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Abstract

Background
Despite a large amount of research in the past decades, the role of polyunsaturated fatty 
acids (PUFA) in the prevention of coronary heart disease (CHD) and stroke is still debated. 
Inconsistent findings in epidemiological studies may be due to methodological limitations of 
dietary assessment, which could be overcome by using PUFA levels in blood as a biomarker of 
intake. This thesis investigates dietary intake and plasma levels of various n-6 and n-3 PUFA in 
relation to CHD and stroke within a population-based sample in the Netherlands.

Methods
The associations of dietary intake of PUFA (assessed by food-frequency questionnaire) with 
incident CHD and stroke were examined in cohort studies. PUFA levels in plasma cholesteryl 
esters were measured in nested case-control studies. N-6 PUFA included linoleic acid and 
arachidonic acid and the n-3 PUFA included the marine-derived eicosapentaenoic acid (EPA) 
and docosahexaenoic acid (DHA), and the plant-derived alpha-linolenic acid (ALA). We used 
the “Monitoring Project on Cardiovascular Disease Risk Factors“ and the “Monitoring Project 
on Risk Factors for Chronic Diseases” (MORGEN study), two large similar population-based 
cohorts with baseline measurements in 1987-1997 and follow-up for CHD and stroke incidence. 
Additionally, we performed a meta-analysis of prospective epidemiological studies on PUFA in 
cholesteryl esters and CHD risk. 

Results
A 4-5 en% difference in linoleic acid intake was not associated with incident CHD, whereas plasma 
linoleic acid was inversely, but statistically non-significantly, associated with fatal CHD. In the 
meta-analysis, a 5% higher plasma linoleic acid level was related to a significant 9% lower CHD 
risk. Both ALA intake and status were not associated with CHD. The top quartiles of EPA-DHA 
(~250 mg/d) and fish intake (~1 fish meal/week) were related to a ~50% lower risk of fatal CHD 
compared to the bottom quartiles. However, this was not confirmed in plasma EPA-DHA. An 
ALA intake ≥1.1 g/d was associated with a 35-50% lower stroke incidence, compared with lower 
intakes. In women, but not in men, a significantly inverse relation was observed for EPA-DHA 
and fish intake with incident stroke, with a ~50% lower risk in the top quartile compared with 
the bottom quartile. Plasma PUFA levels were, however, not related to incident stroke.

Conclusion
The hypothesis of a beneficial effect of linoleic acid on CHD was confirmed in our biomarker 
study, but not in the study that used dietary intake data. For EPA-DHA, on the other hand, 
dietary intake was inversely related to fatal CHD and incident stroke, whereas cholesteryl ester 
EPA-DHA were not associated. The same applied to ALA intake in relation to incident stroke. 
Inconsistencies between PUFA intake and status with cardiovascular diseases could be attributed 
to the limited range of variation in PUFA intake in combination with measurement error.
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Introduction 
Fatty acids in the diet can be classified as saturated fatty acids, monounsaturated fatty acids 
(MUFA), and polyunsaturated fatty acids (PUFA) according to the number of their double bonds 
(Figure 1.1). Saturated fatty acids, which have no double bonds, are mainly derived from foods 
of animal origin such as meat and dairy, and also from a limited number of vegetable sources 
such as coconut oil. The main dietary MUFA is oleic acid, present in olive oil. Trans-fatty acids 
are unsaturated fatty acids (mainly MUFA) with a double bond in trans-configuration. Trans-fat 
in the diet originates from industrial hydrogenation used to produce semi-liquid and solid fats 
for the production of margarine, shortenings, and cookies and also from dairy and meat of 
ruminant animals.1 Most dietary unsaturated fatty acids, however, have the cis-configuration.1 
This thesis focuses on (cis-) PUFA. These fatty acids with at least two double bonds, will be 
described in further detail below.

Polyunsaturated fatty acid intake
Dietary PUFA can be divided into n-6 (or omega-6) and n-3 (or omega-3) PUFA. N-6 and n-3 
PUFA have a first double bond in the n-6 position or n-3 position, respectively, counted from 
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Figure 1.1 Types of dietary fatty acids.
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the methyl end (Figure 1.2). N-6 PUFA currently contribute for 85-90% of total PUFA intake.2 
Two important n-6 PUFA are linoleic acid (C18:2n-6) and arachidonic acid (C20:4n-6). N-3 PUFA 
form the remaining 10-15% of total PUFA intake. N-3 PUFA can be divided into n-3 fatty acids 
from vegetable sources, such as alpha-linolenic acid (ALA; C18:3n-3) and n-3 fatty acids from 
marine sources, such as eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid 
(DHA; C22:6n-3).

Dietary sources of arachidonic acid include eggs and lean meat, such as poultry, organ meats, 
and fish,3-5 but most of the arachidonic acid in the human body is derived from elongation of 
linoleic acid.4,5 Linoleic acid, is the most abundant PUFA in the diet. It is mainly obtained from 
vegetable oils, such as sunflower oil and soybean oil.6 Linoleic acid is an essential PUFA, which 
means that it must be provided by the diet. An intake of 2% of energy (en%) per day is enough 
to prevent deficiency.7 Worldwide the daily intake ranges from 3 en% (India) to 10 en% (Israel).8,9 
In the Netherlands, the average linoleic acid intake is 5-6 en% (~14 g/d).10-12 

ALA is an essential fatty acid of the n-3 PUFA family and it is present in soybean, canola, and 
flaxseed oil, and in walnuts.6 In the Netherlands, the average ALA intake in young adults was 
approximately 1.5 g/d (0.6 en%) in 2003.13 Humans can convert ALA into the very-long-chain 
n-3 PUFA (EPA and DHA), although these conversions only take place to a limited extent. 
Conversion estimates are <8% for ALA to EPA and <1% for ALA to DHA.14-16 Fish is the main 
source of EPA and DHA.6 Other foods like meat and eggs contribute ~35% to the total intake 
of EPA and DHA.2 The intake of fish and consequently EPA and DHA is low in the Netherlands. 
The general Dutch population consumed on average about 10 gram of fish per day in 1998.11 
The average EPA-DHA intake in young adults in 2003 was 94 mg/d.13 Because these amounts 
were based on two 1-day dietary histories or two 24h recalls and because fish is not part of 
the everyday diet in the Netherlands, consumption is likely to be underestimated. The Dutch 
Fish Product Board estimated that in 2010 the Dutch consumed on average 10 g of fish per 
day at home and a similar additional amount outside the house.17 In the European Prospective 
Investigation into Cancer and Nutrition, the Dutch had the lowest fish consumption, together 
with the Germans, whereas Mediterranean and Scandinavian populations consumed much 
more fish.18
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Figure 1.2 Structures of linoleic acid (n-6) and alpha-linolenic acid (n-3).
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Polyunsaturated fatty acid status and biomarkers of intake
After ingestion of fatty acids, various metabolic steps take place, such as β-oxidation, 
desaturation, and elongation (Figure 1.3). The Δ5- and Δ6-desaturases are key enzymes in 
PUFA metabolism that catalyse the conversion of linoleic acid into arachidonic acid and that of 
ALA into EPA. The activity of Δ6-desaturase is the rate-limiting step in the PUFA biosynthesis 
pathway. Because linoleic acid and ALA share the same metabolic pathway, they compete for 
the desaturase enzymes. In the body, fatty acids function as storage unit for energy, as structural 
unit in membranes, and as precursor to eicosanoids.3 Arachidonic acid and EPA are precursors 
for eicosanoids such as prostaglandins and thromboxanes.4 The arachidonic acid derived 
eicosanoids generally have proinflammatory and proaggregatory effects whereas EPA-derived 
eicosanoids have opposite effects.19 

Ingested fatty acids can be measured as free fatty acids in serum (or plasma), as components of 
triglycerides, phospholipids, cholesteryl esters, erythrocyte membranes, platelets or in adipose 
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Figure 1.3 Pathway of the conversion of linoleic acid and alpha-linolenic acid to their longer chain derivates.5



tissue from various sites.3 The amount of specific fatty acids can vary between the tissue fractions. 
Cholesteryl esters are found in serum lipoproteins and reflect dietary intake of PUFA during 
the previous weeks.20,21 Whole serum, serum fractions, and erythrocytes also reflect a relatively 
short-term intake (between days and months). In long-term observational studies, adipose tissue 
is considered the best choice to assess habitual fatty acid intake, because it reflects the intake 
of fatty acids during the previous months to years.21,22 However, in observational studies blood 
tissue is most widely used because of its accessibility and the assumption that individuals do 
not make drastic short-term diet changes.22

Polyunsaturated fatty acids and cardiovascular diseases
According to the classic Diet-Heart Hypothesis,23 saturated fatty acids increase serum (LDL) 
cholesterol, high serum cholesterol causes atherosclerosis, and atherosclerosis results in 
coronary heart disease (CHD). CHD and stroke are the main types of cardiovascular disease 
(CVD). Stroke can be classified into ischemic stroke, which is caused by obstruction of a brain 
blood vessel, and haemorrhagic stroke, caused by bleeding into the brain. Ischemic stroke is 
the most common stroke type in Western countries.24 Although CHD and ischemic stroke partly 
have similar etiologies, they may be affected differently by fatty acid intake.24 For example, 
prospective cohort studies have not found significant associations between n-6 PUFA intake 
and ischemic or hemorrhagic stroke or stroke mortality.25

In 2003, an additional Diet-Heart Hypothesis was described by Siscovick et al.23 Dietary n-3 
PUFA increase n-3 PUFA status; higher n-3 PUFA levels favourable affect cardiac ion channel 
function; the altered channel function modifies the cardiac action potential, which reduces 
the vulnerability to ventricular fibrillation. Ventricular fibrillation is the major life-threatening 
arrhythmia that results in sudden cardiac death in the setting of ischemia.23 

Linoleic acid intake
N-6 PUFA lower LDL-cholesterol, and the ratio of total to HDL-cholesterol.26 Based on the classic 
Diet-Heart hypothesis,23 the positive effects of PUFA on CHD are therefore thought to be mainly 
mediated by fatty acid induced changes in serum lipid levels. However, in 2010, a meta-analysis 
of published prospective cohort studies did not demonstrate a protective association with CHD 
when PUFA were substituted for an iso-caloric amount of saturated fatty acids.27 In contrast to 
this finding, another meta-analysis that was published around the same time, showed that the 
replacement of 5 en% from saturated fat by PUFA was associated with a significantly 13% lower 
risk for coronary events.28 In line with this, a meta-analysis of eight randomised trials reported 
that an increase of PUFA intake of 5 en% would reduce coronary events by 10%.29 This finding 
was, however, criticized by other researchers.30 They stated that the advice to specifically increase 
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n-6 PUFA, based on mixed n-3/n-6 interventions, was unlikely to provide the intended benefits, 
and may actually increase the risk of CHD and death.30 

Alpha-linolenic acid intake
Apart from potential indirect effects of ALA on CVD via conversion into EPA and DHA, 
it is suggested that ALA could have direct anti-inflammatory,31,32 anti-arrhythmic,33 anti-
thrombotic,33,34 or neuroprotective effects.35 However, others concluded that there is insufficient 
evidence that ALA influences risk factors for CVD.36,37 We found no epidemiological studies on 
the association of ALA intake with stroke. With regard to CHD, the literature is inconclusive. 
Several prospective cohort studies showed inverse associations of ALA intake with nonfatal 
myocardial infarction,38 incident myocardial infarction,39 incident CHD,38 fatal CHD,40-42 sudden 
cardiac death,33 or fatal CVD.41 Other cohort studies suggested no protection of ALA intake 
against nonfatal myocardial infarction,33,40 incident CHD,43 fatal CHD,33,39,43 sudden death,38 or 
fatal CVD.44 The relation of ALA intake with fatal CHD has been summarized in a meta-analysis 
of five prospective cohort studies showing that ALA intakes of around 2 g/d were associated 
with a borderline significant 21% lower risk of fatal CHD (relative risk: 0.79; 95% CI: 0.60-1.04), 
compared with intakes of 0.8 g/d.45 In conclusion, the role of ALA in CHD and especially stroke 
prevention is not clear31,46,47 and information on the association between ALA intake and stroke 
is lacking.

Marine n-3 PUFA intake
Numerous prospective epidemiological studies suggest that fish and the fish fatty acids 
EPA and DHA protect against CVD.48-50 Already in 1985, Kromhout et al. showed that a small 
amount of fish in the diet was associated with a lower risk of CHD mortality in the Zutphen 
Study of 852 middle-aged Dutch men.51 In a meta-analysis of prospective cohort studies, 
He et al. estimated that eating fish once per week was associated with a 15% lower risk 
of coronary death as compared to a fish intake of less than once per month.48 The meta-
analysis of He et al. also showed that the evidence for an inverse association of fish intake 
and risk of nonfatal myocardial infarction was weak, even though there was a significant 
inverse association by eating fish 5 times per week or more compared to less than once per 
month.48 Several randomized controlled trials (RCT) on fish and fish oil in relation to coronary 
mortality have been carried out in cardiac patients. The first RCT with fatty fish or fish oil 
capsules as interventions showed significant reductions in fatal CHD52,53 and sudden death.53 
Recent meta-analyses of RCT showed that fish oil supplementation significantly reduced 
fatal CHD54 and fatal myocardial infarction55 in coronary patients. Mozaffarian and Rimm49 
combined data from prospective cohort studies and RCT and estimated that a reduction 
of CHD mortality may be achieved with relatively low intakes of EPA and DHA. Modest 
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consumption of fish (1-2 servings or ~100-200 g fish per week) was associated with a 36% 
lower risk of coronary death. They suggested that for the general population an intake of 
250 mg/d of EPA-DHA (one serving of fatty fish per week) would be sufficient. Others aim 
at intakes ~500 mg/d.56-59

Several,60-66 although not all,67-71 prospective cohort studies showed inverse associations of fish 
consumption with stroke. In a meta-analysis, He et al. summarized prospective cohort studies 
published through 2003 and concluded that fish consumption once per week compared to less 
than once per month was related to a 13% (Hazard ratio: 0.87; 95% CI: 0.77-0.98) lower stroke 
risk.50 In three cohort studies62-64 with information on types of stroke, consuming fish more 
than once a month was associated with a 30-35% lower risk of ischemic stroke, and not with 
hemorrhagic stroke.50 Less data are available for EPA-DHA and stroke risk. However, if researchers 
reported EPA-DHA as well as fish intake in relation to stroke, the results for EPA-DHA were in 
agreement with the results on fish within these studies.62,63,67,69,71

Plasma polyunsaturated fatty acids
Harris et al.72 performed a meta-analysis of 25 (nested) case-control studies and prospective 
cohort studies on tissue fatty acid composition (18 examining phospholipid-rich and 7 
triglyceride-rich samples) and risk of CHD published until 2006. They showed that long-chain 
n-3 PUFA tissue concentrations, especially DHA, were inversely associated with fatal CHD. 
However, in this meta-analysis the crude PUFA levels were pooled, i.e. confounders were not 
taken into account. Furthermore, adipose tissue and various plasma and serum fractions 
were combined.

There are only a few prospective studies on fatty acid status in relation to incident stroke.73-75 In 
a Japanese,74 but not in an American73 nested case-control study, total serum linoleic acid and 
arachidonic acid were inversely associated with incident stroke. ALA in serum cholesteryl esters 
and phospholipids was inversely associated with stroke risk in the American,73 but not in the 
Japanese study.74 A Swedish nested case-control study found a borderline positive association 
of EPA-DHA in erythrocytes with ischemic stroke in men but not in women, whereas EPA-DHA 
status was not associated with total stroke in both sexes.75 In the Japanese and American studies, 
EPA and DHA were not related to stroke risk. 

The number of studies on PUFA status in relation to cardiovascular diseases is much higher 
for CHD than for stroke. In epidemiological studies with information on PUFA intake as well 
as PUFA status, the associations with CHD were stronger for n-3 PUFA status than for intake 
data.34,76-78 A disadvantage of the use of biomarkers of PUFA intake is that they do not provide 
information on absolute PUFA intake, but rather on the contribution of individual PUFA to the 
total of all fatty acids.
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Rationale and outline of the thesis
The objective of this thesis is to assess the relationships of intake and status of the separate 
n-6 and n-3 PUFA with CHD and stroke. For this purpose, we used data from the “Monitoring 
Project on Risk Factors for Chronic Diseases” (MORGEN study), which is a Dutch population-
based cohort of over 22,000 men and women, aged 20-65 years. Information on diet, lifestyle, 
and cardiovascular risk factors was collected and blood was drawn at baseline (1993-1997) and 
participants were followed for fatal and nonfatal cardiovascular disease endpoints. In addition, 
we used data of the Monitoring Project on Cardiovascular Disease Risk Factors (MP-CVDRF),79 
which is another Dutch population-based cohort with similar data as the MORGEN study, but 
with longer follow-up for fatal endpoints. In MP-CVDRF, baseline (1987-1991) and follow-up 
data were collected in ~36,000 subjects aged 20-59 years. Table 1.1 shows the different topics 
that are covered in this thesis.

Fatty acid Fatty acid CHD Stroke

n-6 PUFA Linoleic acid Chapter 2 (intake)
Chapter 7 (status) Chapter 8 (status)

Arachidonic acid Chapter 7 (status) Chapter 8 (status)

n-3 PUFA ALA Chapter 3 (review)
Chapter 4 (intake) Chapter 4 (intake)

Chapter 7 (status) Chapter 8 (status)

EPA-DHA Chapter 5 (intake)
Chapter 7 (status)

Chapter 6 (intake)
Chapter 8 (status)

Table 1.1 Outline of the thesis
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Abstract 
We studied the associations of a difference in linoleic acid or carbohydrate intake with plasma 
cholesterol levels and risk of coronary heart disease (CHD) in a prospective cohort study in the 
Netherlands. Data on diet (food frequency questionnaire) and plasma total and HDL-cholesterol 
were available at baseline (1993-1997) of 20,069 men and women, aged 20-65 years, who 
were initially free of cardiovascular diseases. Incidence of CHD was assessed through linkage 
with mortality and morbidity registers. During an average of 10 years of follow-up, 280 CHD 
events occurred. The intake of linoleic acid ranged from 3.6 to 8.0 % of energy (en%) whereas 
carbohydrate intake ranged from 47.6 to 42.5 en% across quintiles of linoleic acid intake. Linoleic 
acid intake was inversely associated with total cholesterol and HDL-cholesterol in women but 
not in men. Linoleic acid intake was not associated with the ratio of total to HDL-cholesterol. 
No association was observed between linoleic acid intake and CHD incidence with hazard ratios 
varying between 0.83 and 1.00 (all P>0.05) compared to the bottom quintile. We conclude 
that a 4-5 en% difference in linoleic acid or carbohydrate intake did not translate into either a 
different ratio of total to HDL-cholesterol or a different CHD incidence. 
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Introduction 
    Linoleic acid (C18:2n-6) is an essential polyunsaturated fatty acid (PUFA), and the main fatty 
acid of the n-6 PUFA family. A linoleic acid intake of 2% of energy (en%) per day is enough to 
prevent deficiency.1 Worldwide, the daily intake ranges from 3 en% (India) to 10 en% (Israel).2,3

In the Netherlands, the average linoleic acid intake is 5-6 en% (~14 g/d).4-6 N-6 PUFA currently 
contribute 85-90% of total PUFA intake, largely due to a high consumption of linoleic acid-rich 
vegetable oils.7

In 2009, the American Heart Association summarised the scientific evidence on the association 
between n-6 PUFA and cardiovascular diseases (CVD) and advised to consume 5-10 en% of 
n-6 PUFA per day.8 N-6 PUFA have a favourable effect on LDL-cholesterol and the ratio of total 
to HDL-cholesterol.9 The positive effects of PUFA on CHD are therefore thought to be mainly 
mediated by fatty acid-induced changes in serum lipid levels. The total to HDL-cholesterol 
ratio is improved by substituting PUFA for saturated fatty acids, but also by substituting PUFA 
for carbohydrates.10 Furthermore, carbohydrates also increase triglycerides, which are an 
independent risk factor for CHD.11 

A recent meta-analysis of published prospective cohort studies did not demonstrate a positive 
effect of a higher PUFA intake in exchange with an isocaloric amount of saturated fatty acids 
on CHD.12 However, another meta-analysis based on individual data that specifically addressed 
the isocaloric exchange of saturated fatty acids and PUFA showed that the replacement of 
5% of energy from saturated fat by PUFA was significantly associated with a 13% lower risk 
for coronary events, whereas the replacement of saturated fat by carbohydrates showed a 
significant direct association with CHD.13 It has been suggested that replacement of saturated 
fat by carbohydrates, mainly refined carbohydrates, may exacerbate atherogenic dyslipidemia.14 

The aim of the present study was to evaluate the intake of linoleic acid, as an isocaloric substitute 
for carbohydrates, in relation to both plasma cholesterol levels and 10-year incidence of CHD 
in a population-based cohort of over 20,000 adults in the Netherlands.

Methods

Design and study population
The ‘Monitoring Project on Risk Factors for Chronic Diseases’ (MORGEN) study is a Dutch 
population-based cohort of 22,654 men and women, aged 20-65 years. MORGEN is part of 
the European Prospective Investigation into Cancer and Nutrition study.15 Baseline (1993-1997) 
information on diet, plasma cholesterol levels, lifestyle, and cardiovascular risk factors was 
collected and participants were followed up for cardiovascular disease end points. The present 
study was conducted according to the guidelines laid down in the Declaration of Helsinki 
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and all procedures involving human subjects/patients were approved by the Medical Ethics 
Committee of TNO Prevention and Health (Leiden, The Netherlands). Written informed consent 
was obtained from all subjects. 

For the present study, participants who did not provide informed consent for vital status 
follow-up (n=701) were excluded, as well as 72 participants without dietary information and 
97 participants with extreme energy intakes (<2,094 or >18,844 kJ for women and <3,350 or 
> 20,938 kJ for men). Furthermore, participants with a history of myocardial infarction (MI) or 
stroke at baseline were excluded (n=442). We also excluded participants who reported the use of 
serum lipid- modifying agents (n=203) or antihypertensive drugs (n=887), and 180 participants 
with diabetes resulting in 20,069 participants (8,988 men and 11,081 women). 

Dietary assessment
The habitual diet was assessed with a validated self-administered 178-item food-frequency 
questionnaire (FFQ) covering the previous year.16,17 The FFQ included foods that covered the 
intake of foods and nutrients relevant to chronic disease aetiology for at least 90% of the national 
mean intake. Participants indicated the consumption of main food groups in times per day, per 
week, per month, per year or as never, combined with questions on the relative intakes of foods 
within food groups (seldom/never, sometimes, often, mostly/always). Nutrient intakes were 
calculated with the Dutch food composition table of 1998. For individual fatty acids, we used 
the table of 2001, because the values were more complete. Total energy intake was calculated 
as the sum of energy from fat, carbohydrates, and protein. 

The reproducibility (estimated by two repeated measurements) and the relative validity (intake 
assessed by the FFQ compared to intakes assessed by 12 monthly 24-h recalls) of the FFQ for 
food groups and some nutrients were assessed among 121 Dutch men and women.16,17 The 
Spearman rank correlations for the reproducibility of the FFQ after 6 months for total energy 
intake were 0.90 for men and 0.80 for women. Rank correlations were 0.83 and 0.77 for fat, 0.86 
and 0.75 for protein, and 0.91 and 0.85 for carbohydrates, in men and women, respectively. 
The relative validity of the FFQ for total energy intake was 0.77 for men and 0.62 for women. 
Rank correlations were 0.74 and 0.63 for fat, 0.68 and 0.56 for protein, and 0.75 and 0.69 for 
carbohydrates, in men and women respectively.

Plasma lipid measurements
Total cholesterol and high-density lipoprotein (HDL) cholesterol were measured in nonfasting 
EDTA plasma at the Lipid Reference Laboratory of the Erasmus Medical Center Rotterdam, 
using enzymatic methods. Total cholesterol was measured using an enzymatic method; HDL-
cholesterol was determined in the supernatant after precipitation of apoB-containing lipoproteins 
with phosphotungstic acid/MgCl2. Performance for enzymatic total and HDL-cholesterol 

26

Linoleic acid, cholesterol, and coronary diseaseChapter 2



measurements fulfilled the National Cholesterol Education Program recommendations 
throughout the study period.18

Mortality and morbidity
Vital status was checked through linkage with the national population register. Participants were 
followed for the occurrence of CHD by linkage with Statistics Netherlands for cause-specific 
mortality. Information on nonfatal events was provided by the national hospital discharge 
register based on a validated probabilistic linkage method described in more detail elsewhere.19

It has been shown that on the national level, data from the Dutch hospital discharge register can 
be uniquely matched to a single person for at least 88% of the hospital admissions.19 Incident 
CHD included fatal CHD (I20-I25), fatal and nonfatal cardiac arrest (I46), and non-fatal MI 
(I21-I22) according to the International Classification of Diseases (ICD-10, WHO). For hospital 
admissions and for causes of death coded until 1 January, 1996, corresponding ICD9 codes 
were used. Participants were followed up until death, incident CHD, date of loss-to-follow-up 
due to emigration out of the Netherlands (n=693) or 1 January 2006, whichever came first. 

