospel to their lives.” 

(Foundations for Farming, formerly Farming God’s Way website, 2010)3 

 

The above quotes signal two persistent themes in the history of agricultural 

intervention in the smallholder sector in southern Africa. First, the perception that 

smallholder farmers’ practices are backward, destructive, and in need of revelation. 

Second, the religious zeal by which (colonial) interventionists have sought to 

persuade African farmers to adopt more intensive agricultural practices, that is, to 

increase yield (harvest per surface area). This is most evident in Zimbabwe where an 

agricultural intensification package was promoted as early as the 1920s. Emery 

Alvord, an American missionary, turned the plough into a symbol of modern 

agriculture while promoting a package of integrated crop-livestock farming. It became 

the hegemonic model for African farming underpinning a wide range of policy 

interventions in African agriculture in colonial Zimbabwe (Wolmer and Scoones, 

                                              

1 Quote from: E.D. Alvord (not dated) The Gospel of the Plow or A Guided Destiny (unpublished 
autobiography of the Agriculturalist for Natives), National Archives of Zimbabwe (NAZ). 

2 The Zimbabwe Conservation Agriculture Taskforce is a collaborative effort of the FAO, ICRISAT, 
CIMMYT, the EU, DfID and a number of (faith-based) international donor organizations. 

3 www.foundationsforfarming.org (visited 23 November 2010). 
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2000; Bolding, 2004). Such interventions initially took the form of ‘demonstrations’ to 

African farmers, but religious zeal increasingly made way for compulsion.  

 

Contemporary attempts at agricultural intensification in African agriculture continue to 

be informed by conservationist concerns. Yet, in contrast to the plough-based Alvord 

model, current interventions are based on minimum-tillage and retention of a mulch 

of crop residues, through a technical package referred to as ‘Conservation 

Agriculture’4, CA. A powerful lobby of international donors, development and 

agricultural research agencies crusades to extend what has become the current 

hegemonic policy model for agricultural intensification. Collaborating in a taskforce, 

NGOs and donors promoting CA have garnered considerable financial and political 

support in Zimbabwe5. The model has even been included in the National Agricultural 

Policy of Zambia (MACO, 2004), and recognised by Zimbabwe’s president as a 

means to ‘make savings on draught power requirements and minimise land 

degradation’6. 

 

This article analyses these two hegemonic policy models for agricultural 

intensification from a comparative perspective. Highlighting some striking similarities 

in extension approach, notably the invocation of God and the use of science-based 

demonstration plots, the main focus is on the ideas and inherent assumptions about 

smallholder farming systems underpinning both models. It is suggested that 

protagonists of CA have learned little from the earlier, colonial attempts to intensify 

smallholder agriculture as spearheaded by Alvord. While resource conservation and 

sustainable production have remained persistent concerns guiding interventions in 

smallholder agriculture, so remains the disregard for the socio-economic 

                                              

4 The FAO defines Conservation Agriculture as: ‘…resource-saving agricultural crop production that 
strives to achieve acceptable profits together with high and sustained production levels while 
concurrently conserving the environment. www.fao.org/ag/ca/1a.html (visited 23 November 2010). 

5 During the 2009-2010 season, 180,000 Zambian smallholders received support to practice 
conservation agriculture (www.conservationagriculture.org, visited 23 November 2010), while in 
Zimbabwe a consortium of donors supported more than 110,000 farmers to do so 
(www.prpzim.info/resources/PRP%20Stories%20of%20Change%20-%20John%20Mhofu.pdf, 
visited 23 November 2010). 

6 Speech for the official opening of the Parliament of Zimbabwe in July 2010 (Government Intervention 
Key for Revival of Agriculture Sector, The Herald, 20 July 2010). 
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circumstances and the rationale of African smallholder practices7. Like in Alvord’s 

days, interventions take a ‘one size fits all’ form that ignores the diversity of existing 

farming practices. Farming Systems Research (FSR) and subsequent participatory 

approaches – epitomised by the ‘Farmer First’ approach (Chambers and Ghildyal, 

1985) – appear to have had no bearing on the development and extension of CA to 

smallholder farmers in Africa. Rather than questioning the agronomic merits of the 

technologies promoted, this article is therefore concerned with the suitability of CA 

technologies to the socio-economic realities of smallholder farming systems in 

southern Africa.  

 

Malnutrition and population growth (2.3% per annum) underline the need for 

increased agricultural production in sub-Saharan Africa. As the most suitable areas 

for agriculture are already cultivated, agricultural intensification seems a logical 

strategy (World Bank, 2008). Yields in smallholder farming systems of southern 

Africa remain appallingly low despite technological innovations such as improved 

seeds and fertilisers. Average cereal yields in smallholder agriculture have stagnated 

in Africa since the 1960s, whilst they have nearly doubled in the rest of the world 

(Huang et al., 2002). Large-scale commercial farming on the African continent also 

performs considerably better than the smallholder sector. For instance, in Zimbabwe 

in the period 1970–2000, maize yield averaged 0.8 t ha-1 (std. dev. 0.4 t ha-1) for the 

smallholder sector and 3.9 t ha-1 (std. dev. 1.0 t ha-1) for the commercial farming 

sector (Andersson, 2007). Differences in agricultural potential go a long way in 

explaining this disparity, as the best agricultural lands were expropriated for white 

settlers during the colonial era. However, even in similar agro-ecological 

circumstances, huge differences in yields are observed between the majority of 

smallholder farmers and the best performing ones (Zingore et al., 2007), suggesting 

that while a potential for higher land productivity exists, it is not realised because of 

social and economic factors (Djurfeldt et al., 2005). By inferring from an analysis of 

the labour, cash and price constraints, as well as risk mitigation strategies of 

smallholder farmers in northern Zimbabwe, it is shown why many smallholder farmers 

                                              

7 Conservation Farming packages as promoted by ICRISAT perhaps constitute an exception as they 
specifically target food insecure farmers with no cattle and plough, acknowledging these farmers’ 
need to reduce labour peaks (see Twomlow et al., 2008b). 
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in southern Africa do not – or are not able to – intensify their production, but instead, 

are disposed towards agricultural extensification. Appreciating the rationale of 

existing farming practices of smallholder farmers, it is suggested that many farm 

practices promoted under the banner of CA are likely to befall a similar fate as 

Alvord’s recommendations for agricultural intensification. 

 

This article is divided in two parts. Part 5.2. compares the Alvord model and CA, 

looking at the ideas and assumptions underpinning the technologies promoted, the 

extension approaches deployed, and the fate of the Alvord model some 80 years 

after it was introduced. Part 5.3. shifts the attention to smallholder farming practices 

and their embedding in a wider socio-economic environment. It builds on extensive 

fieldwork in Dande Communal Area in the Zambezi Valley, a sparsely-populated 

agricultural frontier in northern Zimbabwe, characterised by increased competition 

over land between nature conservation and agriculture (Chapter 2). As elsewhere in 

southern Africa, the extension of CA in this area is seen as a way to enable a 

sustainable increase in yields with minimum negative consequences for the 

environment.  

 

5.2. MODELS OF AGRICULTURAL INTENSIFICATION 

5.2.1. Theoretical models of agricultural production growth 

Two ideal-typical models to increase agricultural production may be distinguished. 

First, increased farm output may be achieved through ‘extensification’; extending the 

area under cultivation, while maintaining or reducing inputs per unit area (Figure 1a). 

Yields remain stable or decrease whilst water and nutrient losses per unit area often 

remain unaltered (Erenstein, 2006). Second, production increases may be achieved 

by means of intensification. Yield is increased through greater capital and/or labour 

input per unit area. The ‘Green Revolution’, which drove massive production 

increases in Asia (World Bank, 2008), is a typical example of capital-driven 

intensification (that is use of hybrid seeds, chemical inputs and mechanization; 

Figure 1b). ‘Ecological intensification’ increases resource use efficiency - for example 

light, water and nutrient use (Figure 1c; Giller et al., 2002; 2006). It revolves around 

the idea of sustainable production, seeking to increase land productivity while 

conserving natural resources, that is soil, water, and surrounding wild nature. 

However, ecological intensification often requires more labour per unit area.  
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INPUTINPUT
OUTPUTOUTPUT

AREAAREA

EXTENSIFICATION:EXTENSIFICATION:
≅≅ YIELD;YIELD; >> INPUTINPUT

ECOLOGICAL INTENSIFICATION:ECOLOGICAL INTENSIFICATION:
> YIELD;> YIELD; ≅≅ INPUTINPUT

GREEN REVOLUTION:GREEN REVOLUTION:
> YIELD;> YIELD; > > INPUT> > INPUT

LABOURLABOUR

Figure 1. Three pathways to increase production: Extensification, Green Revolution 
(increased use of external inputs) and Ecological intensification (improved resource-
use efficiency). Downward arrows represent water and nutrient losses. Sizes of the 
various arrows are proportional to the corresponding fluxes. Impact of the three 
pathways on yield (i.e. harvest per surface area) and quantity of input used per 
surface area is described by ‘≅’, meaning the value remains roughly constant; ‘>’, 
meaning the value increases; and ‘>>’, meaning the value increases greatly.  
 

Farming technologies are often classified as either land-saving or labour-saving, that 

is, as resulting in agricultural intensification and extensification respectively 

(Erenstein, 2006). In practice, however, technologies may be used differently, 

rendering a clear-cut classification problematic. Intensification and extensification are 

seldom mutually exclusive. For instance, whereas chemical fertilisers are generally 

seen as a land-saving technology, their massive adoption by Zimbabwean 

smallholder maize growers in the mid 1980s went hand in hand with an expansion of 

land cropped with maize (Andersson, 2007).  

 

Besides farming technologies, socio-economic circumstances may also direct farm 

development towards intensification or extensification. First, whilst agricultural 
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intensification is often triggered by land scarcity, extensification is a common strategy 

when sufficient land is available (Boserup, 1965; Erenstein, 2006). Second, proximity 

to urban markets increases the incentives for intensification, reducing costs for input 

procurement and marketing (Woodhouse, 2002; Erenstein, 2006). Similarly, 

unfavourable market access in remote areas may hamper intensification 

(Woodhouse, 2002; Bamire and Manyong, 2003).  

 

Below we discuss the Alvord and CA models for the intensification of African 

smallholder agriculture. Although developed in different historical contexts and based 

on different technologies – most notably, opposing views regarding use of the plough 

– the paragraphs below reveal a striking historical continuity in their disregard for the 

rationale of existing farm practices, and in their extension approach.  

 

5.2.2. Segregation, modernization and erosion control: the ‘Alvord model’ of 

agricultural intensification 

Emery Alvord’s appointment as “Agriculturalist for the Instruction of Natives” in 1926 

was the result of a proposal for the industrial development of Africans, formulated by 

the Chief Native Commissioner, Mr. Keigwin (Bolding, 2003:37). Agricultural 

intensification in the lands set aside for African occupation – the Native Reserves 

(now called Communal Areas) – was Alvord’s key task. He was to, 

 

“… develop Native Reserves so as to enable them to carry a larger population, and so avoid, 

as far as possible, the necessity for acquisition of more land for native occupation.” (Chief 

Native Commissioner, 1932) 

 

Alvord’s efforts were thus part and parcel of the colonial governments’ racial 

segregation policies. Concentrating more people in the Native Reserves meant that 

permanent cultivation had to replace the common practice of shifting cultivation. 

While working as a missionary at Mount Selinda on the country’s eastern border, 

Alvord developed a set of agricultural practices that could increase yields and 

modernise African agriculture (Page and Page, 1991; Davis, 1992). Laid down as 

‘commandments’ for permanent agriculture (Bolding, 2004: 53), the ‘Alvord model’ of 

modern agriculture became an integral part of the civilizing enterprise colonial 

officials and missionaries such as Keigwin and Alvord had set themselves. 
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Emblematically represented by the plough, a set of blanket recommendations 

consisting of five key practices – ploughing, manuring, crop rotation, sole cropping8 

and planting in lines – sought to sustain the permanent cultivation of the generally 

poor soils of the Native Reserves (Table 1a, Page and Page, 1991; Davis, 1992). In 

agronomic terms, this farming model aimed to increase both input supply to the crop 

(for example manure application) and resource use efficiency through improved crop 

management (for example planting in lines).  

 

                                              

8 Agronomists generally use “sole cropping” to refer to the practice of planting one crop in one field.. In 
Alvord’s days this practice was known as mono-cropping, which is now often taken to mean one 
crop in a field continually year after year.  
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Table 1. Components of a) the Alvord model and b) Conservation Agriculture and 
their impact on yield and labour needs (+/0/- indicate positive, neutral and negative 
impacts, respectively; arrows indicate implications) 
a) 

(1) reduces weed population, increases mineralization of organic matter, increases water infiltration 
(2) extra-labour required for manure collection, composting and transport to the field 
(3) the dashed arrow indicates that ploughing implies tree removal, but not necessarily sole-cropping 
(4) controls pest, increases nitrogen supply in the case of legumes 
(5) reduces competition between crop species and between crop and trees 
(6) efficient operations (one crop per field means uniform fertilizer requirements, harvesting dates, etc.)  

(7) cultivating indicates weeding using an animal-drawn cultivator or plough between the crop rows 
(8) makes efficient weeding possible 
 
b) 

(1) preserves soil organic matter and soil structure, but may also lead to soil compaction and crusting 
(2) generally increases the number and intensity of weeding operations 
(3) may reduce soil crusting, may increase water infiltration and reduce evaporation, but may also 
increase waterlogging, leaching and immobilization of nitrogen 
(4) generally makes planting more difficult  
 (5) may control weeds by shading but mulch may contain seeds of weeds and mulch makes weeding 
by hand or cultivator more difficult 
(6) controls pests, increases nitrogen supply in the case of legumes 
 

5.2.2.1. From ‘demonstration’ to compulsion 

Underpinned by an ideology of racial segregation and paternalistic development, 

Alvord’s package for ‘modern agriculture’ was promoted in a number of ways. At 

agricultural training centres in Domboshawa, north of Harare, and in Tsholotsho, in 

the south, mission-educated Africans were trained to become ‘agricultural 

demonstrators’ (extension workers). They were placed in the Native Reserves to 

Components Yield Labour needs 

Ploughing 
 
Manuring 
 
Crop rotation (with legumes) 
 
Sole-cropping/tree removal 
 
Planting in lines/cultivating(7) 

+ (1) 
 

+ 
 

+ (4) 
 

+ (5) 
 

+ (8) 

- 
 

+ (2) 
 
0 
 

- (6) 
 

- (8) 

Components Yield 
Labour needs 

Land Prep and 
Planting 

 Weeding 

       Minimum tillage 
 
       Mulch retention 
 
       Crop rotation (with legumes) 
 
       Cover crops 

+/- (1) 
 

+/- (3) 
 

+ (6) 
 

+ 

+ 
 

- (4) 
 
0 
 
- 

 - (2) 
 

+/- (5) 
 
0 
 

+/- 

(3)
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demonstrate the standardised set of modern husbandry practices in the fields of 

those willing to adopt ‘modern agriculture’. Alvord emphasised that demonstrators 

were to work the plots together with the plot owners, building on ‘learning by doing’ 

and ‘seeing is believing’ (Bolding, 2003: 44, 46). A second policy was the Master 

Farmer programme, a training programme for farmers that has survived well into the 

post-colonial era (see Bolding, 2004). 

 

As Alvord rolled out his demonstration and Master Farmer programmes, land 

degradation in the Native Reserves seemed only to worsen in the eyes of colonial 

government officials, including Alvord himself.  Fuelled by a visit to the USA during 

the Great Dust Bowl in 1935, colonial interventions in African smallholder agriculture 

became increasingly informed by conservationist concerns (McGregor, 1995; Wolmer 

and Scoones, 2000). Although blamed on African smallholders’ misuse of the land, 

land degradation in the Reserves was partly of the colonial governments’ own 

making. More and more people were pushed onto these degradation-prone lands 

(Andersson, 2007: 683). In addition, the alarming rates of soil erosion were often 

based on landscape-level aggregations of plot-level estimates, thus ignoring the 

complex patterns of deposition across landscapes (Campbell et al., 1997)9. 

 

However ill-informed, erosion rates were used to justify more stringent soil 

conservation policies such as the Natural Resources Act of 1941, which empowered 

Native Commissioners to issue orders on – ‘Alvordian’ – farming methods to be used, 

and compel African farmers to construct soil conservation works such as contour 

ridges (Phimister, 1986; Machingaidze, 1991). Alvord’s mixed farming model which 

integrated crop and livestock production was also the basis of the Native Land 

Husbandry Act of 1951, which sought to enforce agricultural intensification by 

individualizing and limiting African farmers’ land and livestock holdings 

(Machingaidze, 1991; Phimister 1993; Andersson 1999).  

 

                                              

9 The strategic use of soil erosion figures to argue for urgent action is exemplified by Whitlow (1987), 
who mentioned soil losses of 40 tons ha-1 year-1 in Zimbabwean Communal Areas. Disregarding the 
accuracy of the figure, this apparently massive figure translates to top soil loss of 2.7 mm per year 
(assuming a bulk density of top soil of 1.5 g cm-3). Such strategic use of soil erosion figures re-
surfaces in contemporary CA promotion messages (Field Observations, Foundations for Farming 
Open day, River of Life Church, Harare, 1 February 2011). 
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5.2.2.2. Alvord’s gospel, technology adoption and the plough 

Demonstrated and enforced, Alvord’s standardised model for ‘modern farming’ has 

left its legacy. Zimbabwean smallholders have adopted and adapted some or all five 

key practices –ploughing, manuring, crop rotation, sole cropping and planting in lines 

– despite criticism on their agronomic merits, applicability, and sustainability (for an 

overview, see Bolding, 2003). For instance, already during his time in office (1926-

1950), Alvord had to acknowledge that his manure recommendations to maintain soil 

fertility in permanently cultivated lands were ill-suited. Most smallholder farmers 

simply did not have enough cattle (12-16 head per arable hectare) needed to supply 

the required rate of manure (Bolding, 2003: 51).10 In 1965, it was estimated that less 

than half of the Native Reserve farmers owned any cattle at all (Machingaidze, 1991). 

