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Plant-fungal pathogen interactions 

Plant pathogenic fungi developed different lifestyles and infection strategies on their 

host plants. These modes of nutrition are known as biotrophy, necrotrophy and 

hemibiotrophy. Biotrophic fungi colonize living host cells and necrotrophic fungi kill host 

tissue to obtain nutrients for growth and development. Hemibiotrophs have a mixed lifestyle 

with an initial biotrophic and symptomless phase that is followed by a necrotrophic growth 

phase (Horbach et al., 2011). Obviously, plants defend themselves in various ways to such 

versatile biotic threats and as a result successful pathogens are constantly perturbing host cell 

signaling or suppressing plant innate immunity. In turn, plants have to defend themselves 

through mechanisms that perceive and respond to pathogen attacks resulting in an arms race 

that is currently framed in the so-called zig-zag model (Jones and Dangl, 2006). Upon 

pathogen attack, the first line of plant defence is formed by pattern recognition receptors 

(PRRs) that recognize pathogen-associated molecular patterns (PAMPs) activating the so-

called PAMP-triggered immunity (PTI) that prevents further colonization of potential 

pathogens. In order to suppress PTI, plant pathogens secrete effectors leading to host 

susceptibility known as effector-triggered susceptibility (ETS). In turn, plants have responded 

by evolving R proteins that recognize directly or indirectly effectors that trigger effector-

triggered immunity (ETI), which is often associated with the hypersensitive response (HR). 

HR is initiated by the activation of various protein kinase cascades, oxidative burst responses 

and increased expression of numerous defense related genes eventually leading to host cell 

death. Pathogens evade the selection pressure by modulating recognition by numerical or 

structural effector changes to suppress ETI, leading again to susceptibility (Thomma et al., 

2011). In biotrophic and hemibiotrophic fungi, numerous effectors (avirulence factors or 

elicitors) and associated resistance (R) genes have been cloned, characterized and proven to 

comply with the gene-for-gene (GFG) model (Flor, 1971; Bent and Mackey, 2007; Dodds et 

al., 2009) (Fig.1). For example, in the strictly biotrophic fungus C. fulvum, four avirulence 

effectors (Avrs) and six extracellular proteins (Ecps) were characterized that invoke an HR – 

but also have virulence functions – in tomato lines carrying cognate resistance traits 

(Stergiopoulos and de Wit, 2009).  

In necrotrophic fungi, predominantly present in the order of Pleosporales, effectors 

have an alternative role by functioning directly as host selective toxins (HSTs) that induce 

plant cell death in the presence of HST-sensitivity genes. Thus, unlike the classical GFG 

interaction, resistance is controlled by the absence of HST-sensitivity genes.
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Therefore, these interactions are described as inverse GFG (iGFG) systems (Fig.1) (Wolpert 

et al., 2002; Friesen et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Left: GFG models (effector-triggered immunity) frequently determine biotrophic plant–pathogen 

interactions. Fungal Avrs and plant resistance proteins directly or indirectly interact and this leads to disease 

resistance often involving an HR. Right: iGFG models (effector-triggered susceptibility) frequently determine 

necrotrophic plant–pathogen interactions. HSTs and host sensitivity genes interact and this leads to disease 

susceptibility. Plus signs (+) represent compatible (susceptible) interactions, minus signs (−) represent 

incompatible (resistant) interactions (Friesen and Faris, 2010). 

 

However, effectors produced by both classes of pathogens operate in a species- and 

cultivar-specific manner. Currently, HSTs are known to be produced by about 20 fungal 

species, several of which produce multiple toxins. These fungal genera mostly belong to the 

large class of Dothideomycetes and include species from genera such as Alternaria, 

Cochliobolus, Leptosphaeria, Venturia, Ascochyta, Pyrenophora and Stagonospora. The 

devastating wheat tan spot pathogen P. tritici repentis (Ptr) produces several proteinaceous 

and nonproteinaceous HSTs (Ballance et al., 1989; Effertz et al., 2002). ToxA is the first 

isolated and best-studied proteinaceous HST. Its recent lateral transfer from the wheat glume 

blotch pathogen S. nodorum to Ptr turned tan spot from a negligible component of the cereal 

disease complex into a major global wheat disease (Friesen et al., 2006). In S. nodorum five 

HSTs and their corresponding HST-sensitivity genes have been identified (Liu et al., 2009). 

At this stage three sensitivity genes have been cloned; LOV1 from Arabidopsis (Lorang et al., 

2007), Pc from Sorghum (Nagy and Bennetzen, 2008) and Tsn1 from wheat that all have 

disease resistance gene-like features, including S/TPK and NBS-LRR domains (Faris et al., 

2010). 
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Mycosphaerella graminicola is a member of the Dothideomycetes 

The genus Mycosphaerella together with its associated anamorph genera contains over 

10,000 names (Crous et al., 2009), causing disease on a wide array of major food, fiber or fuel 

crops, including cereals, banana, soybeans and tree crops (Farr et al. 1995). Taxonomically, 

Mycosphaerella belongs to the class of the Dothideomycetes, formerly known as the 

loculoascomycetes (Eriksson and Winka, 1997), which is the largest and most diverse class of 

ascomycete fungi that comprises over 20,000 species, which infect almost every crop and are 

found on every continent including major plant pathogens such as the aforementioned S. 

nodorum and Ptr as well as the Mycosphaerella fijiensis, the banana black sigatoka pathogen, 

the Southern corn leaf blight pathogen Cochliobolus heterostrophus and the pine needle blight 

pathogen Dothistroma septosporum (Hane et al., 2007), as well as saprobes and a few lichen-

forming and rock-inhabiting fungi (Ruibal et al., 2009). 

The subject of this thesis, the heterothallic ascomycete Mycosphaerella graminicola 

(Fuckel) J. Schröt. in Cohn (anamorph Zymoseptoria tritici (Desm.) Quaedvlieg & Crous) 

(Quaedvlieg et al., 2011) is another major Dothideomycete plant pathogen. It causes septoria 

tritici blotch (STB), which is one of the most important global wheat diseases that defoliates 

plants and consequently diminishes yields (Eyal, 1981; Eyal, 1987; Eyal, 1999; Ponomarenko 

et al., 2011). The host range of M. graminicola includes both bread and durum wheat 

(Triticum aestivum L. and T. turgidum ssp. durum L.) and their graminaceous ancestors, but 

isolates show clear pathogenicity differences on these species, known as host specificity 

(Kema et al., 1996d; Kema et al., 1996b; Ware, 2006). Stukenbrock et al. (2007, 2010) 

provided evidence that M. graminicola emerged as a wheat pathogen from ancestral 

Mycosphaerella populations on wild grasses during wheat domestication around 10,500 years 

ago. Indeed, Z. tritici also infects grasses (Brokenshire, 1975; Suffert et al., 2010; Quaedvlieg 

et al., 2011), but their function as alternative hosts in natural habitats is not well understood 

(Suffert et al., 2010) as many of these species may actually be different Mycosphaerella 

species (Quaedvlieg et al., 2011).  

 

The wheat-M. graminicola pathosystem 

M. graminicola is a hemibiotroph characterized by a biotrophic and a necrotrophic 

phases during pathogenesis that have been extensively studied (Cohen and Eyal, 1993; Kema 

et al., 1996a; Duncan and Howard, 2000; Rohel et al., 2001; Shetty et al., 2003). The infection 
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process is completed within 12-24 hrs and commences when deposited spores germinate 

under conditions of high humidity and germ tubes penetrate the foliage, mainly through the 

stomata, without differentiation of infection structures and irrespective of host resistance 

(Kema et al., 1996a; Mehrabi et al., 2006).  

Macroscopic symptoms vary greatly in the incompatible interaction from none 

detectable to substantial leaf chlorosis or necrosis, but without fungal proliferation (Ware, 

2006; Rudd et al., 2008) and with the absence of an HR that is characteristic of many other 

pathosystems (Greenberg, 1997; Heath, 2000). The exact mechanism of resistance is still 

unknown (Shetty et al., 2003; Rudd et al., 2008; Shetty et al., 2009). Shetty et al. (2003, 2007) 

showed that the inhibition of pathogen development is correlated with H2O2 accumulation. 

However, H2O2 scavenging in a resistant cultivar did not render it fully susceptible and 

therefore, other factors are also considered to contribute to host resistance (Shetty et al., 

2007). Recent reports showed an accumulation of -1,3-glucanase and chitinase in the 

apoplast as well as callose deposition in incompatible interactions. Furthermore, it was shown 

that -1,3-glucans in the fungal cell wall trigger the expression of the PR-2 protein -1,3-

glucanase, which is essential for cleaving elicitors from fungal cell walls and hence can act as 

PAMPs (Shetty et al., 2009).  

Compatibility is characterized by a long apoplastic biotrophic phase with absence of 

macroscopic symptoms until approximately 10 days after inoculation, depending on 

environmental/experimental conditions, -without noticeable increase of fungal biomass 

(Kema et al., 1996a; Ware, 2006; Rudd et al., 2008). Marshall et al. (2011) suggested that M. 

graminicola could be considered as a necrotroph rather than a hemibiotroph since not much is 

known about the fungus’ survival and nutrition during the long symptomless initial phase. 

Recently, three LysM effectors, M. graminicola homologues of Ecp6 from C. fulvum, were 

identified that were shown to mediate virulence through perturbation of chitin-triggered host 

immunity (de Jonge et al., 2010). These were up-regulated during the biotrophic phase, but 

only one played a role in virulence, suggesting that they may have different functions during 

plant infection (Marshall et al., 2011). The transition between the biotrophic and necrotrophic 

phases is associated with the induction of host defense processes that characterize HR 

associated with programmed cell death (PCD) as well as differential regulation of wheat 

mitogen-activated protein kinase (MAPK) pathways, and other markers that are typically 

associated with ETI, or occasionally with PTI (Keon et al., 2007; Rudd et al., 2008). They all 

affect cell permeability resulting in nutrient leakage from dying plant cells that facilitates 

fungal proliferation in the apoplast. Keon et al. (2007) identified a plethora of sugars and 



GENERAL INTRODUCTION 

15 
 

amino acids in the apoplastic fluids released from wheat cells just before the onset of host cell 

death and thus STB lesion formation. Indeed, the massive mesophyll cell collapse during the 

biotrophic-necrotrophic switch is reminiscent of active cell-wall-degradation (Douaiher et al., 

2007; Kema et al., 2008; Siah et al., 2010), but could also be due to toxic compounds that act 

as virulence factors (Kema et al., 1996a; Perrone, 2000; Shetty et al., 2009). This would 

significantly differ from the related pathogens S. nodorum and P. tritici that secrete 

proteinaceous toxins during host penetration, which are subsequently internalized in the wheat 

host cells (Ciuffetti et al., 2010; Faris et al., 2010). However, early chloroplast condensation 

in wheat mesophyll cells without proximate M. graminicola hyphae also suggests that 

apoplastic fungal compounds affect cell and organelle integrity (Kema et al., 1996a). 

Eventually, fungal proliferation during the necrotrophic phase culminates in the formation of 

numerous asexual and sexual fructifications (Kema et al., 1996a; Kema et al., 1996c) (Fig.2). 

Under field conditions, M. graminicola has a compounded reproduction system of asexually 

produced splash-borne pycnidiospores and sexually produced air-borne ascospores. The 

epidemiological importance of plant tissues (wheat seeds, stubble and debris; wheat 

volunteers; other grasses) and the various fungal propagules for inoculum build-up and 

overseasoning (ascospores, pycnidiospores, mycelium) has been reviewed recently by Suffert 

et al. (2010). Ascospores are produced year-round, but their release from wheat debris during 

the fall is the most important source of primary inoculum. After symptom development, this is 

followed by secondary waves of pycnidiospores that drive STB epidemics during the growing 

season (Eyal, 1987; Shaw and Royle, 1989, 1993; Eyal, 1999; Hunter et al., 1999; McDonald 

and Linde, 2002; Zhan et al., 2007; Suffert et al., 2010; Ponamorenko et al., 2011).  

Finally, specificity in the M. graminicola-wheat pathosystem has been frequently 

observed (Kema et al., 1996d; Kema et al., 1996b; Kema and van Silfhout, 1997; Kema et al., 

2000; Brading et al., 2002; Ware, 2006; Ware et al., 2006). Since the elucidation of the M. 

graminicola mating system, the host-pathogen interaction was shown to comply with the 

GFG model (Brading et al., 2002) and the genetic control of host and cultivar specificity was 

studied in several mapping populations resulting in the identification of multiple quantitative 

trait loci involved in induction of necrosis and formation of pycnidia (Kema et al., 1996c; 

Kema et al., 2000; Ware, 2006). So far, 18 Stb genes have been reported in bread wheat 

cultivars (Arraiano et al., 2007; Goodwin, 2007; Chartrain et al., 2009; Tabib Ghaffary et al., 

2011a; Tabib Ghaffary et al., 2011b). 
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Fig. 2. A. Life cycle of the fungal wheat pathogen Mycosphaerella graminicola (after Ponomarenko et al., 

2011); B. From left to right: septoria tritici blotch lesions on wheat leaves; C. From top to bottom: asexual 

spores called pycnidiospores germinate, form a germ tube, and enter a substomatal chamber by penetrating the 

leaf through a stomatum. Pycnidium exuding a cyrrhus containing pycnidiospores through the stomatal opening. 

Individual pycnidiospores are multicellular and uninucleate (stained with DAPI and observed with UV 

epifluorescent microscopy). Sexual reproduction occurs when two strains of opposite mating type meet and form 

a pseudothecium in which ascospores develop. Ascospores are two-celled, uninucleate, hyaline and elliptical 

with one cell slightly larger than the other (Kema et al., 1996a; Mehrabi et al., 2006). 

 

 
 

Sexual recombination in M. graminicola 

Meiosis shuffles linkage groups (chromosomes) and alleles within individual 

chromosomes generating therefore genetic diversity (Wahls, 1997). Recombination originates 

from crossing-overs between homologous chromosomes that result in physical structures, the 

chiasmata, enabling the proper segregation of recombinants during the meiotic stage (Roeder, 

1997; Page and Hawley, 2003; Nishant and Rao, 2006). In most organisms, chiasmata are 
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positioned preferentially at hotspots along chromosomes and are important for the segregation 

of homologous chromosomes and sister chromatids during meiosis I and II, respectively 

(Roeder, 1997; Wahls et al., 2008) (Fig. 3).  

M. graminicola has a bipolar heterothallic mating system and sexual development 

requires two mating partners ‐ carrying different mating type alleles (mat1-1 or mat 1-2) 

(Kema et al., 1996c; Waalwijk et al., 2004). From closely related species, it has been shown 

that spermagonia produce the male spermatia, and ascogonia produce the female trichogynes 

(Crous, 1998). When the cytoplasm of the two parent mycelia fuse, a spermatium fertilizes a 

trichogyne after which the nuclei undergo mitosis. A dikaryotic cell with two haploid nuclei 

will develop and undergoes mitosis leading to the formation of ascogenous hyphae containing 

nuclei from each parent. Ascus mother cells will form, and genetically distinct nuclei fuse into 

a zygote during karyogamy. The zygote divides meiotically and produces four haploid nuclei. 

Each of these nuclei undergoes mitosis yielding four twin pairs of daughter cells, the 

ascospores, in bitunicate asci in the pseudothecia.   

 

 

 

Fig. 3.  Hallmarks of meiosis. 

After DNA replication, homologues chromosomes (light and dark) pair and 

undergo a high rate of recombination (Wahls et al., 2008).  

 

This sexual reproduction plays a major role in the genetic 

structure of M. graminicola populations that exhibit a high level 

of genetic diversity even within the same lesion (Chen and 

McDonald, 1996; Linde et al., 2002; Zhan et al., 2002). 

Understanding the genetic structure of a population is indicative 

for the epidemiology and evolutionary potential of a pathogen 

(McDonald and Linde, 2002). Molecular markers are commonly 

used to characterize pathogen populations and can also be used in 

segregating populations derived from a specific cross between two 

parents to generate genetic linkage maps that visualize genome organization and structure, 

and specific gene positions (Xu et al., 2009). Several methods, including PCR-based 

techniques such as Random Amplification of Polymorphic DNA (RAPD), Restriction 

Fragment Length Polymorphism (RFLP), Amplified Fragment Length Polymorphism 

(AFLP), microsatellites or simple sequence repeats (SSRs), have been used to construct 

genetic linkage maps in Ascomycetes (Cozijnsen et al., 2000; Jurgenson et al., 2002; Kema et 
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al., 2002; Pedersen et al., 2002; Zhong et al., 2002; De Vos et al., 2007; Manzo-Sanchez et 

al., 2008), Basidiomycetes (Larraya et al., 2000; Muraguchi et al., 2003; Marra et al., 2004; 

Lind et al., 2005), and Oomycetes (van der Lee et al., 1997; May et al., 2002; Sicard et al., 

2003). Another recent technique is the Diversity Arrays Technology (DArT), which is a cost 

effective hybridization-based marker technology that offers a high multiplexing level while 

being independent of sequence information. This technique has been applied successfully in 

several crops including barley (Tinker et al., 2009), wheat (Akbari et al., 2006) and rice (Xie 

and Nevo, 2008). In this thesis its application in fungal genomes is described. 

 

Dothideomycete genomics    

Because of their relative small genome size, fungi are particularly amenable to 

genome studies (Dyer, 2008). High-throughput DNA sequencing provides a new window to 

study the structure and function of genomes and enable the rapid identification of genes that 

are important for plant infection and colonization, obviating the need for time consuming and 

laborious cloning (Desjardins et al., 2003). The first fungal genome ever published was the 12 

Mb Saccharomyces cerevisiae genome in 1996 (Goffeau et al., 1996) followed by 

Schizosaccharomyces pombe six years later (Wood et al., 2002). Recent technical advances in 

DNA sequencing resulted in an explosion of genome projects with over 100 that are at least in 

the draft assembly phase (genomeprj) (Ma and Fedorova, 2010). So far, twelve 

Dothideomycete genomes have been sequenced by the Joint Genome Institute of the United 

States Department of Energy (DOE-JGI, http://www.jgi.doe.gov, see MycoCosm at 

http://genome.jgi-psf.org/programs/fungi/index.jsf) and other sequencing centers (Ohm et al., 

2011). The availability of these genome sequences not only enabled advanced comparative 

genomic studies addressing the extreme phenotypic diversity in the fungal kingdom and 

showing the existence of mesosynteny between relatively distantly related Ascomycetes (Hane 

et al., 2007; Hane et al., 2011), but also enabled comparative transcriptomics (Ohm et al., 

2011). 

Recently, homologues of the C. fulvum Avr4 and Ecp2 effector proteins were 

identified in the related Dothideomycete banana pathogen M. fijiensis that evoked HR 

responses in tomato lines carrying cognate R genes (Stergiopoulos et al., 2010), illustrating 

the power of genome sequences for discovery research. Due to its genetic tractability and high 

economic significance, M. graminicola was the first filamentous fungal species that was 

sequenced in the Community Sequence Program of the DOE-JGI and currently represents the 

http://www.ncbi.nlm.nih.gov/genomeprj
http://www.jgi.doe.gov/
http://genome.jgi-psf.org/programs/fungi/index.jsf
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first completed fungal genome which is presented in this thesis.   

 

SCOPE OF THIS THESIS 

The experiments and results described in this thesis provide insight into the genome 

structure and pathogenicity of M. graminicola.  

Chapter 1 provides a brief overview of the biology and pathogenicity of M. 

graminicola and also briefly touches on the impact of improved and novel technologies for 

genetic and genome research that revolutionize the speed, scope and scale of comparative 

genomics.  

Chapter 2 describes the detailed analyses of two M. graminicola mapping populations 

that were generated using the in planta crossing protocol. Chromosome length and number 

polymorphisms, CLPs and CNPs, respectively, were frequently discovered in progeny 

isolates, but had no apparent effect on sexual and pathogenic fitness. The observed genomic 

diversity in progeny isolates suggests that meiosis is an important driver of genome plasticity. 

The generated linkage map was instrumental for the finishing strategy of the M. graminicola 

genome.  

Chapter 3 provides a summary of a complex research program in which the M. 

graminicola genome was unraveled. It provides highlights on genome structure and 

organization, including the identification of eight dispensable chromosomes and their 

plasticity as shown in comparative genome hybridizations. The dispensable chromosomes are 

distinct in structure, gene and repeat content but also contain parts from each core 

chromosome. Finally, this chapter describes various functional characteristics of the genome 

content in relation to M. graminicola’s lifestyle. 

Chapter 4 presents a global analysis of fungal proteins that are mostly secreted during 

the compatible interaction with wheat. For this purpose, various proteome analytical tools 

were used and the generated data were blasted to the finished M. graminicola genome data to 

subtract all host proteins. The known and proposed role of the in planta M. graminicola 

proteome is discussed within the context of fungal virulence.  

Chapter 5 further details on the initial identification and characterization of necrosis-

inducing proteins from M. graminicola. Their activity in wheat seedlings strongly depends on 
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light intensity, which resembles characteristics of the iGFG model of other Dothideomycete-

wheat pathosystems where susceptibility is driven by the interaction between fungal HSTs 

and HST-sensitivity genes in the host. 

Chapter 6 is a summarizing discussion where the experimental data of the previous 

chapters are placed in a broader context, highlighting the importance of the discovered 

mechanisms for genome structure and function. The identification of necrosis-inducing 

proteins in M. graminicola and the implications of this finding are discussed in the context of 

its hemi-biotrophic lifestyle and its interaction with wheat. 
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ABSTRACT 

Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in 

eight ascospores due to a mitotic division following the two meiotic divisions. The transient 

diploid phase allows for recombination among homologous chromosomes. However, some 

chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because 

these chromosomes are not present universally in the genome of the organism they can be 

considered to be dispensable. To analyze the meiotic transmission of unequal chromosome 

numbers, two segregating populations were generated by crossing genetically unrelated parent 

isolates originating from Algeria and The Netherlands that had pathogenicity towards durum 

or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density 

mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed 

that M. graminicola has up to eight dispensable chromosomes, the highest number reported in 

filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 

38% of the chromosomal complement. Chromosome numbers among progeny isolates varied 

widely, with some progeny missing up to three chromosomes, while other strains were 

disomic for one or more chromosomes. Between 15-20% of the progeny isolates lacked one 

or more chromosomes that were present in both parents. The two high-density maps showed 

no recombination of dispensable chromosomes and hence, their meiotic processing may 

require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also 

enabled the identification of individual twin isolates from a single ascus that shared the same 

missing or doubled chromosomes indicating that the chromosomal polymorphisms were 

mitotically stable and originated from nondisjunction during the second division and, less 

frequently, during the first division of fungal meiosis. High genome plasticity could be among 

the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic 

conditions in wheat fields. 
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INTRODUCTION 

Fungi provide attractive model systems to analyze processes that occur during meiosis. 

Many fungi are haploid, which greatly simplifies genetic studies. Furthermore, complete 

recovery of the meiotic products, or tetrads, is possible in ascomycete fungi, and these tetrads 

can be analyzed for the segregation of genetic markers. Tetrad analyses of Aspergillus 

nidulans and Neurospora crassa have been instrumental in answering fundamental questions 

concerning meiosis (Raju, 1980; Geiser et al., 1996; Davis and Perkins, 2002). Here we 

describe genetic studies in another filamentous ascomycete, Mycosphaerella graminicola 

(asexual stage: Septoria tritici). This fungus causes septoria tritici blotch (STB) of wheat, a 

disease characterized by necrotic blotches on
 
the foliage. These blotches contain asexual 

(pycnidia) and sexual (pseudothecia)
 
fructifications. M. graminicola represents an intriguing 

model for fundamental genetic studies of plant-pathogenic fungi. Field isolates of this 

pathogen usually have 18-21 chromosomes, the highest number reported among ascomycetes. 

Furthermore, these chromosomes have an extraordinary size range, varying from 0.39 to 6.09 

Mb (Mehrabi et al., 2007). Genome plasticity - comprising processes such as inversions, 

deletions, insertions and translocations that translate into chromosome length polymorphisms 

(CLPs) as well as chromosome number polymorphisms (CNPs) - results in a genome size that 

varies between 32 and 40 Mb, similar to other filamentous ascomycetes (McDonald and 

Martinez, 1991; Kema et al., 1999; Dean et al., 2005; Cuomo et al., 2007; Hane et al., 2007; 

Mehrabi et al., 2007). M. graminicola has an active sexual cycle under natural conditions, 

which is an important driver of STB epidemics and results in high genetic diversity of 

populations in the field (Kema et al., 1996c; Kema et al., 1996a; Zhan et al., 2003). 

Analyses of a cross between two M. graminicola strains that originated from bread 

wheat fields in The Netherlands resulted in the first genetic linkage map of a Mycosphaerella 

species (Kema et al., 2002; Goodwin et al., 2004). Although this map was a major milestone, 

the anonymous AFLP and RAPD markers complicated integration of genetic data sets. In 

addition, the number of markers was limited and the map resolution was too low to assess the 

complications anticipated during meiosis due to the CLPs and CNPs commonly observed 

among M. graminicola isolates (McDonald and Martinez, 1991). 

The exact origin and maintenance of CNPs and CLPs are not known. A likely 

hypothesis is that they can be generated or lost during meiosis. Recombination between 

chromosomes that differ in length could give rise to derivatives with CLPs (Zolan, 1995). 

Nondisjunction during meiosis I or II would generate CNPs. To test these hypotheses, we 
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used the recently developed Diversity Arrays Technology (DArT) for the first time on a 

haploid fungal genome (Jaccoud et al., 2001; Wenzl et al., 2004; Wittenberg et al., 2005; 

Akbari et al., 2006; Semagn et al., 2006). The parallel genotyping of progeny isolates using 

several thousands of DNA fragments spotted on a microarray and subsequent analysis 

resulted in one of the most dense genetic linkage maps currently available for a fungus. This 

enabled high-resolution genetic linkage analyses to study the meiotic processing of CNPs and 

CLPs as well as the generation of new genome plasticity in M. graminicola. We frequently 

observed the loss of one or more chromosomes, disomy and translocations. This extraordinary 

genome plasticity helps to explain the high genetic diversity observed within natural 

populations of this fungus and most likely facilitates rapid adaptation to changing 

environments. 

 

RESULTS 

Marker selection and quality  

Among the 68 progeny isolates from the M. graminicola IPO323 x IPO94269 cross, 

1042 new DArT markers were obtained. The DArT markers were added to the first genetic 

linkage map of M. graminicola (Kema et al., 2002), consisting of 271 AFLP markers, 57 

RAPD markers and two markers for the biological traits avirulence (Avr) and mating type 

(mat). Twenty-five SSR markers also were added to the combined linkage map (Table S7) 

(Goodwin et al., 2007). For the 148 progeny isolates of the M. graminicola IPO323 x 

IPO95052 cross, 1154 DArT markers were obtained that were combined with six SSR 

markers and the markers for the two biological traits (Table S8). After analysis of the marker 

data, 31 twins were detected in the M. graminicola progenies (Table S9). These twins result 

from the mitotic division that follows meiosis II in the ascus. The twin data enabled the 

dissection of mitotic or meiotic events that drive the generation of CLPs and CNPs. 

Eventually, the merged scoring tables comprised 60 individuals for the IPO323 x IPO94269 

cross and 125 individuals for the IPO323 x IPO95052 cross (Table S10). Because twins can 

be regarded as biological replicates, they also were used to evaluate the reproducibility of the 

marker scores for the different marker technologies. In our study, DArT and AFLP markers 

appeared to be more reproducible than the RAPD markers. Therefore, RAPD markers were 

excluded to improve the quality of the maps. Although the reproducibility for both DArT and 

AFLP was very high, the frequency of double crossovers in the final maps was much lower 

for DArT than for AFLP markers (0.24% compared to 0.96%), indicating the superior 
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reliability of the DArT markers. 

 

Construction and comparison of the linkage maps 

  The combined genetic linkage maps contain 2078 markers comprising 1793 DArT, 

258 AFLP, and 25 SSR DNA markers, plus the two markers that co-segregate with the 

biological traits Mat and Avr (Table S11). The grouping and the order of the markers in the 

M. graminicola IPO323 x IPO94269 cross were highly similar to those in the previous maps 

(Kema et al., 2002; Goodwin et al., 2007). Compared to the previous map both new maps 

span a considerably larger part of the genome. In both crosses close to 99 % of the 

segregating markers were reliably positioned, indicating that the current genetic linkage maps 

cover the complete genome.  

The new genetic linkage map of the IPO323 x IPO94269 cross is 638 cM longer than 

the first linkage map, and spans 1854 cM with 1317 markers on 451 unique map positions, 

with an average distance of 4.1 cM between the markers (Table S12). Nearly all markers 

(98.2%) were positioned on 24 LGs. Some of the smaller LGs that were observed in the first 

map merged with other LGs (Kema et al., 2002): 10 LGs in the first map merged into five 

larger LGs, while six small new LGs were formed. For example, LGs 3 and 4 in the first map 

merged with LGs 22 and 17, respectively, in the new map. The order of the AFLP markers in 

the first and new map remained similar, although more AFLP markers were positioned in the 

latter (223 vs. 258 out of 271, representing 82.3% and 95.2%, respectively). The genetic 

linkage map of the M. graminicola isolate IPO323 x IPO95052 cross spans 1946 cM and 

contains 1144 markers on 486 unique map positions on 23 LGs (comprising 98.5% of the 

generated markers), with an average distance of 4.0 cM between the markers (Table S12).  

We also constructed a bridge map to compare the individual linkage maps using 

markers that segregated in both mapping populations. The resulting integrated map spans 

1435 cM (~75% of both individual maps) and contains 372 markers on 251 unique map 

positions. A total of 22 LGs from each of the individual crosses was aligned with the bridge 

map, and the marker order was similar to those on the two individual genetic maps (Fig. 1 and 

Fig. S1). The 21 LGs in the bridge map is close to the estimated number of chromosomes 

based on electrophoretic and cytological karyotyping (Kema et al., 2002; Mehrabi et al., 

2007) and is identical to the number of chromosomes of the finished genome sequence 

(http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html) (Table S13). 
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Translocations 

We identified eight DArT markers that were positioned very differently in the two 

maps, which is indicative of translocations. They represented five translocations between 

isolate IPO323 and either IPO94269 or IPO95052 and involved four inter-LG and one intra-

LG translocations (CBBMR_14G17 in LG 6) (Table S11). Another translocation between 

IPO323 and IPO94269 involved an SSR locus (Goodwin et al., 2007) that segregated in a 

diploid fashion in the isolate IPO323 x IPO94269 cross (1:1:1:1 ratio, χ
2
 = 1.25, 0.25 < P 

<0.75) and was mapped on LG 21 in IPO323 and on LG 4+17 in IPO94269. In addition, we 

obtained indications for a possible larger translocation involving LG F (Fig. S1). 

 

Meiosis drives extraordinary genome plasticity 

Parental CNPs. LGs 21 and C in the M. graminicola IPO323 x IPO94269 cross span less than 

2 cM and contain 21 and 36 markers (AFLP, SSR and DArT), respectively. Interestingly, all 

of these markers are inherited from isolate IPO323. This suggests that these two LGs are 

present in IPO323 but absent in isolate IPO94269. In the progeny of the IPO323 x IPO95052 

cross these linkage groups do show recombination, which resulted in much larger genetic 

distances of 21 cM and 24 cM, respectively. These results indicate that both linkage groups 

are present in isolates IPO323 and IPO95052, but are absent in IPO94269. An example of the 

difference in recombination frequency is shown for LG 21 in Fig. S2. 

Meiotic transmission of CNPs. Graphical genotyping allows the tracing of the genetic make 

up of progeny isolates. Among the progeny of the M. graminicola IPO323 x IPO95052 cross, 

LGs that were regularly absent either individually or in combination included LGs 8, 12, 13, 

15, 21, A, B and C. LGs 21 and C are absent in IPO94269, and frequently were missing in the 

M. graminicola IPO323 x IPO94269 progeny along with LGs 8, 12, 13 and A that were also 

often missing in this progeny (Table S4). In these cases LGs present in both parents were 

absent in one or more progeny isolates (Fig. 2). We also observed a progeny isolate (#40) 

from the M. graminicola IPO323 x IPO94269 cross that contained all markers from both 

parents on LG 13, indicating that this isolate was disomic for this relatively small 

chromosome (577 kb). In the same progeny set we identified another isolate (#51) that was 

disomic for LG 1, which represents one of the largest chromosomes (3.26 Mb) in the genome 

of M. graminicola isolate IPO323. 
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Fig. 1. Co-linearity of genetic linkage maps for Mycosphaerella graminicola crosses IPO323×IPO95052 (left) 

and IPO323×IPO94269 (right) with a bridge map (middle) generated with markers that segregated in both 

crosses. 

Common markers are shown in bold and start with the prefix C, SSR markers are shown in blue and markers that 

are translocated in red. DArT markers were named according to phase of the marker (A = IPO323, B = 

IPO95052 or IPO94269), complexity reduction method used (BMR or HMR), and location in the spotting plate 

(e.g. BBMR_15L11). LG and AFLP nomenclature is according to Kema et al., 2002. Segregation distortion of 

the markers is indicated with * (P<0.05), ** (P<0.01), *** (P<0.005) or **** (P<0.001). 
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If nondisjunction occurs during meiosis I, two paired chromosomes are pulled to one cell 

leading to loss of that chromosome in the other cell (Fig. 2B). In this case, one haploid M. 

graminicola isolate would become heterozygous disomic for that chromosome. If 

nondisjunction occurs during meiosis II, two sister chromatids are not divided between the 

two cells but are both pulled to the same cell (Fig. 2C). This evidently leads to two identical 

copies of the chromosome in that cell, and hence to homozygous disomy in one cell and to 

absence in the other cell. Unfortunately, homozygous disomy could not be detected with the 

techniques used for our analysis. 

 

Twins do not show CNPs. The large number of markers permitted easy identification of 

identical progeny and allowed determination of the stage at which CNPs were generated. In 

total, we detected 31 twins in the M. graminicola progenies, whose identity was visualized by 

graphical genotyping (Table S12). In four cases we could demonstrate that LGs that were 

present in both parents were absent in both isolates of a twin pair (Table S15). This is 

illustrated for twin pair 2137-2139 in Fig. 2D. 

 

PCR confirmation. The observed aberrations and graphical genotyping analyses were 

confirmed by PCR assays (Fig. 2D, E). Additional SSR and PCR assays confirmed the 

graphical genotyping results for six out of eight LGs. The absence of two LGs was confirmed 

by scoring of co-dominant SSR markers that are located on LG 8 (ac-0007) and LG 12 (gga-

0001). In all progeny isolates that lacked these LGs, none of the parental alleles was amplified 

(Fig. S3A). The absence of LGs 8, 12, 13, 15, A and C was further confirmed by diagnostic 

PCR analysis (Table S4a) for the mapped DArT markers. Indeed, none of these markers was 

amplified in the progeny isolates that, according to the graphical genotyping, lacked these 

particular LGs (Fig. S3B and S3C). However, amplicons of the expected size were always 

generated from the relevant checks, i.e., parental isolates, two progeny isolates that inherited 

the LG normally and a PCR amplification control. 

To confirm the disomy for LG 1 in progeny isolate #51, we performed PCR assays 

based on deletion polymorphisms (Fig. 2E, Table S6) identified by comparative analyses of 

IPO94269 BAC-end sequences with the draft genome sequence (v.2.5) of IPO323. These 

PCRs confirmed the graphical genotyping results indicating that a series of progeny isolates 

lost one or more complete chromosomes, while other isolates received an extra copy of a 

particular chromosome. 
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Fig. 2. Nondisjunction during meiosis in the haploid fungus Mycosphaerella graminicola results in chromosome 

number polymorphisms due to the loss or gain of specific chromosomes. A. Meiosis starts with the merging of 

nuclei from two different strains, leading to a transitory diploid cell. Karyogamy is followed immediately by 

meiosis I and II, resulting in four haploid cells. These four cells are duplicated during a subsequent mitotic step, 

leading to eight ascospores per ascus. Each ascospore is genetically identical to one other ascospore within the 

same ascus. Such pairs of identical ascospores are called twins. We identified several twins in progenies of M. 

graminicola. When a strain of a descendant lacked one or more chromosomes, the twins originating from the 

first mitotic cell division after meiosis always appeared to lack the same chromosomes. This indicates that 

chromosomes are stable during mitosis but can be lost during meiosis. B. Chromosome loss during meiosis can 

be a result of failure of separation of homologous chromosomes during meiosis I, or C. of the failure of 

separation of sister chromatids during meiosis II. D. Graphical genotyping of LG 8. The chromosomal segments 

descending from IPO323 are rendered in red, and the segments from IPO95052 in blue. Markers are scored as 

present (black) or absent (white). As the marker scores on all linkage groups were identical for these two 

isolates, we concluded that the descendants 2137 and 2139 are twins. However, both isolates lack all markers 

located on LG 8. This is a clear indication of absence of this linkage group in these isolates. Strikingly, this 

linkage group is present in both parents. For further verification, seven DArT markers spanning the length of LG 

8 were converted into simple PCR markers. In addition, one SSR marker was used. All markers appeared to be 

absent in the twin isolates 2137 and 2139. This confirms the absence of LG 8 in these twins and indicates 

nondisjunction during meiosis as the cause. E. Nondisjunction not only results in loss of a chromosome in one 

twin but also to disomy for that chromosome in another twin from the same ascus. The graphical genotyping of 

isolate #51 illustrates heterozygous disomy for LG 1, which was confirmed by a PCR screen for deletion 

markers that unequivocally showed the presence of two copies of this chromosome in this haploid fungus. 

 

In summary, the high-density mapping enabled the detection of meiotically driven and 

frequently occurring CNPs and CLPs in sexual progenies of the haploid plant pathogen M. 

graminicola. We identified 42 isolates that showed loss of a linkage group that was present in 

both parents compared to only two disomic isolates. Progenies showed 15 and 20% CNPs 

compared to the parents in the IPO323 x IPO94269 and IPO323 x IPO95052 crosses, 

respectively. Interestingly, the chromosomes lost were the same in both populations (Table 

S4). We performed 17 additional backcrosses and F2 crosses between progeny isolates that 

showed substantial CNPs. All crosses except one were successful and resulted in viable 

progeny (Table S15). 

 

DISCUSSION  

The genome of M. graminicola is highly plastic, based on the detailed analyses 

provided by the high-density genetic linkage maps. Eight chromosomes were missing in one 

or more progeny and can be considered dispensable, while other chromosomes occasionally 

were disomic. As many as three chromosomes were missing from individual progeny isolates, 

with no apparent effect on fitness. As expected, much of the genome plasticity is generated 

during meiosis and this could help to explain the high adaptability observed in field 

populations of this pathogen. 

Dispensable chromosomes have been found in other fungi but they usually occur at a 
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low frequency and typically represent single or a few chromosomes. For example the plant-

pathogenic fungi Alternaria alternata, Cochliobolus heterostrophus, Leptosphaeria maculans, 

Magnaporthe grisea and Nectria haematococca as well as the insect pathogen Metarhizium 

amisopliae each had only a single chromosome that was dispensable (Tzeng et al., 1992; 

Leclair et al., 1996; Han et al., 2001; Hatta et al., 2002; Chuma et al., 2003; Wang et al., 

2003). Dispensable chromosomes in these species usually contain genes involved in 

pathogenicity or virulence (Han et al., 2001; Hatta et al., 2002; Wang et al., 2003; 

Garmaroodi and Taga, 2007), whereas in others they don’t (Orbach et al., 1996). In M. 

graminicola, genes involved in host plant perception did not map to any of the eight identified 

dispensable chromosomes (Ware, 2006). Hence, the function of genes on dispensable 

chromosomes in M. graminicola is yet unknown. 

Genome instability is a major cause of disorders, and a range of genes has been 

identified that have a role in maintaining genome integrity (Aguilera and Gomez-Gonzalez, 

2008). In addition, polyploidy and aneuploidy are considered evolutionary pathways to 

reproductive isolation and speciation (Koszul et al., 2004; Kohn, 2005). The mitotic and 

meiotic pairing and transmission of homologous chromosomes with length polymorphisms 

has been studied intensively in models such as the fungi Saccharomyces cerevisiae, N. crassa 

and Coprinus cinereus (Zolan, 1995; Perkins, 1997; Koszul et al., 2006). These model 

systems have substantially increased our knowledge of meiotic processes (Perkins and Davis, 

2000), but they mostly involved cytogenetic studies and mutant strains (Cutter, 1951; 

Hardham and Mitchell, 1998). A high-density genetic linkage map provides a strong genome-

wide alternative for precise analyses of meiosis. However, the number of high-density genetic 

maps for fungi is limited due to difficulties and costs of high-quality marker generation and 

scoring required for their generation (Hackett and Broadfoot, 2003). Here, we report the 

meiotic processing and generation of genomic plasticity using a high-density genetic linkage 

map for M. graminicola. This unusual approach enabled the detection of Mendelian and non-

Mendelian inheritance patterns and elucidated the underlying meiotic principles that 

frequently resulted in progeny with CNPs. 

It is very clear that meiosis not only maintains but also drives novel CNPs in M. 

graminicola, which most likely result from nondisjunction during the second meiotic division. 

We noticed that 15-20 % of progeny isolates were missing one or more chromosomes that 

were present in the two parents. Interestingly, the same chromosomes were dispensable in 

both crosses. PCR analyses confirmed most of the CNPs, including the disomic 

chromosomes. Despite graphical genotyping indications for the absence of LGs 21 and B in 
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the M. graminicola IPO323 x IPO95052 progeny, PCR amplifications with several primer 

combinations derived from the mapped DArT markers on these LGs were inconclusive, 

although BLAST analyses to the genome of IPO323 revealed that they are single copy. The 

cause is unknown but may be due to the high repetitive content of these LGs (not shown). 

The high number of markers on the current linkage map enabled accurate 

identification of twin isolates. These originate from the mitotic division after meiosis and 

provided a unique opportunity to test the meiotic origin of CNPs. If CNPs resulted from 

aberrations during mitosis, twin isolates would show differences in chromosome number and 

could not have been identified. In M. graminicola, we repeatedly observed the loss of the 

same chromosome in both twin isolates, which demonstrates it was lost during meiosis and 

that CNPs are mitotically stable. We cannot exclude the possibility of occasional mitotic 

instability between isolates that otherwise would have been identified as twins, but if it occurs 

it appears to be very rare. Hence, we conclude that CNPs in M. graminicola are driven by 

meiosis. Nondisjunction during either meiotic division results in progeny with CNPs due to 

gains or losses of entire chromosomes. However, the number of CNPs is twice as high after 

nondisjunction during meiosis I compared to meiosis II. Moreover, besides chromosome loss, 

meiosis I results in heterozygous and meiosis II in homozygous disomy. Crossovers may 

result in heterozygozity for part of the chromosome only, but the dispensable chromosomes 

are small so crossovers occur less frequently. Our data revealed frequent loss of 

chromosomes, but we only rarely observed heterozygozity. This indicates that nondisjunction 

occurred preferentially during meiosis II. Unfortunately, our marker technology did not 

enable the quantitative determination of copy numbers to confirm homozygous disomy.  

Meiotic processing of CNPs in other fungi varies. For the related ascomycete 

Leptosphaeria maculans, twin genotypes were also always identical in respect to the presence 

or absence of a dispensable chromosome (Leclair et al., 1996). This indicates that, similar to 

M. graminicola, the dispensable chromosome in L. maculans is mitotically stable. However, 

in the evolutionarily more distantly related ascomycete Magnaporthe oryzae (Chuma et al., 

2003), presence of a dispensable chromosome varied in twin isolates, indicating that mitotic 

transmission of dispensable chromosomes may be unstable in some ascomycetes.  

Apart from these differences and the fact that M. graminicola has up to eight 

dispensable chromosomes, a most striking aspect is that the widespread CNPs - involving 

multiple chromosomes - in M. graminicola do not hamper sexual reproduction. Interestingly, 

one of the factors inhibiting female fertility in M. grisea is present on a dispensable 

chromosome (Orbach et al., 1996). We do not have such evidence for M. graminicola. Recent 



CHAPTER 2 

 

38 
 

karyotyping experiments showed that isolate IPO323 has at least two additional chromosomes 

compared to IPO94269 (Mehrabi et al., 2007). Nevertheless, we were successful in crossing 

these two isolates and made 17 additional crosses between M. graminicola isolates that 

showed substantial CNPs. Chromosomes without a homologous partner cannot pair, will have 

zero recombination and might be expected to be lost during meiosis. However, our data 

indicate that in M. graminicola they are normally transmitted to progeny without distortion of 

the segregation ratio. For example, in the progeny of the IPO323 x IPO94269 cross, 34 and 35 

out of 60 isolates contained the dispensable LGs 21 and C, respectively. This shows that the 

CNPs present between the parents are maintained during meiosis and are transmitted to 

approximately 50% of the progeny. Neither LG showed evidence of recombination as 

indicated by zero genetic distance between markers. The segregation of the unique IPO323 

markers on these LGs confirmed the results of previous karyotyping experiments, that 

individual dispensable chromosomes are transmitted intact through meiosis (Mehrabi et al., 

2007). This may well be among the first examples of distributive disjunction in fungi, a 

process that involves separation and distribution of non-recombining or non-homologous 

chromosomes during meiosis that is commonly observed in Drosophila. In fungi distributive 

disjunction was shown in S. cerevisiae by crossing strains that were monosomic for non-

homologous chromosome I and III (Guacci and Kaback, 1991). In M. graminicola 

monosomic strains do not occur as the fungus is haploid, but the dispensable chromosomes 

were shown to segregate regularly. In S. cerevisiae distributive disjunction is considered to be 

extremely rare as monosomy does not frequently occur (Guacci and Kaback, 1991). In M 

graminicola, it might be essential as this study shows that CNPs occur frequently and are 

generated during meiosis. It is unknown whether distributive disjunction in M. graminicola 

also complies with the physical interactions between non-homologous chromosomes as was 

observed in S. cerevisiae (Loidl et al., 1994). 

In contrast, all LGs in the entire progeny set of the IPO323 x IPO95052 cross contain 

markers from both parents, indicating that all parental chromosomes have homologous 

partners. Hence, in this respect the differences between the two Dutch bread wheat isolates 

(IPO323 and IPO94269) seem to be larger than were those between IPO323 and the Algerian 

durum wheat isolate IPO95052, underscoring the extraordinarily large genetic differences 

within local populations of M. graminicola (Zhan et al., 2003; Stukenbrock et al., 2007). 

CLPs have been observed in at least 37 fungal species and hence seem to be a 

common feature of fungal genomes (Zolan, 1995). Clearly, recombination between 

homologous chromosomes of unequal length can result in new chromosome size variants. 
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Moreover, the pairing of repeated sequences, for instance resulting from transposons, on 

different chromosomes during meiosis may lead to translocations that may be an important 

cause of CLPs as opposed to CNPs (Perkins, 1997). Subtelomeric variable regions such as 

those in M. grisea are also a potential source of meiotically driven CLPs (Farman and Leong, 

1995). The observed translocations in this study, as well as those in previous analyses 

(McDonald and Martinez, 1991; Chen and McDonald, 1996; Kema et al., 1999; Goodwin et 

al., 2001), most likely are responsible for the widespread CLPs in the genome of M. 

graminicola (McDonald and Martinez, 1991; Kema et al., 1999; Mehrabi et al., 2007).  