Other baseline characteristics
Body weight, height an  d blood pressure were measured by trained research nurses. Self-
administered questionnaires were used to assess the presence of diabetes, MI and stroke at 
baseline, medication use, parental history of MI, educational level and cigarette smoking.20 
Alcohol intake (based on the FFQ) was calculated in glasses/d. Baseline physical activity was 
assessed with a validated questionnaire in 76% of the cohort who were enrolled between 1994 
and 1997.21 For this subset, we calculated whether participants were engaged in activities with 
a metabolic equivalent score ≥ 4 (yes/no). Cycling (yes/no) and sports (yes/no) were previously 
shown to be significantly inversely related to CVD incidence in this population.22

Statistical analysis
Participants’ characteristics by quintiles of linoleic acid intake expressed as en% are presented 
as mean values and standard deviation, medians with interquartile ranges or percentages. 
Correlations between the energy-adjusted intakes of different types of fatty acids were assessed 
with the Spearman rank correlation test. 

Mean plasma levels of total and HDL-cholesterol and the ratio of total to HDL-cholesterol 
by quintiles of linoleic acid intake (en%) were computed using general linear models. P for 
trend of plasma cholesterol levels were calculated based on the continuous distribution of 
linoleic acid intake. We used Cox proportional hazards models to estimate relative risks for the 
incidence of CHD across quintiles of linoleic acid intake at baseline. Hazard ratios (HR) with 
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95% confidence intervals (CI) were obtained using the bottom quintile of linoleic acid intake 
as the reference category. The proportional-hazards assumption was tested and not rejected 
based on Schoenfeld residuals and visual inspection. In model 1, we adjusted for total energy 
intake (kJ/d), age and sex. In model 2, we additionally adjusted for body mass index (kg/m2), 
alcohol intake (glasses/d), current cigarette smoking, high educational level (completed higher 
vocational training or university) (yes/no), parental history of premature CHD (MI of father before 
the age of 55 years or MI of mother before the age of 65 years) (yes/no). In model 3, we added 
intakes of fibre (g/d), protein, saturated fatty acids, cis-monounsaturated fat, trans-fat and PUFA 
other than linoleic acid (all in en%). The estimated HR of the full model can be interpreted as 
an isocaloric replacement of carbohydrates with linoleic acid.

We assessed the impact of adjustments for systolic blood pressure, the total to HDL-cholesterol 
ratio and physical activity. Effect modification was evaluated for age and sex by adding product 
terms to the models. All statistical analyses were performed with SAS (version 9.1; SAS Institute, 
Inc., Cary, NC, USA). Two-sided P-values <0.05 were considered statistically significant.

Results

Population characteristics
Participants were on average 41.5 (SD 11.1) years at baseline, and 45% was male. The average 
intake of linoleic acid was 13.9 (SD 5.9) g/d or 5.6 (SD 1.6) en%. Linoleic acid comprised 79% 
of total PUFA intake. During 8-13 years of follow-up (median 10.5 y), 199 men and 81 women 
experienced a CHD event, of which 19% was a fatal event. 

The main sources of linoleic acid intake were margarines (21%), oils (13%), bread (12%), nuts 
(10%), pork meat (10%), and sauces (9%). Mean linoleic acid intake more than doubled across 
quintiles (Q), from 3.6 en% in Q1 to 8.0 en% in Q5. Saturated and trans-fatty acids did not differ 
across quintiles and carbohydrate intake decreased from 47.6 to 42.5 en%. Polysaccharides did 
not differ between quintiles, whereas mono- and disaccharides decreased from 25 to 19 en% 
(Table 2.1). The Spearman correlations with linoleic acid were 0.98 for total PUFA, 0.43 for total 
fat, 0.32 for cis-MUFA, and -0.35 for mono and disaccharides. 

Linoleic acid, plasma lipid levels and CHD
We observed interaction of gender on the association between linoleic acid intake and 
cholesterol levels. P-values for interaction were <0.0001 for total cholesterol, 0.01 for HDL-
cholesterol, and 0.37 for the ratio of total to HDL-cholesterol. In women, linoleic acid intakes 
were inversely associated with plasma total cholesterol levels in the fully adjusted model, with 
a mean total cholesterol level of 5.28 mmol/l (203 mg/dl) in Q1 and 5.14 mmol/l (198 mg/dl) 
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Table 2.1 Baseline characteristics of 20,069 Dutch men and women, aged 20-65 years, by quintiles of 
energy percentages of linoleic acid intakea (mean values and standard deviations, unless indicated)

Abbreviations: Q, quintile; en%, % of energy; PUFA, polyunsaturated fatty acids; cis-MUFA, cis-monounsaturated fatty acids; TFA, 
trans-fatty acids; SFA, saturated fatty acids; MI, myocardial infarction; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
HDL, high density lipoprotein; P/S ratio, ratio of PUFA/SFA.
a Total energy excluding alcohol intake.
b Median with interquartile range.
c University or higher vocation training.
d Available for participants enrolled between 1994 and 1997 (n=15,423).

Q1 Q2 Q3 Q4 Q5 

n 4,013 4,014 4,014 4,014 4,014
Male sex, % 45 42 43 46 48
Age, y 41.6 ±  11.8 40.5 ± 11.2 40.7 ± 10.9 41.2 ±  10.7 43.3 ± 10.6
PUFA

g/d 11.9 ± 4.0 15.0  ± 4.4 17.0 ± 5.0 19.6 ± 5.8 23.9 ± 7.6
en% 4.9 ± 0.6 6.1 ±  0.4 6.9 ± 0.4 7.8 ± 0.5 9.6 ± 1.2

Linoleic acid
g/d 8.8 ± 3.0 11.4 ±  3.4 13.3 ± 3.9 15.8 ± 4.7 20.0 ± 6.6
en% 3.6 ± 0.5 4.6 ±  0.2 5.4 ± 0.2 6.3 ± 0.3 8.0 ± 1.1

α-linolenic acid
g/d 1.1 ± 0.4 1.3 ±  0.5 1.4 ± 0.5 1.6 ± 0.6 1.7 ± 0.7
en% 0.4 ± 0.1 0.5 ±  0.1 0.6 ± 0.1 0.6 ± 0.2 0.7 ± 0.2

Cis-MUFA
g/d 27.8 ± 10.5 30.3 ±  10.5 31.2 ± 10.8 32.7 ± 11.4 33.7 ± 12.4
en% 11.4 ± 2.1 12.3 ±  2.0 12.5 ± 2.1 12.9 ± 2.1 13.5 ±  2.3

TFA
g/d 3.7 ± 1.9 3.9 ±  1.9 3.9 ± 1.8 3.9 ± 1.9 3.7 ± 1.8
en% 1.5 ± 0.5 1.6 ±  0.5 1.6 ± 0.5 1.5 ± 0.5 1.4 ± 0.5

SFA
g/d 36.9 ± 14.5 37.5  ± 13.3 37.2 ± 13.1 38.0 ± 13.3 36.8 ± 13.2
en% 15.1 ± 3.0 15.1 ±  2.5 14.9 ± 2.4 15.0 ± 2.3 14.7 ± 2.3

P/S ratio 0.32 0.40 0.46 0.52 0.65
Cholesterol, mg/d 244.0 ± 96.8 245.8 ± 92.1 241.8 ± 89.9 244.2 ± 90.2 231.3 ± 91.0
Total fat

g/d 81.2 ± 29.7 87.4 ±  29.0 89.9 ± 29.6 95.0 ± 31.4 98.7 ± 33.3
en% 33.3 ± 5.2 35.3 ±  4.5 36.1 ± 4.5 37.6 ± 4.4 39.4 ± 4.5

Total carbohydrate, en% 47.6 ± 5.5 46.0 ± 4.8 45.3 ± 4.8 44.1 ± 4.7 42.5 ± 4.8
Mono and disaccharides, en% 25.0 ± 6.2 22.5 ± 5.3 21.6 ± 5.2 20.5 ± 5.1 19.1 ± 4.9
Polysaccharides, en% 22.6 ± 4.7 23.4 ± 4.3 23.6 ± 4.2 23.6 ± 4.3 23.4 ± 4.2
Fibre, g/d 23.8 ± 7.4 24.4 ± 7.0 24.8 ± 7.0 25.3 ± 7.2 25.6 ± 7.3
Protein, en% 16.1 ± 2.7 15.8 ± 2.3 15.7 ± 2.2 15.5 ± 2.1 15.3 ± 2.1
Energy intake,a MJ/d 9.0 ± 2.8 9.1 ± 2.7 9.2 ± 2.7 9.3 ± 2.7 9.2 ± 2.7
Body mass index, kg/m2 24.9  ± 3.8 24.9 ± 3.9 24.9 ± 3.8 24.8 ± 3.7 24.9 ± 3.9
Body weight, kg 74.2 ± 13.6 74.1 ±  13.3 74.4 ±  13.2 74.3 ± 13.1 74.5 ± 13.8
Current smoking, % 35 36 36 37 39
Alcohol consumption,b glasses/d 0.4 (0.1-1.7) 0.6 (0.1-1.7) 0.7 (0.1-1.9) 0.7 (0.1-2.0) 0.8(0.1-2.0)
Highly educated,c % 20 23 27 27 27
Physically active,d % 

Engaged in:
Sports 38 38 39 38 34
Cycling 57 60 61 62 58

Parental history of MI, % 8 8 9 10 9
SBP, mm Hg 120.4  ± 15.5 119.8 ± 15.5 119.3 ± 15.3 119.3 ± 15.0 120.7 ± 16.3
DBP, mm Hg 76.4 ±  10.3 76.0 ± 10.4 75.8 ± 10.2 75.8 ± 10.2 76.4 ± 10.7
Plasma total cholesterol, mmol/l 5.3 ± 1.0 5.3 ±  1.0 5.2 ± 1.0 5.3 ± 1.0 5.3 ± 1.1
Plasma HDL-cholesterol, mmol/l 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4
Total cholesterol / HDL-cholesterol 4.1 ± 1.5 4.1 ± 1.4 4.1 ± 1.5 4.1 ± 1.5 4.2 ± 1.5
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in Q5 (P-trend <0.0001). In men, however, linoleic acid intake was not associated with total 
cholesterol. Linoleic acid intakes were inversely associated with plasma HDL-cholesterol across 
quintiles both in men and women, although this inverse association did not reach statistical 
significance in men.

Linoleic acid intake was inversely, but not significantly, associated with the ratio of total to HDL-
cholesterol in women, with ratio values between 3.65 (Q1) and 3.59 (Q5), whereas a positive, 
yet also non-significant, association was observed in men, with ratios varying between 4.65 
(Q1) and 4.73 (Q5; Table 2.2). 

After adjustment for potential confounders, linoleic acid intake was not associated with incident 
CHD. HR varied between 0.83 and 1.00 (all P>0.05) compared with the bottom quintile of linoleic 
acid intake (Table 2.3). The HR of incident CHD for a 5% higher energy intake of linoleic acid 
with a concurrent lower intake of carbohydrates was 1.01 (95% CI: 0.86-1.19). 

We observed no interaction of sex or age (≤50 or >50 years) and linoleic acid intake in relation 
with incident CHD (data not shown). HR (95% CI) for incident CHD after additional inclusion 
of the ratio of total to HDL-cholesterol and systolic blood pressure in the multivariable models 
were 0.92 (95% CI: 0.62-1.36), 0.82 (95% CI: 0.55-1.24), 1.00 (95% CI: 0.68-1.48), 0.86 (95% CI: 
0.57-1.30) for Q2-Q5 compared with Q1, respectively. For the subgroup with information on 
physical activity (n=15,423), the full model with and without physical activity yielded similar 
results (data not shown). Models based on isocaloric substitution with saturated fatty acids did 
not differ from the models based on substitution with carbohydrates (data not shown).

Discussion
In this large Dutch population-based cohort, a higher linoleic acid and concurrent lower 
carbohydrate intake was inversely associated with total cholesterol and HDL-cholesterol in 
women, but not in men. Linoleic acid intake was neither related to the ratio of total to HDL-
cholesterol nor to CHD incidence. 

In the present population-based study, the intakes of saturated fat and trans-fat were similar 
across the quintiles of linoleic acid intake and only carbohydrates varied between high and 
low linoleic acid intake. Our data set therefore allowed the analysis of real differences in 
intake between participants instead of statistically modelling these differences. Another 
strength of the present study was the almost complete follow up of mortality. Furthermore, 
the procedure of identification of non-fatal events was validated in 36% of the participants of 
the present study by comparison against the clinical registry of the Cardiology Department 
of the Maastricht University Hospital. This showed a relatively high sensitivity (84%) and 
positive predictive value (97%) for MI.23 In addition, we also had detailed information on 
many potential confounders.
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Table 2.2 Adjusted cholesterol levels by quintiles of energy percentages of linoleic acid intake in 20,069 
Dutch men and womena,b (mean values with their standard errors )

Abbreviations: en%, % of energy; Q, quintile; HDL-cholesterol, high density lipoprotein cholesterol.
a Total cholesterol was missing for n=113 and HDL-cholesterol was missing for n=123.
b Stratified analysis was based on sex-specific quintiles of linoleic acid.
c Means adjusted for age, sex, and total energy intake (for total cholesterol: n=8,951 in men and n=11,005 in women for HDL-
cholesterol and the ratio of total to HDL-cholesterol: n=8,948 in men and n=10,998 in women).
d Means additionally adjusted for smoking, body mass index, educational level, parental history of myocardial infarction, and 
alcohol intake (for total cholesterol: n=8,876 in men and n=10,909 in women for HDL-cholesterol and the ratio of total to HDL-
cholesterol: n=8,875 in men and n=10,902 in women).  
e Means additionally adjusted for intake of dietary fibre, protein, saturated fatty acids, monounsaturated fatty acids, trans-fatty 
acids, polyunsaturated fatty acids other than linoleic acid (for total cholesterol: n=8,876 in men and n=10,909 in women for HDL-
cholesterol and the ratio of total to HDL-cholesterol: n=8,875 in men and n=10,902 in women). 

Model 1c Model 2d Model 3e

n Median intake, en% Mean ± SE Mean ± SE Mean ± SE

Men Total cholesterol, mmol/l
Q1 1,797 3.7 5.27 ± 0.02 5.26 ± 0.02 5.25 ± 0.02
Q2 1,798 4.7 5.30 ± 0.02 5.30 ± 0.02 5.30 ± 0.02
Q3 1,798 5.4 5.26 ± 0.02 5.26 ± 0.02 5.26 ± 0.02
Q4 1,798 6.3 5.33 ± 0.02 5.34 ± 0.02 5.35 ± 0.02
Q5 1,797 7.8 5.27 ± 0.02 5.28 ± 0.02 5.29 ± 0.02
P-trend 0.90 0.49 0.31

HDL-cholesterol, mmol/l
Q1 1,797 3.7 1.19 ± 0.01 1.20 ± 0.01 1.21 ± 0.01 
Q2 1,798 4.7 1.20 ± 0.01  1.20 ± 0.01 1.20 ± 0.01
Q3 1,798 5.4 1.18 ± 0.01 1.18 ± 0.01 1.18 ± 0.01
Q4 1,798 6.3 1.19 ± 0.01 1.19 ± 0.01 1.18 ± 0.01
Q5 1,797 7.8 1.20 ± 0.01 1.20 ± 0.01 1.19 ± 0.01
P-trend 0.38 0.61 0.16

Total cholesterol/HDL-cholesterol
Q1 1,797 3.7 4.72 ± 0.04 4.70 ± 0.03 4.65 ± 0.04
Q2 1,798 4.7 4.68 ± 0.04 4.68 ± 0.03 4.67 ± 0.03
Q3 1,798 5.4 4.73 ± 0.04 4.72 ± 0.03 4.73 ± 0.03
Q4 1,798 6.3 4.74 ± 0.04 4.77 ± 0.03 4.79 ± 0.03
Q5 1,797 7.8 4.69 ± 0.04 4.70 ± 0.03 4.73 ± 0.04
P-trend 0.68 0.78 0.06

Women Total cholesterol, mmol/l
Q1 2,216 3.8 5.28 ± 0.02 5.28 ± 0.02 5.28 ± 0.02
Q2 2,216 4.6 5.29 ± 0.02 5.28 ± 0.02 5.28 ± 0.02
Q3 2,217 5.3 5.21 ± 0.02 5.21 ± 0.02 5.21 ± 0.02
Q4 2,216 6.2 5.22 ± 0.02 5.22 ± 0.02 5.22 ± 0.02
Q5 2,216 7.7 5.13 ± 0.02 5.14 ± 0.02 5.14 ± 0.02
P-trend <0.0001 <0.0001 <0.0001

HDL-cholesterol, mmol/l
Q1 2,216 3.8 1.52 ± 0.01 1.52 ± 0.01 1.53 ± 0.01
Q2 2,216 4.6 1.52 ± 0.01 1.53 ± 0.01 1.53 ± 0.01
Q3 2,217 5.3 1.52 ± 0.01 1.52 ± 0.01 1.52 ± 0.01
Q4 2,216 6.2 1.51 ± 0.01 1.51 ± 0.01 1.51 ± 0.01
Q5 2,216 7.7 1.52 ± 0.01 1.52 ± 0.01 1.51 ± 0.01
P-trend 0.89 0.25 0.002

Total cholesterol/HDL-cholesterol
Q1 2,216 3.8 3.67 ± 0.02 3.66 ± 0.02 3.65 ± 0.02
Q2 2,216 4.6 3.66 ± 0.02 3.65 ± 0.02 3.64 ± 0.02
Q3 2,217 5.3 3.62 ± 0.02 3.62 ± 0.02 3.62 ± 0.02
Q4 2,216 6.2 3.65 ± 0.02 3.65 ± 0.02 3.66 ± 0.02
Q5 2,216 7.7 3.57 ± 0.02 3.58 ± 0.02 3.59 ± 0.02
P-trend 0.001 0.008 0.10
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The present study also had limitations. Misclassification of subjects for linoleic acid intake 
may have occurred. However, we excluded participants with a history of MI or stroke, and also 
participants who used cholesterol lowering or blood pressure lowering medication, because these 
may have changed their diet. We therefore consider potential misclassification at baseline to be 
random rather than dependent on disease outcome. Multiple simultaneous and partly opposite 
effects of diet and lifestyle on CHD incidence had to be taken into account, including correlated 
types of fatty acids, partly due to presence in the same foods. Like in any other epidemiological 
study on diet and CHD, this may also have affected results in the present study. Although we 
attempted to disentangle the various possible simultaneous effects with the present statistical 
models, it is impossible to completely rule out confounding. 

In the present study, linoleic acid intake was not significantly associated with the plasma total 
to HDL-cholesterol ratio. A meta-analysis of controlled dietary intervention studies showed 
that the replacement of 1 en% of carbohydrates by PUFA would result in a reduction of the 
ratio of total to HDL-cholesterol by 0.032. In observational studies of adults between 40 and 
59 years, each 1 unit lower total to HDL-cholesterol ratio was associated with a 44% lower risk 
of CHD.9 In the population of the present study, derived from controlled dietary intervention 
studies, the predicted difference of the total to HDL ratio between highest and lowest quintiles 
of linoleic acid intake was -0.15,10 which would correspond to an approximately 7% lower CHD 
incidence. However, such a modest difference is difficult to detect considering the errors in 
observational food intake data. 
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Table 2.3 Associations of linoleic acid intake with incident CHD in 20,069 Dutch men and women 
(numbers, hazard ratios and 95% confidence intervals)

Model 1a Model 2b Model 3c

Median 
intake

Cases 
n

HR 95% CI HR 95% CI HR 95% CI

Q1 (n=4,013) 3.7 61 1.0 (ref) 1.0 (ref) 1.0 (ref)

Q2 (n=4,014) 4.7 50 0.95 (0.65-1.38) 0.93 (0.63-1.35) 0.90 (0.61-1.33)

Q3 (n=4,014) 5.4 46 0.86 (0.59-1.26) 0.86 (0.58-1.27) 0.83 (0.56-1.24)

Q4 (n=4,014) 6.2 61 1.03 (0.72-1.47) 1.04 (0.73-1.50) 1.00 (0.68-1.47)

Q5 (n=4,014) 7.7 62 0.91 (0.64-1.29) 0.94 (0.65-1.34) 0.90 (0.60-1.36)

Per 2% 1.00 (0.87-1.15) 1.02 (0.89-1.17) 1.01 (0.86-1.19)

Abbreviations: CHD, coronary heart disease; HR, hazard ratio.
Values are hazard ratios with 95% confidence intervals in quintiles (Q1-Q5) of linoleic acid intake, using Q1 as the reference category.
a Adjusted for age, sex, and total energy intake (n=20,069).
b Additionally adjusted for smoking, body mass index, educational level, parental history of myocardial infarction, and alcohol intake 
(n=19,896).
c Additionally adjusted for dietary fibre, protein, saturated fatty acids, cis-monounsaturated fatty acids, trans-fatty acids, and PUFA 
other than linoleic acid (n=19,896).
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A linoleic acid intake ranging between 3.6-8.0 en% was not significantly associated with incident 
CHD in the present study. These results are in line with those from the cohort studies in Finnish 
men,24 Danish men and women,25 and American men,26 which also used models of isocaloric 
substitution of PUFA for carbohydrates. A similar model was used in the Nurses’ Health Study. 
However, in that study with 80,000 women (1,766 events) PUFA intake, ranging from 4.1-7.4 
en%, was inversely associated with a 25% (95% CI: 8-40%) lower CHD incidence in Q5 compared 
to Q1.27 Observational studies in the USA or Western Europe mostly covered relatively small 
ranges of intake of 5 to 10 en%. To find associations within this range will be complicated 
by measurement error of intake in single dietary assessments.28 Therefore, in observational 
studies differences in linoleic acid intake may not translate into the predicted, although modest, 
differences in cholesterol and CHD risk. 

On the basis of eight randomised trials, it has been shown that an increase in PUFA intake of 
5% of energy was significantly associated with a 10% lower risk of coronary events.29 However, 
this effect size was estimated from large contrasts of PUFA intake (on average 5 v. 15 en%) 
between the intervention and control groups. Additionally, the PUFA interventions were mostly 
a combination of both a higher intake of n-6 and n-3 PUFA whereas in the present study, we 
adjusted for PUFA other than linoleic acid. A recent meta-analysis separated the trials in the 
meta-analysis of Mozaffarian et al.29 into those on n-6 PUFA only and those with combined n-6 
and n-3 PUFA interventions. The authors concluded30 that there was no indication of benefit 
of n-6 PUFA, although this statement was based on only 2 trials. However, it is clear from the 
information presented in that paper that the effect of a 5 en% difference in n-6 PUFA intake is less 
than the 10% difference in CHD incidence calculated from the dietary interventions for total PUFA. 

In conclusion, in this large population-based study in the Netherlands, a 4-5 en% difference 
in linoleic acid or carbohydrate intake did not translate into either a different ratio of plasma 
total to HDL-cholesterol or a different CHD incidence.
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Abstract 
There is a large body of scientific evidence that has been confirmed in randomized controlled 
trials indicating a cardioprotective effect for omega-3 fatty acids from fish. For alpha-linolenic 
acid (ALA), which is the omega-3 fatty acid from plants, the relation to cardiovascular health is 
less clear. We reviewed the recent literature on dietary ALA intake, ALA tissue concentrations, and 
cardiovascular health in humans. Short-term trials (6-12 weeks) in generally healthy participants 
mostly showed no or inconsistent effects of ALA intake (1.2-3.6 g/d) on blood lipids, low-density 
lipoprotein oxidation, lipoprotein(a), and apolipoproteins A-I and B. Studies of ALA in relation 
to inflammatory markers and glucose metabolism yielded conflicting results. With regard to 
clinical cardiovascular outcomes, there is observational evidence for a protective effect against 
nonfatal myocardial infarction. However, no protective associations were observed between 
ALA status and risk of heart failure, atrial fibrillation, and sudden death. Findings from long-
term trials of ALA supplementation are awaited to answer the question whether food-based 
or higher doses of ALA could be important for cardiovascular health in cardiac patients and 
the general population. 
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Introduction 
    Omega-3 (n-3) fatty acids can be divided into alpha-linolenic acid (ALA; C18:3n-3) from plant 
origin, and eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) 
from seafood. Because the human body lacks the enzymatic capacity to synthesize ALA, it is 
essential to obtain it from the diet. 