Alvord’s crop rotations were equally unsuited to the conditions of smallholder farmers 

as they did not take into account the different labour requirements, dietary needs and 

preferences or marketability of different crops (see below). Ploughing, sole-cropping 

and planting in lines have, however, become widely practised and regarded as 

proper farming practice by smallholder farmers. But did these ‘Alvordian’ 

technologies result in agricultural intensification? These three components of the 

package do have land-saving properties – that is that may lead to intensification – but 

they also have labour-saving properties – that is that may lead to extensification 

(Table 1a). In many areas where population was sparse, they enabled farmers to 

manage larger lands, and if close to markets, this gave rise to a category of so called 

‘plough entrepreneurs’, who opened up extensive land areas to increase production 

(Ranger 1985: 36; Phimister 1988: 72-79,143). Colonial administrators noted: 

 

“…the native is rapidly taking to the plough and the use of the plough is becoming almost 

general throughout the country… the average yield in bags per acre is deplorably low and 

has decreased with the advent of the plough.”11 

                                              

10 Alvord recommended 10-15 tons kraal manure per acre (37 tons per ha) every four years (Grant, 
1976: 252). Manure use was also limited as it increased weed infestation (Bolding, 2003: 52), and its 
effectiveness depended on soil type and rainfall conditions (McGregor, 1995) 

11 Colony of Southern Rhodesia Statistical Bureau (1932) Official Yearbook of the Colony of Southern 
Rhodesia no.3, Salisbury, Government Printer. p.670. In this yearbook, average grain yield was 
estimated to be 700 kg ha-1 in 1902, and decreased to an estimated 500 kg ha-1 in 1930. The 
number of ploughs in the Native Reserves increased exponentially, ‘and by 1940 nearly every family 
owned one’ (Scoones, 1997; Palmer, 1977). In that year there were about hundred agricultural 
demonstrators based in the Native Reserves (Davis, 1992: 53). 
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In those areas where population had become dense - as a result of the colonial 

state’s segregationist land policies - such an extensification-based development path 

was less feasible. It was in these areas that Alvord’s demonstrators ‘tended to secure 

the greatest degree of cooperation from cultivators’ (Phimister 1988: 275), adopting 

labour demanding components such as manuring. But even in these densely 

populated areas, demonstrators were generally welcomed by only a few farmers, 

most notably the entrepreneurial ones, as they reduced their labour burden. In some 

cases demonstrators even assumed the role of farm managers for entrepreneurial 

farmers (Ranger 1985:62; Phimister 1988:143-145). The adoption of the plough for 

agricultural extensification thus has to be understood in the context of smallholder’s 

production constraints and market opportunities. Both were at least partially 

structured by colonial land and marketing policies. 

 

It is perhaps somewhat ironic that in his autobiography, ‘The Gospel of the Plow’, 

Alvord took the plough as the symbol of his life-time efforts to intensify African land 

use. In 1926, when Alvord was appointed, it was estimated there were already over 

27,000 ploughs in use in the Native Reserves. In the following five years this number 

almost doubled to over 53,000, when a mere 37 demonstrators were working in the 

Native Reserves (Government of Southern Rhodesia, 1952). Alvord and his 

demonstrators were thus not responsible for the rapid uptake of the plough by African 

farmers. Alvord referred to the rise of the plough as a mixed blessing, lamenting its 

‘misguided’ use; extensive ploughing could increase soil erosion and farmers who 

opened up large tracks of land with the plough, could often not manage the additional 

hand-weeding (Bolding, 2003: 55-56). Nevertheless, the success of African 

smallholders’ extensive market production of maize brought them in direct 

competition with white settler farmers. The latter turned against colonial officials like 

Alvord for stimulating Africans to produce. The settler state yielded to pressures of 

the white farmers, and introduced discriminatory marketing legislation such as the 

Maize Control Act (1931), which reduced market prices for African producers. Such 

state intervention in markets did not always cause reduced market production: ‘The 

percentage of African sales to total African production and to total sales increased 

significantly’ in the 1930s, as farmers tried to sustain their income by producing more 

(Phimister 1988:186). State-induced falling market prices could thus contribute to 

agricultural extensification as farmers tried to reduce costs. For Alvord, however, it 
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was the lack of grain markets for African producers that was to blame for the failure 

of intensification (Stocking, 1978; Page and Page, 1991; Davis, 1992). Rather than 

Alvord’s recommendations and extension programmes, the growing population 

concentrated in the Native Reserves that eventually forced smallholder farmers to 

cultivate the same land permanently. Alvord’s recommendation to use manure 

followed as an – insufficient – response to declining yields, as did the use of mineral 

fertilisers. Having had no regard for the production constraints of smallholder farming 

systems, it can be concluded that in his time (1926-1950), Alvord’s package for 

agricultural intensification was largely a failure, as it was diverted for extensification. 

Yet the legacy of his ‘Gospel of the Plough’ is immense, as the next sections will 

reveal. 

 

5.2.3. From plough adoption to abandonment: what has changed? 

5.2.3.1. Stemming land degradation through Conservation Agriculture 

Conservationist concerns continue to inform agricultural intervention in the post-

colonial period. Now framed in terms of an eroding natural resource base and 

biodiversity loss, underpinning contemporary policies is the persistent idea that 

African farming practices are both unproductive and destructive. Not surprisingly, 

Zimbabwe has been fertile ground for the introduction of Conservation Agriculture 

(CA). Based on the simultaneous application of three principles – minimal soil 

disturbance, permanent soil cover, and crop rotations  (www.fao.org/ag/ca; Table 1b) 

– this model of ecological intensification (Figure 1c) has recently gained momentum 

in southern Africa following its successful adoption on large-scale mechanised farms 

in South America, North America and Australia (Kassam et al., 2009). In the latter, 

CA depended on use of labour-saving herbicides (unlike the hand-hoe basin-based 

packages promoted to Zimbabwean smallholders). It may be seen as a new gospel, 

this time to abandon the plough12. The CA principles of minimum soil disturbance, 

achieved through minimum-tillage, and permanent soil cover through retention of a 

mulch of crop residues are interdependent practices (as tillage would bury the 

mulch). Other components of the technological package can be viewed as 

                                              

12 http://www.foundationsforfarming.org/Groups/104827/Foundations_for_Farming/The_Foundation/ 
The_Foundation.aspx (Visited 23 November 2010) 
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consequences (Figure 2). For example, crop rotation becomes necessary as crop 

residues retained on the soil as mulch may carry pests and diseases. 

Recent projects and training manuals promoting CA evidence a tendency to include 

more and more technological components. For instance, the Foundations for 

Farming13 promotes composting as part of the CA package, ICRISAT includes 

fertiliser micro-dosing (Twomlow et al., 2008a), while ICRAF promotes ‘Conservation 

Agriculture with trees’14. Although such additions evidence the popularity and 

strategic value of the CA concept for donor-dependent research and development 

organizations, these additions are also responses to the ambiguous impact of some 

CA components on land and labour productivity (Table 1b). In order to increase the 

suitability of CA to smallholder farming systems, new technical components are 

constantly added in an attempt to increase benefits, or to overcome the negative 

effects on crop production. Adopting CA thus results in a cascade of technologies to 

be adopted, and possibly, in a complete overhaul of existing practices (Figure 2). 

Hence, more than Alvord’s technologies which have been adopted rather 

independently from one another, CA is a ‘technology package’ – a set of interrelated 

components that require wholescale adoption to result in increased production (Table 

1b; Figure 2).  

                                              

13 http://www.foundationsforfarming.org/Groups/104832/Foundations_for_Farming/Resources/ 
Resources.aspx (Visited 23 November 2010) 

14 http://www.worldagroforestry.org/regions/eastern-africa/our-projects/conservation_agriculture_with_ 
trees (Visited 23 November 2010) 
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5.2.3.2. Conversion justified with science… and extended with faith 

The similarities between the Alvord and CA models for agricultural intensification 

extend beyond a shared ideology of resource conservation and land degrading farm 

practices of African smallholders. First, protagonists of CA deploy similar extension 

strategies. For instance, in manuals, documentaries and slide-shows
15, the land degrading and inefficient nature of African smallholder agriculture is often 

illustrated by pictures of gully erosion and farmers in fields with stunted, yellowish 

crops. The superiority of the particular CA package promoted is then demonstrated 

scientifically, through detailed plot-based comparisons of yields, soil erosion, and 

runoff rates between CA and conventional farming (see for example Thierfelder and 

Wall, 2009)16. As in Alvord’s days, quantifications of land degradation are used 

strategically to communicate urgency, and the need for revelation of ‘farmer 

mindsets’ (Zimbabwe Conservation Agriculture Taskforce, 2008: 5; Hobbs et al., 

2008). 

 

Invoking God and the gospel constitutes a second congruence between Alvord and 

CA protagonists. Just as Alvord, who built on mission-educated demonstrators and 

Christianised ‘modern’ farmers that were presumably freed of superstitious beliefs 

like witchcraft (Page and Page, 1991), CA is often financed and extended through 

churches and faith-based organisations17. For instance, Brian Oldreive’s River of Life 

Church has been at the forefront of its promotion in Zimbabwe. Viewing CA as a way 

to farm ‘faithfully’, he equated it with ‘Farming God’s Way’ (Oldreive, 2005). Soil 

cover with mulch is referred to as ‘God’s blanket’. The promotion of CA thus becomes 

an evangelizing enterprise.  

 

 

 

                                              

15 An example is the promotional video on www.fao.org/ag/ca (visited 23 November 2010). 
16 Conventional’ farming without fertilisers is often compared with CA with – donor supported – 

fertiliser (see CBDC, 2009). Thus, in these comparisons, the effect of CA per se is confounded with 
the effect of fertilisers. Moreover, CA adoption may be driven by NGO supported inputs more than 
by the merits of CA itself (Mazvimavi and Dimes (2009). Note the similarity with the valued labour 
input provided by Alvord’s demonstrators. 

17 Faith-based donor organizations such as Catholic Relief Services and Care International, invest 
substantially in CA promotion, while FAO funds CA trainings at the River of Life church. 
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5.2.3.3. A technology-driven approach, disregarding farm practice: ‘one size fits all’  

Arguably, the most striking similarity between Alvord’s model for agricultural 

intensification and CA is the disregard for the rationale of existing farm practices and 

for the diversity of socio-economic environments within which they take place. In 

Alvord’s days, local practices such as shifting cultivation were perceived as wasteful 

and destructive, to be replaced by ‘modern’ integrated crop-livestock farming, 

modelled on northern European and American family farms (Wolmer and Scoones, 

2000). Similarly, the extension of CA to smallholder farmers in southern Africa is 

modelled on its success in large-scale, mechanised farms in the Americas and 

Australia (Giller et al., 2009). 

 

Labelling existing farm practices as wasteful and destructive is, of course, a 

convenient way to ignore them altogether and justify the blanket recommendation of 

a new set of practices. Although Alvord’s understanding of African agriculture was 

considerable (see Alvord, 1929), he operated within the confines of the 

segregationist colonial state that sought to concentrate Africans in reserves, intensify 

agriculture there, while simultaneously suppressing smallholder farmers’ market 

production. Regardless Alvord’s awareness of these contradictory goals of colonial 

policy, his package was primarily a technological one, ignoring the embeddedness of 

farming practices in a wider socio-economic environment – its labour constrained 

production in particular. 

 

Protagonists of CA appear to have learned little from Alvord’s experiences. Again an 

intensification package is promoted as a ‘one size fits all’ set of technologies, without 

much attention for existing farming practices and the suitability of the promoted 

technologies within the socio-economic context in which they are to be adopted. 

 

Below, in Part 5.3., the focus shifts to understanding smallholder farming practices 

within their specific socio-economic environment. Understanding such practices, it is 

suggested, casts doubts on the suitability of CA.  
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5.3. FARMER PRACTICE VS. INTENSIFICATION MODELS 

The material presented below builds on fieldwork among smallholder farmers in 

Dande Communal Area in the Zambezi Valley, a relatively thinly populated area (17 

pers. km-2 in 2002) in northern Zimbabwe. Here, agricultural intensification is seen as 

a way to spare land for wildlife conservation beyond the borders of nearby protected 

areas. The analysis aims to understand better the rationale of African smallholder 

farming, and particularly, trajectories of farm development. It is shown why Zambezi 

valley farmers are predisposed towards agricultural extensification. 

 

A survey (n = 176) was used to construct a typology of farmer diversity in the study 

area, based on their practices and endowment. Four farmer types were delineated: 

hand-hoe farmers not growing cotton (Type 1); hand-hoe farmers growing cotton 

(Type 2); ploughing farmers growing cotton and having less than four draught 

animals (Type 3); and ploughing farmers growing cotton and having four draught 

animals or more (Type 4)18. A sub-sample of 38 farmers representative of farmer 

diversity was selected for a detailed analysis of decision-making processes 

governing resource allocation to farming. First, farm labour and cash calendars were 

constructed. A second round of interviews focused on farmers’ perspectives on ‘good 

farming’ and his/her preferences for farm development if specific inputs were 

increased. To facilitate dialogue on these development pathways, a role-playing 

game was used: the “Dande Game”. The Dande Game was made of a board 

representing the major soil types farmers distinguish: upland loamy sand (“shapa”) 

and upland sandy clay loam (“mutapo”), and sandy loam near rivers (“bandate”). 

Bottle tops were used to represent one acre plots of the five major crops cultivated in 

the area – cotton, maize, sorghum, cowpea and groundnut. Production assets such 

as labour and spans of animal draught power were represented by cards. The game 

was played by first asking the interviewee to represent the crop-soil type 

combinations of his/her farm as it was during the previous cropping season. Farmers 

were then asked how they would change their cropping pattern under various 

scenarios, such as access to all major soil types, more draught animals, or increased 

                                              

18 The distinction between “hand-hoe” and “ploughing” is based on the mode of land preparation for 
the main dryland crops. Type 1 and 2 farmers never use animal draught power, while Type 3 and 4 
farmers may occasionally use hand-hoes in riverbank fields or in gardens. 
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labour availability. During the discussions, farmers were asked to reflect on specific 

technologies associated with CA, that is minimum-tillage, crop residue mulching, crop 

rotation and intercropping with legumes. Issues discussed during these interviews 

were also raised in group interviews in three wards along a west-east gradient of 

increased population density and less tsetse infestation (see Chapter 2): from Angwa 

Bridge to Mazambara and Mushumbi Pools. This gradient is significant for the 

understanding of farm diversity as tsetse infestation prevents the use of animal 

drawn ploughs, while higher population densities may limit farm expansion. 

 

5.3.1. Organizing production: smallholders’ disposition towards agricultural 

extensification 

5.3.1.1. Labour constrained production 

In southern Africa, farming is often limited by labour rather than land. In Zimbabwe’s 

Zambezi Valley, available animal draught power and manpower are good predictors 

of farm size (Chapter 2). Hand-hoe farmers (Types 1 and 2) on average cultivate 2.1 

ha, while ploughing farmers with one (Type 3) and two animal spans (Type 4) on 

average cultivate 3.6 and 6.0 ha, respectively. 

 

Southern Africa is characterised by a narrow optimum planting window (Phillips et al., 

1998; Raes et al., 2004), while timely first weeding is crucial to avoid problems of 

crop establishment (Vogel, 1994). As labour calendars evidence, smallholder farming 

in the Zambezi Valley is characterised by two labour peaks; one at land preparation 

and planting in November-December, and one at the first weeding in January (Figure 

3). For hand-hoe farmers (Type 1 and 2), who generally lack resources to hire labour, 

the labour peak at first weeding is particularly pronounced. Weeds grow fast and 

vigorously because of the relatively fertile soils and high temperatures that 

characterise the Zambezi Valley. For Type 1 and 2 farmers, land preparation and 

planting are spread over a longer time period, as field clearing and the opening of 

planting stations can already commence before the onset of the rains. However, 

weed growth is not controlled by ploughing nor are weeding efforts alleviated by the 

use of ox-drawn cultivators. In contrast, ploughing farmers (Type 3 and 4) face two 

labour peaks. These farmers can only start land preparation and planting after the 

onset of the rains, as ploughing requires moisture to soften the soil. Although 



Failing to yield? 

143 

ploughing and the use of labour-saving cultivators control weed growth, these 

farmers still face a labour peak at weeding; a cultivator does not eliminate the need 

for manual weeding between plants in the same row (Figure 3). 

 

In the Zambezi Valley, the labour peak at the time of first weeding is a major 

determinant of the land area harvested, even for ploughing farmers. Farmers who 

cannot mobilise enough labour at first weeding, are forced to abandon parts of their 

planted field as exemplified by data from the EU-PARSEL project in the area. During 

the 2008-2009 season 28% of sorghum fields (n = 164) and 17% of cotton fields (n = 

149) decreased by almost a third in size between planting and harvesting time.  

 

The primacy of the labour peak at first weeding explains Zambezi Valley farmers’ 

preference for technologies such as ploughing and residue burning that save labour 

at this time of the season (see below). Ploughing generally reduces weed infestation 

at planting time and is more effective in controlling perennial weeds than minimum-

tillage (Vogel, 1994), whilst manual weeding is easier on a bare soil than on a 

mulched soil (see below). In opposition, technologies that increase labour demand 

during weeding are ill-suited to smallholders of the Zambezi Valley, particularly the 

resource poor. From discussions with farmers, this appears to be the case for 

minimum-tillage and mulching, the main components of CA (Table 1b). 
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Figure 3. Mean monthly labour allocation for three types of farmers during the 2007-
08 season in Dande Communal Land, Zimbabwe (n = 38). 
 

5.3.1.2. Mobilizing cash for farming 

To overcome labour constraints, farmers may purchase herbicides or hire additional 

labour during peak periods. In the Zambezi Valley cotton farmers receive most of 

their farm inputs – seeds, fertilisers and pesticides – on credit from cotton companies 

that recover their investments in cotton. There is relatively little direct purchase of 

agricultural inputs. The wealthiest farmers (Type 4) spend on average only 4% of 

their total cash income directly on agricultural inputs, while for other farmer types this 

is 1% or less. Problems of availability, high prices and a hyper-inflationary economic 

environment have reduced the possibility of direct purchases of inputs in recent 

years. Zambezi Valley farmers who do access mineral fertilisers on credit tend to use 

small quantities on their cotton, as credit recovery rates are high19. Therefore, fertile 

land is generally secured by investing labour in clearing an additional piece of land 

                                              

19 Data from the EU-PARSEL project show that during the 2008-2009 season, farmers were using, on 
average, only 12 kg N ha-1, 34 kg P ha-1 and 6 kg ha-1 on their cotton fields. 
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before the rains start (that is before labour peaks), rather than by purchasing fertiliser 

to maintain the fertility of already cultivated lands. This investment strategy was 

revealed by the Dande Game: when offered hypothetical increases in assets all 

farmers expanded the area of land they cultivated, instead of concentrating 

resources on the land already cultivated.  

 

Farmers’ peak expenditure, at planting and first weeding between November and 

January, reflects the investment pattern of labour hiring20. Especially farmers growing 

cotton on large land areas (Type 3+4) hire additional labour for weeding (Figure 4). 

However, during labour peaks labour availability is reduced and labour costs 

increase (White et al., 2005). By contrast, labour is cheap before the rainy season, as 

poorer hand-hoe farmers (Type 1 and 2) are keen to earn cash to purchase food. 

This cheap labour allows wealthier farmers to clear large tracts of fertile land for 

agriculture. Thus, agricultural extensification is not only driven by the high cost of 

fertilisers compared with the farm gate prices of agricultural commodities, making its 

use unprofitable, but also by the availability of cheap labour outside peak periods.  

 

Agricultural intensification strategies that require hiring labour, particularly – as in the 

case of CA – during peak periods when labour is scarce and expensive, require 

substantially more cash investment. Strategies that increase cash requirements for 

inputs and/or for hiring labour are unlikely to be adopted when the profitability of 

small-scale farming remains stable or declines, as has recently been the case for 

cotton profitability in Zimbabwe.  

