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Abstract  System identification tools, such as transfer function (TF) model structure identification, recursive 
estimation, time-varying parameter (TVP) estimation and assessment of data information, are used to 
evaluate the quality of rainfall-stream flow data from the Tinderry catchment (ACT, Australia) and the time-
varying behaviour of the rainfall-stream flow dynamics. For the catchment, given the wide range and the 
abrupt changes of the single input-single output transfer functions describing different periods or events, we 
conclude that further investigation of (i) local rainfall effects, (ii) time-varying time delays (travelling time), 
(iii) time-varying residence times related to the base flow and (iv) occurrence of negative residues is needed. 
Periods with high and low data information content, for further use in effective parameter estimation 
procedures, are clearly indicated by the analysis. 
Keywords  Diagnosis, rainfall-stream flow data, system identification, recursive parameter estimation 

 
 
INTRODUCTION 
Usually relatively long data records of rainfall and stream flow are available: e.g. 20 years of daily 
measurements from rainfall and stream flow gauges. This even holds for remote catchments due to 
the wide availability of wireless communication techniques.  However, these data are not always of 
good quality and the question arises: �what can be said about the quality of these long data 
records?�. Instead of statistical, model-free data analysis, we analyse the data using (dynamic) 
transfer function (TF) model identification. In particular, we introduce system identification tools, 
such as structure/order identification (model selection), recursive and time-varying parameter 
estimation and the assessment of data information content (Young, 1984, Norton, 1986; Keesman, 
2011), to diagnose the data quality. These tools allow us not only to investigate the data quality, but 
also to interpret the results in a hydrological context. The goal of the paper is to show how such 
diagnostic tools can be used in the case of the Tinderry catchment (near Canberra, ACT, Australia). 
 
 
BACKGROUND 
Dynamic, linear, time-invariant (LTI) systems can be represented by a transfer function (TF) model. 
In short hand notation, a noise-free TF  model, relating the input uk, at the discrete time instant tk, to 
the resulting output yk , with k the time index, is presented as 
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where yk is the stream flow, uk the effective (excess) rainfall, which is usually calculated from a 
non-linear module that accounts for evapotranspiration and soil moisture, and nk is a pure time 
delay of nk samples, introduced to allow for any delay that occurs between the occurrence of rainfall 
and its first effect on flow. The polynomials A(q 1) and B(q 1) are given by 
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where A(q 1) is chosen to be monic to avoid structural identifiability problems. In these 
polynomials, q 1 is the backward-shift operator (sometimes denoted by z 1). Consequently, the 
input-output relationship can also be written in terms of a difference equation, that is 
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Both of these model representations will be used in the analysis of the data. For a further 
interpretation of the black-box TF model, a so-called partial fraction expansion (see e.g., Jakeman et 
al, 1990, Goodwin et al., 2001) can be applied. This expansion allows for a decomposition of the TF 
model in terms of a series of first-order TF models, normally arranged in parallel (see e.g. Young 
and Wallis, 1985; Young, 1992); plus, in some cases, a constant gain.  In addition to this analysis of 
the TF model, we exploit an eigenvalue decomposition of a square matrix and its interpretation. 
Consider the n  n - dimensional matrix . Then, the eigendecomposition of  is given by 

V V , where V is the eigenmatrix, containing n eigenvectors, and  is a diagonal matrix with n 
eigenvalues i associated with the eigenvectors vi for i = 1, ..., N. For each eigenvalue, in general a 
complex number, the following holds: i iv v . If  is symmetric and positive-definite, then all 
eigenvalues are positive real numbers and V is an orthogonal matrix (see Horn and Johnson, 1985).  
 