Compared to CLPs, CNPs in other fungi are observed less frequently, have not been 

analyzed through a map-based approach, and are generally highly unstable. For instance, a 

minichromosome in M. grisea showed non-Mendelian inheritance, which was also observed 

in L. maculans whenever one parent missed such a chromosome (Leclair et al., 1996; Orbach 

et al., 1996). Crosses between L. maculans isolates that both carried this minichromosome 

resulted in CLPs (Leclair et al., 1996). Duplication of large chromosomal fragments in S. 

cerevisiae occasionally results in the formation of supernumerary chromosomes that are 

highly unstable during mitosis (Koszul et al., 2004; Koszul et al., 2006). In the usually 

haploid human pathogen Cryptococcus neoformans, CNPs occur frequently in diploid AD 

serotypes as a potential mechanism to overcome slow filamentous growth (Lengeler et al., 

2001) and, more recently, CNPs were discovered resulting from the generation and 

subsequent breakage of a dicentric chromosome (Fraser et al., 2005). CNPs in haploid 

filamentous fungi such as N. crassa are generally either lethal or seriously impair the sexual 

phase (Perkins, 1997). Diploid and disomic isolates of N. crassa, originating from 

nondisjunction at meiosis I, are highly unstable and do not differ in rates and mechanisms of 

haploidization and mitotic crossing over (Smith, 1975). Similarly, disomic strains in A. 

nidulans that resulted from nondisjunction in meiotic metaphase I also were vegetatively 

unstable (Bainbridge and Roper, 1966; Swart et al., 2001). 

In contrast to other species, CNPs in M. graminicola are vegetatively stable. We 

hypothesize that the extraordinarily high chromosome number of the M. graminicola genome 

(Mehrabi et al., 2007) may influence the frequency and fate of CNPs. The genome of M. 

graminicola (39.8 Mb) is in the same size range as those of Magnaporthe oryzae (41.6 Mb), 

Fusarium graminearum (36.5 Mb), A. nidulans (30.0 Mb) and N. crassa (39.2 Mb). However, 

the number of chromosomes in these fungi (N=8, 4, 7 and 7, for A. nidulans, F. graminearum, 

M. oryzae, and N. crassa, respectively) is much lower than in M. graminicola (N=21). Hence, 

loss of entire chromosomes in these organisms may be lethal due to the presence of essential 
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genes. M. graminicola has the highest chromosome number and the smallest autosomes in 

filamentous ascomycetes (Mehrabi et al., 2007). The present study has revealed that M. 

graminicola also has the highest number of dispensable chromosomes that vary from 0.39 to 

0.77 Mb, representing up to 38% of the chromosomal complement and approximately 12% of 

its genome size. The frequent loss of chromosomes in M. graminicola without noticeable 

effect on fitness may be due to their small size. Dispensable chromosomes in many other 

fungi carry functional genes that play an important role in host-pathogen interactions (Miao et 

al., 1991; Tzeng et al., 1992; VanEtten et al., 1994; Han et al., 2001; Hatta et al., 2002; 

Garmaroodi and Taga, 2007). In M. graminicola, loci controlling host-pathogen interactions 

were not mapped on dispensable chromosomes and substantial CNPs in progeny isolates - up 

to three chromosomes per isolate covering as much as 1.59 Mb - neither reduced 

pathogenicity nor sexual compatibility (Kema et al., 2002; Ware, 2006). Therefore, 

pathogenicity in M. graminicola does not appear to be influenced by dispensable 

chromosomes. 

In summary, our map-based approach is unique in analyses of genomic plasticity and 

demonstrates that CNPs in M. graminicola are meiotically generated and occur at much 

higher frequencies than reported previously for any ascomycete. These aberrations were 

observed in two crosses between field strains (Kema et al., 1996a). Since the sexual cycle 

occurs continuously under field conditions it is likely that meiotically driven CNPs play an 

important role in the high level of genetic diversity (Kema et al., 1996c; Kema et al., 1996b; 

Zhan et al., 2003) observed among isolates of  M. graminicola. The total genome content of 

M. graminicola isolates varies between 32-40 Mb and each field isolate represents a unique 

karyotype (McDonald and Martinez, 1991; Mehrabi et al., 2007). In this study we showed that 

in addition to CLPs resulting from translocations, CNPs originate from aberrations during 

meiosis, mostly by nondisjunction during meiosis II. We hypothesize that the plasticity of the 

M. graminicola genome, as characterized by its large and flexible set of dispensable 

chromosomes, plays an important role in yet unknown processes of adaptation. This is 

currently being addressed in a M. graminicola crossing program aiming at individuals with a 

minimal genome size that is devoid of any dispensable chromosome. Backcrosses of such 

individuals with parental isolates will enable the selection of progeny with individual 

dispensable chromosome additions. Such a set will contribute significantly to understanding 

the role of dispensable chromosomes in the life strategy of M. graminicola. 
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MATERIALS AND METHODS 

Fungal isolates and DNA extraction 

We used three isolates of M. graminicola: IPO323 and IPO94269 were isolated from 

bread wheat in the Netherlands and IPO95052 was isolated from durum wheat in Algeria. 

Isolate IPO323 was crossed to both IPO94269 and IPO95052 using a previously developed in 

planta protocol (Kema et al., 1996a), resulting in 68 and 148 progeny, respectively. All 

progeny isolates were collected and analyzed individually. DNA of parents and progeny was 

isolated using the Wizard Genomic DNA purification kit (Promega Madison, WI), starting 

with approximately 10 mg of lyophilized spores. Tables S1 and 2 provide an overview of the 

progeny isolates used in this study. 

  

DArT procedure 

Generation of genomic representations, library construction, target preparation and 

image analysis were essentially performed as described previously (Jaccoud et al., 2001; 

Wenzl et al., 2004), with the modifications described by Wittenberg et al. (Wittenberg et al., 

2005). The adapter and primer oligonucleotide sequences used in this study are listed in Table 

S3. For details see Text S1. 

 

Nomenclature of markers 

AFLP markers were designated by the primer combination
 
used for the amplification 

and the approximate length of the
 
generated fragment (Kema et al., 2002). For both AFLP and 

DArT markers the prefix A or B indicated the phase
 
of the marker; those originating from 

parent IPO323 had the
 
prefix A while markers from parent IPO95052 were indicated by

 
the 

prefix B. DArT markers identified in cross IPO323 x IPO94269 originating from isolate 

IPO95052 could be assigned the prefix A or B, as IPO94269 was not used for the library 

construction. Markers segregating in both populations received the prefix C. In addition, 

DArT markers were designated by the enzyme combination
 
used for complexity reduction 

(BamHI, MseI and RsaI: BMR or HindIII, MseI, RsaI: HMR), the 384-well plate number and 

the position of the fragment in that plate (i.e., AHMR_04I09). Recently, 23 SSR loci were 

identified in M. graminicola, 21 of which could be positioned on the existing linkage map 

along with two previously published SSR loci (Owen et al., 1998; Goodwin et al., 2007). The 

newly generated DArT markers were used to integrate the new IPO323 x IPO94269 map with 
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the existing map of that population (Kema et al., 2002). Moreover, six of these SSRs also 

differentiated the parents of the second mapping population. To enable the mapping of these 

SSRs in the IPO323 x IPO95052 progeny, amplification reactions were performed as 

described by Goodwin et al. (Goodwin et al., 2007).  

 

Selection of unique segregation patterns and merging of twin isolates 

The binary scores of polymorphic markers were converted to the correct allelic phase 

based on the scores of the parents. A Perl script was written that grouped loci with identical 

segregation patterns after disregarding unknown scores. The marker with the highest call rate 

(percentage of scored individuals) was selected as a representative for each group. The script 

also calculated the call rate for each individual genotype and the global call rate for the whole 

dataset. Individual genotypes were incorporated into the scoring table when at least 95% of 

the grouped markers could be scored. In M. graminicola, twin progeny isolates arise from the 

mitotic division that follows meiosis II in the ascus, resulting in four pairs of genetically 

identical ascospores. Although the random-ascospore progenies that resulted from the 

crossing protocol minimized the isolation of twin isolates, the large number of markers 

identified identical progeny efficiently. These were used to calculate the reproducibility of the 

different marker types and were merged before the mapping analyses. 

 

Construction and comparison of the linkage maps 

The genetic linkage maps of the individual crosses as well as the bridge map were 

constructed with the software package JoinMap 3.0 (Stam, 1993). A detailed description of 

the mapping process for the individual maps is given in Text S1. The use of IPO323 in both 

crosses enabled the efficient generation of an integrated bridge map of the M. graminicola 

genome. The bridge map was used to compare the order of the loci in the constructed IPO323 

x IPO94269 and IPO323 x IPO95052 maps. We used MapChart 2.2 (Voorrips, 2002) for the 

graphical representation of the genetic linkage maps.  

 

Evaluation of loss or gain of chromosomes 

We used graphical genotyping to compare the marker scores (A or B) and the phase 

(A or B) of the markers, which enabled us to identify whether each marker was present or 

absent in a particular progeny isolate. In cases where a linkage group (LG) was constructed 
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from both marker types and a specific progeny isolate lacked all of these markers, we 

concluded that the isolate missed that LG. In cases where a LG was constructed from both 

marker types and a specific progeny isolate was scored present for all markers, we concluded 

that the isolate had an extra copy, derived from the other parent, of that particular LG. Hence, 

chromosome polymorphisms in progeny isolates were determined in silico if A and B markers 

that were assigned to a specific LG were always absent or present in a particular progeny. 

 

PCR verification of loss and gain of chromosomes 

DNA samples of the parental isolates (IPO323, IPO94269 and IPO95052), progeny 

isolates that showed absence of specific LGs by graphical genotyping (Table S4) and two 

control progeny without these aberrations were used as templates in the PCR reactions. PCR 

was performed using SSR markers and specific primer pairs developed from the sequenced 

DArT markers located on the missing linkage groups (Tables S5 and S6). To assure that 

absence of an amplicon was not caused by PCR failure, a positive PCR control was included 

that should be present in all parents and progeny that were tested. The SSR marker loci ac-

0007 (LG8) and gga-0001 (LG12) were amplified in combination with the PCR control SSR 

locus ag-0003 (LG2). For the amplicons derived from the DArT marker sequences, the DArT 

fragments CABMR_07D07 (129 bp; LG1) or AHMR_08O09 (728 bp; LG15) served as 

positive PCR controls. 

PCR reactions were performed in a total volume of 20 µl containing 20 ng of genomic 

DNA, 1x PCR buffer (Roche), 1 µl of each of the forward and reverse primers used as a 

control (2 µM), 2 µl of each forward and reverse primer (2 µM), 0.8 µl of dNTPs (5 mM) 

and 0.2 µl of Taq DNA polymerase (5 U/µl). Amplification conditions were as follows: 94
°
C 

for 2 min, 12 cycles of 94
°
C for 30 sec, 66

°
C for 30 sec minus 1

º
C per cycle, 72

°
C for 30 sec; 

27 cycles of 94
°
C for 30 sec, 53

°
C for 30 sec, 72

°
C for 30 sec; 72

°
C for 7 min, followed by a 

cooling-down step to 10
°
C. The SSR amplicons were separated on 6 % non-denaturating 

acrylamide gels using a Mega-Gel Dual High-Throughput Vertical Electrophoresis Unit (CBS 

Scientific, Del Mar, California, USA). Amplicons based on the DArT sequences were 

separated on 2.5 % agarose gels. 
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SUPPLEMENTAL DATA 

 

Text S1 

Construction and comparison of the linkage maps 

Segregation ratios of all markers were analyzed with JoinMap, version 3.0
 
[1]. Markers with 

segregation ratios significantly
 
different from 1:1 (P < 0.01) were initially set aside, and linkage analysis using 

the Kosambi mapping function was performed on the remaining markers. Initial
 
assignment to linkage groups 

(LGs) was based on the logarithm of the
 
odds (LOD) ratio for each possible marker pair. We used LOD values in 

the range of 3–8; the final assembly of LGs was completed using
 
a LOD value of 4 or higher. We used linkages 

with a recombination rate (REC) < 0.4, a map
 
LOD value of 0.05 and a χ

2
-jump threshold of 5 for inclusion into 

the map and for the calculation of the
 
linear order of the markers within a LG. Finally,

 
we tested whether the 

markers with distorted segregation ratios
 
contributed to the map using an iterative addition process from markers 

with little to substantial segregation distortions. After each JoinMap run, the map was inspected for changes in 

marker order and distance. When these were not disturbed and when synteny between the two parallel crosses 

(IPO323 x IPO94269 and IPO323 x IPO95052) was observed, the addition of markers with distorted segregation 

ratios to the map was accepted. The individual maps were inspected either in Excel or with the graphical 

genotyping software package GGT [2,3], which allowed detection of singletons and visualized the recombination 

events in all progeny. 

Marker data were grouped and merged using a Perl script. For the IPO323 x IPO94269 cross, merging 

of the marker data from the twins resulted in a scoring table with 60 individuals and 1341 markers. Grouping of 

the markers resulted in 473 unique segregation patterns containing 297 DArT, 165 AFLP and 11 SSR markers. 

The global call rate (percentage of scored individuals) we obtained for this dataset was 99.1%. 

For the IPO323 x IPO95052 cross, merging of the marker data from the twins resulted in a scoring table 



MEIOSIS DRIVES EXTRAORDINARY GENOME PLASTICITY 

47 
 

with 125 individuals. One isolate had a genotype call rate less than 95% and was therefore omitted from further 

analysis. This resulted in a scoring table of 124 individuals and 1162 markers. Grouping resulted in 496 unique 

segregation patterns containing 491 DArT markers, four SSR markers, and the marker that co-segregates with 

the (a)virulence locus MgAvrStb6. The global call rate for this dataset was 98.8%. 

For the bridge map the scores for markers segregating in both populations were merged. This resulted in a 

dataset of 184 individuals with 389 markers yielding 263 unique segregation patterns. The global call rate for 

this dataset was 99.03 %.  

Individual maps were constructed using Joinmap 3.0. In the IPO323 x IPO94269 cross, 29 of the 473 

(6.1%) segregation patterns exhibited a significant distortion (P < 0.01; based on χ
2
) from the expected (1:1) 

Mendelian ratio. These markers were therefore set aside during the first phase of the map construction. Using a 

LOD threshold of 4.0, 443 out of the 444 (99.8%) markers could be grouped into 24 LGs. One marker 

(AHMR_07I02) was not grouped while two AFLP markers (BEGGMpAT_439 and AEGAMpAC_114) 

exceeded the threshold for the χ
2
 jump and therefore were not positioned. The order of the markers in all 24 LGs 

was determined in a single round of JoinMap, and different settings of the thresholds did not alter the marker 

order or distance. Subsequently, we tried to incorporate the 29 markers that showed segregation distortion, and 

10 of them were positioned based on the criteria listed above. 

In the IPO323 x IPO95052 cross, 38 of the 496 (7.7 %) segregation patterns exhibited a significant 

distortion (P < 0.01; based on χ
2
) from the expected 1:1 Mendelian ratio and were initially omitted from the 

mapping. Using LOD thresholds of 4.0 (1 group), 5.0 (2 groups) and 5.5 (20 groups) all markers were grouped 

into 23 LGs. The order of the markers on the 23 LGs was determined in a single round of JoinMap, and again 

different settings of the thresholds did not alter the order or distance of the markers. Subsequently, we tried to 

incorporate the 38 markers that showed segregation distortion, and 28 of them could be positioned. 

For the construction of the bridge map, loci with strong segregation distortion (P < 0.005) were 

removed and linkage analysis was performed on the remaining markers. Groups were selected at LOD ≥ 5.5 and 

the order of the markers within the LGs was determined using the same settings as for the construction of the 

individual maps. 

 

DArT analysis 

DNA of M. graminicola isolates IPO323 and IPO95052 was used to construct two genomic 

representations for each isolate essentially as described previously [4]. Genomic representations were generated 

by digesting 100 ng of genomic DNA with 2 units of either HindIII or BamHI in combination with the 4-base 

cutters MseI and RsaI (New England Biolabs; NEB, USA). Cloning adapters (Table S9) were simultaneously 

ligated to the complementary overhangs with T4 DNA ligase (NEB). A 1-l aliquot of the ligation product was 

used as a template in a 50-l amplification reaction using primers complementary to the adapter sequences and 

cycling conditions as described [5]. 

A 3072-clone library for IPO323 and IPO95052 was prepared for each of the HindIII-MseI-RsaI and the 

BamHI-MseI-RsaI complexity-reduction methods [6] with the modifications described by Wenzl et al. [5]. PCR 

products were dried, washed once with 70 % ETOH, and re-suspended in 25 µl of spotting buffer. The 

amplification products were spotted in duplicate on polylysine coated slides (Erie Scientific, Portsmouth, NH, 

USA) using a MicroGrid II arrayer (Biorobotics, Cambridge, UK). After printing, the slides were processed by 
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incubation in hot water (95C) for 2 min., dipped in a 100 mM EDTA and 100 mM DTT solution and dried by 

centrifugation. 

The genomic representations of individual progeny isolates to be hybridized as targets on the array were 

generated by applying the complexity-reduction methods [5,6], with the exception that genotyping adapters 

rather than cloning adapters were used (Table S9). The products of the 50-µl PCR reactions were concentrated 

10 fold by precipitation with 1 volume of isopropanol and denatured at 95C for 3 min. Each reaction was 

labeled with 0.1 µl of Cy3-dUTP using 1 µl of 500 µM random decamers (Amersham Biosciences, Castle Hill, 

NSW, Australia) and the exo
-
 Klenow fragment of Escherichia coli DNA polymerase I (NEB). In experiments 

for which DNA was isolated twice, a replicate target labeled with Cy5-dUTP was co-hybridized with the Cy3-

dUTP labeled target to the same array. The polylinker fragment of the plasmid was used as a reference [6] and 

labeled with 6-FAM. Labeled representations, called targets, were denaturated, hybridized to microarrays 

overnight at 65C, and slides were washed according to Wenzl et al. [5]. 

Typically, each experiment was comprised of 96 bar-coded slides that were scanned using a Tecan LS 

300 (Grödig, Austria) confocal laser scanner. Each image pair (cy3-FAM or cy5-FAM) was stored directly in the 

database and analyzed subsequently with DArTSoft (version 7.4.1), a software package developed at DArT P/L. 

DArTSoft was used to both identify and score the markers that were polymorphic within each experiment as 

described previously [5,7-12]. The program computes several quality parameters for each clone [7] and markers 

were selected by simultaneously applying thresholds for four of those: P-value, call rate, reproducibility and 

polymorphism information content (PIC). Clones with P values ≥ 77%, call rate ≥ 80%, reproducibility ≥ 95% 

and PIC ≥ 0.3 were selected for both libraries. 
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 Link: http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0005863#s5 

Fig. S1. Co-linearity of genetic linkage maps for Mycosphaerella graminicola crosses IPO323×IPO95052 (left) 

and IPO323×IPO94269 (right) with a bridge map (middle) generated with markers that segregated in 

both crosses. Common markers are shown in bold and start with the prefix C, SSR markers are shown 

in blue and markers that are translocated in red. DArT markers were named according to phase of the 

marker (A = IPO323, B = IPO95052 or IPO94269), complexity reduction method used (BMR or 

HMR), and location in the spotting plate (e.g. BBMR_15L11). LG and AFLP nomenclature is 

according to Kema et al., 2002. Segregation distortion of the markers is indicated with * (P<0.05), ** 

(P<0.01), *** (P<0.005) or **** (P<0. 001).  

 

 

Fig. S2. Alignment of linkage group 

21 between the IPO323×IPO95052 

cross (left) and the 

IPO323×IPO94269 cross (right) 

shows recombination in the former 

but not in the latter. This indicates 

absence of this linkage group in 

isolate IPO94269. For 

IPO323×IPO94269, only markers 

from IPO323 could be mapped on this 

linkage group, and no markers from 

IPO94269, confirming that IPO94269 

lacks this linkage group. Lines are 

drawn between markers that 

segregated in both populations. Stars 

next to the markers for the 

IPO323×IPO94269 cross indicate 

segregation distortion of the markers; 

* (P<0.05), ** (P<0.01), *** 

(P<0.005) or **** (P<0.001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0005863#s5
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Fig. S3. Confirmation of chromosome loss by PCR amplification. A. Confirmation of loss of LG 8 and LG 12 by 

SSR amplification. Loci ac-0007 (LG 8) and gga-0001 (LG 12) confirm that these linkage groups are absent in 

the underlined progeny isolates from the crosses IPO323×IPO94269 and IPO323×IPO95052 as neither of the 

parental alleles are amplified. Isolates 1158 and 1179 are positive controls and SSR ag-0003 (LG 2) is a positive 

PCR control in all duplex reactions. B. Confirmation of loss of LGs 13, 15, A and C by PCR with primers 

developed from DArT marker sequence data in the underlined progeny isolates derived from crosses between M. 

graminicola IPO323×IPO94269 and IPO323×IPO95052. Isolates 1158 and 1179 are positive control isolates, 

except in LGs C and 13 that have isolates 1158/2026 and 2032/2033, respectively, as positive checks. For LG 

15* the CABMR_07D07 DArT fragment (129 bp) was used as a positive PCR control, while for the other 

linkage groups DArT fragment AHMR_08O09 (728 bp) was used. C. Confirmation of loss of LG 8 by PCR with 

primers developed from DArT marker sequence data in underlined progeny isolates derived from crosses 

between M. graminicola IPO323×IPO94269 and IPO323×IPO95052. This figure is composed of eight panels 

that are individually divided by a central marker lane. The left part of each panel represents the three parental 

isolates of the mapping populations (IPO323, IPO94269 and IPO95052), two positive control isolates 

(1158/1179), and seven progeny isolates that lack LG 8. The right part of each panel links to Fig. 2D and 

represents the two parental isolates (IPO323 and IPO95052), two twin isolates (1103/1126), two mirror isolates 

(1128/1183) and two twin isolates that lack LG 8 (2137/2139). In all panels DArT fragment AHMR_08O09 is 

the positive control (top band in each panel, 728 bp, located on LG 15). 

 

 

Table S1. Mycosphaerella graminicola progeny isolates (n=76) from the IPO323 x IPO94269 in planta cross, 

that was made on the susceptible bread wheat cultivar Obelisk, that were used for hybridization to the DArT 

arrays. 

 

Isolate number Used for construction 

of genetic linkage map 

Isolate number Used for construction 

of genetic linkage map 

IPO323
1
 - 116 - 

IPO94269
2
 - 117 Yes 

1 Yes 118 Yes 

10 Yes 119 Yes 

11 - 124 Yes 

12 Yes 125 Yes 

14 Yes 126 Yes 

16 - 131 Yes 

18 - 132 Yes 

22 - 134 Yes 

23 Yes 136 Yes 

24 Yes 137 Yes 

25 - 139 - 

27 Yes 140 - 

29 Yes 142 Yes 

30 - 144 Yes 

36 - 147 Yes 

40 Yes 148 - 

46 - 150 - 

47 Yes 157 Yes 

50 Yes 158 Yes 

51 Yes 160 Yes 

58 - 164 Yes 

62 Yes 167 Yes 

68 Yes 173 Yes 

70 - 174 Yes 

73 Yes 176 Yes 

83 Yes 179 Yes 

84 Yes 180 Yes 

87 Yes 182 Yes 

88 Yes 183 Yes 

90 Yes 184 Yes 

http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0005863#pone-0005863-g002
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91 Yes 192 Yes 

94 Yes 193 Yes 

95 Yes 197 Yes 

100 Yes 198 Yes 

109 Yes 200 Yes 

110 - 202 Yes 

111 Yes   

115 Yes   
 

1
 Parental isolate IPO323 was isolated from the bread wheat cultivar Arminda. 

2
 Parental isolate IPO94269 was isolated from the bread wheat cultivar Vivant. 

 

 

Table S2. Mycosphaerella graminicola progeny isolates (n=164) from the IPO323 x IPO95052 in planta crosses 

that were made on the bread wheat cultivar Obelisk and the durum wheat cultivar Inbar. Sixteen isolates (gray-

shaded) were not used, leaving a total of 148 that were used in the construction of the genetic linkage map. The 

first two numbers indicate the year of isolation and the next three numbers the order of isolation. 

 

Isolated from bread wheat cultivar Obelisk Isolated from durum wheat cultivar Inbar 

IPO323
1
 01 135 01 171 IPO95052

2
 02 043 

01 101 01 136 01 172 01 426 02 044 

01 102 01 137 01 173 01 427 02 045 

01 103 01 138 01 174 01 428 02 046 

01 104 01 139 01 175 01 429 02 047 

01 105 01 140 01 176 01 430 02 121 

01 106 01 141 01 177 01 431 02 122 

01 107 01 142 01 178 01 432 02 123 

01 108 01 143 01 179 01 433 02 124 

01 109 01 144 01 180 01 434 02 125 

01 110 01 146 01 181 01 435 02 126 

01 111 01 147 01 182 01 436 02 127 

01 112 01 148 01 183 01 437 02 128 

01 113 01 149 01 184 01 438 02 129 

01 114 01 150 01 185 01 439 02 130 

01 115 01 151 01 186 01 440 02 131 

01 116 01 152 01 187 02 024 02 132 

01 117 01 153 01 188 02 025 02 133 

01 118 01 154 01 189 02 026 02 134 

01 119 01 155 01 190 02 027 02 135 

01 120 01 156 01 191 02 028 02 136 

01 121 01 157 01 192 02 029 02 137 

01 122 01 158 01 193 02 030 02 138 

01 123 01 159 01 194 02 031 02 139 

01 124 01 160 01 195 02 032 02 140 

01 125 01 161 01 196 02 033 02 141 

01 126 01 162 01 197 02 034   

01 127 01 163 01 198 02 035   

01 128 01 164 01 199 02 036   

01 129 01 165 01 200 02 037   

01 130 01 166 01 421 02 038   

01 131 01 167 01 422 02 039   

01 132 01 168 01 423 02 040   

01 133 01 169 01 424 02 041   

01 134 01 170 01 425 02 042   
 

1
 Parental isolate IPO323 was isolated from the bread wheat cultivar Arminda 

2
 Parental isolate IPO95052 was isolated from an unknown durum wheat cultivar. 
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Table S3. The adapter and primer oligonucleotide sequences used for generation of the genomic representation 

(cloning) from Mycosphaerella graminicola isolates IPO323 and IPO95052 and for hybridization to the micro-

arrays (genotyping) of parental and progeny isolates. 

 

Endonuclease 

and recognition 

site 

Used for Adapter sequences
a
 Primer sequences (5’ to 3’) 

 

 

HindIII 

5’-A
↓
AGCTT-3’ 

3’-TTCGA↑A-5’ 

 

Cloning 

 

5’-CTCGTAGACTGCGTCAC-3’ 

3’-ATCTGACGCAGTGTCGA -5’ 

 

TAGACTGCGTCACAGCTT 

   

Genotyping 5’-GTGCTACAGTCGCTGAG-3’ 

3’-ATGTCAGCGACTCTCGA-5’ 

TACAGTCGCTGAGAGCTT 

    

BamHI 

5’-G
↓
GATCC-3’ 

3’-CCTAG↑G-5’ 

Cloning 5’-CTCGTAGACTGCGATCA-3’ 

3’-CATCTGACGCTAGTCTAG-5’ 

GTAGACTGCGATCAGATCC 

   

Genotyping 5’-GTGCTACAGTCGCTAGA-3’ 

3’-GATGTCAGCGATCTCTAG-5’ 

CTACAGTCGCTAGAGATCC 

    

MseI 

5’-T
↓
TAA-3’ 

3’-AAT↑T-5’ 

Cloning 5’-ACTCGATCCTCACACGTA 

AAGTATAGATCCCA-3’  

3’- NH2-TTCATATCTAGGGTAT-5’ 

ACTCGATCCTCACACGTA 

   

Genotyping 5’-AGTGCATGGTGAGAGCTA 

AACTATACATGGGA-3’                                                       

3’- NH2-TTGATATGTACCCTAT-5’ 

AGTGCATGGTGAGAGCTA 

    

RsaI 

5’-GT
↓
AC-3’ 

3’-CA↑TG-5’ 

Co-

digestion 

- - 

 

a 
Adapter sequences were formed by annealing the strands whose sequences are listed. Complementary 

sequences are underlined. 

 

 

Table S4. Overview of Mycosphaerella graminicola F1 isolates that lack one or more linkage groups compared 

to the parental isolates IPO323, IPO94269 and IPO95052. 

 

Missing 

linkage 

group 

Isolates in cross IPO323 x  IPO95052 Isolates in cross IPO323 x IPO94269
a
 

8 2026, 2133, 2138, 2137, 2139
b
 83, 91 

12 2132, 2133, 2138 51, 62, 124, 125 

13 1158 164 

15 2024, 2032, 2033 - 

21 1114, 1121, 1122, 1127, 1151, 1159, 1170, 

1176, 1186, 1200, 2133, 2138, 2137, 2139 

c 

A - 87, 134 and 133 

B 1108, 1169, 1179, 1425, 1438, 2134, 2141 
c 

C 1128, 1139, 1179, 2030, 2132 
c 

 

a 
In the IPO323 x IPO94269 progeny, isolate #40 is disomic for LG 13 and isolate #51 is disomic for LG 1. 

b
 Underlined isolates are identified twins 

c
 Not assessed, as the LGs only contained IPO323-derived markers. 
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Table S5. Primer sequences used to verify the absence of several linkage groups in some progeny isolates of the 

two crosses. The primers were developed using the sequences of the DArT markers located on these linkage 

groups. 

 

Linkage 

Group 

DArT markers Forward primer (5’-3’) Reverse primer (5’-3’) 

LG 8    

 AHMR_04P14 GCTTAAGTGACTACGAGTGC CGCAAAGCTTCGATCCATTC 

 CABMR_07D02 GATATTGCTTGGTGGATCCG ATGTACCGTTCGGCAGAGTC 

 ABMR_06L11 GGATCCCATGTTGTTCAGAG CCTCGAACGAGTCGGTTTAA 

 AHMR_06F24 GGTAGGGCGAATATTGCTGA AGTGTCGAGCGGTATCGAGT 

 BBMR_12 A13 ATTCGGATGAGCAGAGCAAG CTCATCGCCATCATCACATC 

 CBBMR_11E02 CTAGGCAAGGAGATCGAACG GATGAGCGCCTTGTTTTCTC 

 AHMR_03N15 TGAAGGGAAGTGGATTCTGG AAGCTTCCAGGGGAAATTGT 

 BBMR_13B05 TCCGAACCCTTCTTGCTCTA CCAGATACTCCATCGGCATT 

 BHMR_12G15 ACGACTAGACTTTCGCTTCTTG TTAAGAGCTCGGAAATCGTG 

LG 12    

 CABMR_08E04 TTAAGGACATGGTCAAGCCA TCTCATCTGTGTGAGGATCC 

 CAHMR_04L02 CGGTTAATAGCTAGAGTCAA GATCAAGACAGGAAGCTTCG 

 AHMR_05I02 CGTCTACCACTATCCGAGAT CAGAAAGCTTCGGTCCTGCT 

LG 13    

 AHMR_07C04 GACGCAGGCCAGTCATTTAT GTTCCAGCTCGCAAAAGCTT 

 CAHMR_04E23 CCGCCTTAATCAGACTATCG CATTCACTGTGACGAAGCTT 

LG 15    

 CABMR_01O19 GTCACTATCCTCGCCGCATT CCGGAATAAATGGAGGATCC 

 AHMR_08O09 GTGTAGATTCGCGAGACTGG GCTTCTTGGAAGCTTTGGTC 

 CABMR_06K02 GGATCCACGAGTAAGCACAA CGAGCATTAAAGCCTTCACG 

 AHMR_03K19 TTAAACAACCCTCATCTGCC CGCTTGAAGCTTCACATCAC 

LG A    

 CBHMR_10J13*

* 

GAGGCAGGAAGATCGTTAAA ATGTAGCGGTACCAATCGAC 

 CAHMR_08L11 GCATTTCCTTAGGTTGGACC CTTGCCTGTGGACTTTCTAG 

LG B    

 CAHMR_02A19 AAGCTTAGCAGCAGAACCCT CAGGTTGCGATAGGAGTACG 

 ABMR_04L19 ATACAAGACGACGCTTGATG GGTCTCCAAGGGACATATCT  

 ABMR_08E05 GCAGTAACGACACCGATACA TATAGAGCTAGCAGGACTGG 

LG C    

 CABMR_01C24 GTCCCTATGCAGAGGATCCT TTCAACATTAAGGAGGGCGG 

 CAHMR_07N06 CAGTTAAAACTCCATCTCGG GTAGCTGTAACAAAGCTTGC 

 ABMR_01L24 CTCACGGAACGGATCCAAAG CATATCGATTCCAACCAGCG 

LG 21 CAHMR_05C20 GGTAGTGTTGTGCCTTCGTT GTAGTGAAGCTTGCTGATGG 

 CABMR_07P03 GAATCGGCGTGTGCGCTATC TTCTCAAAATCCGAGGATCC 

 
CAHMR_05E06 CGAATATCGGATGTTAAAAG AGAGAAGCTTCAAGATATCG 

 CHMR_09B06 TGGTAGCATGGTCGATGGAA AACGTACCGCATCGATAGAG 

Controls    

LG 1 CABMR_07D07
 

a
 GGATCCGAAACGTCCGAAGA ACATCCAGAGGAAAGAACGC 

LG 15 AHMR_08O09
 b

 GTGTAGATTCGCGAGACTGG GCTTCTTGGAAGCTTTGGTC 
 

a
 Primer control used in duplex PCR for LG15. 

b 
Primer control used in duplex PCR for LGs 8, 12, 13, A, B, C and 21. 
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Table S6. Primer sequences used to verify the disomy for linkage group 1, isolate #51. The primers were 

developed around InDels obtained by comparison of BAC-end sequences from parental isolate IPO94269 with 

the genome sequence of isolate IPO323. 

 

BAC-end 

IPO94269 

Scaffold 4 

position  

(bp)
*
 

InDel 

size 

(bp) 

Forward primer (5’-3’) Reverse primer (5’-3’) 

05D17 366301 6 TGCAGGACATCGATCTTCAC TATGCTCAAATGGGGCAAAG 

11O21 642878 9 TCCACCTCTCTGGGCTGATT CATTTCCTGCTTCTGGAGGT 

06P08 1411546 9 CCATCCACCGCGTAACTAAT ATGCTGCTGGCCATGAGGA 

04L04 1599247 10 GAATACACGGGATCCATTCG GGCACCGTCAAAGCTTACAT 

07C16 1913009 7 GACCTGGGAAATGAGCTGAC CTCAGGGACACATGTTGGTG 

04L20 2276380 7 GCGAATTGTTGAGAAGTCCA TCTCGAAGGATCAGCGACAT 

13G02 2528033 7 CTTCCTTCGTCTCCTTCGTG ACATGGGAACAGACCGGATA 

12N14 2604850 7 TGTTGAGGAGGGTGAGATGA ATCATGACTGGGGTTTGTCG 
 

*
 Derived from genome assembly IPO323 v 2.5. 

 

 

 

Table S7. Overview of type and number of molecular markers that were scored in the progeny of the cross 

between Mycosphaerella graminicola isolates IPO323 and IPO94269 before and after grouping. 

 

Marker type Isolate Complexity 

reduction 

method 

Number of 

markers 

Unique 

segregation 

patterns 

Percentage of total 

no. of unique 

segregation patterns 

AFLP IPO323 
1 

151 93 19.66 

AFLP IPO94269 
1 

120 72 15.22 

DArT IPO323 BMR 375 156 32.98 

 IPO95052
2
 BMR 183 33 6.98 

DArT IPO323 HMR 383 80 16.91 

 IPO95052 HMR 101 28 5.92 

SSR - - 25+1
3
 11 2.33 

Mat and Avr - - 2 0 - 

Sum   1341 473 100% 
 

1
AFLP markers were generated using 11 EcoRI-MspI primer combinations  

2 
DArT fragment was derived from isolate IPO95052, but segregated in IPO323 x IPO94269 

3
One SSR marker segregated in a diploid fashion and therefore could be positioned on two locations. 

 

 

 

Table S8. Overview of type and number of molecular markers that were scored in the progeny of the cross 

between Mycosphaerella graminicola isolates IPO323 and IPO95052 before and after grouping. 

 

Marker type Isolate Complexity 

reduction 

method 

Number of 

markers 

Unique 

segregation 

patterns 

Percentage of total no. 

of unique segregation 

patterns 

DArT IPO323 BMR 265 137 27.62 

 IPO95052 BMR 258 113 22.78 

DArT IPO323 HMR 296 121 24.40 

 IPO95052 HMR 335 120 24.19 

SSR - - 6 4 0.81 

Mat and Avr - - 2 1 0.20 

Sum   1162 496 100 % 
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Table S9. Identified twin isolates in the two progenies derived from crosses between either Mycosphaerella 

graminicola isolates IPO323 and IPO94269 or IPO323 and IPO95052. 

 

IPO323 x IPO94269 IPO323 x IPO95052 

9 10 01101 01102 

22 27 01103 01126 

109 110 01105 01106 

111 112 01109 01112 

116 117 01115 01119 

133 134 01132 01133 

148 150 01142 01143 

156 158 01154 01162 

159 160 01177 01184 

174 175 01196 01197 

176 178 01426 01433 

  01429 01430 

  01434 01437 

  01435 01439 

  02034 02047 

  02035 02043 

  02037 02046 

  02041 02042 

  02128 02131 

  02130 02136 

  02133 02138 

  02137 02139 

  02134 02141 

 

Table S10. Scoring tables  

http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0005863#s5 

 

 

Table S11. Overview of the number of markers for both crosses. Mapping was performed using the software 

package JoinMap 3.0. 

 

 

Genetic 

map 

Total 

number 

of 

markers 

selected 

Unique 

segregation 

patterns 

Segregation 

distortion 

removed 

(P ≤ 0.01) 

 

Grouped 

Mapped 

excluding 

segregation 

distortion 

Mapped 

including 

segregation 

distortion 

Total 

number of 

markers 

positioned 

on map 

 

IPO323 x 

IPO94269 

 

1341 

 

473 

35.3 % 

 

444 

 

 

443 

 

 

441 

 

 

451 

 

 

1317 

98.21 % 

 

IPO323 x 

IPO95052 

 

1162 

 

496 

42.7 % 

 

458 

 

 

457 

 

 

457 

 

 

486 

 

 

1144 

98.45 % 

 

Bridge 

 

389 

 

263 

67.6 % 

 

243 

 

 

241 

 

 

236 

 

 

251 

 

 

372
a
 

95.63 % 
 

a 
To construct the bridge map, eight markers that showed translocations were removed and three common 

markers were placed on the individual linkage maps but not on the bridge map. This resulted in a total of 2078 

genetic markers, which are comprised of 1793 DArT markers, 258 AFLP markers, 25 SSR markers and the PCR 

markers for mating type (Mat) and avirulence (Avr). 

http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0005863#s5
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Table S12. Graphical genotyping 

See link: http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0005863#s5 

 

 

Table S13. Alignment of the identified linkage groups in the Mycosphaerella graminicola IPO323 x IPO94269 

and IPO323 x IPO95052 mapping populations with the identified chromosomes in the Mycosphaerella 

graminicola genome sequence. 

 

  IPO323 x IPO94269 IPO323 x IPO95052 

LGs Chromosomes cM cM 

5+10 1 198.2 197.3 

6 2 160.1 150.1 

2 3 163.7 154.3 

1 4 120.0 112.6 

3+22 5 125.5 126.4 

7 6 117.6 136.0 

4+17 7 133.3 117.0 

11+20 8 80.3 93.3 

18+19 9 141.1 130.0 

9 10 93.2 118.1 

14 11 92.6 63.8 

23 12 105.3 92.6 

16 13 31.7 100.0 

B 14 23.2 46.0 

8 15 61.1 65.7 

15 16 53.3 63.1 

13 17 43.8 25.0 

21 18 1.7 21.0 

A 19 20.0 60.4 

C 20 1.7 14.5 

12 21 58.4 40.6 

E - 6.7 8.5 

F - 20.1 9.9 

D   1.8   

Sum  1854.1 1946.4 

 

 

 

Table S14. DArT and SSR markers that showed translocations between two genetic linkage maps derived from 

crosses between either Mycosphaerella graminicola isolates IPO323 and IPO94269 or IPO95052. 

 

Markers Position in one parent Position in other parent 

CHMR_09D04, CHMR10D17 IPO323; LG 21 IPO95052; LG 18+19 

CHMR_14L04, CHMR_13P21 IPO323; LG 3+22 IPO95052; LG 5+10 

CBBMR_15H01 IPO94269; LG 1 IPO95052; LG 3+22 

CBBMR_14G17, CBMR_14D07 IPO94269; LG 6 (7cM) IPO95052; LG 6 (79cM) 

CBBMR_11N22 IPO94269; LG 7 IPO95052; LG 9 

ggc-0003A/B IPO323; LG21 IPO94269; LG 4+17 

 

 

 

 

 

 

 

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0005863.s016
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Table S15. Back crosses and intercrosses of M. graminicola IPO323 X IPO94269 progeny isolates with isolates 

that either lost or gained specific chromosomes. 

 

Type of 

cross 

Isolates Chromosome number 

polymorphisms 

LG Scaffold
*
 Size 

(Mbp) 

Success 

Back 

crosses 

323*40 P /disomic LG13 13 16 0.58 Yes 

 323*62 P /-LG12 12 21 0.39 Yes 

 323*87 P/-LGA A 17 0.55 Yes 

 323*124 P/-LG12 12 21 0.39 Yes 

 94269*51 P/-LG12+ disomic LG1 1 4 2.88 Yes 

 94269*83 P/-LG8 8 14 0.64 Yes 

 94269*91 P/-LG8 8 14 0.64 Yes 

 94269*125 P/-LG12 12 21 0.39 Yes 

 94269*133 P/-LGA A 17 0.55 Yes 

 94269*134 P/-LGA A 17 0.55 Yes 

 94269*164 P/-LG13 13 16 0.58 Yes 

Inter 

crosses of 

F1 

progeny 

isolates 

2133x2137 -LG8,12,21/-LG8,21 8, 12 

and 

21 

14, 21 and 20 0.64, 

0.39, 

0.56 

Yes 

 2133x2132 -LG8,12,21/-LG12,C 8, 12, 

21 

and C 

14, 21, 20 and 

18 

0.64, 

0.39, 

0.56, 

0.47 

Yes 

 2132x2024 -LG21,C/-LG15 21, C 

and 

15 

20, 18 and 15 0.56, 

0.47, 0.6 

Yes 

 2133x1179 -LG8,12,21/-LGB,C 8, 12, 

21, B 

and C 

14, 21, 20, 13 

and 18 

0.64, 

0.39, 

0.56, 

0.77, 

0.47 

Yes 

 2133x1158 -LG8,12,21/-LG13 8, 12, 

21 

and 

13 

14, 21, 20 and 

16 

0.64, 

0.39, 

0.56, 

0.58 

Yes 

 51x124 -LG12 + disomic LG1/-

LG12 

12 

and 1 

21 and 4 0.39, 

2.88 

No 

Control 323x94269 P/-LG21, -LGC 21 

and C 

- - Yes 

 

*
 Derived from genome assembly IPO323 v 2.5. 
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ABSTRACT 

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria 

tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of 

wheat. This disease is economically important in most wheat-growing areas worldwide and 

threatens global food production. Control of the disease has been hampered by a limited 

understanding of the genetic and biochemical bases of pathogenicity, including mechanisms 

of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola 

has a long latent period during which it evades host defenses. Although this type of stealth 

pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest 

class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the 

genome of M. graminicola was sequenced completely. The finished genome contains 21 

chromosomes, eight of which could be lost with no visible effect on the fungus and thus are 

dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is 

different from the core genome in gene and repeat content, and appears to have originated by 

ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola 

chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora 

nodorum, revealed conservation of gene content but not order or orientation, suggesting a 

high rate of intra-chromosomal rearrangement in one or both species. This observed 

“mesosynteny” is very different from synteny seen between other organisms. A surprising 

feature of the M. graminicola genome compared to other sequenced plant pathogens was that 

it contained very few genes for enzymes that break down plant cell walls, which was more 

similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably 

involves degradation of proteins rather than carbohydrates to evade host defenses during the 

biotrophic stage of infection and may have evolved from endophytic ancestors. 
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INTRODUCTION 

The ascomycete fungus Mycosphaerella graminicola (Fig. S1) causes septoria tritici 

blotch (STB), a foliar disease of wheat that poses a significant threat to global food 

production. Losses to STB can reduce yields of wheat by 30 to 50% with a huge economic 

impact (Eyal et al., 1987); global expenditures for fungicides to manage STB total hundreds 

of millions of dollars each year (Hardwick et al., 2001; McDougall, 2006). This fungus is 

difficult to control because populations contain extremely high levels of genetic variability 

(Linde et al., 2002) and it has very unusual biology for a pathogen. Unlike most other plant 

pathogens (Kema et al., 1996b; Duncan and Howard, 2000; Jing et al., 2008), M. graminicola 

infects through stomata rather than by direct penetration and there is a long latent period of up 

to two weeks following infection before symptoms develop. The fungus evades host defenses 

(Adhikari et al., 2007) during the latent phase, followed by a rapid switch to necrotrophy 

immediately prior to symptom expression 12-20 days after penetration (Kema et al., 1996b; 

Keon et al., 2007; Kema et al., 2008). Such a switch from biotrophic to necrotrophic growth 

at the end of a long latent period is an unusual characteristic shared by most fungi in the genus 

Mycosphaerella. Very little is known about the cause or mechanism of this lifestyle switch 

(Keon et al., 2007; Kema et al., 2008) even though Mycosphaerella is one of the largest and 

most economically important genera of plant-pathogenic fungi. 

A striking aspect of M. graminicola genetics is the presence of many dispensable 

chromosomes (Wittenberg et al., 2009). These can be lost readily in sexual progeny with no 

apparent effect on fitness. However, the structure and function of dispensable chromosomes 

are not known. Here we report the first genome of a filamentous fungus to be finished 

according to current standards (Chain et al., 2009). The 21-chromosome, 39.7-Mb genome of 

M. graminicola revealed an apparently novel origin for dispensable chromosomes by 

horizontal transfer followed by extensive recombination, a possible mechanism of stealth 

pathogenicity and exciting new aspects of genome structure. The genome provides a finished 

reference for the Dothideomycetes, the largest class of ascomycete fungi, which also includes 

the apple scab pathogen Venturia inaequalis, the southern corn leaf blight pathogen 

Cochliobolus heterostrophus, the black Sigatoka pathogen of banana, M. fijiensis, and 

numerous other pathogens of almost every crop. 
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RESULTS 

Features of the finished genome 

The finished genome of M. graminicola isolate IPO323 consists of 21 complete 

chromosomes, telomere to telomere (Fig. S2), with the exceptions of one telomere of 

chromosome 21 and two internal gaps of unclonable DNA that are missing from chromosome 

18 (Table 1). Alignments between the 21 chromosomes and two genetic linkage maps yielded 

an excellent correspondence (Figs. 1 and S3), representing the most complete and the first 

finished sequence of a filamentous fungus. The next most complete genome of a filamentous 

fungus is that of Aspergillus fumigatus, which did not include centromere sequences and 

contained 11 gaps in total (Nierman et al., 2005). The complete 43,960-bp mitochondrial 

genome also was obtained and has been described elsewhere (Torriani et al., 2008). 