 

                                              

20 The expenditure peak partly corresponds with the beginning of the school year, when school fees, 
uniforms and stationary need to be purchased. 
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Figure 4. Mean monthly cash allocation for three types of farmers during the season 
2007-08 in Dande Communal Land, Zimbabwe (n = 38). Cash expenditure during the 
period November-January represent labour hiring and, to a lesser extent, expenses 
related to schooling. Cash expenditures in the period May-July represent the 
purchase of clothes, productive assets such as livestock and other household needs 
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5.3.1.3. Agricultural intensification vs. mitigating risk 

Both strategies for farmers to increase production – agricultural intensification and 

agricultural extensification – require more labour and/or cash inputs. But clearing new 

fertile lands during off-peak periods does not only require less cash than investing in 

fertilisers, extending one’s field has other advantages as well. Farmers generally 

prefer to spread their labour and cash inputs to reduce the risk of crop failure. 

 

First, in the Zambezi Valley, having a number of fields, with different soils, planted 

with different crops, and managed differently, is a strategy to mitigate risks of 

drought, pest attacks and destruction by wildlife. For instance, farmers indicated that 

soils richer in clay (“mutapo”) are best suited for cotton. However, when exploring 

different cropping patterns through the Dande Game – ‘what would you grow if you 
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had access to all soil types?’ – farmers indicated that in years of drought, cotton 

performs better on sandy loam (“bandate”)21. Thus they explained their preference to 

spread cotton cultivation over fields with contrasting soil types given the 

unpredictable rainfall, rather than concentrating on one field. 

 

Second, agricultural extensification can also serve to mitigate the effects of drought 

on cereal production. Farmers indicated that in dry years, those who planted a large 

field always harvested something: as weeds do not develop as strongly in dry years, 

farmers can manage large fields with less labour than during higher rainfall years. 

Half of the interviewed farmers indicated that during a drought year, two acres of 

maize weeded once would yield more than one acre of maize weeded twice. 

 

5.3.1.4. Crop demands, markets, livelihoods and in/extensification pathways 

As already alluded to, market prices influence farm development pathways. For 

instance, land scarcity and higher producer prices near urban markets may drive 

agricultural intensification (Bamire and Manyong, 2003; Erenstein, 2006). Equally, 

relative land abundance and high input prices in remote areas such as the Zambezi 

Valley, may predispose farmers to extensification. Woodhouse (2002) noted that 

these socio-economic factors may be even more important than agro-ecological 

conditions in explaining population growth and the orientation of farm production 

towards intensification or extensification. 

 

The cash and labour demands of specific crops as well as their different uses also 

shape such farm development pathways. Different crops have specific meanings for 

people. A comparison of cotton and cereal production in the Zambezi Valley can 

illuminate this. Poor market prices for cereals mean that these crops are primarily 

grown for food although surplus production may be sold. Being independent from the 

market for one’s food appears to be a strong social force. Even well-endowed 

farming households specialised in cotton production do not cease to produce cereals 

altogether. 

                                              

21 Sandy clay loam has a high water retention capacity, but also a high permanent wilting point. These 
soils require substantial rainfall before water becomes available for the crop. Sandy loam has less 
capacity to retain moisture and a lower permanent wilting point. 
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Second, different crops have different labour demands. During the ‘Dande Game’, 

when asked to compare the cropped area of a farming household only growing 

cotton with the cropped area the same household could manage when only growing 

cereals, farmers highlighted the extra labour demand of cotton production for 

weeding and pesticide application. They estimated that a household could manage 

25-60% less land area under cotton than under cereals. Accordingly, the farmers saw 

larger farming households – more helping hands – as more suitable for cotton 

cultivation, while farms with more draught animals and ploughs were considered best 

for cereal farming. Hence, the relative market prices for cereals and cotton may drive 

farm development along an intensification or an extensification pathway. In the 

Zambezi Valley extensification is probable, as the profitability of labour-demanding 

cotton has followed a declining trend in the past decade22 (until 2010 when the price 

of cotton doubled, see Appendix 1), whilst cereal marketing in Zimbabwe was 

liberalised in 2009. 

 

5.3.2. Farmer practice and Conservation Agriculture: an unlikely marriage 

The above exploration of farm practices reveals how limited cash, labour peaks, low 

output and high input prices, and risk aversion, predispose smallholder farmers in 

southern Africa to agricultural extensification. The availability of – relatively fertile – 

land enables such an expansive farm development pathway in the Zambezi valley, 

but such a development is perhaps unlikely in areas characterised by high land 

pressure and poor soils. Nevertheless, the Zambezi Valley case illuminates why the 

technologies for agricultural intensification as promoted in CA are problematic in 

many smallholder farming contexts.  

 

5.3.2.1. Ploughing: the hallmark of a good farmer 

Although diverse in terms of their farming practices and their endowment, interviewed 

farmers’ responses to the questions: ‘What makes a good farmer? What does (s)he 

have or do differently than others?’ were strikingly similar: having animal draught 

power, a plough and a cultivator, were seen as the main attributes of a good farmer 

                                              

22 A farmer explained ‘250 kg could buy one head of cattle in the 1990s; nowadays, twice this amount 
is required’ (Interview with Mr R. Matongora, Madzeverete, 9 November 2009) 
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(Table 2). As for Alvord in the 1920s, the plough remains the hallmark of good 

farming.  

 

Table 2. “What makes a good farmer (murimi akanaka)? What 
does (s)he have or do differently than others?” (n=36)  

What makes a good farmer?  
Number of 

respondents
Proportion of 
respondents

Having animal draught power, 
plough(s) and cultivator(s) 

 35  97%

Producing surpluses  17  47%

Having seeds (quantity and 
quality) 

 13  36%

Having manpower (family and/or 
hired labour) 

 12  33%

Having a large field  9  25%

Practicing proper weeding  5  14%

Using chemicals (fertilizers, 
pesticides, etc) 

 5  14%

 

As already shown above, Zambezi Valley farmers value the plough foremost for 

weed control (67%). Secondly, in the hot and dry climate of the Zambezi Valley 

where yields are foremost limited by water availability, ploughing is perceived as a 

means to increase moisture retention (52%) and water infiltration (45%) (Table 3). 

Finally, smallholders value the plough for the rapid land preparation it permits (24%). 

In low rainfall areas, the optimum planting window is narrow and the plough enables 

large areas of land to be cultivated quickly (Nyamudeza, 1999). 

 

Farmer’s appreciation of plough use as a way to maximise the utilization of rainwater, 

diametrically contradicts the view of CA protagonists, who argue that plough use 

should be minimised to increase water use efficiency (Gowing and Palmer, 2008; 

Rockström et al., 2009). Agronomists agree that on (clay-poor) loamy soils, such as 

those found in the Zambezi Valley, soil crusting occurs, leading to run-off and poor 

water infiltration. The crust can be broken by ploughing or, alternatively, its formation 

can be avoided by mulching as is proposed with CA (Awadhwal and Thierstein, 

1985). Why then do farmers not mulch? 
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Table 3 – “What are the benefits of ploughing?” (n=33) 

Reasons for ploughing  
Number of 

respondents
Proportion of 
respondents

Weed control  22 67%

Increased moisture retention  17 52%

Improved water infiltration  15 45%

Fast and easy plant growth due to 
loosened soil 

 17 52%

Fast land preparation / big land  8 24%

 

5.3.2.2. Mulching vs. burning crop residues  

Removing crop residues (for cattle feed) or burning them is a widespread practice 

among smallholder farmers in the Zambezi Valley – three quarters of the farmers 

interviewed did so. Hand-hoe farmers do so because retained crop residues – mulch 

– increase the labour burden during planting and weeding in the beginning of the 

season (Table 4). It may increase labour costs, as a labour hiring hand-hoe farmer 

explained: 

 

“Casual workers charge you more to open planting stations in fields where you did not 

burn.”23 

 

Such considerations are not relevant to those who plough, since ploughing 

incorporates most of the residues. However residue burning may also be practiced to 

reduce pests and weeds or to release nutrients for the crop to be planted (Table 4). 

During group interviews, other reasons included: facilitating mice hunting, avoiding 

trampling of one’s field by free grazing cattle, and not attracting dangerous wildlife 

like elephants and buffaloes that feed on crop residues. While some reasons are 

specific to the Zambezi Valley, to abandon burning involves an additional labour 

input; for planting and weeding, as well as for constructing fire breaks as fires often 

spread from neighbouring fields24.  

                                              

23 Interview with Courage Nhamoyemari (2 February 2010). 
24 Fires may spread from neighbouring farms or natural vegetation, that are annually burnt for a 

number of reasons, for example to facilitate hunting of antelopes. 
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Table 4 – “Why do you burn residues?” (n=25) 

Reasons for burning  
Number of 

respondents
Proportion of 
respondents 

Easier land preparation and 
weeding 

 18 72% 

Reduction in termite and millipede 
populations 

 6 24% 

Weed control  5 20% 

Increased fertility  4 16% 

 

5.3.2.3. The impossibility of frequent crop rotation 

Both the Alvord and CA packages for agricultural intensification emphasise the 

importance of crop rotation, albeit for different reasons. For Alvord, making best use 

of available soil nutrients was a prime concern, and he promoted a four-year rotation 

with two consecutive years of maize, followed by a legume crop and a small grain 

crop. Consequently, half of the farm should be occupied by maize and the other half 

by legume and small grain crops. In CA, annual crop rotation is required as pests and 

diseases may be carried over to the following crop in the mulch. This means that the 

farm should be occupied by at least two crops on equal areas. Both types of crop 

rotations are highly problematic for smallholders. Firstly, not all farmers grow a wide 

variety of crops, or cultivate similar land areas to different crops.25 

 

Secondly, as already mentioned above many farmers have access to different types 

of soils that differ in their suitability for particular crops. Farmers’ preferred 

combinations of crops and soil types were brought out by the ‘Dande Game’: 1) 

maize on “bandate” soils close to the rivers, 2) sorghum and cowpea on “bandate” 

soils, but further away from the rivers; 3) groundnuts on lighter “shapa” soils, and; 4) 

cotton on “mutapo” (the heavier soils). Although limited access to specific soil types, 

food security and risk spreading considerations complicate such ideal-typical 

combinations in practice, these preferences make crop rotation impractical. 

                                              

25 For instance, in the Zambezi Valley in 2006, hand-hoe farmers were growing an average of 1.1 ha 
of cereals and an average of 0.7 ha of cotton (n = 78), whilst ploughing farmers were growing an 
average of 1.3 ha of cereals and an average of 2.6 ha of cotton (n = 98). 
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5.3.2.4. ‘Intercropping with legumes is for poor farmers’ 

Intercropping with cover crops, especially legumes, is often promoted in CA. 

However, in the Zambezi Valley only 20% of the interviewed farmers were practicing 

legume intercropping – mainly groundnuts and cowpea with a cereal. The main 

reason given for not intercropping was crop competition, resulting in a decline in yield 

of the legume crop. Farmers may also associate legume intercropping with poverty: 

“A good farmer is not supposed to practise intercropping; intercropping is mainly done by 

old people who are trying to make the most out of a small piece of land.”26 

 

Thus, although the benefits of legume intercropping are well documented in the 

scientific literature (for example Craufurd, 2000), farmers in the Zambezi Valley 

appear committed to sole cropping as promoted in the Alvord model (Table 1a).  

 

5.4. CONCLUSIONS: FAILING TO YIELD, OR FAILING TO INNOVATE? 

Whereas interventions in African agriculture have been aimed at agricultural 

intensification, the analyses presented in this article show how the socio-economic 

constraints faced by many smallholder farmers – that is limited cash, labour peaks, 

low output and high input prices, and high risks – predispose them towards 

extensification. Technical packages which may exacerbate such constraints are ill-

suited to the circumstances of smallholder farmers. In the Zambezi Valley, where 

labour availability for weeding is a major limiting factor, the increased weed pressure 

in CA is a major – but probably not the only – reason preventing farmers from 

embracing it. Without more attractive prices for farm produce, or other sources of 

income, farmers will not be able to hire additional labour, or to purchase the labour-

saving herbicides required to overcome the increased weed problems that may result 

from CA adoption. 

 

Agricultural technologies do not, however, have strict intensifying or extensifying 

properties: often they have both. It is the interaction between the technology and the 

agro-ecological and socio-economic environments which directs farming on an 

                                              

26 Interview with Rambros Matongora (9 November 2009) 
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intensification or extensification pathway. The example of the plough in Alvord’s time 

is illustrative: although its use was promoted to intensify land use, its adoption often 

meant a ‘diversion’ towards extensification. Similarly, depending on the 

circumstances in which it is introduced, CA may not contribute much to agricultural 

intensification, but may result in agricultural expansion and extensification. For 

instance, the widespread adoption of CA and herbicides in the Brazilian Cerrados 

went hand in hand with a massive expansion of agricultural land (Landers, 2001; 

Klink and Macado, 2005). 

 

As has been highlighted above, smallholder farming in the Zambezi Valley cannot be 

taken as representative for the southern African region as a whole, as its hot climate 

and relatively fertile soils render weeding rather than planting the major labour peak 

in production. Land abundance – enabling agricultural extensification – is, however, 

less specific to the Zambezi Valley than may be assumed. In areas with denser 

populations than the Zambezi Valley (17 pers. km-2 in 2002), such as Malawi’s 

southern province (>200 pers. km-2, Benson et al. 2002), acute land shortage may 

indeed preclude agricultural extensification. Yet, in most parts of southern Africa 

population densities are relatively low: 18 pers. km-2 in Zambia, 29 in Mozambique 

and 32 in Zimbabwe27. Agricultural extensification is not merely a predisposition of 

smallholder farmers, but often a realistic possibility for farm development as is 

apparent from high deforestation rates in the region (for example 1% per annum in 

Zambia, 1.7% per annum in Zimbabwe28). Farm expansion into grazing lands, and 

the hiring of unused land are also common options (Chimhowu and Woodhouse, 

2008). 

 

We may therefore conclude that despite sustained efforts to intensify smallholder 

agriculture, farmers in the region have been ‘failing to yield’. The repeated failure of 

intervention models to learn from the rationale of smallholder production systems 

                                              

27 Population figures of 2008, United Nations Population Division 
(http://www.un.org/esa/population/publications/wpp2008/wpp2008_highlights.pdf, visited 23 
November 2010) 

28 Deforestation rates for the period 2000-2005, data from the Global Forest Resource Assessment of 
2005 (http://foris.fao.org/static/data/fra2005/global_tables/FRA_2005_Global_Tables_EN.xls, visited 
23 November 2010) 
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goes a long way in explaining their adoption failure. From Alvord to CA, local 

practices have been disregarded by interventionists, and the persistent conviction 

that the problem of low productivity and land degradation in African agriculture is 

purely technical has led interventions to be limited to attempts to change farmer 

‘mindsets’, through demonstration and trainings. This approach has changed little in 

almost a century of agricultural research and extension. More worrying than 

smallholders failure to increase yields, seems to have been the failure of 

researchers, policy makers, donors and development agencies to innovate. 
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Chapter 6 

General discussion and conclusions: Agricultural intensification – saving 

space for wildlife? 
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Let us return to the main research question of this study: does CA have the potential 

to intensify agricultural production with minimum negative environmental effects, and 

save space for wildlife? Chapter 2 and Chapter 3 demonstrated the importance to 

develop innovative cotton cropping systems for the conservation of wildlife habitat in 

the Mid Zambezi Valley, outside of protected areas. Indeed, by enabling the 

accumulation of cattle and the expansion of plough-based agriculture, cotton farming 

has been the major driver of extensive and rapid land use changes that started after 

the national independence in 1980 (Chapter 2). The ‘environmental footprint’ per 

farm was increasing significantly with the area under cotton and with the number of 

draught animals owned (Chapter 3). Cotton production may have negative effects on 

the Mid Zambezi Valley ecosystem, but it also offers opportunities for conservation. 

Cotton farming is more labour-intensive than other crop production (i.e. cereals), and 

thus requires less space in agricultural frontiers such as the study area, where 

agricultural production is limited by labour more than by land (Chapter 3). Therefore, 

maintaining or increasing the relative profitability of cotton vs. other crops may ‘spare 

land’ for nature. Chapter 4 explored the potential of CA to increase the productivity 

and efficiency of cotton-based smallholder systems. It concluded that with the current 

level of mulch achieved in typical smallholder conditions and the current fertilisation 

rates, CA offered little potential to intensify cotton and cereal production in the Mid 

Zambezi Valley. Chapter 5 further demonstrated that, although necessary to save 

space for wildlife, the adoption of yield increasing technologies is unlikely in 

agricultural frontiers, where extensification is the rule. Thus, additional measures 

have to be taken in order to save space for wildlife in the unprotected land of the Mid-

Zambezi Valley.  

 

Below, I explore implications of these findings for field-based stakeholders dealing 

with agricultural production and biodiversity conservation (farmers’ organisations, 

cotton companies, governmental departments, non-governmental organisation, 

conservation agencies, safari operators, CAMPFIRE committees, etc). The first three 

chapters explore implications emerging from the results of this study at each level of 

the analysis: plot-level, farm-level and landscape-level. The fourth and final part 

explores three popular myths that shape the way conservation landscapes are 
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constructed. I use the term conservation landscape to describe unprotected areas of 

high biological value occupied by people. 

 

6.1. THE CONTRIBUTION OF CA TO THE INTENSIFICATION OF SMALLHOLDER 

PRODUCTION 

This section explores implications of the results of this study at plot-level. First, the 

different components of CA may only be suitable to particular circumstances. 

Second, maximizing biomass production may enable the retention of larger quantities 

of mulch than those achieved in this study and may increase the short-term 

performance of CA. Third, CA is only one approach amongst many aiming to 

increase resource use efficiency: it may be suitable in a limited set of circumstances, 

whilst other approaches may be more appropriate in other circumstances.  

 

6.1.1. The need for a flexible and pragmatic approach 

Findings from Chapter 4 and Chapter 5 demonstrate that CA may be better suited to 

particular situations than others: fine-textured soils less prone to surface crusting 

than coarse-textured soils and circumstances where large quantities of biomass can 

be retained as mulch. In cotton systems, this latter point implies the necessity of crop 

rotation (as cotton stalks have to be destroyed for phytosanitary reasons in 

Zimbabwe, and therefore cannot be used as mulch). It also requires low grazing 

pressure, as in sub-Saharan Africa, crop residues become a public good available for 

communal grazing after harvest. I use these findings, in additions to field 

observations and discussions with farmers in other cotton production areas of 

Zimbabwe and West Africa, to develop the decision-making tree for rainfed cotton in 

sub-Saharan Africa presented in Figure 1. The aim of this tree is to help select the 

cotton cropping systems that are as close as possible to CA sensu stricto and that 

are the most suitable for smallholder farming circumstances. It is based on the direct 

benefits (economic yield) these cropping systems are likely to generate on the short-

term, which represent the main concern of smallholders. Indirect benefits for the 

environment (e.g. erosion control, C sequestration) and long-term benefits of 

maintenance/improvement of soil physical, chemical and biological properties were 

not taken into account. Moreover, this tree is constructed considering opportunities 
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and constraints relating solely to biophysical aspects, assuming for example that 

herbicides are available and labour is not limited for cultivating.  