 
METHODS 
 
Identification of system TF models 
It has been recognized (Jakeman et al, 1990) that the input-output relationship between rainfall and 
stream flow contains nonlinearities due, for instance, to the wetness of the catchment. However, as 
will be shown later, this non-linearity can also be directly obtained from the data using the Data-
Based Mechanistic (DBM) modelling approach (see e.g. Young, 1993, Young and Beven, 1994; 
Young, 1998, 2003). The intermediate variable uk (see Eq. 1), is called the effective rainfall. The 
key question is how to identify the model structure of these TF models, as defined by na, nb, and the 
time delay nk (see Eq. 1-2). Several criteria for model identification have been proposed in the past. 
However, all these criteria depend on the data given and include a term that is related to the 
residuals or prediction errors. Hence, there is a need to estimate the unknown parameters in the 
discrete-time transfer function and provide an estimate of the residuals. 
Since the data are usually corrupted with noise, we need to introduce an error term into our general 
TF model (1). In what follows, we consider the process dynamics and effective rainfall data to be 
free of errors and introduce the (noise free) auxiliary output variable xk, such that 
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together with the output equation, 
 k k ky x e           (5) 
which then relates the measured output to the estimated noise-free model output and the output 
error ek. For analytical convenience, we presume that {ek} is zero-mean white noise, although this is 
rarely the case in practice. We have chosen this so-called output-error model structure, Eq. 4-5, 
because we are mostly interested in the mechanisms of the process and not so much in the one-step 
ahead predictions (see e.g. Young, 1984; Norton, 1986; Ljung, 1999; Keesman, 2011 for details on 
this). Substituting (5) into (4) gives 
 1 1( )( ) ( )k k k nk

A q y e B q u         (6) 
and thus 
 1 1( ) ( )k k n kk

A q y B q u v         (7) 
with vk := A(q 1) ek. Consequently, the error term vk in (7) is autocorrelated (coloured) and thus 
direct least-squares estimation does not automatically lead to unbiased estimates, as would be the 
case if the error term {vk} was zero-mean white noise. Thus, there is a need for pre-whitening, using 
Instrumental Variable (IV) estimation, or other methods that take into account the coloured error 
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structure. In addition to this, in order to discover irregularities in the data, recursive estimation 
schemes (see e.g. Young, 1984) can be used for updating the parameter estimates at the current time 
instant, given estimates from a preceding time instant and current measurements.  
 
Assessment of data information 
For illustrative purposes we will neglect, for the moment, the coloured error structure and presume 
that some effective pre-whitening has taken place, changing (yk, uk) into ( ' , 'k ky u ) and 'k kv e . 
Then, Eq. 7 can be written as 
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where e'k originates from a zero-mean white noise process. In what follows, and for ease of 
notation, the prime is dropped. The vector 1 2 a a k k b

T
k k k n k n k n k n ny y a y u u  is 

the regression vector and 1 2 0

T

n na b
a a a b b is the parameter vector. In vector-

matrix form, using N data points, this results in 
 y e           (9) 

where 1 2
T

Ny y y y , 1 2
T

N  and 1 2
T

Ne e e e . Consequently, 
the ordinary least-squares estimate is optimal with estimation error covariance matrix given by 
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for  deterministic. The estimated residuals are denoted here by �ke . Hence, the information matrix 
T  plays a key role in the assessment of the estimation errors, since the estimated variance of 

the residuals ( 2
��e ) is only a scaling factor. Given the information matrix and variance of the 

residuals, the uncertainty ellipsoid related to the estimated parameters is given by 
 1

�
� �: ( ) ( ) 1T       (11) 

with the main axes determined by the eigenvectors of the positive-definite, symmetric matrix �  
and with semi-axis length equal to the square root of the inverse eigenvalues (see e.g. Bard, 1974). 
Hence, the information content of the data is assessed by these eigenvalues and eigenvectors, which 
can also be geometrically interpreted in terms of an uncertainty ellipsoid. 
 