The estimated average ALA intake in the United States and most European countries is 1.3 
to 1.7 g/d.1-3 The Institute of Medicine (IOM) of the National Academies established Dietary 
Reference Intakes for macronutrients in 2002.4 For ALA, the Adequate Intake (AI) was set at 1.6 
g/d for men and 1.1 g/d for women.4 The IOM noted that intakes of n-3 fatty acids above the 
AI may confer additional health benefits, especially with respect to cardiovascular health. Many 
advisory boards consider ALA intakes greater than 1.5 g/d important for human health.1 To 
achieve an adequate ALA intake, food sources such as flaxseed and flaxseed oil, walnuts and 
walnut oil, and canola and soybean oil are recommended.

For EPA and DHA from fish, there is a vast amount of epidemiologic evidence indicating a 
cardioprotective effect. This evidence has been confirmed in randomized controlled trials.5-8 For 
ALA, the relation with cardiovascular health is less clear. Several large, prospective cohort studies in 
the United States have shown inverse associations of ALA intake with risk of cardiovascular diseases, 
but other epidemiologic studies have been inconclusive.9-11 A meta-analysis of observational studies 
showed that increased intake of ALA might reduce coronary heart disease (CHD) mortality by 
21%, although this was not statistically significant.11 In the Lyon Diet Heart Study, a randomized 
controlled trial in coronary patients, consumption of a Mediterranean-type diet that included an 
additional daily intake of roughly 1 g of ALA significantly decreased the risk of cardiac death and 
nonfatal myocardial infarction (MI) by more than 60%.12 This study, however, was not specifically 
designed to assess the effect of ALA supplementation, and many dietary factors differed between 
the experimental and control group. Since then, no randomized controlled trials of ALA and 
cardiovascular events have been published. This article summarizes the current literature (published 
after 2008) on dietary ALA intake, ALA tissue levels, and cardiovascular health in humans. 

Effect of ALA supplementation on cardiovascular risk factors
Several trials have recently been published on the effect of ALA supplementation on blood 
lipids, inflammatory markers, and other indicators of cardiovascular health (Table 3.1).13,14•,15-17,18••

Trials were mostly of relatively short duration (6-12 weeks) and ALA doses ranged from 1.2 to 3.6 
g/d. There was one long-term trial (52 weeks) in which a high ALA dose of 8.8 g/d was given.18•• 
Increased ALA intake was achieved by means of flaxseed oil,13,15 ALA-enriched margarine,14• or 
other ALA-enriched foods.16,17,18•• 

Kaul et al.13 studied the effects of low-dose supplementation (2 g/d, by means of capsules) of 
flaxseed oil, fish oil, and hempseed oil in 86 healthy Canadian men and women about 34 years 
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Table 3.1 Overview of randomized controlled trials of increased alpha-linolenic acid intake and 
cardiovascular risk factors published between January 2008 and June 2010

Abbreviations: ALA, alpha-linolenic acid; BMI, body mass index; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; HDL-C, 
high-density lipoprotein cholesterol; HOMA, homeostasis model assessment; hs-CRP, high-sensitivity C-reactive protein; IL-6, 
interleukin-6; LDL-C, low-density lipoprotein cholesterol; sVCAM-1, soluble vascular cell adhesion molecule-1; TG, triglycerides; TNF, 
tumor necrosis factor.

Study Year Population Design Outcome for ALA

Kaul et al.13 2008 88 healthy 
non-smoking 
Canadian men and 
premenopausal 
women, aged 33 y 

12-week, double-blind, 
parallel randomized 
controlled trial; sunflower oil 
(placebo), flaxseed oil (~1 
g/d ALA), hempseed oil (0.3 
g/d ALA), or fish oil (0.6 g/d 
EPA+DHA)

Plasma ALA levels increased 
(P<0.05) after 6 wk; no 
differences in total cholesterol, 
LDL-C, HDL-C, TG, LDL 
oxidation, platelet aggregation, 
or inflammation markers (CRP, 
TNF-α)

Egert et al.14• 2009 79 healthy 
non-smoking 
German men and 
premenopausal 
women, aged 19-
45 y

6-week, double-blind, 
parallel randomized 
controlled trial; ALA (3.4 
g/d), EPA (2.2 g/d), or 
DHA (2.3 g/d) via enriched 
margarines 

LDL-ALA levels increased 
(P<0.05); fasting serum 
TG decreased (P<0.05); no 
differences in total cholesterol, 
LDL-C, or HDL-C

Barceló-Coblijn 
et al.15 

2008 62 American men 
>40 y of age

12-week, parallel 
randomized controlled trial; 
different doses of flax oil, 
fish oil, and sunflower oil in 
capsules; ALA doses were 
1.2 g/d, 2.4 g/d, and 3.6 g/d

2.4 and 3.6 g/d of ALA 
significantly increased 
erythrocyte ALA and EPA levels; 
no differences in inflammation 
markers (CRP, TNF-α, 
sVCAM-1), total cholesterol, 
TG, or HDL-C

Sioen et al.16 2009 59 healthy Belgian 
male prisoners

12-week single-blind study; 
diet with 3.2 g/d extra ALA

No effect on waist 
circumference, weight, BMI, 
systolic blood pressure; 
diastolic blood pressure 
decreased and HDL-C 
increased in non-smokers

Bloedon et al.17 2008 62 men and post-
menopausal women 
from Philadelphia, 
aged 44-75 y, with 
hypercholesterolemia

10-week, blind, parallel 
randomized controlled trial 
with low-fat diet with extra 
flaxseed or with wheat bran 
(control); ALA dose of 3.4 
g/d 

Serum ALA levels increased; 
LDL-C was decreased 
after 5 wk but not after 
10 wk; lipoprotein(a) and 
improved insulin sensitivity 
(HOMA index); no effect on 
inflammation (IL-6, hs-CRP) 
or oxidative stress (ox-LDL, 
urinary isoprostane); HDL-C 
was reduced 

Dodin et al.18•• 2008 199 Canadian 
menopausal women, 
aged 49-65 y

52-week, blind parallel trial; 
40 g/d flaxseed or wheat 
germ; ALA dose of 8.8 g/d 

Serum ALA levels increased; 
modest effects on 
apolipoproteins A-I and B; no 
effects on LDL electrophoretic 
characteristics or markers of 
hemostasis and inflammation



of age in a 12-week, randomized, double-blind, placebo-controlled trial. Flaxseed oil (ALA dose 
~1 g/d) increased plasma ALA by 30% to 40%, had a small nonsignificant effect on plasma EPA 
(7%-8%), and no effect on plasma DHA. None of the treatments affected serum total, low-density 
lipoprotein (LDL), or high-density lipoprotein (HDL) cholesterol, triglycerides, LDL oxidation, 
platelet aggregation, or inflammatory markers.13 In another randomized trial in 62 healthy 
men approximately 40 years of age in the United States, participants were randomized to flax 
oil (ALA doses of 1.2, 2.4, or 3.6 g/d), fish oil (0.6 or 1.2 g/d), or sunflower oil for 12 weeks.15 
Increasing doses of flax oil caused elevation of the ALA content in erythrocyte membranes 
by 40% to 80%, and also of EPA (20%-35%), but not of DHA. None of the treatments altered 
plasma inflammatory markers (C-reactive protein [CRP], tumor necrosis factor [TNF]-α, soluble 
vascular cell adhesion molecule-1 [sVCAM-1]), plasma total or HDL cholesterol, or triglycerides.15 

Bloedon et al.17 enrolled 62 American men and post-menopausal women aged 44 to 75 years with 
hypercholesterolemia. All participants were on a low-fat, low-cholesterol diet and subsequently 
randomized to flax-based or wheat-based products for 10 weeks. ALA intake in the flaxseed group 
was 3.4 g/d higher than in the control group. Flax-based products improved insulin sensitivity 
and reduced plasma LDL cholesterol by 7% to 13% and lipoprotein(a) by 14% compared with 
wheat-based products. In men, there was also a decrease in HDL cholesterol. Treatment had 
no effect on markers of inflammation (interleukin-6, high-sensitivity CRP) or oxidative stress 
(oxidized LDL, urinary isoprostanes).17 The extent to which the observed effects of the flax-based 
diet were due to its ALA content or other components of flax seeds is not clear.

In a single-blind, 12-week field study among 59 healthy male prisoners (mean age of 42 years) 
in Belgium, daily ALA intake was increased from 2.8 to 4.9 g/d by means of ALA-enriched foods 
without changing the linoleic acid content of the diet.16 All individuals were first on a regular 
diet, which was followed by an ALA-rich diet, and no randomization was applied. EPA and DHA, 
but not ALA, were assessed in platelet phospholipids, which showed no significant changes 
during ALA intervention. Body weight, waist circumference, and systolic blood pressure did not 
change, and there were no effects of ALA on plasma total and LDL cholesterol, triglycerides, 
apolipoproteins A-I and B, glucose, and CRP. Diastolic blood pressure, however, significantly 
decreased by 3 mm Hg.16 

Egert et al.14• studied the effects of increased intake of ALA, EPA, and DHA in a 6-week parallel 
trial in 74 German normolipidemic men and women aged 19 to 43 years. Participants were 
randomly assigned to trial margarines that provided additional ALA (3.4 g/d), EPA (2.2 g/d), 
or DHA (2.3 g/d). No placebo group was included. In the ALA group, the ALA content of LDL 
particles increased by 178% and the EPA content increased by 36%, whereas DHA remained 
unchanged. Serum total and LDL cholesterol were not affected by the different treatments. 
Fasting serum triglycerides significantly decreased with EPA (-0.14 mmol/L), DHA (-0.30 mmol/L), 
and ALA (-0.17 mmol/L). DHA intake significantly increased serum HDL cholesterol, whereas no 
changes were found with ALA or EPA intake.14• 
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Finally, Dodin et al.18•• evaluated the effect of flaxseed on markers of cardiovascular disease 
risk in 169 healthy menopausal Canadian women who were randomly assigned to 40 g/d 
of flaxseed-based products or wheat-based products for 12 months. In the active-treatment 
group, ALA intake was increased by 8.8 g/d. Flaxseed products increased plasma ALA by 85% 
and plasma EPA by 51% after 12 months of intake, which differed significantly from wheat-
based intervention (12% and 29%, respectively). Changes in plasma DHA were similar in both 
groups. The 12-month intervention with flaxseed had significant effects on body weight (-0.8 
kg) and serum total cholesterol (-0.20 mmol/L) and a small adverse effect on HDL cholesterol 
(-0.08 mmol/L). LDL cholesterol was reduced by 0.13 mmol/L (P=0.09). Apolipoproteins A-I 
and B increased in both groups, but less during flaxseed-based than wheat-based intervention. 
Treatment had no effect on plasma lipoprotein(a), fibrinogen, CRP, insulin, glucose, or LDL peak 
particle size. The effect of ALA on plasma triglycerides was not reported.18••

Observational studies on ALA intake and cardiovascular risk
Zatónski et al.2 examined trends in CHD mortality in 11 Eastern European countries and 
linked these figures to national data on vegetable oil consumption after 1990. They showed 
the strongest decline in CHD mortality in countries where rapeseed oil (9% ALA) rather than 
sunflower oil (0% ALA) was used. Although these data are suggestive for a beneficial effect of 
ALA, no definite conclusions can be drawn because the countries also differed in many other 
aspects that could impact cardiovascular health. Cross-country comparisons based on aggregate 
data cannot be adjusted for potential confounders, (eg, socioeconomic status, lifestyle and other 
dietary components) and should be considered for hypothesis generation only.

In Costa Rica, soybean oil has been substituted for palm oil since the 1980s, which has led to 
an increase in ALA intake. Campos et al.19•• performed a case-control study in 3,638 Costa Rican 
individuals to examine the association between ALA and nonfatal MI (Figure 3.1). Participants 
were matched for age, sex, and area of residence. ALA intake was assessed by a 135-item food 
frequency questionnaire and ranged from 1.1 to 2.4 g/d (mean, 1.6 g/d) in this population. 
Dietary ALA was inversely associated with nonfatal MI, with odds ratios indicating a 39% reduced 
risk for approximately a 0.6-g/d difference in intake. The relationship between ALA and MI was 
nonlinear and mainly confined to the lowest levels of intake. Dietary ALA intake in this study 
correlated well with ALA in adipose tissue, plasma, and erythrocytes, but poorly with biomarkers 
of EPA and DHA, suggesting a direct cardioprotective effect of ALA rather than via conversion 
to long-chain n-3 fatty acids.19•• 

An anti-inflammatory action of ALA has been proposed as an explanation for the inverse 
association with cardiovascular diseases found in the case-control study in Costa Rica,19•• although 
negative findings on ALA and inflammatory markers have been reported by others.9 Dai et al.20• 
examined habitual ALA intake and plasma concentrations of inflammatory markers, including 
IL-6 and sIL-6R, in 353 middle-aged men in the United States who were recruited from a twin 
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registry. ALA intake, assessed by the Willett questionnaire, ranged from 0.2 to 2 g/d, and was 
significantly inversely related to plasma sIL-6R independent of shared genetic factors and a 
wide range of potential confounders. A twin with a 1-g higher ALA intake (equivalent to one 
tablespoon of canola oil) had 11% lower sIL-6R concentrations than his twin with a low intake. 
Despite the robust association with sIL-6R, no significant associations were found with plasma 
IL-6, TNF-α, or high-sensitivity CRP.20• In a study of 511 Japanese employees of municipal offices, 
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Figure 3.1 Odds ratios and 95% confidence intervals for nonfatal myocardial infarction (MI) by deciles of 
alpha-linolenic acid in adipose tissue (a) or intake (b) in a case-control study of 3,638 men and women in 
Costa Rica. Data were adjusted for smoking status, physical activity, household income, history of diabetes 
mellitus, history of hypertension, wait-to-hip ratio, saturated fat intake, and linoleic and trans-fatty acids in 
adipose tissue. (From Campos et al.;19•• with permission.)
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ALA intake was assessed by a diet history questionnaire that had been validated against 16-
day weighed food records (Pearson correlation for ALA, r=0.3).21 ALA comprised 0.8% to 1.0% 
energy (>2 g/d) and was inversely related to serum CRP. Data were adjusted for age, body mass 
index (BMI), lifestyle factors, and physical activity, but not for dietary factors associated with 
ALA, and should therefore be interpreted with caution.

Smith et al.22• assessed dietary ALA intake by the Willett questionnaire in 260 post-MI patients 
and linked these data to 24-hour electrocardiogram recordings that were analyzed for 
ventricular premature beats. ALA intake (expressed per 1,000 kcal/d) was associated with a 
significant reduction in ventricular premature beats after adjustment for age, sex, cardiovascular 
medication, and co-morbidities. However, lifestyle (e.g., smoking) and dietary factors were not 
controlled for and the study had a cross-sectional design, which has inherent methodologic 
weaknesses. 

Biomarker studies of ALA and cardiovascular risk
Previous analyses in the National Heart, Lung, and Blood Institute NHLBI Family Heart Study 
suggested that ALA may protect against atherosclerosis.23,24 Recently, Sala-Vila et al.25 investigated 
whether serum phosphatidylcholine content of ALA and other fatty acids was related to carotid 
atherosclerosis in a cross-sectional study of 451 asymptomatic Spanish individuals (mean age 
of 45 years) with primary dyslipidemia. Over half of the participants were treated with lipid-
lowering drugs. The habitual Mediterranean diet in this population provided a mean ALA intake 
of 0.8 g/d, mainly from olive oil and walnuts, which correlated well with serum ALA (r=0.44). 
EPA and DHA intake from fish was 1.05 g/d on average. The association of serum fatty acids 
with intima-media thickness (IMT) of the carotid arteries was assessed, adjusting for age, sex, 
BMI, smoking, antihypertensive drugs, statins, and other serum fatty acids. Significant inverse 
associations were found between serum ALA and internal carotid artery IMT, and between 
serum DHA and common carotid artery IMT. Serum EPA was not associated with IMT.25 In a 
small cross-sectional study of 50 Asian men and women (mean age of 58 years) who suffered 
a first nonfatal MI, the mean common carotid IMT was inversely associated with ALA content 
of erythrocytes (P=0.09) and ALA intake (P=0.02).26 Data, however, were only adjusted for age, 
sex, and total energy (for dietary ALA). EPA and DHA were not consistently related to IMT. The 
average intake of ALA was 0.6 g/d, which was similar to that of EPA and DHA intake.

Ebbesson et al.27 examined whether ALA content of erythrocytes was related to heart rate as a 
risk indicator for ventricular arrhythmias. They performed a cross-sectional study in 707 Alaskan 
Eskimos (mean age of 50 years) who had a habitual intake of marine n-3 fatty acids of 2.9 g/d. 
After adjustment for gender, height, BMI, blood pressure, smoking, and heart rate-lowering 
medications, no association was observed with ALA (P=0.98). EPA and DHA, on the other hand, 
were significantly inversely associated with heart rate. 



The delta(6)-desaturase enzyme is the rate-limiting step in the conversion of ALA into EPA 
and DHA, and genetic variation in the delta(6)-desaturase gene (FADS2) may therefore affect 
the associations of ALA with cardiovascular health. Truong et al.28, in a cross-sectional study, 
examined the association of ALA in adipose tissue with metabolic syndrome, and possible effect 
modification by FADS2. In a cohort of 1,815 men and women from Costa Rica, the prevalence of 
metabolic syndrome (656 cases) was 19% lower in the upper compared with the lower quintile 
of adipose tissue ALA. There was no association between ALA and metabolic syndrome among 
homozygous carriers of the FADS2 deletion allele, suggesting that conversion of ALA into EPA 
may play a role.28 It should be noted, however, that the FADS2 polymorphism did not influence 
the inverse association of ALA with nonfatal MI in a previous case-control study from Costa Rica.29

Biomarker studies of ALA and cardiovascular endpoints
ALA status has been inversely associated with cardiovascular disease events, although data are 
less consistent than for EPA and DHA.7-10 An overview of ALA biomarker studies is provided in 
Table 3.2. In the aforementioned case-control study by Campos et al.,19•• ALA was measured 
in adipose tissue as a biomarker of intake, which correlated well with dietary ALA. ALA was 
strongly inversely associated with nonfatal MI, with a 57% reduced risk when comparing the 
7th decile with the lowest decile. The relationship between ALA and MI was nonlinear and 
mainly confined to levels below the median (Figure 3.1). Mozaffarian et al.30 suggested that 
ALA may particularly reduce CHD risk when intake of marine n-3 fatty acids is low. In the study 
by Campos et al.,19•• however, concurrent fish intake (range, 3-32 g/d) or EPA and DHA intake 
(range, 130-520 mg/d) did not modify the associations of ALA with MI. 

Yamagishi et al.31 examined the prospective association of plasma fatty acids with risk of heart 
failure. The data used were from 3,575 white men and women in the United States (mean age 
of 54 years) who participated in the Atherosclerosis Risk in Communities (ARIC) study. During 
14 years of follow-up, 195 cases of heart failure developed. Concentrations of n-3 fatty acids 
were assessed in plasma cholesteryl esters and in phospholipids. Plasma ALA was not associated 
with risk of heart failure (hazard ratios of 0.99 and 0.97 for upper versus lower quintiles of 
cholesteryl ester and phospholipid fractions, respectively; P=0.8). Plasma EPA also showed no 
association. Plasma DHA was inversely associated with incident heart failure, but only in women. 
Data were extensively adjusted for major confounders, including age, sex, BMI, lifestyle factors, 
and cardiovascular risk factors, but not for potential dietary confounders.31 

Warensjö et al.32 conducted a prospective cohort study of ALA in serum cholesteryl esters and 
cardiovascular mortality in more than 2,000 Swedish men (mean age of 50 years). The study 
had 30 years of follow-up and comprised over 60,000 person-years. A 10% higher risk of fatal 
cardiovascular events was found per standard deviation increase in serum ALA, which was 
borderline statistically significant. Data were adjusted for serum cholesterol, BMI, smoking, 
physical activity and presence of hypertension.
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Table 3.2 Overview of biomarker studies of alpha-linolenic acid and cardiovascular events published 
between January 2008 and June 2010

Abbreviations: ALA, alpha-linolenic acid; ARIC, Atherosclerosis Risk in Communities; CVD, cardiovascular diseases; DHA, 
docosahexaenoic acid; EPA, eicosapentaenoic acid; FFQ, food frequency questionnaire; HR, hazard ratio; MI, myocardial infarction; 
OR, odds ratio; Q, quartile; SD, standard deviation; ULSAM, Uppsala Longitudinal Study of Adult Men.

Study Year Population Design Outcome

Campos et 
al.19•• 

2008 Costa Rica: 1,891 
cases with first 
nonfatal MI and 1,891 
population-based 
controls; matching for 
age, sex, and area of 
residence

Case-control study: 
association of ALA intake 
from FFQ and ALA in 
adipose tissue with risk of 
first nonfatal MI

OR (95% CI) for first nonfatal MI was 
0.41 (0.25-0.67) for top vs lowest 
decile of ALA in adipose tissue, and 
0.61 (0.42-0.88) for high vs low ALA 
intake; associations only present at 
lower ALA levels

Yamagishi et 
al.31 

2008 USA, Minneapolis: 
3,575 white men and 
women from ARIC 
study, ages 45-64 y

Prospective cohort study: 
association of plasma ALA 
with incident heart failure; 
14.3 y of follow-up

195 participants (5.5%) developed 
heart failure; ALA status (top vs 
bottom quintile) was not associated 
with incident heart failure; age- and 
sex-adjusted HR was 0.99 (0.63-1.53) 
for cholesteryl ester fraction and 0.97 
(0.61-1.54) for phospholipid fraction

Warensjö et 
al.32 

2008 Sweden: 2,009 men 
from ULSAM study, 
aged 50 y 

Prospective cohort study: 
association of ALA in 
serum cholesteryl esters 
with CVD mortality; 30.7 y 
of follow-up

Multivariable-adjusted HR was 1.10 
(1.00-1.21) per 1-SD increase in 
serum ALA

Park et al.33 2009 South Korea: 40 cases 
of ischemic stroke, 40 
cases of hemorrhagic 
stroke and 40 healthy 
controls; matching for 
age and sex

Case-control study: 
association of ALA 
in erythrocytes with 
risk of ischemic and 
hemorrhagic stroke

Erythrocyte ALA concentrations 
(area %) in hemorrhagic stroke 
patients (0.71±0.21) and ischemic 
stroke patients (0.24±0.03) were not 
significantly different from controls 
(0.44±0.05) after adjustment for 
family history of stroke; inverse 
association of ALA with ischemic 
stroke after adjustment for age and 
systolic blood pressure (P=0.045).

Virtanen et 
al.34•• 

2009 Finland: 2,174 men 
from Kuopio Ischemic 
Heart Disease Risk 
Factor Study, ages 
42-60 y

Prospective cohort study: 
association of serum 
ALA with incident atrial 
fibrillation; 17.7 y of 
follow-up

240 men (11.0%) developed atrial 
fibrillation; multivariable-adjusted HR 
for serum ALA (compared to Q1) was 
Q2: 1.26 (95% CI: 0.84-1.89), Q3: 0.74 
(0.46-1.20), and Q4: 1.14 (0.72-1.79; 
P-trend = 0.98).

Lemaitre et 
al.35•• 

2009 USA, Seattle: 265 out-
of-hospital sudden 
cardiac arrest patients 
and 415 community 
members; matching 
for age, sex, and 
calendar year

Case-control study: 
association of ALA 
in erythrocytes with 
risk of sudden cardiac 
death; blood collection 
immediately after the 
event (patients) or during 
interview (control)

Multivariable-adjusted OR over 
quartiles of ALA in erythrocytes 
(compared to Q1): Q2 was 1.7 (1.0-
3.0), Q3 was 1.9 (1.1-3.3), Q4 was 
2.5 (95% CI, 1.3-4.8); association 
independent of erythrocyte levels 
of EPA and DHA, linoleic acid, and 
trans-fatty acids
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Erythrocyte concentrations of n-3 fatty acids were studied in relation to hemorrhagic and 
ischemic stroke in a case-control study of 120 Asian men and women (mean age of 57 years).33 
The average total n-3 fatty acid intake in this population was 1.1 g/d, about half of which was 
ALA. Erythrocyte ALA concentrations (area%) were 0.71±0.21 in hemorrhagic stroke patients 
and 0.24±0.03 in ischemic stroke patients, which did not differ significantly from controls 
(0.44±0.05) after adjustment for family history of stroke. In a logistic regression model, both 
ALA, EPA and DHA were significantly inversely related to ischemic stroke. EPA and DHA were 
also inversely related to hemorrhagic stroke, but this was not the case for ALA. Data, however, 
were only adjusted for age and systolic blood pressure, so residual confounding may have 
been present. 