 

The decision making tree of Figure 1 is based on four criteria: (1) the importance of 

water as a limiting factor and the occurrence of delayed land preparation, (2) soil 

texture, (3) the possibility of crop rotation, and (4) the intensity of the grazing 

pressure from communal livestock. The rationale behind the construction of this 

decision-making tree is developed below. Cropping systems themselves are 

described in Table 1.  

 

Possibility
of Crop

Rotation ?

1NO

YES

YES

YES

NO

NO

NO

NO

YES
Low

Grazing
Pressure ?

Possibility
of Crop

Rotation ?

YES
Low

Grazing
Pressure ?

NO

YES
Fine-

Textured
Soil ?

YES

Water 
Stress?

Delayed
Land 

Preparation?

NO

2

3

4

5

6

Figure 1. Decision-making tree for the selection of cropping systems based on CA 
principles that are the most suitable for smallholder rainfed cotton in sub-Saharan 
Africa. 
 

The only two direct short-term benefits that may be expected from CA are increased 

water-used efficiency (Erenstein, 2002; Findeling et al., 2003; Scopel et al., 2004) 

and early planting, as land preparation is simplified and often carried out before the 

first efficient rains (Haggblade and Tembo, 2003). In areas where neither water 
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stress nor delayed land preparation (due to limited animal draught power) limit crop 

productivity, resources available to agricultural research and development should be 

directed towards technologies other than CA (e.g. integrated soil fertility 

management, yield protection, post harvest measures).  

 

Moreover, CA may have neutral – or even slightly negative – effects on coarse-

textured soils prone to surface crusting i.e. the majority of the soils in the study area 

(Chapter 4). On such soils, crusting may only be avoided if large quantities of 

residues are retained as mulch. In areas where cattle numbers are high and where 

residues are grazed communally after harvest, only small quantities of residues will 

be retained as mulch, which will be insufficient to prevent soil crusting. In this context, 

a ‘mechanical opening’ of the soil will be needed, through ploughing or the use of a 

cultivator. Winter-ploughing may be attractive to maximize the annual input of organic 

materials to the soil, burying residues out of reach of communal livestock. Maximizing 

the annual input of organic materials is particularly important in the long-term 

management of coarse-textured soils, as organic input more than tillage determines 

the amount of soil organic matter stored in the soil at the long-term equilibrium 

(Chivenge et al. 2006). In contrast, results from participatory evaluation suggest that 

minimum-tillage would be beneficial on soils rich in expanding 2:1 clays (e.g. 

Vertisols), even if the quantities of material retained as mulch are limited (Chapter 4). 

Infiltration is maintained by the cracks forming during shrink and swell cycles in these 

soils (Murray and Quirk, 1980). A farmer in the District of Gokwe North coined them 

‘self-ploughing soils’. Minimum-tillage is also justified on these heavy soils, as 

mechanical operations limited to the use of animal draught power (ploughing, 

cultivating) are very difficult when they are wet. Finally, minimum-tillage has more 

effect on clay soils to stabilize soil organic matter content, as the aggregates that 

form and occlude organic matter are disturbed by mechanical operations (Six et al., 

2002).  

 

Furthermore, the benefits of intercropping a long-cycled legume to a cereal (Chapter 

4) may not be captured in areas with intense communal grazing, as fields would have 

to be guarded against roaming herds after the harvest of the cereal. In this situation, 
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short- rather than long-duration legumes should also be used (e.g. cowpea) for their 

grain to be harvested before or at the same time as the cereal.  

 

Finally, strict no-tillage (i.e. direct-seeding) requires the retention of a thick mulch of 

crop residues on the soil surface, through which the seed is planted. In the case of 

cotton production, it makes rotation with another crop necessary, most likely with a 

cereal, as the destruction of cotton residues is compulsory for sanitary reasons. Strict 

no-tillage is thus not feasible if such a rotation is itself not feasible. Strict no-tillage 

also necessitates the use of herbicides for weed control, as the use of a cultivator 

requires a bare soil (residues interfere with mechanical operations, Chapter 5).  

 

Table 1. Description of the cropping systems in Figure 1  
Cropping 
system 

 Tillage method  Weed control method  Cropping sequence 

1  Ploughing  
Cultivating or 

Herbicide spraying 
 Indifferent 

2  Ploughing  Cultivating  Indifferent 

3  
Winter-ploughing followed 
by Ploughing or Ripping 

 Cultivating  
Cotton – Cereal + Short-

cycled legume 

4  Ripping or Direct Seeding  Herbicide spraying  
Cotton – Cereal + Long-

cycled legume 

5  Ripping  Herbicide spraying  Indifferent 

6  Ripping or Direct seeding  Herbicide spraying  
Cotton – Cereal + Long-

cycled legume 

 

According to the decision-making tree, individual technological components of CA - 

minimum-tillage, crop residue mulching, and crop rotation and association – are not 

suitable to all circumstances of smallholder cotton production in sub-Saharan Africa 

(Table 1). The promotion of minimum tillage is only advisable in half of the cropping 

systems (4, 5, 6). Crop residue mulching is only possible in a third of the cropping 

systems (4, 6), residues being either grazed during the dry season or destroyed in 

the case of cotton. Similarly, crop rotation with the inclusion of N2-fixing legumes is 

only possible in half of the cropping systems (3, 4, 6). This tree goes beyond the 

identification of ‘niches’ in which CA fits or not, as proposed by Giller et al. (2009). It 

calls for a flexible and pragmatic approach with certain components of the technology 

fitting and others not, depending on local circumstances. This approach departs from 
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the FAO definition, which presents CA as a package of interrelated components that 

can only be adopted all together. Such definition appears more ideological than 

practical for African smallholder farming. Presenting CA as a set of technologies 

aiming at increasing the basket of technologies currently available to smallholders 

may ultimately serve them better than an ideology. In addition to the biophysical 

dimension used in this tree, the socio-economic dimension needs to be taken into 

account to understand the likelihood of the different components of CA to be adopted 

in a given area (Chapter 5). It was suggested that the benefits of CA, and the 

likelihood for it to be adopted, could also be increased by increasing biomass 

production (Chapter 5). 

 

6.1.2. Increasing biomass production 

Chapter 4 concludes that larger quantities of mulch than those achieved under this 

study may increase the short-term benefits of CA, by preventing soil crusting and by 

controlling water runoff. The quantity of residues left in the field after the dry season 

may be increased by increasing biomass production. The amount of residue 

produced by a cereal crop is a function of its yield and its harvest index. The latter is 

largely genetically determined, whilst the former is strongly influenced by 

management. Increasing cereal yield may be achieved by modifying defining factors 

(e.g. by using a higher yielding variety), limiting factors (e.g. increased nutrient 

inputs, rainwater harvesting), and/or reducing factors (e.g. weed, pest and disease 

control) (van Ittersum and Rabbinge, 1997). Under circumstances where the 

modification of these factors is not feasible, due to capital and/ or labour constraints, 

other strategies have to be used to increase biomass production. These may include 

the use of cereal landraces with a lower harvest index, intercropping, agroforestry, 

and the use of weedy biomass. 

 

Using a local landrace may result in greater quantities of residues being produced, as 

local landraces generally have a lower harvest index than improved varieties. 

Although they generally have a lower grain yield compared with improved varieties, 

local landraces may be economically competitive due to other benefits (e.g. better 

resistance to pests, access to specialized market). In the study area for example, 

several local landraces of sorghum were cultivated (Appendix 2). Although these 
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landraces achieved smaller grain yields than improved varieties, they suffered less 

from bird attacks (due to the high tannin content of their grains) and were less prone 

to destruction by roaming livestock, elephants and buffaloes (the stem of these 

landraces was drier and contained less sugar, and was therefore less palatable). 

Reduced sensitivity to wildlife destruction represents a major advantage in the study 

area, particularly in its western side where crop destruction by wildlife is frequent 

(Chapter 1). In addition, reduced palatability to both domestic and wild herbivores 

means that a greater fraction of the residues produced is retained at the end of the 

dry season. Finally, the grain of the majority of these landraces fetched high market 

prices as they possessed qualities of interest to industrial breweries (Appendix 2). 

 

When the use of local landraces does not represent an economic advantage 

compared with the use of improved varieties, other biomass-increasing technologies 

may be selected. Intercropping a legume crop with sorghum increased the amount of 

biomass being retained as mulch at the end of the dry season by an average of 40% 

compared with sorghum sole-cropping, with no yield penalty for sorghum (Chapter 4). 

Legume intercropping may generate other benefits, such as improving nitrogen 

balance (Chapter 4), weed control from the closed canopy formed (Olsen et al., 

2005) or narrower C:N ratio of the produced mulch, thus avoiding potential problems 

of temporary N immobilization (Palm et al., 2001). Perennial plants may have a 

greater primary productivity than annual plants. Therefore, intercropping agroforestry 

species may increase the quantity of biomass being produced, and yield other 

benefits such as nutrient cycling and micro-climatic regulation. The adoption of exotic 

agroforestry species is generally low (Mercer, 2004), regardless of the amount of 

resources invested in the promotion of the technology. However, keeping trees in the 

fields was a traditional practice in much of southern Africa before the colonial era 

(Wilson, 1989) and remained a common practice in the western side of the study 

area (Appendix 3). A number of trees regarded as belonging to spiritual entities 

protecting the land were being retained when opening new fields. The role of some of 

these species in improving the soil status in terms of its concentration in C, N, P and 

K is well known (see e.g. Dunham, 1991 for the case of Faidherbia albida and Kigelia 

africana in the Mid-Zambezi Valley). Use of these species may lead to far greater 

adoption of agroforestry. In deeper soils, Faidherbia albida is of particular interest, 
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due to its unusual reverse phenology that makes competition between the tree and 

annual crops minimal (Vandenbeldt, 1992). It has recently been re-discovered by 

ICRAF and is now heavily promoted across Africa as a “fertiliser tree” (Garrity et al., 

2010).  

 

More complex associations combining various plant functional groups may increase 

benefits. For instance, several studies have demonstrated increasing rates of 

ecosystem processes (e.g. net primary productivity, nutrient retention) with increasing 

species diversity (Naeem et al., 1994; Tilman et al., 1996). However, differences in 

species (i.e. in traits) would appear to have a larger effect on ecosystem processes 

than species diversity alone (Hooper and Vitousek, 1997). Trait-based ecology could 

offer a useful approach to the design of cropping systems composed of several 

species combining complementary traits (e.g. N2-fixation by legumes, nutrient cycling 

by agroforestry species) and delivering a set of ecosystem processes of interest to 

farmers (Brussaard et al., 2010). For a particular situation, the pool of possible 

cropping systems hence obtained should further be filtered by an economic filter 

(comparative cost with alternative cropping systems using chemical and mechanical 

interventions in terms of capital, labour, etc) and a socio-cultural filter (see the socio-

ecological niche conceptual framework developed by Ojiem et al., 2006). 

Redundancy (i.e. niche overlap) may also be an important objective in the design of 

multi-species cropping systems to ensure the reliability of ecosystem processes in 

stochastic environments (e.g. net primary productivity in a context of inter-annual 

climatic variability; Naeem, 1998).  

 

Increasing planned plant diversity may be beneficial for the maintenance of 

ecosystem processes. However, even in a cropping system with low planned plant 

diversity, total plant diversity may be high if fields have not been cultivated for 

extensive periods of time and/or if the intensity of cultivation is low. For instance, 

average plant diversity in cotton, maize and sorghum fields in the study area were 

12.2 (± 3.0), 16.2 (± 4.1) and 13.0 (± 3.2) species ha-1 respectively. These so-called 

‘weeds’ can participate in ecosystem processes valuable to farmers, such as N 

retention. For instance, the N concentration of the above-ground biomass of the 11 

weed species most frequently found in the study area were greater than the N 
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concentration in maize residues (Figure 1 of Appendix 4). Weeding operations are 

often inadequate in the study area (in terms of timeliness and frequency) due to 

labour constraints, and weed growth is often vigorous due to hot temperatures and 

the prevalence of relatively fertile soils (Chapter 5). Thus, weeds generally provide a 

substantial amount of the biomass being produced and remaining in the field at the 

end of the dry season (Figure 2a of Appendix 4). The retention of this weedy biomass 

as mulch can improve significantly the N balance (Figure 2b of Appendix 4). This is 

consistent with the findings of Promsakha Na Sakonnakhon et al. (2006). Evidently, 

trade-offs exist between crop and weed biomass and between crop and weed total N. 

Thus, I am not proposing here to reduce weeding frequency and intensity to increase 

purposely weed biomass, but simply stating the fact that the contribution of weeds to 

biomass production is often ignored by agronomists whilst it may be substantial in 

labour-limited farming systems and/or on relatively fertile soils. 

 

6.1.3. One of several ways to increase resource use efficiency 

In this study, fertiliser use and crop protection were found to be more important than 

tillage and soil mulching in obtaining a good yield (Chapter 4). These results agree 

with Gowing and Palmer (2008) who stated that “CA does not overcome constraints 

on low-external-input systems”. The benefits of CA may only be expressed under 

good agronomic management. In other words, CA may only be beneficial in relatively 

intensive systems, as a means to use external inputs more efficiently, controlling 

horizontal and vertical losses (Figure 1 of Chapter 1.). Thus, I see CA as only one 

option within a larger body of approaches aiming at increasing water and nutrient use 

efficiency, including use of improved germplasm, timely planting and weeding, 

splitting of fertiliser application, spot application of fertilisers, and agroforestry. The 

simultaneous application of two or more of these approaches generally leads to 

synergetic effects and to a stepwise improvement of water and nutrient use efficiency 

(Vanlauwe et al., 2010). 

 

Increasing crop water and nutrient use efficiency has the dual benefit of increasing 

productivity and reducing the fraction of the resources susceptible to be lost and to 

become an environmental problem off-site (for example, increased N use efficiency 

reduces the amount of N susceptible to leaching). For a particular resource (e.g. 
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water, N, P, K), resource use efficiency can be defined as the product of capture 

efficiency (capture by the crop of a certain portion of the total available resource) and 

conversion efficiency (conversion of the amount of the resource captured into plant 

biomass; Giller et al. 2006). Conversion efficiency is mainly genetically determined, 

and thus can be improved by e.g. improved crop varieties. Capture efficiency of a 

given biophysical resource is in part regulated by the availability of other limiting 

resources (Janssen et al., 1990) and the fulfilment of other plant requirements in 

terms of e.g. aeration and physical support (Vanlauwe et al., 2010). For example, 

rainfall use efficiency of Sahelian pastures can be increased several fold by nutrient 

application (Penning de Vries and Ditèye, 1991). In addition, soils with a small soil 

organic carbon content are generally poorly responsive to mineral fertilisers (Lal, 

2010; Vanlauwe et al., 2010). Capture efficiency can be increased through good 

agronomic practices aiming at maximizing crop demand: timely planting and control 

of yield-reducing factors such as weeds, pests and diseases. It can also be increased 

by splitting fertiliser application in several small doses, responding to rainfall and crop 

demand as the season develops, for nutrient supply to match as much as possible 

crop nutrient demand (Piha, 1993). Capture efficiency can also be increased by spot 

application of small doses of fertilisers (‘micro-doses’) close to crop plants (Twomlow 

et al., 2010). Finally, it can be increased by controlling losses and therefore 

increasing retention of a given resource in situ (this is the aim of CA, which in theory 

controls horizontal losses through soil mulching and vertical losses through recycling 

of nutrients by deep rooted cover crop; Figure 3 of Chapter 1). 

 

This broad basket of technologies could be defined as ‘Integrated Soil Fertility 

Management’ (“a set of soil fertility management practices that necessary include the 

use of fertiliser, organic inputs and improved germplasms, combined with the 

knowledge on how to adapt these practices to local conditions, aimed at maximizing 

agronomic use efficiency of the applied nutrients and improving crop productivity”; 

Vanlauwe et al., 2010). It could also be defined as ‘eco-efficient agriculture’ 

(“achieving more agricultural outputs, in terms of quantity and quality, for less input of 

land, water nutrients, energy, labor, or capital”; Keating et al., 2010) or ‘ecological 

intensification’ (“achieving consistent production at high levels without causing 

environmental damage”; Cassman, 1999). Ultimately, all these concepts (including 
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CA) revolve around the principles of increased productivity and efficiency. The 

multitude of concepts and definitions, in my view, creates confusion amongst 

farmers, donors and researchers themselves and is detrimental to the overall agenda 

of supplying the world with adequate agricultural commodities with minimum 

environmental degradation. Under given circumstances, the most suitable 

technologies should be supported, regardless of the school of thought it belongs to. 

 

6.2. FARMING SYSTEMS IN AGRICULTURAL FRONTIERS 

This section explores implications of the results of this study at farm-level. Many 

conservation landscapes, such as the study area, have become ‘agricultural frontiers’ 

due to new market opportunities or land constraints in neighbouring areas. This 

section argues that farming systems in theses areas are often misconceived, leading 

to inadequate interventions. First, farmers in these areas reason in terms of labour 

productivity and not in terms of land productivity/yield (Chapter 5). Second, 

conservation landscapes are often perceived as marginal (geographically, 

economically, or agroecologically) whilst they are in real fact areas of opportunities 

for local smallholders: farming systems there are driven by markets more than by the 

mere fulfilment of food needs. 

 

6.2.1 Systems limited by labour rather than by land 

In the past decades, production ecology has gained ground as the theoretical basis 

for the design of technologies to reduce the gap between attainable yields and actual 

yields (van Ittersum and Rabbinge, 1997). Successes of the Green Revolution have 

led researchers, development agencies and their donors to place emphasis on 

yield/land productivity rather than on production itself. Whereas this is congruent with 

the reasoning of smallholders in most farming areas, I argue that it diverges from the 

reasoning of smallholders in agricultural frontiers, where land does not limit 

production. Below, I consider two ideal-typical models of smallholder farming: one 

representing farming systems where land is more limiting (in relative terms) than 

labour, and one where labour is more limiting (in relative terms) than land. This 

distinction is analytical and simplifies reality greatly, as most real life farming systems 

are neither strictly land- nor strictly labour-limited. Nevertheless, it is useful to 

conceptualise the specificities of farming systems in agricultural frontiers. 
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In areas where land is more limiting than labour, the surface area available to a given 

farm generally does not change from one season to the next and can be assumed to 

be a constant. In this context, production may only be increased by increasing 

yield/land productivity. Land available per farm is constrained by high population 

density, and the variability of the surface area cultivated per farm is small compared 

with the variability of yield per farm (function of the availability and management of 

biophysical resources; Woodhouse, 2002; Erenstein, 2006). The situation is different 

in areas where labour is more limiting than land, as is the case in the study area 

(Chapter 5). There, the surface area cultivated per farm depends on the labour and 

animal draught power available for land preparation and weeding (Chapter 3). For a 

given farm and except during years of drought, yield does not change much from one 

season to the next as fertile land can be obtained by clearing natural vegetation 

(vegetation clearance is done outside of labour peaks, Chapter 5). In this context, 

production is mainly increased by increasing labour productivity. Land availability 

being non-limiting, every farm can access relatively fertile soils and yield variability 

per farm is small compared with the variability of the surface area cultivated per farm 

(function of the availability and management of manpower and draught power, 

Chapter 3).  