 

Fig. 1. Features of chromosome 2 of Mycosphaerella graminicola and alignment to genetic linkage maps. 

A. Plot of GC content. Areas of low GC usually correspond to regions of repetitive DNA. B. Repetitive regions 

of the M. graminicola genome. C. Single-copy (red) regions of the M. graminicola genome. D. Locations of 

genes for proteins containing signal peptides. E. Locations of homologs involved in pathogenicity or virulence 

that have been experimentally verified in species pathogenic to plant, animal or human hosts. F. Approximate 

locations of quantitative trait loci (QTL) for pathogenicity to wheat. G. Alignments between the genomic 

sequence and two genetic linkage maps of crosses involving isolate IPO323. Top half, Genetic linkage map of 

the cross between IPO323 and the Algerian durum wheat isolate IPO95052. Bottom half, Genetic linkage map of 

the cross between bread wheat isolates IPO323 and IPO94269. The physical map represented by the genomic 

sequence is in the center. Lines connect mapped genetic markers in each linkage map to their corresponding 

locations on the physical map based on the sequences of the marker loci. Exceptions to the almost perfect 

alignment between the three maps are indicated by crossed lines, most likely due to occasional incorrect scorings 

of the marker alleles. Chromosome 2 was used for this illustration because no QTL mapped to chromosome 1. 
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Table 1. Sizes and gene contents of the 21 chromosomes of Mycosphaerella graminicola isolate IPO323. 

 
      Average      

Chromosome  All genes  Unique genes
a
 Signal gene Genes/ Percent Percent milRNAs/ 

Number Size  Number Annotated  Number Annotated Peptides size (bp) Mb DNA  G+C repetitive Mb DNA
b
  

1 6,088,797  1,980 1,258  1,067 497 208 1338.6 325 53.1 9.5 9.7 

2 3,860,111  1,136 650  607 238 108 1402.7 294 52.4 15.7 9.6 

3 3,505,381  1,071 630  583 246 122 1337.1 306 52.6 14.2 6.3 

4 2,880,011  821 498  421 182 81 1388.6 285 52.2 16.1 13.2 

5 2,861,803  778 489  389 180 91 1352.6 272 52.0 19.1 18.9 

6 2,674,951  692 427  328 152 66 1353.0 259 51.4 22.2 12.3 

7 2,665,280  766 357  462 131 96 1202.7 287 52.6 14.0 16.1 

8 2,443,572  689 397  384 159 62 1311.2 282 51.7 17.6 13.5 

9 2,142,475  604 353  305 134 69 1345.1 282 51.5 20.8 18.7 

10 1,682,575  516 298  266 110 46 1418.7 307 52.5 14.1 9.5 

11 1,624,292  488 279  270 115 65 1352.5 300 52.8 10.5 5.5 

12 1,462,624  408 227  232 96 59 1254.3 279 52.3 14.5 10.9 

13 1,185,774  330 183  165 68 47 1195.7 278 52.0 17.8 17.7 

14 773,098  114 25  48 5 3 920.1 147 48.5 36.7 23.3 

15 639,501  86 6  44 1 2 773.7 134 51.0 34.4 25.0 

16 607,044  88 5  40 1 5 898.5 145 51.5 25.6 31.3 

17 584,099  78 6  36 1 1 777.9 134 52.0 26.4 18.8 

18
c
 573,698  64 7  28 4 0 965.1 112 48.6 40.3 33.1 

19 549,847  87 8  53 3 4 658.3 158 51.3 25.1 23.6 

20 472,105  79 4  41 2 4 863.1 167 51.5 21.1 25.4 

21
d
 409,213  58 4  21 1 2 921.6 142 51.9 30.1 14.7 

              

Total 39,686,251  10,933 6,111  5,790 2,326 1,141     13.5 
 

a
 At a BLAST cutoff value of 1  e

-20
. 

b
 Predicted numbers of loci for pre-microRNA-like small RNAs. 

c
 This chromosome contains two internal gaps of unclonable DNA marked by gaps of 1.4 and 4.5 kb; all other chromosomes are complete. 

d
 The sequence of one telomere is missing from this chromosome; all other telomeres are complete. 
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Sexual activation of chromosome plasticity and repeat-induced point mutation 

Comparative genome hybridizations using a whole-genome tiling array made from the 

genome sequence of IPO323 demonstrated striking sexually activated chromosomal plasticity 

in progeny isolates (Fig. 2) and chromosome number polymorphisms in field isolates. For 

example, isolate IPO94269, a field strain from bread wheat in the Netherlands, was missing 

two chromosomes that were present in IPO323 (Fig. 2A). 

Sexual-driven genome plasticity was particularly evident among progeny isolates in 

the two mapping populations, including losses of chromosomes that were present in both 

parents and disomy for others (Wittenberg et al., 2009). For example, progeny isolate #51 of 

the cross between IPO323 and IPO94269 lost chromosomes 14 and 21 (Fig. 2B) even though 

they were present in both parents. This isolate also was missing chromosome 20, which was 

polymorphic for presence between the parents of the cross. More surprisingly, this isolate was 

disomic for chromosomes 4 and 18 (Fig. 2B), indicating that chromosomes can be both 

gained and lost during meiosis. For chromosome 18, both copies must have originated from 

IPO323 because no homolog was present in IPO94269. Molecular markers for chromosome 4 

appeared to be heterozygous indicating that both parents contributed a copy to progeny isolate 

#51 (data not shown). Progeny isolate #2133 of the cross between isolates IPO323 and 

IPO95052 showed loss of three dispensable chromosomes (15, 18 and 21) that were present in 

both parents (Fig. 2C), most likely due to non-disjunction during meiosis. Thus, extreme 

genome plasticity was manifested as chromosome number and size polymorphisms 

(Wittenberg et al., 2009) that were generated during meiosis and extended to core as well as 

dispensable chromosomes.  

The whole-genome hybridizations also indicated that the core and dispensable 

chromosomes can be remarkably uniform for gene content, given the high capacity of the 

latter for change. Comparative genome hybridizations between IPO323 and IPO95052, an 

isolate from a field of durum wheat in Algeria, showed that they had the same complement of 

core and dispensable chromosomes (Fig. 2D). This was surprising, because populations of the 

pathogen from durum wheat (a tetraploid) usually are adapted to that host and not to 

hexaploid bread wheat, yet the chromosomal complements of isolates from these hosts on 

different continents were the same. 

Evidence for repeat-induced point mutation (RIP), a mechanism in fungi that 

inactivates transposons by introducing C to T transitions in repeated sequences (Cambareri et 

al., 1989; Selker, 2002), was seen in genome-wide analyses of transition:transversion ratios in 
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Fig. 2. Box plots of comparative genome hybridizations (CGH) of DNA from five isolates of Mycosphaerella 

graminicola to a whole-genome tiling array made from the finished sequence of isolate IPO323. A. CGH 

between IPO323 and the Dutch field isolate IPO94269. B. CGH between IPO323 and progeny isolate #51 from 

the cross between IPO323 and IPO94269. C. CGH between IPO323 and progeny isolate #2133 of the cross 

between IPO323 and IPO95052. D. CGH between IPO323 and Algerian field isolate IPO95052, which was 

isolated from and is adapted to durum (tetraploid) wheat. The genomic difference between the strains for each 

CGH is shown by 21 box plots, one for each chromosome of M. graminicola. The horizontal line in each box is 

the median log ratio of hybridization signals of the two strains; the upper and lower ends of a box represent the 

25% and 75% quartiles. The whiskers extending from each box indicate 1.5 times the interquartile range, the 

distance between the 25% and 75% quartiles. The larger the deviation from 0, the greater the difference between 

the strains for a particular chromosome. Pink boxes that are significantly less than the zero line indicate missing 

chromosomes. The purple boxes in panel B (4 and 18) that are significantly higher than the zero line indicate 

chromosomes that are disomic. 

 

long terminal repeat (LTR) pairs from 20 retrotransposon insertions which had 255 transitions 

and 6 transversions for a ratio of 42.5:1. Similarly high transition:transversion ratios were 

found in all repetitive sequences analyzed and extended to the coding regions in addition to 

the LTRs (Dhillon et al., 2010). The reverse transcriptase coding regions from transposon 

families RT11 and RT15 had transition:transversion ratios of 27.8:1 and 25.3:1, respectively, 

instead of the 1:1 ratio expected among 6,939 mutations analyzed. This high incidence of 
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transitions most likely reflects changes caused by RIP. The coding regions of all transposons 

with more than 10 copies included stop codons that prevent proper translation, indicating that 

they were inactivated. 

 

Core and dispensable chromosomes are highly divergent 

There were significant differences in structure and gene content between the 13 core 

and eight dispensable chromosomes (Tables 1 and 2); the latter are referred to collectively as 

the dispensome. The dispensome constituted about 12% of the genomic DNA but contained 

only 6% of the genes. In contrast, the 13 core chromosomes had twice as many genes per Mb 

of DNA, about half as much repetitive DNA, a significantly higher G+C content, and much 

higher numbers of unique genes (Tables 1 and 2). Genes in the dispensome were significantly 

shorter, usually were truncated relative to those on the core chromosomes (Table 2) and had 

dramatic differences in codon usage (Fig. S4). 

About 59% of the genes on core chromosomes could be annotated compared to only 

10% of those on the dispensome (Table 2). Some unique genes in the dispensome with intact, 

presumably functional reading frames, had possible paralogs on the core chromosomes (Fig. 

S5) that appeared to be inactivated by mutations (Fig. S6). A majority of the annotated 

dispensome genes coded for putative transcription factors or otherwise may function in gene 

regulation or signal transduction (Table S1). Most of the redundant genes on the dispensome 

were copies of genes present on core chromosomes, yet no syntenic relationships could be 

identified. Instead, each dispensable chromosome contained genes and repetitive sequences 

from all or most of the core chromosomes (Figs. 3 and S7) with additional unique genes of 

unknown origin. Sharing of genetic material applied to core chromosomes as well as the 

dispensome, consistent with a high level of recombination (Fig. S8). Whether the primary 

direction of transfer is from core to dispensable chromosomes or vice versa is not known. 

The dispensome contained fewer genes encoding secreted proteins such as effectors 

and other possible pathogenicity factors compared to the core set. Signal peptides showed no 

enrichment on the dispensome (Table S1) except for a few clusters overlapping with 

transposon-related repeats. Although mature microRNAs have not been demonstrated in 

fungi, they may be important regulatory molecules. In the M. graminicola genome, 418 non-

overlapping loci potentially encoding pre-microRNA-like small RNA (pre-milRNA) were 

predicted computationally based on the RFAM database (Gardner et al., 2009). This number 

was similar to the 434 loci predicted in the  41-Mb genome of Neurospora crassa  using  the  
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Table 2. Differences between essential and dispensable chromosomes in the genome of Mycosphaerella 

graminicola isolate IPO323. 

 

 Chromosomes 

Statistic Core (1-13) Dispensable (14-21) Combined (1-21) 

Size in bp    

     Total  35,077,646 4,608,605 39,686,251 

     Mean  2,698,280 576,076*** 1,889,821 

     Percent 88.4 11.6 100.0 

All genes    

     Total 10,279 654 10,933 

     Mean 790.7 81.8*** 521 

     Percent of total 94.0 6.0 100.0 

Unique genes
a
    

     Total  5,479 311 5,790 

     Mean  421.5 38.9*** 276 

     Percent of all 53.3 47.6 53.0 

Annotated genes    

     Total  6,046 65 6,111 

     Mean  465.1 8.1*** 291.0 

     Percent of all 58.8 9.9 55.9 

     Unique total 2,308 18 2,326 

     Unique mean 177.5 2.3*** 110.8 

Transcript size, mean in 

bp 

1327.1 

 

847.3*** 

 

1144.3 

Gene density, Mb
-1

 288.9 142.4*** 233.1 

Repetitive DNA, mean 15.9% 30.0%*** 21.2% 

G+C, mean 52.3% 50.9%** 51.7% 
 

a
 At a BLAST cutoff value of 1  e

-20
. 

*** The mean for the dispensable chromosomes is significantly different from that for the essential 

chromosomes at P < 0.001 by one-tailed t test. 

** The mean for the dispensable chromosomes is significantly different from that for the essential chromosomes 

at P = 0.012 by one-tailed t test. 

 

 

same approach. Of the 418 putative pre-milRNA loci predicted in the genome of M. 

graminicola, 88 (21%) are located on the 11% of the genome present as dispensome. This is 

about twice as much as is expected on the basis of a random distribution. Therefore, the 

dispensome is enriched for pre-milRNA loci. 

The 418 pre-milRNA loci code for 385 non-redundant pre-milRNA sequences that can 

give rise to distinguishable mature milRNAs. The occurrence of mature milRNAs derived 

from the predicted set was analyzed in a small-RNA data consisting of almost 6 million reads 

(Illumina platform) generated from germinated spores of M. graminicola isolate IPO323 

(Table S2).  

Many of the non-redundant predicted milRNA sequences were represented in the 

RNA reads, at widely different amounts per sequence. In total, 65 of the 385 non-redundant 

sequences were observed 10 times or more. Two predicted sequences occurred more than a 

thousand times each, experimentally confirming the presence of putatively mature milRNAs 

derived from computationally predicted pre-milRNA sequences. In N. crassa, 
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computationally predicted putative milRNA sequences also were confirmed experimentally 

(Lee et al., 2010), supporting the likelihood of their existence in M. graminicola. 

 

Fig. 3. Analysis of genes that are shared between dispensable chromosome 14 and the 13 core chromosomes of 

Mycosphaerella graminicola isolate IPO323. Each chromosome is drawn to scale as a numbered bar around the 

outer edge of the circle, and the sequence was masked for repetitive DNA prior to analysis. Lines connect 

regions of 100 bp or larger that are similar between each core chromosome and the corresponding region on 

chromosome 14 at 1  e
-5

 or lower. Chromosome 14 is an amalgamation of genes from all of the core 

chromosomes but they are mixed together with no synteny. Genes on the other dispensable chromosomes were 

not included in this analysis. 

 

The origin of the dispensome of M. graminicola is not clear. The two most likely 

origins would be degeneration of copies of the core chromosomes or by horizontal transfer. 

Disomy for core chromosomes, as seen in one of the progeny isolates, could provide the 

origin for a dispensable chromosome. If one of the two chromosome copies became 

preferentially subject to RIP followed by breakage or interstitial deletions this could result in 

a degenerated copy of that core chromosome. However, in that case we would expect the 

dispensome to share large regions of synteny with specific core chromosomes, and this was 

not observed, which renders this explanation less likely. 
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The large differences in codon usage between core and dispensable chromosomes 

could be explained by horizontal transfer or possibly by RIP. To discriminate between these 

hypotheses, RIP was simulated on the genes of the core chromosomes. Principal components 

analysis (PCA) of the simulated data set did not reduce the differences in codon bias (Fig. 

S9A); if anything, it made them farther apart. This result was consistent whether it included 

only putative functional, truncated copies or entire pseudogenes after RIPping (data not 

shown). DeRIPping of genes on the dispensable chromosomes also did not affect the results 

(Fig. S9B), so RIP could not explain the observed differences in codon usage between core 

and dispensable chromosomes. PCA of a sample of genes shared between core and 

dispensable chromosomes showed few differences in codon bias (Fig. S9C) or amino acid 

composition (Fig. S9D), consistent with an origin by duplication and exchange among 

chromosomes. This conclusion was supported when the analysis was expanded to include all 

genes with putative homologs on core and dispensable chromosomes (Fig. S9E) even though 

these genes had a very different codon usage compared to the entire sets of genes on the core 

chromosomes (Fig. S9F). 

To test the horizontal transfer hypothesis, additional PCAs were performed on 

simulated horizontal transfer data sets made by combining the genome of M. graminicola 

with those of two other fungi. Best non-self BLAST hits for genes on the M. graminicola 

dispensome most often were to fungi in the Pleosporales or Eurotiales (Table S3), so 

published genomes from species representing those orders were chosen for analysis. PCA of 

the combined genomes of M. graminicola and Stagonospora nodorum (representing the 

Pleosporales) gave separate, tight clusters for the core chromosomes of M. graminicola versus 

most of those from S. nodorum (Fig. S10A). Dispensable chromosomes of M. graminicola 

formed a looser, distinct cluster, and a fourth cluster was comprised of M. graminicola 

chromosome 14 plus scaffolds 44 and 45 of S. nodorum (Fig. S10A); this may indicate the 

existence of dispensable chromosomes in the latter species. Analysis of the combined 

genomes of M. graminicola plus Aspergillus fumigatus (Eurotiales) gave a similar result (Fig. 

S10B). The separate clustering by PCA of the M. graminicola dispensome and core 

chromosomes is consistent with an origin by horizontal transfer, but not from either of the two 

species tested. PCA on the frequencies of repetitive elements also indicated a separation 

between core and dispensable chromosomes (Fig. S11), consistent with the horizontal transfer 

hypothesis. 

A more refined test of the RIP hypothesis was performed by using the observed rates 

of all mutations in families of transposons with 10 or more elements to simulate mutational 
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changes on replicated samples drawn from the core chromosomes. Observed mutation rates 

were calculated from aligned sequences; multicopy transposons were chosen for this analysis 

because they are the most likely to have been processed through the RIP machinery so will 

reflect the actual biases that occur in M. graminicola. Codon bias and other parameters in the 

mutated samples were then compared to those in the dispensome and in the original, non-

mutated samples. Application of the mutational changes moved the samples drawn from the 

core chromosomes closer to the value observed for the dispensome, but the dispensome 

remained distinct except for a few of the analyses that are least likely to be affected by 

selection (Fig. 4). This confirmed that the dispensome has been subject to RIP but that this 

alone was not sufficient to explain the observed pattern of codon usage. 

 

A new type of synteny 

Pairwise sequence comparisons between the chromosomes of M. graminicola and 

scaffolds of Stagonospora nodorum, another wheat pathogen in the Dothideomycetes but in a 

different order from Mycosphaerella, revealed multiple regions with approximately 70-90% 

similarity (Fig. 5). However, the similarity did not extend to the dispensome, which generally 

was different from all of the S. nodorum scaffolds. Detailed examination showed that each 

region of similarity generally represents only one or a few genes in both organisms. 

Comparisons between the initial draft genome (version 1.0) of M. graminicola (Fig. 5A) and 

the finished sequence (Fig. 5B) revealed some misassemblies and also indicated scaffolds that 

ultimately were joined in the final assembly. 

A surprising result was that the dot-plot patterns were very different from those that 

characterize the macro- or microsynteny seen in other organisms when viewed at a whole- 

scaffold/chromosome scale. Instead of the expected diagonal lines indicating chromosomal 

regions with content in the same order and orientation, the dots are scattered quasi-randomly 

within ‘blocks’ defined by scaffold/chromosome boundaries (Fig. 5). For many S. nodorum 

scaffolds the vast majority of dots related are shared exclusively with one or a small number 

of M. graminicola chromosomes. For example, there are predominant one-to-one 

relationships between M. graminicola version 3 chromosomes 11 and 12 with S. nodorum 

scaffolds 21 and 7 (Fig. 5B, circle V), respectively. Similarly, M. graminicola chromosomes 

5-10 each had strong relationships with 2 to 4 scaffolds of S. nodorum. We refer to this 

conservation of gene content but not order or orientation among chromosomes as 

‘mesosynteny’. Analyses of additional genomes has shown that mesosynteny as  defined  here 
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Fig. 4. Principal Component Analysis of: S, observed genes on the dispensome; O, observed samples of genes 

on the core chromosomes before mutation; and x, samples of genes from the core chromosomes after mutation. 

Mutation was simulated using observed frequencies of all mutations in families of transposable elements with 

ten or more copies, and included mutations from RIP and other processes. Mutating the samples of genes from 

the core chromosomes always made them more similar to the observed value for the dispensome but only rarely 

included the dispensome value (see panel C). This occurred primarily with codon preference and GC content by 

amino acid, which are the quantities that are least subject to natural selection for protein function. A. amino acid 

frequency using the values for the aligned sequence with the highest GC content to build the table of mutation 

frequencies; B. codon preference using the consensus of the aligned sequences to make the table of mutation 

frequencies covering only the 5’ portion of each gene; C. codon preference using the values for the aligned 

sequence with the highest GC content to build the table of mutation frequencies covering only the 5’ portion of 

each gene; D. codon usage using the values for the aligned sequence with the highest GC content to build the 

table of mutation frequencies but with all mutation frequencies cut in half; E. codon usage using the values for 

the aligned sequence with the highest GC content to build the table of mutation frequencies; and F. GC skew 

using the consensus of the aligned sequences to make the table of mutation frequencies. The first principal 

component always separated out the pre- and post-mutated chromosome samples. The locations of the observed 

values for the dispensome (S) are circled. 
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occurs among all Dothideomycetes tested and may be unique to that class of fungi (data not 

presented). 

 

Mesosynteny as a tool to assist genome assembly 

Macrosyntenic relationships are used commonly to assist the assembly and finishing 

of fragmented genome sequences (Giles et al., 1991; Kay et al., 2007; Fedorova et al., 2008; 

Ma et al., 2010), particularly in prokaryotes. Sequences that are macrosyntenic to a long 

segment of a closely related genome are highly likely to be joined physically. If mesosynteny 

between a new genome assembly and a reference genome also may be used to suggest 

scaffolds that should be juxtaposed it could significantly reduce the cost and complexity of 

assembling and finishing genomes. To test whether mesosynteny could be used to predict 

scaffold or contig joins in a genomic sequence, versions 1 and 2 of the M. graminicola 

genome assembly were analyzed to determine whether any of the improvements in the 

finished genome could have been predicted bioinformatically by mesosynteny 

(Supplementary Information S1). 

The first version of the M. graminicola genome consisted of 129 scaffolds 

(http://genome.jgi-psf.org/Mycgr1/Mycgr1.home.html). Comparison of M. graminicola 

version 1 scaffolds with those of the P. nodorum genome predicted all scaffold joins made in 

version 2 (Fig. 5, Supplementary Information S1). Version 1 scaffolds 10 and 14 (Fig. 5: 

group I), 7 and 17 (groups II, VII and IX), and 12 and 22 (groups III and VIII) were joined 

into chromosomes 7, 5 and 10, respectively. Mesosynteny also indicated both instances where 

version 1 scaffolds were assembled incorrectly and subsequently were split in version 2. 

Compared to the scaffolds of P. nodorum, M. graminicola version 1 scaffold 4 exhibited 

regions of meso- synteny adjacent to regions of no synteny. Corrections to the assembly made 

in version 2 separated these two distinct regions into separate chromosomes. Version 1 

scaffolds 4 and 9 (Fig. 5: groups IV/VI and V) were corrected to version 2 chromosomes 6 

and 16 (Fig. 5: group IV/VI) and chromosomes 12 and 21 (Fig. 5: group V) respectively. 

Mesosynteny was remarkably successful and has great potential to assist the assembly and 

finishing of fungal genomes. 

 

A mechanism of stealth pathogenesis 

Generally, gene families involved in cell wall degradation are expanded in fungal  



CHAPTER 3 

74 
 

 

Fig. 5. Comparisons of Mycosphaerella graminicola genome assembly versions 1 (A) and 2 (B) against that of 

Stagonospora nodorum isolate SN15. Scaffolds/chromosomes are ordered along their respective axes according 

to both decreasing length and increasing number. The 6-frame translations of both genomes were compared via 

MUMMER 3.0 (Kurtz et al., 2004). Homologous regions are plotted as dots, which are color coded for percent 

similarity as per the bar on the right. Amendments made in the version 2 assembly and their corresponding 

regions in assembly version 1 are circled in red. Version 2 chromosomes 5 (B, circle II), 7 (B, circle I) and 10 

(B, circle III) were derived from joined version 1 scaffolds 7 and 17 (A, circle II), 10 and 14 (A, circle I) and 12 

and 22 (A, circle III), respectively, validating the method. Observation of the mesosyntenic pattern also could be 

used to identify inappropriately joined scaffolds. For example, M. graminicola v2 chromosomes 6 and 16 (B, 

circle IV) and 12 and 21 (B, circle V) were derived from split version 1 scaffolds 4 (A, circle IV) and 9 (A, circle 

V), respectively. These scaffolds are characterized by an abrupt termination of the mesosyntenic block at the 

split point as indicated by red lines (A, circles IV and V). A total of 21 predictions was made and 14 were 

validated. 
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plant pathogens (Yun et al., 2000; Martin et al., 2010). However, in M. graminicola, gene 

families characterized by the Carbohydrate-Active Enzyme database (CAZy) (Dean et al., 

2005) as plant cell wall polysaccharidases were severely reduced in size (Fig. 6). According 

to the CAZy analysis, the genome of M. graminicola contains fewer genes for cellulose 

degradation than those of six other fungi with sequenced genomes including both grass 

pathogens and saprophytes (Table 3), and only about one-third as many genes for cell wall 

degradation in total compared to the other plant pathogens (Table S4). This reduction in 

CAZymes in M. graminicola was very visible when the putative genes were divided based on 

polysaccharide substrate (Table S4). In addition, genes involved in appressorium formation, 

which are required for pathogenesis of many plant pathogens including Magnaporthe oryzae  

(Cuomo et al., 2007), were absent or reduced in the Mycosphaerella graminicola genome, 

reflecting its alternative host-penetration strategy.  

To further analyze the mechanism of stealth pathogenesis, we profiled the growth on 

polysaccharides of M. graminicola compared to Stagonospora nodorum and Magnaporthe 

oryzae, two pathogens of the cereals wheat and rice, respectively, with sequenced genomes 

(Fig. S12). Growth of M. graminicola corresponded with the CAZy annotation for a strongly 

reduced number of genes encoding putative xylan-degrading enzymes. Furthermore, the 

CAZy annotation demonstrated that M. graminicola contains a much smaller set of glycoside 

hydrolases, carbohydrate esterases, and carbohydrate binding modules (CBMs) compared to 

the other two cereal pathogens (Table S5). The strong reduction of CBMs in M. graminicola 

suggests a different strategy in the degradation of plant cell walls compared to the other two 

species. The M. graminicola genome is particularly depauperate for enzymes degrading 

cellulose, xylan and xyloglucan compared to the other two species, so is very atypical for a 

cereal pathogen.  

A possible mechanism of stealth pathogenesis was indicated by gene families that were 

expanded in the genome of M. graminicola. In comparative analyses of gene families and 

PFAM domains with several other fungi, the most striking expansions were observed for 

peptidases (M3, S28, pro-kuma, M24, metalloendopeptidase, metalloproteinase) and alpha 

amylases (glycoside hydrolase family 13) (Tables S6 and S7). This suggests that alternative 

nutrition sources during the biotrophic phase of infection may be proteins which are available 

in the apoplast, or possibly starch from chloroplasts that are released early in the infection 

process (Kema et al., 1996a). Overall, these analyses revealed that the genome of M. 

graminicola differs significantly from those of other cereal pathogens  with  respect  to  genes 
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involved in plant penetration as well as polysaccharide and protein degradation (Fig. 6, Table 

3), which most likely reflects its stealthy mode of pathogenesis. 

 

 

Fig. 6. Numbers of genes for proteases and plant cell wall (PCW) degrading polysaccharidases in the genomes of 

seven fungi with sequenced genomes. Genes for PCW-polysaccharidases were severely reduced in the genome 

of Mycosphaerella graminicola but proteases were about the same. The overall profile of the enzymes in M. 

graminicola was most similar to that of T. reesei than to any of the other plant pathogens. Species analyzed 

included the saprophytes Aspergillus nidulans (Anid), Neurospora crassa (Ncra), and Trichoderma reesei 

(Trees), and the plant pathogens Fusarium graminearum (Fgram), Mycosphaerella graminicola (Mgram), 

Magnaporthe oryzae (Moryz), and Stagonospora nodorum (Snod).  
 

Table 3. Numbers of predicted enzymes degrading cellulose across seven ascomycete species with sequenced 

genomes. 

 

 Saprophytes
a
  Pathogens

 a
 

CAZy family
b
 Anid Ncra Trees  Fgram Mgram Moryz Snod 

GH5 cellulases
c
 3 1 2  2 0 2 3 

GH6 2 3 1  1 0 3 4 

GH7 3 5 2  2 1 6 5 

GH12 1 1 2  4 1 3 4 

GH45 1 1 1  1 1 1 3 

GH61 9 14 3  15 2 17 30 

GH74 2 1 1  1 0 1 0 

CBM1 8 19 15  12 0 22 13 

Total cellulases 29 45 27  38 5 55 62 
 

a
 Species analyzed included the saprophytes Aspergillus nidulans (Anid), Neurospora crassa (Ncra), and 

Trichoderma reesii (Trees), and the plant pathogens Fusarium graminearum (Fgram), Mycosphaerella 

graminicola (Mgram), Magnaporthe oryzae (Moryz), and Stagonospora nodorum (Snod). 
b
 Families defined in the Carbohydrate-active enzymes database (www.cazy.org). 

c 
GH5 is a family containing many different enzyme activities; only those targeting cellulose are included. 
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Differences in gene expression during the different stages of infection were evident 

from an analysis of EST sequences (Kema et al., 2008) from wheat leaves 5, 10 and 16 days 

after inoculation (DAI) with M. graminicola. Most genes were present at only one sampling 

time with little overlap, particularly between the library from the biotrophic stage of infection 

(5 DAI) compared to the other two (Fig. S13A). Lack of overlap extended to a library from 

minimal medium minus nitrogen to simulate the nitrogen starvation thought to occur during 

infection (Fig. S13B). Expression of genes for cell wall-degrading enzymes also was reduced 

during the biotrophic stage of infection (Kema et al., 2008), consistent with the stealth-

pathogenicity hypothesis. 

 

DISCUSSION 

The dispensome as defined here includes all parts of the genome that can be missing in 

field or progeny isolates with no obvious effects on fitness in axenic culture, on a susceptible 

host or during mating. For M. graminicola, this includes the eight known dispensable 

chromosomes in isolate IPO323 plus any others that may be discovered in the future. The core 

genome consists of all chromosomes that are always present in field and progeny isolates, 

presumably because they contain genes that are vital for survival so cannot be lost. Both core 

and dispensable chromosomes may be present in two or possibly more copies, but core 

chromosomes are never absent. 

The dispensome of M. graminicola is very different from the supernumerary or B 

chromosomes in plants and some animals. The B chromosomes of plants contain few if any 

genes and are composed mostly of repetitive elements assembled from the A chromosomes. 

They may have a negative effect on fitness (Cantarel et al., 2009) and appear to be maintained 

primarily by meiotic drive (Caracuel-Rios and Talbot, 2007). In contrast, the dispensome of 

M. graminicola contains many unique and redundant genes and is not maintained by meiotic 

drive, as individual chromosomes are lost readily during meiosis (Wittenberg et al., 2009). 

Dispensable chromosomes have been reported in other fungi but they are significantly 

fewer and larger (from 0.7 to 4.9 Mb with an average of about 1.5 to 2.0 Mb) than those in M. 

graminicola (from 0.42 to 0.77 Mb) and mostly are composed of repetitive DNA with few 

known genes (Jones et al., 2008). Unlike the dispensome of M. graminicola, the few genes on 

dispensable chromosomes in other fungi often are pathogenicity factors (Miao et al., 1991; 

Covert, 1998; Jones et al., 2008) and whole chromosomes may be transferred asexually (Hatta 

et al., 2002). Dispensable chromosomes in other fungi are different from the dispensome of 
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M. graminicola except for the conditionally dispensable or lineage-specific chromosomes 

reported recently in Nectria haematococca (asexual stage: Fusarium solani) and other species 

of Fusarium (Masel et al., 1996; Wang et al., 2003), which also were different from core 

chromosomes in structure and gene content and contained numerous unique genes. However, 

unlike those in M. graminicola, dispensable chromosomes of Fusarium species had clear 

functions in ecological adaptation, were transferred more or less intact among closely related 

species (Wang et al., 2003) and did not show extensive recombination with core 

chromosomes. 

The high instability of the M. graminicola dispensome during meiosis and mitosis 

would cause it to be eliminated unless it provided a selective advantage to the pathogen at 

least under some conditions. The unique genes with annotations indicated possible functions 

in transcription or signal transduction. There also was an enrichment for predicted pre-

milRNAs, which may indicate that parts of the dispensome are involved in gene regulation. 

Based on dispensable chromosomes in other plant pathogens, genes on the dispensome were 

expected to be involved with host adaptation or pathogenicity, yet so far no genes for 

pathogenicity or fitness of M. graminicola have been mapped to the dispensome (Coleman et 

al., 2009). A more interesting possibility is that the dispensome facilitates high recombination 

among chromosomes and could provide a repository of genes that may be advantageous under 

certain environmental conditions. This hypothesis should be tested by additional 

experimentation. 

A recent comparison of the M. graminicola genome with that of its closest known 

relative, the unnamed species S1 from wild grasses in Iran, identified probable homologs for 

all of the dispensome chromosomes in the sibling species except for chromosome 18 (Ware, 

2006). These putative homologs presumably are dispensable also in species S1, but this has 

not been proven and only one isolate has been sequenced. Species S1 and M. graminicola are 

thought to have diverged approximately 10,500 years ago (Stukenbrock et al., 2010), 

concomitant with the domestication of wheat as a crop. Therefore, unlike dispensable 

chromosomes in other fungi, the dispensome of M. graminicola appears to be relatively 

ancient and has survived at least one speciation event. Analyses of two recently sequenced 

Dothideomycetes with Mycosphaerella sexual stages, M. pini (asexual stage: Dothistroma 

septosporum) and M. populorum (asexual stage: Septoria musiva), showed that they contained 

clear homologs of all of the core chromosomes of M. graminicola, but none of their 

chromosomes corresponded to the dispensome (B. Dhillon and S. B. Goodwin, unpublished). 

Taken together, these observations indicate that the dispensome of M. graminicola most likely 
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was acquired prior to its divergence from a common ancestor with species S1 more than 

10,000 years ago, but after the split of the M.graminicola-S1 lineage from that which gave 

rise to M. pini and M. populorum. The mechanism for the longevity of this dispensome with 

no obvious effects on fitness is not known. 

More than half of the genes on the dispensome and almost all of the transposons also 

were present on core chromosomes. Moreover, there was no increase in gene numbers so a 

simple transfer of chromosomes from another species does not explain all of the observations. 

Instead, we propose a new model for the origin of dispensable chromosomes in M. 

graminicola by horizontal transfer followed by degeneration and extensive recombination 

with core chromosomes. The tight clustering of the dispensable chromosomes in the PCAs, 

with the possible exception of chromosome 14, indicates that they probably came from the 

same donor species. However, it is difficult to explain why they are so numerous. The most 

likely mechanism of horizontal transfer is via a sexual or somatic fusion with another species 

that had eight or more chromosomes, in which only a few genes were maintained on each 

donated chromosome. Chromosome segments that were redundant with the core set could be 

eliminated, leaving only those that are unique or that could confer some sort of selective 

advantage to the individual or to the dispensome. The fitness advantage could be transitory or 

occur only under certain conditions to allow those chromosomes to be dispensable, at least on 

an individual or population basis. Another possibility is that the numerous dispensable 

chromosomes are fragments from one or two larger chromosomes that were broken, acquired 

additional telomeres and lost content to result in their current, reduced complements of genes. 

High recombination within chromosomes and transfer of content between the donor and host 

chromosomes must have occurred to explain the observed pattern of shared genes. 

The recombination hypothesis is supported by degenerated copies of some unique 

genes that were found on core chromosomes. These most likely represent genes that were 

copied from core to dispensable chromosomes, after which the copy on the core chromosome 

became inactivated, probably by RIP. Duplication, diversification and differential gene loss 

were proposed recently as the origin of lineage-specific gene islands in Aspergillus fumigatus 

(Stukenbrock et al., 2007), but that process seems to be very different from what occurred in 

M. graminicola. In A. fumigatus, large blocks of genes with synteny to other chromosomes 

were found, the opposite of what was seen for M. graminicola. The origin and evolution of 

the dispensome in M. graminicola seems to be very different from those reported for 

dispensable chromosomes in other fungi (Wang et al., 2003). Unlike other fungi in which 

single chromosomes seem to have been transferred recently, the dispensome of M. 
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graminicola most likely originated by ancient horizontal transfer of many chromosomes 

thousands of years ago. So far it is not known to be conditionally dispensable, unlike 

dispensable chromosomes in other fungi, which have clear roles in ecological adaptation. 

The mesosyntenic analyses provided a new approach that complements the use of 

genetic linkage maps to support whole-genome assembly. Gene content was highly conserved 

on syntenic chromosomes in the two distantly related species, but there was little or no 

conservation of gene order or orientation. The comparison of the version 1 assembly of M. 

graminicola with the related S. nodorum genome sequence indicated scaffolds that should be 

merged and others that were erroneously assembled into one scaffold. Hence, mesosynteny 

validated the high-density genetic analyses and may provide an additional tool for whole-

genome assembly for fungi where linkage maps do not exist or cannot be generated. Groups 

of genes in S. nodorum that corresponded to more than one group in M. graminicola may 

indicate scaffolds that should be joined in S. nodorum or, more likely, may reflect 

chromosomal rearrangements that have occurred since the divergence of S. nodorum and M. 

graminicola from an ancient common ancestor. 

Considering their early divergence (James et al., 2006) relative to species within the 

same genus, the degree of mesosyntenic conservation between M. graminicola and S. 

nodorum is striking. However, it is very surprising that the synteny only applied to gene 

content but not order or orientation. In comparisons between other organisms, synteny plots 

usually yield diagonal lines even between unrelated species such as humans and cats 

(Housworth and Postlethwait, 2002). The lack of diagonal lines in the comparisons of S. 

nodorum with M. graminicola indicate a high rate of shuffling of genes on chromosomal 

blocks that have remained constant over long periods of evolutionary time. The mechanism 

by which these small chromosomal rearrangements occur is not known. 

The greatly reduced number of cell wall-degrading enzymes (CWDEs) in the genome 

of M. graminicola compared with other sequenced fungal genomes might be an evolutionary 

adaptation to avoid detection by the host during its extended, biotrophic latent phase and thus 

evade plant defenses long enough to cause disease. Similar loss of CWDEs in the 

ectomycorrhizal fungus Laccaria bicolor was thought to represent an adaptation to a 

symbiotic lifestyle (Martin et al., 2008). Based on these results we propose a novel, biphasic 

mechanism of stealth pathogenesis. During penetration and early colonization, M. 

graminicola produces a reduced set of proteins that facilitate pathogenicity and function as 

effectors in other fungi. Instead of the usual carbohydrate metabolism, nutrition during the 

extended biotrophic phase may be by degradation of proteins rather than carbohydrates in the 
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apoplastic fluid and intercellular spaces. The large number of proteases expressed during the 

early stages of the infection process supports this hypothesis. The biotrophic phase terminates 

by a switch to necrotrophic growth, production of specific cell wall-degrading enzymes and 

possibly by triggering programmed cell death (Kema et al., 1996b; Keon et al., 2007; Kema et 

al., 2008). 

Stealth biotrophy raises the intriguing possibility that M. graminicola and possibly 

other Dothideomycetes may have evolved originally as endophytes or could be evolving 

towards an endophytic lifestyle. The finished genome of M. graminicola provides a gold 

standard (Chain et al., 2009) for this class of fungi, which is the largest and most ecologically 

diverse group of Ascomycetes with approximately 20,000 species, classified in 11 orders and 

90 families, and provides a huge advantage for comparative genomics to identify the genetic 

basis of highly divergent lifestyles. 

 

MATERIALS AND METHODS 

Biological material 

Mycosphaerella graminicola isolates IPO323 and IPO94269 are Dutch field strains 

that were isolated in 1984 and 1994 from the wheat cultivar Arminda and an unknown 

cultivar, respectively. Isolate IPO95052 was isolated from a durum (tetraploid) wheat sample 

from Algeria. All isolates are maintained at the CBS-KNAW Fungal Biodiversity Centre of 

the Royal Netherlands Academy of Arts and Sciences (Utrecht, the Netherlands) under 

accession numbers CBS 115943 (IPO323), CBS 115941 (IPO94269) and CBS 115942 

(IPO95052). Mycelia of each isolate were used to inoculate 200 mL of YG broth (10 g of 

yeast extract and 30 g of glucose per L) and were cultured until cloudy by shaking at 120 rpm 

at 18°C, after which the spores were lyophilized, 50 mg of lyophilised spores were placed in a 

2-mL tube and ground with a Hybaid Ribolyser (model n° FP120HY-230) for 10 s at 2500 

rpm with a tungsten carbide bead. DNA was extracted using the Promega Wizard Magnetic 

DNA Purification system for food according to instructions provided by the manufacturer. 

 

Initial sequencing and assembly 

Whole-genome shotgun (WGS) sequencing of the genome of M. graminicola used 

three libraries with insert sizes of 2-3, 6-8, and 35-40 kb. The sequenced reads were screened 

for vector using cross_match, trimmed for vector and quality, and filtered to remove reads 
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shorter than 100 bases. WGS assembly was done using Jazz, a tool developed at the JGI 

(Aparicio et al., 2002). After excluding redundant and short scaffolds, the assembly v1.0 

contained 41.2 Mb of sequence in 129 scaffolds, of which 4.0 Mb (7.5%) was in gaps (Table 

S8). The sequence depth derived from the assembly was 8.88 ± 0.04. 

 

Gap closure and finishing 

To perform finishing, the M. graminicola WGS assembly was broken down into 

scaffold-size pieces and each piece was reassembled with phrap. These scaffold pieces were 

then finished using a Phred/Phrap/Consed pipeline. Initially, all low-quality regions and gaps 

were targeted with computationally selected sequencing reactions completed with 4:1 BigDye 

terminator: dGTP chemistry (Applied Biosystems). These automated rounds included 

resequencing plasmid subclones and walking on plasmid subclones or fosmids using custom 

primers. Following completion of the automated rounds, a trained finisher manually inspected 

each assembly. Further reactions were then manually selected to complete the genome. These 

included additional resequencing reactions and custom primer walks on plasmid subclones or 

fosmids as described above guided by a genetic map of more than 2,031 sequenced markers 

plus paired-end reads from a library of Bacterial Artificial Chromosome clones. Smaller 

repeats in the sequence were resolved by transposon-hopping 8-kb plasmid clones. Fosmid 

and BAC clones were shotgun sequenced and finished to fill large gaps, resolve larger repeats 

and to extend into the telomere regions. Each assembly was then validated by an independent 

quality assessment. This included a visual examination of subclone paired ends using Orchid 

(http://www-hagsc.org), and visual inspection of high-quality discrepancies and all remaining 

low-quality areas. All available EST resources were also placed on the assembly to ensure 

completeness. The finished genome consists of 39,686,251 base pairs of finished sequence 

with an estimated error rate of less than 1 in 100,000 base pairs. Genome contiguity is very 

high with a total of 21 chromosomes represented, 19 of which are complete and 20 of which 

are sequenced from telomere to telomere. 

 

Genome annotation 

Both draft (v1.0) and finished (v2.0) assemblies of M. graminicola were processed 

using the JGI annotation pipeline, which combines several gene predictors:1) putative full-

length genes from EST cluster consensus sequences; 2) homology-based gene models were 

predicted using FGENESH+ (Salamov and Solovyev, 2000) and Genewise (Birney and 

http://www-hagsc.org)/
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Durbin, 2000) seeded by Blastx alignments against sequences from the NCBI non-redundant 

protein set; 3) ab initio gene predictor FGENESH (Salamov and Solovyev, 2000) was trained 

on the set of putative full-length genes and reliable homology-based models. Genewise 

models were completed using scaffold data to find start and stop codons. ESTs were used to 

extend, verify, and complete the predicted gene models. Because multiple gene models per 

locus were often generated, a single representative gene model for each locus was chosen 

based on homology and EST support and used for further analysis. Those comprised a filtered 

set of gene models supported by different lines of evidence. These were further curated 

manually during community annotation and used for analysis. 

All predicted gene models were annotated using InterProScan (Zdobnov and 

Apweiler, 2001) and hardware-accelerated double-affine Smith-Waterman alignments 

(www.timelogic.com) against the SwissProt (www.expasy.org/sprot) and other specialized 

databases such as KEGG (Kanehisa et al., 2004). Finally, KEGG hits were used to map EC 

numbers (http://www.expasy.org/enzyme/), and Interpro hits were used to map GO terms 

(Ashburner et al., 2000). Predicted proteins also were annotated according to KOG (Tatusov 

et al., 2003; Koonin et al., 2004) classification. 

Following the machine annotation, manual validation and correction of selected gene 

sets was performed by more than 30 annotators through a jamboree held at the JGI facilities in 

Walnut Creek, California, USA. Annotators were trained by JGI staff and continue to make 

modifications as necessary. 

 Potential microRNA-like small RNA (milRNAs) loci were annotated using the 

INFERNAL software tool and based on 454 microRNA families (covarion models) from the 

RFAM database version 9.1 (Griffiths-Jones et al., 2005). milRNAs were predicted if their 

scores were higher than thresholds, defined individually for each family, in the same way as 

PFAM domains are predicted. 

 Experimental validation of the predicted milRNAs was done by sequencing of an 

RNA library Total RNA was isolated from spores germinated on water agar of M. 

graminicola isolate IPO323. A small RNA library was prepared according to the protocol for 

Illumina sequencing; small RNAs from 16-~50 nt were isolated from gels, sequenced with an 

Illumina/Solexa single read DNA 50 cycles Genome Analyzer II, and compared by BLAST 

search against the list of 535 predicted pre-milRNAs from the genome sequence. 

 Assembly and annotations of the M. graminicola finished genome are available from 

the JGI Genome Portal at http://www.jgi.doe.gov/Mgraminicola and were deposited at 

DDBJ/EMBL/GenBank under the project accession ACPE00000000. 
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Microarray analyses 

 Whole-genome tiling microarrays were designed by choosing one 50-mer primer 

every 100 bases spanning the entire finished genome. The arrays were manufactured and 

hybridized by the Nimblegen Corporation with total DNA extracted from each field isolate. 

 

Principal component analyses of core and dispensable chromosomes 

The CodonW package (http://codonw.sourceforge.net/) was used for correspondence 

analysis of codon usage, which mathematically is identical to principal component analysis. 

CodonW requires as an input a set of coding sequences, usually of individual genes. For 

chromosome-level analyses coding sequences from the frozen gene catalog models for each 

chromosomes were concatenated, forming 21 'superORFs', one for each chromosome. 

Because partial models may introduce some potential frameshifts with internal stop codons 

they were removed from the analysis; this did not affect the results as their total number is 

low. CodonW has no graphical outputs, so they were used as inputs for scatter plots in R 

(http://www.r-project.org/). 

 For M. graminicola only a similar analysis was done for repeats. RepeatScout was 

run on the genome to produce a set of ab initio-identified repeat sequences. From that set 81 

distinct repeat sequences, each with an occurrence exceeding 20 times in the genome, were 

extracted. For each chromosome a vector of length 81 was calculated with the relative 

frequency of each repeat. A PC analysis was run on the resulting vectors using the standard 

principal component function pcomp in R. Separation at the repeat level means that these 

chromosomes have distinct evolutionary profiles not only on the protein-coding level, but also 

on other parts of the chromosomes, suggesting that entire chromosomes may be transferred 

horizontally. 