The risk of atrial fibrillation in relation to serum n-3 fatty acids was examined in a prospective 
cohort study of 2,174 Finnish men (mean age of 53 years).34•• During 18 years of follow-up, 
240 events of atrial fibrillation occurred. Serum ALA was not associated with incidence of atrial 
fibrillation. Hazard ratios in consecutive quartiles of ALA were 1.26 (95% CI: 0.84-1.89), 0.74 
(95% CI: 0.46-1.20), and 1.14 (95% CI: 0.72-1.79) compared with the lowest quartile (P-trend = 
0.98). Serum EPA did not show an association but DHA was inversely related to atrial fibrillation 
(hazard ratio of 0.62 for upper vs lower quartile; P-trend = 0.02).34••

Finally, Lemaitre et al.35•• investigated in a case-control study whether ALA levels in erythrocytes 
were associated with risk of sudden cardiac death. Blood was collected from 265 out-of-hospital 
sudden cardiac arrest patients in Seattle, WA immediately after the event and from 415 randomly 
selected community members (mean age of 58 years). In contrast to what was expected, higher 
ALA levels were associated with a higher risk of sudden cardiac arrest. After adjustment for age, 
sex, smoking, diabetes, hypertension, education, physical activity, weight, height, and total fat 
intake, the risk increased over the quartiles with an odds ratio of 2.5 (95% CI: 1.3-4.8) for the 
highest compared with the lowest quartile. The association was independent of other fatty 
acids in erythrocyte membranes, including EPA and DHA.35••

Conclusions
The trials reviewed here consistently showed an increase in blood ALA levels after ALA 
supplementation, starting at low doses (<2 g/d). ALA supplementation also increased blood 
levels of EPA, but not of DHA, indicating conversion of ALA to EPA through elongation and 
desaturation. Short-term trials (6-12 weeks) in generally healthy individuals mostly showed no 
or inconsistent effects of ALA intake (1.2-3.6 g/d) on blood lipids, LDL oxidation, lipoprotein(a), 
and apolipoproteins A-I and B. Previous studies suggested an anti-inflammatory action of ALA,5,7,8 
but recent trials showed little effect of ALA on CRP or other inflammatory markers. There was, 
however, an interesting inverse association of ALA with sIL-6R in the twin study by Dai et al.,20• 

which warrants further investigation. The few studies that addressed ALA intake in relation to 
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glucose metabolism or blood pressure yielded inconsistent results.16,17,18•• There is, however, 
some observational evidence that a high ALA status may be related to a lower risk of metabolic 
syndrome.28 Long-term treatment with high ALA doses had a beneficial effect on body weight 
and blood LDL cholesterol,18•• which warrants confirmation in future trials. 

Previous evidence favored recommendations for modest dietary consumption of ALA (2-3 
g/d) for the primary and secondary prevention of CHD.7 The recently published case-control 
study by Campos et al.19•• showing strong inverse associations of ALA status and intake with 
nonfatal MI is in line with this recommendation. Recent data provide some support that ALA 
could protect against atherosclerosis,25,26 but it should be noted that this evidence comes from 
relatively small cross-sectional studies and that conclusions on causality cannot be drawn. 
Concerning the hypothesis of an anti-arrhythmic effect of n-3 fatty acids, there was some 
evidence for protection against ventricular premature beats,22• but no evidence for a relation with 
heart rate27 or incidence of atrial fibrillation.34•• Moreover, data from two recent well-conducted 
epidemiological studies suggested that high tissue ALA is related to an increased rather than 
decreased risk of fatal cardiovascular events32 and sudden death.35•• Harris et al. performed a 
meta-analysis of previous studies on tissue fatty acid composition and risk of CHD published 
until 2006. They showed that ALA in adipose tissue or phospholipids was inversely associated 
with CHD, although the association was not statistically significant for fatal events.36 Of 16 studies 
reviewed, about half were supportive for a beneficial role of ALA, whereas other studies were 
negative or supportive for an adverse effect.36

In conclusion, there is a need for long-term trials investigating the effect of ALA supplementation 
on cardiovascular risk factors and clinical end points. Data are awaited from the Alpha Omega 
Trial, in which 4,837 post-MI patients (mean age of 69 years) were randomized to 2 g/d of ALA 
and/or 400 mg/d of EPA and DHA and followed for fatal and nonfatal cardiovascular disease 
events for 40 months.37 The findings of this study may answer the question of whether a food-
based dose of ALA affects cardiovascular health in high-risk individuals and, if so, whether this 
is comparable to the effect of marine n-3 fatty acids.
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Abstract 
Background: Whether intake of alpha-linolenic acid (ALA), the plant-derived n-3 polyunsaturated 
fatty acid (PUFA), could prevent cardiovascular diseases is not yet clear. We examined the 
associations of ALA intake with 10-year incidence of coronary heart disease (CHD) and stroke 
in the Netherlands. 

Methods: Data were collected from a general population of 20,069 generally healthy men 
and women, aged 20 to 65 years. Habitual diet was assessed at baseline (1993-1997) with a 
validated 178-item food frequency questionnaire. Incidences of CHD and stroke were assessed 
through linkage with mortality and morbidity registers. Hazard ratios (HR) were calculated with 
multivariable Cox proportional hazards models, adjusted for age, gender, lifestyle, and dietary 
factors. 

Results: During 8–13 years of follow-up, we observed 280 incident CHD events (19% fatal) and 
221 strokes (4% fatal). Intakes of energy-adjusted ALA in quintiles ranged from less than 1.0 g/d 
in the bottom quintile (Q1) to more than 1.9 g/d in the top quintile (Q5). ALA intake was not 
associated with incident CHD, with HRs varying between 0.89 and 1.01 (all P>0.05) in Q2-Q5 
compared with the bottom quintile of ALA intake. For incident stroke, however, participants in 
Q2-Q5 had a 35-50% lower risk compared with the reference group. HRs (95% CI) were 0.65 
(0.43-0.97), 0.49 (0.31-0.76), 0.53 (0.34-0.83), and 0.65 (0.41-1.04) for Q2-Q5 respectively. 

Conclusion: In this general Dutch population, ALA intake was not associated with incident CHD. 
The data suggested that a low intake of ALA may be a risk factor for incident stroke. These 
results warrant confirmation in other population-based studies and in trials. 
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Introduction 
Numerous studies suggest that marine n-3 polyunsaturated fatty acids (PUFA), mainly 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), protect against cardiovascular 
diseases (CVD).1-3 However, the role of the plant-derived n-3 PUFA alpha-linolenic acid (ALA) in 
CVD prevention is less clear.4-6 ALA is mainly found in vegetable oils such as soybean, canola, 
and flaxseed oil, and walnuts.7 

In Western countries such as the Netherlands, the intake of ALA is 5-10 times higher than n-3 
PUFA from fish.8 ALA is an essential fatty acid, which means that humans have to obtain it 
through their diet. Humans can convert ALA into the very-long-chain fatty acids EPA and DHA, 
although conversion only occurs to a limited extent.9,10 Apart from potential indirect effects of 
ALA on CVD via conversion into EPA and DHA, it is suggested that ALA could have direct anti-
inflammatory,6,11 anti-arrhythmic,12 anti-thrombotic,12,13 or neuroprotective effects.14 However, 
others concluded that there was insufficient evidence that ALA influences risk factors for CVD.15,16

Several prospective cohort studies showed inverse associations of ALA intake with fatal 
CVD,17 fatal coronary heart disease (CHD),17-19 sudden cardiac death,12 incident CHD,20 incident 
myocardial infarction (MI),21 or nonfatal MI.20 Other cohort studies suggested no protection 
of ALA intake against fatal CVD,22 fatal CHD,12,21,23 sudden death,20 incident CHD,23 or nonfatal 
MI.12,18 The relation of ALA intake with fatal CHD has been summarized in a meta-analysis of 5 
prospective cohort studies showing that ALA intakes of around 2 g/d were associated with a 21% 
lower risk of fatal CHD (relative risk: 0.79; 95% CI: 0.60-1.04), compared with intakes of 0.8 g/d.24

Little is known about the association of ALA intake with stroke. In a nested case-control study 
in 192 American middle-aged men, serum ALA was inversely associated with stroke,25 although 
this was not confirmed in a Japanese nested case-control study of with 197 cases of hemorrhagic 
and ischemic stroke.26 However, Japanese have higher mortality from stroke and have higher 
serum levels of n-3 PUFA compared with white Americans and Europeans, which makes it 
difficult to compare the results.26

We examined the 10-year incidence of CHD and stroke in relation to ALA intake in a population-
based cohort of over 20,000 adults in the Netherlands.

Methods

Ethical statement
This research was performed in accordance with the ethical principles for medical research 
involving human subjects outlined in the Declaration of Helsinki. This research was approved 
by the Medical Ethics Committee of TNO Prevention and Health (Leiden, The Netherlands). All 
participants gave written informed consent. 
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Design and study population
The “Monitoring Project on Risk Factors for Chronic Diseases” (MORGEN) study is a Dutch 
population-based cohort of 22,654 men and women, aged 20 to 65 years. MORGEN is part of 
the European Prospective Investigation into Cancer and Nutrition (EPIC) study.27 For the current 
study we excluded participants who did not provide informed consent for vital status follow-up 
(n=701). We also excluded 72 participants without dietary information and 97 participants with 
extreme energy intakes (<500 or >4,500 kcal for women and <800 or >5,000 kcal for men). 
Furthermore, participants with a history of MI or stroke at baseline were excluded (n=442). We 
also excluded participants who reported use of lipid or blood pressure lowering medication 
(n=1,093) and 180 participants with diabetes resulting in 20,069 participants (8,988 men and 
11,081 women).

Dietary assessment
The habitual diet was assessed at baseline with the Dutch EPIC Food Frequency Questionnaire 
(FFQ) a self-administered 178-item FFQ covering the previous year.28,29 The FFQ included foods 
that covered the intake of foods and nutrients relevant to chronic disease etiology for at least 
90% of the national mean intake. Participants indicated consumption of main food groups in 
times per day, per week, per month, per year, or as never, combined with questions on the 
relative intakes of foods within food groups (seldom/never, sometimes, often, mostly/always). 
In addition, we calculated raw vegetable consumption as the sum of lettuce, cucumber, tomato, 
carrots, cabbage, sweet pepper, and chicory consumption in grams per day, because these raw 
vegetables are consumed together with salad dressings, which is a main source of ALA. 

Nutrient intakes were calculated with the “Dutch food composition table” of 1998. For individual 
fatty acids, we used the table of 2001. All nutrients were adjusted for total energy intake with the 
residuals method.30 The Dutch EPIC questionnaire has been validated for several food groups 
and nutrients. The reproducibility (estimated by 2 repeated measurements) and the relative 
validity (intake assessed by the FFQ compared to intakes assessed by 12 monthly 24-h recalls) 
of the FFQ for various food groups and nutrients were assessed among 121 Dutch men and 
women.28,29 The Spearman rank correlations for the reproducibility of the FFQ after 6 months were 
0.90 and 0.80 for total energy and 0.83 and 0.77 for total fat in men and women respectively. 
The relative validity of the FFQ was 0.77 and 0.62 for total energy and 0.74 and 0.63 for total 
fat in men and women respectively.

Mortality and morbidity
Vital status was checked through linkage with the national population register. Participants were 
followed for the occurrence of CVD by linkage with Statistics Netherlands for cause-specific 
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mortality and to the national hospital discharge register for nonfatal events by a validated 
probabilistic linkage method described in detail elsewhere.31 Incident CHD included fatal 
CHD (I20-I25), fatal and nonfatal cardiac arrest (I46), and nonfatal MI (I21-I22) according to 
the International Classification of Diseases (ICD-10, WHO). Incident stroke included fatal and 
nonfatal cerebrovascular accidents and transient ischemic attacks (I60-I66, G45). For hospital 
admissions, corresponding ICD9 codes were used. Both primary and secondary causes of 
death were used for the classification of fatal events. For nonfatal events we used the primary 
indication for hospital admission. Participants were followed until death, incident CHD or 
stroke (first events only), date of loss-to-follow-up (n=693) or 1 January 2006, whichever came 
first. 

Other baseline characteristics
Body weight, height,   and blood pressure were measured by trained research nurses. Levels 
of total cholesterol and high-density lipoprotein cholesterol were assessed in plasma (non-
fasting).32 Questionnaires were used to assess presence of diabetes, history of MI, history of 
stroke, medication use, parental history of MI (MI of father before the age of 55 year or MI of 
mother before the age of 65 years), educational level, and cigarette smoking. Alcohol intake 
(assessed by FFQ) was categorized as no intake, low to moderate intake (men ≤2 and women 
≤1 glasses/d), or high intake (men >2 and women >1 glasses/d). Physical activity was assessed 
with a validated questionnaire in 76% of our cohort (from 1994 onwards).33 For this subset, we 
calculated whether participants were engaged in activities with a metabolic equivalent score 
≥4 (yes/no). Cycling (yes/no) and sports (yes/no) were previously shown to be inversely related 
to CVD incidence in this study population.34

Statistical analysis
Participants’ characteristics by quintiles of energy-adjusted ALA intake are presented as 
means with SD, medians with interquartile ranges, or percentages. Correlations between the 
energy-adjusted intakes of different types of fatty acids were assessed with the Spearman rank 
correlation test. 

We used Cox proportional hazards models to estimate relative risks for the incidence of CHD, 
total stroke, and ischemic stroke across quintiles of energy-adjusted ALA intake at baseline. 
For hemorrhagic stroke we had insufficient cases. Hazard ratios (HR) with 95% confidence 
intervals (CI) were obtained with the bottom quintile of ALA intake as the reference category. 
The proportional hazards assumption was tested and not rejected based on Schoenfeld residuals 
and visual inspection.

In model 1, we adjusted for age and gender. In model 2, we additionally adjusted for total 
energy intake (kJ/d), body mass index (kg/m2), alcohol intake (no, low to moderate, or high), 
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current cigarette smoking, high educational level (completed higher vocational training or 
university), parental history of MI. In model 3, we added energy-adjusted intakes of vitamin C 
(mg/d), beta-carotene (μg/d), fiber (g/d), saturated fatty acids (g/d), trans-fatty acids (g/d), and 
polyunsaturated fatty acids other than ALA (g/d). 

Possible confounding by physical activity was checked in the subgroup of participants with 
information on physical activity. We examined whether further adjustment for systolic blood 
pressure and total cholesterol changed the association of ALA with CHD and stroke to assess 
whether these factors could be intermediates. Effect modification was evaluated for age and 
gender. In various foods ALA is highly correlated with saturated fatty acids and trans-fatty 
acids. We therefore separately analyzed ALA intake from salad dressings (mayonnaise + soy 
bean oil), with a low content of saturated fatty acids and trans-fatty acids vs. ALA intake from 
other sources, mutually adjusted. These analyses were additionally adjusted for the intake of 
raw vegetables. All statistical analyses were performed with SAS (version 9.1; SAS Institute). 
Two-sided P-values <0.05 were considered statistically significant.

Results

Population characteristics
Participants were on average ± SD 41.5 ± 11.1 years at baseline, and 45% were male. Men had 
higher ALA intakes than women (1.6 ±  0.6 vs. 1.2 ± 0.5 g), but values were similar after energy 
adjustment (1.4 ± 0.4 g). During 8-13 years of follow-up (median 10.5 y), 280 CHD events 
(19% fatal) and 221 strokes (4% fatal) occurred. Total stroke comprised 80 cases of ischemic 
cerebrovascular accident (36%), 59 transient ischemic attacks (27%), 47 cases of hemorrhagic 
stroke (21%), and 35 cases of unspecified stroke (16%). 

The main sources of ALA intake were mayonnaise (15%), margarine (14%), soy bean oil (8%), 
and bread (8%). Median energy-adjusted ALA intakes in quintiles ranged from less than 1.0 
g/d to more than 1.9 g/d. ALA intake was positively associated with intakes of total PUFA 
(mainly linoleic acid), cis-monounsaturated fat, trans-fatty acids, and saturated fatty acids, 
but not with EPA-DHA (Table 4.1). The Spearman rank correlations with ALA were 0.54 for 
linoleic acid, 0.41 for cis-monounsaturated fatty acids, 0.22 for trans-fatty acids, and 0.18 for 
saturated fatty acids. 

ALA intake and incident CHD and stroke
After adjustment for potential confounders, ALA intake was not associated with incident CHD. 
HRs varied between 0.89 and 1.01 (all P>0.05) compared with the bottom quintile of ALA intake 
(Table 4.2). ALA intake was inversely associated with total stroke (Figure 4.1) and ischemic stroke 
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Table 4.1 Baseline characteristics of 20,069 Dutch men and women, aged 20-65 years, by quintiles of 
energy-adjusted ALA intakea

Abbreviations: ALA, alpha-linolenic acid; en%, percent of energy; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; MUFA, 
monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; Q1-Q5, quintiles; SFA, saturated fatty acids; MI, myocardial 
infarction; TFA, trans-fatty acids.
a Values are means ± SD, unless indicated otherwise.
b Median with interquartile range.
c University or higher vocational training.
d Available for participants enrolled between 1994 and 1997 (n=15,423).
e Nonfasting.

Quintiles of ALA intake

Q1 Q2 Q3 Q4 Q5 

n 4,013 4,014 4,014 4,014 4,014
ALA

g/d 0.9 ± 0.2 1.2 ± 0.1 1.3 ± 0.05 1.5 ± 0.1 2.0 ± 0.4
en% 0.4 ± 0.05 0.4 ± 0.03 0.5 ± 0.02 0.6 ± 0.04 0.8 ± 0.1
from dressings, g/d 0.1 ± 0.1 0.3 ± 0.1 0.3 ± 0.2 0.4 ± 0.2 0.7 ± 0.5
from other sources, g/d 0.8 ± 0.2 0.9 ± 0.1 1.0 ± 0.2 1.1 ± 0.2 1.3 ± 0.4

Linoleic acid
g/d 11.1 ± 4.3 12.5 ± 3.2 13.4 ± 3.0 14.6 ± 3.1 17.2 ± 4.2
en% 4.4 ± 1.4 4.8 ± 1.3 5.2 ± 1.2 5.8 ± 1.2 6.7 ± 1.5

EPA-DHA,b mg/d 114 (61-194) 110 (60-192) 111 (58-189) 112 (61-194) 117 (65-198)
Male gender, % 59 41 38 40 46
Age, y 41.8 ± 11.7 42.0 ± 11.2 41.8 ± 11.0 41.3 ± 10.9 40.6 ± 10.6
Body mass index, kg/m2 24.9 ± 3.7 24.9 ± 3.8 24.8 ± 3.8 24.8 ± 3.8 24.9 ± 4.1
PUFA

g/d 13.9 ± 4.40 15.9 ± 3.2 17.0 ± 3.0 18.4 ± 3.1 21.6 ± 4.3
en% 5.6 ± 1.5 6.1 ± 1.3 6.6 ± 1.2 7.3 ± 1.2 8.4 ± 1.5

Cis-MUFA
g/d 27.5 ± 5.9 30.0 ± 4.7 31.1 ± 4.6 32.0 ± 4.7 34.0 ± 5.8
en% 10.9 ± 2.0 11.5 ± 1.9 12.0 ± 1.9 12.5 ± 1.9 13.3 ± 2.0

TFA
g/d 3.4 ± 1.5 3.7 ± 1.2 3.8 ± 1.1 3.9 ± 1.2 4.1 ± 1.5
en% 1.4 ± 0.5 1.4 ± 0.5 1.5 ± 0.5 1.5 ± 0.5 1.6 ± 0.5

SFA
g/d 35.1 ± 7.8 36.7 ± 6.1 37.3 ± 5.8 37.7 ± 5.8 38.3 ± 6.4
en% 13.8 ± 2.7 14.2 ± 2.5 14.4 ± 2.4 14.6 ± 2.4 14.9 ± 2.4

Carbohydrate, % of energy 45.4 ± 6.3 44.5 ± 5.8 43.5 ± 5.4 42.7 ± 5.2 41.3 ± 5.1
Protein, en% 15.0 ± 2.4 15.5 ± 2.3 15.3 ± 2.2 15.2 ± 2.1 14.4 ± 2.0
Vitamin C,b mg/d 103 (77-138) 101 (77-132) 99 (77-129) 98 (75-127) 93 (70-124)
Beta carotene,b mg/d 1.4 (1.1-1.7) 1.4 (1.1-1.8) 1.4 (1.2-1.8) 1.5 (1.2-1.9) 1.5 (1.2-2.0)
Fiber, g/d 24.3 ± 6.0 24.7 ± 5.1 24.7 ± 4.8 24.8 ± 4.9 24.5 ± 5.4
Energy intake, MJ/d 10.6 ± 2.9 9.0 ± 2.5 8.8 ± 2.5 9.1 ± 2.6 10.1 ± 2.9
Current smoking, % 34 33 35 38 44
Alcohol consumption, %
No 12 13 12 12 13
Low to moderate 50 58 58 61 58
High 38 29 30 27 29
Highly educated,c % 24 25 27 25 24
Dutch ethnicity, % 97 97 97 96 95
Physically active,d % 
Engaged in cycling 59 61 60 59 57
Engaged in sports 39 40 38 35 34
Parental history of MI, % 8 9 9 10 9
Plasma total cholesterol,e mmol/l 5.3  ± 1.1 5.3 ± 1.0 5.3 ± 1.1 5.3 ± 1.1 5.2 ± 1.0
Plasma HDL-cholesterol,e mmol/l 1.3 ±  0.4 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 1.3 ± 0.4
Systolic blood pressure, mm Hg 122.0 ± 15.7 120.1 ± 15.9 119.5 ± 15.5 119.0 ± 15.1 119.0 ± 15.3
Diastolic blood pressure, mm Hg 77.0 ± 10.4 76.2 ± 10.4 76.0 ± 10.5 75.7 ± 10.2 75.6 ± 10.3
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Figure 4.1 The association of incident total stroke by quintiles of energy-adjusted ALA intake.a,b

a Hazard ratios (95% CI) with the first quintile as the reference category, adjusted for age, gender, body mass index total energy intake, 
alcohol intake, cigarette smoking, education level, parental history of myocardial infarction, intake of vitamin C, beta-carotene, fiber, 
saturated fatty acids, trans-fatty acids, polyunsaturated fatty acids other than ALA.
b ALA, alpha-linolenic acid; HR, hazard ratio; Q1-Q5, quintiles.

Table 4.2 Associations of incident coronary heart disease and stroke by quintiles of energy-adjusted ALA 
intake in 20,069 Dutch men and womena

Abbreviations: ALA, alpha-linolenic acid; Q1-Q5, quintiles.
a Values are hazard ratios (95% CI), with the first quintile as the reference category.
b Model 1: adjusted for age and gender (n=20,069).
c Model 2: model 1 with additional adjustments for body mass index, total energy intake, cigarette smoking, educational level, 
parental history of myocardial infarction, alcohol intake (n=19,896).
d Model 3: model 2 with additional adjustments for intake of vitamin C, beta-carotene, fiber, saturated fatty acids, trans-fatty acids, 
polyunsaturated fatty acids other than ALA (n=19,896).

Quintiles of ALA intake, g/d

Q1 Q2 Q3 Q4 Q5

n 4,013 4,014 4,014 4,014 4,014
Median ALA, g/d 1.0 1.2 1.3 1.5 1.9

Coronary heart disease
No. events 68 51 47 53 61
Model 1b 1.0 (ref) 0.90 (0.63-1.30) 0.87 (0.60-1.27) 1.01 (0.70-1.44) 1.16 (0.82-1.64)
Model 2c 1.0 (ref) 0.89 (0.61-1.29) 0.89 (0.61-1.30) 0.97 (0.67-1.40) 1.03 (0.72-1.46)
Model 3d 1.0 (ref) 0.89 (0.61-1.30) 0.90 (0.61-1.33) 0.97 (0.66-1.44) 1.01 (0.66-1.54)

Total stroke 
No. events 64 43 34 35 45
Model 1b 1.0 (ref) 0.71 (0.48-1.04) 0.57 (0.38-0.87) 0.62 (0.41-0.93) 0.83 (0.57-1.22)
Model 2c 1.0 (ref) 0.68 (0.46-1.01) 0.53 (0.34-0.81) 0.59 (0.39-0.90) 0.78 (0.53-1.15)
Model 3d 1.0 (ref) 0.65 (0.43-0.97) 0.49 (0.31-0.76) 0.53 (0.34-0.83) 0.65 (0.41-1.04)

Ischemic stroke
No. events 45 27 21 23 28
Model 1b 1.0 (ref) 0.65 (0.40-1.05) 0.52 (0.31-0.87) 0.59 (0.36-0.98) 0.74 (0.46-1.20)
Model 2c 1.0 (ref) 0.63 (0.39-1.02) 0.45 (0.26-0.77) 0.55 (0.33-0.92) 0.70 (0.43-1.12)
Model 3d 1.0 (ref) 0.63 (0.38-1.04) 0.45 (0.26-0.79) 0.56 (0.32-0.97) 0.70 (0.39-1.26)



incidence. Compared with the lowest quintile of ALA intake (<1.1 g/d), participants in the other 
quintiles had a 35-50% lower risk of incident total stroke and ischemic stroke. The lowest risks 
were observed in quintiles 3 and 4. 