 

The functioning of these two conceptual models is represented by Figure 3: systems 

primarily limited by land are driven by the availability and management of biophysical 

resources, whilst systems primarily limited by labour are driven by the availability and 

management of manpower and animal draught power. Technologies aiming at 

increasing land productivity/yield are poorly suited to farming systems limited 

primarily by labour, such as those found in the study area (Chapter 5). The promotion 

of these technologies in such a context will not, on its own, lead to agricultural 

intensification and land sparing for nature. For an effective land sparing to occur, the 

promotion of yield increasing technologies must be accompanied by other measures 

such as the one described below in Section 6.3.  
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Figure 3. Representation of (a) a land limited system and (b) a labour-limited system. 
In a land-limited system, the cropped area per farm can be considered a constant 
(small variability between farms) whilst yield is determined by the combination of 
available nutrients and available water. In a labour-limited system, yield can be 
considered a constant (small variability between farms) whilst the cropped area per 
farm depends on the combination of available animal draught power and available 
manpower.  
 

6.2.2. Remote, but still shaped by markets 

Some authors have suggested that semi-arid areas were marginal areas for farming 

where access to remittance income represented a key factor of wealth differentiation 

(e.g. Frost et al., 2007). By contrast, the study area was found to be an area of 

economic opportunity, where the capacity to mobilize production resources, and in 

particular labour during times of peak demand, differentiated wealth groups (Chapter 

2; Chapter 3; Chapter 5). Through the combination of cash cropping and availability 

of fertile land, agricultural frontiers offer economic opportunities to new migrants. 

Conservation landscapes are too often considered to become agricultural frontiers as 

a result of an increased population of farmers mainly concerned by food security, 

whereas market opportunities are often an important driver, as exemplified by the 
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influence of cotton farming on land use change in the study area (Chapter 2) 

(Chapter 2). These areas may be remote, but they are often connected to national 

and even global markets (Giller et al., 2008). Nowadays, most farming systems are 

shaped by markets and farming for subsistence only rarely exists in reality. Failure of 

conservation agencies to recognize the connection of farmers to markets in 

conservation landscapes that are scantly populated explains, I argue, their failure to 

anticipate land use change detrimental to the environment. For example, 

Madhusudan (2005) describes how the increase in coffee price created a market for 

cattle manure in a distant village bordering an Indian protected area. This in turn 

resulted in an increase in the number of cattle owned by the so-called ‘subsistence 

farmers’ of this village, and a greater grazing pressure on the protected area itself. 

Similarly, WWF, a leading international conservation agency, still ‘naïvely’ perceives 

the residents of the Miombo Ecoregion (a large area of south-central Africa that 

encompasses the study area) as largely subsistence farmers: in the report framing 

the organization’s conservation priorities in the Ecoregion, it is stated that “70 to 80% 

of the Miombo Ecoregion is used by rural cultivators and pastoralists for subsistence 

purposes” (Byers, 2001).  

 

Understanding the influence of agricultural commodity market on farming systems in 

conservation landscapes can open new opportunities for biodiversity conservation. In 

Chapter 3 for example, it was suggested that the replacement of cotton as the main 

cash crop by cereal would have negative consequence on the Mid Zambezi Valley 

ecosystem. The influence of cotton and cereal markets on the surface area 

appropriated by agriculture is further explored below with a very simple simulation 

model. Based on the understanding of the functioning of farming systems in the study 

area (Chapter 3. and Chapter 5.), the model presented in Figure 3b was further 

developed (Figure 4; Appendix 5):  

 To take into account the fact that labour demand is not spread evenly across 

the season but marked by peak(s); it is therefore labour available during the 

(most pronounced) peak that constrains production (Chapter 5.);  

 To differentiate cotton production and cereal production; cereal production 

covered the food needs of the household whilst cotton production - and 

potentially part of the cereal production - was sold to generate income; 
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 And to explore dynamics through the inclusion of a positive feed back between 

production/income and labour productivity (via the purchase of additional 

draught animals).  

 

Total Available PL

PL Food
Crops

PL Cash
Crops

PL Cereal
Cash

PL Cotton

RPLR
Yield

Cereal
Yield
Cotton

Food
Needs

Area under
Cotton

Area under
Food Cereal

Area under
Cash Cereal 

Production
Cotton

Production
Food Cereal

Production
Cash Cereal 

PLR
Cotton

PLR
Cereal

Cattle

Cash

Cost
Cereal

Cost
Cotton

Price
Cereals

Price
Cotton

Figure 4. Schematic representation of a dynamic model of farm development in the 
study area, linking labour available at peak (in man-days), cultivated area (in ha), 
production (in kg), cash (in US$) and cattle number. Cattle are used to pull cultivators 
and facilitate weeding: their number therefore impacts the amount of peak labour 
required per area (in man-day ha -1). Cotton and cereals are sold for cash. Once cash 
available exceed a certain threshold (200 US$), a new head of cattle is purchased 
(PL: peak labour; PL Food Crops: peak labour available for food cropping; PL Cash 
Crops: peak labour available for cash cropping; PLR: peak labour requirement (man-
day ha -1); RPLR: return to peak labour ratio). 
 

In this model, when the cash of a farm unit exceeds the value of a head of cattle, a 

new head is purchased. A relative cattle death rate higher than the relative cattle 

birth rate was used (0.4 and 0.3, respectively): therefore regular purchases of cattle 

were necessary to increase or maintain the number of cattle owned by a farm unit. I 

defined for both cotton and cereals the ‘peak labour requirement’ (PLR) as the labour 

required per crop area (in man-days per ha). For cotton and cereals, three values 



General discussion & conclusions 

173 

were given to PLR depending on the number of pairs (spans) of cattle owned: a high 

value when no pair of cattle was owned, a medium value when one pair of cattle was 

owned and a low value when two or more pairs of cattle were owned. According to 

the findings of Chapter 4, PLR was also set to be higher for cotton than for cereals, 

for a given number of cattle owned (Figure 5a).  

 

Economic yields (kg ha-1), output prices (US$ kg-1) and production costs (US$ ha-1) 

for cotton and cereals were the main inputs of the model. These variables were 

combined with PLR for cotton and cereals to calculate the ‘return to labour peak ratio’ 

(RLPR), defined as the ratio between the economic return of a unit of peak labour 

invested in cotton (US$ man-day-1) and the economic return of a unit of peak labour 

invested in cereals (US$ man-day-1). The value of RPLR was used to calculate the 

proportion of peak labour available for cotton production, the remainder being 

dedicated to cereal production (Figure 5b).  

 

Figure 6 shows the results of six runs of the model presented above, for a farm of 

five people (each estimated to contribute 50 man-days of labour during peak periods 

and each consuming 150 kg cereal grain year-1), receiving 400 kg cereal grain year-1 

as food aid, receiving a cotton price of 0.3 US$ kg-1 and sustaining a cost of cotton 

production of 80 US$ ha-1. A set of three runs used a cotton yield of 800 kg ha-1, and 

another set of three runs a cotton yield of 1200 kg ha-1. For each cotton yield, three 

runs were used with a market price for cereals of 0, 0.15 and 0.30 US$ kg-1. The 

comparison of the outputs of these runs shows that commodity market is as 

important as yield in explaining the surface area occupied by a farm in an agricultural 

frontier (Figure 6). In particular, it shows that when the profitability of cereals 

increases and when cotton yields decline, the surface area required by a farm unit 

increases. In such a context, it also shows that supporting cotton productivity (i.e. 

increasing cotton yield) would be ‘sparing land’ (Chapter 3). 
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Figure 5. (a) Values of PLR (productivity of peak labour) for cotton and cereal 
production used in the model represented in Figure 4, as a function of the number of 
cattle; and (b) proportion of the peak labour available for cash cropping dedicated to 
cotton as a function of the value of RPLR (return to peak labour ratio) 
 

This model could probably be adapted to most agricultural frontiers and the basic 

conclusion from this simulations would probably still stand i.e. that supporting the 

profitability of cash crops having large requirement in labour may ‘spare land’ for 

nature without compromising the livelihood of farming households. However, yield 

increase, may not be sufficient for an effective land sparing of natural vegetation to 

occur in agricultural frontiers (see below). The value of keeping forests may have to 

be increased for it to exceed the opportunity cost of clearing them for agriculture. 

This model and its outputs also show that the choice to be made between ‘wildlife-

friendly farming’ and ‘land sparing’ is not only governed by the ability or not of the 

species of interest to survive in farmland under increasing farming intensity (Green et 

al., 2005), but also by the socio-economic characteristics of the farming systems 

considered. Well-meaning but poorly designed interventions - such as the promotion 

of cereal farming in the study area to divert farmers from the production of ‘polluting’ 

cotton – may lead to net negative effects on the environment (expansion of the 

surface area used for farming in our example). This illustrates the need for an 

interdisciplinary understanding – associating ecologist, agronomists and social 

scientists – to conserve biodiversity and ecosystem functions outside of protected 

areas.  
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Figure 6. Results of a simulation using the model represented in Figure 4 with (a) a 
cotton yield of 800 kg ha-1 and (b) a cotton yield of 1200 kg ha-1. 
 

6.3. INTENSIFICATION AND PAYMENT FOR ENVIRONMENTAL SERVICES: 

POSSIBLE SYNERGIES 

Agricultural intensification is required to save space for wildlife outside of protected 

area. However, extensification is often the rule in conservation landscape where land 

is not limited. As a result, yield-increasing technologies would be rejected in these 

areas as their implementation costs, in terms of capital and/or labour, are higher than 

the opportunity cost of clearing natural vegetation for agriculture (Chapter 5). In this 

section, I examine the possibility of payment for environmental services (PES) to 

save land for wildlife, first by raising the opportunity cost of clearing forests, and 

second by covering part of the cost of intensification. The PES approach recognizes 

the legitimate right of people to live in conservation landscapes and strives to 

compensate them for the foregone uses judged incompatible with the provision of 

environmental services, and to reward them for actively enhancing or maintaining 

environmental services (Grieg-gran et al., 2005; Swallow et al., 2009).  

 



Chapter 6 

176 

The PES approach states that environmental services have to be economically 

valued and that their increasing scarcity makes them potentially tradable (Wunder, 

2007). The PES approach is not new (particularly in Latin America; Grieg-gran et al., 

2005), but the globalization of these payments has only emerged in the 21st century. 

Carbon has become the most ‘popular’ global PES due to the prominence of climate 

change issues on the global agenda. Under the Clean Development Mechanism 

(CDM), industrialized countries are able since 2001 to meet a part of their emission 

reduction commitments by carrying out specific forestry activities to sequester carbon 

in developing countries (UNFCCC, 2001). However, only afforestation and 

reforestation are eligible for carbon credits under the CDM. Averted deforestation 

projects are not currently eligible under the first commitment period of the CDM and 

will only be considered post-2012. To fulfil this gap, the much debated ‘Reduced 

Emission from Deforestation and forest Degradation’ (REDD) was first introduced by 

the Coalition of Rainforest Nations at the 13th conference of the UNFCCC. REDD 

may be considered under the Voluntary Carbon Market. Although designed to limit 

harmful climate change, REDD could provide additional benefits, such as the 

conservation of biodiversity and the improvement of the livelihoods of the people 

living in conservation landscapes (Miles and Kapos, 2008; Venter et al., 2009). 

 

Adapting the methodology used by Butler et al. (2009) to compare the potential value 

of tropical forest managed through REDD with the value of oil palm plantations, I 

compared the profitability of a natural dry forest in the study area if it were included in 

a REDD scheme to the profitability of the same area if it were cleared for cotton 

production. I used the values of carbon provided by Butler et al. (2009) for voluntary 

carbon markets and compliance markets. Results are provided by Table 2. They 

show that retaining forest areas and managing them through REDD is not 

economically competitive compared with cotton production if REDD credits are traded 

in voluntary markets: even the poorest yielding cotton plots economically outperforms 

the forest with the highest standing biomass. Outcomes might be different if REDD 

credits were traded in compliance markets (Table 2).  
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Table 2. Comparison of the minimum and maximum profitability (in US$) of one 
hectare of cotton and one hectare of standing forest generating ‘Reduced Emission 
from Deforestation and forest Degradation’ (REDD) credits traded through voluntary 
carbon markets or through compliance markets based on certified emission 
reductions (CER). The profitability from cotton fields was calculated from a production 
period of 30 years, a production cost of 244 US$ ha-1 year-1 (cost during the 2008-09 
cropping season; source: Alliance ginneries LTD), a seed cotton price of 0.15 US$ 
kg-1 (average price for 2009 in the study area). Minimum and maximum profitability of 
cotton fields were based on cotton yields of 600 kg ha-1 and 1200 kg ha-1, 
respectively. The profitability of the standing forest when REDD credits were traded 
through voluntary carbon markets and compliance CER markets was calculated with 
a value of CO2 equivalent of 4.4 US$ t-1 and 37.57 US$ t-1 respectively (Butler et al., 
2009). Minimum and maximum profitability of the standing forest were based on a 
quantity of above-ground carbon of 42 t ha-1, and 96 t ha-1 respectively (Tambara et 
al., unpublished). 

Value 

 

Cotton field 

 Standing forest 

  
Voluntary carbon 

market 
 Compliance CER 

Minimum  1 602 650 5 554

Maximum  4 302 1 511 12 900

 

Moreover, monitoring, transaction and protection costs were not deducted from the 

profitability of the standing forest managed through REDD in the calculation used. 

They may be extremely variable, and may reduce the profitability of standing forests 

substantially. It has been argued that REDD would only benefit areas where forest 

protection is the most cost effective. For example, Venter et al. (2009) estimated that 

with a target of a 20% reduction in deforestation, funding for cost-effective REDD 

would be expected almost exclusively in South America, where agricultural 

opportunity costs are relatively low. Some authors have concluded that REDD is 

unlikely to benefit biodiversity in areas where carbon benefits are small, unless 

additional resources can be sourced – such as a biodiversity premium paid by willing 

purchasers of REDD credits (Miles and Kapos, 2008; Venter et al., 2009). Similarly, 

in the absence of a ‘pro-poor premium’, other authors have argued that REDD was 

unlikely to benefit poor communities in the developing world, but rather better-off, 

more efficient suppliers (Grieg-gran et al., 2005; Laurance, 2008; Smith et al., 2009). 

Transaction costs and monitoring costs are indeed expected to be higher when many 

landholders are involved and when land uses are diverse. 
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Despite of these draw-backs, REDD and other PES could play a pivotal role in 

catalysing land use changes that are compatible with both agricultural production and 

biodiversity conservation. In particular, PES could finance (part of) the cost of the 

inputs required for intensification and (part of) the cost of promoting technologies 

ensuring that these inputs are used as efficiently as possible. This opportunity has 

not been explored fully. Avoiding ‘leakages’ - i.e. displacement of agriculture and 

other pressures - is a fundamental component of any PES project, as such leakages 

are otherwise deducted from PES benefits. However, this often translates into the 

promotion of low-input farming methods assumed to increase yield, but not of high-

yield (input intensive) farming methods. I see a large opportunity in creating a 

functional tandem between PES and (ecological) intensification: PES may contribute 

towards triggering a process of intensification, whilst intensification could spare the 

land needed to generate PES. Figure 7 represents schematically this vision for the 

study area. In this area, a PES scheme already exists since 1989: the Communal 

Area Management Program for Indigenous Resources (CAMPFIRE). Through this 

scheme, the Rural District Council (i.e. local Government) markets on behalf of local 

communities trophy hunting quotas – mainly elephants and buffaloes – to an 

international safari hunting clientele (Taylor, 2009). Income from CAMPFIRE can be 

considered a compensation to rural households for the opportunity cost of retaining 

patches of wildlife habitat and for the cost – in terms of crop and livestock damage 

and threat to human lives - of living with wildlife (Frost and Bond, 2008). Revenues 

generated by CAMPFIRE may be substantial (Taylor, 2009), but were not sufficient 

to deter residents from cotton production and to attract them towards wildlife 

conservation (Chapter 2). A similar outcome is likely with REDD in the study area 

(Table 2). The combination of the two PES, however, may generate enough 

revenues to change land management, especially so, I argue, if the bulk of these 

revenues is used for the purchase of yield-increasing external inputs (fertilisers in 

particular). Additionally, premium prices could encourage the production of cotton 

through technologies maximizing the efficiency of use of external inputs (see above). 
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Figure 7. Potential role of payment for environmental services (compensations and 
rewards) in encouraging intensive and efficient cropping systems that are both 
productive and benign for the environment. 
 

For the implementation of this vision to be effective, it should be acknowledged that 

strong regulations should be in place and enforced. For instance, avoiding free riding 

of community members is key (Pretty, 2003). Controlling immigration is also of prime 

importance to preserve a certain stability between resource users and the resource 

itself (Scholte, 2003; Balmford and Whitten, 2008). A prerequisite is, of course, the 

existence of strong local institutions (Pretty, 2003) and of mechanisms of local 

governance. However, PES programmes tend to jump from technical issues to 

politico-legal issues without ensuring that appropriate local institutions and 

governance are in place (Rands et al. 2010). Last but not least, knowledge at 

landscape level is required on the relationship between the amount of services of 

interest being delivered and different land use patterns (Kremen et al., 2004; Polasky 

et al., 2005).  
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6.4. THREE PERSISTENT MYTHS ABOUT AGRICULTURE AND 

CONSERVATION IN AFRICA 

The myths presented below, I argue, are widely spread in the Western world and 

influence the donor-community and policy makers. They do not help mitigating the 

conflicts between agricultural production and biodiversity conservation, but in fact 

enhance these conflicts. These myths, I argue, are a barrier to any form of pragmatic 

innovation that could improve the interaction between agricultural production and 

biodiversity conservation in conservation landscapes of the developing world, Africa 

in particular.  

 

6.4.1. The ‘wilderness myth’ 

Africa is often presented by Western conservationists as a wild continent unspoilt by 

Western civilization. This ‘wilderness myth’ is a resurgence of old romantic 

discourses inherited from colonial contacts with Africa (Wolmer, 2007). It is being 

widely marketed by the industry of safari tourism, documentaries and even cartoons 

(Norton, 1996; Vivanco, 2004; Murray and Heumann, 2007). It also influences deeply 

policy-makers and donors in believing that conservation landscapes of Africa are 

pristine and have emerged independently of the action of people (Pretty, 2003). This 

is of course a deeply erroneous perception: most of the population of sub-Saharan 

Africa lives in the most biodiversity-rich areas (Balmford et al., 2001). ‘Wildlands’ 

without evidence of human occupation or human use represent in fact only 22% of 

Earth’s ice-free land, most of which being located in the least productive regions, in 

barren region with sparse tree cover (Ellis and Ramankutty, 2008). 