 

Mesosynteny 

 Dot plots were generated via MUMMER 3.0 (Kurtz et al., 2004) with data derived 

from default PROmer comparisons between the M. graminicola genome assembly versions 1 

and 2 (http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html) and S. nodorum SN15 assembly 

version 2 (Hane et al., 2007), available under GenBank accessions CH445325-CH445384, 

CH445386-CH445394 and CH959328-CH959365, or AAGI00000000. Additional 

comparisons and statistical analyses were made with custom-designed perl scripts. 

http://www.r-project.org/
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Data from the M. graminicola version 2 comparison with S. nodorum were used to test 

the efficacy of mesosyntenic comparisons to assist the completion of fungal genomes. The 

mesosynteny-based prediction of scaffold joining involved 3 stages: determining the percent 

coverage of scaffolds/chromosomes for each scaffold/chromosome pair (i.e., a function of the 

number of ‘dots’ per ‘block’); determining which scaffold/chromosome pairs were 

significantly related and forming groups of joined scaffolds; and filtering out background 

levels of similarity due to sequence redundancy and incomplete genome assemblies. 

Coordinates of homologous regions were obtained from PROmer coordinate outputs 

(MUMMER 3.0) and used to determine the percent of sequence covered by matches to a 

sequence from the alternate genome for each sequence pair. Where match coordinates 

overlapped on the sequence of interest, those matches were merged into a single feature to 

avoid redundancy. A perl script for conversion of PROmer coordinate outputs to a table of 

percent coverage is available on request. 

Coverage values for each M. graminicola-S. nodorum sequence pair were subject to a 

binomial test for significance. The threshold for significance (Psig) ≥ 0.95 was: 

 

 

where x is the percent coverage, n equals 100, and p is the probability of chromosome 

homology. 

The probability of chromosome homology (p) was equal to 1/(21 x 19), which was 

derived from the number of M. graminicola chromosomes (21) and the approximate PFGE 

estimate of S. nodorum chromosomes (19) (Cooley and Caten, 1991). This is the likelihood 

that a given sequence pair represents related chromosomes. This model assumes that no 

whole-genome/chromosome duplication events have occurred previously between either 

fungal genome since divergence from their last common ancestor. 

The significance of percent coverage (Psig) was tested bidirectionally for each 

sequence pair (i.e., for sequence pair A-B, both coverage of sequence A by B and coverage of 

sequence B by A were tested). Sequence pairs were significantly related if a test in either 

direction was successful. A minimum length threshold of 1 kb was also imposed for both 

sequences. Where multiple scaffolds of M. graminicola were significantly related to the same 

S. nodorum scaffold, those M. graminicola scaffolds formed a ‘joined group’ of candidates 

for representation of the same chromosome. 

All possible paired combinations of M. graminicola scaffolds present within predicted 

joined groups were subject to filtering for high levels of background similarity as follows: 
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present) scaffold(either  groups joined#

joined) (scaffolds groups joined#
=retention  

The retention score is a measure of the reliability of scaffold join relationships. Joins between 

M. graminicola scaffold pairs with retention scores < 0.25 were discarded. 

 

CAZy annotation and growth profiling 

Annotation of carbohydrate-related enzymes was performed using the Carbohydrate-

Active Enzyme database (CAZy) annotation pipeline (Dean et al., 2005). BLAST was used to 

compare the predicted proteins of M. graminicola to a collection of catalytic and 

carbohydrate-binding modules derived from CAZy. Significant hits were compared 

individually by BLAST to assign them to one or more CAZy families. Ambiguous family 

attributions were processed manually along with all identified models that presented defects 

(deletions, insertions, splicing issues, etc.). 

Growth profiling of S. nodorum and M. graminicola was on Aspergillus niger minimal 

medium (de Vries et al., 2005). Cultures were grown at 25 degrees for seven days after which 

pictures were taken for growth comparison. Carbon sources used were: glucose (Sigma); 

soluble starch (Difco); alpha-cellulose (Sigma); Guar Gum (Sigma, galactomannan); Oat spelt 

xylan (Sigma); and Apple Pectin (Sigma). 

 

Genome structure analyses 

Comparisons of sequence content between core and dispensable chromosomes was 

with Circos (Krzywinski et al., 2009). This tool draws ribbons connecting sequences that 

align in different data sets. 
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Supplementary Information S1. The method and calculations for using mesosynteny to predict scaffold joins 

from version 1 to version 2 of the Mycosphaerella graminicola genomic sequence.  

Dataset S1.  

http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002070#s5 

 

 

 
Fig. S1. Aspects of the in vitro and in vivo lifestyle of Mycosphaerella graminicola. 1. Typical colony 

appearance of M. graminicola isolates grown under light (upper two rows) and dark (lower low) conditions. 

Light stimulates yeast-like growth whereas darkness induces filamentous growth. 2. Close-up of yeast-like 

growth on V8 agar. 3. In vitro production of asexual fructifications (pycnidia; arrow) on wheat leaf extract agar. 

4. Penetration of a wheat leaf stoma (arrow) by a pycnidiospore germ tube. 5. Simultaneous penetration of a 

wheat leaf stoma by three germ tubes of sexual airborne ascospores (arrows) that are transported over vast 

distances. 6. Colonization of the mesophyll tissue by an intercellular hypha (arrows) during the symptomless 

biotrophic phase of pathogenesis. 7. Initiation (arrow head) of a pycnidium in the substomatal cavity of a wheat 

leaf. 8. Ripe pycnidia in a primary leaf of a susceptible wheat seedling. High humidity stimulates the extrusion of 

cyrrhi, tendril-like mucilages containing asexual pycnidiospores that are rain-splash dispersed over short 

distances. 9. Typical infection of the primary leaf of a resistant cultivar. Note the low fungal density in the 

apoplast (arrow) and the response of the mesophyll cells (arrow head), particularly the chloroplasts, to the 

presence of intercellular hyphae. 10. Typical symptoms on a primary seedling leaf of a highly susceptible wheat 

cultivar. 11. Typical response on a primary leaf of a highly resistant wheat cultivar. 12. Adult-plant evaluation 

plots are inoculated at the adult plant stage with individual isolates using air-driven equipment. 13. Symptoms on 

an adult plant flag leaf after field inoculations. 14. Symptoms on a naturally infected adult plant flag leaf. 

 

http://www.plosgenetics.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1002070.s001
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002070#s5
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Fig. S2. The 21 chromosomes of the Mycosphaerella graminicola genome drawn to scale. Red indicates regions 

of single-copy sequence; repetitive sequences are in shown blue. Chromosome 1 is almost twice as long as any 

of the others. The core chromosomes 1-13 are the largest. Dispensable chromosomes 14-21 are smaller than the 

core chromosomes and have a higher proportion of repetitive DNA as indicated by the blue bands. 

 

 
Fig. S3. Features of chromosome 14, the largest dispensable chromosome of Mycosphaerella graminicola, and 

alignment to genetic linkage maps. A. Plot of GC content. Areas of low GC usually correspond to regions of 

repetitive DNA. B.Repetitive regions of the M. graminicola genome. C. Single-copy (red) regions of the M. 

graminicola genome. D. Locations of genes for proteins containing signal peptides. E. Locations of homologs of 

pathogenicity or virulence genes that have been experimentally verified in species pathogenic to plant, animal or 

human hosts. F. Approximate locations of quantitative trait loci (QTL) for pathogenicity to wheat. G. 

Alignments between the genomic sequence and two genetic linkage maps of crosses involving isolate IPO323. 

Top half, Genetic linkage map of the cross between IPO323 and the Algerian durum wheat isolate IPO95052. 

Bottom half, Genetic linkage map of the cross between bread wheat isolates IPO323 and IPO94269. The 

physical map represented by the genomic sequence is in the center. Lines connect mapped genetic markers in 

each linkage map to their corresponding locations on the physical map based on the sequences of the marker 

loci. Very few secreted proteins (track D) or pathogenicity-related genes (E) and no pathogenicity QTL mapped 

to the dispensome. 
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Fig. S4.  Principal Component Analysis of codon usage in 21 chromosomes of the Mycosphaerella graminicola 

finished genome. Factor 1 gave good discrimination between core (blue circles) and dispensable (red) 

chromosomes. 

 

 
Fig. S5. Examples of unique genes on dispensable chromosomes with an inactivated copy on a core 

chromosome. A unique gene on chromosome 14 and two on chromosome 18 showed excellent alignments to 

footprints of genes on chromosome 1. The copies on chromosome 1 matched those on the dispensable 

chromosomes with an expected value of 1 x 10
-5

 or better, but contained numerous stop codons indicating that 

they were pseudogenes and possibly could have been the progenitor copies for the intact, unique genes on 

dispensable chromosomes 14 and 18. The graphs above chromosome 14 and below chromosome 18 indicate GC 

content. 
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Fig. S6.  Examples of amino acid alignments between protein sequences of unique genes on dispensable 

chromosomes to their inactivated putative homologs on core chromosomes. A. A unique gene on dispensable 

chromosome 14 aligned to a footprint of its homologous pseudogene on core chromosome 1. B and C. 

Alignments between two genes on dispensable chromosome 18 to homologous pseudogenes on core 

chromosome 1. Identical amino acids are shaded blue. Stop codons in pseudogenes are indicated by X and are 

shaded red. Details are provided beneath each alignment. Each unique gene is at least 26% identical and 46% 

similar to its putative homolog. 
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Fig. S7.  Analysis of genes and repetitive DNAs that are shared between dispensable chromosome 14 and the 13 

core chromosomes of Mycosphaerella graminicola. Each chromosome is drawn to scale as a numbered bar 

around the outer edge of the circle. Lines connect regions of 100 bp or larger that are similar between each core 

chromosome and the corresponding region on chromosome 14 at 1  e
-5

 or lower. Chromosome 14 contains parts 

of all of the core chromosomes that are mixed in together with no synteny. Genes on the other dispensable 

chromosomes were not included in this analysis. 
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Fig. S8.  Analysis of genes that are shared between each of the nine largest core chromosomes (1-9) and all other 

chromosomes of the Mycosphaerella graminicola genome. Each chromosome is drawn to scale as a numbered 

bar around the outer edge of the circle. Lines connect regions of 100 bp or larger that are similar between the 

indicated core chromosome and each of the remaining 20 chromosomes at 1  e
-5

 or lower. Each chromosome 

contains parts of all of the other chromosomes mixed in together with no synteny. Genes on the 12 smallest 

chromosomes were similar but are not shown. 
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Fig. S9.  Principal Component Analysis of codon usage. A. in 21 chromosomes of the Mycosphaerella 

graminicola finished genome after simulated RIPping. B. in 21 chromosomes of the M. graminicola finished 

genome after simulated deRIPping. C. of about 150 genes with shared putative homologs between the core and 

dispensable chromosomes of M. graminicola. D. of amino acid composition of about 150 genes with shared 

putative homologs between the core and dispensable chromosomes of M. graminicola. E. of all genes with 

shared putative homologs between the core and dispensable chromosomes of M. graminicola. F. of all genes on 

dispensable chromosomes with shared putative homologs on core chromosomes against all genes on the core 

chromosomes of M. graminicola. 
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Fig. S10.  Principal Component Analysis of codon usage. A. between the genomes of M. graminicola and 

Stagonospora nodorum. B. between the genomes of M. graminicola and Aspergillus fumigatus. Values for the 

chromosomes of M. graminicola are indicated by red circles, those for S. nodorum and A. fumigatus by green 

triangles. 
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Fig. S11. Principal Component Analysis of repeats in 21 chromosomes of the Mycosphaerella graminicola 

finished genome. Core chromosomes (black circles) were clearly separated from the dispensome (red). 
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Fig. S12. Growth of Mycosphaerella graminicola, Stagonospora nodorum and Magnaporthe oryzae (M. grisea) 

on glucose and several plant polysaccharides. Growth of M. graminicola was decreased on xylan, consistent with 

the CAZy annotation for fewer genes involved in degradation of that substrate. 

 

 

 

 

 

Fig. S13.  Venn diagrams showing the expression of Mycosphaerella graminicola genes at different times during 

the infection process and with a sample grown in vitro. A. Libraries MgEST_08, MgEST_09, and MgEST_10 

contain EST sequences from wheat leaf tissue collected at 5, 10 and 16 days after inoculation, respectively. B. 

four-way diagram with the same three in vitro-produced libraries plus in vitro library MgEST_05, grown on 

minimal medium minus nitrogen to mimic the early stages of the infection process. 
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Table S1. List of functional domains or other annotations for 65 genes on dispensable chromosomes 14-21 of 

the genome of Mycosphaerella graminicola. 

 
Location Protein ID number

a
 Annotation/domain information 

Chromosome 14 30708 Protein kinase 

 51580 Kinesin, motor region 

 51592 Zn-finger, RING 

 51612 Allergen V5/Tpx-1 related 

 51613 BTB/POZ 

 51638 Amidase 

 51659
 b Tyrosine protein kinase, active site 

 51681 3'-5' exonuclease 

 78038 C4-dicarboxylate transporter/malic acid transport protein 

 88520 Bile acid:sodium symporter 

 88521 Rhodanese-like 

 97533 Zn-finger, C2H2 type 

 97547
 b ATP-dependent DNA ligase 

 97549 BPD_TRANSP_INN_MEMBR 

 97573
 b Transcription factor, MADS-box 

 97575 Tyrosine protein kinase, active site 

 97582 Cof protein 

 97584
 b Cyclin-like F-box 

 97585 Fungal transcriptional regulatory protein, N-terminal 

 97592 Fungal transcriptional regulatory protein, N-terminal 

 97613 Cytochrome c  heme-binding site 

 101931 Camphor resistance CrcB protein 

 106589
 b Forkhead-associated 

 111731 N-6 Adenine-specific DNA methylase 

 111740 ATP-dependent helicase, DEAD-box 
Chromosome 15 51695 Beta tubulin 

 97626 Alpha tubulin 

 97640 CRYSTALLIN_BETAGAMMA 

 97646 Cupin region 

 97668
 b Helix-turn-helix, Fis-type 

 97675 Ferritin/ribonucleotide reductase-like 
Chromosome 16 97702 Peptidase A4, scytalidopepsin B 

 97707 R3H domain 

 97717 Peptidase S8 and S53, subtilisin, kexin, sedolisin 

 97741 dsRNA-binding domain-like 

 106635
 b Homeobox 

Chromosome 17 51731 Prefoldin 

 51740 Heat shock protein Hsp20 

 97780 Peptidase C48, SUMO/Sentrin/Ubl1 

 97790
 b Glycoside hydrolase, family 11 

 97837 Shugoshin, N terminal 

 106639 Zn-finger, C2H2 type 
Chromosome 18 19703 HAT dimerisation 

 30482 Serine/threonine protein kinase 

 51763
 b DEAD/DEAH box helicase, N-terminal 

 97851
 b Ankyrin 

 97867
 b TonB box, N-terminal 

 97908 DHH phosphoesterase 

 111781
 b Calcium-binding EF-hand 

Chromosome 19 27948 BTB/POZ 

 31017 Chaperonin Cpn60/TCP-1 

 97915
 b Myb, DNA-binding 

 97929 Carbonic anhydrase, prokaryotic and plant 
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 97931
 b Thaumatin, pathogenesis-related 

 
97943 H+-transporting two-sector ATPase, alpha/beta subunit, 

central region 

 97953
 b Eukaryotic RNA polymerase II heptapeptide repeat 

 111792 Arthropod hemocyanin/insect LSP 
Chromosome 20 98020

 b TonB box, N-terminal 

 98042 Helix-turn-helix, Fis-type 

 98050
 b Inorganic pyrophosphatase 

 111795 Cytochrome c  heme-binding site 
Chromosome 21 51798 Tubulin/FtsZ, GTPase 

 98073 Asp/Glu racemase 

 98102
b Regulator of chromosome condensation, RCC1 

 98110 Kinesin, motor region 
a
 Protein IDs are from the M. graminicola gene catalog in the database of the Joint Genome Institute. The 

genome sequence and annotations are available from the JGI web portal at 

http://www.jgi.doe.gov/Mgraminicola. 
b
 These genes are unique to the dispensable chromosomes. 

 
 

Table S2. Analysis of small RNA sequences (generated on the Illumina platform) for the presence of 

computationally predicted pre-microRNA-like (milRNA) sequences in germinated spores of Mycosphaerella 

graminicola isolate IPO323. 

 

Small-RNA library
a
 

Trimmed 

reads
b
 

Average 

length (nt) 

Number
c
 

>1 >10 >100 >1000 

Germinated spores 5.926.175 26.1 220 65 26 2
d
 

 

a
 RNA was isolated with standard procedures and the small RNAs were isolated with the Illumina small RNA kit 

and sequenced using standard procedures. 
b
 The number remaining after quality control and removal of adapter sequences. 

c
 The total number of the 385 predicted non-redundant pre-milRNA sequences with the indicated number of  

perfect hits (i.e., no mismatches were allowed over the full length of the RNA read) in the RNA data set using 

Blast. 
d
 The two predicted pre-milRNA sequences with more than a thousand perfect hits in the small-RNA data 

occurred 7342 and 4134 times. 

 

 

 

Table S3. Best non-self BLAST hits for 654 called genes on dispensable chromosomes of Mycosphaerella 

graminicola queried with tblastn against a combined database containing the GenBank nt and EST datasets plus 

M. graminicola version 2.0 and M. fijiensis v1.0 from the Joint Genome Institute. 

 
Genus or type Class Order Number 

No hits Not applicable Not applicable 225 

M. graminicola GenBank Dothideomycetes Capnodiales 140 

M. graminicola JGI D chromosome Dothideomycetes Capnodiales 136 

M. graminicola JGI core chromosome Dothideomycetes Capnodiales 86 

M. fijiensis Dothideomycetes Capnodiales 13 

Animal Not applicable Not applicable 8 

Ajellomyces Eurotiomycetes Onygenales 7 

Aspergillus Eurotiomycetes Eurotiales 6 

Penicillium Eurotiomycetes Eurotiales 5 

Phaeosphaeria Dothideomycetes Pleosporales 5 

Cercospora Dothideomycetes Capnodiales 3 

Coccidioides Eurotiomycetes Onygenales 3 

Geomyces Eurotiomycetes Onygenales 2 

Pyrenophora Dothideomycetes Pleosporales 2 

Botryotinia Leotiomycetes Helotiales 2 

Talaromyces Eurotiomycetes Eurotiales 1 

http://www.jgi.doe.gov/Mgraminicola
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Trichoderma Sordariomycetes Hypocreales 1 

Uncinocarpus Eurotiomycetes Onygenales 1 

Grosmannia Sordariomycetes Ophiostomatales 1 

Neurospora Sordariomycetes Sordariales 1 

Cordyceps Sordariomycetes Hypocreales 1 

Pichia Saccharomycetes Saccharomycetales 1 

Claviceps Sordariomycetes Hypocreales 1 

Neosartorya Eurotiomycetes Eurotiales 1 

Podospora Sordariomycetes Sordariales 1 

Candida Saccharomycetes Saccharomycetales 1 

Sclerotinia Leotiomycetes Helotiales 1 

Chaetomium Sordariomycetes Sordariales 1 

 

 
Table S4. Numbers of predicted enzymes degrading hemicellulose, pectin and cutin across seven ascomycete 

species with sequenced genomes. 

 

 Saprophytes
a
  Pathogens

a
 Plant cell 

CAZy family
b
 An Nc Tr  Fg Mg Mo Sn wall target 

GH5 mannosidases
c
 6 1 1  2 0 2 2 Hemicellulose 

GH26 3 1 0  0 0 0 0 Hemicellulose 

GH62 2 0 1  1 1 3 3 Hemicellulose 

GH67 1 1 1  1 0 1 1 Hemicellulose 

GH10 3 4 1  5 2 5 7 Hemicellulose 

GH11 2 2 4  3 1 5 7 Hemicellulose 

GH115 1 1 1  2 1 0 2 Hemicellulose 

Total hemicellulases 18 10 9  14 5 16 22 Hemicellulose 

          

GH28 9 2 4  6 2 3 4 Pectin 

GH78 8 0 1  7 2 1 4 Pectin 

GH88 2 0 0  1 0 1 1 Pectin 

GH105 3 1 1  3 2 3 3 Pectin 

PL1 8 1 0  9 2 2 4 Pectin 

PL3 5 1 0  7 1 1 2 Pectin 

PL4 4 1 0  3 0 1 4 Pectin 

PL9 0 0 0  1 0 0 0 Pectin 

PL11 1 0 0  0 0 0 0 Pectin 

CE8 3 1 0  6 1 1 6 Pectin 

CE12 2 1 0  3 0 2 3 Pectin 

Total pectinases 45 8 6  46 10 15 31 Pectin 

          

GH43 15 7 2  17 10 19 15 Pectin & hemicellulose 

GH51 2 1 0  2 3 3 2 Pectin & hemicellulose 

GH53 1 1 0  1 2 1 1 Pectin & hemicellulose 

GH54 1 1 2  1 1 1 1 Pectin & hemicellulose 

GH93 2 2 0  2 1 1 3 Pectin & hemicellulose 

Total pectinases & 

hemicellulases 

21 12 4  23 17 25 22 Pectin & hemicellulose 

          

CE5 4 3 4  12 6 17 11 Cutin 

          

Overall total including 

cellulases (Table 3) 

117 78 50  133 43 128 148 All cell wall substrates 

 

a
 Species analyzed included the saprophytes Aspergillus nidulans (An), Neurospora crassa (Nc), and 

Trichoderma reesii (Tr), and the plant pathogens Fusarium graminearum (Fg), Mycosphaerella graminicola 

(Mg), Magnaporthe oryzae (Mo), and Stagonospora nodorum (Sn). 
b
 Families defined in the Carbohydrate-active enzymes database (www.cazy.org). 

c 
GH5 is a family containing many different enzyme activities; only those targeting the stated substrate are 

included 
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Table S5. Total numbers of predicted CAZymes in Mycosphaerella graminicola and selected ascomycetes. 

 

Species GH GT PL CE CBM EXPN 

Mycosphaerella graminicola 184 97 3 20 20 3 

Trichoderma reesei 192 93 6 17 48 4 

Fusarium graminearum 247 102 21 44 67 4 

Neurospora crassa 173 76 4 22 42 1 

Magnaporthe grisea 232 92 5 47 65 1 

Aspergillus nidulans 251 91 21 31 41 1 

Stagonospora nodorum  284 92 10 57 74 4 

 

GH = glycoside hydrolases; GT = glycosyl transferases; PL = polysaccharide lyases; CE =carbohydrate 

esterases; CBM = carbohydrate binding modules; EXPN = distantly related to plant expansins. 

Predicted CAZymes were identified using the carbohydrate-active enzymes database tools (www.cazy.org). 

 
 

Table S6. PFAM domains that are expanded in the genome of Mycosphaerella graminicola relative to those of 

five other Ascomycetes
a
 and two plant-pathogenic Stramenopiles

b
. 

Name Mgram Snod Fgram Moryz Trees Ncra Pram Psoj Domain function 

PF01432 16 2 4 2 2 2 3 3 Peptidase_M3 

PF00128 13 5 7 9 4 9 2 1 Alpha-amylase 

PF01070 12 8 10 6 6 3 2 1 FMN_dh 

PF05577 10 4 2 6 3 2 5 5 Peptidase_S28 

PF09286 10 6 3 5 5 3 2 2 Pro-kuma_activ 

PF00180 9 7 8 7 7 5 3 2 Iso_dh 

PF03061 9 4 5 6 6 5 4 3 4HBT 

PF04193 8 7 7 5 5 6 4 1 PQ-loop 

PF00320 8 6 7 7 6 6 0 0 GATA 

PF02714 7 6 4 4 5 5 2 3 DUF221 

PF00682 6 4 4 5 4 4 3 3 HMGL-like 

PF06747 6 5 3 3 3 4 4 2 CHCH 

PF00250 6 4 4 3 4 3 0 0 Fork_head 

PF01501 6 5 5 2 2 2 1 1 Glyco_transf_8 

PF00206 5 4 3 3 3 3 3 3 Lyase_1 

PF00130 5 2 3 2 2 2 2 2 C1_1 

PF03476 4 2 3 2 2 2 2 2 MOSC_N 

PF00686 4 3 2 3 1 2 0 0 CBM_20 

PF03055 4 3 2 3 1 1 0 0 RPE65 

PF05875 3 2 2 1 2 1 2 1 aPHC 

PF04303 3 2 2 2 1 0 0 0 DUF453 

PF01645 3 1 1 1 1 1 1 1 Glu_synthase 

PF08760 3 2 0 2 1 2 0 0 DUF1793 

PF06964 3 1 2 2 0 1 0 0 Alpha-L-AF_C 

PF08323 3 0 0 1 0 2 0 0 Glyco_transf_5 

PF09260 3 0 0 1 0 2 0 0 DUF1966 

PF00692 2 1 1 1 1 1 1 1 dUTPase 

PF01916 2 1 1 1 1 1 1 1 DS 

PF01715 2 1 1 1 1 1 1 1 IPPT 

PF08313 2 1 1 1 1 1 0 0 SCA7 

PF03641 2 1 1 1 1 1 0 0 Lysine_decarbox 

PF03600 2 1 1 1 1 1 0 0 CitMHS 

PF02705 2 1 1 1 0 1 0 0 K_trans 

PF07558 2 1 1 0 1 1 0 0 Shugoshin_N 

PF09296 2 1 1 0 1 1 0 0 NUDIX-like 

PF02982 2 1 1 1 0 1 0 0 Scytalone_dh 

PF01422 2 0 1 0 1 1 0 0 zf-NF-X1 

PF05390 2 1 0 0 0 0 0 0 KRE9 
a
 Species abbreviations for Ascomycetes: Mgram, M. graminicola; Snod, Stagonospora nodorum; Fgram, 

Fusarium graminearum; Moryz, Magnaporthe oryzae; Trees, Trichoderma reesei; and Ncra, Neurospora crassa. 
b
 Species abbreviations for Stramenopiles: Pram, Phytophthora ramorum; Psoj, P. sojae. 

http://www.cazy.org/
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Table S7. PFAM domains that are expanded in the genome of Mycosphaerella graminicola relative to those of 

five other Ascomycetes
a
 but not the two plant-pathogenic Stramenopiles

b
. 

 

Name Mgram Snod Fgram Moryz Trees Ncra Pram Psoj Domain function 

PF00560 16 14 14 12 14 15 84 100 LRR_1 

PF07728 16 13 12 13 11 12 33 34 AAA_5 

PF00043 14 10 7 4 9 4 12 19 GST_C 

PF00450 13 10 9 6 5 4 14 16 Peptidase_S10 

PF00230 10 8 5 6 7 1 29 32 MIP 

PF00557 10 9 9 8 9 7 11 11 Peptidase_M24 

PF04055 9 8 7 5 7 5 12 12 Radical_SAM 

PF00782 8 7 6 5 6 5 17 23 DSPc 

PF01553 8 6 5 6 5 5 12 10 Acyltransferase 

PF01590 6 4 3 4 3 4 31 32 GAF 

PF01757 6 2 1 2 1 2 10 14 Acyl_transf_3 

PF00520 4 2 2 2 3 2 40 61 Ion_trans 

PF03330 4 1 2 2 2 1 13 12 DPBB_1 
 

a
 Species abbreviations for Ascomycetes: Mgram, M. graminicola; Snod, Stagonospora nodorum; Fgram, 

Fusarium graminearum; Moryz, Magnaporthe oryzae; Trees, Trichoderma reesei; and Ncra, Neurospora crassa. 
b
 Species abbreviations for Stramenopiles: Pram, Phytophthora ramorum; Psoj, P. sojae. 

 

 

 

Table S8. Assembly statistics for the Mycosphaerella graminicola version 1 (8.9 draft) and version 2 (finished) 

sequences compared to the 10 draft sequence of Stagonospora nodorum. 

 

Category M. graminicola v1.0 

(draft) 

M. graminicola v2.0 

(finished) 

S .nodorum 

draft 

Sequence total, Mb 41.2 39.7 37.1 

Number of scaffolds 129 21 107 

Number of contigs 1,008 21 496 

Scaffold N50/L50 
6/2.4 Mb 

Finished 13/1.1 Mb 

Coverage 8.88 Finished > 10 

Gaps, Mbp 2.5 (7.5%) 0.006 (0.01%) 0.16 (0.43%) 

Repeats, Mbp  7.17  2.62 

Repeats, percent  18 7 
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ABSTRACT  

The ascomycete Mycosphaerella graminicola is economically one of the most 

important foliar pathogens of wheat that causes septoria tritici blotch. This disease threatens 

both bread wheat and durum wheat and results in significant yield losses. The molecular and 

physiological processes that are employed by this pathogen during pathogenesis are still 

poorly understood. Here, we exploited the recently completed genome sequence of M. 

graminicola strain IPO323 that enabled us to identify and globally analyse its in planta 

proteome. At four time points after inoculation apoplastic fluids (AFs) were isolated from 

compatible and incompatible interactions between strain IPO323 and cvs Obelisk and Shafir, 

respectively, to identify fungal secreted proteins. The proteome of M. graminicola expressed 

in the AFs was analyzed by sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) and data-independent acquisition liquid chromatography/mass spectrometry 

LC/MS
E
 combined with data-dependent acquisition LC-MS/MS analyses. The search for 

mapping mass spectrometry-derived peptide sequence data against the genome sequence of 

M. graminicola identified 665 peptides with the MS
E
 mode and 93 peptides with LC-MS/MS 

that matched to 85 proteins (65 proteins for MS
E
, 55 proteins for LC-MS/MS of which 35 

overlapped). Many of the annotated fungal secreted proteins have putative functions in 

pathogenicity, including cell-wall degrading enzymes and proteases, but the function of a 

significant number of identified proteins is unknown. The majority of the fungal secreted 

proteins accumulated at later stages of the compatible interaction at the onset of the 

necrotrophic phase, whereas most of the pathogenesis-related (PR) host proteins, such as PR-

2, PR-3 and PR-9 accumulated at an early stage and at a higher level in the incompatible 

interaction.This global in planta proteome survey of M. graminicola provides an excellent 

basis for future detailed studies on fungal genes and their encoded proteins inducing 

susceptibility or resistance in wheat. 
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INTRODUCTION  

Pathogenic fungi and plants communicate and interact in a sophisticated way which 

leads to a cascade of responses that eventually result in either healthy or diseased plants 

depending of their genetic make-up. Plant pathogens can manipulate host defences by effector 

proteins that allow the pathogen to evade pathogen-associated molecular pattern (PAMP) - 

triggered immunity (PTI) resulting in effector-triggered susceptibility (ETS). However, in the 

course of evolution plants have evolved surveillance systems to recognize effectors by 

corresponding plant disease resistance proteins in a cultivar-specific manner and activate 

effector-triggered immunity (ETI) that blocks pathogen infection (Jones and Dangl, 2006; 

Dodds and Rathjen, 2010). Fungal pathogens have different lifestyles that vary from obligate 

biotrophy for obligate pathogens that can only proliferate on living host tissues to necrotrophy 

for necrotrophic pathogens that prepare to kill host tissue before extensive proliferation on 

dead host tissue takes place. Many fungal plant pathogens, however, are hemibiotrophs that 

initially behave as a biotroph colonizing the intercellular space of plant tissues- the apoplast -, 

and subsequently switch to a necrotrophic lifestyle at later stages of infection (Horbach et al., 

2011). The apoplast is therefore an important interface between host and pathogen, where 

both manipulation of the host by the pathogen, and recognition of the pathogen by the host 

and initiation defence responses take place during the course of infection of susceptible and 

resistant plants, respectively. Hence, it is an important resource for the discovery of key 

determinants of both virulence and avirulence (Joosten and de Wit, 1999; Rep, 2005; 

Thomma et al., 2005; Kamoun, 2006; Houterman et al., 2007; Bolton et al., 2008; 

Stergiopoulos and de Wit, 2009; de Jonge et al., 2010). An example of a biotroph is the 

tomato pathogen Cladosporium fulvum that colonizes the apoplast and by analyses of 

apoplastic fluids (AFs) several effector proteins, such as Avr2, Avr4, Avr4E, Avr9, Ecp1, 

Ecp2, Ecp5-Ecp7 that play crucial roles in both virulence and avirulence were identified 

(Joosten and de Wit, 1988; Ackerveken et al., 1992; Laugé et al., 2000; Bolton et al., 2008). 

Similarly, secretome analysis of the vascular tomato pathogen Fusarium oxysporum f.sp. 

lycopersici resulted in the identification of the small secreted in xylem (six) proteins. In total 

11 (candidate) effector proteins have been identified including Six1-Six7, an arabinanase, an 

oxidoreductase and a serine protease (Lievens et al., 2009; Takken and Rep, 2009). 

The ascomycete Mycosphaerella graminicola (anamorph Zymoseptoria tritici (Desm.) 

Quaedvlieg & Crous) (Quaedvlieg et al., 2011) is the causal agent of Septoria tritici leaf 

blotch (STB), which is currently the major wheat disease in Europe and the Mediterranean 
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region (Eyal, 1999; Bearchell et al., 2005) and the primary target for the breeding and 

agrochemical industry (McDougall, 2003; Russell, 2005). M. graminicola has a 

hemibiotrophic lifestyle with a relatively long latent period and a necrotrophic phase that is 

characterized by massive host killing and fungal proliferation culminating in production of 

pycnidia producing massive amounts of asexual pycnidiospores. Genetic studies have shown 

that the wheat–M. graminicola pathosystem complies with the gene-for-gene model (Kema et 

al., 2000; Brading et al., 2002). Upon germination of the conidia or ascospores (both are 

infectious) the fungus penetrates wheat plants through stomata within 12-24 hrs in both 

compatible and incompatible interactions without differentiating infection structures like 

appressoria or haustoria (Kema et al., 1996; Mehrabi, 2006). Subsequent fungal development 

is biotrophic, strictly apoplastic and the host stays symptomless for at least 10 days in which 

substomatal cavities and the surrounding mesophyll tissue is gradually but moderately 

colonized. The transition between the biotrophic and necrotrophic phases is reminiscent of the 

hypersensitive response (HR) and is accompanied by the differential regulation of wheat 

mitogen-activated protein kinase cascades (Keon et al., 2007; Rudd et al., 2008). As a result, 

the contents of killed plant cells leak into the apoplast, boosting rapid fungal proliferation in 

necrotic tissue that starts around 10-14 days post-inoculation (dpi), which is associated with 

appearance of macroscopically visible chlorosic and necrosic foliage. During the onset of 

lesion formation, Keon et al. (2007) identified the accumulation of glucose and fructose and 

amino acids in wheat AFs. The increase of fungal biomass is subsequently accompanied by 

the formation of pycnidia, the asexual fructifications that occupy the necrotic lesions at full 

symptom development at 21 dpi (Kema et al., 1996; Duncan and Howard, 2000).  

Very little is known about the cause(s) and mechanism(s) of this lifestyle switch 

(Keon et al., 2007; Kema et al., 2008), but several reports speculated on or showed the 

toxicity of specific metabolites or proteins that might act as virulence factors (Kema et al., 

1996; Perrone, 2000; Shetty et al., 2003; Shetty et al., 2007; Hammond-Kosack and Rudd, 

2008; Rudd et al., 2008; Shetty et al., 2009). Douaiher et al. (2007) suggested a causal 

relationship between the production of cell wall-degrading enzymes (CWDEs) and M. 

graminicola pathogenicity. Indeed, Kema et al. (2008) identified many CWDEs in interaction 

libraries with a majority being expressed during the later phases of infection, which was later 

confirmed by Siah et al. (2010). 

In the incompatible interaction, macroscopic symptoms vary greatly from none 

detectable to leaf chlorosis, but without significant fungal proliferation (Kema et al., 1996; 

Ware, 2006; Rudd et al., 2008). Studies on the molecular mechanisms of resistance of wheat 
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against M. graminicola have only recently begun (Shetty et al., 2003; Shetty et al., 2007; 

Rudd et al., 2008). Despite the lack of an HR (Kema et al., 1996; Ware, 2006; Rudd et al., 

2008) which is a hallmark of resistance in biotrophic host-pathogen interactions (Greenberg, 

1997; Heath, 2000), H2O2 accumulation, also often used as a marker of HR, was reported to 

negatively affect M. graminicola at a late stage of infection, but it seems to be able to tolerate 

it (Shetty et al., 2003; Shetty et al., 2007). More recently, Shetty et al. (2009) demonstrated 

that -1,3-glucan components of the fungal cell wall trigger the expression of the PR-2 

protein -1,3-glucanase accompanied with callose depositions that provide complete disease 

protection. Hence, -1,3-Glucans can be considered as fungal PAMPs as they also trigger the 

expression of the same PR proteins in susceptible wheat plants after exogenous addition. 

Detailed histological studies showed that the apoplast is the major battlefield in the M. 

graminicola-wheat pathosystem (Kema et al., 1996; Rudd et al., 2008). Here, we capitalized 

on the recently finished genome sequence of M. graminicola strain IPO323 (Goodwin et al., 

2011) and present a global in planta proteome survey of M. graminicola in both compatible 

and incompatible interactions with two wheat cultivars that provides an excellent basis for 

future detailed studies on fungal genes and their encoded proteins inducing susceptibility or 

resistance in wheat. 

 

RESULTS  

Differential symptom development induced by Mycosphaerella graminicola strain 

IPO323 on susceptible and resistant wheat cultivars 

We followed symptom development induced by strain IPO323 on cvs Obelisk 

(susceptible) and Shafir (resistant) until 21 days post-inoculation (dpi; Fig. 1). Until seven 

dpi, resistant and susceptible plants did not show any visible disease symptoms. In the 

resistant plant, patchy chlorosis developed at 14 dpi that maintained until 21 dpi without any 

formation of pycnidia. In the susceptible plant, the first macroscopical symptoms appeared at 

10 dpi as greyish sunken necrotic lesions that coalesced into larger ones that eventually 

covered the entire leaf and gradually showed increasing numbers of pycnidia at 14 dpi until 

full symptom development at 21 dpi. AFs isolated from strain IPO323-inoculated susceptible 

and resistant cultivar yielded similar volumes from the susceptible and resistant cultivars (0.5-

0.6 ml/gr fresh weight) until 7 dpi, but from 14 dpi onwards volumes in the susceptible 

cultivar increased to 2.3 ml/gr fresh weight vs 0.8 ml/gr fresh weight for the resistant cultivar 
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probably reflecting increased leakage of soluble wheat proteins during the onset of the 

necrotic phase. 

 

 

 

 

 

 

 

 

 

Fig. 1. Symptom development of septoria tritici blotch on resistant cv. Shafir and susceptible cv. Obelisk after 

inoculation with Mycosphaerella graminicola strain IPO323. Note that leaf tissue of cv. Obelisk has become 

necrotic at 14 and 21 days post-inoculation which is associated with fungal proliferation and the development of 

increasing numbers of pycnidia (black structures on the leaves). Leaves of resistant cv. Shafir show only some 

slight chlorosis.    

 

 

Analysis of the apoplastic proteome  

SDS-PAGE. Major changes were observed in the protein profiles of AFs isolated at different 

time points after inoculation and between the susceptible and resistant cultivars Obelisk and 

Shafir, respectively (Fig. 2). The most significant changes in soluble protein accumulation 

were observed between 25 and 35 kDa. These proteins accumulated much faster and to a 

higher level in the resistant cv. Shafir and are suspected to be PR proteins, whereas some 

proteins around 23 kD and 90 kDa decreased significantly in concentration both in the 

resistant and the susceptible cultivars and are suspected to be photosynthetically active 

proteins present in the plastid ADPG pyrophosphorylase complex and in the photosystem II 

complex like Rubisco; these proteins are partially degraded in chlorotic and necrotic leaf 

tissue. To confirm these hypotheses a number of gel slices containing the differentially 

accumulated or degraded proteins were analysed by mass spectrometry. In total 15 proteins 

were identified (Table 1). Twelve proteins (gel slices II to IV) originated from wheat and 

contained for the major part accumulated pathogenesis-related (PR) proteins such as β-1,3-

glucanases (PR-2), chitinases (PR-3) and peroxidases (PR-9). This was particularly true for 

gel slice II and III that contained protein bands in the 25-35 kDa range that had mainly 

accumulated in the resistant cultivar Shafir at 7dpi and remained at a high concentration until 
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21 dpi; these proteins also accumulated in the susceptible cultivar Obelisk but much later and 

to a significantly lower amount (see gel slice IV). Three proteins that were identified in gel 

slices IV (1) and V (2), originated from M. graminicola with two that contained a secretion 

signal with strong homology to -L-arabinofuranosidase and a six-hairpin glycosidase from 

Pyrenophora tritici-repentis. The third protein showed strong homology with a methionine 

synthase of C. fulvum. 

 

 

 

Fig. 2. A SDS-PAGE gel stained with 

Coomassie blue showing protein 

profiles present in apoplastic fluids 

that were isolated from primary 

leaves of the susceptible (S; Obelisk) 

and resistant (R; Shafir) wheat 

cultivars at 0, 7, 14 and 21 days post-

inoculation with Mycosphaerella 

graminicola strain IPO323. 

Molecular masses of marker proteins 

are indicated on the left (in kDa). The 

protein bands present in the gel slices 

I-V were identified by mass 

spectrometry and are shown in Table 

2. 

 

 

 

 

 

Quantitative analysis of LC-MS
E
 data by Progenesis. As expected, the two apoplastic fluid 

samples from cvs Obelisk and Shafir harvested at 0 dpi deviated strongly from all other 

samples. Consequently, the software was not able to align the 0 dpi samples properly to the 

reference sample, and therefore the 0 dpi samples were not considered for further analysis. 

After alignment and warping, a single aggregate map containing all MS peak data from the 7, 

14 and 21 dpi was created in which 6,921 features were detected. We performed a principal 

component analysis (PCA) on the peak intensity data to examine the overall differences 

between the six samples (Fig. 3). This revealed a clear separation over the vertical axis 

(PCA2) of the protein samples collected from the AFs of the resistant and susceptible plants. 

Furthermore, on the x-axis (PCA1) the 21 dpi samples were distinct from the 7 dpi and 14 dpi 

samples; the latter two were much more proximate to each other.  
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Table 1. Proteins identified in gel slices excised from an SDS-PAGE gel (indicated in Fig. 1) containing proteins present in apoplastic fluids obtained from the resistant and 

susceptible wheat cvs Shafir and Obelisk, respectively, at 0, 7, 14 and 21 days post-inoculation with Mycosphaerella graminicola strain IPO323.   

 

Gel 

slice Protein description Accession number 
a)

 Species 
b)

 Mr (kDa) 
c)

 

# peptide 

seq.
 d)

 

Pr. Cov 

(%) 
e)

 

Prot. score 
f)
 

I 

 

 ADPG pyrophosphorylase 

CK211503: homologue to 

UniRef100_Q8L686 cluster T. aestivum 23,3 2 15 1934 

II 

  

  

 

 

 

 

 

  

  

  

  

Peroxidase 1 TC287158: UniRef100_Q5I3F7 T. monococcum 33,3 5 27 83 

Peroxidase 2 TC287852: UniRef100_Q5I3F6 T. monococcum 33,6 5 22 152 

Peroxidase 3 

TC284704: homologue to 

UniRef100_Q5I3F5 Cluster T. monococcum 33,2 7 34 161 

Peroxidase 4 

TC280198: homologue to 

UniRef100_Q5I3F4 Cluster T. monococcum 34,7 3 15 70 



-1,3-glucanase TC303277: UniRef100_O82716 Cluster T. aestivum 36,1 10 44.5 403 



-1,3-glucanase TC277204 : UniRef100_Q4JH28 Cluster T. aestivum 36,6 10 50 354 



-1,3-glucanase TC278817: UniRef100_Q9XEN5 Cluster T. aestivum 35,2 7 39 143 

Glucan endo-1,3--D-

glucosidase 

TC284274: homologue to 

UniRef100_Q1EMA4 Cluster S. cereal 30,5 7 40.5 161 



-1,3-glucanase 

TC349275: homologue to 

UniRef100_Q9XEN5 Cluster T. aestivum 35,3 6 29.5 175 

 

III 

  

 

Chitinase 1 TC278023: UniRef100_Q8W429 Cluster T. aestivum 

 

30,8 3 20 393 

 

 

PR17c precursor 

TC287586: similar to UniRef100_A7YA60 

Cluster H. vulgare 

 

 

25,4 4 25.5 503 

IV 

  

 

 

Peroxidase 2 TC287852: UniRef100_Q5I3F6 Cluster T. monococcum 33,6 5 31 95 

Peroxidase 3 

TC284704: homologue to 

UniRef100_Q5I3F5 Cluster T. monococcum 33,2 3 17 117 
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Peroxidase 4 

TC280198: homologue to 

UniRef100_Q5I3F4 Cluster T. monococcum 34,7 3 25 80 

 

Glucan endo-1,3--D-

glucosidase TC303277: UniRef100_O82716 Cluster S. cereale 

 

 

36,1 5 22 146 



-1,3-glucanase TC278817: UniRef100_Q9XEN5 Cluster T. aestivum 

 

35,2 4 25 74 





-1,3-glucanase 

TC349275: homologue to 

UniRef100_Q9XEN5 Cluster T. aestivum 

 

 

35,3 3 15 56 

BlastP (nr): -L-

arabinofuranosidase 

(Arabinosidase)  

ZP_07314546 (S. griseoflavus

 

Tu4000]) 2e-120 estExt_Genewise1.C_chr_21868 M. graminicola 

 

 

 

 

 

 

34,5 4 

 

 

 

 

 

 

24 104 

V 

 

 

 

  

BlastP (nr): XP_001940715 six-

hairpin glycosidase (P. tritici-

repentis*)    e=0 

GO : Cell adhesion 

IPR:Coagulation factor 5/8 type, 

C-terminal estExt_fgenesh1_pg.C_chr_20902 M. graminicola 

 

 

 

 

 

 

 

75,5 6 

 

 

 

 

 

 

 

14 161 

BlastP (nr): AF226997.1 

methionine synthase (C. 

fulvum
&
) e=0 estExt_fgenesh1_kg.C_chr_120169 M. graminicola 

 

 

87,2 3 

 

 

5.5 84 
 

a) 
Accession numbers of identified proteins 

 

b)
 Origin of the derived sequence (Horderum vulgare, Secale cereale, M. graminicola, Triticum aestivum, T. monococcum) 

c)  
Relative molecular mass (kDa) 

d)
 Number of identified peptide sequences  

e)
 Coverage percentage of amino acid sequence with the matched peptides 

f)
 Protein score generated by the program Mascot 


 Streptomyces griseoflavus, *Pyrenophora tritici-repentis, 

&
 Cladosporium fulvum, 
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Fig. 3. Principle component analysis on the standardized 
10

log feature intensity data from LC-MS
E
 analysis 

comprising peak number (RT-m/z pair), sample name, and ion intensity data of proteins identified in the 

apoplastic fluids isolated from primary leaves of wheat cvs Shafir (resistant) and Obelisk (susceptible), 

respectively, at 0, 7, 14 and 21 days post-inoculation with Mycosphaerella graminicola strain IPO323 (time 

point 0 dpi is not included and the samples at 21 dpi were duplicated, indicated by the asterisk and highlighted). 
 