Median energy-adjusted intakes of ALA from salad dressings increased from 0.1 g/d to 0.7 g/d 
across quintiles. ALA from other sources (mainly margarines) increased from 0.7 to 1.4 g/d. 
Incident CHD was not associated with ALA from salad dressings (Table 4.3) or with ALA from 
other sources (Table 4.4). The inverse association of ALA intake with total and ischemic stroke 
was stronger for ALA from salad dressings compared with total ALA, while ALA from other 
sources was not associated with stroke. Compared with the bottom quintile of ALA intake, 
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Table 4.3 Associations of incident coronary heart disease and stroke by quintiles of energy-adjusted ALA 
intake from salad dressings in 20,069 Dutch men and womena

Abbreviations: ALA, alpha-linolenic acid; Q1-Q5, quintiles.
a Values are hazard ratios (95% CI), with the first quintile as the reference category.
b Analyses on ALA in salad dressings are adjusted for ALA in other sources in all models.
c Model 1: adjusted for age and gender (n=20,069).
d Model 2: model 1 with additional adjustments for body mass index, total energy intake, cigarette smoking, educational level, 
parental history of myocardial infarction, alcohol intake (n=19,896).
e Model 3: model 2 with additional adjustments for intake of vitamin C, beta-carotene, fiber, saturated fatty acids, trans-fatty acids, 
polyunsaturated fatty acids other than ALA (n=19,896).
f Model 4: model 3 with additional adjustment for raw vegetables (n=19,896).

Quintiles of ALA intake

Q1 Q2 Q3 Q4 Q5

n 4,013 4,014 4,014 4,014 4,014
Median ALA in salad dressings,b g/d 0.1 0.2 0.3 0.5 0.7
Median ALA in other sources, g/d 1.0 1.0 1.0 1.0 0.9

Coronary heart disease
No. events 78 56 55 42 49
Model 1c 1.0 (ref) 0.93 (0.66-1.32) 1.07 (0.75-1.51) 0.90 (0.62-1.32) 1.20 (0.83-1.73)
Model 2d 1.0 (ref) 0.93 (0.66-1.32) 1.02 (0.71-1.45) 0.83 (0.56-1.23) 1.06 (0.73-1.54)
Model 3e 1.0 (ref) 0.95 (0.67-1.34) 1.04 (0.72-1.49) 0.86 (0.58-1.29) 1.14 (0.76-1.70)
Model 4f 1.0 (ref) 0.94 (0.66-1.34) 1.03 (0.71-1.49) 0.85 (0.56-1.30) 1.12 (0.72-1.75)

Total stroke 
No. events 78 60 28 26 29
Model 1c 1.0 (ref) 0.85 (0.60-1.19) 0.45 (0.29-0.69) 0.44 (0.28-0.70) 0.55 (0.36-0.86)
Model 2d 1.0 (ref) 0.83 (0.59-1.18) 0.44 (0.28-0.68) 0.41 (0.26-0.66) 0.52 (0.33-0.81)
Model 3e 1.0 (ref) 0.82 (0.57-1.16) 0.42 (0.27-0.66) 0.39 (0.24-0.62) 0.46 (0.28-0.74)
Model 4f 1.0 (ref) 0.85 (0.59-1.20) 0.45 (0.29-0.72) 0.44 (0.27-0.72) 0.57 (0.34-0.96)

Ischemic stroke 
No. events 54 37 20 17 16
Model 1c 1.0 (ref) 0.77 (0.50-1.17) 0.47 (0.28-0.79) 0.43 (0.24-0.74) 0.44 (0.25-0.78)
Model 2d 1.0 (ref) 0.74 (0.48-1.15) 0.45 (0.27-0.77) 0.40 (0.23-0.71) 0.41 (0.23-0.73)
Model 3e 1.0 (ref) 0.75 (0.48-1.16) 0.46 (0.27-0.79) 0.42 (0.23-0.74) 0.42 (0.23-0.79)
Model 4f 1.0 (ref) 0.78 (0.50-1.21) 0.50 (0.29-0.86) 0.47 (0.26-0.86) 0.51 (0.26-1.02)
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participants in the higher quintiles had an 18-61% lower risk of total stroke and a 25-58% lower 
risk of ischemic stroke. The inverse associations were most pronounced in quintiles 3 and 4. 
After additional adjustment for raw vegetable consumption, the associations were somewhat 
weaker, but remained statistically significant, except for the top quintile of ALA. 

The associations of ALA intake with incident CHD and stroke did not differ in subgroups of age 
and gender. For the subgroup with information on physical activity (n=15,423), the full model 
with and without physical activity yielded similar results. Adjustment for plasma cholesterol or 
systolic blood pressure did not change the results. HRs (95% CI) for total stroke after additional 
inclusion of systolic blood pressure were 0.66 (0.44-0.98), 0.50 (0.32-0.78), 0.54 (0.34-0.84) and 
0.67 (0.42-1.06) for Q2-Q5 compared with Q1, respectively.
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Table 4.4 Associations of incident CHD and stroke by quintiles of energy-adjusted ALA intake from other 
sources than salad dressings in 20,069 Dutch men and womena

Abbreviations: ALA, alpha-linolenic acid; Q1-Q5, quintiles.
a Values are hazard ratios (95% CI), with the first quintile as the reference category.
b Analyses on ALA from other sources than salad dressings are adjusted for ALA in salad dressings in all models.
c Model 1: adjusted for age and gender (n=20,069).
d Model 2: model 1 with additional adjustments for body mass index, total energy intake, cigarette smoking, educational level, 
parental history of myocardial infarction, alcohol intake (n=19,896).
e Model 3: model 2 with additional adjustments for intake of vitamin C, beta-carotene, fiber, saturated fatty acids, trans-fatty acids, 
polyunsaturated fatty acids other than ALA (n=19,896).
f Model 4: model 3 with additional adjustment for raw vegetables (n=19,896).

Quintiles of ALA intake

Q1 Q2 Q3 Q4 Q5

n 4,013 4,014 4,014 4,014 4,014
Median ALA in other sources,b g/d 0.7 0.9 1.0 1.1 1.4
Median ALA in salad dressings,b g/d 0.3 0.3 0.3 0.3 0.3

Coronary heart disease
No. events 66 42 46 54 72
Model 1c 1.0 (ref) 0.72 (0.49-1.06) 0.81 (0.55-1.19) 0.87 (0.61-1.25) 0.96 (0.68-1.34)
Model 2d 1.0 (ref) 0.73 (0.49-1.10) 0.81 (0.54-1.22) 0.88 (0.61-1.29) 0.91 (0.64-1.29)
Model 3e 1.0 (ref) 0.73 (0.48-1.10) 0.80 (0.53-1.22) 0.85 (0.57-1.28) 0.85 (0.56-1.27)
Model 4f 1.0 (ref) 0.73 (0.48-1.10) 0.80 (0.53-1.22) 0.85 (0.57-1.28) 0.84 (0.56-1.27)

Total stroke 
No. events 41 38 38 45 59
Model 1c 1.0 (ref) 0.87 (0.56-1.36) 0.85 (0.54-1.33) 0.96 (0.62-1.47) 1.12 (0.75-1.67)
Model 2d 1.0 (ref) 0.91 (0.58-1.45) 0.88 (0.55-1.40) 0.97 (0.62-1.52) 1.10 (0.72-1.66)
Model 3e 1.0 (ref) 0.88 (0.55-1.41) 0.83 (0.51-1.35) 0.92 (0.57-1.48) 0.96 (0.59-1.56)
Model 4f 1.0 (ref) 0.88 (0.55-1.41) 0.82 (0.51-1.34) 0.89 (0.56-1.44) 0.93 (0.57-1.51)

Ischemic stroke 
No. events 29 26 22 26 41
Model 1c 1.0 (ref) 0.86 (0.51-1.47) 0.72 (0.41-1.26) 0.80 (0.47-1.36) 1.09 (0.68-1.77)
Model 2d 1.0 (ref) 0.85 (0.49-1.47) 0.69 (0.38-1.23) 0.77 (0.44-1.33) 1.02 (0.62-1.68)
Model 3e 1.0 (ref) 0.85 (0.49-1.50) 0.69 (0.38-1.27) 0.77 (0.42-1.39) 1.01 (0.56-1.83)
Model 4f 1.0 (ref) 0.85 (0.48-1.49) 0.68 (0.37-1.25) 0.75 (0.41-1.36) 0.98 (0.54-1.78)
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Discussion
In this large prospective cohort study in the Netherlands, we found no association between ALA 
intake and incident CHD. However, ALA intakes >1.1 g/d were associated with a 35-50% lower 
risk of incident stroke, mainly ischemic stroke, compared with ALA intakes <1.1 g/d. 

This study has several strengths, including almost complete mortality follow up and detailed 
information on potential confounders. Nonfatal cardiovascular events were assessed through 
the national hospital discharge register. In part of the subjects included in our analysis, hospital 
discharge diagnoses for MI were validated by comparison with the clinical registry of the 
Cardiology Department of the Maastricht University Hospital, showing a relatively high sensitivity 
(84%) and positive predictive value (97%) for MI.35 We assume that misclassification of stroke 
was limited, because brain imaging is used to identify stroke and its subtypes in 98% of the 
patients admitted to Dutch hospitals.36 

However, there were also limitations. First, misclassification of participants for ALA intake may 
have occurred. However, because we excluded participants with a history of MI or stroke, and 
participants who used cholesterol lowering or blood pressure lowering medication, we expect 
misclassification at baseline to be random rather than dependent on disease outcome. Second, 
hospital discharge diagnoses were assessed through probabilistic linkage with the national 
hospital discharge register. If we have missed events by this procedure, then this is unlikely to 
be related to ALA intake and may have caused bias towards the null. 

In our study, ALA intakes in the range of 1.0-1.9 g/d were not associated with incident CHD. 
This is in line with a cohort study in elderly Dutch men (Zutphen Study), which did not show a 
benefit of ALA intake on incident CHD, for similar levels of intake.23 In the Nurses’ Health Study, 
with a difference of 0.7 g/d between the top and bottom quintile of ALA intake, ALA intake 
was inversely associated with fatal CHD, but not with nonfatal MI.12,18 Our results on CHD differ 
from those of the Health Professionals Follow-up Study, in which an increase of one energy 
percent of linolenic acid (mainly ALA) intake was associated with a 60% lower risk of incident 
MI in men.21 These results were not adjusted for other PUFA, saturated fatty acids, or trans-fatty 
acids, and the contrast between the top and bottom quintile of ALA intake was only 0.7 g/d 
(~0.3 energy percent). A later study of this cohort with additional adjustment for other fatty 
acids suggested a 16% lower risk for total CHD (borderline significant) corresponding with an 
increase of ALA of 1g/d.20 Our results also differ from a large case-control study in Costa Rica, 
which supported an inverse association of ALA intake with nonfatal MI, with an odds ratio (95% 
CI) of 0.61 (0.42-0.80) for the top (2.4 g/d) vs. the bottom (1.1 g/d) decile of ALA intake.13 Similar, 
but stronger, associations were observed for ALA status in adipose tissue in the same study. 
No further risk reductions were obtained beyond the 7th decile of ALA status, corresponding 
to an ALA intake of 1.8 g/d.13 Although this retrospective study suggested that benefits of ALA 
on CHD could already be achieved at modest levels,13,37 our prospective study did not support 
this. Misclassification of ALA intake, especially within a relatively narrow range of intake, may 
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have attenuated our associations. ALA intake levels in the Netherlands are comparable to most 
West European countries and the United States of America.38 Within the range of ALA intake 
that we studied, the associations with CHD and stroke can therefore be extrapolated to other 
western populations.

Despite the small range of intake in our study, we did find an inverse association of ALA intake 
with incident stroke, which was most pronounced for ALA from salad dressings. It is not likely that 
ALA from different food sources would act differently. Although we adjusted for many potential 
confounders, including the intake of raw vegetables, the associations may still be influenced 
by a healthier diet and lifestyle of those who regularly eat raw vegetables with salad dressings. 
In general, correlated fatty acids in foods and residual confounding play an important role in 
cohort studies and results should therefore be judged with caution. Epidemiological studies 
of ALA intake or status and stroke are scanty. Our results are in line with a nested case-control 
study in middle-aged American men at high risk for CVD.25 In that study, one SD increase of 
ALA in serum cholesteryl esters was associated with a 37% decrease in risk of stroke. 

Humans can convert ALA into the longer-chain fatty acid EPA and eventually DHA, although 
conversion occurs to a limited extent.39 Apart from potential indirect effects of ALA on CVD 
via conversion into EPA and DHA, ALA has been suggested to have anti-inflammatory,6,11 anti-
arrhythmic,12 anti-thrombotic,12,13 or neuroprotective effects.14 However, others concluded that 
there was insufficient evidence that ALA influences risk factors for CVD.15,16 Although CHD 
and ischemic stroke are both atherosclerotic disorders that have risk factors in common, we 
found differential associations of ALA intake for CHD and stroke. A proposed mechanism from 
animals studies for a protective effect of ALA on incident ischemic stroke is that ALA would be 
neuroprotective after induced ischemia, by beneficially affecting the brain blood flow.14 

Concluding, in this generally healthy Dutch population, ALA intake was not associated with 
incident CHD. However, the data suggested that a low intake of ALA may be a risk factor for 
incident stroke, although more prospective studies are needed before definite conclusions can 
be drawn.
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Abstract 
We assessed the dose-response relations within a low range of eicosapentaenoic acid (EPA) 
and docosahexaenoic acid (DHA) and fish intake on fatal coronary heart disease (CHD) and 
nonfatal myocardial infarction (MI). In a Dutch population-based cohort study, EPA-DHA and 
fish intake were assessed at baseline among 21,342 participants aged 20-65 y with no history of 
MI or stroke. Hazard ratios were calculated with Cox proportional-hazard models. During 9-14 
y of follow-up (mean 11.3 y), 647 participants (3%) died, of which 82 of CHD. Fatal CHD mainly 
comprised MI (64 cases). In total, 252 participants survived an MI. Median intakes in quartiles 
of EPA-DHA were 40, 84, 151, and 234 mg/d. Medians of fish consumption in quartiles were 
1.1, 4.2, 10.7, and 17.3 g/d. Compared with the lowest quartile of EPA-DHA, participants in the 
top quartile had a 49% lower risk of fatal CHD (95% CI: 6-73%) and a 62% lower risk of fatal MI 
(95% CI: 23-81%). We observed inverse dose-response relations for EPA-DHA intake and fatal 
CHD (P-trend = 0.05) and fatal MI (P-trend = 0.01). Results were similar for fish consumption. 
Nonfatal MI was not associated with EPA-DHA or fish intake. In conclusion, in populations with a 
low fish consumption, EPA-DHA and fish may lower fatal CHD and MI risk in a dose-responsive 
manner. Low intakes of EPA-DHA or fish do not seem to protect against nonfatal MI. 
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Introduction 
In 1985, Kromhout et al.1 showed that a small amount of fish in the diet was associated with a 
lower risk of coronary heart disease (CHD) mortality in the Zutphen Study of 852 elderly Dutch 
men. In a meta-analysis of prospective cohort studies, He et al.2 estimated that eating fish once 
per week was associated with a 15% lower risk of coronary death compared with a fish intake 
of less than once per month. Each 20-g/d increase in fish consumption was related to a 7% 
lower risk of CHD mortality (P-trend = 0.03). The marine-derived, very-long chain (n-3) PUFA 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are assumed to be primarily 
responsible for these health effects of fish. The meta-analysis of He et al.2 also showed that the 
evidence for an inverse association of fish intake and risk of nonfatal myocardial infarction (MI) 
was weak (P-trend = 0.40), even though there was a significant inverse association of eating 
fish ≥5 times/wk compared with less than once per month.

Several randomized controlled trials (RCT) on fish and fish oil in relation to coronary and all-cause 
mortality have been conducted in cardiac patients. In the context of this paper, the findings in 
patients with a low level of fish consumption are most relevant. The first RCT using low levels of 
fatty fish or fish oil capsules as interventions showed significant reductions in fatal CHD3,4 and 
sudden death.4 Recent meta-analyses of RCT showed that fish oil supplementation significantly 
reduced fatal CHD5 and fatal MI6 in coronary patients.

Mozaffarian and Rimm7 combined data from prospective cohort studies and RCT and estimated 
that a reduction of CHD mortality may be achieved with relatively low intakes of EPA and DHA. 
Modest consumption of fish (1-2 servings/wk, which is ~100-200 g fish/wk) was associated with 
a 36% lower risk of coronary death. They suggested that for the general population an intake of 
250 mg/d of EPA-DHA (1 serving of fatty fish/wk) would be sufficient. Others have recommended 
target intakes of ~500 mg/d.8-11 Most studies have mainly focused on fish consumption12 as the 
main source of EPA and DHA. However, other foods like meat and eggs also contribute to the 
intake of these fatty acids13 and may be important to take into account.

In this prospective cohort study, we investigated the dose-response relations of habitual intake 
of EPA-DHA and fish on fatal CHD and fatal and nonfatal MI within the low range of fish intake 
in The Netherlands.

Methods

Design and study population
The Monitoring Project on Risk Factors for Chronic Diseases (MORGEN) study is a Dutch 
population-based cohort of 22,654 men and women, aged 20-65 y. The MORGEN study 
contributes to the Dutch part of the European Prospective Investigation into Cancer and 
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Nutrition.14 In the MORGEN study, information on diet, lifestyle, and cardiovascular risk factors 
was collected in 1993-1997. For the MORGEN study, random samples (stratified by gender and 
5-y age groups) from civil registries of Amsterdam, Doetinchem, and Maastricht were drawn, 
representing three geographical parts of The Netherlands. The mean response rate was 45%. The 
study complies with the Declaration of Helsinki and the protocol was approved by the Medical 
Ethics Committee of the TNO Prevention and Health (Leiden, The Netherlands).

For the current analyses, we excluded participants who did not provide informed consent 
for vital status follow-up (n=701). We also excluded participants without dietary information 
(n=72) and 97 participants with extreme intakes of energy (<2,094 or >18,844 kJ for women 
and <3,350 and >20,938 kJ for men). Furthermore, participants with a history of MI or stroke 
at baseline (n=442) based on self-report or hospital admission data were excluded, resulting 
in 21,342 participants for the current analyses. 

Dietary assessment
Dietary information was assessed at baseline with a self-administered 178-item FFQ.15 The 
questionnaire included foods that covered the daily intake of each nutrient or food of interest 
for at least 90% of the population mean intake, based on the Dutch National Food Consumption 
Survey of 1987-1988. Participants were asked to report the usual frequency of consumption 
of the food items during the past year and their mean portion sizes. Participants indicated 
their answers in times per day, per week, per month, per year, or as never. For 28 food items, 
color photographs were used to estimate portion sizes. Information on habitual fish intake 
was obtained by questions on the absolute frequency of fish consumption combined with 
questions on the following types of fish: 1) lean and moderately fatty fish, including plaice, 
cod, fried fish, fish fingers; 2) fatty fish, including eel, mackerel, herring; 3) shrimps and mussels. 
Trained research assistants obtained information on unclear or missing items. After checking 
for improbable and inconsistent answers, the dietary data were converted into daily food and 
nutrient intakes and frequencies of food items by using the digital update (of 1998) of the Dutch 
food composition database (NEVO) of 1996.16 The daily intakes of fatty acids were calculated 
with additional NEVO information of the 2001 release.17 

The relative validity (intake assessed by the FFQ compared with intakes assessed by 12 monthly 
24-h recalls) and reproducibility (measured by 2 repeated measurements) of the FFQ for food 
groups and some nutrients were assessed among 121 Dutch men and women.15,18 The Spearman 
rank correlations for the reproducibility of the FFQ after 6 mo for fish intake were 0.49 for men 
and 0.61 for women. The relative validity (Spearman rank correlation) of the FFQ for fish intake 
was 0.32 for men and 0.37 for women (all P<0.05).
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Mortality and morbidity data
After enrolment in the MORGEN study, the participants were followed for the occurrence of fatal 
CHD and fatal or nonfatal MI by linkage with several registries, including Statistics Netherlands 
for cause-specific mortality and the hospital discharge register (HDR; in Dutch: Landelijke 
Medische Registratie) for hospital admissions.19

Information on mortality follow-up was available from baseline until January 2007. CHD mortality 
was defined as International Classification of Diseases (ICD) 1020 codes I20-I25 or ICD921 codes 
410-414 and MI as ICD-10 codes I21-I22 or ICD-9 code 410 based on primary or secondary 
causes of death. For the analyses on fatal CHD and fatal MI, participants were followed until 
death, emigration, or they were censored at January 1, 2007. Deceased participants who had 
not given permission to obtain data on cause-specific death (n=43) were censored at date of 
death. Causes of death could not be obtained for participants who died outside The Netherlands.

Information on nonfatal MI (defined as ICD-9 code 410) was based on hospital admission data. 
These data were available from baseline until January 2006. Hospital admissions followed by 
death at the same date were regarded as fatal events. Participants with both information on 
vital status and hospital admissions (n=20,880) were followed until the first nonfatal MI event 
or they were censored at death, emigration, or January 1, 2006, whichever occurred first. In The 
Netherlands, hospital admissions are coded by gender, date of birth, and the numeric part of 
the postal code. At least 88% of the hospital admissions of our cohort could be uniquely linked 
to a participant in our cohort.19

Assessment of covariates
Body weight, height,   and blood pressure were measured by trained research nurses at a municipal 
health service site.22 A self-administered questionnaire was used to assess the presence of known 
diabetes, history of MI and stroke, medication use, vitamin or mineral supplement use (yes/no), 
family history of MI, educational level, alcohol consumption, and cigarette smoking. Physical 
activity was assessed only during baseline measurements in 1994-1997, which comprised 77% of 
our cohort.23 For this subset, we calculated whether participants complied with being physically 
active during 30 min with a moderate intensity on 5 d/wk. 

Participants donated blood (nonfasting) in which the levels of total serum cholesterol and serum 
HDL cholesterol were assessed at the Lipid Reference Laboratory of the Erasmus Medical Center 
in Rotterdam, using enzymatic methods.24 Blood pressure was measured, with the participant 
in a sitting position. Systolic pressure was recorded at the appearance of sounds (first-phase 
Korotkoff) and diastolic blood pressure was recorded at the disappearance of sounds (fifth-
phase Korotkoff). Blood pressure was measured twice, after the first measurement heart rate 
was counted for 30 s, followed by the second measurement.25 The mean of the 2 measurements 
was used in the analyses. 
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Statistical analysis
We used Cox proportional-hazard models with follow-up time as time metric to estimate relative 
risks of fatal CHD, fatal MI, and nonfatal MI in quartiles of habitual intake of EPA-DHA and total 
fish. We calculated hazard ratios with 95% CI with the lowest quartiles of EPA-DHA and fish 
intake as the reference category. Our models fulfilled the proportional-hazards assumption. 
Participants’ characteristics in quartiles of EPA-DHA intake are presented as mean ± SD, median 
[interquartile range (Q1-Q3)], or percentages, unless otherwise noted. The correlation between 
the intake of EPA-DHA and total fish was assessed with the Spearman rank correlation test. 