 

‘Wilderness’ is a misrepresentation of reality, a product of the Western culture and, 

as Cronon (1996) puts it, a “fantasy of people who have never themselves had to 

work the land to make a living”. The wilderness myth is off course a threat to people 

living in conservation landscapes of the developing world, and it has been used 

widely to expropriate people from their land (e.g. Brook, 2005). But this myth is also a 

threat to biodiversity. By separating people and nature, it denies any possibility of 

biodiversity conservation outside of protected areas. The current network of 

protected areas in the developing world is already underfunded (James et al., 2001, 

estimate that only a third of its financial needs are covered). The gap between 
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current funding and funding needs is also likely to increase as the cost of 

enforcement will rise with increased population (Balmford and Whitten, 2003). 

Therefore, the development of alternative approaches to the wilderness approach 

(‘fences-and-fines’) is urgently needed, not only to preserve the source of livelihood 

of people living in conservation landscapes, but also to conserve biodiversity itself. 

The myth of wilderness, finally, encourages Westerners to believe they are separate 

from nature. As pointed out by Cronon (1996), this is likely to reinforce 

environmentally irresponsible behaviour. It is also likely to create distance between 

Westerners and non-Westerners living in conservation landscapes. 

 

6.4.2. The myth of the ‘ecologically noble savage’ 

The resurrection in the past decades of the image of ‘wild Africa’ by Western 

conservationists has been paralleled by the resurrection of the image of the ‘non-

Western primitive’ (Neumann, 1996). The ‘primitivist discourse’ has long been used 

by Western ideologies to justify land use interventions in Africa. During the colonial 

era, the ‘primitive’ methods of ‘backward’ African farming were condemned as 

‘inefficient’ and ‘destructive’, and massive state intervention for soil conservation was 

called for (Chapter 5). The ‘primitivist discourse’ resurfaced around the time of the 

Earth Summit in Rio de Janeiro in 1992. This time, however, ‘the non-Western Other’ 

is not being demonized, but romanticized in a similar way as European sentimentalist 

literature did in the 18th century, with the ‘noble savage’. The discourse of what is 

sometimes referred to as the ‘ecologically noble savage’ (Hames, 2007), argues that 

‘local people’ have been living in harmony with nature for generations, thanks to their 

traditions and cultural values (Neumann, 1997). Unsustainable practices are seen as 

resulting from the incursion of immigrants and/or the breakdown of traditional 

societies. The ecologically noble savage myth is widely propagated by cultural 

products such as the magazine National Geographic (Lutz and Collins, 1993; 

Neumann, 2004).  

 

The ecologically noble savage discourse has been used by few indigenous groups, 

mainly in Amazonia, as a political tool to secure land rights (Hames, 2007). More 

generally, however, this stereotype has threatened rather than secured the livelihood 

of the communities living in conservation landscapes. First, if these communities fail 
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to demonstrate to Western conservationists the benign nature of their practices on 

biodiversity, they may be evicted (Neumann, 1997; Chapin, 2004). Secondly, the 

need to preserve ‘ecological nobility’ dictates for ‘local’, ‘traditional’ practices to be 

preserved from the threat of ‘outside’ ‘modern’ practices. It leaves these communities 

isolated and unable to innovate technically and institutionally, despite their often 

rapidly changing environment. The use of external inputs is forbidden, following the 

myth that organic farming is the only mode of farming compatible with nature 

conservation (see below). Institutional innovation is forbidden, following the 

assumption that ‘traditional’ societies need to be preserved. This naïvely ignores their 

heterogeneity and their internal conflicts, which may weaken them against the 

influence of new powerful stakeholders (e.g. logging companies, mining companies; 

Giller et al., 2008).  

 

6.4.3. The ‘organic myth’ 

During Alvord’s days, agricultural intensification of smallholder farming was expected 

from heavy manure application and N2-fixation by legumes (Chapter 5). However, 

Alvord himself acknowledged that the manure rates he was recommended were 

simply not realistic for Zimbabwean smallholders who did not have enough cattle or, 

for the majority, did not have any cattle at all (Machingaidze, 1991; Bolding, 2004). 

Similarly, frequent rotation of grain crops with legume crops has remained 

impracticable, as legume have remained a minor crop, due mainly to lack of market. 

Thus, maintaining smallholder production on permanently cultivated fields using 

solely organic nutrient sources was simply a myth. I argue that this myth has 

persisted through CA. Indeed, the key role of mineral fertilisers in obtaining high 

yields in small CA plots meticulously managed is often downplayed or ignored 

(Haggblade and Tembo, 2003). Whereas this study has shown that CA may only 

have a positive effect on crop yield in smallholder systems when adequate 

fertilisation is in place (Chapter 4), the belief that CA can increase productivity 

without further need for mineral fertiliser (or with less mineral fertiliser) is spread by 

popularised and widely diffused reports such as “Scaling up Conservation Agriculture 

in Africa: strategy and approaches” published by FAO (2009b). In this report, mineral 

fertilisers are only mentioned in a table constructed with supposedly empirical data 

from a Kenyan farm and showing a yield in CA double of the yield with “conventional 
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farming” with half the amount of mineral fertiliser. In the same report, CA is said to 

promote “the management of the finite soil resource with great care to safeguard the 

organic matter and natural inherent fertility” and to be “based upon soil life and 

health”. This support the construction of CA projects that use at best small quantities 

of mineral fertilisers (see for example the promotion of ‘micro-dosing’ in parallel with 

CA, Twomlow et al., 2010). 

 

This undue stress on minimal reliance on mineral fertilisers comes from the fact that 

the donor community appears to favour farming technologies based on organic rather 

than mineral inputs, to avoid environmental problems similar to those that have 

developed in Europe and North America (Giller et al., 2002). Excessive use of 

mineral fertilisers may be an environmental threat in Western countries, but their 

increased use is probably an environmental opportunity for conservation in the study 

area (and in most of Africa) given the net quantities of nutrient being removed 

annually due to farming (Chapter 3). 

 

An ‘organic myth’ is targeting Africa, the last area where the Green Revolution did not 

take place. Increased production in an environmentally-friendly way is expected to 

occur without external inputs, but rather using legumes, farmyard manure, 

agroforestry species and mulches. This is a (dangerous) myth for a number of 

reasons. First, organic amendments can only sustain crop production on their own in 

rare cases, due to limitations in their quality and their availability (Vanlauwe and 

Giller, 2006). In the study area, residue retention and use of available manure would 

only marginally improve partial nutrient balances, which would remain negative 

(Chapter 3). Second, it is unclear if the slow release of nutrients from organic 

composts and green manures can adequately match crop demand (Palm et al., 

2001). Third, organic farming achieves yields inferior to those achieved by intensive 

farming, and thus consumes more space to meet any production target (Green et al., 

2005). The production of manures and plant materials for the maintenance of fertility 

in organic farming also requires extra land (e.g. grazing area, field dedicated to the 

production of biomass), what Guzman Casado and Gonzales de Molina (2009) 

describe as “the land cost of sustainability”. 
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Farming systems based on organic nutrient sources appeal to donors and 

development agencies, because they require a diversified system, with livestock to 

produce manure, legumes fixing N2, agroforestry species to recycle nutrients, catch 

crops to attract pests, etc. Diversification is perceived as an aim to pursue for 

smallholder farming systems. However, Frost et al. (2007) view a diversified 

livelihood strategy more as a reflection of the lack of opportunity to specialize in high-

income activities and/or of a risky environment. Indeed, when a number of factors are 

right, smallholders can develop through specialized production systems, as has been 

the case in Zimbabwe with the so called ‘maize-based green revolution’. Thanks to a 

combination of political stability, the promotion of short-season hybrid varieties, high 

guaranteed producer prices, subsidies from the Grain Marketing Board and 

increased access to credits for the purchase of seeds and fertilisers, the national 

smallholder maize production doubled in six years, between 1980 and 1986 (Eicher, 

1995). Also more than half a century earlier, Zimbabwean smallholders had taken 

advantage of the maize market during the ‘decade of peasant prosperity’ (1915-1925; 

McGregor, 1995). 

 

Therefore, the ‘organic myth’ resonates strongly with the myth of the ‘ecologically 

noble savage’. By making sure African farmers do not commit the same ‘mistakes’ as 

Western farmers when engaging in intensification, African farmers are denied what 

makes Western farming successful: external inputs and specialization.  

 

6.5. CONCLUDING REMARKS 

Over the past ten 10 years that I have visited the Mid-Zambezi Valley regularly, I 

have observed a rapid conversion of natural vegetation for agriculture and a 

rarefaction of large mammal sightings. The Mid-Zambezi Valley has been an 

agricultural frontier since the late 1980s and has continued to receive migrants. With 

political instability and economic collapse in the recent years, the flow of migrants in 

search of a source of livelihood – mainly former employees in urban centres and 

commercial farms - has increased. If the conservation of African wildlife outside of the 

few protected ‘islands’ scattered across the continent is a desirable goal, it is obvious 

from the example of the Mid-Zambezi Valley that alternatives are needed, in order to 

alleviate pressure on wildlife without degrading local livelihoods. CAMPFIRE offers a 
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great base on which to construct a ‘CAMPFIRE+’ that would integrate payment for 

environmental services and agricultural intensification, under the control of strong 

local institutions. Implementing such an approach, I argue, is not insurmountable if 

existing interventions are coordinated and if resources are pooled together. In fact, 

only a modest fraction of the existing cash flow of the Mid-Zambezi Valley (from 

donor-funded projects, the cotton industry, the safari industry, CAMPFIRE, 

ecotourism, etc) might be sufficient. The greatest challenge is probably for our 

perceptions of conservation landscapes in Africa, and what they should be, to be 

freed from myth.  
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Appendix 1 – Trend in cotton profitability in Mbire District 
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Figure 1. Trend in the world prince of cotton lint (in US$ cent per 
pound), from December 2000 to December 2010 (Source: USDA 
Market News). 
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Figure 2. Cost of cotton seeds and fertiliser needed for one hectare, 
in seed cotton equivalent (‘recovery rates’) from 1999 to 2009 
(Source: the Cotton Company of Zimbabwe). 
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Appendix 2 - Local sorghum varieties in Mbire District  

Table 1. Local sorghum varieties in Mbire District and their main characteristics (data 
collected during Community Seed Fairs, Participatory Rural Appraisal in three 
locations - Mushumbi Pools, Mazambara and Angwa bridge – and interviews) 

Vernacular 
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Characteristics 

Kandheva 
 

X  
 

 X X X  
Grains white outside, red 
inside 

Kanzvovzo 

 

  

 

X X X X X 

Red sorghum; very well 
suited to beer production; 
not suited for sadza1 
(causes constipation) 

Kanzamba / 
Kapudzi Duri 

 

 X 

 

X X X  X 

Multipurpose variety 
(sadza, beer); sweet 
grains (well suited for 
maheu2) 

Nyanjena / 
Nyanjeya 

 
 X 

 
X    X Open heads 

Chisiri / 
Nyamukomba 

 

  

 

X   X X 

Very big heads; heads 
that bends when matured 
(avoiding bird attacks 
and germination before 
harvest if late rains are 
received); produces a 
good sticky sadza 

Kanjeya   X  X    X Small heads 

Matipa 

 

 X 

 

X    X 

Ovoid grains; water 
demanding; has to be 
planted early (dry 
planting) 

Rongwe 

 

  

 

X    X 

Tallest and longest 
season variety 
(harvested in June), 
water demanding; has to 
be planted early (dry 
planting) 

Chinyande 

 

  

 

X    X 

Similar to Rongwe but 
maturing faster and 
having smaller and 
whiter grains 

* compared with an improved commercial variety

                                              

1 Thick porridge 
2 Non-alcohol beer 
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Appendix 3 - Sacred trees in Mbire District 

Table 1. Main sacred trees traditionally kept in the fields of Mbire 
District (data collected through Participatory Rural Appraisal in three 
locations - Mushumbi Pools, Mazambara and Angwa bridge – and 
individual interviews) 

Scientific name  Vernacular name English name 

Andasonia digitata  Mahuyu Baobab 

Brachystegia manga  Mukamba
Blue-leaves 

Brachystegia 

Cordylia africana  Mutondo Wild mango 

Diospyros mespiliformis  Mushuma
Jackal-berry/Africa 

Ebony 

Faidherbia albida  Musangu Winter Thorn 

Ficus bussei  Mutowe Zambezi Fig 

Ficus capreifolia  Muchichiri River Sandpaper Fig 

Khaya anthotheca  Mururu Red Mahogany 

Kigelia africana  Mumvee Sausage Tree 

Kirkia acuminata  Mutwa/Mubvumira White Seringa 

Piliostigma thonningii  Mutukutu Camels-foot 

Sterculia africana (*)  Murere Tick tree 

Tamarindus indicus  Musiga Tamarind 

* the only specimens of this species that are sacred are those that are too big to be 

encircled by an adult person 
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Appendix 4 – Contribution of weeds to biomass production and 

N retention in the fields of Mbire District. 

During the 2008-09, nine farms were selected in the study area: three in West 

Angwa, three in East Angwa and three in Mushumbi Pools (see Figure 1 of Chapter 3 

for a description of these three geographic zones). In each geographic zone, the 

three farmers were selected on the basis of resource-endowment: poor, medium and 

rich. For the cotton, maize and sorghum fields of these farmers (generally one field 

per crop per farm), above-ground biomass of weeds and crop was estimated twice in 

the season: at harvest time, and at the end of the dry season (immediately before the 

beginning the succeeding rainy season). In each field, 5 m × 5 m quadrants were 

placed randomly. The number of quadrats set in each field depended on the size of 

the field, with the aim of sampling roughly 1% of the total field area. Above-ground 

biomass was clipped in each quadrant and divided in crop biomass and weed 

biomass. Crop and weed biomass were weighed separately, and a sample was 

oven-dried for 48 hours at 60°C to convert to kg dry matter (DM) ha-1. During the 

sampling at harvest time, the various weed species present in the quadrants were 

also recorded. The most frequent ones were sampled and the samples were oven-

dried for 48 hours at 60°C and their N concentration was determined colorimetrically 

after a Kjeldahl digestion. 

 

Figure 1 compares the N concentration in the biomass of the most frequent weed 

species and the major crops. Figure 2 compares the contribution of crop and crop + 

weed to above-ground biomass and N in the above-ground biomass at harvest time 

and at the end of the dry season. 
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Figure 1. Mean concentration in N of the residues of the main crops (cotton, maize 
and sorghum) and of the 11 most frequent weed species (i.e. encountered in at least 
30% of the plots surveyed), at the time of harvest (between end of April and 
beginning of June). The dotted line represents the mean concentration in maize 
residues (0.09%). 
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at the time of harvesting and at the end of the dry season when considering crop only 
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Appendix 5 – Construction of a dynamic model for the farming systems of Mbire 

District. 

VARIABLES: 

TOT_AREA(t)  : Total cropped area at time t (ha) 

AREA_COT(t)  : Area cropped in cotton at time t (ha) 

AREA_CRL_FD(t)  : Area cropped in cereal for food production at time t 

(ha) 

AREA_CRL_CSH(t)  : Area cropped in cereal for cash at time t (ha) 

PROD_CRL_FD(t)  : Cereal production for food at time t (kg) 

CATTLE(t)   : Number of cattle at time t (head) 

CASH(t)   : Cash savings at time t (US$) 

INC(t)    : Income at time t (US$) 

EXP(t)    : Expense at time t (US$) 

TOT_PL   : Total labour available at peak (man-day) 

PL_CSH(t)   : Peak labour invested in cash cropping at time t 

     (man-day) 

PL_COT(t)   : Peak labour invested in cotton production at time t

     (man-day) 

PL_CRL_FD(t)  : Peak labour invested in cereal production for food 

at time t (man-day) 

PL_CRL_CSH(t)  : Peak labour invested in cereal production for cash  

at time t (man-day) 

PROP(t)   : Proportion of the peak labour for cash cropping 

invested in cereal production 

RPLR(t)   : Return to peak labour ratio at time t 

PLR_COT(t)   : Peak labour requirements of cotton production at 

time t (man-day ha-1) 

PLR_CRL(t)   : Peak labour requirements of cereal production at 

time t (man-day ha-1) 
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PARAMETERS: 

HH    : Size of the household (people) 

F_AID    : Cereal received as food aid (kg) 

YLD_COT   : Cotton yield (kg ha-1) 

YLD_CRL   : Cereal yield (kg ha-1) 

P_COT   : Cotton price (US$ kg-1) 

P_CRL   : Cereal price (US$ kg-1) 

CST_COT   : Cost of cotton production (US$ ha-1) 

RBR    : Relative birth rate of cattle 

RDR    : Relative death rate of cattle 

 

EQUATIONS: 

TOT_AREA(t)  = AREA_COT(t) + AREA_CRL_FD(t) + 

AREA_CRL_CSH(t) 

AREA_COT(t)  = PL_COT(t) / PLR_COT(t) 

AREA_CRL_FD(t)  = PROD_CRL(t) / YLD_CRL 

AREA_CRL_CSH(t)  = PL_CRL_CSH(t) / PLR_CRL(t) 

 

PROD_CRL_FD(t)  = (HH × 150) – F_AID 

CATTLE(t)   = (CATTLE(t-1) × (1 + RBR - RDR)) + PUR(t) 

 

CASH(t)   = CASH(t-1) + INC(t) – EXP(t) – (PUR(t) × 200) 

INC(t)    = (AREA_COT(t) × YLD_COT × P_COT) –  

(AREA_COT(t) × CST_COT) +(AREA_CRL_CSH(t) 

× YLD_CRL × P_CRL) 

EXP(t)    = HH × 15 

 

TOT_PL   = HH × 50 

PL_CSH(t)   = TOT_PL – PL_CRL_FD(t) 

PL_COT(t)   = PROP(t) × PL_CSH(t) 

PL_CRL_FD(t)  = AREA_CRL_FD(t) × PLR_CRL(t) 

PL_CRL_CSH(t)  = PL_CSH(t) – PL_COT(t) 
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RPLR(t)   = (((AREA_COT(t) × YLD_COT × P_COT) – 

(SF_COT(t) × CST_COT)) / PLR_COT(t)) / 

((AREA_CRL_CSH(t) × YLF_CRL × P_CRL) / 

PLR_CRL(t)) 

 

PROP(t)   = 0    if RPLR(t) < 0.5 

    = RPLR(t) – 0.5  if 0.5 =< RPLR(t) < 0.5 

    = 0.5 + 0.5 (RPLR(t) – 1) if 1 =< RPLR(t) < 2 

    = 1    if RPLR(t) >= 2 

 

PLR_COT(t)   = 250    if CATTLE(t) < 2 

    = 150    if 2 =< CATTLE(t) < 4 

    = 75    if CATTLE(t) >= 4 

 

PLR_CRL(t)   = 125    if CATTLE(t) < 2 

    = 75    if 2 =< CATTLE(t) < 4 

    = 40    if CATTLE(t) >= 4 

 

INITIAL CONDITIONS: 

CATTLE(0)   = 0 

CASH(0)   = 0 

 



 

 

Summary 

 
Competing claims for land are acute in the developing world. An increase in 

agricultural production is required to feed its growing population whilst there is desire 

to prevent biodiversity loss, not least to maintain ecosystem processes. Agriculture 

affects local biodiversity through direct change in land use, and regional and global 

biodiversity through indirect effects such as fragmentation and alteration of 

hydrological and biogeochemical cycles. Innovative farming technologies using the 

principles of ‘conservation agriculture’ (CA) have emerged in various parts of the 

world, with the aim of combining profitable agriculture with minimum negative 

consequences for the environment. In particular, CA is currently been vigorously 

promoted by a wide range of international research and development organisations. 