Peptide identification with LC-MS/MS and LC-MS
E
. LC-MS/MS preferentially identifies the 

most abundant components in a peptide mixture, as co-eluting low abundant peptides will 

most likely not be chosen for MS/MS fragmentation. Here, LC-MS/MS analyses of all eight 

sample runs resulted in 544 unique peptide sequences that matched with 439 wheat peptides 

and 93 M. graminicola peptides (Table 2). In contrast, LC-MS
E
 has no precursor selection 

before fragmentation and is therefore less biased for identification of predominant peptides 

resulting in a wider coverage of proteins present in the AFs. A total of 4,735 peptide 

sequences were identified by MS
E 

from which the majority (4,009) matched to wheat proteins, 

while 665 peptides matched to M. graminicola proteins (Table 2). The percentage of unique 

peptide sequences identified from the LC-MS
E
 analysis was much higher (~89%) than that 

obtained with LC-MS/MS analysis, but we also noticed that a substantial part of the peptide 

sequences resulting from the LC-MS
E
 analysis originated from in source fragmentation of the 

precursor (tryptic) peptide. Both LC-MS/MS and LC-MS
E
 yielded approximately six times 

more peptides matching to wheat proteins than to M. graminicola proteins. 
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Table 2. Total number of unique peptide sequences identified with LC-MS/MS and LC-MS
E
 in the apoplastic 

fluids obtained from the resistant (Shafir) and susceptible (Obelisk) wheat cvs at four time points after 

inoculation with Mycosphaerella graminicola strain IPO323  (0, 7, 14 and 21 days post-inoculation).  
 

Number of unique peptides sequences Total 

Originated from 

wheat 

Originated from 

M. graminicola 

LC-MS/MS 
a)

 544 439 93 

LC-MS
E b)

 4735 4009 665 

Total 5279 4448 758 

 
a)

 For LC-MS/MS, peptide score ≥50. 
b)

 For LC-MS
E
, number of unique identified peptides (including in source fragmentation generated from the 

same source) with peptide score ≥5. 

 

Wheat proteins. Combining the 4,448 matching wheat peptide sequences that were obtained 

by analyzing the eight samples with LC-MS/MS and LC-MS
E
 after filtering, revealed in total 

2,030 wheat proteins that were identified in AFs isolated from the inoculated resistant and 

susceptible cultivars of which the majority exhibited either catalytic (1,182 proteins; ~43%) or 

binding activity (1,122; ~41%). Among these, 1,140 proteins were classified as enzymes and 

449 proteins were predicted to have a secretion signal. Blast2Go analysis assigned the host 

proteins to four major biological processes; cellular process (1,570 sequences; ~30%), 

metabolic process (1,523 sequences; ~29%), carbon utilization (560 sequences; ~11%) and 

response to stimulus (535 sequences; ~10%). Further analyses revealed that a diverse group of 

151 proteins was involved in defence and included for instance PR proteins, such as PR maize 

seed protein (PR-1), vacuolar defence proteins (PR-4), thaumatin-like proteins (PR-5), 

peroxidases (PR-9), germins and several isoforms of -1,3-glucanase (PR-2) and chitinases 

(PR-3) that were found in both resistant and susceptible cultivars. As we are mostly interested 

in fungal proteins that are present during the infection of wheat, the next result section is 

focussed on identified fungal proteins.  

 

Fungal proteins. Out of the 85 identified fungal proteins, 73 (86%) were exclusively 

identified in the AFs from the inoculated susceptible plant and mostly from AFs harvested at 

14 and 21 dpi (Fig. 4). Finally, we grouped the 85 identified proteins in the M. graminicola 

proteome that were present at different stages of infection in biological processes and 

functional categories (Fig. 5). In total, 62 of the 85 M. graminicola genes were functionally 

annotated of which 22 were predicted to encode metabolic enzymes. Eleven subgroups of 

biological processes on the GO level 2 were identified showing that a large portion of the 

proteins (N=36; ~43%) is involved in metabolic processes, followed by 19 proteins (~23%) 

involved in cellular processes (Fig. 5A). With respect to the molecular function, the majority 
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of the identified proteins exhibit either catalytic (N=49; ~62%) or binding activities (N=21; 

~27%). A more detailed analysis (GO level 3) revealed that 25 proteins (~52%) with catalytic 

activity are involved in hydrolase activity and two proteins (~11%) are predicted to bind to 

nucleic acid (Fig. 5B). A detailed GO description of all identified and annotated M. 

graminicola proteins is included in the Supplementary Information (Table S1).  Eleven 

proteins (~13%) could not be classified, which were either hypothetical proteins or proteins 

without any BLAST hit. A few fungal proteins were identified at 0 dpi from non-inoculated 

control plants, but these are considered to originate from fungal contaminations as these 

plants were placed in the same greenhouse compartment as the inoculated plants. 

Interestingly, examples of fungal proteins present at 7 dpi were potentially involved in 

transport and metabolism of amino acids, lipids and coenzymes.  

 

From the 85 identified proteins, 41 (~48%) proteins are predicted to be secreted in the 

apoplast, which represents the largest fraction, whereas the others are presumably located in 

the cytoplasm, mitochondria or nucleus and include unnamed proteins, predicted proteins or 

hypothetical proteins. The fungal secretome appears to be involved in a myriad of biological 

processes, including general metabolism, cell cycle and DNA processing and response to 

oxidative stress or pathogenesis. The secreted proteins comprised 12 proteins with unknown 

function as well as 22 proteins involved in hydrolase or oxidoreductase activities (Table 3) 

and accumulated in AFs mostly during the necrotrophic phase of pathogenesis (14-21 

dpi).They are probably involved in the maceration of outer plant cell-wall components and 

included xylanases, pectinases, glucanases, arabinases and cutinases that matched 

predominantly to putative carbohydrate active enzymes implicated in cellulose, 

hemicelluloses, pectin and cutin degradation (Table 3). In addition to these CWDEs, we also 

identified six (~14%) secreted extracellular proteases that catalyze the cleavage of peptide 

bonds of proteins and included both endoproteases - such as metalloprotease, serine protease 

and aspartic proteases - as well as the exoproteases aminopeptidase and carboxypeptidase. 

Besides the well-known enzymes, one catalase peroxidase that belongs to the stress response 

category reported in other fungi, was also identified in the apoplast at 14 and 21dpi. Ten out 

of the 12 secreted proteins with unknown function are cysteine-rich and are supported by EST 

data (Kema et al., 2008) and nine are small-secreted protein (SSPs). After examining changes 

in the individual functional groups, we re-evaluated the LC-MS
E
 data by analyzing the overall 

response pattern of several M. graminicola proteins for which we had quantitative data (Fig. 

6). 

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0009502#pone-0009502-g007
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Fig. 4.  The total number of 

Mycosphaerella graminicola 

proteins identified with LC-MS/MS 

and LC-MS
E
, present in the 

apoplastic fluids that were obtained 

from the primary leaves of the 

resistant (Shafir) and susceptible 

(Obelisk) wheat cultivars, 

respectively, at 0, 7, 14 and 21 days 

post-inoculation with M. 

graminicola strain IPO323.  
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Fig.. 5. Gene ontology analysis, focussed on 

biological processes (A) or molecular 

function (B), of 85 Mycosphaerella 

graminicola proteins that were identified in 

apoplastic fluids obtained from the primary 

leaves of the resistant (Shafir) and 

susceptible (Obelisk) wheat cultivars, 

respectively, at 0, 7, 14 and 21 days post-

inoculation with M. graminicola strain 

IPO323. The pie charts show the percentage 

of identified proteins in the various 

functional categories (filtered by #Seq=1.0 

and level 2) and do not take un-annotated 

proteins into account. The different 

categories (level 2, indicated in bold) are 

shown in more detail (level 3) below 
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This revealed a consistent accumulation for the hypothetical proteins and the CWDEs 

from 7 dpi to 21 dpi in the susceptible cv. Obelisk, whereas the same proteins remained at a 

constant level in the resistant cv. Shafir. 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 6. Quantitative analysis of differentially expressed proteins from Mycosphaerella graminicola identified in 

apoplastic fluids isolated at 7, 14 and 21* (*duplicates) days post-inoculation with M. graminicola strain IPO323 

from a resistant cultivar (Shafir) and a susceptible cultivar (Obelisk). The Y-axis corresponds to standardized 

normalized value; red lines correspond to matching peptides assigned to a particular protein or a category of 

proteins displayed from top to bottom. A. Peptides originating from hypothetical secreted proteins corresponding 

to estExt_fgenesh1_kg.C_chr_30051; estExt_fgenesh1_pg.C_chr_130030 and fgenesh1_pg.C_chr_11000104. B. 

Peptides originating from two xylanases corresponding to gene models estExt_fgenesh1_kg.C_chr_60237 and 

estExt_fgenesh1_kg.C_chr_70317. C. Peptides originating from catalase peroxidase corresponding to gene 

model estExt_fgenesh1_pg.C_chr_11443. D. Peptides originating from cutinase corresponding to gene model 

estExt_fgenesh1_kg.C_chr_20529. 
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Table 3.  Summary of the secreted Mycosphaerella graminicola proteins that were identified in the apoplastic fluids isolated from the resistant (Shafir) and susceptible 

(Obelisk) wheat cvs at four time points after inoculation with M. graminicola strain IPO323  (0, 7, 14 and 21 dpi).  

 

JGI Header 
a)

 Pep. No 
b)

 

Cov. % 
c)
 Pep. Score 

d)
 Mol. Func. 

e)
 Description Cult. &  

time points 
f)
 

Total aa 
g)

 

    Min 

Score 

Max 

Score 

       

estExt_fgenesh1_kg.C_chr_20529 21 74 5,4 85,5 hydrolase 

activity 

Cutinase S, 14&21dpi 224 

e_gw1.6.1246.1 14 63 5,1 79,5 hydrolase 

activity 

Cutinase S, 21dpi 232 

estExt_fgenesh1_kg.C_chr_70027 10 23 7,5 80 hydrolase 

activity 

Gpi-anchored cell wall 

protein; beta –endoglucanase 

S, 21dpi  480 

estExt_fgenesh1_kg.C_chr_100051 3 23 5,2 6,0 hydrolase 

activity 

Glycoside hydrolase, family 

12; endoglucanase a 

precursor 

S, 21dpi  246 

estExt_fgenesh1_kg.C_chr_60237 25 73 5,1 94,3 hydrolase 

activity 

Glycoside hydrolase, family 

11; endo- -beta-xylanase 

S, 21dpi 225 

estExt_fgenesh1_kg.C_chr_70317 28 61 5,2 78,1 hydrolase 

activity 

Glycoside hydrolase, family 

10; endo- -beta- xylanase  

S, 14&21dpi  347 

estExt_fgenesh1_pg.C_chr_40433 13 28 6,3 56,6 hydrolase 

activity 

Glycoside hydrolase, family 

3; beta-xylosidase 

S, 21dpi 769 

estExt_fgenesh1_pg.C_chr_40440 2 3 5,0 5,1 hydrolase 

activity 

Glycoside hydrolase, family 

3; beta-glucosidase 

S, 21dpi 979 

estExt_fgenesh1_pg.C_chr_50362 16 40 5,9 79,3 hydrolase 

activity 

Glycoside hydrolase, family 7 

; cellobiohydrolase d 

S, 21dpi 444 

estExt_fgenesh1_pm.C_chr_30480 7 22 5,2 7,0 hydrolase 

activity 

Glycoside hydrolase, family 

62; alpha-L-

arabinofuranosidase  

S, 14dpi 331 

estExt_fgenesh1_pg.C_chr_100384 7 18 6,2 70,9 hydrolase 

activity 

Glycoside hydrolase, family 

62; alpha-l-

arabinofuranosidase 

S, 21dpi 690 

estExt_Genewise1.C_chr_21868 22 55 5,5 81,3 hydrolase 

activity 

Glycoside hydrolase, family 

62; alpha-n-

arabinofuranosidase 

S, 14&21dpi 321 

estExt_fgenesh1_pg.C_chr_130228 12 29 5,1 84,6 hydrolase 

activity 

Glycoside hydrolase, family 

31 

S, 14& 21dpi 991 
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estExt_fgenesh1_kg.C_chr_80005 5 13 5,4 6,7 hydrolase 

activity 

Glycoside hydrolase, family 

43; secreted arabinase 

S, 21dpi  319 

estExt_Genewise1.C_chr_12866 12 52 5,0 6,8 hydrolase 

activity 

Pectinesterase S, 14&21dpi 330 

fgenesh1_pg.C_chr_1001469 34 31 5,0 62,6 hydrolase 

activity 

Glycoside hydrolase, family 3 S, 14&21dpi  

R, 21dpi 

1055 

fgenesh1_pg.C_chr_3000807 1 7 52,9 52,9 hydrolase 

activity 

Glycoside hydrolase family, 

beta –mannanase 

S, 14dpi 363 

estExt_fgenesh1_kg.C_chr_110051 5 42 5,2 60,8 hydrolase 

activity 

Lipases ; acetyl xylan 

esterase 

S, 14 & 21dpi 301 

estExt_fgenesh1_pg.C_chr_70016 3 10 5,5 5,9 Peptidase 

activity 

Peptidase A1, pepsin, 

aspartyl protease  

S, 14dpi 441 

fgenesh1_pg.C_chr_4000424 2 10 5,0 5,2 Peptidase 

activity 

Peptidase A1, pepsin, 

Aspartic Protease 

S, 21dpi 460 

estExt_fgenesh1_kg.C_chr_70011 5 24 5,2 62,6 Peptidase 

activity 

Peptidase A4, Asparatic 

protease, scytalidopepsin B 

S, 14&21dpi  269 

estExt_fgenesh1_pg.C_chr_10314 5 19 5,3 35,5 Peptidase 

activity 

Peptidase; aminopeptidase S, 21dpi 552 

estExt_fgenesh1_pg.C_chr_50636 19 52 5,1 74,0 Peptidase 

activity 

Peptidase S8 and S53, 

subtilisin, kexin, sedolisin 

S, 21dpi 400 

estExt_fgenesh1_pg.C_chr_60048 9 27 5,1 6,2 Peptidase 

activity 

Peptidase M14, 

carboxypeptidase A 

S, 21dpi 426 

estExt_fgenesh1_pg.C_chr_110083 21 27 7,6 52,9 oxidoreductase 

activity 

FMN-dependent 

dehydrogenase 

S, 14& 21dpi 504 

estExt_Genewise1.C_chr_90838 1 3 55,5 55,5 oxidoreductase 

activity 

Glucose-methanol-choline 

oxidoreductase 

S, 21dpi 555 

estExt_fgenesh1_pg.C_chr_11443 39 39 7,3 71,9 peroxidase 

activity 

Catalase peroxidase hpi S, 14 & 21dpi 796 

estExt_fgenesh1_pg.C_chr_90237 26 26 5,2 72,0 Transferase 

activity  

TM protein S, 21dpi 1139 

estExt_fgenesh1_pg.C_chr_20902 
∞
 32 49 5,8 74,5 catalytic 

activity 

No significant hits 

Six-hairpin glycosidase 

(Pyrenophora tritici-repentis 

Pt-1C-BFP) XP_001940715.1 

e=0.0 

S, 21dpi 667 

fgenesh1_pm.C_chr_4000019 

 1 7 71,4 71,4 ---NA---* Hypothetical protein 

FG11205.1 (Gibberella zeae 

PH-1) 

S, 21dpi 149 
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2e
-35

 

estExt_fgenesh1_kg.C_chr_110087 
#
 1 10 7,6 78,1 ---NA--- Unnamed protein product 

(Podospora anserina S mat+) 

3e
-11

 

S, 14 & 21dpi 156 

estExt_fgenesh1_kg.C_chr_120103 
**

 1 6 73,5 73,5 ---NA--- Conserved hypothetical 

protein (Verticillium albo-

atrum VaMs.102)  4e
-45

 

S, 21dpi 238 

estExt_fgenesh1_pg.C_chr_130030 
**

 16 31 7,0 80,2469 ---NA--- Conserved hypothetical 

protein (Pyrenophora tritici-

repentis Pt-1C-BFP) 2e-
153

 

XP_001930959.1 

S, 14& 21dpi 483 

fgenesh1_pg.C_chr_11000104 
**

 9 28 5,6 6,2 ---NA--- Conserved hypothetical 

protein (Pyrenophora tritici-

repentis Pt-1C-BFP) 1e
-174

 

S, 21dpi 497 

estExt_fgenesh1_kg.C_chr_50387 

 2 28 5,7 8,1 ---NA--- Hypothetical protein 

FG08238.1 (Gibberella zeae 

PH-1) 2e
-25

 

S, 21dpi 149 

estExt_fgenesh1_kg.C_chr_70220 

 1 7 49,3 72 ---NA--- Hypothetical protein 

UREG_02418 (Uncinocarpus 

reesii 1704) 7e
-11

 

 

PhiA protein (Emericella 

nidulans) 3e
-10

 

S, 21dpi  188 

estExt_fgenesh1_kg.C_chr_90057 14 25 5,1 82,7 ---NA--- Low homology to IgE-

binding protein (Penicillium 

marneffei) 3e-
15

 

S, 21dpi  198 

estExt_fgenesh1_pg.C_chr_40369 
#
 5 39 5,1 79,7 ---NA--- No significant hits S, 14&21dpi 154 

estExt_fgenesh1_kg.C_chr_30051 


 15 25 5,3 85,6 ---NA--- Hypothetical protein 

SNOG_07926 

(Phaeosphaeria nodorum 

SN15) 

 

stress response protein 

Rds1(Pyrenophora tritici-

repentis Pt-1C-BFP)  

S, 14&21dpi 519 
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estExt_fgenesh1_kg.C_chr_30295 

 2 15 5,5 6,2 ---NA--- Hypothetical protein 

MGCH7_ch7g1093 

(Magnaporthe oryzae 70e
-15

)  

S, 21dpi 177 

estExt_fgenesh1_kg.C_chr_60114 
#
 1 7 87,3 87,3 ---NA--- No significant hits S, 14dpi 154 

 

a) 
JGI headers from http://genomeportal.jgi-psf.org/Mycgr3/Mycgr3.home.html 

b) 
Maximum number of identified peptides, including generated in source fragments  

c) 
Coverage percentage of amino acid sequence with the matched peptides 

d) 
Peptide score (min and max) based on both DDA and MS

E
. The score range for significant matches is for MS

E  
≥ 5 and for DDA ≥ 50 

e) 
GO term provided for molecular function from Blast2Go functional annotation tool 

f) 
S: Susceptible cultivar (Obelisk), R: Resistant cultivar (Shafir)  

g)
Amino acid length

  

*--NA--: no GO term identified 
# 
Unique Small Secreted Protein (SSP) 

**
Conserved SSP 

 
Lowly conserved SSP 

∞ 
IPR000421: Possible cell adhesion protein 

 
IPR010829 Cerato-platinin 

 
Essential for phialid development in Aspergillus 

 
Homology to stress response protein rds1 

NB. Proteins identified with only one peptide have lower confidence level that those identified with more than one peptide 
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DISCUSSION 

The apoplastic space is often the niche of a plant that is initially colonized by a 

microbial pathogen (Bowles, 1990). Hence, this plant-pathogen interface contains a plethora 

of proteins for mutual molecular communication and its proteomic analysis might provide 

useful information for unravelling the interaction between a pathogen and its host that will 

substantially contribute to the understanding of fungal pathogenicity (Bhadauria et al., 2010).   

The objective of the current study was to identify M. graminicola proteins during 

wheat infection. Additionally, wheat proteins were also identified and preliminary 

characterized. Several time points representing distinct phases during both compatible 

(Obelisk- M. graminicola strain IPO323) and incompatible interactions (Shafir- M. 

graminicola strain IPO323) were chosen for isolation of apoplastic fluids (AFs). The major 

differences in the apoplastic proteins after inoculation of a resistant and a susceptible cultivar 

were initially analyzed by separating them by one dimensional SDS-PAGE that clearly 

showed different protein profiles, particularly at early stages of infection of the incompatible 

interaction. Until 7 dpi, when the fungal proliferation in compatible and incompatible 

interactions is similar, this resulted in the accumulation of proteins in the molecular mass 

range of 20-35 kDa that were analysed by mass spectrometry. Most of the differentially 

accumulating proteins were of wheat origin and comprised primarily PR proteins with 

antifungal activity such as β-1,3-glucanases (PR-2), chitinases (PR-3) and peroxidases (PR-9). 

Most of them have previously been described in M. graminicola–infected wheat 

(Muthukrishnan et al., 2001; Shetty et al., 2009). PR proteins are usually seen as markers of 

incompatibility as reported for many different pathosystems including other plant pathogenic 

Dothideomycetes (Joosten and De Wit, 1989; Wubben et al., 1992). Indeed, Adhikari et al., 

(2007) showed a rapid response of wheat leaves to the presence of an avirulent M. 

graminicola strain including the activation of PR gene expression within 24 hrs after 

inoculation that was particularly more pronounced during an incompatible interaction.  Here it 

is clearly visible that the resistant cv. Shafir does respond much earlier in the biotrophic phase 

and to a higher level with the accumulation of the aforementioned defence-related PR 

proteins. In addition, it also shows that even a susceptible cultivar (Obelisk) initially does not 

allow much fungal proliferation, likely due to effective basal host defence including both 

constitutive and active defence mechanisms induced by fungal PAMPs like β-1,3-glucans and  

chitin fragments released from the fungal cell wall by synergistic activities of plant β-1,3-

glucanases and chitinases, and are recognized by yet to be identified host pattern recognition 

                               

B 
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receptors (PRRs) (Thomma et al., 2011).  Fungal PAMPS identified so far include chitin 

fragments (de Jonge et al., 2010), and β-1,3-glucans (Umemoto et al., 1997; Fliegmann et al., 

2004). Shetty et al. (2009) reported that the treatment of wheat leaves with β-1,3-glucans 

isolated from cell walls of M. graminicola triggered a rapid accumulation of β-1,3-glucanases 

both in resistant and in susceptible cultivars. On top of these, effectors behaving avirulence 

factors recognized by resistance proteins would induce resistance protein-mediated defence 

responses leading to a quicker and higher accumulation of PR proteins in resistant cultivars. 

However, further research needs to be performed to confirm this hypothesis, as no avirulence 

gene or resistance gene has yet been cloned from the M. graminicola-wheat pathosystem. 

At 7 dpi and beyond, when the fungus starts to proliferate in the tissue of the 

susceptible cv. Obelisk that results in necrosis, we expected an increase of soluble proteins of 

both plant and fungal origins due to leakage of cytoplasmic plant proteins in the apoplast and 

an increase of secreted fungal proteins resulting from the rapidly increasing fungal biomass 

and fructification (Kema et al., 1996). By using label–free LC-MS
E
 and data dependent 

acquisition LC-MS/MS techniques, all the proteins were blasted to the finished genome 

sequence of M. graminicola strain IPO323, (Goodwin et al., 2011) to identify M. graminicola 

proteins produced during pathogenesis, irrespective of the stages of infection.  

Fungal proteins (N=85) were predominantly identified in the susceptible cv. Obelisk 

particularly during the later phases of infection. Forty-eight per cent (41/85) of the M. 

graminicola proteins were predicted to be secreted but proteins without a classical signal 

peptides could be secreted by non-classical secretion mechanisms as reported before (Cleves, 

1997; Nickel, 2005). Nevertheless, some fungal proteins appeared to be of cytoplasmic origin 

such as the 40s ribosomal protein S15, 3-isopropylmalate dehydratase and aldehyde 

dehydrogenase that may result from cell leakage during sample preparation or are leaking out 

of senescing mycelium during the later stages of infection. The majority of the 41 secreted 

proteins, however, are associated with pathogenesis and comprised many CWDEs that were 

identified at the late stages of infection including -L-arabinofuranosidases, -glucosidases, 

-xylosidases, endoglucanases, endo--xylanases and pectinesterases, suggesting active cell 

wall hydrolysis. CWDEs are of special interest because they are not only implicated in cell 

wall hydrolysis to release nutrients for the colonizing pathogen (De Lorenzo et al., 1997), but 

also contribute to virulence (Bateman and Basham, 1976; Kapat et al., 1998; Kang and 

Buchenauer, 2000; Mary Wanjiru et al., 2002). In addition, it has been reported that some cell 

wall that break down products such as β-1,3-glucans and oligalacturonides can elicit defence 

responses in plants (Esquerré-Tugayé et al., 2000; De Lorenzo et al., 1997). In M. 
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graminicola, the involvement of CWDEs in virulence has been suggested in several reports 

(Cohen and Eyal, 1993; Kema et al., 1996; Duncan and Howard, 2000; Shetty et al., 2003; 

Shetty et al., 2007; Kema et al., 2008). Recently, a comparative CAZy analysis (carbohydrate-

active enzymes) (http://www.cazy.org/Genomes.html) for a range of fungal genomes, 

including M. graminicola and other members of the Dothideomycetes, suggested that the 

switch from biotrophy to necrotrophy might be associated with the production of specific 

CWDEs that could release toxic cell wall fragments triggering cell-death (Goodwin et al., 

2011). In addition, Siah et al. (2010) suggested a correlation between the in planta production 

of endo--1,4-xylanase and the transition from biotrophy to necrotrophy during infection of 

wheat by M. graminicola. Our current observations of massive increase in secreted proteins at 

the necrotrophic stage of infection comply with earlier reports (Kema et al., 1996; Cohen and 

Eyal, 2007; Rudd et al., 2008).  

Two of the five cutinase genes in the genome of M. graminicola have been identified 

in this proteome study. Cutinases have been reported to play roles in cuticular penetration (Li 

et al., 2003), spore attachment (Deising et al., 1992; Pascholati et al., 1993) and generation of 

cutin monomers as signaling molecules (Woloshuk and Kolattukudy, 1986; Podila et al., 

1988; Francis et al., 1996) and even in protection of the host plant. Indeed, certain cutin 

monomers released by fungal cutinases can protect tomato against infection by powdery 

mildew (Wang et al., 2000). More recently, it has been reported that one of the cutinases of 

Magnaporthe (Cut2) is involved in surface sensing, mediating appressorium differentiation 

and formation of the penetration peg (Skamnioti and Gurr, 2007, 2008). In M. graminicola 

that enters its host via stomata without appressorium formation (Kema et al., 1996) cutinase 

most likely has another function. The high number of predicted cutinases in the M. 

graminicola genome, more than in Neurospora crassa (N=3) and Aspergillus nidulans (N=4), 

but less than in Botrytis cinerea (N=11), Fusarium graminearum (N=12) and M. grisea (N=7) 

(Skamnioti et al., 2008) of which two appear active in the apoplast calls for alternative roles 

in pathogenesis. However, it should be noted that cutinases are not always well defined and 

some could have lipase activities. 

Besides CWDEs, our proteome analysis confirms the secretion of a large number of 

proteases into the apoplast during colonization of the susceptible cultivar Obelisk. Several 

different classes of proteases were identified including aspartic proteases, aminopeptidases 

and carboxypeptidases. Secreted proteases are potential virulence factors in fungi (Monod et 

al., 2002) and can be involved in degradation of cell wall-embedded proteins but can also play 

regulatory roles in defence as has been shown for cysteine proteinase avrRpt2 that triggers 

http://www.cazy.org/Genomes.html
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RPS2-mediated defence that also requires RIN4 (Axtell and Staskawicz, 2003). In addition, 

proteases might inactivate PR proteins, although many PR proteins are known to be fairly 

resistant to proteases (Edreva, 2005). Goodwin et al., (2011) recently compared gene families 

and PFAM domains of M. graminicola with several other fungi and reported that peptidases 

and -amylases were significantly expanded suggesting alternative modes of nutrition that 

may include hydrolysis of proteins and starch, respectively, during the biotrophic phase of 

infection. In addition, the presence of proteins required as coenzymes, amino acid and lipid 

transport and metabolism in the susceptible plant at 7 dpi might give more insight in the 

mechanism of nutrient retrieval from the environment during the biotrophic phase.  

Furthermore, proteins that are associated with protection against anti-fungal oxidative 

stress responses of plants were also identified. The generation of reactive oxygen species 

(ROS) by plants is an early response to invading pathogens. ROS are not only toxic on their 

own at fairly high concentrations, but they can also serve as signal molecules at lower 

concentrations that can trigger different plant defence responses, including the production of 

PR proteins and phytoalexins (Lamb and Dixon, 1997; Mellersh et al., 2002; Torres and 

Dangl, 2005; Torres et al., 2006). As a consequence, pathogens use antioxidant defence 

systems or detoxify ROS (Skamnioti et al., 2007). Catalases and peroxidases are among these 

oxidative stress-related proteins that protect against oxidative stress and are therefore essential 

for fungal survival during host invasion but even more so during the necrotrophic phase when 

massive amounts of ROS including H2O2 are present (Skamnioti et al., 2007). It has been 

suggested that M. graminicola is able to colonize susceptible wheat plants by avoiding 

recognition, suppressing or scavenging H2O2 (Shetty et al., 2003; Shetty et al., 2007). Indeed, 

the antioxidant catalases and peroxidases might degrade H2O2 accumulation during various 

phases of infection. Shetty et al. (2007) showed that infiltration of catalase in wheat leaves 

effectively scavenged early produced H2O2, thus fostering increased penetration, mesophyll 

colonization and proliferation of the fungus resulting in a decreased latency period. This 

confirms a crucial role of H2O2 in the defence of wheat against M. graminicola. However, the 

fungus can apparently cope with increased H2O2 accumulation which likely makes it a 

successful necrotrophic pathogen. We identified only two proteins of the three 

catalase/peroxidase genes present in the M. graminicola genome during infection of the 

susceptible plant of which only one appears to be secreted. Indeed, in subsequent 

experiments, we have shown that only a knock-out mutant of this particular 

catalase/peroxidase was impaired in pathogenicity (Mehrabi et al., unpublished), a finding 
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that is not always corroborated in other pathosystems (Garre et al., 1998; Schouten et al., 

2002; Robbertse et al., 2003).  

In proteomic studies often a large number of proteins with unknown function is 

identified. In this study, we identified 12 secreted cysteine-rich proteins (3-10 cysteine 

residues) of which nine were small secreted proteins (SSPs). Several SSPs have shown to 

exhibit effector functions in other pathosystems (Rep, 2005; Houterman et al., 2007; Bolton et 

al., 2008). One of the identified SSPs at 21 dpi showed homology with the PhiA protein from 

A. nidulans, which was also identified in AFs of C. fulvum-infected tomato (Bolton et al., 

2008), where it is involved in phialide and conidium formation, a function that is likely very 

basic in filamentous ascomycetes (Melin et al., 2003). In addition, it also mapped to the 

quantitative trait locus for pycnidium development in cv. Obelisk on chromosome 5 (Ware, 

2006). We therefore hypothesize that it may also function during pycnidium formation and 

conidiogenesis in M. graminicola and, speculate that it plays an important role in the 

completion of the disease cycle. The remainder of the SSPs did not have any functional 

domain, were partially unique to M. graminicola and appeared to reside mainly in repetitive 

DNA stretches located in a rich TE region, a phenomenon also observed for SSPs produced 

by Leptosphaeria maculans (Rouxel et al., 2011). 

Here, we presented a global overview of the M. graminicola proteins secreted in the 

wheat apoplast during infection. We anticipate to identify more proteins in the future by 

applying more sensitive proteome analyses. Particularly during the biotrophic phase where 

fungal proliferation is slow and biomass is low, we hope to identify additional proteins 

playing a crucial role in the switch to necrotrophy where fungal proliferation is enormous 

(Kema et al., 1996; Ware, 2006; Rudd et al., 2008). Obviously, absence of protein sequences 

in the database will preclude their identification, but lowly abundant fungal proteins could 

also be easily obscured by highly abundant plant proteins, such as photosynthetic enzymes 

and structural proteins.  The use of a 6 frame translation of the M. graminicola genome 

sequence would help in part to solve this problem, as it identifies non annotated genes and/or 

corrects erroneous gene models. 

In summary, this study provides a first global insight into the in planta proteome of M. 

graminicola that complements recent genome analyses (Goodwin et al., 2011). The identified 

plethora of proteins provides a rich resource for detailed analysis of their role(s) in M. 

graminicola pathogenicity. 
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MATERIALS AND METHODS  

The Dutch M. graminicola sequenced reference strain IPO323 was used throughout 

this study to inoculate seedlings of wheat cvs Obelisk (susceptible) and Shafir (resistant) 

(Kema et al., 1996; Kema et al., 2000; Brading et al., 2002; Goodwin et al., 2011). 

Experimental procedures for plant and fungal materials and pre/post-inoculation conditions 

were as described previously (Kema et al., 1996; Ware, 2006). The inoculated primary leaves 

of both cultivars were collected at 0, 7, 14 and 21 days post-inoculation (dpi). At each time 

point, AFs was isolated from ~ 160 plants (16 pots with 10 plants/pot) according to de Wit 

and Spikman (1982), with slight modifications, and subsequently filtered through a 0.22 μm 

filter (Millipore. Corp., Bedford, MA), frozen, lyophilized and stored at -20
°
C until further 

use. 

 

Protein extractions for SDS-PAGE and LC-MS analysis 

Protein extractions started with resuspending AFs in 0.2 ml of 8 M urea, 2 M thiourea, 

5 mM diothreitol (DTT) (Sigma-Aldrich Chemie, Steinheim, Germany) followed by 

incubation for 1 hr at 30
°
C in a shaker (GFL, Burgwedel, Germany), alkylation of proteins 

with 15 mM iodoacetamide (IAA) (GE Healthcare, UK) for 30 min. at room temperature (in 

the dark) and centrifugation (15 min, 15,000 g). A fraction of the supernatant (50 µl) was used 

for sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. For 

this purpose proteins were precipitated by adding nine volumes of cold acetone, after which 

the air-dried pellet was heated for 5 min at 95
°
C in SDS sample buffer. SDS-PAGE was 

performed on 15% Midget gels (Pharmacia, Co. Sweden, Laemmli 1970) and gels were 

stained with Coomassie Brilliant Blue R-250 (CBB). Subsequently, the gel was sliced, and gel 

slices containing (stained) proteins of interest were excised from the lanes for in-gel tryptic 

digestion and peptide sequencing. Each gel slice was first destained in 40% acetonitrile and 

200 mM ammonium bicarbonate for two times for 30 min and then air-dried by vacuum 

centrifugation (Savant Speedvac, USA) after which trypsin (10 ng/l) (Sequence grade 

modified, Promega, WI, USA) was added, followed by overnight incubation at 37
°
C. Tryptic 

peptides were extracted with 50% acetonitrile containing 0.1% trifluoroacetic acid (TFA) 

(Fluka, Buchs, Switzerland) and air-dried by vacuum centrifugation (Shevchenko et al., 

1996).  
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For comparative LC-MS analysis protein samples from AF harvested at 0, 7, 14 and 

21 dpi were digested in solution by trypsin. The remainder of the supernatant (150 µl; see 

above) was diluted with three volumes of 0.1 M ammonium bicarbonate and proteolytic 

digestion was initiated by adding 2 l of trypsin (0.2 g/l). The sample was subsequently 

incubated overnight at 37
°
C, after which the tryptic digestion was terminated by adding TFA 

to a final concentration of 0.5% (v/v). After centrifugation at 15,000 g for 10 min, the 

supernatant was cleaned by filtering through a SupelClean
TM

 LC-18 1 ml SPE column 

(Supelco, Bellefonte, USA) equilibrated with 0.1% TFA and peptides were eluted with 84% 

acetonitrile (ACN) (HPLC Supra-gradient, Biosolve, Valkenswaard, The Netherlands), 

containing 0.1% formic acid (FA) (Merck, Darmstadt, Germany) and dissolved in 40 l 0.1% 

FA prior to LC-MS analysis. 

 

Comparative LC-MS/MS and LC-MS
E
 

Label-free data-independent acquisition (DIA) LC/MS
E
 combined with data-

dependent acquisition (DDA) LC-MS/MS approaches allowed detailed identification and 

quantification of complex protein samples (America et al., 2006; America and Cordewener, 

2008; Salvatore et al., 2010). For peptide separation a nanoAcquity UPLC system (Waters 

Corporation, Manchester, UK) was used with a BEH C18 column (75 μm x 25 cm with 1.7 

μm particles, Waters, UK) and a 65 min linear gradient from 3 to 40% ACN (in 0.1 % FA) at 

a flow rate of 200 nl/min. The eluting peptides were on-line injected into a Synapt Q-TOF MS 

instrument (Waters Corporation, Manchester, UK). MS analyses were performed in positive 

mode using Electrospray ionization (ESI) with a NanoLockSpray source. As lock mass 

[Glu
1
]fibrinopeptide B (1 pmol/μl, Sigma) was delivered from a syringe pump (Harvard 

Apparatus, location, USA) to the reference sprayer of the NanoLockSpray source at a flow 

rate of 0.2 μl/min and the lock mass channel was sampled every 30 s. Accurate LC-MS data 

were collected with the Synapt Q-TOF MS instrument operating in either the MS/MS or MS
E
 

mode (DDA and DIA) using low (6 eV) and elevated (ramp from 15 to 35 eV) energy spectra 

every 0.6 s over a 140-1900 m/z range, respectively. LC-MS/MS was performed by peptide 

fragmentation on the three most intense multiple charged ions that were detected in the MS 

survey scan within 0.6 s over a 300-1400 m/z range and a dynamic exclusion window of 60 s 

with an automatically adjusted collision energy based on the observed precursor m/z and 

charge state.  
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Data base construction and data analysis  

LC-MS/MS and MS
E
 data were processed using ProteinLynx Global Server software 

(PLGS version 2.4, Waters Corporation, Manchester, UK) and the resulting list of masses 

containing all the fragment information was searched for matching proteins using a merged 

non-redundant database including all gene models of M. graminicola IPO323 (Goodwin et al., 

2011) and from COGEME (http://cogeme.ex.ac.uk/sequence.html). Sequences from wheat 

[TaGI v11 071508] were obtained from the Gene Index Databases, Dana-Farber Cancer 

Institute, Boston, MA 02115 USA (URL: http://compbio.dfci.harvard.edu/tgi) (Pertea et al., 

2003; Lee et al., 2005) and sequences of common contaminants, such as trypsin and keratin, 

were also included. These databases were merged into a single database using an in-house 

developed FastaFileMerger tool (FFM) that only maintained the longest protein sequence 

with 100% homology from repeated sequences. This eventually resulted in a non-redundant 

database for M. graminicola and wheat comprising 238,013 sequences. 

For MS
E
, the search was performed using the following parameters: a minimum of 

five fragments ions per peptide and a minimum of nine fragments ions per protein, a 

minimum of one peptide match per protein and a maximum of one missed trypsin cleavage. 

Furthermore, we used (i) carbamidomethylation as fixed modification, (ii) oxidation as 

variable modifications, and (iii) a false positive threshold of four percent. For LC-MS/MS 

analysis the peptide mass tolerance was set to 50 ppm and a fragment mass tolerance of 0.1 

Da. Carbamidomethylation was used as fixed modification, and deamidation and oxidation as 

variable modifications. The AutoMod search was applied as secondary search to the database 

search results. The AutoMod analysis tool increases protein coverage by taken into account 

missed trypsin cleavages and non-specific cleavages, post-translational modifications, and 

amino acid substitutions. In case of in-gel digested samples, the database search was 

performed with MASCOT on the FFM merged database, but with precursor and fragment 

mass tolerance at 0.8 Da and carbamidomethylation as fixed modification and deamidation, 

oxidation and dioxidation as variable modifications. Finally, the LC-MS/MS and MS
E
 outputs 

were further merged and wheat proteins that were identified only once across all time points 

were not considered for further analysis. Since we used all gene models of M. graminicola, 

additional filtering steps were performed for proteins with alternative models (based on 

additional peptides obtained but not covered by the present gene models of the M. 

graminicola data base at the United States Department of Energy-Joint Genome Institute, 

DOE-JGI) and eventually only best (revised) models were used. Furthermore, the 

http://cogeme.ex.ac.uk/sequence.html
http://compbio.dfci.harvard.edu/tgi
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identification of M. graminicola proteins was certified if a protein was assigned on at least 

two peptides with a LC-MS/MS score ≥50 and/or MS
E
 >5. However, for proteins with only 

one assigned peptide, particularly for the (small secreted proteins (SSPs), these were kept 

only when the MS
E
 score was > 6 and/or for LC-MS/MS when the score was ≥50.  Single 

peptides that overlapped with other proteins with the same identified peptide were excluded 

(for the single hit protein) from further analysis. 

 

Protein quantification using Progenesis 

For quantitative analyses, the MS
E
 data were processed in Progenesis LC-MS V2.6 

(Nonlinear Dynamics, Newcastle, UK), which imported high resolution raw profile data (with 

lock-spray mass-calibration) into custom mzNLD format and extracted peptide intensity 

features from MS
E
 data. The MS

E
 data of cvs Shafir and Obelisk at time points 0, 7, 14 and 21 

dpi (duplicates) were used for quantification. The LC-MS
E
 chromatograms of all acquired 

datasets were aligned against a chosen reference run (cv. Obelisk at 14 dpi). Retention time 

alignment by warping allowed the creation of a single aggregate peak map containing all peak 

data from all samples of which only 2+, 3+ and 4+ charged peptides were included in the 

comparison.  After peak detection on the aggregate map the intensities were determined for 

each peak per individual run. The peak intensity data were normalized using the average of 

peak intensity ratios for each run versus the reference, after removing the outliers (majority of 

differential peaks). The generation of so-called feature tables allowed then quantitative 

comparisons of peak intensities between samples. Peptide identification results from 

Proteinlynx database searches of MS
E
 data were imported into Progenesis for linking 

identified peptides to their corresponding peak features. In Progenesis subsequent filtering 

steps were carried out; number of peptide hits ≥2 over all runs and a ProteinLynx Global 

SERVER (PLGS), peptide score >5. Consequently, a relative expression profile was 

generated per peak for the different samples and the different time points. The expression 

profiles, when at least two or more peptides were assigned to a protein of interest, were 

checked and peptides were filtered when the alignment was not clear. Multivariate principal 

component analysis (PCA) was performed with GeneMaths (Applied Maths, Belgium).  

 

Functional characterization of proteins and the identification of conserved domains 

Functional annotation was performed using the Blast2GO v2 program (Götz et al., 

2008), which enables the annotation of each protein with a GO number and categorizes them 
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to molecular function, biological process or cellular component. Sequences were directly 

annotated using BLASTp against the NCBI non-redundant protein sequence database using a 

cut-off E-value of 1e
-6 

and functional domains were searched with InterPro Scan, SignalP, 

PSORT II, and TMHMM-based algorithms and resulted in level 2 and level 3 analyses, 

illustrating general functional categories. The Multiloc2 program was used for subcellular 

localization prediction (Torsten et al., 2009). We used the obtained sequence information to 

search for conserved domains using the InterPro Scan program 

(http://www.ebi.ac.uk/Tools/InterProScan/) and online software (Marchler-Bauer et al., 2009) 

(www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) to determine the classifications and possible 

functions of identified hypothetical proteins. 
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SUPPLEMENTAL DATA 

Table S1. Summary of the Mycosphaerella graminicola proteins that were identified in the apoplastic fluids isolated from the resistant (Shafir) and susceptible (Obelisk) 

wheat cvs at four time points after inoculation with M. graminicola strain IPO323  (0, 7, 14 and 21 dpi). 

ProteinID 

a) 
Loc.

b)
 

Gen. 

Pos. 
c)

 

Cul. 

& 

time 

pt 
d)

 

Seq. Description 

e) 

Seq. 