Procedure 
Given the tools from the previous section, we propose the following procedure for the dynamic 
diagnosis of the data: 
 Step 1:  Identify (i) the non-linear relationship between rainfall and effective rainfall, using 
e.g. IHACRES (Jakeman et al, 1990; Jakeman and Hornberger, 1993), or the DBM modelling 
approach (see e.g. Young, 1993, 2003; Young and Beven, 1994); and (ii) the linear relationship 
between effective rainfall and stream flow. Usually, the first, nonlinear relationship can be 
expressed in terms of temperature-dependent soil moisture dynamics; or, more simply in the DBM 
case, estimated by non-parametric, recursive state-dependent parameter (SDP) estimation (Young 
2000). However, at a final stage in the model estimation, both the non-linear and linear relationships 
have to be estimated concurrently. Within the DBM modelling approach, the SDP identified 
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nonlinearity is parameterized in a simple manner (usually by a power law in yk : see later) and then 
the complete model is estimated using an optimization procedure that incorporates recursive 
Refined Instrumental Variable (RIV) estimation. 
 Step 2:  Given the estimated TF model from step 1, focus on statistically significant changes 
in either the gain or the full dynamic behaviour of the linear TF model (i.e. from effective rainfall to 
stream flow) over the whole observation interval. Effectively, this exploits either a recursive time-
varying parameter (TVP) estimation scheme, or repeated constant parameter estimation over a fixed 
or variable data window (rectangular-weighted-past (RWP) estimation: see Young, 1984), in order 
to estimate changes in the parameter estimates (see, for instance, Young (1984, 2000) for an 
overview of TVP estimation). This can be as simple as estimating the time varying gain of the TF 
model using recursive least squares, which provides a very quick indication of the temporal changes 
required to make the constant parameter model explain the data better, or as an RIV or RWP 
estimation of all the TF model parameters. For a more complete hydrological interpretation of these 
results, however, it is necessary to evaluate not only the time-varying parameter estimates, but also 
the poles and residues of the partial fraction expansion of the TF, as these are related to the 
residence times and gains of the inferred parallel flow paths (see previously cited references). In 
addition to this TVP analysis, a �movie� of the changing dynamics can be generated from the 
impulse response (unit hydrograph) estimated for each window, so providing a clear visual 
illustration of how the system dynamics may have changed over the whole period. 

Step 3: Given the non-linear and linear sub-models, in step 3 analyse the data information 
content for each data window in an RWP approach. Thus, for each window, calculate ( T ) with  
the data matrix and subsequently perform an eigendecomposition. Plot the eigenvalues and the 
elements of the eigenvector, which can be interpreted as weights for each individual parameter. The 
eigenvalues will reveal how the data content will change for each window. Windows with small 
eigenvalues indicate intervals on which the parameters may be difficult to identify and which thus 
may be neglected when estimating the parameters from the data. 
 
 
RESULTS AND DISCUSSION 
 
System TF modelling 
Given the rainfall � stream flow data (Fig. 1), our first step was to estimate the parameters of the 
simple, first order output-error model without time delay 

 
0
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using the recursive SDP estimation algorithm, which is available in the CAPTAIN Toolbox for 
Matlab1. This non-parametric (graphical) estimation identifies that the TF numerator parameter (b0) 
is a function of the measured flow, which is acting as a surrogate measure of the changing soil 
moisture. As in previous DBM modelling, this simple nonlinearity can be parameterized quite well 
by the following power law in the measured flow, i.e., 
 0.4

0, 0
� ' ( )k kb b y          (13) 

where 0'b  is the new �constant� input parameter, so that b0 uk becomes 0.4
0' ( )k kb u y . Notice, 

however, that after this substitution the model cannot be used in a predictive sense, which is not a 
real limitation as our focus is on diagnostics. Hence, in what follows, we will use the "effective 
rainfall": uk yk

0.4 , under the constraint that uk yk
0.4 < uk, instead of the measured rainfall (uk) to 

                                                 
1 A fully functional trial version of the CAPTAIN Toolbox can be downloaded from 
http://www.es.lancs.ac.uk/cres/captain/
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identify the linear (state-dependent) sub-model. Given this newly defined input, the RIV algorithm 
in CAPTAIN identifies an output-error model with na = 2, nb = 3 and nk = 0, in short-hand notation 
OE(2,3,0), which explains the flow data quite well. Hence, the resulting TF model is given by 

 
1 2

0 1 2
1 2

1 21k k k
b b q b qy u v

a q a q
       (14) 

where 0.4
k k ku u y , the "effective rainfall" calculated from the raw rainfall - stream flow data, and 

{vk} is a (coloured) noise sequence. Most often, after a partial fraction expansion of Eq. 14, the 
model can be decomposed into two first-order systems in parallel, with time constants q and s, 
respectively; as well as a direct constant gain parameter. The time constants q and s are related to 
quick (run-off) flow and to slow (base) flow, while the direct term reflects the instantaneous effect 
of the effective rainfall on the output (in this example nk=0).  