In some of Zimbabwe’s agricultural frontiers shared with wildlife, CA has been 

proposed as a means to increase agricultural productivity and reduce wildlife decline. 

Mbire District can be considered agricultural frontier. It lies in the Mid-Zambezi Valley, 

in the northern fringe of Zimbabwe, and hosts a well-preserved biodiversity, including 

the emblematic African megafauna (e.g. elephant, buffalo, hippopotamus, lion, 

leopard, kudu, sable, impala). Wildlife abundance in Mbire District results from the 

fact that until recently, the area was considered marginal for agriculture. After 

Zimbabwe’s independence in 1980 the area witnessed a ‘cotton boom’ as a result of 

large-scale tsetse fly eradication campaigns, smallholder resettlement schemes and 

the promotion of cotton farming. As a result, wildlife habitat has shrunk and wildlife 

numbers have been reported to decline. Integrating insights from various disciplines 

and spatial dimensions, the main objective of this study was to describe and analyse 

current tensions between agricultural production and environmental conservation; 

and then to explore the potential of CA to intensify agricultural production with 

minimum negative environmental effects, and therefore save space for wildlife.  

 

To quantify land use changes that occurred since independence in a pilot zone of 

Mbire District and to analyse the contribution of a number of drivers to these 

changes, existing data were analysed and a land use data base was developed for 

two wards (administrative sub-divisions of district) within Mbire District (Chapter 2). In 
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these two wards, participatory rural appraisal and individual farm interviews (n = 176) 

were also carried out to analyse the contribution of three major potential drivers: (1) 

increase in human population; (2) increase in cattle population (and the expansion of 

associated plough-based agriculture), and; (3) expansion of cotton farming. The 

population of Mbire District almost doubled between 1992 and 2002, while the 

livestock densities increased at rates above 15% in the early 1990s and the late 

2000s. In both wards, an exponential relationship described the expansion of 

farmland over the years, from 1980 to 2007. Although direct effects of land use 

change on wildlife densities could not be proven, our study suggests that the 

consequences for elephant and buffalo numbers are negative. All three of the above 

drivers have contributed to the observed land use change. However, farmland was 

found to expand faster than human population, and to have followed a similar rate of 

expansion in cattle sparse, tsetse infested areas as in tsetse free areas where cattle-

drawn plough agriculture dominates. This implies the existence of a paramount 

driver, which is demonstrated to be cotton farming. Contrary to common belief, tsetse 

control was not the major trigger behind the dramatic land use change observed in 

Mbire District, but merely alleviated a constraint to cattle accumulation. Without the 

presence of a cash crop (cotton), land use change would have been neither as 

extensive nor as rapid as has been observed. The way people farm, therefore, is as 

great a concern as population increase.  

 

To compare the impact on the environment of food crop farming (cereals) versus 

cash crop farming (cotton) in Mbire District, we developed a measure of the 

‘environmental footprint’ of farming based on ten locally-relevant indicators: cropped 

area, fallow area, pesticide use, plant diversity loss, soil C loss, N, P and K removal 

values, calorific deficit and forage deficit (Chapter 3). The analysis was done on 37 

farm households of varying resource endowment in three locations along a gradient 

of increasing farming intensity: West Ward 2, East Ward 2 and Ward 3 and 9. The 

environmental footprints of farming in West Ward 2 and East Ward 2 (low population 

density and farming intensity) were very small compared with that of Ward 3 and 9 

(higher population density and farming intensity). Four farm types were delineated 

along the cereal-based/cotton-based continuum of farms. West Ward 2 had more 

farms growing mainly cereals than Ward 3 and 9, which had more farm growing large 
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areas of cotton. East Ward 2 represented an intermediate distribution of farms. The 

environmental footprint per farm was increasing significantly when ‘moving up’ along 

the cereal-based/cotton-based continuum. A kilogram of seed cotton required 60% 

more land, removed twice as much N, 50% more K and 20% more P than a kilogram 

of cereal. However, except for pesticide use and N removal, one man-day invested in 

cotton production had a smaller environmental footprint than a man-day invested in 

cereal production. This might lead to important differences in environmental footprints 

if farmers were to specialise in one crop or another, as farming in Mbire District is 

limited by labour more than by land. Specialising in cereal production would increase 

the total cropped area by more than 20% and the total fallow area by more than 35% 

in East Ward 2 and in Ward 3 and 9. By contrast, specialising in cotton production 

would decrease the total cropped area by more than 30% and the fallow area by 

more than 20% in East Ward 2 and in Ward 3 and 9. Therefore, maintaining or 

increasing the relative profitability of cotton vs. cereal may ‘spare land’ for nature.  

 

Impact of farming on biodiversity does not only depend on the type of crop grown or 

on the area being cultivated, but also on the way in which the land is farmed. To 

explore the potential of CA to increase crop productivity in the short-term under the 

semi arid conditions of Mbire District, unfertilised on-farm trials were conducted 

during three consecutive seasons and farmers’ cotton fields receiving various 

fertilisation rates were monitored during two seasons (Chapter 4). The performance 

of CA was compared against current farmers’ cropping practices (CP), for the 

production of cotton and sorghum. In addition to biophysical measurements, farmers’ 

perceptions of the technology were also assessed. CA did not affect cotton 

productivity during the first two years of experiment, which received average or 

above average rainfall. During the drier 2009-10 season, rather than stabilising yield, 

CA had a slightly negative effect both in on-farm trials (average yield of 730 and 820 

kg ha-1 under CA and CP, respectively) and in farmers’ cotton fields (average yield of 

1220 and 1440 kg ha-1 under CA and CP, respectively). There was no difference in 

runoff between CA and CP on a relatively fine-textured soil, but significantly more 

runoff with CA on a coarser-textured soil (14 mm during the wetter 2008-09 season), 

due to surface crusting. Most soils in the study area fall into this latter category. For 

these reasons, farmers perceived ploughing as necessary during drier years to 
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maximize water infiltration, but saw CA as beneficial during wetter years as a means 

to ‘shed water’ and avoid waterlogging. This challenges the common description of 

CA as a water-harvesting technology. Crusting may be avoided by the production of 

greater quantities of mulch than what was achieved in this study (average of 770 kg 

ha-1 in on-farm trials). The retention of sorghum residues and the inclusion of N2-

fixing legumes, however, resulted in less N being exported by cropping from the CA 

fields compared with the CP fields.  

 

To understand how CA would fit in the farming systems of Mbire District, this model 

was compared to another model of agricultural intensification, the Alvord model, 

which was introduced in colonial Zimbabwe 80 years ago (Chapter 5). More 

specifically, smallholder farming practices in Mbire District and their embedding in a 

wider socio-economic environment were also analysed. From Alvord to CA, it 

appears that the approach used in agricultural research and extension for 

smallholders has changed little in almost a century. In particular, local practices have 

been persistently disregarded, and the problem of low productivity and land 

degradation in African agriculture has remained perceived as purely technical. The 

analysis of smallholder farming practices in Mbire District showed how the socio-

economic constraints they faced (and that smallholders in most parts of southern 

Africa probably face) – e.g. limited cash, labour peaks, low output and high input 

prices, and high risks – predisposed them towards extensification. Technical 

packages which may exacerbate such constraints are ill-suited to the circumstances 

of smallholder farmers. Agricultural technologies do not, however, have strict 

intensifying or extensifying properties: often they have both. It is the interaction 

between the technology and the agro-ecological and socio-economic environments 

which directs farming on an intensification or extensification pathway. In Mbire 

District, where labour availability for weeding is a major limiting factor, the increased 

weed pressure in CA is a major – but probably not the only – reason preventing 

farmers from embracing it.  

 

As a conclusion (Chapter 6), mitigating conflicts between the increase of agricultural 

production and biodiversity conservation requires major innovations, far beyond CA. 

CA should be seen as part of a larger basket of technologies aiming at ‘ecological 
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intensification’. In the limited circumstances where CA is the most appropriate one, it 

will have to be adapted to local circumstances to fit farming systems. A pragmatic, 

more flexible approach than presently used is required for the design, evaluation and 

extension of technologies based on CA principles. Intensification itself is unlikely in 

agricultural frontiers, where extensification is often the rule. In these areas, when 

designing and evaluating cropping systems, researchers have to let go of the 

traditional emphasis on land productivity (yield) and rather focus on labour 

productivity. Payment for environmental services, associated with (ecological) 

intensification, offers great potential to secure profitable agricultural production and 

effective biodiversity conservation in these landscapes. For such an approach to be 

implemented, local communities would have to be empowered through the right 

interventions, and not, as often the case, through interventions targeting mythical 

wilderness areas as home of a mythical noble savage. 

 



 

 

Samenvatting 

‘Competing Claims’ op land zijn vaak acuut in de ontwikkelingslanden.  Een 

verhoging van de landbouwproductie is nodig om de groeiende bevolking te voeden, 

maar tegelijkertijd zou dit niet ten koste moeten gaan van de biodiversiteit en het 

ecosysteem. Landbouw beïnvloedt de lokale biodiversiteit middels directe 

verandering in het landgebruik, en de regionale en mondiale biodiversiteit door 

indirecte effecten, zoals de versnippering en verandering van hydrologische en 

biogeochemische cycli. Innovatieve landbouwmethoden gebaseerd op de principes 

van ‘Conservation Agriculture’ (CA) pogen winstgevende landbouw te combineren 

met minimale negatieve gevolgen voor natuur en milieu. CA is ontwikkeld en 

geïmplementeerd in verschillende delen van de wereld en in de afgelopen jaren is 

het ook grootschalig gepromoot onder kleinschalige boeren in Afrika door een breed 

scala van internationale onderzoeks- en ontwikkelingsorganisaties.  

 

Zimbabwe heeft een aantal gebieden waar landbouw en beschermde 

natuurgebieden aan elkaar grenzen (agricultural frontiers), en waar wild zowel binnen 

als buiten beschermde gebieden voorkomt. In deze gebieden is CA geïntroduceerd 

om de landbouwproductiviteit te verhogen, en tegelijkertijd een daling in wild-

populaties tegen te gaan. Mbire district in de Mid Zambezi Valley, in het noorden van 

Zimbabwe, is zo’n gebied. Het staat bekend om zijn goed bewaarde biodiversiteit, 

inclusief de karakteristieke Afrikaanse megafauna (bijv. olifanten, buffels, nijlpaarden, 

leeuwen, luipaarden, kudu, sable, impala). Deze overvloed aan wild in Mbire district 

komt doordat het gebied tot voor kort als marginaal voor landbouw werd beschouwd. 

Na de onafhankelijkheid van Zimbabwe in 1980, vond er in het gebied een enorme 

expansie van kleinschalige katoenproductie plaats (de zogenaamde cotton-boom). 

Deze expansie was het gevolg van een grootschalige bestrijding van de 

tseetseevlieg, hervestigingsprogramma’s voor kleine boeren, en de promotie van de 

katoenproductie door de Zimbabwaanse overheid. Als gevolg van dit 

overheidsingrijpen zijn de leefgebieden voor het wild gekrompen, en wild-populaties 

afgenomen. Het belangrijkste doel van deze studie is het beschrijven en analyseren 

van de huidige spanningen tussen landbouwproductie en natuurbehoud in dit gebied, 

door inzichten van verschillende academische disciplines en ruimtelijke dimensies te 
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integreren. De studie exploreert het potentieel van CA om landbouwproductie te 

intensiveren met minimale negatieve gevolgen voor het milieu, en hoe dit ruimte voor 

wild kan creëren of behouden. 

 

Hoofdstuk 2 kwantificeert veranderingen in landgebruik en analyseert de factoren die 

hiertoe bijgedragen hebben. Gebruikmakend van bestaande data is een database 

voor landgebruik ontwikkeld voor twee wards (administratieve subdivisies in een 

district) in Mbire district. In deze wards werden participatieve rurale assessments 

uitgevoerd en een vragenlijst afgenomen onder boeren (n = 176) om de bijdrage van 

drie belangrijke factoren te analyseren: (1) de bevolkingstoename; (2) de toename 

van de vee populatie (en de gerelateerde uitbreiding van landbewerking middels 

dierlijke tractie), en; (3) de uitbreiding van de katoenproductie. 

 

Tussen 1992 en 2002 is de bevolking van Mbire district bijna verdubbeld. De vee 

populatie is in een periode van circa 15 jaar met 15% toegenomen, en het  

landbouwareaal is exponentieel gegroeid tussen 1980 en 2007. Alhoewel directe 

effecten van veranderingen in landgebruik op wildpopulaties niet konden worden 

aangetoond, suggereert de studie dat de gevolgen voor de olifant en buffel 

populaties in het gebied negatief zijn. Alle bovengenoemde factoren hebben 

bijgedragen aan veranderingen in landgebruik. Echter, het landbouwareaal groeide 

sneller dan de bevolking, en de uitbreiding in tseetsee gebieden (waar weinig vee 

aanwezig is), en tseetsee-vrije gebieden (waar de vee-getrokken ploeg de landbouw 

domineert) is vergelijkbaar. Dit impliceert het belang van de derde factor: de 

katoenproductie. In tegenstelling tot het dominante discours, zijn de drastische 

veranderingen in landgebruik in Mbire district niet primair het gevolg van de 

bestrijding van de tseetseevlieg, die landbewerking met de vee-getrokken ploeg 

mogelijk maakte. Deze factor verklaart slechts de beperkte expansie van de vee 

populatie. Zonder de factor ‘katoen’ zouden de veranderingen in landgebruik niet zo 

omvangrijk zijn geweest en niet zo snel hebben plaatsgevonden als werd 

waargenomen. Veranderingen in landgebruik zijn derhalve niet te reduceren tot een 

gevolg bevolkingstoename. Zij zijn vooral ook een gevolg van de manier waarop 

mensen landbouw bedrijven . 
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In hoofdstuk 3 wordt een instrument ontwikkeld waarmee de ‘ecologische voetafdruk’ 

van de landbouw in Mbire district kan worden gemeten. Een vergelijking tussen de 

milieu- en omgevingseffecten van het verbouwen van voedselgewassen (granen) en 

het verbouwen van katoen staat hierbij centraal. De analyse maakt gebruik van tien 

indicatoren: bebouwde landbouwgrond, braakliggende landbouwgrond, pesticide 

gebruik, afname van plant diversiteit, afname van C in de bodem, onttrokken N, P en 

K, calorische tekorten en voedergewassen tekorten. De analyse is gebaseerd op de 

gegevens van 37 agrarische huishoudens van verschillende welstand, op drie 

locaties langs een gradiënt van toenemende landbouw intensiteit: west-ward 2, oost-

ward 2 en wards 3 en 9. De ‘ecologische voetafdruk’ van de landbouw in west- en 

oost-ward 2 (beide met een lage bevolkingsdichtheid en lage landbouw intensiteit) is 

zeer klein vergeleken met die in ward 3 en 9 (met een hogere bevolkingsdichtheid en 

hogere landbouw intensiteit). Vier verschillende typen van boeren werden 

geïdentificeerd op basis van de grootte van hun veestapel en hun oriëntatie op 

graan- of katoenproductie. West-ward 2 bevat meer boeren die vooral granen 

verbouwen in vergelijking met ward 3 en 9, waar katoenboeren domineren. Oost-

ward 2 laat een gelijke verdeling van graan- en katoenboeren zien. De ‘ecologische 

voetafdruk’ per boer wordt groter wanneer we langs het continuüm van graan richting 

katoen oriëntatie bewegen. Het produceren van een kilogram katoen vereist 60% 

meer land, onttrekt twee keer zoveel N, 50% meer K, en 20% meer P dan het 

produceren van een kilogram graan. Echter, één dag arbeid geïnvesteerd in de 

productie van katoen heeft een kleinere ‘ecologische voetafdruk’ dan één dag arbeid 

geïnvesteerd in graanproductie (alleen de indicatoren pesticide gebruik en onttrokken 

N vormden uitzonderingen op dit patroon). Gewasspecialisatie zou dus kunnen 

leiden tot belangrijke verschillen in de ‘ecologische voetafdruk’ van de landbouw, 

aangezien meer dan een gebrek aan land het arbeidstekorten zijn die de landbouw in 

Mbire district structureren. Het specialiseren in graanproductie zou het bebouwde 

landbouwareaal met meer dan 20% doen toenemen, en de totale oppervlakte 

braakliggende landbouwgrond meer dan 35% doen toenemen in oost-ward 2 en in 

ward 3 en 9. Specialiseren in katoenproductie zou, daarentegen, het bebouwde 

landbouwareaal met meer dan 30%, en de braakliggende landbouwgrond met meer 

dan 20% doen afnemen in oost-ward 2 en in ward 3 en 9. Daaruit kan worden 

opgemaakt dat het handhaven of verhogen van de relatieve winstgevendheid van 
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katoenproductie ten opzichte van graanproductie, meer land voor natuur zou kunnen 

opleveren.  

 

De impact van de landbouw op de biodiversiteit in een gebied is uiteraard niet alleen 

afhankelijk van het type gewas dat wordt verbouwd en het bebouwde areaal, maar 

ook van de manier waarop een gewas wordt verbouwd. Om de potentie van CA – het 

op korte termijn verhogen van productiviteit – onder de semi-aride condities van 

Mbire district te verkennen, werden onbemeste on-farm experimenten opgezet 

(hoofdstuk 4). Van de in de experimenten participerende boeren werden ook de 

katoenvelden en de toepassing van kunstmest in die katoenvelden gevolgd. De 

experimenten vonden plaats gedurende drie opeenvolgende seizoenen, terwijl voor 

de katoenvelden er data beschikbaar was voor twee seizoenen. De prestatie van CA 

werd vergeleken met de huidige productie praktijken (Cropping Practices or CP) van 

boeren voor zowel katoen als sorghum. Naast biofysische metingen werden ook de 

visies van de boeren op de CA productietechnieken in kaart gebracht. CA had geen 

invloed op de productiviteit van katoen tijdens de eerste twee jaren van het 

experiment waarin de regenval gemiddeld en bovengemiddeld was. In het drogere 

seizoen 2009-2010 resulteerde CA niet in de stabilisatie van de productiviteit, maar 

had zij een licht negatief effect op de productiviteit. Zowel in de on-farm 

experimenten, als in de katoenvelden van de participerende boeren daalden de 

opbrengsten per ha (naar respectievelijk gemiddeld 820 en 730 kg ha-1 onder CA en 

CP in de experimenten, en gemiddeld1440 en 1220 kg ha-1 onder CA en CP in de 

katoenvelden van boeren). Er was geen verschil in de afstroom (runoff) van 

regenwater tussen CA en CP op bodems met een relatieve fijne textuur, maar 

beduidend meer afstroom van regenwater met CA op een bodem met een grovere 

textuur (14 mm tijdens de nattere seizoen 2008-2009). Dit is een gevolg van 

korstvorming van het bodemoppervlak. Daar de meeste bodems in het studiegebied 

van grove textuur zijn, zien boeren zich genoodzaakt om te ploegen om zo de 

waterinfiltratie te maximaliseren in drogere jaren. In natte jaren ervaren ze niet 

ploegen (een onderdeel van CA) als gunstig, aangezien het een manier is om 

overtollig regenwater snel af te voeren en waterlogging te voorkomen. Deze 

bevindingen zetten vraagtekens bij de heersende opvatting dat CA als voordeel heeft 

dat zij het watervasthoudend vermogen van de bodem kan bevorderen. Korstvorming 
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van het bodemoppervlak van grove textuur bodems kan voorkomen worden door het 

behouden van zoveel mogelijk organisch materiaal (mulch) op het bodemoppervlak. 