Len

gth 

f) 
Min. 

eValue 

Mean 

Sim. #GOs GOs 
g)

 Enz. Codes InterProScan 

72330 chr_5 

1637435-

1639659 

S, 7 

dpi 

conserved hypothetical protein 

[Pyrenophora tritici-repentis Pt-1C-

BFP] 490 5,3e
-
84 57,80% 0 

  

no IPS match 

101999 chr_1 

476075-

477568 

S, 21 

dpi peptidyl-prolyl cis-trans isomerase 224 3,5 e
-
70 77.7% 3 

P:protein folding; C:cytoplasm; 

F:peptidyl-prolyl cis-trans isomerase 

activity EC:5.2.1.8 

IPR002130; 

IPR015891; 

IPR020892; 

PTHR11071 

(PANTHER), 

PTHR11071:SF70 

(PANTHER) 

102172 chr_1 

1618300-

1619574 

S, 14 

& 21 

dpi zinc-binding dehydrogenase 352 1,3e
-
137 75.15% 3 

F:zinc ion binding; P:oxidation 

reduction; F:oxidoreductase activity 0 

IPR002085; 

IPR011032; 

IPR013149; 

IPR016040; 

PTHR11695:SF5 

(PANTHER), 

SSF51735 

(SUPERFAMILY) 

103440 chr_2 

3139008-

3140849 

S, 21 

dpi elongation factor 1-gamma 416 4,1 e
-
153 72.85% 3 

F:translation elongation factor 

activity; C:eukaryotic translation 

elongation factor 1 complex; 

P:translational elongation 0 

IPR001662; 

IPR004045; 

IPR004046; 

IPR010987; 

IPR012335; 

IPR012336; 

IPR017933; 

PTHR11260 
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(PANTHER), 

PTHR11260:SF7 

(PANTHER) 

103485 chr_2 

3479067-

3479856 

S, 14 

& 21 

dpi Cutinase 224 6,3 e
-
28 54.9% 5 

F:molecular_function; P:metabolic 

process; F:hydrolase activity; 

P:biological_process; 

C:cellular_component 0 

IPR000675; 

G3DSA:3.40.50.18

20 (GENE3D), 

SignalP 

(SIGNALP), 

SSF53474 

(SUPERFAMILY) 

103564 chr_3 

448714-

450470 

S, 21 

dpi 

Homology to stress response protein 

rds1 519 0.0 73.75% 0 0 0 

SignalP 

(SIGNALP) 

103591 chr_3 

677070-

678160 

S, 7 & 

21 dpi superoxide dismutase 154 2,4 e
-
69 88.0% 7 

F:copper ion binding; P:oxidation 

reduction; C:cytoplasm; P:superoxide 

metabolic process; F:superoxide 

dismutase activity; F:antioxidant 

activity; F:zinc ion binding EC:1.15.1.1 

IPR001424; 

IPR018152; 

PTHR10003:SF12 

(PANTHER) 

103790 chr_3 

2150116-

2150930 

S, 21 

dpi 

hypothetical protein 

MGCH7_ch7g1093 [Magnaporthe 

oryzae 70-15] 177 2,3 e
-
40 53,70% 3 

F:molecular_function; 

P:biological_process; 

C:cellular_component 0 

SignalP 

(SIGNALP) 

103891 chr_3 

2795134-

2796198 

S, 21 

dpi glutathione s-transferase 267 7,5 e
-
98 68.3% 3 

F:helicase activity; F:binding; 

F:transferase activity 0 

IPR004045; 

IPR004046; 

IPR010987; 

IPR012335; 

IPR012336; 

IPR017933; 

PTHR11260 

(PANTHER), 

PTHR11260:SF8 

(PANTHER) 

104376 chr_5 

497461-

498831 

S, 21 

dpi 

dienelactone hydrolase family 

protein 249 3,4 e
-
91 72.6% 1 F:hydrolase activity 0 

IPR002925; 

G3DSA:3.40.50.18

20 (GENE3D), 
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PTHR17630 

(PANTHER), 

PTHR17630:SF19 

(PANTHER), 

SSF53474 

(SUPERFAMILY) 

104697 chr_5 

2792882-

2793612 

S, 21 

dpi small secreted protein 149 7,8 e
-
21 58.35% 3 

F:molecular_function; 

P:biological_process; 

C:cellular_component 0 

SignalP 

(SIGNALP) 

104794 chr_6 

962972-

963778 

S, 14 

dpi ---NA--- 157 0 0 0 0 0 

SignalP 

(SIGNALP) 

104811 chr_6 

1057209-

1058327 

S, 0 

dpi histone h3 136 4,9 e
-
67 99.25% 7 

C:nucleosome; P:mycelium 

development; F:DNA binding; 

P:nucleosome assembly; F:protein 

binding; C:nucleus; P:DNA repair 0 

IPR000164; 

IPR007125; 

IPR009072 

104907 chr_6 

1657807-

1658690 

S. 21 

dpi 

Glycoside hydrolase, family 11; 

endo- -beta-xylanase 225 3,9 e
-
78 75.85% 2 

P:xylan catabolic process; F:endo-

1,4-beta-xylanase activity EC:3.2.1.8 

IPR001137; 

IPR008985; 

IPR013319; 

IPR018208; 

SignalP 

(SIGNALP) 

104911 chr_6 

1679481-

1680212 

S, 14 

& 21 

dpi; R 

21 dpi Ubiquitin 155 1,9 e
-
60 96.25% 4 

C:ribosome; P:protein modification 

process; F:structural constituent of 

ribosome; P:translation EC:3.6.5.3 

IPR000626; 

IPR002906; 

IPR019954; 

IPR019955; 

IPR019956; 

G3DSA:3.10.20.90 

(GENE3D), 

PTHR10666 

(PANTHER), 

PTHR10666:SF2 

(PANTHER), 

SSF54236 



CHAPTER 4 

 

144 
 

(SUPERFAMILY) 

105029 chr_7 

45580-

46668 

S, 14 

dpi 

Peptidase A4, Asparatic protease, 

scytalidopepsin B 269 3,9 e
-
22 49.9% 4 

P:proteolysis; F:hydrolase activity; 

F:aspartic-type endopeptidase 

activity; F:peptidase activity 0 

IPR008985; 

PF01828 (PFAM), 

SignalP 

(SIGNALP) 

105037 chr_7 

215048-

215885 

S, 21 

dpi glutathione s- 224 9,4 e
-
72 56.85% 1 F:transferase activity 0 

IPR004045; 

IPR004046; 

IPR010987; 

IPR012335; 

IPR012336; 

IPR017933; 

PTHR11260 

(PANTHER), 

PTHR11260:SF8 

(PANTHER) 

105043 chr_7 

234265-

236055 

S, 21 

dpi 

gpi-anchored cell wall protein; beta 

–endoglucanase 480 8,2 e
-
70 65.15% 1 

F:hydrolase activity, acting on 

glycosyl bonds 0 

IPR017853; 

SignalP 

(SIGNALP) 

105223 chr_7 

1219399-

1220237 

S, 21 

dpi 

essential for phialid development in 

aspergillus 188 3,2 e
-
05 48,14% 0 0 0 

SignalP 

(SIGNALP) 

105317 chr_7 

2500781-

2502585 

S, 14 

& 21 

dpi 

Glycoside hydrolase, family 10; 

endo- -beta- xylanase  347 9,6 e
-
96 65.15% 2 

F:hydrolase activity, acting on 

glycosyl bonds; P:metabolic process 0 

IPR001000; 

IPR013781; 

IPR017853; 

SignalP 

(SIGNALP) 

105322 chr_8 

140967-

142117 

S, 21 

dpi 

Glycoside hydrolase, family 43; 

secreted arabinase 319 1,6 e
-
112 70.1% 2 

P:carbohydrate metabolic process; 

F:hydrolase activity, hydrolyzing O-

glycosyl compounds EC:3.2.1.0 

IPR006710; 

G3DSA:2.115.10.2

0 (GENE3D), 

PTHR22925:SF7 

(PANTHER), 

SignalP 

(SIGNALP), 

SSF75005 
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(SUPERFAMILY) 

105408 chr_8 

922276-

924783 

S, 21 

dpi bifunctional catalase-peroxidase cat2 751 0.0 80.35% 4 

F:heme binding; P:oxidation 

reduction; F:catalase activity; 

P:hydrogen peroxide catabolic 

process EC:1.11.1.6 

IPR000763; 

IPR002016; 

IPR010255; 

IPR019793; 

IPR019794; 

G3DSA:1.10.420.1

0 (GENE3D), 

G3DSA:1.10.520.1

0 (GENE3D) 

105677 chr_9 

577525-

578458 

S, 21 

dpi 

Low homology to IgE binding 

protein 198 1,3 e
-
08 45.3% 0 0 0 

SignalP 

(SIGNALP) 

105791 chr_9 

1802461-

1804269 

S, 21 

dpi aldehyde dehydrogenase 498 0 87,40% 4 

F:aldehyde dehydrogenase (NAD) 

activity; C:cytoplasm; P:oxidation 

reduction; P:growth or development 

of symbiont on or near host EC:1.2.1.3 

IPR015590; 

IPR016160; 

IPR016161; 

IPR016162; 

PTHR11699:SF46 

(PANTHER) 

105870 chr_10 

310310-

311338 

S, 21 

dpi 

Glycoside hydrolase, family 12; 

endoglucanase a precursor 246 2,2e
-
64 69.85% 2 

F:hydrolase activity, hydrolyzing O-

glycosyl compounds; 

P:polysaccharide catabolic process EC:3.2.1.0 

IPR002594; 

IPR008985; 

IPR013319; 

SignalP 

(SIGNALP) 

106075 chr_11 

312607-

313691 

S, 14 

& 21 

dpi lipases ; acetyl xylan esterase 301 3,4 e
-
136 68.35% 3 

C:extracellular region; P:interaction 

with host via protein secreted by type 

II secretion system; F:hydrolase 

activity 0 

IPR010126; 

G3DSA:3.40.50.18

20 (GENE3D), 

PF10503 (PFAM), 

SignalP 

(SIGNALP), 

SSF53474 

(SUPERFAMILY) 

106105 chr_11 

645344-

646043 S, 14 

& 21 

hypothetical protein [Podospora 

anserina S mat+] 156 1,5 e
-
05 46.8% 0 0 0 

SignalP 

(SIGNALP) 
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dpi 

106333 chr_12 

590841-

591839 

S, 21 

dpi 

hypothetical protein FG09841.1 

[Gibberella zeae PH-1] 238 6,1 e
-
39 67,20% 1 

P:growth or development of symbiont 

on or near host 0 

SignalP 

(SIGNALP) 

106395 chr_12 

1121162-

1123790 

S, 21 

dpi 

5-

methyltetrahydropteroyltriglutamate-

homocysteine methyltransferase 771 0.0 88.6% 4 

P:mycelium development; 

P:methionine biosynthetic process; 

F:zinc ion binding; F:5-

methyltetrahydropteroyltriglutamate-

homocysteine S-methyltransferase 

activity EC:2.1.1.14 

IPR002629; 

IPR006276; 

IPR013215; 

G3DSA:3.20.20.21

0 (GENE3D), 

SSF51726 

(SUPERFAMILY) 

106754 chr_1 

374948-

376599 

S, 14 

& 21 

dpi 

mannitol dehydrogenase   NADP-

dependent mannitol dehydrogenase 

[Passalora fulva] 6e-133 350 5,3 e
-
132 87.95% 4 

P:oxidation reduction; F:mannitol 2-

dehydrogenase (NADP+) activity; 

F:binding; F:carbonyl reductase 

(NADPH) activity 

EC:1.1.1.13

8; 

EC:1.1.1.18

4 

IPR002198; 

IPR002347; 

IPR016040; 

PTHR19410:SF62 

(PANTHER), 

SSF51735 

(SUPERFAMILY) 

106892 chr_1 

1278369-

1280116 

S, 21 

dpi  Aminopeptidase 552 3,6 e
-
119 65.65% 1 F:hydrolase activity 0 

IPR001382; 

IPR003137; 

IPR007484; 

G3DSA:3.40.630.1

0 (GENE3D), 

G3DSA:3.50.30.30 

(GENE3D), 

PTHR11742:SF8 

(PANTHER), 

SignalP 

(SIGNALP), 

SSF52025 

(SUPERFAMILY), 

SSF53187 

(SUPERFAMILY) 

107208 chr_1 
2831206- S, 21 

alpha-galactosidase 5 precursor 521 9,8 e
-
129 53.55% 3 P:anatomical structure development; 

F:hydrolase activity, acting on 
0 IPR000111; 

IPR002241; 
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2833105 dpi glycosyl bonds; P:multicellular 

organismal development 

IPR005084; 

IPR008979; 

IPR013785; 

IPR017853; 

PTHR11452 

(PANTHER), 

SSF51011 

(SUPERFAMILY) 

107631 chr_1 

4895241-

4900979 

R, 14 

dpi pisatin demethylase 

116

8 2,1 e
-
96 63.75% 1 F:copper ion binding 0 

IPR001128; 

IPR002403; 

IPR007533; 

IPR011051; 

IPR017972; 

PTHR19383:SF11 

(PANTHER) 

107650 chr_1 

5027950-

5030585 

S, 14 

& 21 

dpi catalase peroxidase hpi 796 0.0 71.45% 4 

P:metabolic process; F:iron ion 

binding; F:peroxidase activity; 

P:response to oxidative stress EC:1.11.1.7 

IPR000763; 

IPR002016; 

IPR006162; 

IPR010255; 

IPR019793; 

IPR019794; 

G3DSA:1.10.420.1

0 (GENE3D), 

G3DSA:1.10.520.1

0 (GENE3D), 

SignalP 

(SIGNALP) 

107827 chr_2 

310334-

312233 

S, 14 

& 21 

dpi Phosphoglucomutase 554 0.0 87.8% 4 

P:glucose metabolic process; 

C:cytoplasm; F:magnesium ion 

binding; F:phosphoglucomutase 

activity EC:5.4.2.2 

IPR005841; 

IPR005843; 

IPR005844; 

IPR005845; 

IPR005846; 

IPR016055; 

IPR016066; 

G3DSA:3.30.310.5

0 (GENE3D), 
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PTHR22573 

(PANTHER), 

PTHR22573:SF5 

(PANTHER), 

SSF55957 

(SUPERFAMILY) 

108336 chr_2 

3406572-

3407604 

S, 21 

dpi nad dependent epimerase 283 2,3 e
-
66 56.3% 0 0 0 

PTHR10366 

(PANTHER), 

PTHR10366:SF1 

(PANTHER) 

108346 chr_2 

3476222-

3478294 

S, 21 

dpi Possible cell adhesion protein 667 0.0 56.65% 1 F:catalytic activity 0 

IPR000421; 

IPR008928; 

SignalP 

(SIGNALP) 

108472 chr_3 

724008-

727379 

S, 7 

dpi mitochondrial precursor 756 5,0 e
-
165 81.5% 3 

F:iron ion binding; F:ferrochelatase 

activity; P:heme biosynthetic process EC:4.99.1.1 

IPR001015; 

IPR019772; 

G3DSA:3.40.50.14

00 (GENE3D), 

SSF53800 

(SUPERFAMILY) 

108994 chr_4 

718979-

721632 

S, 14 

& 21 

dpi Feruloyl 670 2,5 e
-
102 57.15% 1 

P:growth or development of symbiont 

on or near host 0 

IPR011118; 

SSF53474 

(SUPERFAMILY) 

109137 chr_4 

1636648-

1637355 

S, 14 

& 21 

dpi ---NA--- 154 0 0 0 0 0 

SignalP 

(SIGNALP) 

109175 chr_4 

1830528-

1833220 

S, 21 

dpi 

Glycoside hydrolase, family 3; beta-

xylosidase 769 0.0 67.65% 3 

F:hydrolase activity, acting on 

glycosyl bonds; P:metabolic process; 

P:growth or development of symbiont 

on or near host 0 

IPR001764; 

IPR002772; 

IPR017853; 

G3DSA:3.40.50.17

00 (GENE3D), 

SignalP 

(SIGNALP) 
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109182 chr_4 

1857892-

1862465 

S, 21 

dpi 

Glycoside hydrolase, family 3; beta-

glucosidase 979 0.0 77.95% 2 

F:hydrolase activity, hydrolyzing O-

glycosyl compounds; 

P:polysaccharide catabolic process EC:3.2.1.0 

IPR001764; 

IPR002772; 

IPR017853; 

IPR019800; 

G3DSA:3.40.50.17

00 (GENE3D), 

SignalP 

(SIGNALP) 

109536 chr_5 

1490390-

1492833 

S, 7 

dpi not2 family protein 532 4,9 e
-
37 53.65% 3 

P:regulation of transcription; 

F:transcription regulator activity; 

C:nucleus 0 

IPR007282; 

PTHR23326 

(PANTHER) 

109538 chr_5 

1507739-

1510169 

S, 7 & 

21 dpi 3-isopropylmalate dehydratase 775 0.0 83.95% 4 

F:3-isopropylmalate dehydratase 

activity; C:3-isopropylmalate 

dehydratase complex; F:4 iron, 4 

sulfur cluster binding; P:leucine 

biosynthetic process EC:4.2.1.33 

IPR000573; 

IPR001030; 

IPR004430; 

IPR004431; 

IPR012235; 

IPR015928; 

IPR015931; 

IPR015932; 

IPR015936; 

IPR015937; 

IPR018136 

109543 chr_5 

1526256-

1527825 

S, 21 

dpi 

Glycoside hydrolase, family 7 ; 

cellobiohydrolase d 444 2,3 e
-
128 68.5% 2 

P:carbohydrate metabolic process; 

F:hydrolase activity, acting on 

glycosyl bonds 0 

IPR001722; 

IPR008985; 

SignalP 

(SIGNALP) 

109629 chr_5 

2107492-

2110472 

S, 21 

dpi cystathionine beta-lyase 819 1,0 e
-
172 84.25% 4 

F:pyridoxal phosphate binding; 

P:cellular amino acid metabolic 

process; F:cystathionine beta-lyase 

activity; F:cystathionine gamma-

lyase activity 

EC:4.4.1.8; 

EC:4.4.1.1 

IPR000277; 

IPR006238; 

IPR015421; 

IPR015422; 

IPR015424; 

G3DSA:3.40.50.30

0 (GENE3D), 

PTHR11808:SF18 

(PANTHER), 
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SSF52540 

(SUPERFAMILY) 

109687 chr_5 

2690164-

2691472 

S, 21 

dpi 

Peptidase S8 and S53, subtilisin, 

kexin, sedolisin 400 1,2 e
-
69 65.35% 1 F:peptidase activity 0 

IPR000209; 

IPR009020; 

IPR015500; 

IPR022398; 

PTHR10795:SF32 

(PANTHER), 

SignalP 

(SIGNALP) 

109715 chr_6 

252833-

254516 

S, 21 

dpi Peptidase M14, carboxypeptidase A 426 4,6 e
-
104 61.65% 3 

F:hydrolase activity; P:growth or 

development of symbiont on or near 

host; P:developmental maturation 0 

IPR000834; 

IPR009020; 

G3DSA:3.40.630.1

0 (GENE3D), 

PTHR11705 

(PANTHER), 

PTHR11705:SF11 

(PANTHER), 

SignalP 

(SIGNALP), 

SSF53187 

(SUPERFAMILY) 

109722 chr_6 

276467-

278545 

S, 14 

& 21 

dpi ---NA--- 221 0 0 0 0 0 no IPS match 

110047 chr_7 

62348-

64716 

S, 14 

dpi aspartyl protease 441 8,9 e
-
20 40,60% 4 

P:proteolysis; F:aspartic-type 

endopeptidase activity; F:hydrolase 

activity; F:peptidase activity 0 

IPR001461; 

IPR002052; 

IPR009007; 

IPR021109; 

PTHR13683:SF78 

(PANTHER), 

SignalP 

(SIGNALP) 
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110753 chr_9 

985335-

990401 

S, 21 

dpi TM protein 

113

9 7,3 e
-
59 56.9% 4 

F:hydrolase activity, hydrolyzing O-glycosyl 

compounds; P:xylan catabolic process; 

F:transferase activity; P:carbohydrate metabolic 

process 

IPR000073; 

IPR006710; 

G3DSA:3.40.50.18

20 (GENE3D), 

SignalP 

(SIGNALP), 

SSF53474 

(SUPERFAMILY), 

SSF75005 

(SUPERFAMILY) 

110869 chr_9 

1779151-

1780382 

S, 21 

dpi 

translation initiation factor eif-2b 

alpha 349 2,1 e
-
106 71.7% 2 

F:translation initiation factor activity; 

P:cellular metabolic process 0 

IPR000649; 

G3DSA:3.40.50.10

470 (GENE3D), 

PTHR10233:SF7 

(PANTHER), 

SSF100950 

(SUPERFAMILY) 

111130 chr_10 

1379647-

1381988 

S, 21 

dpi 

Glycoside hydrolase, family 62; 

alpha-l-arabinofuranosidase 690 0.0 65.25% 3 

F:hydrolase activity, acting on glycosyl 

bonds; P:metabolic process; P:growth or 

development of symbiont on or near 

host 0 

IPR010720; 

IPR017853; 

SignalP 

(SIGNALP) 

111197 chr_11 

342361-

344373 

S, 14 

& 21 

dpi FMN-dependent dehydrogenase 504 8,6 e
-
110 68.1% 5 

F:oxidoreductase activity; F:coenzyme 

binding; P:metabolic process; P:growth 

or development of symbiont on or near 

host; P:response to cAMP 0 

IPR000262; 

IPR008259; 

IPR012133; 

IPR013785; 

PTHR10578 

(PANTHER), 

PTHR10578:SF10 

(PANTHER), 

SignalP 

(SIGNALP), 

SSF51395 

(SUPERFAMILY) 

111590 chr_13 
165942-

S, 14 

& 21 hypothetical protein [Podospora 
483 1,7 e

-
148 68.65% 1 

P:growth or development of symbiont 
0 

SignalP 
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167518 dpi anserina S mat+] on or near host (SIGNALP) 

111695 chr_13 

846325-

849673 

S, 14 

& 21 

dpi Glycoside hydrolase, family 31 991 0.0 70.85% 2 

P:metabolic process; F:hydrolase 

activity, hydrolyzing O-glycosyl 

compounds 

EC:3.2.1

.0 

IPR000322; 

IPR002044; 

IPR013783; 

IPR013784; 

IPR017853; 

PTHR22762:SF9 

(PANTHER), 

SignalP 

(SIGNALP) 

99716 chr_3 

3025946-

3027175 

S, 14 

dpi 

Glycoside hydrolase, family 62; 

alpha-L-arabinofuranosidase  331 1,4 e
-
122 79.75% 4 

F:xylan 1,4-beta-xylosidase activity; 

F:alpha-N-arabinofuranosidase activity; 

P:arabinan metabolic process; P:L-

arabinose metabolic process 

EC:3.2.1

.37; 

EC:3.2.1

.55 

IPR008985; 

IPR013320; 

IPR015289; 

SignalP 

(SIGNALP) 

99989 chr_4 

2009297-

2010187 

S, 21 

dpi 

short-chain dehydrogenase reductase 

sdr 257 3,5 e
-
46 66.25% 6 

P:oxidation reduction; F:binding; 

P:response to stress; F:oxidoreductase 

activity; P:metabolic process; F:catalytic 

activity 0 

IPR002198; 

IPR002347; 

IPR016040; 

PTHR19410:SF98 

(PANTHER), 

SSF51735 

(SUPERFAMILY) 

100378 chr_5 

2773357-

2775651 

S, 21 

dpi glucose-6-phosphate isomerase 537 0.0 87.75% 4 

C:cytoplasm; P:gluconeogenesis; 

F:glucose-6-phosphate isomerase 

activity; P:glycolysis 

EC:5.3.1

.9 

IPR001672; 

IPR018189; 

G3DSA:3.40.50.10

490 (GENE3D), 

SSF53697 

(SUPERFAMILY) 

53805 chr_1 

4254555-

4255738 

S, 21 

dpi Pectinesterase 330 1,8 e
-
104 69.7% 3 

F:hydrolase activity, acting on ester 

bonds; P:interaction with host via 

protein secreted by type II secretion 

system; P:cell wall organization 0 

IPR000070; 

IPR011050; 

IPR012334; 

IPR018040; 

SignalP 
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(SIGNALP) 

55830 chr_2 

2908495-

2909491 

S, 14 

& 21 

dpi 

Glycoside hydrolase, family 62; 

alpha-n-arabinofuranosidase 321 5,9 e
-
115 81.0% 2 

P:L-arabinose metabolic process; 

F:alpha-N-arabinofuranosidase activity 

EC:3.2.1

.55 

IPR005193; 

SignalP 

(SIGNALP) 

62222 chr_9 

644786-

645985 

S, 21 

dpi Quinone 367 9,7 e
-
108 72.15% 3 

F:zinc ion binding; P:oxidation 

reduction; F:oxidoreductase activity 0 

IPR002085; 

IPR002364; 

IPR011032; 

IPR013149; 

IPR013154; 

IPR016040; 

PTHR11695:SF31 

(PANTHER),  

SSF51735 

(SUPERFAMILY) 

62585 chr_9 

1548963-

1550926 

S, 21 

dpi 

Glucose-methanol-choline 

oxidoreductase 555 6,6 e
-
163 55.8% 3 

F:oxidoreductase activity, acting on CH-

OH group of donors; P:metabolic 

process; F:binding 0 

IPR000172; 

IPR007867; 

PR00411 

(PRINTS), 

G3DSA:3.50.50.60 

(GENE3D), 

PTHR11552 

(PANTHER), 

SignalP 

(SIGNALP), 

SSF51905 

(SUPERFAMILY), 

SSF54373 

(SUPERFAMILY) 

82115 chr_9 

842624-

843298 

S, 21 

dpi Thioredoxin 106 3,5 e
-
30 75.65% 15 

P:cellular response to reactive oxygen 

species; C:cytosol; P:glycerol ether 

metabolic process; P:sulfate 

assimilation; C:fungal-type vacuole; 

P:retrograde vesicle-mediated transport, 

Golgi to ER; P:cell redox homeostasis; 

P:DNA-dependent DNA replication; 
0 

IPR005746; 

IPR006662; 

IPR012335; 

IPR012336; 

IPR013766; 

IPR015467; 

IPR017936; 
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F:electron carrier activity; P:vacuole 

fusion, non-autophagic; P:ER to Golgi 

vesicle-mediated transport; 

C:membrane; C:Golgi apparatus; 

C:nucleus; F:protein disulfide 

oxidoreductase activity 

IPR017937; 

PTHR10438:SF16 

(PANTHER) 

82536 chr_11 

320804-

322900 

S, 14 

dpi cell wall glucanase 233 4,0 e
-
55 64.8% 1 

F:hydrolase activity, acting on glycosyl 

bonds 0 

IPR000490; 

IPR017853 

90052 chr_1 

5077954-

5083290 

S, 14 

& 21 

dpi; R 

21 dpi Glycoside hydrolase, family 3 

105

5 0.0 64.1% 1 

F:hydrolase activity, acting on glycosyl 

bonds 0 

IPR000626; 

IPR001764; 

IPR001878; 

IPR002772; 

IPR017853; 

IPR019800; 

IPR019955; 

IPR019956; 

G3DSA:3.10.20.90 

(GENE3D), 

G3DSA:3.40.50.17

00 (GENE3D), 

PTHR10666 

(PANTHER), 

PTHR10666:SF9 

(PANTHER), 

SignalP 

(SIGNALP), 

SSF54236 

(SUPERFAMILY) 

92097 chr_3 

3090563-

3091754 

S, 14 

dpi 

glycoside hydrolase family, beta –

mannanase 363 2,9 e
-
44 46,80% 7 

F:hydrolase activity, hydrolyzing O-

glycosyl compounds; F:carbohydrate 

binding; F:hydrolase activity; 

P:carbohydrate metabolic process; 

F:catalytic activity; F:cation binding; 

C:extracellular region 0 

IPR001547; 

IPR013781; 

IPR017853; 

SignalP 

(SIGNALP) 
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92644 chr_4 

1779848-

1781597 

S, 21 

dpi 

Peptidase A1, pepsin, Aspartic 

Protease 460 1,2 e
-
49 45.05% 4 

P:proteolysis; F:aspartic-type 

endopeptidase activity; F:hydrolase 

activity; F:peptidase activity 0 

IPR001461; 

IPR009007; 

IPR021109; 

PTHR13683:SF20 

(PANTHER), 

SignalP 

(SIGNALP) 

94878 chr_8 

76855-

77391 

R, 7 

dpi ---NA--- 178 0 0 0 0 0 no IPS match 

94971 chr_8 

481257-

483623 

R, 14 

dpi c6 transcription 602 9,6 e
-
123 54.75% 1 F:binding 0 IPR007219 

96032 chr_10 

138043-

141936 

R, 7 

dpi mfs transporter 921 

2,07 e
-

123 60.0% 0 0 0 

IPR010658; 

IPR016196; 

PTHR21576 

(PANTHER) 

96325 chr_10 

1097980-

1102694 

S, 21 

dpi 

endonuclease exonuclease 

phosphatase family protein 

115

6 0.0 69.3% 1 F:nuclease activity 0 

IPR000418; 

IPR001917; 

IPR005135 

96541 chr_11 

418281-

420033 

S, 21 

dpi 

conserved hypothetical protein 

[Pyrenophora tritici-repentis Pt-1C-

BFP] 497 2,3 e
-
169 67.1% 1 

P:growth or development of symbiont 

on or near host 0 

SignalP 

(SIGNALP) 

97222 chr_12 

1351082-

1351892 

S, 0 

dpi 

disrupter of telomere silencing 

protein 228 5,7 e
-
39 72.6% 2 

F:oxidoreductase activity; F:antioxidant 

activity 0 

IPR000866; 

IPR012335; 

IPR012336; 

IPR017936; 

PTHR10681 

(PANTHER), 

PTHR10681:SF5 

(PANTHER) 

85504 chr_4 

189303-

189827 

S, 21 

dpi epl1 protein (Cerato-platinin) 149 1,5 e
-
31 70.85% 2 

P:interaction with host via protein 

secreted by type II secretion system; 

P:pathogenesis 0 

IPR010829; 

SignalP 

(SIGNALP) 
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15713 chr_3 

2711711-

2712379 

S, 14 

& 21 

dpi; R 

21 dpi Ubiquitin 223 1,8 e
-
116 99.8% 2 

P:mycelium development; P:protein 

modification process 0 

IPR000626; 

IPR019954; 

IPR019955; 

IPR019956; 

G3DSA:3.10.20.90 

(GENE3D), 

PTHR10666 

(PANTHER), 

PTHR10666:SF9 

(PANTHER), 

SSF54236 

(SUPERFAMILY) 

21200 chr_6 

87406-

89533 

R,21 

dpi c6 transcription factor 672 2,5 e
-
167 51.0% 1 F:binding 0 no IPS match 

38869 chr_3 

1962430-

1963771 

S, 21 

dpi d-xylose reductase 426 5,5 e
-
123 80.25% 3 

P:oxidation reduction; F:D-xylulose 

reductase activity; P:D-xylose metabolic 

process 

EC:1.1.1

.9 

IPR001395; 

IPR018170; 

IPR020471; 

PTHR11732:SF34 

(PANTHER) 

40059 chr_4 

2337703-

2338646 

R, 14 

dpi 

short-chain dehydrogenase reductase 

sdr 277 3,1 e
-
98 55.8% 3 

P:metabolic process; F:oxidoreductase 

activity; F:binding 0 

IPR002198; 

IPR002347; 

IPR016040; 

IPR020904; 

PTHR19410:SF85 

(PANTHER), 

SSF51735 

(SUPERFAMILY) 

43394 chr_6 

1659594-

1660595 

S, 21 

dpi Cutinase 232 3,4 e
-
61 68.35% 2 

P:carbohydrate metabolic process; 

F:hydrolase activity 0 

IPR000675; 

G3DSA:3.40.50.18

20 (GENE3D), 

SignalP 

(SIGNALP), 

SSF53474 

(SUPERFAMILY) 
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43998 chr_6 

2347520-

2348298 

S, 14 

& 21 

dpi metalloprotease 1 239 2,1 e
-
48 62.3% 1 

P:interaction with host via protein 

secreted by type II secretion system 0 

IPR008754; 

PTHR19325 

(PANTHER), 

PTHR19325:SF53 

(PANTHER), 

SSF55486 

(SUPERFAMILY) 

44631 chr_7 

626639-

628143 

S, 7 

dpi l-serine 477 6,2 e
-
88 64.25% 1 F:catalytic activity 0 

IPR000634; 

IPR001926; 

G3DSA:3.40.50.11

00 (GENE3D), 

PTHR10314 

(PANTHER), 

PTHR10314:SF10 

(PANTHER) 

49185 chr_10 

941292-

941590 

S, 14 

& 21 

dpi Ubiquitin 99 8,3 e
-
46 97.55% 12 

F:binding; F:protein tag; 

F:oxidoreductase activity; F:structural 

constituent of ribosome; P:ribosome 

biogenesis; P:protein ubiquitination; 

P:oxidation reduction; C:cytosolic large 

ribosomal subunit; C:nucleus; 

P:translation; C:mitochondrion; P:DNA 

repair 

EC:3.6.5

.3 

IPR000626; 

IPR001975; 

IPR019954; 

IPR019955; 

IPR019956; 

G3DSA:3.10.20.90 

(GENE3D), 

PTHR10666 

(PANTHER), 

PTHR10666:SF9 

(PANTHER), 

SSF54236 

(SUPERFAMILY) 

49989 chr_11 

140248-

141100 

S, 7 

dpi 

acyl-protein thioesterase 1/esterase 

lipase superfamily 254 2,5 e
-
47 51.5% 2 F:hydrolase activity; C:intracellular part 0 

IPR003140; 

G3DSA:3.40.50.18

20 (GENE3D), 

PTHR10655 

(PANTHER), 

PTHR10655:SF6 

(PANTHER), 

SSF53474 
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(SUPERFAMILY) 

51592 chr_14 

324822-

328051 

S, 21 

dpi patatin-like serine 981 4,0 e
-
133 46.4% 8 

P:lipid metabolic process; F:metal ion 

binding; F:phospholipase A2 activity; 

P:metabolic process; F:hydrolase 

activity; F:zinc ion binding; P:lipid 

catabolic process; F:protein binding 0 

IPR002641; 

IPR016035; 

IPR017907; 

PTHR18958 

(PANTHER), 

PTHR18958:SF57 

(PANTHER) 

 

a) 
ProteinID from JGI (http://genomeportal.jgi-psf.org/Mycgr3/Mycgr3.home.html) 

b) 
Chromosomal location on Mycosphaerella graminicola strain IPO323 genome 

c) 
Genomic coordinates (bp) 

d) 
S: Susceptible cultivar (Obelisk), R: Resistant cultivar (Shafir) 

e) 
Sequence description from Blast2Go functional annotation tool

 

f)
Amino acid length

  

g) 
GO term provided for molecular function from Blast2Go functional annotation tool 

*--NA--: no GO term identified. 
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ABSTRACT  

Culture filtrates (CFs) of the fungal wheat pathogen Mycosphaerella graminicola were 

assayed for necrosis-inducing activity after infiltration in leaves of various wheat cultivars. 

Fractions with activity were partially purified and characterized. The necrosis-inducing 

factors in CFs are proteinaceous, heat stable and their necrosis-inducing activity is 

temperature and light dependent. The in planta activity of CFs was tested by a time series of 

proteinase K co-infiltrations, which was unable to affect activity 30 min after CF infiltrations. 

This indicates that the necrosis inducing proteins (Nips) are mostly absent from the apoplast 

within that short time frame and likely actively transported into mesophyll cells. This is 

reminiscent of the activity of host-selective toxins of other Dothideomycete pathogens such as 

Stagonospora nodorum and Pyrenophora tritici-repentis. Further purification and 

fractionation of the CFs with the highest necrosis-inducing activity involved fast performance 

liquid chromatography, sodium dodecyl sulphate-polyacrylamide electrophoresis and mass 

spectrometry. This revealed that most of the proteins present in the fractions have not been 

described before. The two most prominent MgNip candidates were heterologously expressed 

in Pichia pastoris and subsequent infiltration assays showed their differential activity in a 

range of wheat cultivars. The genes encoding these proteins reside on chromosomes 11 and 5 

of the M. graminicola genome and are designated MgNip1 and MgNip2.  
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INTRODUCTION 

Phytopathogenic fungi exhibit different lifestyles and modes of interaction with their 

host plants (Horbach et al., 2011). Biotrophic fungi have an intimate relationship with their 

host. They colonize living cells and secrete effectors, whose intrinsic function is to 

manipulate the host. However, they can also act as avirulence factors or elicitors that directly 

or indirectly interact with resistance genes often leading to the typical resistance protein-

mediated hypersensitive response (HR). This phenomenon is also known as effector- triggered 

immunity (ETI) and is characteristic for pathosystems that comply with the “gene-for-gene” 

interaction (GFG) (Flor, 1971; Keen, 1990; Ackerveken et al., 1992; Jones and Dangl, 2006; 

Dodds et al., 2009; Thomma et al., 2011). Necrotrophic fungal pathogens are assumed to 

overcome defense responses by producing low-molecular-weight secondary metabolites or 

proteinaceous toxins that perturbate host cells, causing leakage of cell contents that are used 

as nutrients by the pathogen (Howlett, 2006). Host-selective toxins (HSTs), either proteins or 

secondary metabolites, are determinants of pathogenicity or virulence of necrotrophs and are 

produced by a range of fungal genera, particularly in the Dothideomycetes. This class of fungi 

comprises the largest and ecologically most diverse group of Ascomycetes with approximately 

20,000 species (Hane et al., 2011), including many plant pathogenic genera such as 

Alternaria, Cochliobolus, Leptosphaeria, Venturia, Ascochyta and Pyrenophora (Friesen et 

al., 2008a). Several HSTs, such as PtrToxA, SnToxA, SnTox1, SnTox2, SnTox3 and SnTox4, 

in the cereal necrotrophs Pyrenophora tritici-repentis and Stagonospora nodorum, have been 

identified and characterized. They induce necrosis and promote disease development in toxin-

sensitive wheat plants in a light-dependent manner (Liu et al., 2004; Friesen et al., 2008b; 

Friesen et al., 2009; Manning et al., 2009). In contrast to GFG interactions that mostly involve 

dominant resistance genes in the host, susceptibility to necrotrophs was found to depend on 

the presence of dominant sensitivity genes and these interactions are therefore recently 

considered as inverse GFG (iGFG) (Friesen et al., 2008a; Friesen and Faris, 2010). The 

underlying mechanism has been named effector-triggered susceptibility (ETS), but 

irrespective whether systems comply with GFG or iGFG the involved effectors operate in a 

species- and cultivar-specific manner (Wolpert et al., 2002; Friesen et al., 2008a; De Wit et 

al., 2009). 

Mycosphaerella graminicola (Fuckel) J. Schröt. in Cohn (anamorph Zymoseptoria 

tritici (Desm.) Quaedvlieg & Crous) (Quaedvlieg et al., 2011), the causal agent of the septoria 

tritici blotch (STB) disease of wheat, is a Dothideomycete hemibiotroph that has an initial 
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biotrophic and subsequent necrotrophic phase. M. graminicola enters the host through the 

stomata without formation of an appressorium (Kema et al., 1996a). The biotrophic phase of 

hemibiotrophs varies substantially in length, for instance 10 and 30 days for the related M. 

graminicola and the banana black Sigatoka pathogen M. fijiensis, respectively (Kema et al., 

1996a; Churchill, 2010). During this latent symptomless phase there is hardly any 

macroscopic symptom and fungal biomass development (Kema et al., 1996a; Ware, 2006; 

Rudd et al., 2008). Recently, we showed that the genome of M. graminicola contains very few 

cell-wall degrading enzymes suggesting that it avoids host defence during the biotrophic stage 

of infection by turning on genes encoding proteases possibly amylases to degrade starch from 

chloroplasts that are released during cell collapse, a mechanism that might have been evolved 

from endophytic ancestors (Goodwin et al., 2011). The transition from biotrophy to 

necrotrophy is accompanied by a reduction in photosynthesis, a massive accumulation of 

H2O2, leading to cell death and necrosis (Shetty et al., 2003; Shetty et al., 2007). Finally the 

fungus produces numerous asexual and - under natural conditions - sexual fructifications, the 

pycnidia and pseudothecia, respectively (Kema et al., 1996a; Kema et al., 1996b). Very little 

is known about the mechanism of this switch in lifestyle (Keon et al., 2007; Kema et al., 

2008), but several reports suggested that during the biotrophic phase the fungus prepares for 

the necrotrophic phase by turning on enzymes or pathways for the production of secondary 

metabolites compounds and proteins (Kema et al., 1996a; Perrone, 2000; Shetty et al., 2003; 

Shetty et al., 2007; Rudd et al., 2008; Shetty et al., 2009). For instance, early chloroplast 

condensation in wheat mesophyll cells without proximate M. graminicola hyphae suggested 

that toxic fungal compounds affect cell integrity (Kema et al., 1996a). In many pathogens, 

necrosis is part of the resistance response that can be very local and restricts the pathogen 

from further colonization. The classical HR occurring in the incompatible interaction of 

(obligate) biotrophic fungal pathogens is a good example of that response (Dangl and Jones, 

2001; Keon et al., 2007; Rudd et al., 2008). In M. graminicola pathogenesis, however, 

necrosis is associated with compatibility that seems to facilitate fungal proliferation (Keon et 

al., 2007; Rudd et al., 2008). 

Since HSTs are such prominent pathogenicity factors in related Dothideomycete 

pathogens, we were interested to investigate whether M. graminicola does produce similar 

proteins that might be involved in the above described biotrophy-necrotrophy switch. Here, 

we report the production, purification and characterization of M. graminicola culture filtrates 

(CFs) by exploiting the fungus’ finished genome sequence of strain IPO323 (Goodwin et al., 

2011) and identified a range of candidate Nips. Two of them, which we designate as MgNip1 
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and MgNip2 are encoded by the genes MgNip1 and MgNip2 and differentially induce 

chlorosis and necrosis in different wheat cultivars. 

 

RESULTS  

Necrosis-inducing activity and preliminary characterization of M. graminicola culture 

filtrates 

The CFs showed necrosis-inducing activity on 20 wheat cultivars, irrespective 

whether they are susceptible or resistant to M. graminicola strain IPO323 despite some slight 

quantitative differences (Table 2, Fig. 1). Similar results were observed with CFs from other 

strains such as IPO94269 and IPO95052 that are virulent on bread wheat and durum wheat, 

respectively (data not shown).  

Preliminary characterization of the CFs included determination of the effect of 

different temperatures, light conditions on necrosis inducing activity and the proteinaceous 

character of the CFs was tested by sensitivity to in vitro digestion with Proteinase K (PK). 

Necrosis inducing activity appeared sensitive to heat treatment as incubation of CFs at 100
°
C 

strongly reduced its necrosis inducing activity (Fig. 2). Furthermore, necrosis inducing 

activity of CFs was degraded after PK treatment whereas in planta PK treatment at different 

time points after CFs infiltration resulted in a gradual increase of necrosis intensity (%) over 

time until 2 hrs after infiltrations when necrosis inducing activity was no longer induced by 

this treatment (Fig. 2). In addition, necrosis inducing activity appeared to be dependent of 

light. After incubation of CFs for 48 hrs in darkness, no necrosis inducing activity was 

observed, but after exposure of these, darkness-incubated leaves to light again, necrosis 

inducing activity became clearly visible (Fig. 2).  

 

Fractionation of culture filtrates 

To characterize the protein(s) responsible for necrosis-inducing activity in more detail, 

dialyzed CFs were applied to a cation-exchange HiTrap column. The bound proteins were 

eluted with a linear salt gradient and collected in 12 fractions (Fig. 3). All fractions containing 

proteins, including the flow-through of the HiTrap column, were subsequently tested in 

necrosis inducing activity assays. The highest necrosis inducing activity was observed in 

fraction 5 that was recovered from the HiTrap column at approximately at 0.18 M NaCl, with 

some activity in fractions 6 and 7 (Fig. 3). No significant necrosis inducing activity occurred 
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Table 2. Percentages necrosis and pycnidia formation on the primary leaves of 20 bread-wheat accessions at 21 

days after inoculation with Mycosphaerella graminicola strain IPO323. 

 

Cultivar Origin 
Symptom development 

Necrosis % Pycnidia % 

Apache France 100 80  

Baguette11 France 50 0 

Balance France 25 0 

Bermude France 100 25 

BR34 Brazil 5 0 

Cordiale France 100 80 

FD3 France 80 60 

FD12 France 100 10 

Grandin USA 5 0 

Kulm USA 0 0 

M3 CIMMYT 0 0 

Mazurka Hungary 100 30 

Nogal France 5 0 

Nuage France 5 0 

Obelisk The Netherlands 100 70 

Rubigus France 20 0 

SE11 France 5 0 

Soissons France 100 60 

Solitär Germany 5 0 

Timber France 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Necrosis-inducing activity of CFs from Mycosphaerella graminicola strain IPO323 in 20 wheat cultivars 

at four days after-infiltration (A) using Fries medium in cv. Obelisk as a control (B).  
1) 

Reduced necrosis-inducing activity compared to other cultivars 
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Fig. 2. Necrosis-inducing activity of Mycosphaerella graminicola strain IPO323 culture filtrates (CFs) in the 

sensitive wheat cv. Obelisk after different treatments. A. Fries medium and Proteinase K (PK) controls. B. The 

effect of temperature and in vitro Proteinase K treatments on necrosis-inducing activity of CFs. C. The in planta 

effect of proteinase K treatment (100 l of 1 mg/ml) at different time points on CF-infiltrated leaves from 0 to 

120 min. Below: Chart displaying time-lapse series (min.) of in planta PK infiltration of CFs-infiltrated leaves 

D. The effect of light on necrosis inducing activity of CFs. Assays were placed under ambient light conditions 

(L), in darkness for 72 hrs (D), or exposed to ambient light after 48 hrs of darkness (D->L). Black dots on leaves 

delimit the infiltrated area. 
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Fig. 3. Schematic representation of the purification procedure of culture filtrates (CFs) of Mycosphaerella 

graminicola strain IPO323 and necrosis inducing activity assays in cv. Obelisk. A. M. graminicola was grown 

on V8-PDA agar medium for 5-10 days; spores were collected and transferred to liquid Fries medium. Flasks 

were incubated in a shaker for three days at 27
°
C at 100 rpm followed by two to three weeks of stationary growth 
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at 21
°
C in the dark. CFs were filtered, dialyzed and infiltrated.  B. Dialyzed CF was applied to a FPLC HiTrap 

strong cation-exchange column and the bound proteins were eluted in different fractions and assayed for necrosis 

inducing activity. C. Fraction 5 was further purified using a FPLC Mono-S strong cation-exchange column, the 

collected fractions were assayed for necrosis inducing activity and fractions 5.13-5.15 were further analyzed by 

SDS-PAGE. Fraction 5.14 was further analyzed by mass spectrometry for identification of the proteins. The red 

lines in the chromatograms are NaCl gradients (0-0.5M, blue lines are absorbances at 280 nm. The profile of the 

effluent containing the non-bound proteins is omitted from the chromatogram. 

 

when seedlings were infiltrated with any of the other eluting fractions or with the unbound 

proteins present in the flow-through of the HiTrap column. Further purification of fraction 5 

on an analytical cation-exchange FPLC column (Mono-S) yielded a more complex absorption 

pattern at 280 nm (Fig. 3). Fractions 5.13, 5.14, 5.15 that eluted from the Mono-S column 

between 0.16 and 0.2 M NaCl showed the highest necrosis inducing activity in the infiltration 

assay. These were subsequently analyzed by SDS-PAGE that revealed that the necrosis-

inducing fractions 5.13-5.15 still contained several protein bands over a broad molecular mass 

range that clearly differed from the band profiles of fractions 5.12 and 5.16 in the neighboring 

lanes that did not show activity upon infiltration. Fraction 5.14 was subsequently analyzed by 

mass spectrometry (Fig. 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Silver stained SDS-PAGE gel of protein fractions eluted from the Mono-S HR 5/5 cation exchange 

column by a 0-0.5 M NaCl gradient. Fraction numbers correspond to those presented in Fig. 3. The fraction 

numbers shown in bold contained the highest necrosis-inducing activity. Fraction 5.14 was analyzed by mass 

spectrometry. M: standard molecular weight markers (kDa values are indicated). Asterisk indicates the relative 

position of the two identified proteins (see text) after removal of the signal peptide, approximately between 15 

and 16.9 kDa in 5.14. MgNip1 was also present in 5.15. 
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Characterization of proteins with necrosis inducing activity by mass spectrometry  

LC-MS analysis of the tryptic digests of the partially necrosis inducing fraction 5.14 

yielded peptide matches with 13 proteins (Table 3) in the merged database that matched 

characteristics of secreted hypothetical proteins. Two proteins contained a transmembrane 

domain and seven proteins contained conserved domains. We identified Nip candidates that 

also had EST support. The first protein matched with five peptide sequences, representing 

approximately 34% of the theoretical length of a ~17 kDa protein and in encoded by a gene 

that is located on chromosome 11 (genomic coordinates 1118374-1119074 bp). It encodes a 

predicted protein of 162 amino acids (aa) including the predicted 19 aa signal peptide and 

contains four cysteine residues. . The gene contains a putative TATAAA box 134 bp upstream 

of the start codon (Fig. 5). 

Sequence analyses with PSI-Blast revealed low matches with a hypothetical protein 

SNOG_04278 of S. nodorum (42.4 bits, E-value 0.022) and Ecp2 of C. fulvum (0.34 bits, E-

value 0.48). Interestingly, peptides did not map to the best predicted model ascribed to this 

gene, which indicates that this gene was apparently wrongly annotated. We have designated 

this gene as MgNip.1. The second protein matched with two peptide sequences found by LC-

MS, representing approximately 17% of the theoretical length of a ~18.7 kDa protein that is 

encoded by a gene located on chromosome 5 with coordinates 1287999-1288716 bp and 

contains one intron. The predicted protein is 178 aa in length, including the predicted 18 aa 

signal peptide and contains four cysteine residues (Fig. 5). Blasting the protein sequence 

revealed homology with a putative ML (MD-2-related lipid-recognition) domain from 

Aspergillus clavatus (181 bits, E-value 5e
-44

) and with a 

phosphatidylglycerol/phosphatidylinositol transfer protein precursor from P. tritici-repentis 

(178 bits, E-value 3e
-43

). We have designated this gene as MgNip2.  
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Table 3. Summary of the most interesting proteins of Mycosphaerella graminicola strain IPO323 that were present in the partially purified active fraction 5.14 and identified 

by mass spectrometry. 

JGI Header 
a)

 Method Pep. No 
b)

 

Pep. 