In addition to an age- and gender-adjusted model (model 1), we used multivariable-adjusted 
models (model 2) that included total energy intake (kJ/d), BMI (kg/m2), alcohol intake (based on 
the calculation of total ethanol intake in g/d by FFQ), cigarette smoking (never, former, current), 
socioeconomic status (primary school, secondary school, up to higher vocational training, 
completed higher vocational training or university), vitamin or mineral supplement use (yes/
no), use of drugs for hypertension or hypercholesterolemia (yes/no), family history (yes/no) of 
CHD (MI of father before age of 55 y or MI of mother before age of 65 y), fruit consumption 
(g/d), vegetable consumption (g/d), saturated fat intake (g/d). Covariates were selected based 
on what we know from the literature to be important confounders of the relation between (n-3) 
PUFA and CHD. Stratified analyses did not provide evidence for interaction by gender or age of 
the association of EPA-DHA or fish intake with different outcomes. Therefore, we combined men 
and women and different age groups. Possible confounding by physical activity was checked 
in the subgroup of participants with information on physical activity (n=16,421). Analyses were 
repeated for quartiles of EPA-DHA from marine sources only. All probability values are 2-tailed 
with α=0.05 (SAS/STAT software, version 9.1; SAS Institute).

Results

Population characteristics
Participants were 42.1 ± 11.2 y old at baseline and 45% were male. Median intakes of EPA-
DHA and fish were 114 (62-195) mg/d and 7.4 (3.3-14.0) g/d, respectively. About 40% of the 
participants consumed fish less than once per month and 8.5% reported eating no fish at all. 
The median frequency of fish consumption was 2 (1-4) times/mo. The consumption of lean fish 
+ moderately fatty fish, which were combined in our questionnaire, was 3-4 times as high as 
the consumption of fatty fish. This resulted in a higher absolute intake of EPA-DHA from lean 
+ moderately fatty fish than from fatty fish (data not shown).

During 9-14 y of follow-up (mean 11.3 y), 647 (3%) participants died of which 82 died of CHD. 
Fatal CHD mainly comprised MI (64 cases). In total, 252 participants survived an MI.
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Table 5.1 Baseline characteristics of 21,342 Dutch adults, aged 20-65 y, by quartiles of EPA-DHA intakea

a Values are means ± SD, unless indicated otherwise. 
b 1 serving = ~100 g.
c Median with interquartile range.
d University or higher vocation training.
e Compliant to being physically active during 30 min with a moderate intensity on 5 d/wk. Available in subsample of participants 
enrolled between 1994 and 1997 (n=16,421). 
f Nonfasting.
g Vitamin or mineral supplement.

Quartiles of EPA-DHA intake, mg/d (range)

1 
(<62)

2 
(62-113)

3 
(114-194)

4 
(>194)

n 5,336 5,335 5,335 5,336

Median EPA-DHA intake, mg/d 40 84 151 234

Male gender, % 39 45 45 51
Age, y 41.1 ± 11.8 41.8 ± 11.2 42.4 ± 10.8 43.3 ± 10.8
Body mass index, kg/m2 24.8 ± 4.0 25.0 ± 3.9 25.0 ± 3.9 25.2 ± 4.0

Fish consumers (≥1 servings/mo),b % <1 40 98 100
Fish intake, g/d 1.4 ± 1.4 4.9 ± 2.2 10.9 ± 3.7 22.0 ± 14.3

EPA, mg/d 10 ± 6 25 ± 7 48 ± 11 98 ± 60
DHA, mg/d 28 ± 11 61 ± 11 105 ± 18 197 ± 106
EPA-DHA, mg/d 39 ± 15 86 ± 16 152 ± 25 295 ± 163
EPA-DHA from fish, mg/d 13 ± 13 53 ± 21 117 ± 33 255 ± 164

PUFA, % of energy intake 6.6 ± 1.7 6.8 ± 1.6 6.8 ± 1.7 7.0 ± 1.7
SFA, % of energy intake 14.6 ± 2.7 14.6 ± 2.4 14.3 ± 2.5 14.1 ± 2.6
Total fat, % of energy intake 34.7 ± 5.1 35.3 ± 4.8 34.9 ± 5.0 34.9 ± 5.1
Energy intake, MJ/d 8.9 ± 2.7 9.5 ± 2.7 9.6 ± 2.7 9.8 ± 2.9
Smoking, %

Never 37 34 34 33
Former 28 30 31 29
Current 35 35 36 38

Alcohol consumption,c g/d 3.1 (0.3-11.8) 5.8 (1.1-16.1) 7.5 (1.5-19.5) 8.7 (1.5-22.5)
Highly educated,d % 19 22 28 27
Dutch ethnicity, % 98 97 97 94
Physically active,e % 63 67 67 67

Parental history of MI, % 10 9 9 10
Self-reported diabetes mellitus, % 1.0 0.8 1.0 1.7
Serum total cholesterol,f mmol/L 5.3 ± 1.0 5.2 ± 1.0 5.3 ± 1.1 5.3 ± 1.1
Serum HDL-cholesterol,f mmol/L 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4
Systolic blood pressure, mm Hg 120.4 ± 15.9 120.4 ± 15.9 120.8 ± 16.1 121.7 ± 16.6
Diastolic blood pressure, mm Hg 76.5 ± 10.4 76.6 ± 10.5 76.6 ± 10.7 76.9 ± 10.9

Use of cholesterol-lowering drugs, % 1.0 0.7 0.9 1.3
Use of antihypertensive drugs, % 4.5 4.0 4.7 4.8
Supplement use,g % 28 29 33 34
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Median EPA-DHA intakes in quartiles were 40, 84, 151, and 234 mg/d. The ratio of EPA:DHA was 
~1:2. The main source of EPA-DHA was fish (63%). In all quartiles, the amount of EPA-DHA from 
other sources than fish was ~30 mg/d. In the higher quartiles, participants were slightly older, 
more likely to be male, and higher educated. In the lowest quartile, 63% of the participants 
complied with the Dutch guideline for physical activity. In the other 3 quartiles 67% complied. 
Higher intakes of EPA-DHA were associated with a higher intake of energy and alcohol (Table 5.1). 
The Spearman rank correlation between total EPA-DHA intake and fish consumption was 0.95. 

EPA-DHA intake, fish consumption, and CHD
After adjustment for potential confounders, the risk of fatal CHD was inversely associated 
with EPA-DHA intake, with a 49% lower risk (95% CI: 6%-73%) in the top quartile of EPA-DHA 
compared with the reference group. We found a stronger association between fatal MI and EPA-
DHA intake, with a 62% lower risk in the top quartile. A dose-response relation was found for 
both fatal CHD (P-trend = 0.05) and fatal MI (P-trend = 0.01). EPA-DHA intake was not associated 
with nonfatal MI (Table 5.2). We repeated our analyses for quartiles of EPA-DHA from marine 
sources only. These results did not differ from the results on total EPA-DHA (data not shown). 

Table 5.2 Associations of fatal CHD and (non)fatal MI by quartiles of EPA-DHA intake in 21,342 Dutch 
men and womena

a Values are hazard ratios (95% CI), with the first quartile as the reference category.
b Model 1: adjusted for age and gender.
c n=21,342.
d Model 2: model 1 with additional adjustments for BMI, total energy intake, ethanol intake, cigarette smoking, social economic 
status, vitamin or mineral supplement use, use of drugs for hypertension or hypercholesterolemia, parental history of myocardial 
infarction, SFA, fruit, and vegetables. 
e n=21,055.
f n=20,880.
g n=20,605.

Quartiles of EPA-DHA intake, mg/d, (range)

1 
(<62) 

2
(62-113)

3
(114-194)

4 
(>194) P- trend

n 5,336 5,335 5,335 5,336
Median EPA-DHA, mg/d 40 84 151 234
Fatal CHD

Events, n 24 18 20 20
Model 1b,c 1.0 (ref) 0.74 (0.40-1.36) 0.76 (0.42-1.37) 0.68 (0.38-1.23) 0.27
Model 2d,e 1.0 (ref) 0.68 (0.36-1.25) 0.65 (0.36-1.19) 0.51 (0.27-0.94) 0.05

Fatal MI
Events, n 21 13 16 14
Model 1b,c 1.0 (ref) 0.60 (0.30-1.20) 0.69 (0.36-1.31) 0.54 (0.27-1.06) 0.13
Model 2d,e 1.0 (ref) 0.57 (0.28-1.14) 0.56 (0.29-1.09) 0.38 (0.19-0.77) 0.01

Nonfatal MI 
Events, n 57 61 61 73
Model 1b,f 1.0 (ref) 1.06 (0.74-1.52) 0.99 (0.69-1.42) 1.10 (0.78-1.56) 0.10
Model 2d,g 1.0 (ref) 1.07 (0.74-1.55) 1.04 (0.72-1.50) 1.07 (0.74-1.54) 0.18



Median intakes in quartiles of fish consumption were 1.1, 4.2, 10.7, and 17.3 g/d. Like for EPA-
DHA, consuming more fish was associated with a lower risk of fatal CHD and fatal MI. Similar to 
our results on EPA-DHA intake, the associations were dose-dependent. Fish consumption was 
not associated with nonfatal MI (Table 5.3). We have additionally included monounsaturated 
fatty acids, linoleic acid, and α-linolenic acid in our multivariable models. However, this yielded 
similar results for both our analyses on total EPA-DHA and fish consumption. Our population 
consisted of only 1% of diabetic patients and our results did not change when we excluded 
diabetic patients (data not shown).

Discussion
In our healthy Dutch population with a low habitual fish intake, EPA-DHA and fish consumption 
were inversely associated with fatal CHD and fatal MI, but not with nonfatal MI. The risk of fatal 
CHD in the highest quartile of EPA-DHA intake (~250 mg/d) was ~50% lower compared with 
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Table 5.3 Associations of fatal CHD and (non)fatal MI by quartiles of fish intake in 21,342 Dutch men 
and womena

a Values are hazard ratios (95% CI), with the first quartile as the reference category.
b Model 1: adjusted for age and gender.
c n=21,342.
d Model 2: model 1 with additional adjustments for BMI, total energy intake, ethanol intake, cigarette smoking, social economic 
status, vitamin or mineral supplement use, use of drugs for hypertension or hypercholesterolemia, parental history of myocardial 
infarction, SFA, fruit, and vegetables. 
e n=21,055.
f n=20,880.
g n=20,605.

Quartiles of fish intake, g/d (range)

1
(<3.3)

2
(3.3-7.3)

3 
(7.4-14.0)

4 
(>14) P-trend

n 5,284 5,401 5,258 5,399
Median fish intake, g/d 1.1 4.2 10.7 17.3
Median EPA:DHA, mg/d 39 82 148 228
Median EPA:DHA from fish, mg/d 11 46 119 191
Fatal CHD 

Events, n 25 24 14 19
Model 1b,c 1.0 (ref) 0.95 (0.54-1.66) 0.52 (0.27-0.99) 0.63 (0.35-1.15) 0.06
Model 2d,e 1.0 (ref) 0.92 (0.52-1.61) 0.50 (0.26-0.97) 0.52 (0.28-0.95) 0.02

Fatal MI
Events, n 19 22 11 12
Model 1b,c 1.0 (ref) 1.13 (0.61-2.10) 0.53 (0.25-1.11) 0.53 (0.25-1.09) 0.02
Model 2d,e 1.0 (ref) 1.12 (0.60-2.08) 0.50 (0.24-1.06) 0.40 (0.19-0.86) <0.01

Nonfatal MI
Events, n 61 57 66 68
Model 1b,f 1.0 (ref) 0.92 (0.64-1.32) 1.02 (0.72-1.44) 0.96 (0.68-1.36) 0.15
Model 2d,g 1.0 (ref) 0.96 (0.67-1.39) 1.07 (0.75-1.54) 1.01 (0.71-1.45) 0.14
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the lower quartile (~40 mg/d). Within this low range of intake, the inverse associations with 
fatal CHD and fatal MI risk were graded. Similar results were found for fish, i.e. participants who 
consumed only 17 g/d (~1 portion of fish/wk) had an ~50% lower risk of fatal CHD.

This study has several strengths, including complete information on vital status with little loss to 
follow-up of a large population-based cohort and detailed information on potential confounders. 
Both fatal and nonfatal CHD could be studied in relation to fish and EPA-DHA. An extensive 
FFQ was used that allowed calculation of EPA-DHA from the whole diet. However, there were 
also limitations. First, data on physical activity, which could be an important confounder, was 
available for only 77% of the participants. We performed multivariable analyses with and without 
adjustment for physical activity in this subgroup, which yielded similar risk estimates for EPA-
DHA and fish intake in relation to CHD. We therefore think that residual confounding by physical 
activity is not a major issue in the present study. Second, misclassification of participants for 
EPA-DHA and fish intake may have occurred. The relative validity of our FFQ for fish intake was 
only 0.32 for men and 0.37 for women.15 Because we excluded participants with a history of MI 
or stroke, we expect misclassification at baseline to be random rather than dependent on disease 
outcome. Random misclassification could have attenuated the risk estimates in the present study. 
Third, we obtained data on nonfatal MI via linkage with the national HDR. Eighty-eight percent 
of the hospital admissions can be uniquely linked to an individual on basis of gender, date of 
birth, and postal code.19 In a validation study, the HDR was compared with the detailed clinical 
registry of cardiovascular patients of the Cardiology Department of the Maastricht University 
Hospital, showing a relatively high sensitivity (84%) and positive predictive value (97%) for MI.26 
The region of Maastricht is 1 of the 3 regions of the MORGEN study. Should nonfatal MI cases 
in our study be missed by this procedure, this is unlikely to be related to the fish intake and 
will therefore not have biased our results. 

With respect to fatal CHD, our results are comparable to the Zutphen Study, in which the 
consumption of 1-2 fish meals/wk was associated with half the risk of CHD mortality compared 
with lower intakes.1 In a pooled analysis of prospective cohort studies and clinical trials, 
Mozaffarian and Rimm7 estimated that a daily intake of 250 mg of EPA-DHA (1-2 servings of 
fish/wk) was associated with a 36% lower risk of fatal CHD with little additional benefit above 
250 mg/d. The range of EPA-DHA intake in our study was mostly below 250 mg/d and we found 
risk reductions up to 49% for fatal CHD. This is also larger than observed in the meta-analysis 
by He et al.,2 who found a 15% lower risk of fatal CHD for weekly fish consumption. The dose-
response relation of He et al.2 might be attenuated by studies with much higher intakes of fish 
with little extra benefit. Another reason for our stronger associations could be that our relatively 
young cohort had a lower baseline risk to develop fatal CHD compared with the cohorts in the 
above-mentioned meta-analysis, which may have inflated our risk estimates to some extent. 
In a recent meta-analysis of fish oil supplementation trials, a 20% reduced risk of cardiac death 
was found compared with placebo.5 Fish oil doses in these trials amounted to several grams 
per day, which cannot be achieved through diet alone. Furthermore, the Japanese JELIS trial27 in 
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18,645 hypercholesterolemic patients largely influenced the overall risk estimates of this meta-
analysis. In this trial, on top of a high habitual fish intake, no effect of 5-y supplementation with 
1.8 g/d EPA on fatal CHD was found. 

We found no associations between nonfatal MI and low levels of EPA-DHA or fish intake. These 
findings are concordant with the meta-analysis of prospective cohort studies of He et al.2 in which 
a significant inverse association for fish intake and nonfatal CHD was found only for eating fish 
≥5 times/wk compared with less than once per month, which is much higher than the intake in 
our cohort. In addition, Japanese studies showed that at high levels of intake, fish and EPA-DHA 
may be protective against nonfatal CHD. In the Japan Public Health Center-Based Study, the 
relative risk for nonfatal MI was 0.43 (95% CI: 0.23-0.81) in participants with a median fish intake 
of 180 g/d, compared with participants with a daily intake of 23 g/d.28 In the above-mentioned 
JELIS trial, the risk of nonfatal CHD was reduced by 19%.27 However, the Japanese habitual intake 
of fish (mean of 85 g/d) is much higher than the Dutch diet. Currently, no data are available for 
RCT with low levels of EPA and DHA intake in relation to CHD incidence and mortality.

In the present cohort with a low range of fish consumption, EPA-DHA intake was inversely related 
to CHD mortality and even stronger to fatal MI. In various studies, low doses of EPA and DHA are 
associated with a lower risk of fatal CHD but not nonfatal CHD.2 A hypothesis for this differential 
effect is that EPA and DHA could prevent fatal cardiac arrhythmia.9,29-31 Life-threatening cardiac 
arrhythmias are major contributors to fatal CHD. These arrhythmias are less likely to occur in 
the case of a less-severe MI with less cardiac tissue damage. Although in recent RCT, marine 
(n-3) PUFA did not protect against arrhythmia in ICD patients,32 the arrhythmia hypothesis is 
still the major hypothesis in CHD primary prevention studies.33 Regrettably, we were not able 
to examine sudden cardiac death as a separate outcome in the present study because of the 
limited number of cases.

We conclude that in a population with low levels of fish consumption, higher intakes of EPA-
DHA and fish may protect against fatal CHD in a dose-responsive manner. Intake of only a small 
amount of fish may be beneficial to cardiac health, although no protection against nonfatal 
MI may be expected.
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Abstract 
Background: There is some evidence that the association of fish and fish fatty acids with stroke 
risk differs between men and women. We investigated the gender-specific associations of 
habitual intake of the fish fatty acids eicosapentaenoic acid (EPA) plus docosahexaenoic acid 
(DHA) and fish on incident stroke in a population-based study in the Netherlands. 

Methods: We prospectively followed 20,069 men and women, aged 20-65 years, without 
cardiovascular diseases at baseline. Habitual diet was assessed with a validated 178-item food 
frequency questionnaire. Incidence of stroke was assessed through linkage with mortality and 
morbidity registers. Cox proportional hazards models were used to estimate multivariable-
adjusted hazard ratios (HR) and 95% confidence intervals (95% CI). 

Results: During 8-13 years of follow-up, 221 strokes occurred. In women, an inverse dose-
response relation (P-trend = 0.02) was observed between EPA-DHA intake and incident stroke, 
with an HR of 0.49 (95% CI: 0.27-0.91) in the top quartile of EPA-DHA (median 225 mg/d) as 
compared to the bottom quartile (median 36 mg/d). In men, the HR (95%CI) for the top quartile 
of EPA-DHA intake was 0.87 (0.51-1.48) (P-trend = 0.36). Similar results were observed for fish 
consumption and stroke incidence.

Conclusion: A higher EPA-DHA and fish intake is related to a lower stroke risk in women, while 
for men an inverse association could not be demonstrated. 
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Introduction 
Worldwide, stroke is the second largest cause of mortality and a major cause of long-term 
disability.1,2 As part of a healthy diet, fish consumption is advised to reduce the risk of 
cardiovascular diseases.3-5 Although literature strongly suggests that consuming fish protects 
against coronary heart disease,6 data for protection against stroke are less convincing.

Several,7-13 although not all,14-18 prospective cohort studies showed inverse associations of fish 
consumption with stroke. In a meta-analysis, He et al. summarized prospective cohort studies 
published through 2003 and concluded that fish consumption once a week compared to less than 
once per month was related to a 13% (HR: 0.87; 95% CI: 0.77-0.98) lower stroke risk.19 In three 
cohort studies9-11 with information on types of stroke, consuming fish more than once a month 
was associated with a 30-35% lower risk of ischemic stroke, and not to hemorrhagic stroke.19

In four8,9,12,13 out of six8,9,12,13,17,20 prospective studies carried out in women from western 
countries, fish consumption was inversely associated with stroke, whereas only two7,10 out of 
seven7,8,10,12,14,15,20 studies reported inverse associations in men. In addition, fish intake was more 
strongly inversely related to stroke in women than in men in two cohort studies that stratified 
by gender.8,12 Less data are available for the intake of the fatty acids eicosapentaenoic acid (EPA) 
and docosahexaenoic acid (DHA) from fish, but those available were in agreement with those 
on fish consumption and stroke incidence.9,10,14,16,18

We investigated the gender-specific associations of habitual intake of EPA-DHA and fish with 
10-year incidence of stroke in a large population-based study in the Netherlands.

Methods

Ethical statement
This research was performed in accordance with the ethical principles for medical research 
involving human subjects outlined in the Declaration of Helsinki. This research was approved 
by the Medical Ethics Committee of TNO Prevention and Health (Leiden, The Netherlands). All 
participants gave written informed consent. 

Design and study population
The “Monitoring Project on Chronic Disease Risk Factors” (MORGEN) study is a population-
based cohort of 22,654 men and women, aged 20-65 years in the Netherlands. The MORGEN 
study contributes to the Dutch part of the European Prospective Investigation into Cancer and 
Nutrition (EPIC).21 Baseline (1993-1997) information on diet, lifestyle, and cardiovascular risk 
factors was collected and participants were followed for cardiovascular endpoints. The study 
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complies with the Declaration of Helsinki and the protocol was approved by the Medical Ethics 
Committee of the TNO Prevention and Health Institute (Leiden, The Netherlands). Written 
informed consent was obtained from each participant. 

Participants who did not provide informed consent for vital status follow-up were excluded as 
well as participants with no dietary information or with extreme energy intakes (<500 or >4,500 
kcal for women and <800 or >5,000 kcal for men). Furthermore, we excluded participants with 
a history of myocardial infarction or stroke at baseline, participants with self-reported diabetes 
and participants who used serum lipid modifying agents or antihypertensive drugs, resulting 
in 20,069 participants (8,988 men and 11,081 women) for the present analysis.

Dietary assessment
Habitual diet was assessed at baseline with a self-administered 178-item Food Frequency 
Questionnaire (FFQ), covering the previous year.22,23 Participants indicated consumption of main 
food groups in times per day, per week, per month, or as never, combined with questions on 
the relative intake of foods within food groups (seldom/never, sometimes, often, mostly/always). 
Information on habitual fish intake was obtained by questions on the absolute frequency of fish 
consumption combined with questions on the following types of fish: 1. lean and moderately 
fatty fish, including plaice, cod, fried fish, fish fingers; 2. fatty fish, including eel, mackerel, herring; 
3. shrimps and mussels. Nutrient intakes were calculated with the “Dutch food composition 
database” of 1998. For individual fatty acids, we used the updated table of 2001.

The relative validity of the FFQ against 12 monthly 24-h recalls and reproducibility of the FFQ after 
6 months for food groups and nutrients were assessed among 121 Dutch men and women.22,23 

The Spearman rank correlations for the reproducibility of the FFQ after 6 months for fish intake 
were 0.49 for men and 0.61 for women. The relative validity (Spearman correlation) of the FFQ 
for fish intake was 0.32 for men and 0.37 for women.23 The rank correlations for dietary EPA and 
DHA (mg/d) with cholesteryl ester plasma levels in a subset of the current population were in 
men (n=268) 0.34 for EPA and 0.47 for DHA and in women (n=189) 0.36 for EPA and 0.33 for 
DHA (unpublished results).

Case ascertainment and follow-up
Vital status was checked through linkage with the municipal population registers. For those who 
died, information on the cause of death was obtained from Statistics Netherlands. Information 
on nonfatal stroke was provided by the national hospital discharge register based on a validated 
probabilistic method described in more detail elsewhere.24 On the national level, data from 
the Dutch hospital discharge register can be uniquely matched to a single person for at least 
88% of the hospital admissions.24 Incident total stroke comprised fatal and nonfatal stroke, 
corresponding with International Classification of Diseases (ICD-10, WHO) codes I60-I66 and 
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G45. This definition also included transient ischemic attacks (TIA) (G45). Ischemic stroke included 
I63, I65, I66, and G45, and hemorrhagic stroke included I60-I62. For hospital admissions and for 
causes of death coded until January 1, 1996, corresponding ICD9 codes were used. If the dates 
of hospital admission and death coincided, the event was considered fatal. 

Data collection on risk factors
The baseline measurements were previously described in detail by Verschuren et al.25 Body 
weight, height, and blood pressure were measured by trained research nurses. Blood pressure 
was measured twice, with the subject in sitting position. The mean of the two measurements 
was used in the analyses. Nonfasting blood was analyzed for plasma total and high-density 
lipoprotein (HDL) cholesterol. A self-administered questionnaire was used to assess the 
presence of diabetes, history of myocardial infarction or stroke, medication use, parental 
history of premature myocardial infarction, education level, and cigarette smoking. Alcohol 
intake (based on the FFQ) was calculated in glasses/d and was categorized as no intake, low to 
moderate intake (men ≤2 and women ≤1 glasses/d), or high intake (men >2 and women >1 
glasses/d). Baseline physical activity was assessed with a validated questionnaire in 76% of the 
cohort, enrolled between 1994-1997.26 For this subset, we calculated whether participants were 
engaged in cycling (yes/no) and sports (yes/no), both activities with a metabolic equivalent 
score ≥4, which were significantly inversely related to cardiovascular disease incidence in this 
population.27

Statistical analysis
Follow-up time was calculated from date of enrollment until death, incident stroke, date of loss-
to-follow-up due to emigration out of the Netherlands (n=693) or 1 January 2006, whichever 
occurred first. We used Cox proportional hazard models to estimate hazard ratios (HR) with 
95% confidence intervals (95% CI) for the association of gender-specific quartiles of EPA-DHA 
and total fish intake with stroke incidence. The analyses were repeated for stroke subtypes, i.e. 
ischemic stroke and hemorrhagic stroke. The proportional hazards assumption was tested and 
not rejected based on Schoenfeld residuals and visual inspection. Participants’ characteristics in 
quartiles of EPA-DHA intake are presented as mean±SD, median [interquartile range (Q1-Q3)], 
or percentages, depending on the type and distribution of variables. Interactions of EPA-DHA 
and fish intake with gender were statistically tested with the likelihood ratio test comparing the 
fully adjusted model of the total group (men and women combined) with a similar model with 
additional product terms of gender and quartiles of intake. The correlation between the intake 
of EPA-DHA and total fish was assessed with the Spearman rank correlation test. 