Een hogere productie van organisch materiaal (mulch) dan wat werd bereikt in dit 

onderzoek (gemiddeld 770 kg ha-1 in de on-farm experimenten), kan worden 

gerealiseerd door sorghum in combinatie met stikstofbindende vlinderbloemigen te 

verbouwen. De grote hoeveelheid organisch materiaal (in de vorm van gewasresten), 

die zo wordt gerealiseerd, resulteert eveneens in minder export van stikstof (N) uit 

CA velden in vergelijking met CP velden. 

 

Of en hoe CA zou kunnen passen in de agrarische productiesystemen van Mbire 

district, staat centraal in hoofdstuk 5. In dit hoofdstuk hebben we het CA-model 

vergeleken met een ander model voor de intensivering van de Afrikaanse landbouw: 

het ‘Alvord model’. Dit beleidsmodel werd zo’n 80 jaar geleden geïntroduceerd door 

Emery Alvord, een Amerikaanse missionaris die leiding gaf aan het koloniale 

overheidsdepartement voor Afrikaanse landbouw. Naast een vergelijking van deze 

beleidsmodellen voor de intensivering van het landgebruik, analyseert dit hoofdstuk 

de organisatie van agrarische productiesystemen in Mbire district en hun inbedding 

in de wijdere  sociaaleconomische omgeving. Wanneer we het ‘Alvord model’ 

vergelijken met CA, dan lijkt er in bijna een eeuw weinig veranderd in de aanpak van 

landbouwkundig onderzoek en voorlichting voor kleinschalige boeren. De lokale 

landbouwpraktijken van boeren zijn hardnekkig genegeerd, en de lage productiviteit 

en landdegradatie in de Afrikaanse landbouw worden nog steeds gezien als een puur 

technisch probleem. De analyse van landbouwpraktijken in Mbire district laat zien 

hoe de sociaaleconomische omgeving waarin kleinschalige boeren opereren, 

extensivering in de hand werken (hetgeen waarschijnlijk geldt voor de meeste 

kleinschalige boeren in zuidelijk Afrika). Voorbeelden zijn de beperkte toegang tot 

cash, arbeidspieken, lage gewasprijzen, hoge prijzen voor inputs (zaaizaad, 

kunstmest, herbiciden en pesticiden), en een hoog misoogst risico. Technische 

interventies kunnen dergelijke beperkingen verergeren als ze niet goed zijn 

afgestemd op de omstandigheden van kleinschalige boeren. Agrarische 

technologieën zijn echter niet inherent intensiverend of extensiverend van aard; 

meestal kunnen ze voor beide worden aangewend. Het is de interactie tussen de 

technologie en de agro-ecologische en sociaaleconomische omgeving, die de 



Samenvatting 

230 

landbouw in de richting van intensivering of extensivering stuurt. In Mbire district, 

waar de beschikbaarheid van arbeid voor het wieden een belangrijke factor is die de 

landbouw productie beperkt, vormt de toename van onkruid door CA een belangrijke 

– maar niet de enige – reden waarom boeren CA niet omarmen. 

 

Hoofdstuk 6 betoogt dat een verdere toename van de landbouwproductiviteit én het 

behoud van biodiversiteit innovatieve oplossingen vergt die veel verder gaan dan 

alleen CA. CA moet worden gezien als onderdeel van een groter pakket van 

technologieën die gericht zijn op ‘ecologische intensivering’. In de beperkte situaties 

waarin alle CA principes toepasbaar zijn, zal CA aangepast moeten worden aan de 

lokale omstandigheden om in agrarische productiesystemen van kleinschalige 

ingepast te kunnen worden. Een pragmatische en meer flexibele aanpak is vereist 

voor het ontwerp, de evaluatie en verspreiding van CA-technologieën. Intensivering 

van de landbouw is onwaarschijnlijk in gebieden waar land nog niet schaars is en 

waar landbouw en natuur aan elkaar grenzen; zoals het onderzoek laat zien is in 

deze gebieden extensivering vaak de norm. Bij het ontwerpen en evalueren van 

agrarische productiesystemen voor dit soort gebieden, dienen onderzoekers zich niet 

– zoals gangbaar – alleen toe te leggen op de productiviteit van het land (opbrengst 

per hectare). Zij zullen zich meer moeten richten op de arbeidsproductiviteit. Het 

betalen van kleine boeren voor hun bijdrage aan het behouden en beschermen van 

natuur, in combinatie met (ecologische) intensivering, biedt wellicht grote 

mogelijkheden om winstgevende agrarische productie en de effectieve bescherming 

van de biodiversiteit te bewerkstelligen. Om zo’n benadering effectief te 

implementeren, is het noodzakelijk dat lokale gemeenschappen worden ondersteund 

door middel van de juiste interventies, en niet, zoals vaak het geval is, interventies 

die gericht zijn op een mythische wildernis als de leefomgeving van een mythisch 

nobel volk. 

 



 

 

Résumé 

Les conflits d’usage pour l’espace sont aigus dans les pays en voie de 

développement. Une augmentation de la production agricole est requise pour 

alimenter leur population croissante, tandis que ralentir les pertes en biodiversité est 

souhaitable, ne serait-ce que pour maintenir les processus écosystémiques. 

L'agriculture affecte la biodiversité locale directement par un changement 

d’occupation du sol, mais aussi la biodiversité régionale et globale par des effets 

indirects tels que la fragmentation des écosystèmes ou la perturbation des cycles 

hydrologiques et biogéochimiques. Des systèmes de culture innovants basés sur les 

principes de l'agriculture de conservation (AC) ont émergé dans plusieurs régions du 

monde, dans le but de combiner agriculture performante et impacts 

environnementaux minimaux. En particulier, l’AC est actuellement diffusée 

vigoureusement par un large éventail d'organismes internationaux dans le domaine 

de la recherche et du développement agricole. Dans certaines frontières agricoles 

Zimbabwéennes partagées avec la grande faune Africaine, l’AC a été proposée 

comme moyen d'augmentation de la productivité agricole et de réduction du déclin 

de la faune. C’est le cas du district de Mbire, qui se situe dans la Moyenne Vallée du 

Zambèze, dans le nord du Zimbabwe, et qui héberge une biodiversité 

remarquablement préservée, dont toute la mégafaune africaine emblématique 

(éléphant, buffle, hippopotame, lion, léopard, koudou, hippotrague, impala, etc). 

L'abondance de faune de Mbire est le résultat de sa marginalité agricole historique. A 

la suite de l'indépendance du Zimbabwe en 1980, le district a subi un boom 

cotonnier, grâce à des campagnes d'éradication des mouches tsétsé à grande 

échelle, un programme de distribution de terre à des migrants et la promotion de la 

culture du coton elle-même. En conséquence, l'habitat de la faune s'est rétréci et les 

densités de faune sont en déclin. En intégrant les points de vue de diverses 

disciplines, à des niveaux d’étude différents, l'objectif principal de cette étude est de 

décrire et d’analyser les tensions existantes entre la production agricole et la 

conservation de la faune; et d’explorer le potentiel de l’AC dans l’intensification de la 

production agricole avec des impacts négatifs minimaux sur l’environnement, et donc 

dans la possibilité d’épargner de l’espace pour la faune. 
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Afin de quantifier les changements d'occupation des sols qui ont eu lieu depuis 

l'indépendance dans une zone pilote du district de Mbire et afin d’estimer la 

contribution de plusieurs facteurs potentiels, les données existantes ont été 

analysées et une base de données d'occupation des sols a été développée pour 

deux wards (subdivisions administratives du district) du district de Mbire (Chapitre 2). 

Dans ces deux wards, des entretiens collectifs et individuels (n = 176) ont également 

été conduits pour analyser la contribution de trois facteurs potentiels majeurs: (1) 

l’accroissement de population humaine ; (2) l’augmentation du cheptel bovin (et 

l'expansion de l'agriculture attelée qui lui est associée); (3) l’expansion de la culture 

du coton. La population humaine du district de Mbire a presque doublé entre 1992 et 

2002, alors que les densités de bovins ont augmenté à des taux supérieurs à 15% au 

début des années 1990 et à la fin des années 2000. Dans les deux wards, 

l'expansion les superficies cultivées a augmenté de façon exponentielle au cours du 

temps, de 1980 à 2007. Bien qu’un impact direct des changements d’occupation des 

sols sur les densités de faune n’a pas été démontré, notre étude suggère des 

conséquences négatives sur les densités d’éléphants et de buffles. Chacun des trois 

facteurs étudiés a contribué aux changements d’occupation des sols observés. 

Cependant, les surfaces cultivées ont augmenté plus rapidement que la population 

humaine, avec en outre des taux de croissance semblables dans les zones infestées 

par les mouches tsétsé et dépourvues de bovins, et dans les zones où les mouches 

tsétsé ont été éradiquées et où l’agriculture attelée domine. Ceci implique l'existence 

d'un autre facteur primordial, en l’occurrence la culture du coton. Contrairement à la 

croyance populaire, l’éradication des mouches tsétsé n'a pas été le déclencheur 

principal des changements considérables d'occupation des sols dans le district de 

Mbire, mais a simplement allégé une contrainte à l'accumulation des bovins. Sans la 

présence d'une culture de rente (coton), les changements d'occupation des sols 

n'auraient été ni aussi intenses ni aussi rapides que ce qui a été observé. Ainsi, la 

façon dont l’agriculture est pratiquée est aussi préoccupante pour la conservation de 

la biodiversité que l'accroissement de la population humaine. 

 

Afin de comparer l'impact environnemental des systèmes de culture vivriers 

(céréales) avec celui des systèmes de culture de rente (coton) dans le district de 

Mbire, nous avons développé une mesure de l'empreinte environnementale de 
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l’agriculture basée sur dix indicateurs appropriés à la situation locale: surface 

cultivée, surface mise en jachère, utilisation de pesticide, perte de diversité végétale, 

perte de C du sol, exportation de N, P et K, déficit calorifique et déficit fourrager 

(Chapitre 3). L'analyse a été faite sur 37 unités de production de richesse variable 

dans trois sites le long d'un gradient d'intensification agricole: West Ward 2, East 

Ward 2 et Ward 3 et 9. Les empreintes environnementales de l'agriculture de West 

Ward 2 et de East Ward 2 (faibles densités de population et intensités agricoles) 

étaient restreintes en comparaison de celles de Ward 3 et 9 (densité de population et 

intensité agricole plus élevées). Quatre types de ferme ont été délimités le long du 

continuum système céréalier/système cotonnier. West Ward 2 avait plus d’unités de 

production cultivant principalement des céréales que Ward 3 et 9, qui avait plus 

d’unités de production cultivant de larges surface de coton. East Ward 2 représentait 

une distribution intermédiaire d’unités de production. L'empreinte environnementale 

par unité augmentait de manière significative le long du continuum système 

céréalier/système cotonnier. Un kilogramme de coton-graine exigeait 60% de terre 

cultivée en plus, exportait le double d’N, 50% plus de K et 20% plus de P qu'un 

kilogramme de céréale. Cependant, excepté pour l’utilisation de pesticide et 

l’exportation d’N, un homme-jour investi dans la production de coton avait une 

empreinte environnementale plus petite qu'un homme-jour investi dans la production 

de céréale. Ceci pourrait aboutir à des différences importantes d’empreintes 

environnementales si les unités de production devaient se spécialiser dans l’une ou 

l’autre de ces cultures, étant donné que la production agricole dans le district de 

Mbire est limitée par le travail plus que par le foncier. La spécialisation dans la 

production céréalière augmenterait les surfaces totales cultivées de plus de 20% et 

les surfaces totales en jachère de plus de 35% dans East Ward 2 et Ward 3 et 9. En 

revanche, la spécialisation dans la production de coton diminuerait les surfaces 

totales cultivées de plus de 30% et les surfaces totales en jachère de plus de 20% 

dans East Ward 2 et Ward 3 et 9. Par conséquent, maintenir ou augmenter la 

rentabilité du coton par rapport à celle des céréales pourrait ‘épargner de l’espace’ à 

la nature. 

 

L'impact de l'agriculture sur la biodiversité dépend non seulement du type de culture 

et des surfaces mises en culture, mais aussi des techniques culturales employées. 
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Dans le but d’explorer le potentiel de l’AC d'augmenter sur le court terme la 

productivité agricole dans les conditions semi-arides qui sont celles du district de 

Mbire, des essais en ferme non-fertilisés ont été conduits pendant trois saisons 

consécutives et les champs de coton d’un échantillon d’unités de production recevant 

des taux de fertilisation variés ont été suivis pendant deux saisons (Chapitre 4). Les 

performances de l’AC ont été comparées à celles des pratiques paysannes actuelles 

(PA), pour la production de coton et de sorgho. En plus de mesures biophysiques, 

les perceptions des paysans vis-à-vis de l’AC ont été évaluées. L’AC n'a pas affecté 

la productivité du coton pendant les deux premières années d’expérimentation, qui 

ont reçu des précipitations moyennes ou au-dessus de la moyenne. Pendant la 

saison 2009-10, plus sèche, plutôt que de stabiliser les rendements, l’AC a eu un 

effet légèrement négatif aussi bien dans les essais en milieu paysan (rendements 

moyens de 820 et 730 kg ha-1, pour les traitements AC et PA respectivement) que 

dans les champs de coton des différentes unités de production (rendements moyens 

de 1440 et 1220 kg ha-1, pour les traitements AC et PA respectivement). Il n’y avait 

pas de différence de ruissèlement entre les traitements AC et PA sur un sol à texture 

relativement fine, mais significativement plus de ruissèlement dans le traitement AC 

que dans le traitement PA sur un sol à texture plus grossière (14 millimètres pendant 

la saison 2008-09 relativement humide), en raison de la formation d’une croûte de 

battance. La plupart des sols de la zone d'étude appartiennent à cette dernière 

catégorie. Pour cette raison, les paysans ont déclaré que le labour était nécessaire 

pendant les années sèches, afin de maximiser l'infiltration, mais ont perçu l’AC 

comme bénéfique durant les années plus humides, afin d’éliminer les excès d’eau et 

éviter l’engorgement des sols. Ceci va à l’encontre de la description commune de 

l’AC en tant que technologie de récolte de l’eau. La formation d’une croûte de 

battance peut être évitée par la production de plus grandes quantités de paillis que 

ce qui a été réalisé dans cette étude (moyenne de 770 kg ha-1 dans les essais en 

ferme). Cependant, l’exportation nette d’N par la culture était moindre dans le 

traitement AC que dans le traitement PA, grâce à la conservation des résidus de 

sorgho et l'inclusion de légumineuses fixatrices d’N2.  

 

Pour comprendre comment l’AC s'insérerait dans les systèmes agraires du district de 

Mbire, ce modèle a été comparé à un autre modèle d'intensification agricole, le 
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modèle d'Alvord, qui a été introduit au Zimbabwe à l’époque coloniale il y a 80 ans 

(Chapitre 5). Plus spécifiquement, les pratiques agricoles paysannes du district de 

Mbire et leur signification dans un environnement socio-économique plus large ont 

été également analysées. D'Alvord à l’AC, il s'avère que l'approche utilisée dans la 

recherche et la vulgarisation agricoles pour les petits producteurs a peu changé en 

presque un siècle. En particulier, les pratiques paysannes ont été constamment 

négligées, et le problème de faible productivité et de dégradation des sols dans 

l'agriculture africaine est resté perçu comme purement technique. L’analyse des 

pratiques agricoles des petits producteurs du district de Mbire montre que les 

contraintes socio-économiques auxquelles ils font face (et probablement auxquelles 

les exploitations familiales de la plupart des régions d'Afrique australe font face) – 

trésorerie limitée, pic de travail, prix des intrants élevés, prix des extrants faibles, 

risque élevé, etc – les prédisposent à l'extensification. Les technologies pouvant 

exacerber ces contraintes sont inadaptées aux conditions des exploitations 

familiales. Les techniques agricoles, cependant, n'ont pas de propriétés 

d’intensification ou d’extensification strictes: souvent ils ont les deux. C'est 

l'interaction entre la technologie et l’environnement agro-écologique et socio-

économique qui dirige l'agriculture sur la voie de l'intensification ou de 

l'extensification. Dans le district de Mbire, où la disponibilité en main d’œuvre au 

moment du désherbage est un facteur limitant majeur, la pression accrue en 

adventices est une raison importante - mais probablement pas la seule – prévenant 

l’adoption de l’AC par les petits producteurs.  

 

Pour conclure (Chapitre 6), l'atténuation des conflits entre augmentation de la 

production agricole et conservation de la biodiversité exige des innovations 

majeures, bien au delà de l’AC. L’AC ne devrait probablement être perçue que 

comme un élément d'un plus large panel de techniques visant à ‘l'intensification 

écologique’. Dans les situations limitées où l’AC est la plus appropriée, elle devra 

s’adapter aux conditions locales pour s’insérer dans les systèmes agraires existants. 

Une approche pragmatique et plus souple que celle actuellement utilisée est 

nécessaire pour la conception, l'évaluation et la vulgarisation des technologies 

basées sur les principes de l’AC. L'intensification elle-même est peu probable dans 

les frontières agricoles, où l'extensification est souvent la règle. Dans ces régions, 



Résumé 

236 

lors de la conception et de l’évaluation des systèmes de culture, les chercheurs 

doivent cesser de placer l'accent sur la productivité de la terre (rendement) et se 

concentrer sur la productivité du travail. L’association de paiements pour services 

environnementaux à l'intensification (écologique) présente un potentiel important 

pour combiner production agricole rentable et conservation efficace de la biodiversité 

dans ces régions. Pour la mise en application d'une telle approche, les capacités des 

communautés locales devront être renforcées par les bonnes interventions, et pas, 

comme souvent cas, par des interventions visant de mythiques régions sauvages, 

habitées par le mythique ‘bon sauvage’. 
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