Score 
c)

 

Tot.

aa.  
d)

 Gen. Pos. 
e)

 Domains 
f)
 BlastP (nr) 

g)
 

estExt_Genewise1Plus.C_c

hr_22216 * 

 

LC-MS/MS 

–MS
E 

 

DIQVSTDHGATWQSGLTR 6,9 

215 

 

chr_2:3662482-

3663264 

 

 

 

 

 

IPR012997 Rare 

lipoprotein A, bacterial 

IPR018226 Barwin, 

conserved  site 

 

 

 

 

Hypothetical protein 

[Leptosphaeria 

maculans] (209 bits, E 

value  2 e
-52

) 

SAGFGVDVVDLK 6,3 

EGVSANWFSVQAVNASK 5,3 

EGVSANWFSVQAVN 5,2 

WFSVQAVNASK 5,1 

VSTDHGATWQSGLTR 6,3 

AGFGVDVVDLK 50,8 

GFGVDVVDLK 66,7 

MDYNFFQK 73,3 

SAGFGVDVVDLK 75,4 

estExt_fgenesh1_kg.C_chr

_120103 

 

LC-MS/MS 

–MS
E
 

 

IAFPNPTIVEGSNIR 7,2 

238 

 

chr_12:590841-

591839 

 CHRD domain 
&

 

Hypothetical protein 

GLRG_09422 

[Glomerella 

graminicola M1.001]  

(197 bits, E-value 1e
-48

) 

IAFPNPTIVE 5,4 

GSNIR 6,1 

EGSNIR 6,4 

IAFPNPTIVEGSNIR 69 

estExt_fgenesh1_pg.C_chr

_50636 

LC-MS/MS 

–MS
E
 

AAYLIGLEGTR 68,2 

400 

chr_5:2690164-

2691472 

IPR000209  Peptidase 

S8 and S53, subtilisin, 

kexin, sedolisin 

 

 

Hypothetical protein 

SS1G_12605 

[Sclerotinia 

sclerotiorum 1980 UF-

70] (289 bits, E-value  

6e
-76

) 

ALVSQNPSTWGLSR 7,3 

ALVSQNPSTWGLSRISSR 5,3 

VLSSSGSGSLAGIINGIDW

AVNDAR 6,4 

estExt_fgenesh1_kg.C_ch MS
E
 VDLNPNPPR 5,9 178 chr_5:1287999- IPR003172 MD-2_lipid- ML domain protein, 

http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_13:513838-514435
http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_13:513838-514435
http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_5:1287999-1288716
http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_5:1287999-1288716
http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_2:3780747-3781139
http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_2:3780747-3781139
http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_10:647562-648168
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r_50194 

YGLITIINQSADLCETVK 5,5 

1288716 recog putative [Aspergillus 

clavatus NRRL 1] (181 

bits, E-value 5e
-44

) 

fgenesh1_pg.C_chr_50001

49 

 

MS
E
 

 

GVAPHTPHTCNIPLTNSPA

YIGLDAVR 6,1 

193 

chr_5:721092-

721741 

  

Hypothetical protein 

AURANDRAFT_64293 

[Aureococcus 

anophagefferens] 

 (35.8 bits,  E-value  

3.2) YVGEHTPSGPPS 6,9 

fgenesh1_pg.C_chr_30004

49 * 

 

MS
E
 

 

GLPQPITSVR 6,1 

289 

 

chr_3:1812934-

1813906 

 

IPR000490  Glycoside 

hydrolase, family 17 

Hypothetical protein 

SS1G_12930 

[Sclerotinia 

sclerotiorum 1980 UF-

70] (273 bits, E-value 

2e
-71

) 

ALGSNAPVGHVDTWNA

WVNPGTDVVTK 5,7 

GGLDINRLAEQIYDVR 5 

PQPITSVR 6 

fgenesh1_pg.C_chr_30001

19 # LC-MS/MS FGNPLVQNNR 66,7 130 

chr_3:487068-

488324  

Predicted protein 

[Naegleria gruberi] 

(35.8 bits,E-value 2.1) 

fgenesh1_pg.C_chr_20009

75 

 

LC-MS/MS 

–MS
E
 

 

WSCVSGWNGQFR 7,5 

130 

 

 

chr_2:3780747-

3781139  

Hypothetical protein 

ANI_1_1820144 

[Aspergillus niger CBS 

513.88] (38.9 bits, E-

value 0.24) 

GWNGQFR 59 

VSGWNGQFR 72,5 

WSCVSGWNGQFR 50,7 

fgenesh1_kg.C_chr_10000

105 * 

LC-MS/MS 

–MS
E
 

NAGTEVTGYICPFKEFSFE

K 5,7 

95 

chr_10:647562-

648168  - 

NAGTEVTGYICPFK 78 

LVR 5,3 

FEK 5,2 

NAGTEVTGYI 5,4 

YCT 5,1 

GTEVTGYICPFK 6,9 

YCTLV 6 

YCTLVR 5,6 

http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_10:647562-648168
http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_8:444347-444909
http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_8:444347-444909
http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_6:610478-611111
http://genome.jgi-psf.org/cgi-bin/browserLoad?db=Mycgr3&position=chr_6:610478-611111
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EFSFEK 5,9 

YCTLVR 54,5 

fgenesh1_kg.C_chr_80000

39 # * 

 

LC-MS/MS 

–MS
E
 

 

LLPPPIPCR 54,9 

56 

 

chr_8:444347-

444909 

  

- 

 

LLPPPIPCR 7,1 

PPPIPCR 7,8 

PPIPCR 6,9 

CASLV 5,9 

SLVLPVCR 6,8 

Ext_fgenesh1_kg.C_chr_10

0227 LC-MS/MS VACPADLVSR 52,6 240 

chr_10:1542406-

1543537 

IPR001209  Ribosomal 

protein S14  

  

0008810  cellulase 

activity  IPR000334  

Glycoside hydrolase, 

family 45  

 

Hypothetical protein 

SS1G_13860 

[Sclerotinia 

sclerotiorum 1980 UF-

70] (237 bits, E-value 

9e
-61

) 

estExt_fgenesh1_kg.C_chr

_110053 * 

 

LC-MS/MS 

–MS
E
 

 

SAEQVMADFEK 68,2 

382 

 

chr_11:320719-

322900 

Exo-beta-1,3-glucanase 

 

Hypothetical protein 

[Tuber melanosporum 

Mel28] (243 bits, E-

value 4e
-62

) 

 

GTAVEAVLAALDTAR 6,2 

LDTAR 5,2 

fgenesh1_kg.C_chr_11000

163 * 

 

LC-MS/MS 

–MS
E
 

 

DDIMDLMK 77,8 

162 

 

chr_11:1118374-

1119074 

  

Hypothetical protein 

SNOG_04278 

[Phaeosphaeria 

nodorum SN15] (42.0 

bits, E-value 0.028) 

SWLISGPR 57,8 

VDVSGTSGWIGR 74,7 

TVDVSGTSGWIGR 88,4 

DSLNLWK 51,3 

NNCDGSTFVPVTGSAGN

APSK 7,8 

LISGPR 7.2 

ISGPR 7 

SGPR 6.8 

LNLWK 7.6 
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NLWK 7.3 

SWLI 6.4 

MDLMK 7.8 

SWLIS 56 

IMDLMK 7 

DSLNL 5.8 

DSLNLW 5.9 

SNLWK 7.4 

WLISGPR 7.2 

DSLNLWK 7.2 

DDIMDLMK 5.6 

WDCQLLR 7.3 

SWLISGPR 7.9 

DSLNLWK 8 

DDIMDLMK 7.3 

WDCQLLR 7.4 

 
a) 

JGI headers from http://genomeportal.jgi-psf.org/Mycgr3/Mycgr3.home.html. Headers in bold represent the two proteins that were selected for further characterization.  

(fgenesh1_kg.C_chr_11000163 and  estExt_fgenesh1_kg.C_chr_50194 have an isoelectric point (pI) of  6.51 and  6.16, respectively and the length of mature proteins after 

removal of the predicted signal peptides are 15 kDa and 16.9 kDa, respectively). 
b) 

Maximum number of identified peptides, including generated in source fragments for MS
E
 

c) 
Peptide score based on both LC-MS/MS (italic) and MS

E 
methods. The score range for significant matches is for MS

E  
>5 and for   

  LC-MS/MS ≥ 50 
d) 

Total amino acid length
  

e) 
Genomic coordinates on the genome of M. graminicola strain IPO323 

f)
 InterPro terms reflect the presence of conserved functional domains in the protein 

g)
 Predicted function with BlastP (nr) 

*A better model than the predicted filtered model from JGI v.2  

# Predicted one transmembrane domain that overlaps with predicted signal peptide 
& 

Related to a novel domain identified in chordin, an inhibitor of bone morphogenetic proteins. 

- no significant similarity found 

 

http://genomeportal.jgi-psf.org/Mycgr3/Mycgr3.home.html
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A. Mycosphaerella graminicola Nip1  

GAAGGACTGCGAAGAAGTGTATAAAGAGATGCCTTCTCCCCGTCGAAGGACCATTCTTCATCACCAGCAA 

CAACAATATCCAACAACCAACAACCAACAACATCCAGCAACCAACAACACTTCCCAACAACATCCACTCA  

ACCCACCACCACAATGCTCTTCACTCAAAGCCTCACCCTCGTGGCCCTCCTCACCACCTCCGCCCTCGCC  

              M  L  F  T  Q  S  L  T  L  V  A  L  L  T  T  S  A  L  A   

                       Signal peptide 
TCTCCCCTTGCCCAGAACGGCGGCGGTACGGCCGGCACCACCGGACTCCGCAACAACTGCGACGGCTCCA 

 S  P  L  A  Q  N  G  G  G  T  A  G  T  T  G  L  R  N  N  C  D  G  S 

CATTCGTCCCCGTGACCGGCAGCGCCGGCAACGCCCCATCCAAGTGGGACTGCCAGCTGCTCCGCGACGG 

T  F  V  P  V  T  G  S  A  G  N  A  P  S  K  W  D  C  Q  L  L  R  D  G  

CTACATCGCCAAACAGAACAAGTCCTGGCTCATCTCCGGCCCTCGCATCATTGGTACCGTTCGCACTTGC 

  Y  I  A  K  Q  N  K  S  W  L  I  S  G  P  R  I  I  G  T  V  R  T  C 

CAATTCTCCGCGACGGTGGATGTCTCCGGTACGTCAGGCTGGATCGGACGGGACGACATTATGGATCTAA 

 Q  F  S  A  T  V  D  V  S  G  T  S  G  W  I  G  R  D  D  I  M  D  L    

TGAAGGACTCGTTGAACTTGTGGAAGGATGGCGAAACGACGCAGGTTCAGGGCGCGATGCAGGTGGGTGA 

M  K  D  S  L  N  L  W  K  D  G  E  T  T  Q  V  Q  G  Q  M  Q  V  G  E        

GTCGGGCGATGTGAATTGTGTTGCTGGGAAGAATGGAGAGGGGCAGAAGGTTCGTATTGCTTGGACTCTG 

  S  G  D  V  N  C  V  A  G  K  N  G  E  G  Q  K  V  R  I  A  W  T  L       

GGGCATTCGTAGGTGGGAGGCCGAATAGGGGGGGTGATGAGCAGAGAGGTCGTCGCAGAGGTGGACCGGA 

 G  H  S  * 

CCAGGAGATCAGTTTCGCCGATATATATATATGCTGATAGAACGGTGTACATCAGTCGGCTTTGATTGTC 

CACGGCAGAATTTCATCTGGTCGATCATGTCCAATTGGTTTTTATTTATCTTCTGAGTTGGTTGATACTG 

GCCTGTCGTTGTCAAGACAAAGACTGAATGTATAGCCCA 

 

B. Mycosphaerella graminicola Nip2 

CATCACCAACGCCGCTTTGTCGACCTACCTACCTATCTTGACCGCAGTACCTCCACATCCTTCAACCATC 

ACACCGTTCGACATGAAGCTTCTATCACTCGCAACCTCTGCGCTTCTCGCTACCCACGTCTCTGCGCGCT 

             M  K  L  L  S  L  A  T  S  A  L  L  A  T  H  V  S  A  R 

                          Signal peptide 
CCACCTTCTTCAGCATCTCCGATGCCGCACCGCTAGACGCCAACCTTGCCATCCCAGGCGAGAACCCTCT 

S  T  F  F  S  I  S  D  A  A  P  L  D  A  N  L  A  I  P  G  E  N  P  L 

CGAGCACTGCGCAGATCCCAAGGATGACATCCTCGCACTGAAGAAGGTTGACCTCAACCCAAACCCACCA 

  E  H  C  A  D  P  K  D  D  I  L  A  L  K  K  V  D  L  N  P  N  P  P 

CGCGCGTAGGTCGCTCCATGCTCCGACCATTACACCCCGTCACACCGCTAACGTACTCTTCCAACAGCGG 

 R  A                                                               G 

CACTGAGCTCACCATCACGGCTTCGGGTATACTCAGCGAGGACGTTGGTGAAGGCGCAAAGATCCAACTG 

  T  E  L  T  I  T  A  S  G  I  L  S  E  D  V  G  E  G  A  K  I  Q  L   

CAAGTCAAATACGGTCTGATTACCATCATCAACCAAAGCGCCGACCTCTGCGAGACCGTCAAGAACGTCG 

 Q  V  K  Y  G  L  I  T  I  I  N  Q  S  A  D  L  C  E  T  V  K  N  V 

ATCTGGAATGCCCGCTTAAGAAGGGCAAGATGAGCCTCACGAAGGCGGTGAAGCTGCCAGCGCAGATCCC 

D  L  E  C  P  L  K  K  G  K  M  S  L  T  K  A  V  K  L  P  A  Q  I  P 

GCCAGGCAACTACCATGTATCTGCGGACGTCGTTTCCAAGGATGGGGACAAGGTGACTTGCTTAAAGGCG 

  P  G  N  Y  H  V  S  A  D  V  V  S  K  D  G  D  K  V  T  C  L  K  A 

AGCGTTGAGTTCAAGCGTGGAGGAGCTGTGGTGTACAAGCAGGGATTGTAGGCGATAGTAATATGGCACA 

 S  V  E  F  K  R  G  G  A  V  V  Y  K  Q  G  L  * 

TGTATGTATTAGGGACAAGATCACAGATTCGGCGACAGGCGAAACGTGGTCAAGCTGTAGGCGCTGGTCG 

ATACCATGTCCTGTAGATATGCTACGAGTATCTGCAAGGGCACTTAATGATTGTGGACTATGCATGGACG 

CACCAAGCAGCGCGGCGTTCTTCGGTATACAGTCTGCTGTCCGTGATGGCTCTCCCGTTCGCAAGTCGTG 

 

Fig. 5. Nucleotide sequences and the deduced amino acid (aa) sequences of the Mycosphaerella genes MgNip1 

and MgNip2. A. MgNip1 has an ORF of 489 bp and encodes a 162 aa protein that contains a 19 aa predicted 

signal peptide. B. MgNip2 has an ORF of 537 bp and encodes a 178 aa protein that contains a 18 aa predicted 

signal peptide. The peptide sequences identified by mass spectrometry are underlined. The aa residues 

highlighted in grey represent the predicted signal peptide; the four cysteine residues present in each of the 

proteins are highlighted in blue and predicted to form two disulfide bonds in each of the two proteins. The bold 

DNA sequence indicates the start (ATG) and stop (TAG) codons. DNA sequence in blue is UTR and the yellow 

highlighted region in MgNip1 represents a putative TATAAA box. 
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Heterologous Expression of MgNip1 and MgNip2 in Pichia pastoris 

Infiltration with the control Pichia pastoris culture filtrates did not show any necrosis-

inducing activity other than the physical damage caused by the syringe and occasional slight 

necrosis limited to the site of infiltration (Fig. 6).  

 

Fig. 6. Necrosis-inducing activity of culture filtrates (CFs) from  non-transformed Pichia pastoris X33 strain on 

20 wheat accessions, including the two parental lines of mapping population. No necrosis-inducing activity was 

present in CFs from the wild type isolate P. pastoris. Black dots on leaves delimit the CF-infiltrated area. Leaves 

were photographed five days after infiltration. 

 

CF from P. pastoris::MgNip1 showed necrosis-inducing activity in wheat cvs. FD3, 

FD12, Nuage, Solitär and Kulm albeit of different intensity (Fig. 7). The other wheat 

accessions including SE11, SE3, Apache, Balance, Cordiale, Soisson, Timber, Bermude, 

Mazurka, Baguette, Nogal, Grandin, BR34 and M3, did not show any necrosis-inducing 

activity (Fig. 8) and were comparable to those observed with CF from non-transformed 

control P. pastoris.  The CF from P. pastoris::MgNip2 showed strong necrosis-inducing 

activity in cvs. Nuage, Bermude and FD3, but a weaker response cvs. Kulm and Grandin (Fig. 

7). Overall, the two proteins produced in CF of the transformed P. pastoris cultures showed 

differential necrosis inducing activity in a range of wheat cultivars, depending on ambient 

light and temperature conditions (data not shown).  
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Fig. 7. Necrosis-inducing activity of the MgNip1 (A) and MgNip2 (B) proteins produced in Pichia pastoris 

cultures on leaves of different wheat cultivars (pictures were taken at five days after infiltration). For MgNip1 

and MgNip2, the necrosis-inducing activity of proteins produced by two different P. pastoris transformants were 

assayed (three clones and two clones for each leaf for MgNip1 and MgNip2, respectively are shown).   
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Fig. 8. Absence of necrosis-inducing activity of the MgNip1 (A) and MgNip2 (B) proteins produced in Pichia 

pastoris cultures on leaves of different wheat cultivars (pictures were taken at five days after infiltration). One 

clone for each leaf is shown.  

 

In planta gene expression of MgNip1 and MgNip2  

The expression of MgNip1 and MgNip2 was examined during infection in the 

susceptible wheat cv. Obelisk. MgNip1 expression correlated with the time point of 

macroscopical necrotic symptom appearance. Indeed, MgNip1 expression was up-regulated at 

8 days post-inoculation (dpi) and subsequently down-regulated at 12 dpi, coinciding with the 

transition between the biotrophic and necrotrophic phases of the fungus (Fig. 9). However no 
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conclusion could be drawn regarding the expression of MgNip2 as the data between biological 

replicates were highly variable (Fig. 9). 

  

 

 

Fig. 9. Real-Time qPCR analysis of MgNip1(A) and MgNip2 (B) in leaves of the susceptible cv. Obelisk that 

were inoculated with Mycosphaerella graminicola strain IPO323 and sampled during the course of infection (2, 

4, 8, 12, 16, and 20 days post-inoculation). Bars and numbers indicate the relative expression levels together 

with the variation. The M. graminicola beta-tubulin gene was used for normalization. 

 

DISCUSSION  

Plant pathogens have evolved different lifestyles to gain nutrients on their host plants; 

biotrophs derive their nutrients from living host cells, whereas necrotrophs kill their host 
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tissue presumably by toxic secondary metabolites or necrogenic proteins before feeding 

(Horbach et al., 2011).  

M. graminicola is a hemibiotroph that has an initial biotrophic phase where it lives in 

the substomatal cavities and the apoplast between the host plant cells avoiding recognition by 

the host and feeding on few available nutrients (Goodwin et al., 2011). At this stage the 

fungal biomass hardly increases and is not much different from the biomass produced on 

resistant plants. During this phase on a susceptible host, the fungus seems to prepare itself for 

the necrotrophic phase (Kema et al., 1996a; Ware, 2006; Rudd et al., 2008). It was even 

suggested that the basic nutrient composition is neither increased nor depleted to any 

measurable level despite the presence of the fungus during the biotrophic phase (Keon et al., 

2007). This is followed by a quick turnover to a destructive phase of pathogenesis where the 

fungus ramifies the mesophyll, which is accompanied by a reduction in photosynthesis and a 

massive accumulation of H2O2, leading to necrosis. This releases large amounts of nutrients 

from host cells that facilitates further proliferation of the fungus (Kema et al., 1996a; Shetty et 

al., 2003; Keon et al., 2007; Shetty et al., 2007; Rudd et al., 2008; Shetty et al., 2009). This 

seemingly sudden change in pathogenic behavior was considered to be presumably due to the 

involvement of toxic secondary metabolites or proteins (Kema et al., 1996a; Keon et al., 

2007; Hammond-Kosack and Rudd, 2008; Rudd et al., 2008). Indeed, in a recent report, 

Motteram et al. (2009) identified a single gene from M. graminicola encoding a member of 

the necrosis- and ethylene-inducing peptide 1 (Nep1)-like protein family (NLP) occurring in 

many eukaryotes that has frequently shown to trigger activation of defence signaling 

responses in dicotyledonous plants including the hypersensitive response (HR). However, 

infiltration of the protein into wheat leaves did not cause necrosis-inducing activity and 

targeted gene-disruption did not compromise virulence of the pathogen. 

Here, we report the identification and initial characterization of the first genes in M. 

graminicola that encode necrosis-inducing proteins (Nips), with differential activities in a 

range of wheat cultivars. We designated these genes MgNip1 and MgNip2 and indentified the 

encoded proteins in culture filtrates of M. graminicola IPO323. We therefore employed a 

proteomic approach in which CFs proteins, produced by M. graminicola in a Fries medium 

were fractionated by FPLC and candidates were subsequently analyzed by mass spectrometry.  

Interestingly, the CFs showed necrosis-inducing activity on a wide range of wheat 

accessions, including the parental lines of mapping population, irrespective of whether these 

were resistant or susceptible towards strain M. graminicola IPO323. This confirmed previous 

reports that showed no relationship between the toxicity of CFs and virulence of M. 
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graminicola strains (Perrone et al., 2000), which contrasts with findings in related 

phytopathogenic fungi such as S. nodorum and P. tritici-repentis  (Lamari and Bernier, 1989; 

Effertz et al., 2002; Liu et al., 2006; Singh and Hughes, 2006; Friesen et al., 2008b; Liu et al., 

2009). CFs of the latter two fungi, containing necrogenic proteins, showed necrosis-inducing 

activity mostly only on susceptible cultivars. For M. graminicola, it was suggested that 

resistance is triggered during the early phases of infection rather than during advanced stages 

of pathogenesis when the mesophyll tissue is colonized. However, the titer of unknown 

soluble toxic compounds could increase during the course of infection and eventually kill host 

cells at a later stage of infection as suggested by Perrone et al. (2000). The current study 

shows that a range of wheat genotypes was invariably sensitive to crude CFs, but did respond 

quantitatively differentially to purified proteinaceous fractions. This suggests the involvement 

of a complex mixture of MgNips with either specific differential or general necrosis inducing 

activities that may have intrinsic avirulence or virulence functions that may even change 

during the course of infection. Obviously, differential necrosis inducing activity complies 

with the GFG of the M. graminicola-wheat pathosystem (Brading et al., 2002). At this stage 

we can only speculate on iGFG since no sensitivity genes in wheat have been mapped.  

The temperature sensitivity of the M. graminicola CFs was in accord with 

observations on phytotoxic proteins isolated from other fungal plant pathogens that showed a 

proportional loss of necrosis-inducing activity after heat treatment between 50-100
°
C 

(Ballance et al., 1989; Lamari and Bernier, 1989; Tomas et al., 1990; Sarpeleh et al., 2008). In 

addition, proteinase K (PK) treatments of M. graminicola CFs abolished activity, which 

confirmed the proteinaceous nature of the active principle present in partially purified 

fraction.  Finally, the necrosis inducing activity of CFs in seedling leaves is light- dependent, 

which is a property also observed for the the necrogenic proteins in other Dothideomycete-

wheat pathosystems (Manning and Ciuffetti, 2005; Friesen et al., 2006; Friesen et al., 2007; 

Sarpeleh et al., 2008; Abeysekara et al., 2009). We could indirectly confirm this by a time-

lapse experiment where crude M. graminicola CFs were co-infiltrated with PK in leaves of 

wheat seedlings. Interestingly, CFs could be inactivated until approximately 30 min after 

infiltration and were apparently still prone to PK degradation in the apoplast. After 30 min 

infiltrated necrosis-inducing activity of CFs was no longer sensitive to PK treatment, 

indicating that the necrogenic proteins would have transversed the cell membrane which 

presumably could not be transversed by PK. This suggests that the majority of the necrogenic 

CF components will be taken up subsequently rapidly targeting intracellular targets such as 

the chloroplasts, which complies with loss of chloroplast integrity observed in histological 
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studies of colonization of wheat by M. graminicola (Kema et al., 1996a). Manning et al. 

(2007, 2009) demonstrated that host specificity in the P. tritici-repentis – wheat interaction 

relies on the ability of PtrToxA to traverse the cell membrane and to interact with the 

chloroplast protein ToxABP1. Once it is translocated into the chloroplast, PtrToxA promotes 

virulence by interfering with photosystem I and II and finally induces reactive oxygen species 

accumulation in a light-dependent manner (Manning et al., 2009). Our data and previous 

histological observations suggest that a similar system might be active in the wheat-M. 

graminicola interaction.  

We therefore, further fractionated M. graminicola CFs by FPLC, SDS-PAGE and 

subsequently analyzed the partially purified necrosis-inducing activity containing fraction by 

mass spectrometry, which narrowed down candidate MgNips to almost 1%. This revealed the 

presence of several unknown hypothetical proteins that were further characterized and 

resulted in two prominent proteins that we designated MgNip1 and MgNip2. The mature 

proteins appeared to have a mass of 15 and ~16.9 kDa, respectively and showed differential 

necrosis-inducing activity in wheat cultivars.  The first protein, MgNip1, is a homolog of 

Ecp2 of C. fulvum and is presumably encoded by a fourth paralog of MgEcp2 (I. 

Stergiopoulos, personal communication) in addition to the published three others that were 

previously reported (Stergiopoulos et al., 2010). Interestingly, Ecp2-like effector proteins are 

also identified in the related Dothideomycete banana pathogen M. fijiensis that likely promote 

virulence by interacting with a putative intracellular host target causing host cell necrosis 

(Stergiopoulos et al., 2010). Ecp of C. fulvum is one of the few effector proteins that can 

induce necrosis in tomato and tobacco plants irrespective of the presence of the signal peptide 

indicating that its hosts target is intracellular indeed (Laugé et al., 1997; Laugé et al., 2000; de 

Kock et al., 2004). 

MgNip2 contained a putative ML domain (MD-2-related lipid-recognition). Such 

proteins are subdivided in four groups depending on the sequence similarity, are mostly 

secreted and consist of multiple -strands that create -sheets and regroup multiple proteins of 

unknown function in plants, fungi and animals (Inohara and Nunez, 2002). MgNip2 that we 

identified in our study belongs to the third subgroup that includes the 

phosphatidylglycerol/phosphatidylinositol transfer protein (PG/PI-TP) of Aspergillus oryzae. 

It has been shown that ML-domain proteins are able to bind lipids and are involved in innate 

immunity (Kirchhoff et al., 1996; Inohara and Nunez, 2002; Mullen et al., 2003).  

Although the activity of M. graminicola Nips is reminiscent with HSTs in other 

pathosystems, in M. graminicola necrosis occurs much later and also the type of host response 
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is different. This variation could be due to dependence of host responses on environmental 

factors such as temperature and light. Necrosis-inducing activity of these Nips of M. 

graminicola appeared indeed light-dependent. Keon et al. (2007) and also more recently 

Tabib Ghaffary (2011) reported that light intensity has a marked influence on symptom 

development in wheat cultivars that were inoculated with M. graminicola strains. Higher light 

intensities result in higher disease severities. However, this depended strongly on the specific 

resistance genes, such as Stb2 in cv. Veranopolis that seems to be very sensitive. Reduced 

light intensities resulted in poor disease development, whereas high intensities resulted in 

fully sporulating susceptible responses. Also, proteolytic degradation or protein expression 

and concentration differences could vary from one experiment to the other and influence 

phenotypic expression. It has been shown that PtrToxA, SnToxA, SnTox1, SnTox2, SnTox3, 

SnTox4 induce maximal necrosis at three days after-infiltration (Strelkov et al., 1999; Liu et 

al., 2004; Manning and Ciuffetti, 2005; Friesen et al., 2006; Friesen et al., 2007; Abeysekara 

et al., 2009; Liu et al., 2009) whereas necrosis-inducing activity with the low-molecular 

weight ToxC protein was only visible after five days (Effertz et al., 2002).  Necrosis-inducing 

activity of P. tritici-repentis toxin ToxB depends strongly on its concentration (Strelkov et al., 

1999; Kim and Strelkov, 2007). 

We also observed a discrepancy between the appearance of necrosis after infiltration 

of MgNip1 and MgNip2 and after inoculation with conidia of M. graminicola. It is, therefore, 

still unclear whether the necrosis-inducing activity observed in resistant cultivars is related to 

a susceptibility or a resistance response as was also reported for other proteins reviewed by 

Rep et al. (2005). In this respect, S. nodorum HSTs induce cell death in susceptible host plants 

(Friesen et al., 2007; Friesen et al., 2008a) whereas avirulence proteins of C. fulvum only 

induce cell death in tomato plants with the corresponding Cf resistance genes (De Wit et al., 

2009) and Nip1, a small phytotoxic protein from R. secalis that is an avirulence factor that is 

required for Rrs1- mediated resistance of barley (Rohe et al., 1995), it also stimulates the 

activity of the barley plasma membrane H+-ATPase in a genotype-unspecific manner as it 

induces necrotic lesions in leaf tissues of barley and other cereal plant species (Wevelsiep et 

al., 1991; Wevelsiep et al., 1993; van't Slot et al., 2007). In case of M. graminicola, resistant 

wheat cultivars could be sensitive to a necrosis-inducing protein, but its activity threshold is 

never reached as fungal proliferation is controlled by effective resistance genes and MgNips 

produced by the fungus never reach the required concentration in the apoplast. The necrosis-

inducing activity observed after infiltration can thus be part of a resistance response that is 

hardly ever observed in inoculation assays due to the slow build-up of fungal biomass in 
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resistant wheat cultivars. Another hypothesis would be that one and the same protein induces 

resistance in resistant plants, but functions as a host-selective toxin in susceptible plants. 

Further analysis of the identified MgNips is necessary to elucidate the role of these 

proteins in M. graminicola and their targets need to be identified. Future studies will focus on 

these aspects and on the distribution of the encoding genes in natural M. graminicola 

populations.  

 

MATERIALS AND METHODS  

Fungal and plant materials  

The recently sequenced M. graminicola bread-wheat strain IPO323 (Goodwin et al., 

2011) was used throughout all experiments according to previously described protocols with 

minor modifications (Kema and van Silfhout, 1997; Mehrabi, 2006). Wheat plants of 20 

different cultivars were grown in controlled greenhouse compartments with 16 hours light per 

day and pre- and post-inoculation temperatures of 18/16
°
C vs. 22

°
C at day and night, 

respectively, and a relative humidity (RH) of ≥85%. Disease symptoms were evaluated 21 

days after inoculation as percentages necrosis (N) and pycnidia (P) as described by Tabib 

Ghaffary et al., (2011). Plants for infiltration assays with CFs or protein fractions were grown 

at 22
°
C and a RH of 60%. Necrosis-inducing activity was determined on 20 wheat cultivars 

that were either susceptible or resistant to M. graminicola strain IPO323.  

 

Culture filtrate production and phenotyping assays   

CF was generated by growing the fungus on V8-potato dextrose agar medium for 5-10 

days until yeast-like colonies were formed. MilliQ water was added and 60 l of the spore 

suspension from one plate (Petri dish, 9 cm diameter) was added to 60 ml of liquid Fries 

medium (Liu et al., 2004). The flasks were subsequently placed in a rotary shaker for three 

days at 27
°
C at 100 rpm followed by stationary growth at 21

°
C in the dark for one to three 

weeks. CFs were obtained by filtering these cultures through two layers of cheese cloth and 

Whatman no. 1 filter (Fisher Scientific, Pittsburg, PA, USA) and subsequent vacuum filtration 

through a 0.45 μm Durapore PVDF pore size filter  (Millipore, MA, USA). The CF was either 

stored at -80
°
C until use or directly used for determination of necrosis-inducing activity by 

infiltrating 100 l in the second leaf of seedlings at growth stage (GS) 13 (Zadoks et al., 

1974) with a 1-ml syringe until water-soaking of the tissue was observed (Liu et al., 2004). 
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The infiltration area was marked with a permanent marker and necrosis-inducing activity was 

determined three to four days after infiltrations (dai, for protein infiltrations at 5 dai) by 

collecting and evaluating the leaves after electronic scanning of the symptoms using a 

photocopier (RICOH Aficio MPC2500). Each infiltrations were repeated at least two times 

with similar results. 

 

Treatments of culture filtrates 

We tested the effect of temperature, proteinase K (PK) and light on the necrosis-

inducing activity of the CFs. The effect of temperature on the necrosis-inducing activity was 

determined by incubating the CFs at room temperature (RT), 37
°
C, 50

°
C for four hours and 

100
°
C for 30 min. In addition, the effect of in vitro and in planta PK treatments (1 mg/ml) 

(Roche Diagnostics, Almere, Netherlands) on the necrosis-inducing activity of the CFs was 

tested. CFs were treated with PK and incubated at RT, 37
°
C and 50

°
C for four hours. The 

untreated and treated samples were, along with the controls, infiltrated into the leaves of the 

sensitive cv. Obelisk. The necrosis-inducing activity was assayed by scoring plants either as 

sensitive or insensitive as reported previously (Liu et al., 2004). In planta PK effects of CF 

necrosis-inducing activity was tested by co-infiltrations of PK (100 μl of 1 mg/ml) after CFs 

infiltrations at different time points varying from 0 to 120 min. in three replicates. Necrosis 

inducing activity was quantified by analysis of electronic images of the symptoms with 

Assess software (APS, St. Paul, USA).  The light effect on necrosis-inducing activity was 

determined by exposure to normal light conditions or darkness by covering the infiltration 

zones with aluminum foil for two or three days. All the treated leaves were collected three to 

four days after treatment and photographed. 

 

Culture filtrate fractionation and SDS-PAGE  

CF (~400 ml) harvested after three weeks of stationary growth of M. graminicola 

strain IPO323, was dialyzed at room temperature for 4 hrs against a 20 mM sodium acetate 

buffer (SAB, pH 5), using SnakeSkin dialysis tubing (Pierce biotechnology, Rockford, IL) 

with a 7 kDa molecular weight cut off. Fast Protein Liquid Chromatography (FPLC, 

Pharmacia Biotech, Piscataway, NJ) was performed at room temperature. A 1 ml HiTrap SP 

Sepharose™ Fast Flow column (GE Healthcare, Piscataway, NJ, USA) was pre-equilibrated 

with SAB (pH 5) and 60 ml of dialyzed CF was applied at a flow rate of 1 ml/min and washed 

with SAB until the baseline was stable. Subsequently, a linear gradient to 0.5 M sodium 
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chloride in SAB was applied at a flow rate of 1 ml/min and 16 fractions of 1 ml were 

collected. Relative protein concentration was detected by measuring absorbance at 280 nm. 

All protein-containing fractions were assayed for necrosis-inducing activity. For further 

protein purification, three successive runs (60 ml) with the HiTrap SP Sepharose column were 

performed and the fractions with necrosis-inducing activity were pooled. Three pooled 

fractions were further purified by FPLC using a Mono-S HR 5/5 cation exchange column (GE 

Healthcare, Piscataway, NJ, USA) equilibrated in SAB (pH 4.5). Samples were diluted twice 

in SAB buffer before injection onto the Mono-S column and proteins were eluted at 1 ml/min 

with a 30 ml linear gradient of 0.0-0.5 M sodium chloride in SAB (pH 4.5). One ml fractions 

were collected and adjusted to pH 5 with sodium acetate (pH 9.4) and assayed for necrosis-

inducing activity (Fig. 3). Part of the active fractions was added to Laemmli sample buffer 

and subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

on 8–18% gradient gels (ExcelGel; Amersham Pharmacia Biotech, Sweden) using SDS buffer 

strips. Separation was performed on an electrophoretic transfer unit (Multiphor II; Amersham 

Pharmacia Biotech, Sweden) and the separated proteins were visualized by silver staining 

(Blum et al., 1987; Rabilloud, 1999) (Fig. 4). 

 

Protein identification by LC-MS analysis 

To identify the proteins present in the (partially) purified fractions with necrosis-

inducing activity, samples were freeze-dried, dissolved in 50 μl 0.1% (w/v) RapiGest SF 

Surfactant (Waters, Milford, USA), 5 mM DTT (Sigma) in 0.1 M ammonium bicarbonate and 

incubated at 50
°
C for 30 min. Alkylation was performed by incubation with 15 mM 

iodoacetamide (IAA) (GE Healthcare, UK) for 40 min at room temperature (in the dark). 

Proteolytic digestion was initiated by adding 2 μl of modified porcine trypsin (0.2 μg/μl; 

Sequence grade modified; Promega, WI, USA) and incubated overnight at 37
°
C. After adding 

trifluoroacetic acid (TFA) (Fluka,-Buchs, GmBH) to a final concentration of 0.5% (v/v), 

samples were centrifuged at 15,000 g for 10 min. and the supernatant was applied to a 

SupelClean
TM

 LC-18 1 ml SPE column (Supelco, Bellefonte USA), equilibrated with 0.1% 

TFA. Bound peptides were eluted with 84% acetonitrile (ACN) (HPLC Supra-gradient, 

Biosolve, Valkenswaard, NL) containing 0.1% Formic Acid (FA) (Merck, Darmstadt, 

Germany), dried by vacuum centrifugation, dissolved in 40 l 0.1% FA and further analyzed 

by mass spectrometry. The trypsin-digested samples were separated using a nanoAcquity 2D 

UPLC system (Waters Corporation, Manchester, UK) with orthogonal reversed phase 
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separation at high and low pH. The mixture of peptides was eluted from the first dimension 

XBridge C18 trap column (in 20 mM ammonium formate, ACN, pH 10) with a discontinuous 

gradient of 13%, 45% and 65% ACN. For the second dimension an acidic ACN gradient was 

applied using a BEH C18 column (75 μm x 25 cm, Waters, UK) and a 65 min linear gradient 

from 3 to 40% ACN (in 0.1 % FA) at 200 nl/min. The eluting peptides were on-line injected 

into a Synapt Q-TOF MS instrument (Waters Corporation, Manchester, UK) using a 

nanospray device coupled to the second dimension column output. The Synapt MS was 

operated in positive mode with [Glu
1
] fibrinopeptide B (1 pmol/μl; Sigma) as reference (lock 

mass) and sampled every 30 s. Accurate liquid chromatography-mass spectrometry (LC-MS) 

data were collected with the Synapt operating in either the MS/MS or MS
E
 mode for data-

dependent acquisition (DDA) or data-independent acquisition (DIA), respectively, using low 

(6 eV) and elevated (ramp from 15 to 35 eV) energy spectra every 0.6 s over a 140-1900 m/z 

range, respectively. LC-MS/MS was performed by peptide fragmentation on the three most 

intense multiple charged ions that were detected in the MS survey scan (0.6 s) over a 300-

1400 m/z range and a dynamic exclusion window of 60 s with an automatically adjusted 

collision energy based on the observed precursor m/z and charge state. LC-MS/MS and MS
E
 

data were processed using ProteinLynx Global Server software (PLGS version 2.4, Waters 

Corporation, Manchester, UK) and the resulting list of masses, containing all the fragment 

information was searched for matching proteins using a merged non-redundant database 

including all gene models of the M. graminicola IPO323 database at the United States 

Department of Energy – Joint Genome Institute (DOE-JGI, http://genome.jgi-

psf.org/Mycgr3/Mycgr3.download.ftp.html). Finally, the LC-MS/MS and MS
E
 outputs were 

further merged and since we used all gene models of M. graminicola, additional filtering steps 

were performed for proteins with alternative models (based on additional peptides not covered 

in the DOE-JGI models) and eventually only best models were used. Furthermore, only 

proteins with a peptide score ≥50 and/or >5 with LC-MS/MS and/or MS
E
, respectively, were 

retained for further analyses.  

The resulting proteins were characterized, the molecular mass determined, then 

searched for the presence of signal peptides (SignalP 3.0, 

http://www.cbs.dtu.dk/services/SignalP/), and cysteine residues and putative functions were 

identified. In case no putative function was assigned, online software such as BLASTP 

against the public NCBI non-redundant (NR) database 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Marchler-Bauer et al., 2009) 

http://genome.jgi-psf.org/Mycgr3/Mycgr3.download.ftp.html
http://genome.jgi-psf.org/Mycgr3/Mycgr3.download.ftp.html
http://www.cbs.dtu.dk/services/SignalP/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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(www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) was used to determine the classifications 

and possible functions of identified hypothetical proteins. For each identified protein the 

genomic sequence for the encoding gene, along with its 5’ and 3’ flanking regions were 

mapped on the M. graminicola IPO323 genome sequence (Goodwin et al., 2011) and 

expression was checked using the EST data base at DOE-JGI. In addition, the molecular 

masses and isoelectric points of the two most prominent proteins were predicted using the 

Compute pI/Mw tool at the ExPASy molecular biology server of the Swiss Institute of 

Bioinformatics (http://www.expasy.org/). 

 

Heterologous expression of cDNA-encoding candidate proteins in Pichia pastoris 

cDNAs encoding candidate proteins were amplified with primers containing Attb1 and 

Attb2 sites (Table 1) and amplicons were first gel-purified or directly incubated with donor 

vector pDONR207 and the Gateway® BP clonase (Invitrogen, Carlsbad, USA) and 

subsequently sequenced to check the reaction. Luria broth (1% tryptone, 0.5% yeast extract 

and 1% NaCl) with gentamicin (15-20 μg/ml) was used to culture Escherichia coli DH10B 

transformants at 37
°
C after the BP reaction. The purified clones were then mixed with a 

Destination Vector (pMR148, 2.9kb, containing pGAPZ that was slightly modified for 

application in both E. coli and yeast with zeocin as a selectable marker [Sh ble] and 

recombination sites compatible with the Gateway ® system, Mehrabi et al., unpublished) in 

the Gateway ® Cloning LR reaction (Invitrogen). The resulting expression constructs were 

sequenced with primers pGAP and 3’AOX1 (Table 1) for sequence confirmation. After the 

LR reaction, low salt Luria broth (1% tryptone, 0.5% yeast extract, and 0.5% NaCl, pH 7.5) 

with zeocin (25 μg/ml) was used to culture E. coli DH10B transformants at 37
°
C. The 

expression vector from positive clones was linearized with RcaI and competent Pichia 

pastoris X33 cells (Easy select Pichia Expression system, Invitrogen) were transformed with 

at least 5 g of plasmid DNA (Pichia EasyComp Kit manual, Invitrogen). The transformed 

cells were plated in YPDS agar (1% yeast extract, 2% peptone, 2% sorbitol and 2% dextrose, 

2% agar) containing zeocin (100 μg/ml), incubated at 30
°
C for three to four days and finally 

three clones were selected to check gene insertions by colony PCR using specific primers. 

Protein expression in P. pastoris X33 was performed in 50 ml YPD liquid medium (1% yeast 

extract, 2% peptone and 2% dextrose) in 100 ml Erlenmeyer flasks at 29
°
C for two days. 

Eventually, cells were centrifuged at 4,000 rpm for four min at 10
°
C and the supernatant was 

checked for necrosis-inducing activity. 

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=00092797&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.expasy.org%252F
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Table 1. Oligonucleotides used in this study. 

 

Primer pair 
1)

 
Sequence 

2) 

5’ to 3’ 

Predicted 

size  
Application 

Attb1-MgNip1F 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTATGCTCTTCACTCAAAGCCTCAC  

547 

 

Amplification of 489-bp 

full length cDNA for 

cloning in the Gateway 

system and yeast expression Attb2- MgNip1R 
GGGGACCACTTTGTACAAGAAAGCTGG

GTCTACGAATGCCCCAGAGTCCA 

Attb1- MgNip2F 
GGGGACAAGTTTGTACAAAAAAGCAGG

CTATGAAGCTTCTATCACTCGCAACC 
595 

 

Amplification of 537-bp 

full length cDNA for 

cloning in the Gateway 

system and yeast expression Attb2- MgNip2R 
GGGGACCACTTTGTACAAGAAAGCTGG

GTCTACAATCCCTGCTTGTACACCA 

pGAPF GTCCCTATTTCAATCAATTGAA 

  

Sequencing yeast 

expression construct from 

5’ end 

3’AOX1 GCAAATGGCATTCTGACATCC 

Sequencing yeast 

expression construct from 

3’ end 

TubulinF GCCCAGACAACTTCGTGTTC 

103 

Partial amplification of M. 

graminicola tubulin gene in 

Real-Time qPCR analysis TubulinR ACGACATCGAGAACCTGGTC 

MgNip1F GTTCGCACTTGCCAATTCTC 
106 

 

Partial amplification of M. 

graminicola MgNip1 gene 

in Real-Time qPCR 

analysis MgNip1R TCCACAAGTTCAACGAGTCC 

MgNip2F AGAACGTCGATCTGGAATGC 

109 

Partial amplification of M. 

graminicola MgNip2 gene 

in Real-Time qPCR 

analysis MgNip2R ACGTCCGCAGATACATGGTAG 

 

1)
 Primer sequences (pGAPF and 3’AOX) for sequencing yeast expression constructs. 

2) 
The sequences for other PCR primers were designed using the web-based program primer3.0. All primers were 

designed with Tm between 58
°
C-60

°
C and PCRs were all conducted at an annealing temperature of 60

°
C.  Italics 

indicate the AttB1and AttB2 sequences that were added to the primers at the N- and C-termini of the genes, 

respectively. 

 

 

RT-PCR of MgNip1 and MgNip2 

The expression of MgNip1 and MgNip2 was analyzed by semi-quantitative
 
reverse 

transcription-PCR (RT-PCR). The susceptible cv. Obelisk was inoculated with M. 

graminicola strain IPO323 in three biological replicates and infected leaves were collected at 

2, 4, 8, 12, 16 and 20 days post-inoculation, flash-frozen in liquid nitrogen and kept at -80
°
C 

until use. Total RNA was isolated from ~0,7 ml ground leaf tissue with one ml of TRIzol 

reagent (Invitrogen, Carlsbad, CA, USA) in 2 ml tubes according to the manufacturer’s 
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instruction. To remove contaminated DNA, total RNA was treated with the RNase-free 

DNase I (Promega, Madison, USA). First-strand cDNA was generated using Superscript III 

Reverse Transcriptase (Invitrogen, San Diego, CA, USA) and further diluted (5x) and finally 

used for SYBR® Green qPCR (Applied Biosystems, Foster City, CA). For each reaction, a 

2 μl aliquot of cDNA was used in a 25 μl PCR volume with primers at a final concentration of 

0.30 μM at an annealing temperature of 60
°
C using an ABI 7500 Real-Time PCR System 

(Applied Biosystems). The expression was normalized with the constitutively expressed M. 

graminicola beta-tubulin gene.  
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This thesis, entitled “Genome structure and pathogenicity of the fungal wheat 

pathogen Mycosphaerella graminicola” provides new insights into the organization of the 

genome of the destructive wheat leaf pathogen Mycosphaerella graminicola and about the 

identification and characterization of new proteinaceous potential pathogenicity factors. In 

this discussion, I will reflect on the experimental findings described in this thesis. The first 

part focuses on the genome plasticity with an emphasis on the exploration of the underlying 

mechanisms such as meiotic recombination and horizontal chromosome transfer in shaping 

eukaryotic fungal genomes. The second part primarily deals with the identification of 

necrosis-inducing proteins (NIPs) of M. graminicola and the implications of this finding are 

discussed in the context of its hemi-biotrophic lifestyle and its interaction with wheat. 