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

0 2000 4000 6000 8000 10000 12000 14000 16000
0

1

2

3

4
x 104

Time (d)  

Fig. 1. Rainfall � stream flow data from the Tinderry catchment. 
 

 
 

Fig. 2. Recursive estimates and error bounds of an OE(2,3,0) model (Eq. 15) with fixed window of 
365 d and a shift of 30 d. 
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Analysing TF parameter trajectories 
The trajectories of the recursive parameter estimates for the first 10,000 days showed considerable 
jumps in the first 10 years of data. In order to amplify these changes in the RWP estimation case, 
we either used a fixed window of 365 days that is shifted every 30 days, thus in total approximately 
320 windows; or an event-based window. In the latter case, an event starts when uk > 20 mm and 
the window length is at least 30 days. These results are not shown here, as they do not differ too 
much from the fixed window case, shown in Fig. 2.  
 
Analysing data content 
In the simplest recursive estimation analysis, the gain of the TF model is estimated recursively, as 
shown in Fig. 3 over a short segment of the data. Here, given the OE(2,3,0) model structure, the 
narrowing of the standard error bounds when rainfall and resultant high flows occur (e.g. around 
3730 days), illustrates when there is high information in the data. In the more detailed RWP 
analysis, the five parameters in the OE(2,3,0) model structure have to be estimated. Hence, the 
minimum number of data points needed for a time-varying parameter estimation with fixed window 
is seven. Shifting this window each time by five days results in an overview of the main directions 
and associated semi-axis lengths, as presented in Fig. 4. Here, the left panels display the 
eigenvalues of the data information matrix for each window on a log-scale, where large eigenvalues 
imply high data information content. The right panels present the absolute values of the eigenvector 
elements, as these can be interpreted as weights on the individual parameter axes in the parameter 
space. Fig. 5 presents the rainfall-stream flow data for periods with high and low data information 
content around 3730 (5x746) days. As expected from the initial recursive estimation, high data 
information content occurs with high rainfall and stream flows: see the left panels of Fig. 5 and the 
low data information content in dry periods.  

 
Fig. 3. Recursive estimate of the changing gain parameter showing the changes and associated 
standard error bounds, based on the effective rainfall series uk yk

0.4 (with uk and yk shown in Fig. 5). 
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Fig. 4. Eigenvalues and eigenvector (only at the end) elements related to the time-varying data 

information matrix. 
 

Fig. 5. Rainfall � stream flow data at ranges with maximum (left) and minimum (right) data 
information. 

 
 
CONCLUDING REMARKS 
1.  Dynamic transfer function model-based diagnosis revealed periods/events in which significant 
parameter changes take place in the linear part of the state-dependent model. 
2.  These changes can be driven by the rainfall data, which needs a further investigation in terms of 
local effects; or by the resulting flow dynamics in the catchment.  
3.  For further understanding of the system, the problems of changing time delays (Fig. 2), i.e. 
changes in the estimates of b0, b1 and b2, and significant changes in the residence time of the base 
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flow (not shown) need to be investigated. The problem of negative residues (implying physically 
implausible negative flow pathways), that sometimes appeared after the partial fraction expansion 
of the TF, needs further research, in particular with respect to hypotheses of potential cross-flows. 
4.  In addition to this, the choice of the window length and the effect of heteroscedasticity on the 
data information content are subjects for further research, too. 
5.  The data information content significantly changes over a period of 42 years. Hence, for accurate 
parameter estimation results, the estimation should be focussed on the identified periods with 
relatively high data information content. 
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