In addition to an age adjusted model [model 1], we used multivariable-adjusted models [model 
2] that included total energy intake (kcal/d), body mass index (kg/m2), alcohol intake (none, 
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low to moderate, or high), cigarette smoking (never, former, current), educational level (primary 
school, secondary school, up to higher vocational training, completed higher vocational training 
or university), parental history of premature myocardial infarction (yes/no; for father <55 y 
and for mother <65 y), intake of dietary fiber (g/d), vitamin C (mg/d), beta-carotene (mg/d), 
saturated fatty acids (en%), trans-fatty acids (en%), monounsaturated fatty acids (en%), linoleic 
acid (en%), and alpha-linolenic acid (en%).

To examine whether systolic blood pressure could be an intermediate factor in the association 
of EPA-DHA or fish intake with stroke, we added this variable to the multivariable model and 
examined changes in HRs. Possible confounding by physical activity (cycling and sports) was 
checked in the subgroup of participants for which these data were available (n=15,423). All 
P-values are two-tailed with α=0.05. Statistical analyses were performed with Statistical Analysis 
Software (SAS), version 9.2.

Results
The median EPA-DHA intake across quartiles varied from 36 to 225 mg/d in women and from 
44 to 241 mg/d in men. In the higher quartiles participants were slightly older, higher educated, 
and they consumed more energy and alcohol. In men, but not in women, EPA-DHA intake was 
positively associated with current smoking (Table 6.1). Eight per cent of the participants never 
consumed fish and 40% consumed fish less than once per month. The median fish consumption 
was twice per month. The Spearman rank correlation between total fish consumption and EPA-
DHA intake was 0.95. We observed no interaction between EPA-DHA or fish intake and gender 
in relation to incident stroke (P for interaction = 0.30, both for EPA-DHA and fish).

During 8-13 years of follow-up (median 10.5 years), 221 incident strokes occurred. Total stroke 
comprised 142 ischemic strokes (including 60 TIAs), 47 hemorrhagic strokes, and 32 unspecified 
strokes. Rates for TIA were similar for men and women. Men had higher incidence rates of total 
and ischemic stroke (excluding TIA), whereas women had higher rates of hemorrhagic stroke 
(Table 6.2). Women were on average 5 years younger (~47y) than men (~52y) when their first 
stroke occurred.

After adjustment for potential confounders, we found an inverse dose-response relation (P-trend 
= 0.02) of EPA-DHA intake with incident total stroke in women. The HR (95% CI) for quartile 
4 (median intake: 225 mg/d) was 0.49 (0.27-0.91) compared to the bottom quartile (median 
intake: 36 mg/d). EPA-DHA intake was not significantly associated with incident stroke in men. 
The HR for total stroke in quartile 4 was 0.87 (0.51-1.48) (Table 6.3). Results of fish consumption 
were similar to those of EPA-DHA intake. Women in the top quartile of fish consumption had a 
significantly lower risk of total stroke (HR: 0.51; 95% CI: 0.26-0.94) (P-trend = 0.01), while men 
in the top quartile had a HR of 0.75 (95% CI: 0.44-1.26) (Table 6.4). 

88

N-3 fatty acids, fish, and strokeChapter 6



89

N
-3 fatty acids, fish, and stroke

Chapter 6

Ta
bl

e 
6.

1 
Ba

se
lin

e 
ch

ar
ac

te
ris

tic
s o

f 2
0,

06
9 

D
ut

ch
 m

en
 a

nd
 w

om
en

, a
ge

d 
20

-6
5y

, b
y 

qu
ar

til
es

 o
f E

PA
-D

H
A 

in
ta

ke

Ab
br

ev
ia

tio
ns

: E
PA

, e
ico

sa
pe

nt
ae

no
ic 

ac
id

; D
H

A,
 d

oc
os

ah
ex

ae
no

ic 
ac

id
; H

D
L, 

H
ig

h 
D

en
sit

y 
Lip

op
ro

te
in

; Q
, q

ua
rti

le
s.

a  U
ni

ve
rs

ity
 o

r h
ig

he
r v

oc
at

io
n 

tra
in

in
g.

b  A
va

ila
bl

e 
fo

r p
ar

tic
ip

an
ts

 e
nr

ol
le

d 
be

tw
ee

n 
19

94
 a

nd
 1

99
7 

(n
=1

5,
42

3)
.

c  N
on

fa
st

in
g.

W
om

en
M

en

Ra
ng

e 
EP

A-
D

H
A 

(m
ed

ia
n)

, m
g/

d
Q

1 
<

57 (3
6)

Q
2 

57
-1

06
(7

7)

Q
3 

10
7-

18
8 

(1
42

)

Q
4 

>
18

8
(2

25
)

Q
1

<
66 (4
4)

Q
2

66
-1

18
(8

9)

Q
3

11
9-

19
8

(1
57

)

Q
4

>
19

8
(2

41
)

n
2,

77
0

2,
77

0
2,

77
1

2,
77

0
2,

24
7

2,
24

7
2,

24
7

2,
24

7
Ag

e,
 y

40
.4

 ±
 1

1.
9

40
.3

 ±
 1

1.
1

41
.1

 ±
 1

0.
8

42
.5

 ±
 1

0.
8

41
.2

 ±
 1

1.
4

41
.2

 ±
 1

1.
0

42
.2

 ±
 1

0.
6

43
.2

 ±
 1

0.
7

Fi
sh

, g
/d

 
1.

3 
±

 1
.3

4.
7 

±
 2

.1
10

.6
 ±

 3
.5

22
.0

 ±
 1

4.
2

1.
5 

±
 1

.4
5.

0 
±

 2
.2

11
.1

 ±
 3

.8
21

.9
 ±

 1
3.

9
EP

A
, m

g/
d 

10
 ±

 5
24

 ±
 7

46
 ±

 1
0

94
 ±

 5
8

11
 ±

 6
26

 ±
 7

49
 ±

 1
1

10
2 

±
 6

3
D

H
A

, m
g/

d
26

 ±
 1

0
56

 ±
 1

1
99

 ±
 1

8
18

9 
±

 1
03

31
 ±

 1
2

65
 ±

 1
2

10
9 

±
 1

8
20

2 
±

 1
05

AL
A

, e
n%

0.
55

 ±
 0

.1
7

0.
55

 ±
 0

.1
5

0.
56

 ±
 0

.1
6

0.
56

 ±
 0

.1
5

0.
53

 ±
 0

.1
5

0.
54

 ±
 0

.1
5

0.
53

 ±
 0

.1
5

0.
54

 ±
 0

.1
5

Li
no

le
ic

 a
ci

d,
 e

n%
 

5.
26

 ±
 1

.6
0

5.
36

 ±
 1

.4
7

5.
43

 ±
 1

.4
9

5.
53

 ±
 1

.5
8

5.
28

 ±
 1

.6
0

5.
39

 ±
 1

.5
5

5.
36

 ±
 1

.5
6

5.
46

 ±
 1

.6
3

Sa
tu

ra
te

d 
fa

tt
y 

ac
id

s, 
en

%
 

14
.7

 ±
 2

.6
14

.7
 ±

 2
.4

14
.4

 ±
 2

.5
14

.1
 ±

 2
.6

14
.4

 ±
 2

.5
14

.4
 ±

 2
.4

14
.2

 ±
 2

.4
14

.2
 ±

 2
.5

To
ta

l f
at

ty
 a

ci
ds

, e
n%

 
34

.9
 ±

 5
.2

35
.5

 ±
 4

.9
35

.1
 ±

 5
.0

34
.9

 ±
 5

.1
34

.6
 ±

 5
.0

35
.1

 ±
 4

.7
34

.7
 ±

 5
.0

35
.0

 ±
 5

.0
To

ta
l e

ne
rg

y,
 M

J/
d

7.
9 

±
 2

.1
8.

4 
±

 2
.1

8.
5 

±
 2

.1
8.

6 
±

 2
.3

10
.6

 ±
 2

.7
11

.0
 ±

 2
.8

11
.0

 ±
 2

.8
 

11
.3

 ±
 2

.9
Bo

dy
 m

as
s 

in
de

x,
 k

g/
m

2
24

.4
 ±

 4
.1

24
.5

 ±
 4

.1
24

.4
 ±

 4
.1

24
.7

 ±
 4

.1
25

.1
 ±

 3
.6

25
.3

 ±
 3

.4
25

.2
 ±

 3
.3

25
.4

 ±
 3

.5
Sm

ok
in

g,
 %

N
ev

er
39

36
35

36
34

31
31

28
Fo

rm
er

24
28

28
27

32
34

34
30

Cu
rr

en
t

37
36

37
37

34
35

35
42

Al
co

ho
l c

on
su

m
pt

io
n,

 %
N

on
e

23
16

15
16

10
7

7
8

Lo
w

 to
 m

od
er

at
e

60
62

58
53

62
61

56
50

H
ig

h
17

22
27

30
28

32
37

41
H

ig
hl

y 
ed

uc
at

ed
,a  %

 
17

21
26

26
24

26
32

29
D

ut
ch

 e
th

ni
ci

ty
, %

98
98

97
95

98
96

96
94

Ph
ys

ic
al

 a
ct

iv
ity

b

En
ga

ge
d 

in
 c

yc
lin

g,
 %

60
62

60
61

55
59

59
58

En
ga

ge
d 

in
 s

po
rt

s, 
%

33
37

39
38

36
40

40
37

Pa
re

nt
al

 h
is

to
ry

 o
f p

re
m

at
ur

e 
M

I, 
%

 
10

9
8

9
9

9
9

9
Se

ru
m

 to
ta

l c
ho

le
st

er
ol

,c  m
m

ol
/l

5.
2 

±
 1

.0
5.

2 
±

 1
.0

5.
2 

±
 1

.1
5.

3 
±

 1
.0

5.
2 

±
 1

.0
5.

3 
±

 1
.1

5.
3 

±
 1

.1
5.

4 
±

 1
.1

Se
ru

m
 H

D
L-

ch
ol

es
te

ro
l,c  m

m
ol

/l
1.

5 
±

 0
.4

1.
5 

±
 0

.4
1.

5 
±

 0
.4

1.
5 

±
 0

.4
1.

2 
±

 0
.3

1.
2 

±
 0

.3
1.

2 
±

 0
.3

1.
2 

±
 0

.3
Sy

st
ol

ic
 b

lo
od

 p
re

ss
ur

e,
 m

m
 H

g
11

6.
7 

±
 1

5.
5

11
6.

2 
±

 1
5.

6
11

6.
2 

±
 1

4.
9

11
7.

1 
±

15
.8

12
3.

7 
±

 1
3.

9
12

4.
1 

±
 1

4.
6

12
3.

9 
±

 1
4.

6
12

4.
4 

±
 1

5.
5

D
ia

st
ol

ic
 b

lo
od

 p
re

ss
ur

e,
 m

m
 H

g
74

.3
 ±

 9
.9

74
.5

 ±
 1

0.
3

73
.8

 ±
 9

.9
74

.2
 ±

 1
0.

3
78

.4
 ±

 9
.9

78
.5

 ±
 1

0.
1

78
.5

 ±
 1

0.
1

78
.4

 ±
 1

0.
7

6



90

N-3 fatty acids, fish, and strokeChapter 6

The associations of EPA-DHA and fish consumption with ischemic stroke and total stroke 
were similar. The HR (95% CI) for ischemic stroke risk in the top quartile of EPA-DHA intake 
was 0.62 (0.29-1.35) for women and 0.85 (0.45-1.60) for men. However, confidence intervals 
were wider compared to total stroke and the associations were not significant in either men 
or women. Results for total and ischemic stroke with or without TIA were also similar (results 
not shown). Although we had a limited number of cases, the associations of EPA-DHA and fish 
with hemorrhagic stroke suggested also an inverse association. 

Table 6.2 Incidence rates of total stroke and stroke subtypes in 20,069 Dutch men and women, aged 20-65y

Abbreviation: TIA, transient ischemic attack.
a Incidence rates per 10,000 person years.
b International Classification of Diseases (ICD-10) codes were I60-I66 and G45 for total stroke;  I63, I65, I66, for ischemic stroke 
excluding TIA, G45 for TIA, and I60-I62 for hemorrhagic stroke.

Women Men

Incidence ratea % Incidence rate %

Total strokeb 9.2 12.4
Ischemic stroke excluding TIAb 2.6 28 5.6 45
TIAb 2.9 31 2.9 24
Hemorrhagic strokeb 2.7 29 1.7 14
Unspecified 1.0 11 2.2 17

Table 6.3 Associations of incident stroke by quartiles of EPA-DHA intake in 20,069 Dutch men and womena

Abbreviations: DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; HR, hazard ratio; CI, confidence interval.
a Values are HR with 95% CI in quartiles (Q1-Q4) of EPA-DHA intake, using Q1 as the reference category.
b International Classification of Diseases (ICD-10) codes were I60-I66 and G45 for total stroke; I63, I65, I66, and G45 for ischemic 
stroke and I60-I62 for hemorrhagic stroke. 
c Model 1: adjusted for age.
d Model 3: additionally adjusted for smoking, BMI, educational level, parental history of myocardial infarction, alcohol intake, total 
energy intake, dietary fiber, vitamin C, beta-carotene, saturated fatty acids, trans-fatty acids, monounsaturated fatty acids, linoleic 
acid, and alpha-linolenic acid.

Total strokeb Ischemic stroke Hemorrhagic stroke

Intake, mg/d
Range (median)

Cases Model 1c Model 2d Cases Model 2d Cases Model 2d

Women
Q1: <57 (36) 33 1.0 (ref) 1.0 (ref) 19 1.0 (ref) 9 1.0 (ref)
Q2: 57-106 (77) 28 0.88 (0.53-1.45) 0.89 (0.53-1.49) 17 0.98 (0.50-1.91) 7 0.73 (0.27-2.00)
Q3: 107-188 (142) 28 0.86 (0.52-1.42) 0.86 (0.51-1.46) 17 0.98 (0.50-1.93) 10 1.00 (0.39-2.57)
Q4: >188 (225) 17 0.49 (0.28-0.89) 0.49 (0.27-0.91) 11 0.62 (0.29-1.35) 5 0.45 (0.39-1.42)
P-trend 0.02 0.02 0.21 0.18

Men
Q1: <66 (44) 30 1.0 (ref) 1.0 (ref) 22 1.0 (ref) 6 1.0 (ref)
Q2: 66-118 (89) 33 1.13 (0.69-1.86) 1.16 (0.70-1.92) 20 0.93 (0.50-1.74) 7 1.22 (0.40-3.70)
Q3: 119-198 (157) 24 0.78 (0.46-1.34) 0.84 (0.48-1.45) 18 0.87 (0.46-1.65) 1 0.16 (0.02-1.32)
Q4: >199 (241) 28 0.86 (0.51-1.44) 0.87 (0.51-1.48) 20 0.85 (0.45-1.60) 2 0.28 (0.05-1.46)
P-trend 0.32 0.36 0.61 0.03



Additional adjustment for systolic blood pressure did not change the associations. HRs (95% 
CI) for total stroke incidence in the top quartile of EPA-DHA were 0.50 (0.27-0.92) for women 
and 0.85 (0.50-1.46) for men. In the top quartile of fish consumption, HRs for total stroke were 
0.74 (0.44-1.25) and 0.50 (0.26-0.95) for men and women, respectively. For the subgroup with 
information on physical activity (n=15,423), the full model with and without physical activity 
yielded similar results (results not shown).

Discussion
In this prospective cohort study from the Netherlands, a higher EPA-DHA and fish intake were 
associated with a lower stroke risk in women, with no differences between stroke types. For 
men, these associations were weaker and not statistically significant. 

Misclassification of participants for fish or EPA-DHA intake may have occurred. However, 
correlations for EPA and DHA intake derived from the FFQ with levels in plasma cholesteryl 
esters were 0.32 and 0.41, which is comparable to other studies.28 Furthermore, we excluded 
participants with a history of myocardial infarction or stroke and participants on cholesterol or 
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Table 6.4 Associations of incident stroke by quartiles of fish consumption in 20,069 Dutch men and womena

Abbreviations: HR, hazard ratio; CI, confidence interval.
a Values are HR with 95% CI in quartiles (Q1-Q4) of fish intake, using Q1 as the reference category.
b International Classification of Diseases (ICD-10) codes were I60-I66 and G45 for total stroke; I63, I65, I66, and G45 for ischemic 
stroke and I60-I62 for hemorrhagic stroke. 
c Model 1: adjusted for age.
d Model 2: additionally adjusted for smoking, BMI, educational level, parental history of myocardial infarction, alcohol 
intake, supplement use, total energy intake, dietary fiber, vitamin C, beta-carotene, saturated fatty acids, trans-fatty acids, 
monounsaturated fatty acids, linoleic acid, and alpha-linolenic acid.

Total strokeb Ischemic stroke Hemorrhagic stroke

Intake, g/d Cases Model 1c Model 2d Cases Model 2d Cases Model 2d

Range (median) HR (95% CI) HR (95% CI) HR 95% CI HR 95% CI

Women
Q1: <3.0 (1.0) 29 1.0 (ref) 1.0 (ref) 17 1.0 (ref) 6 1.0 (ref)
Q2: 3.0-7.2 (4.2) 34 1.21 (0.74-1.98) 1.25 (0.75-2.08) 20 1.25 (0.65-2.41) 12 1.97 (0.73-5.31)
Q3: 7.3-14.0 (9.8) 28 0.96 (0.57-1.61) 1.00 (0.59-1.71) 18 1.14 (0.58-2.24) 8 1.19 (0.41-3.52)
Q4: >14.0 (18.0) 15 0.48 (0.26-0.90) 0.49 (0.26-0.94) 9 0.54 (0.24-1.23) 5 0.67 (0.19-2.29)
P-trend 0.01 0.01 0.09 0.20

Men
Q1: <3.3 (1.1) 32 1.0 (ref) 1.0 (ref) 22 1.0 (ref) 5 1.0 (ref)
Q2: 3.3-7.4 (4.3) 32 1.03 (0.63-1.68) 1.04 (0.63-1.72) 22 1.05 (0.57-1.93) 7 1.22 (0.40-3.70)
Q3: 7.5-14.0 (10.8) 24 0.68 (0.40-1.16) 0.73 (0.42-1.24) 17 0.77 (0.40-1.47) 3 0.16 (0.02-1.32)
Q4: >14.0 (17.6) 27 0.74 (0.44-1.23) 0.75 (0.44-1.26) 19 0.79 (0.42-1.48) 1 0.28 (0.05-1.46)
P-trend 0.11 0.14 0.31 0.04
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blood pressure lowering medication, because those participants may have changed their diets. 
We therefore consider potential misclassification at baseline random rather than dependent 
on disease outcome. 

Nonfatal stroke events were assessed through probabilistic linkage with the national hospital 
discharge register. If we have missed events by this procedure, this is unlikely to be related to 
EPA-DHA or fish intake, and will therefore not have biased our results. In the Netherlands, brain 
imaging is used to identify stroke in 98% of the admitted stroke patients.29 In contrast to most 
other studies on stroke, we also evaluated TIA (which comprised 42% of ischemic stroke cases), 
a less severe stroke event of which symptoms last <24h. Because the results for incident stroke 
with or without TIA were similar in our study, we included TIA to increase statistical power.

We observed a significant 51% lower risk of total stroke in women in the highest quartile 
of EPA-DHA (>188 mg/d), or fish (>14 g/d) intake. The difference with the bottom quartile 
corresponded to ~one portion of fish per week. Our associations for EPA-DHA were stronger 
than in the Nurses’ Health Study. In that study, EPA-DHA intakes in quintile 3 (median 171 mg/d) 
and 4 (median 221 mg/d), which approximately represent our top quartile, were associated 
with a respectively 31% and 17% lower stroke risk, compared to the bottom quintile.9 American 
cohort studies reported a 23% (HR: 0.77; 95% CI: 0.53-1.13)8 and a 22% lower (HR: 0.78; 95% CI: 
0.55-1.12)9 stroke risk for women who consumed one fish meal per week compared to no fish8 or 
less than once per month.9 For women from the UK12 and Sweden.12,13 eating fish once or twice 
per week compared to less than once per week was associated with borderline significant lower 
stroke incidences of 26% (UK) and 13% (Sweden). In summary, cohort studies from Western 
countries have consistently shown that EPA-DHA and fish intake are inversely associated with 
stroke risk in women, with HRs varying between 0.5 and 0.8.

We found no significant association for EPA-DHA with stroke in men. In the Health Professionals 
Follow up Study, the largest male cohort, a 23% lower stroke risk (HR: 0.77; 95% CI: 0.52-1.14) 
was observed for an EPA-DHA intake of 200-400 mg/d vs. less than 50 mg/d after 12 years of 
follow-up.10 In the Physicians’ Health Study, however, EPA-DHA intake was not associated with 
4-year incidence of stroke.14 Although not significant, the HR of 0.75 for stroke in the top vs. 
bottom quartile of fish consumption in our male participants was in line with the borderline 
significant 26% lower stroke risk in the American health professionals consuming one fish meal 
per week compared to less than one per month.10 Our stroke risk estimate of 0.75 was stronger 
than the male-specific estimate of 0.90 (95% CI: 0.78-1.04) for fish once per week vs. less than 
once per month from the meta-analysis of He et al.19 That effect size estimate, however, was 
diluted by a large Chinese study that reported a positive association between fish intake and 
fatal stroke.16 In men from the UK, eating fish (mainly processed and fried) once or twice per 
week compared to less than once per week was associated with a non-significant higher stroke 
risk.12 To summarize, in cohort studies from Western countries with a similar range of intake 
compared to our study, inverse associations for men are less convincing than for women.
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Concluding, evidence is accumulating that a higher EPA-DHA and fish intake is related to a 
lower stroke risk in women, while for men an inverse association could not be demonstrated. 
This gender difference cannot be explained by differences in stroke types as inverse associations 
were observed both for ischemic and hemorrhagic stroke. Furthermore, distributions of EPA-
DHA and fish intake for men and women were similar. If this gender difference will be confirmed 
in other and larger studies, research is needed to clarify the physiologic difference of this 
epidemiologic finding.
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Abstract 
Aim: Dietary polyunsaturated fatty acids (PUFA) are inversely related to coronary heart disease 
(CHD) in epidemiological studies. We examined the associations of plasma n-6 and n-3 PUFA 
in cholesteryl esters with fatal CHD in a nested case-control study. 

Methods and results: We used data from two population-based cohort studies in Dutch 
adults aged 20-65 years. Blood sampling and data collection took place from 1987-1997 and 
subjects were followed for 8-19 years. We identified 279 incident cases of fatal CHD (235 fatal 
myocardial infarctions and 44 cardiac arrests) and randomly selected 279 controls, matched 
on age, gender, and enrollment date. Odds ratios (OR) with 95% confidence intervals (95% CI) 
were calculated per standard deviation (SD) increase of fatty acids in cholesteryl esters using 
multivariable conditional logistic regression models. After adjustment for confounders, the OR 
(95% CI) for fatal CHD per SD increase in plasma linoleic acid was 0.89 (0.74-1.06). Additional 
adjustment for plasma total cholesterol and systolic blood pressure attenuated this association 
(OR: 0.95; 95% CI: 0.78-1.15). Plasma arachidonic acid was not associated with fatal CHD (OR 
per SD: 1.11; 95% CI: 0.92-1.35). The ORs (95% CI) for fatal CHD for an SD increase in n-3 PUFA 
were 0.92 (0.74-1.15) for plasma alpha-linolenic acid and 1.06 (0.88-1.27) for plasma EPA-DHA. 