Previously, this pathosystem was shown to comply with the gene-for-gene (GFG) model. 

Here, I discuss how the obtained results fit into this model or whether it is likely that an 

additional inverse gene-for-gene (iGFG) model is operating.   

 

Genome plasticity: “the good, the bad and the ugly” 

Genomics toolbox in M. graminicola 

The discovery of the teleomorph of Zymoseptoria tritici (Desm.) Quaedvlieg and 

Crous (Quaedvlieg et al., 2011), Mycosphaerella graminicola (Fuckel) J. Schröt, by 

Sanderson in New Zealand in 1972 emphasized the possible role of airborne inoculum in 

disease establishment. Indeed, the discovery of its mating system (Kema et al. 1996d) 

unveiled the very active sexual cycle of M. graminicola in disease epidemiology (Kema et al., 

1996c; Hunter et al., 1999; Suffert et al., 2010; Ponomarenko et al., 2011). The subsequent 

isolation of bipolar mating-type genes (Waalwijk et al., 2002), has significantly contributed to 

an overall understanding of sex in shaping natural populations of this fungus (Zhan et al., 

2003) and recently it was shown that, irrespective of whether being inhibited by fungicide 

treatment or after deposition on a resistant wheat cultivar, M. graminicola can still produce 

viable ascospores (Ware, 2006). This results in high levels of genetic diversity and in 

virulence of field populations, which contributes to the overall aggressiveness of this fungus 

on wheat (Chen and McDonald, 1996; Kema et al., 1996a; Kema et al., 1996c; Kema and van 

Silfhout, 1997; Zhan et al., 2002; Zhan et al., 2003; Ware, 2006). 

Since then, the developments of tools for the analysis of genome structures have 

greatly improved our ability to detect changes in genome organization: chromosome number 
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and chromosome length polymorphisms (CNPs and CLPs, respectively) and to monitor their 

dynamics over generations. In this respect, chromosome dynamics was revealed by 

electrophoretic and cytological karyotyping that mainly showed changes in chromosome 

length and number among different populations of field isolates (McDonald and Martinez, 

1991; Mehrabi et al., 2007) but also chromosomal translocations could be detected (Kema et 

al., 1996d). However, the resolution of this technique is limited as it only detects larger 

changes in the chromosomal complement. A detailed analysis of the transmission of genetic 

information through sexual mechanisms provided the basis for the construction of high-

density genetic linkage maps that uncovered translocations and chromosome rearrangements 

(Chapter 2). Finally, the availability of the M. graminicola genome sequence facilitated the 

construction of genome wide microarrays to analyse chromosome copy number and size 

variation at an unparalleled resolution that provided a comprehensive view of sexually driven 

structural genome changes. In Chapter 3, we present the finished genome of M. graminicola 

that was completed by the United States Department of Energy-Joint Genome Institute in 

2008. This opened new avenues to study of a variety biological processes, such as marker-

based analysis of the second meiotic division during ascosporogenesis that was important in 

the generation of genome plasticity. In this way, several types of genomic changes were 

frequently observed, including chromosomal rearrangements, CNPs and CLPs. The M. 

graminicola genome has a core set of 13 chromosomes and a variable set of eight dispensable 

chromosomes that can be lost individually or in combination and is collectively named the 

dispensome. The dispensome is distinct in structure with small-sized chromosomes, reduced 

gene density and a higher repeat content compared to the core set of chromosomes.  

Several key questions arose from these studies, which must be addressed to enhance 

our understanding of chromosomal non-disjunction and the meiotic origin of genome 

plasticity in general. Obvious burning research questions relate to explaining (i) the 

underlying non-disjunctional mechanisms that generate CNPs, (ii) how the fungus can tolerate 

genomic rearrangements while staying biologically fit, (iii) the beneficial and deleterious 

effects of genome plasticity, and finally its contribution to virulence or possibly  host-jumping 

and speciation. 

Why chromosomes occasionally undergo nondisjunction is an enigma and requires re-

addressing the basic mechanisms behind sexual and asexual reproduction that incidentally 

may give rise to abnormal chromosome behaviour. Sexual reproduction in Ascomycetes 

comprises two meiotic divisions and a subsequent mitotic cell division that give rise to eight 

ascospores with many new combinations of alleles depending on the frequency of cross-overs 
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(COs) that occurred. New genomic variation also occurs during asexual reproduction which 

usually gives many generations of conidia that accumulate mutations induced by different 

environmental conditions including UV light (Felsenstein 1974; Barton and Charlesworth 

1998; Lamb et al., 2003). For example, during vegetative growth in Saccharomyces 

cerevisiae, the mutation rate typically occurs at a rate of 10
−6

–10
−7

 per locus per generation 

whereas during meiosis, this can be as high as 10
−1

–10
−2

 (Keeney, 2001). How is one and the 

same process that is responsible for genetic recombination and diversity also driving CNPs? 

Understanding the individual steps of meiosis in detail is required to understand where and 

how this can happen. 

 

Meiosis: “the orchestrated symphony” 

 Although many of meiotic processes are very well understood, many aspects of the 

process remain obscure (Page and Hawley, 2003). Meiosis (Fig. 1) is a special type of cell 

division that produces haploid gametes from diploid parental cells. During meiosis, the 

chromosomes originating from each parent pair and subsequently segregate during which 

process recombination by CO does occur. Despite the degree of variation in the order and 

timing of early recombination events in different organisms, the basic components are 

conserved between species (Lamb et al., 2005). In the current model, during meiosis I, 

homologues chromosomes initiate a process of meiotic pairing initiated by double strand 

breaks (DSBs). This is catalysed by the evolutionary conserved protein Spo11 in conjunction 

with several other proteins, that is present in a large number of organisms, including budding 

yeast, fission yeast, filamentous fungi, flies, worms, plants, and mammals (Keeney, 2001). 

Subsequently, rejoining of broken ends takes place. A subset of the broken ends from a 

chromatid is joined to the corresponding sequence on the homologous chromosome (Allers 

and Lichten, 2001). Repair results in either a CO, a reciprocal exchange accompanied by a 

tract subject to gene conversion, or gene conversion without crossover (NCO) and not 

associated with reciprocal exchange (Whitby, 2005). The CO products form chiasmata, the 

physical evidence of recombination. Together with chiasmata, the monopolar behaviour of 

sister kinetochores facilitates the bipolar attachment of homologs to the spindle such that 

homologs are separated during the first meiotic division. Hence, genetic recombination not 

only separates allelic combinations along the chromosomes but also and more importantly, it 

ensures proper segregation of chromosomes (Roeder, 1997; Page and Hawley, 2003; Nishant 

and Rao, 2006). 
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Finally, in the second meiotic division, sister chromatids are segregated from each 

other and cohesins, that function as linkages between sister chromatids separate and segregate  

(Nasmyth, 2001); in Ascomycetes an additional mitotic division takes place. 

  

 

 

Fig. 1. Schematic representation of the process of meiosis. 

(i) Single pair of homologous chromosomes in a diploid cell (purple and green lines). (ii) Chromosomes 

replicate to give pairs of sister chromatids connected by cohesin. (iii) Homologs pair and become synapsed over 

their entire length. Crossing-over occurs during this period. (iv) Chiasma link the homologs and thereby 

facilitates stable bipolar attachment to the meiosis-I spindle. (v) Cohesion between the chromosome arms is lost 

and homologous chromosomes segregate to opposite poles. (vi) Maintenance of cohesion between centromeres 

allows bipolar attachment of sister chromatid pairs to the meiosis-II spindle. (vii) The remaining cohesion is lost 

and sister chromatids subsequently segregate to opposite poles during meiosis II, which results in the formation 

of nonidentical haploid gametes. Grey arrows indicate directions of the pulling forces generated by microtubules. 

Dashed lines indicate the planes of cell division (Lao and Hunter, 2010). 

 

In order to have proper chromosome segregation during meiosis, every chromosome 

requires at least one CO of which the distribution seems to be governed by at least two levels 

of regulation: the location of DNA double-strand breaks (DSBs) and whether those DSBs are 

repaired as CO (Blitzblau et al., 2007). It has been shown that meiotic recombination occurs 

in repetitive regions called hotspots (Page and Hawley, 2003), while it is suppressed in certain 

locations including areas flanking centromeric regions (Lamb et al., 2005). For example, in 

Schizosaccharomyces pombe, many of the recombination hotspots produce noncoding RNAs 

(Wahls et al., 2008). In S. cerevisiae, mapping meiotic DSBs revealed pericentrometric 

regions known for low recombination rates, suggesting that centromeric suppression of 

recombination occurs at the level of DSB break repair rather than DSB formation. 
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Additionally, most DSBs occur in hotspots such as in promoter regions, but also within a 

~100 kb region from the telomeres. Interestingly, concentration of DSBs close to 

chromosome ends increases the relative DSB density for small chromosomes, suggesting that 

DSB placement appears to be controlled both by chromatin structure as well as by relative 

positions towards chromosomal landmarks such as telomeres (Blitzblau et al., 2007; Mancera 

et al., 2008).  

Recently, new roles for centromeres in meiosis I chromosome segregation have been 

identified. Although there is low level of sequence conservation of centromeres between 

species, the looped-out structure of centromeric DNA is conserved. The length can vary from 

a few hundreds of base pairs also called point centromeres such as in S. cerevisiae (~120 bp 

with few repetitive sequences) (Cottarel et al., 1989) to the holocentric centromeres of 

Caenorhabditis elegans, which span the entire length of the chromosome (Ekwall, 2007) or 

megabases of entirely repeated sequences as found in plants (Tek and Jiang, 2004) or humans  

           (Willard and Rudd, 2006). The specification of centromeres is referred to as being epigenetic, 

which is defined as an inherited state not based on the DNA sequence (Karpen and Allshire, 

1997). Centromeres are required for normal chromosome segregation in mitosis and meiosis 

by assembling the large protein structures kinetochores, the sites for microtubule attachment. 

Additionally, centromeres are involved in meiotic homolog pairing. In S. cerevisiae, 

chromosome pairing at the centromeres is independent of chromosome homology and the 

centromeric interactions depend on the synaptonemal complex component Zip1 (Gladstone et 

al., 2009) and the transition to homologous coupling depends on the Spo11 protein 

(Tsubouchi and Roeder, 2005). On the other hand, in polyploid wheat (AABBDD, n=42), it 

has been shown that the Ph1 locus on chromosome 5B enforces strictly homologous bivalent 

pairing preventing therefore homeologous pairing. Wheat varieties that lack the Ph1 locus, 

exhibit a high level of homoeologues pairing (Lukaszewski and Kopecký, 2010), which 

significantly contributed to the introgression of genes from wild graminaceous relatives.  

Furthermore, centromeres play a role in the protection of centromeric cohesion in 

meiosis I. In fact, during meiosis I, cohesins that are located along the chromosome are lost 

allowing homologs to move to opposite ends of the spindle. Simultaneously, cohesions 

around centromeres are retained by a number of kinetochore-localized factors, preventing 

sister chromatids from premature separation (Michaelis et al., 1997).  
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Hence, meiotic recombination is a remarkably complex process that involves several 

highly coordinated events. Having mentioned its importance, it becomes therefore clear that 

any deviation from this highly regulated process could give rise to chromosome non-

disjunction resulting in CNPs in the offspring that may result in lethality on the one hand, but 

could also have advantages under particular environmental conditions. 

In model organisms such as S. cerevisiae and Coprinus cinereus, but also in humans, 

disturbances in the recombination pathway have been linked to abnormalities in chromosome 

segregation. The most obvious ones involve mutations that disturb the recombination process, 

which increase the frequency of chromosome mal-segregation.  In a number of organisms, 

abolishment of Spo11 function results in the elimination of meiotic recombination and thus 

chromosome non-disjunction (Keeney, 2001). Aberrant meiosis can also be due to breakdown 

in centromere/spindle functions and/or in the checkpoints that monitor them (Selmecki et al., 

2010). Additionally, the location of the recombination breakpoints also seems to a play a role. 

When they occur in close or distant proximity of the centromere, they increase the risk of 

non-disjunction (Lamb et al., 2005). For instance, during meiosis I, misplaced CO in 

proximity of telomeres resulted in aneuploidy in humans and are the primary cause of trisomy 

that eventually can result in miscarriage (Lamb et al., 2005; Hassold et al., 2007). Similarly, 

non-disjunction events at meiosis II in Drosophila (Koehler et al., 1996), humans (Lamb et 

al., 2005) and budding yeast (Rockmill et al., 2006) are the consequence of centromere-

proximal CO that resulted from the disruption of sister chromatid cohesion and premature 

separation of sister chromatids, which then segregate randomly. When the crossing over 

occurs within the centromere itself this would lead to attachment of the centromere to both 

halves of the spindle, resulting in chromosome breakage and loss (Talbert and Henikoff, 

2010).  In this respective, it has been suggested that aneuploidy in Candida albicans may 

have arisen from centromere instability as their centromeres are very small in size (~3kb) and 

not flanked by repetitive DNA (Selmecki et al., 2010).  

It is therefore obvious that centromeres play an essential role in accurate chromosome 

segregation and hence genome stability. In case of M. graminicola, centromeres have not 

been determined yet although Wittenberg (2007) showed regions with relatively low 

recombination rates on each chromosome, speculating that they may represent centromeres. 

One way to identify centromeres is to use chromatin immunoprecipitation centromere-specific 

histone H3 isoform CEN (CENH3) that is known to be constitutively found at nearly all 

eukaryotic centromeres and to interact directly with components of the kinetochore complex 

(Malik and Henikoff, 2009). 



GENERAL DISCUSSION 

 

201 
 

Understanding centromeric sequences would reveal insights into their functional 

regulation, in addition to providing a more complete understanding of genome structure and 

organization. In addition, tetrad analysis, can be employed to dissect the different aspects of 

the meiotic process including mapping of centromeres, detection of cytoplasmic inheritance 

and gene conversion, measuring recombination frequencies as it was carried out for S. 

cerevisiae for which genome-wide maps are available (Mancera et al., 2008). 

 

Towards the Mycosphaerella graminicola “pan genome” 

The importance of meiosis for genome plasticity in M. graminicola, does not rule out 

mitosis as a potential driving force for chromosome gain or loss or translocations in field 

populations. Indeed, mitotic nondisjunction may occur when sister chromatids fail to separate 

during mitosis. However, the mechanisms that can cause bypassing cell cycle checkpoints, 

which normally inhibit such events, have not been explored (Selmecki et al., 2010). 

In Cryptococcus neoformans, which is a dikaryotic fungus that causes 

meningoencephalitis in human, several cases of disomy were reported, for instance as a result 

of exposure to high concentration of fluconazole (FLC). When the drug was removed, one of 

the duplicated copies was lost suggesting that it may have arisen from non-disjunction during 

mitosis. This would represent a novel mechanism of adaptation that contributes to the failure 

of FLC therapy for cryptococcosis (Sionov et al., 2010) as well as for candidasis (Selmecki et 

al., 2006).  

In fact, preliminary results of in vitro experiments with the sequenced M. graminicola 

strain IPO323 involving several rounds of sub-culturing demonstrated loss of chromosome(s) 

and in some cases was shown to reduce virulence (unpublished results). In the future, it would 

be interesting to investigate in more detail the importance of mitosis in genome plasticity and 

to determine whether the loss of chromosomes can repeatedly affect virulence and or fitness. 

In addition, we may induce chromosomal loss in M. graminicola by artificial evolution 

experiments as have been carried out in Aspergillus nidulans (Schoustra et al., 2007) 

consisting of  step-wise sub-culturing to determine whether it is possible to achieve a viable 

strain that carries only the core set of chromosomes. Alternatively, this can also be achieved 

by intercrossing M. graminicola strains carrying different markers on different chromosomes 

of the dispensome. This will enable us to determine the minimal core gene set that is required 

for survival of the fungus. Moreover, to fully explore gene variability and thus to understand 

the global complexity and competitiveness of M. graminicola, genomes of multiple isolates 
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with variation in aggressiveness are required to determine the “pan genome”. This type of 

experiment was conducted with the bacterium Streptococcus agalactiae (Tettelin et al., 2005) 

that showed its genome make-up consisting of a core genome containing essential conserved 

genes and a dispensable genome composed of genes or chromosomes absent from one or 

more isolates and genes that are unique for particular isolates that are assumed to be involved 

in specificity, virulence or adaptation to particular environmental niches.  

  

Is horizontal chromosome transfer a powerful weapon to combat changing 

environments or does it make a fungus vulnerable? 

There are some indications that dispensable chromosomes of M. graminicola might 

have been obtained by horizontal transfer (HCT) from (an) unknown donor(s). HCT is a 

powerful evolutionary
 
force that has accelerated and shaped evolution of microbial species. In 

bacteria, horizontal gene transfer (HGT) located on mobile genetic elements including 

insertion sequences, transposons, integrons, bacteriophages, genomic islands can be 

exchanged between a broad spectrum of bacteria and significantly contribute to bacterial 

genome plasticity enabling adaptation to various different environments including  

pathogenicity towards plants and animals. Recent discoveries, partly resulting from whole-

genome sequencing, have shown that chromosome and gene transfer also occurs between 

Eukaryotes such as in plants, fungi and mammals even including humans (Sørensen et al., 

2005; Anderson and Seifert, 2011). It has now become clear that entire chromosomes can 

horizontally travel from one individual fungal strain to another; a mechanism that is totally 

different from vertical transfer of chromosomes known to occur during sexual and asexual 

cycles. Indeed, horizontal gene transfer (HGT) and HCT has significantly contributed to new 

or more aggressive fungal isolates or species towards plants as recently reviewed by Mehrabi 

et al., (2011). One of the best examples is the transfer of a gene encoding a host selective 

toxin (ToxA) from the wheat pathogen S. nodorum to P. tritici-repentis a previously harmless 

fungus growing on wheat, that transformed the latter fungus into a serious wheat pathogen, a 

biological event that marked the first outbreak of tan spot on wheat in 1941 (Friesen et al., 

2006). Examples of HCT have been described for two different fungal species    including 

Alternaria alternata and Fusarium oxysporum species. In laboratory experiments, it was 

shown that a hybrid strain of A. alternata between two different pathotypes harboring the 

conditionally dispensable chromosomes containing the host-specific toxin biosynthetic genes 

from both parental strains had an expanded pathogenicity range (Akagi et al., 2005; Akagi et 
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al., 2009). Another example of HCT involves transfer of two lineage-specific (LS) 

chromosomes between strains of F. oxysporum, that could convert a non-pathogenic strain 

into a pathogen hereby also explaining the polyphyletic origin of host specificity and the 

emergence of new pathogenic lineages in F. oxysporum (Ma et al., 2010).  

 Despite the recent development of high-throughput sequencing tools and more 

sophisticated genomic and proteomic techniques, not much is known about the mechanism of 

HCT. Several possible mechanisms involving anastomosis that precede HCT and HGT have 

been reported and recently reviewed (Mehrabi et al., 2011).  

Most fungi have lower numbers of dispensable chromosomes than M. graminicola; 

most of the reported dispensable chromosomes have been shown to be involved in host-

specificity and pathogenicity (Han et al., 2001; Hatta et al., 2002; Garmaroodi and Taga, 

2007; Ma et al., 2010). As mentioned in the previous section, it was shown that effectors of F. 

oxysporum f.sp. lycopersici secreted in the xylem sap are encoded by genes located on LS 

chromosomes (Ma et al., 2010). In many types of fungi, including S. cerevisiae, polyploidy or 

aneuploidy may result as a response to different types of stress (Hilton et al., 1985; Fraser et 

al., 2005; Schoustra et al., 2007; Rancati et al., 2008; Poláková et al., 2009) and in some 

cases, aneuploidy provides a selective advantage (Selmecki et al., 2006; Gresham et al., 2008; 

Rancati et al., 2008; Selmecki et al., 2009). Indeed in C. albicans, low carbon source 

availability (Janbon et al., 1998) or antifungal drug exposure (Selmecki et al., 2009) but also 

growth in the host, heat shock or transformation of DNA have been shown to confer a 

selective advantage under these stressful conditions. It has been suggested that malsegregation 

of whole-chromosome or chromosome segments might be a common response associated 

with stress (Selmecki et al., 2010).   

Interestingly, polyploid organisms with complete genome duplications (as is the case 

for autopolyploids such as potato), or allopolyploids with a combination of different genomes 

(as is the case for the genome of wheat) have all arisen from rare mitotic or meiotic non-

disjunctions and are common in certain plant and animal taxa, and can be surprisingly stable 

(Comai, 2005). As an example, angiosperms have remarkably plastic genomes that can 

tolerate a considerable increase in genomic polyploidy (Leitch and Leitch, 2008).  

So far, we have seen no evidence that genome plasticity did affect sexual or 

pathogenic fitness and recently it was shown that all mapped pathogenicity loci of M. 

graminicola reside on the core set of 13 chromosomes (Ware, 2006). In addition, from our 

proteomic analysis (Chapter 4) none of the identified secreted proteins mapped on the 

chromosomes of the dispensome. In fact, many of the unique genes that reside on the 
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dispensome appear to be associated with particular biological
 
processes such as metabolism 

and transcriptional regulation. We speculate that they could facilitate rapid adaptation to 

changing environments (Chapter 2-3). This warrants their further characterization. Recently, 

parental isolates and their progeny that were included in comparative genomic hybridizations 

(Chapter 3) were resequenced. This will provide further insight in the process of meiosis in 

this fungus by determining overall recombination rates, chromosome homology, 

recombination breakpoints and overall genome organization, such as generation and 

maintenance of the dispensome (chromosomes 14-21) as well as activation of transposons and 

repeat induced point mutations (RIP) after a single meiotic cycle and at base-pair resolution.  

 

« Le savoir-faire » of hemibiotrophic fungi  

Phytopathogenic fungi have developed a plethora of strategies to infect their host, both 

at the morphological level by the formation of diverse infection structures and at the 

molecular level by a wide range of toxins and/or effectors that vary in their chemical 

composition and mode of action (Horbach et al., 2011). Their nutritional lifestyle ranges from 

obligate biotrophs, such as powdery mildew and rust fungi (Schulze-Lefert and Vogel, 2000; 

Zhang et al., 2005), to necrotrophs such as Cochliobolus heterostrophus (Yoder, 1988) and 

Botrytis cinerea (Prins et al., 2000). The distinction between biotrophs and necrotrophs does 

not hold for all pathogens. Some pathogens have aspects of both life styles such as 

hemibiotrophs. The bacterium Pseudomonas syringae (Abramovitch and Martin, 2004), the 

fungus Slerotinia sclerotiorum (Hegedus and Rimmer, 2005) or the oomycete Phytophthora 

infestans (Judelson and Blanco, 2005), all show both biotrophic and necrotrophic infection 

strategies to colonize the host. Their early stages of infection are characterized by absence of 

symptoms and the pathogen seems to suppress programmed cell death (PCD) or avoids host 

defence responses; this is achieved by the effectors Avr3a of P. infestans (Armstrong et al., 

2005) and Avr1b of P. sojae (Dou et al., 2008). During their later stages of infection they 

undergo a transition from asymptomatic biotrophic growth to a destructive necrotrophic 

phase, presumably by the activities of secreted lytic enzymes and necrogenic proteins 

(Horbach et al., 2011). Fungal and oomycete pathogens likely secrete an arsenal of proteins 

that are implicated in maintaining a biotrophic lifestyle; however, their modes of action are 

still poorly understood. 

M. graminicola is a hemibiotroph pathogen with a stealth pathogenesis (Chapter 3). It 

has a relatively long latent phase and apparently avoids recognition by the host while living 
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from nutrients in the apoplastic space. In addition, recent results suggest that there is little or 

no nutrient uptake during the biotrophic phase (Keon et al., 2007). Alternatively, the fungus 

could take up nutrients from degraded starch and proteins without affecting the viability of the 

colonized host cells (Chapter 3). Fungi secrete numerous extracellular enzymes that 

hydrolyze polymers, such as cellulose, lignin, proteins and lipids and the resulting breakdown 

products including monosugars, amino acids, and fatty acids are absorbed by intercellular 

fungal hyphae by means of plasma membrane-localized transporters. The variety of 

transporters includes sugar, amino acid and lipid transporters. Alternatively, fungi do also 

contain many ABC and MFS transporters that enable them to excrete or detoxify 

antimicrobial host factors and thus to occupy a large number of ecological niches (Talbot, 

2010). This also holds true for plants that cope with diseases. It was recently shown that a 

wheat ABC transporter conferred durable resistance to several fungal wheat pathogens, 

including leaf rust and powdery mildew (Krattinger et al., 2009). Recent studies in U. maydis 

identified a plasma membrane-localized sucrose transporter (Srt1) that is specifically active 

during plant infection to compete with plant transporters enabling the uptake of sucrose 

without prior hydrolysis by invertases (Wahl et al., 2010). This may prevent the activation of 

plant defence as long as the plant does not sense changes in the apoplastic glucose 

concentrations (Bolton, 2009). Interestingly, Srt1 was also shown to be required for virulence, 

which emphasizes the crucial role of this transporter for efficient sugar uptake and modulating 

apoplastic signals that are potentially recognized by the host (Wahl et al., 2010). Such a 

system might also occur in M. graminicola and certainly needs further investigation. 

In M. graminicola, the long latent phase is followed by a necrotrophic phase that is 

characterized by a reduction in photosynthesis and a massive accumulation of H2O2 leading to 

cell-death (Keon et al., 2007; Shetty et al., 2007; Rudd et al., 2008), and finally to symptom 

appearance (Kema et al., 1996b; Duncan and Howard, 2000). Keon et al. (2007) showed that 

necrotic responses occurring in the M. graminicola-wheat interaction are reminiscent of the 

hypersensitive-response (HR) which is a characteristic response associated with resistance 

against biotrophic pathogens. In Chapters 4 and 5, I have performed experiments for the 

initial characterization of the fungal proteome with an emphasis on the secretome. We have 

employed various advanced protein analyses that resulted in the identification of an array of 

proteins that need to be functionally validated. This will eventually result in the identification 

of key determinants of the biotrophic and necrotrophic phases and hence a better 

understanding how they possibly induce resistance or susceptibility. 
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Interestingly, it has been shown that P. infestans possesses an ‘accelerator and brake’ 

strategy that fine-tunes the transition from biotrophy to necrotrophy (Fig. 2). Indeed, the 

secreted effector protein (Sne1) from P. infestans that is specifically expressed during the 

early biotrophic phase, suppresses the action of secreted necrosis-inducing effectors (Nep1-

like proteins) during biotrophic growth, such as PiNPP1.1 and PsojNIP in P. infestans and P. 

sojae, respectively, but also suppresses PCD mediated by a broad spectrum of Avr-R protein 

interactions. This major finding suggests that some effector proteins can act antagonistically 

during the two distinct phases of hemibiotrophy, a mechanism that might also operate in other 

eukaryotic plant pathogens (Kelley et al., 2010; Lee and Rose, 2010). 

 

Fig. 2. Hypothetical model explaining 

the ‘accelerator and brake’ strategy in 

Phytophtora infestans. A. In the 

biotrophic phase, secreted effector 

proteins such as SNE1 are expressed 

and block programmed cell death 

(PCD) and plant defense responses 

that would normally be induced by 

Avr/R protein interactions but also 

secreted proteins such as Nep1-like 

proteins (NLPs). B. NLP secretion 

during the later phase of infection 

induces rapid cell death and tissue 

necrosis (after Lee and Rose, 2010).   

 

 

We do not know whether a similar system applies to M. graminicola even though 

there has been significant progress on the molecular characterization of the M. graminicola-

wheat interaction. We have identified genes that are associated with necrosis development. 

These findings confirm recent models (Fig. 3) (Hammond-Kosack and Rudd, 2008) and 

earlier observations (Kema et al., 1996b; Perrone et al., 2000; Shetty et al., 2009) that 

suggested an active cell destruction pathway operating in this pathosystem. The initial 

characterization of MgNips in this fungus (Chapter 5) “lifts the veil” of a likely complex 

molecular control of the nutritional requirements of M. graminicola and its interaction with 

wheat. Their temporal expression, mode of action, and targets are research areas that require 

to be investigated in order to determine whether a GFG and/or an iGFG system operate in this 

pathosystem. In summary, the role of toxins, either secondary metabolites or proteinaceous 

toxins in GFG or iGFG is still under debate and further research is required. The finished 

B 

A B 
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genome sequence of M. graminicola (Chapter 3), advanced protein and RNAseq 

technologies will facilitate further exploration of the stealthy world of this hemibiotroph.  

 

 

Fig. 3. Models illustrating the events that occur in wheat leaf cells during susceptible and resistant interactions 

with the fungal pathogen, Mycosphaerella graminicola.  

In a susceptible disease interaction, around nine days post inoculation (dpi), inverse changes in the relative levels 

of the two MAPK proteins are observed. At this stage the fungus produces, as yet un-identified, toxin(s) and/or 

effector(s) that trigger the post-translational activation (**) of TaMPK3. These events occur in parallel with the 

activation of programmed cell death (PCD) signalling, which may lead to the generation of reactive oxygen 

species (ROS). They all affect cell permeability resulting in nutrient leakage from dying plant cells that 

facilitates fungal proliferation in the apoplast. These responses do not occur in the resistant interaction. Parallel 

crosses lines represent the possible sites for protective function of corresponding Avr-R protein combinations. 

The lack of plant cell reactions during host resistance is a limitation on the nutrients available to the fungus 

which prevents its further proliferation (Hammond-Kosack and Rudd, 2008). 

 

Concluding remarks 

M. graminicola is a pathogen of major economical importance, and to date its control 

still heavily relies on chemicals. Selecting resistant plants was one of the earliest practices 

that growers and breeders used to combat plant pathogens. Biffen (1905) was the first to 

genetically analyze host resistance to a fungal plant pathogen by studying the inheritance of 

stripe rust in wheat. Since then hundreds of resistance genes to other cereal diseases have 

been characterized (McIntosh et al., 2007), but so far only 18 resistance genes (Stb) to M. 

graminicola have been identified and mapped, exclusively in bread wheat (Arraiano et al., 

2007; Goodwin, 2007; Chartrain et al., 2009; Tabib Ghaffary, 2011) but none have yet been 

genetically cloned. The first gene was identified only in 1979 (Wilson, 1979) despite the 

dramatic severity of STB in this crop. However, none have been identified in tetraploid durum 

wheat despite its importance as a North African staple crop and its extreme susceptibility to 

STB (Maccaferri, personal communication).  

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An external file that holds a picture, illustration, etc.
Object name is psb0311_0993_fig001.jpg [Object name is psb0311_0993_fig001.jpg]&p=PMC3&id=2633754_psb0311_0993_fig001.jpg
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An external file that holds a picture, illustration, etc.
Object name is psb0311_0993_fig001.jpg [Object name is psb0311_0993_fig001.jpg]&p=PMC3&id=2633754_psb0311_0993_fig001.jpg
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The discovery of genes that play a key role in virulence and avirulence in the M. 

graminicola–wheat interaction will help breeders to identify more germplasm with resistance 

to STB in both bread and durum wheat. The results of this thesis provide the foundation for 

the further discovery of key determinants that M. graminicola employs to colonize host cells 

and eventually kill them for massive proliferation and survival under natural condition. With 

an increasing community and collaborative and ever increasing resources, we can take 

genomics to the field for practical implementation in the foreseeable future.   
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Summary  

The phytopathogenic fungus Mycosphaerella graminicola (Fuckel) J. Schröt. in Cohn 

(asexual stage: Zymoseptoria tritici (Desm.) Quaedvlieg & Crous) causes septoria tritici leaf 

blotch (STB) in wheat and is one of the most important diseases of this crop worldwide. 

However, STB control, mainly based on the use of resistant cultivars and fungicides, is 

significantly hampered by the limited understanding of the genetic and biochemical bases of 

pathogenicity, and mechanisms of infection and resistance in the host. M. graminicola has a 

very active sexual cycle under field conditions, which is an important driver of STB 

epidemics. Moreover, it results in high genetic diversity of field populations that causes a 

major challenge for the development and sustainable management of resistant cultivars and 

the discovery of new antifungal compounds. Understanding the role of the sexual and asexual 

life cycles on genome composition of this versatile pathogen and its infection strategy is 

crucial in order to develop novel control methods. 

Chapter 1 is an introduction to the biology and pathogenicity of M. graminicola. In 

addition, it shortly describes the impact of improved and novel technologies on the speed, 

scope and scale of comparative genomics research.  

Chapter 2 provides detailed genetic analyses of two M. graminicola mapping 

populations, using mainly DArT markers, and the analysis of the meiotic transmission of 

unequal chromosome numbers. Polymorphisms in chromosome length and number were 

frequently observed in progeny isolates, of which 15–20% lacked one or more chromosomes 

despite their presence in one or both parents, but these had no apparent effect on sexual and 

pathogenic fitness. M. graminicola has up to eight so called dispensable chromosomes that 

can be easily lost - collectively called the dispensome - which is, so far, the highest number of 

dispensable chromosomes reported in filamentous fungi. They represent small-sized 

chromosomes and make up 38% of the chromosome complement of this pathogen. Much of 

the observed genome plasticity is generated during meiosis and could explain the high 

adaptability of M. graminicola in the field. The generated linkage map was crucial for 

finishing the M. graminicola genome sequence.  

Chapter 3 describes the M. graminicola genome sequence with highlights on genome 

structure and organization including the eight dispensable chromosomes. The genome 

comprises a core set of 13 chromosomes and a dispensome, consisting of eight chromosomes 

that are distinct from the core chromosomes in structure, gene and repeat content. The 
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dispensome contains a higher frequency of transposons and the genes have a different codon 

use. Most of the genes present one the dispensome are also present on the core chromosomes 

but little synteny is observed neither between the M. graminicola dispensome and the core 

chromosomes nor with the chromosomes of other related Dothideomycetes. The dispensome  

likely originates from ancient horizontal transfer(s) from (an) unknown donor(s).  

Chapter 4 shows a global analysis of proteins secreted by M. graminicola in 

apoplastic fluids during infection. It focuses mainly on fungal proteins secreted in a 

compatible interaction. The study showed that many of the annotated secreted proteins have 

putative functions in fungal pathogenicity, such as cell wall degrading enzymes and proteases, 

but the function of a substantial number of the identified proteins is unknown. During 

compatible interactions proteins are primarily secreted during the later stages. However, many 

pathogenesis-related host proteins, such as PR-2, PR-3 and PR-9, accumulated earlier and at 

higher concentrations during incompatible interactions, indicating that fungal effectors are 

recognized by resistant plants and trigger resistant gene-mediated defence responses, though 

without a visible hypersensitive response.  

Chapter 5 further details the initial identification and characterization of necrosis-

inducing proteins that are produced in culture filtrates (CFs) of M. graminicola. The necrosis-

inducing activity of CFs is light dependent and inactivated by proteinase K and heat treatment 

(100

C). This is reminiscent of the necrosis-inducing properties of host selective toxins of 

other Dothideomycete pathogens such as Stagonospora nodorum and Pyrenophora tritici-

repentis. Subsequent purifications of CFs and mass spectrometry identified several candidate 

proteins with necrosis-inducing activity. Heterologous expression of the two most prominent 

proteins in Pichia pastoris produced sufficient quantities for infiltration assays in a panel of 

wheat cultivars that showed differential responses, suggesting specific recognition. 

Chapter 6 provides a general discussion of the thesis and puts the results obtained in a 

broader perspective with a focus on the genome structure of M. graminicola and its function. 

In addition, aspects of the hemi-biotrophic lifestyle, the relevance of secreted proteins for the 

wheat-M. graminicola pathosystem in relation to gene-for-gene models and the potential 

implications for resistance breeding strategies are discussed.  
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Samenvatting 

De plantpathogene schimmel (Fuckel) J. Schröt. in Cohn (asexual stage: Zymoseptoria 

tritici (Desm.) Quaedvlieg & Crous) veroorzaakt septoria tritici bladvlekkenziekte in tarwe en 

is wereldwijd één van de belangrijkste ziekten in dit gewas. De beheersing van deze ziekte, 

vooral door het gebruik van resistente rassen en fungiciden, wordt echter bemoeilijkt door het 

beperkte inzicht in de genetische en biochemische basis van pathogeniteit, en de 

mechanismen voor infectie en waardplantresistentie. M. graminicola heeft een zeer actieve 

seksuele cyclus in het veld die de ontwikkeling van epidemieën aanjaagt. Bovendien 

resulteert dit in een grote genetische diversiteit van natuurlijke populaties die een uitdaging 

vormt voor de ontwikkeling en het duurzaam management van nieuwe resistente tarwerassen 

en van nieuwe en effectieve gewasbemingsmiddelen. Het doorgronden van de (a)seksuele 

voortplanting en de infectiestrategie van dit veranderlijke pathogeen is cruciaal voor het 

ontwerpen van nieuwe beheersingsmethoden.  

 Hoofdstuk 1 is een introductie in de biologie en pathogeniteit van M. graminicola. 

Daarnaast wordt in het kort beschreven hoe verbeterde en nieuwe technologieën de snelheid,  

omvang en schaal van vergelijkend genoomonderzoek beïnvloeden. 

Hoofdstuk 2 geeft een gedetailleerde koppelingsanalyse van twee M. graminicola 

kruisingspopulaties waarin vooral DArT merkers zijn gebruikt evenals de analyse van de 

meiotische transmissie van ongelijke chromosoomaantallen in de ouderisolaten. 

Polymorfismen in chromosoomlengte en aantallen werden frequent waargenomen in de 

gegenereerde nakomelingen, waarvan 15-20% één of meer chromosomen miste ondanks hun 

aanwezigheid in één of beide ouderisolaten, maar hadden geen duidelijk effect op seksuele of 

pathogene fitheid. M. graminicola heeft maximaal acht niet noodzakelijke chromosomen die  

gezamenlijk het dispensoom worden genoemd. Dit betreft het grootste aantal geïdentificeerde 

niet noodzakelijke chromosomen in filamenteuze schimmels, die relatief klein zijn en in M. 

graminicola 38% omvatten van het totale aantal chromosomen. Deze zogenaamde 

genoomplasticiteit, die het aanpassingsvermogen van de schimmel in het veld mede kan 

verklaren, wordt voornamelijk gegenereerd tijdens de meiose. De in deze studie gemaakte 

koppelingskaarten zijn ook cruciaal gebleken bij de afronding en completering van het M. 

graminicola genoomsequentie programma. 

Hoofdstuk 3 beschrijft de sequentieanalyse van M. graminicola met nadruk op de 

genoomstrucuur en –organisatie, inclusief de acht niet noodzakelijke chromosomen. Het 
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genoom bevat 13 chromosomen en het dispensoom dat acht chromosomen omvat die sterk 

van de andere chromosomen afwijken in structuur en inhoud. Het dispensoom bevat meer 

tranposons en de genen hebben een ander codongebruik. De meeste genen in het dispensoom 

komen ook voor op de 13 andere chromosomen en er is niet veel overeenkomst tussen het M. 

graminicola dispensoom en de andere chromosomen of met chromosomen in andere 

gerelateerde Dothideomyceten. Hierom wordt verondersteld dat deze chromosomen via een 

onbekend proces zijn overgedragen door één of meerdere onbekende donoren. 

Hoofdstuk 4 geeft een totaaloverzicht en analyse van de eiwitten die M. graminicola 

gedurende het infectieproces in het apoplast uitscheidt, vooral tijdens de compatibele 

interactie met tarwe.  Veel van de geannoteerde uitgescheiden eiwitten hebben veronderstelde 

functies in pathogeniteit zoals celwandafbrekende enzymen en proteasen, maar de functie van 

een aanzienlijk aantal van de geïdentificeerde eiwitten is onbekend. De eiwitten werden 

voornamelijk tijdens vergevorderde infectie uitgescheiden. Veel pathogenese gerelateerde 

planteiwitten, zoals PR-2, PR-3 en PR-9, daarentegen, accumuleerden eerder en meer tijdens 

de incompatibele interactie. Dit geeft aan dat effectoren van M. graminicola in resistente 

tarweplanten herkend worden en daarmee verdedigingsprocessen in gang zetten die tot 

resistentie leiden, overigens zonder de karakteristieke overgevoeligheidsreactie. 

Hoofdstuk 5 gaat verder in op de initiële identificatie en karakterisering van necrose 

inducerende eiwitten die in cultuurfiltraten (CFs) van M. graminicola voorkomen. Hun 

activiteit is afhankelijk van licht en zij worden geïnactiveerd door proteinase K en 

temperatuurbehandelingen boven 100

C. Dit vertoont analogie met de necrose inducerende 

eigenschappen van waardplant specifieke toxinen die worden geproduceerd door andere 

Dothideomyceten zoals Stagonospora nodorum en Pyrenophora tritici-repentis. 

Opeenvolgende zuiveringstappen en massa-spectrometrie van de CFs resulteerde in meerdere 

necrose inducerende kandidaat eiwitten. Heterologe expressie van de twee beste kandidaat 

eiwitten in Pichia pastoris resulteerde in een voldoende hoeveelheid eiwit voor 

infiltratieproeven in een reeks tarwerassen die daarop een differentiële reactie vertoonden 

hetgeen wijst op specifieke herkenning. 

Hoofdstuk 6 is een algemene discussie van dit proefschrift en plaatst de verkregen 

resultaten in een breder perspectief met een focus op de genoomstructuur van M. graminicola 

en haar functie. Daarnaast worden aspecten van de hemibiotrofe levenswijze en de relevantie 
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van de uitgescheiden eiwitten voor het tarwe-M. graminicola pathosysteem in relatie tot    

gen-om-gen modellen en de potentiële implicaties voor de resistentieveredeling besproken. 
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Résumé 

Le champignon Mycosphaerella graminicola (Fuckel) J. Schröt, in Cohn (forme 

asexuée : Zymoseptoria tritici (Desm.) Quaedvlieg & Crous) est l’agent causal de la 

septoriose du blé (STB) qui est la principale maladie biotique foliaire dans le monde. 

Cependant, le contrôle de la STB qui repose sur l’utilisation des variétés résistantes et des 

fongicides, est fortement gênée par le manque de compréhension des bases génétiques et 

biochimiques de la pathogénicité, et notamment des mécanismes d’infection et de résistance 

dans la plante hôte.  

M. graminicola ayant un cycle sexuel actif dans les conditions en plein champ, qui 

représente la plus importante source de progression de l’épidémie, induit une grande diversité 

génétique de populations et reste un défi pour la mise en place d’une stratégie de lutte durable 

basée sur la découverte de nouvelles variétés de blé résistantes et des composés antifongiques. 

En effet, la compréhension du mécanisme d’infection de ce champignon versatile et le rôle 

des cycles sexuel et asexuel sur la composition génomique, est cruciale pour développer de 

nouvelles stratégies de contrôle. 

Chapitre 1 est consacré à l’introduction de la biologie et de la pathogénicité de M. 

graminicola. Il décrit également et brièvement l’impact des nouvelles technologies et celui 

des anciennes améliorées sur la vitesse, l’envergure et l’échelle de la recherche dans les 

génomiques comparatives.  

Chapitre 2 présente deux cartes génétiques des populations de M. graminicola, à 

partir de marqueurs DArT et l’analyse par la suite de l’inégalité en nombre dans la 

transmission méiotique des chromosomes. Des polymorphismes en nombre et en longueur de 

chromosomes sont en effet, fréquemment observés dans les descendants et ce dans une 

proportion de 15-20% où ils leur manquent un ou plusieurs chromosomes et ceci malgré leur 

présence chez les deux parents et sans avoir pour autant, un effet apparent sur la sexualité ou 

sur le fitness. Nous avons pu ainsi démontrer que M. graminicola possède huit chromosomes 

non essentiels, appelés -dispensome-. Ceux-ci sont de petites tailles, constituent 38% du 

génome de ce champignon et représentent ainsi à ce jour le plus grand nombre de 

chromosomes non essentiels chez les champignons filamenteux. Cette plasticité génomique 

est immanquablement générée durant la méiose et pourrait expliquer la grande adaptabilité de 

M. graminicola en plein champ. La carte génétique ainsi établie dans cette étude, était cruciale 
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pour achever la séquence génomique de M. graminicola. Cette dernière est décrite dans le 

chapitre suivant.  

Chapitre 3 met en relief la structure et l’organisation génomique incluant les huit 

chromosomes non essentiels. La séquence du génome est composée de 13 chromosomes et du 

dispensome, qui est distinct des chromosomes essentiels de part sa structure et son contenu en 

gènes et en éléments répétitifs. En effet, il contient une fréquence élevée de transposons et de 

gènes avec des usages de codes différents. La plupart des gènes ainsi présents sur le 

dispensome sont aussi présents sur les chromosomes essentiels. Par ailleurs, un très faible 

niveau de synténie est observé entre le dispensome de M. graminicola et les chromosomes des 

autres dothidéomycètes. Leur origine provient sans doute du mécanisme de transfert 

horizontal par un donneur inconnu. 

Chapitre 4 présente une analyse globale des protéines de M. graminicola secrétées 

dans le fluide apoplastique durant les différents stades d’infection, et particulièrement les 

protéines fongiques secrétées durant l’interaction compatible. L’étude montre qu’un nombre 

important de protéines secrétées ont des fonctions possibles dans la pathogénicité, à l’instar  

des enzymes capables de dégrader les parois végétales et les protéases. Néanmoins, la 

fonction d’un grand nombre de protéines reste encore méconnue. Les protéines secrétées 

durant l’interaction compatible sont dans la majeure partie présentes dans les stades 

d’infection tardifs alors que beaucoup de protéines PR sont secrétées plus tôt avec une 

concentration plus élevée dans l’interaction incompatible, prouvant ainsi que les effecteurs 

sont reconnus par les plantes résistantes engendrant de ce fait des réponses de défense, sans 

être accompagnées par une réaction hypersensible.  

Le Chapiter 5 décrit l’identification et la caractérisation initiale des protéines à 

activité nécrotique qui sont présentes dans les filtrats de culture (FCs) de M. graminicola. 

Cette activité nécrotique est fortement  dépendante de l’action de la lumière et est inactivée 

après traitement à la protéinase K et à une élévation de la température (100
°
C). En outre, ces 

constatations évoquent une similitude avec l’activité toxique des toxines spécifiques des 

autres pathogènes dothidéomycètes comme Stagonospora nodorum et Pyrenophora tritici-

repentis. Les purifications ultérieures des FCs suivies de spectrométrie de masses ont identifié 

plusieurs protéines candidates à l’activité toxique. L’expression hétérologue des deux plus 

importantes protéines dans Pichia pastoris a montré, une fois infiltrées dans les feuilles de 

blé, qu’elles induisent des nécroses dans un ensemble de cultivars.  
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Chapitre 6 : Ce dernier présente une discussion générale et intègre les résultats 

obtenus dans un contexte plus large en mettant en exergue les nouvelles découvertes 

concernant la structure et la fonction du génome. En outre, cette discussion générale 

s’intéresse au mode de vie hémibiotrophique, à l’importance des protéines secrétées durant 

l’interaction blé-M. graminicola en relation avec les modèles gène pour gène et gène-pour-

gène inverse et à leur implication dans les stratégies de sélection pour la résistance. 
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