Conclusion: In this Dutch adult population, arachidonic acid and n-3 PUFA in cholesteryl esters 
were not related to fatal CHD. Our data support findings from previous prospective studies 
showing a lower proportion of linoleic acid in plasma cholesteryl esters in CHD cases. 
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Introduction 
Several reviews of prospective cohort studies and randomized trials suggest that the intake of 
n-6 and n-3 polyunsaturated fatty acids (PUFA) protect against coronary heart disease (CHD).1-4 
Linoleic acid, belonging to the n-6 PUFA family, is the most abundant PUFA in the diet and it 
is mainly obtained from vegetable oils, such as sunflower oil and soybean oil.2 It is an essential 
fatty acid that can be elongated to arachidonic acid, which is also present in meat in small 
quantities.5,6 Alpha-linolenic acid is an essential fatty acid of the n-3 PUFA family and is present 
in soybean, canola, and flaxseed oil.2 Alpha-linolenic acid can be elongated to eicosapentaenoic 
acid (EPA) and docosahexaenoic acid (DHA). Because these conversions takes place only to a 
limited extent (<8%),7-9 EPA and DHA are mainly derived from the diet, through fish consumption.2

Biomarkers of dietary intake are widely used in epidemiological studies.10,11 They are considered 
to provide a more accurate measure of intake than dietary records or questionnaire data, 
especially when the nutrient of interest varies widely within foods and food groups and when 
food composition tables are inaccurate for that specific nutrient.12 Furthermore, biomarkers 
are not dependent on a person’s ability to recall dietary intakes. Fatty acids can be measured 
as free fatty acids in serum (or plasma), as components of triglycerides, phospholipids, 
cholesteryl esters, erythrocyte membranes, platelets, or in adipose tissue from various sites.13 
Cholesteryl esters are found in plasma lipoproteins and reflect dietary intake of PUFA during 
the previous weeks.14,15 

Harris et al.16 performed a meta-analysis of 25 (nested) case-control studies and prospective 
cohort studies on tissue fatty acid composition and risk of CHD published until 2006. Harris 
et al. showed that long-chain n-3 PUFA tissue concentrations, especially DHA, were inversely 
associated with fatal CHD. However, in their meta-analysis crude data of PUFA levels were 
pooled, i.e. potential confounders were not taken into account. Furthermore, adipose tissue 
and various plasma and serum fractions were combined.

We investigated the associations of n-6 and n-3 PUFA, measured in plasma cholesteryl esters 
with the risk of fatal CHD in a prospective case-control study of Dutch adults, adjusted for 
confounders. Additionally, we performed a meta-analysis of nested case-control and cohort 
studies on plasma PUFA measured in cholesteryl esters in relation to CHD.

Methods

Design and study populations
We conducted a nested case-control study using two similar consecutive Dutch population-
based cohorts. The nested case-control design is considered an efficient alternative to a full-
cohort analysis.17 Baseline blood samples and information on lifestyle, and cardiovascular risk 
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factors were collected in 35,475 subjects aged 20-59 years during 1987-1991 in the Monitoring 
Project on Cardiovascular Disease Risk Factors (subsequently referred to as MP-1)18,19 and 
in 20,641 subjects aged 20-65 years during 1993-1997 in the Monitoring Project on Risk 
Factors for Chronic Diseases (MP-2).20 The surveys comply with the Declaration of Helsinki 
and the protocols were approved by the Academic Hospital Leiden and the Medical Ethics 
Committees of TNO Prevention and Health, Leiden, The Netherlands. Written informed consent 
was obtained from each participant. For 7,754 participants who participated in both cohorts, 
we used the more recent MP-2 data. In addition, we excluded participants with a history of 
myocardial infarction (MI) or stroke at baseline, resulting in 26,987 participants in MP-1 and 
21,335 participants in MP-2. 

Vital status was checked through linkage with the national population register. Participants were 
followed for cause-specific mortality through linkage with Statistics Netherlands. Fatal CHD 
included fatal myocardial infarction (MI; I21, I22) and fatal cardiac arrest (CA; I46), according 
to the International Classification of Diseases (ICD-10, WHO). For causes of death coded until 
January 1, 1996, corresponding ICD-9 codes were used. Participants were followed until fatal 
CHD, death, date of loss-to-follow-up (predominantly because of emigration) or 1 January 
2006, whichever came first. 

All cases of fatal MI and fatal CA that occurred during follow-up (median 12.5 years, range 
8-19 years) were identified. For each case (n=232 in MP-1 and 69 in MP-2), one control from 
the same cohort was selected based on incidence density sampling to reduce the likelihood 
of biased results.21,22 Controls were selected from those persons under study who survived at 
least as long as the index case. A person was eligible to serve as a control for multiple cases 
at a given moment in time and could serve both as control and case. Cases were individually 
matched to controls on age (± 0.5y), gender, and date of entry in the cohort (± 0.5y). Plasma 
was available for 222 case-control pairs of MP-1 and 57 pairs of MP-2. In MP-1, five participants 
were selected as a control twice and four participants served both as a control and as a case. 
In MP-2, 1 participant was selected both as case and control. 

Measurement of n-3 PUFA in plasma cholesteryl esters
Participants donated nonfasting blood at baseline. EDTA-plasma of MP-1 was stored at -30°C 
and EDTA-plasma of MP-2 was stored at -80°C until analyzed. Fatty acids were measured 
in plasma cholesteryl esters by gas chromatography, as described previously.23 In short, to 
isolate cholesteryl esters, lipids from EDTA plasma were dissolved and separated by solid 
phase extraction silica columns (Chrompack, Middelburg, The Netherlands). The fatty acids 
were identified by comparison with known standards (Nu-chek prep, Inc. Elysian, MN, USA). 
Fatty acids were expressed as mass percentages of total fatty acid methyl esters (g/100g). A 
quality control plasma pool was analyzed in duplicate in each run. Coefficients of variation 
of the controls (intra and inter assay combined) ranged between 3 and 3.5%. Laboratory 
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technicians were blinded to the status of the samples. Cases and controls were randomly 
distributed over the runs.

Data collection on risk factors
The baseline measurements were previously described in detail by Verschuren et al.18,20 Body 
weight, height, and blood pressure were measured by trained research nurses. Hypertension 
was defined as a systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg, or 
the use of blood pressure lowering medication. Nonfasting plasma was analyzed for total and 
high-density lipoprotein (HDL) cholesterol, and hypercholesterolemia was defined as plasma 
total cholesterol ≥6.5 mmol/l or use of cholesterol lowering medication. Self-administered 
questionnaires were used to assess the prevalence of diabetes, history of MI or stroke, medication 
use, parental history of MI, educational level, and cigarette smoking. Alcohol intake was calculated 
in glasses/d and was categorized as no intake, low to moderate intake (men ≤2 and women ≤1 
glasses/d), or high intake (men >2 and women >1 glasses/d).

Statistical analysis
In descriptive analyses, we compared the prevalence of risk factors and mean levels (± SD) 
of plasma fatty acids between cases and controls, stratified for cohort. The significance of 
differences in crude means or frequencies of risk factors were assessed by paired t-test for 
continuous variables and by the Wilcoxon signed-rank test for categorical variables. We used 
conditional logistic regression models to calculate odds ratios (OR) with 95% confidence 
intervals (95% CI) for the association of plasma levels of linoleic acid, arachidonic acid, alpha-
linolenic acid, EPA, DHA, and EPA-DHA with fatal CHD. The analyses were repeated within the 
two separate cohorts. ORs and 95% CI for fatal CHD were calculated per SD increase in the 
plasma fatty acids, based on the distribution of controls. 

In model 1, we adjusted for the matching factors age, gender, cohort, and enrollment date. In 
model 2, we additionally adjusted for current cigarette smoking (yes/no), body mass index (kg/
m2), alcohol intake (no, low to moderate, or high), high educational level (completed higher 
vocational training or university). In model 3 we also adjusted for systolic blood pressure 
(mmHg) and plasma total cholesterol (mmol/l). Two-sided P-values <0.05 were considered to 
be statistically significant. Descriptive statistics and logistic regression analyses were performed 
with Statistical Analysis Software (SAS), version 9.2.

We performed a dose response meta-analysis of prospective studies (cohort studies or 
nested case-control studies) that measured cholesteryl ester PUFA status in relation to CHD 
risk including the estimates of the two separate cohorts of the current study. We identified 
five publications with relative risks on cholesteryl ester PUFA in relation to fatal and nonfatal 
CHD,24-28 of which one could not be used due to missing data on fatty acid levels.26 In the 
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original publication of Warensjö et al.28 the endpoint was fatal cardiovascular disease. Data 
on CHD were kindly provided by the authors upon request. We used STATA version 11.0 (STAT 
Corp, College Station, TX) for meta-analyses using the METAN command. The generalized 
least-squares method for trend estimation of summarized dose-response data was used 
to calculate a relative risk for a certain unit of the exposure based on the Greenland and 
Longnecker method.29 Each study was weighted by the inverse of its variance, including 
both the within and between study variance. Between-study heterogeneity was assessed via 
the I2 statistic, which expresses the percentage of variation attributable to between-study 
heterogeneity.30 Random effects pooling were conducted according to DerSimonian and 
Laird.31 We visualized and summarized the associations between different PUFA and CHD 
outcomes in forest plots.
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Table 7.1 Baseline characteristics of 279 fatal coronary heart disease cases and 279 matched controls 
controlsa,b

a Values are means ± SD, unless indicated otherwise.
b Controls were matched on age, gender, cohort, and enrollment date.
c Paired t-test for linear values and Wilcoxon signed-rank test for proportions.
d Completed higher vocational training or university.
e Nonfasting.

MP-1 MP-2

Cases 
(n=222)

Controls 
(n=222)

P-valuec Cases 
(n=57)

Controls 
(n=57)

P-valuec

Male gender, %   70   70 –   79   79 –
Age, y   50.5 ± 7.4   50.5 ± 7.5 –   51.7 ± 7.1   51.8 ± 7.2 – 
Body mass index, kg/m2   26.9 ± 4.7   26.0 ± 3.9 0.02   27.7 ± 4.8   26.2 ± 3.8 0.07
Smoking, %

Never   18   32 –   18   35 –
Former   21   30 –   26   39 –
Current   61   38 <0.0001   56   26 0.002

Alcohol consumption, % 
No intake   38   34 –   23   12 –
Low to moderate   34   36 –   44   67 –
High   27   30 0.29   33   21 0.90

High educational level,d %     7   14 0.008   21   18 0.82
Parental history of myocardial infarction, %     9.5     8.7 0.87     5.3     5.3 1.00
Diabetes mellitus, %     5.0     2.7 0.33     5.3     0 0.25
Systolic blood pressure, mm Hg 134.5 ± 21.0 125.5 ± 15.6 <0.0001 138.8 ± 20.3 126.8 ± 17.1 0.001
Diastolic blood pressure, mm Hg   83.4 ± 12.4   78.6 ± 9.7 <0.0001   85.6   ± 12.1   79.7 ± 9.9 0.002
Blood pressure lowering medication, %   14.9     9.0 0.06   19.3   10.5 0.23
Hypertension, %   46   28 <0.0001   56   33 0.002
Plasma total cholesterol,e mmol/l     6.5 ± 1.3     5.9 ± 1.1 <0.0001     5.8 ± 1.0     5.7 ± 1.0 0.83
Plasma HDL-cholesterol,e mmol/l     1.1 ± 0.3     1.2 ± 0.3 0.002     1.2 ± 0.4     1.3 ± 0.3 0.15
Cholesterol lowering medication, %     1.8     0.5 0.25     1.8     0 1.00
Hypercholesterolemia, %   42   27 0.001   26   19 0.42



Results

Nested cases-control study of plasma cholesteryl fatty acids and 
fatal CHD
Cases comprised 235 fatal MI (187 from MP-1 and 48 from MP-2) and 44 cardiac arrest events 
(35 from MP-1 and 9 from MP-2). Cases and matched controls from MP-2 were on average 
around 51 years old and 79% was male. Compared to MP-2, cases and controls from MP-1 had 
a similar age, but consisted of fewer males (70%). In both cohorts, cases had a higher body 
mass index, smoked more, more often used anti-hypertensive medication, and had higher 
blood pressure levels than controls. Cases of MP-1 also had higher plasma total cholesterol 
levels compared to controls (Table 7.1). 

Table 7.2 shows fatty acid levels for CHD cases and matched controls. The levels of linoleic 
acid, arachidonic acid, alpha-linolenic acid, and EPA-DHA were all lower in MP-1 as compared 
to MP-2. Linoleic acid values were (non-significantly) lower in cases compared to controls, 
although this was not statistically significant. The other fatty acid levels did not differ between 
cases and controls.

In the crude model and after adjusting for smoking, body mass index, educational level, and 
alcohol intake (model 2), linoleic acid status was borderline significantly inversely associated 
with fatal CHD. In model 2, the ORs (95% CI) for fatal CHD per SD increase in linoleic acid was 
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Table 7.2 Fatty acid proportions in plasma cholesteryl esters in 279 Dutch fatal CHD cases and 279 
matched controlsa,b

a Fatty acid levels are expressed as mass percentages (g/100g).
b Controls were matched on age, gender, cohort, and enrollment date.
c Fatty acid levels are expressed as means ± SD.
d Paired t-test, log transformed values were used for EPA, DHA, and EPA-DHA.

Fatty acids (g/100g)c Cases Controls P-valued

MP-1 n=222 n=222
Linoleic acid C18:2n-6 42.9 ± 7.0 43.8 ± 6.3 0.15
Arachidonic acid C20:4n-6   3.8 ± 1.1   3.9 ± 1.2 0.54
Alpha-linolenic acid C18:3n-3 0.39 ± 0.13 0.38 ± 0.14 0.56
EPA C20:5n-3 0.59 ± 0.45 0.59 ± 0.42 0.73
DHA C22:6n-3 0.33 ± 0.16 0.33 ± 0.15 0.59
EPA-DHA C20:5n-3+C22:6n-3 0.92 ± 0.57 0.91 ± 0.54 0.996

MP-2 n=57 n=57
Linoleic acid C18:2n-6 52.9 ± 5.3 54.4 ± 4.8 0.14
Arachidonic acid C20:4n-6   6.8 ± 1.6   6.4 ± 1.6 0.18
Alpha-linolenic acid C18:3n-3 0.51 ± 0.15 0.51 ± 0.14 0.95
EPA C20:5n-3 0.93 ± 0.64 0.89 ± 0.57 0.88
DHA C22:6n-3 0.54 ± 0.22 0.52 ± 0.22 0.46
EPA-DHA C20:5n-3+C22:6n-3 1.48 ± 0.82 1.41 ± 0.74 0.69

7
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0.89 (0.74-1.06). Additional adjustment for plasma total cholesterol and systolic blood pressure 
(model 3) attenuated the estimate. Plasma arachidonic acid was not associated with fatal CHD. 
The ORs (95% CI) for fatal CHD for an SD increase in n-3 PUFA were 0.92 (0.74-1.15) for plasma 
alpha-linolenic acid and 1.06 (0.88-1.27) for plasma EPA-DHA (Table 7.3).

Meta-analysis of prospective studies on cholesteryl ester PUFA in 
relation to CHD
For the meta-analysis, we pooled the current data with results of two nested case-control studies 
from the USA22, 23 and two cohort studies from Finland and Sweden on cholesteryl ester PUFA in 
relation to fatal and nonfatal CHD.25,26 The mean baseline age ranged from 50-60 years and the 
mean follow-up time ranged from 5-34 years between studies. Three studies comprised only 

Table 7.3 Associations between plasma cholesteryl ester fatty acids and fatal CHD, matched by age, 
gender, cohort, and enrollment datea

Abbreviations: EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.
a Values are odds ratios (95% CI) per standard deviation increase, based on conditional logistic models.
b Crude model, matched for age, gender, cohort, and enrollment date.
c Model 1 with additional adjustment for smoking, BMI, education level, alcohol intake.
d Model 2 with additional adjustment for systolic blood pressure, total cholesterol.

Model 1b Model 2c Model 3d

OR (95% CI) OR (95% CI) OR (95% CI)

Combined cohorts n=558
Linoleic acid 0.86 (0.74-1.00) 0.89 (0.74-1.06) 0.95 (0.78-1.15)
Arachidonic acid 1.00 (0.85-1.18) 1.06 (0.88-1.27) 1.11 (0.92-1.35)
Alpha-linolenic acid 1.05 (0.87-1.25) 0.97 (0.79-1.19) 0.92 (0.74-1.15)
EPA 1.02 (0.88-1.20) 1.07 (0.90-1.26) 1.04 (0.86-1.24)
DHA 1.02 (0.87-1.20) 1.09 (0.91-1.31) 1.12 (0.92-1.36)
EPA-DHA 1.03 (0.88-1.20) 1.08 (0.91-1.27) 1.06 (0.88-1.27)

MP-1 n=444
Linoleic acid 0.88 (0.75-1.05) 0.90 (0.74-1.10) 0.97 (0.78-1.21)
Arachidonic acid 0.95 (0.79-1.13) 1.02 (0.83-1.25) 1.08 (0.87-1.34)
Alpha-linolenic acid 1.06 (0.87-1.31) 1.01 (0.80-1.26) 0.93 (0.72-1.19)
EPA 1.01 (0.85-1.21) 1.06 (0.87-1.28) 1.02 (0.83-1.25)
DHA 1.00 (0.84-1.20) 1.07 (0.88-1.30) 1.11 (0.89-1.37)
EPA-DHA 1.01 (0.85-1.20) 1.06 (0.88-1.29) 1.04 (0.85-1.28)

MP-2 n=114
Linoleic acid 0.77 (0.54-1.10) 0.80 (0.53-1.23) 0.83 (0.53-1.32)
Arachidonic acid 1.32 (0.88-1.96) 1.26 (0.79-2.03) 1.29 (0.78-2.12)
Alpha-linolenic acid 0.99 (0.68-1.45) 0.87 (0.56-1.37) 1.01 (0.61-1.70)
EPA 1.08 (0.76-1.51) 1.11 (0.72-1.70) 1.06 (0.65-1.74)
DHA 1.15 (0.77-1.71) 1.22 (0.72-2.05) 1.15 (0.65-2.05)
EPA-DHA 1.09 (0.77-1.55) 1.13 (0.73-1.77) 1.08 (0.65-1.80)



men24,25 and the other included men and women. For MP-1 and MP-2 we used the estimates of 
model 3, as that model was most comparable to the data of the other included studies. After 
pooling all studies, a 5% higher linoleic acid level was associated with a 9% lower risk (relative 
risk: 0.91; 95% CI: 0.84-0.98) of CHD. The other fatty acids were not associated with CHD. For 
DHA status we observed significant heterogeneity (P<0.001) (Figure 7.1). Exclusion of the study 
of Erkkilä et al., which was the only study with coronary patients, resulted in a pooled OR (95% 
CI) of 1.09 (0.95-1.11) without heterogeneity (P=0.49).
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Figure 7.1a-b Pooled relative risk of cholesterol ester n-6 and n-3 PUFA.

NOTE: Weights are from random effects analysis
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Figure 7.1c-d Pooled relative risk of cholesterol ester n-6 and n-3 PUFA.

NOTE: Weights are from random effects analysis

Overall  (I−squared = 0.0%, p = 0.774)
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Discussion
In a nested case-control study in Dutch adults we observed an inverse, but statistically non-
significant association between plasma cholesteryl ester linoleic acid levels and fatal CHD. 
When we pooled these data with those from similar prospective studies in a meta-analysis, a 
5% higher linoleic acid level was related to a significant 9% lower CHD risk. Arachidonic acid 
and the n-3 PUFA alpha-linolenic acid, EPA, and DHA were not associated with CHD risk in the 
present study and in the meta-analysis.

A limitation of our study could be that the blood samples were stored for 18-23 years for MP-1 
and 12-17 years for MP-2, which may have affected the quality of plasma fatty acids. However, 
storage up to 10 years at -80°C did not significantly influence serum cholesteryl ester fatty acid 
profiles in a recent validation study.32 Although the n-6 and n-3 PUFA levels of the (older) MP-1 
samples were considerably lower than those of the MP-2 samples, we do not expect that the 
values were differentially lower for cases compared to controls. The number of detected fatty 
acids (15-20) and the percentage of unknown fractions (rule of thumb <5%) were as expected 
for both cohorts. Furthermore, potential measurement error will have been random because 
the plasma samples of cases and controls were identically handled and analyzed in random 
order, and lab technicians were blinded for disease outcome. A strength of the present analysis 
was that we used two similar, large population-based cohort studies, with almost complete 
mortality follow-up.

Figure 7.1e Pooled relative risk of cholesterol ester n-6 and n-3 PUFA.

NOTE: Weights are from random effects analysis

Overall  (I−squared = 88.0%, p = 0.000)
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The present nested case-control study showed an inverse, but statistically non-significant 
association between plasma cholesteryl ester linoleic acid levels and fatal CHD. However, a 5% 
higher linoleic acid level was related to a significant 9% lower CHD risk (OR: 0.91; 95% CI: 0.84-
0.98) in a meta-analysis in which we combined our findings with data from similar prospective 
studies. In the meta-analysis of Harris et al.,16 linoleic acid was not associated with CHD risk, 
based on a pooled estimate of seven prospective studies with various blood fractions. Plasma 
arachidonic acid did not predict CHD in our nested case-control study and meta-analysis, which 
was in agreement with Harris et al.16 In our nested case-control study and meta-analysis, we 
observed no association of cholesteryl ester alpha-linolenic acid or EPA-DHA with CHD, whereas 
Harris et al.16 observed a borderline significantly lower alpha-linolenic acid status in CHD cases. 
Furthermore, DHA, but not EPA, was significantly inversely associated with CHD in the subgroup 
of prospective studies in the meta-analysis of Harris et al.16 

The current meta-analysis and the one of Harris et al.16 showed different results, mainly for 
linoleic acid and DHA. Some differences in design could be responsible for this. Although 
Harris et al. combined data of a large number of studies, 16 out of the 25 studies had a classical 
case-control design (based on prevalent cases), which is more prone to reverse-causation and 
selection bias. Seven studies (case-control studies only) were based on adipose tissue samples. 
The other 18 used various blood fractions, such as phospholipids, cholesteryl esters, and 
erythrocytes, which could cause substantial heterogeneity in meta-analysis results. Finally, the 
analysis was based on crude PUFA levels. Potential confounding e.g. by body mass index and 
smoking, which appeared to be strong confounders in the present analysis, may partly explain 
discrepant results between the two meta-analyses.

Linoleic acid is by far the most important fatty acid in cholesteryl esters, followed by oleic acid, 
palmitic acid, and arachidonic acid.33 In contrast, the concentrations of n-3 PUFA are very low. 
Therefore, in the n-3 PUFA, the variation between persons was probably small compared to 
the within-person variation. An American validation study reported that short and long-term 
reliability coefficients i.e. the ratio of between-person variance to total variance were >0.7 for 
cholesteryl ester linoleic acid, whereas these coefficients ranged between 0.4-0.5 for fatty acids 
that composed <1% of total cholesteryl ester fatty acids. The variance of the method was only 
<5% of the total variance.34 A low between to within-person variation ratio will hamper finding 
significant associations between these fatty acids and fatal CHD. This is probably the reason 
why the associations between these PUFA and fatal CHD are inconsistent (Figure 7.1).

In conclusion, our data support the previously reported inverse association between linoleic 
acid in plasma cholesteryl esters and CHD risk. For plasma cholesteryl ester levels of n-3 PUFA, 
however, no relations with CHD risk were found in our prospective study and meta-analysis, 
which raises concern regarding the validity of these biomarkers of intake for epidemiological 
studies.
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Abstract 
Background and aims: There are few prospective studies on fatty acid status in relation to 
incident stroke, with inconsistent results. We assessed the associations of plasma n-6 and n-3 
PUFA in cholesteryl esters with the risk of total stroke and stroke subtypes in Dutch adults.

Methods and results: We conducted a nested case-control study using data from a population-
based cohort study in adults aged 20-65 years. Blood sampling and data collection took place 
during 1993-1997 and subjects were followed for 8-13 years. We identified 179 incident cases 
of stroke and 179 randomly selected controls, matched on age, gender, and enrollment date. 
Odds ratios (OR) with 95% confidence intervals (95% CI) were calculated per standard deviation 
(SD) increase of PUFA in cholesteryl esters using multivariable conditional logistic regression. 
Cases comprised 93 ischemic, 50 hemorrhagic, and 36 unspecified strokes. The n-6 PUFA linoleic 
acid and arachidonic acid contributed ~55% and ~6.5% respectively to total plasma fatty acids, 
whereas the n-3 PUFA alpha-linolenic acid contributed ~0.5% and eicosapentaenoic acid plus 
docosahexaenoic acid (EPA-DHA) ~1.3%. After adjustment for confounders, n-6 and n-3 PUFA 
were not associated with incident total stroke or stroke subtypes. The OR (95% CI) for total 
stroke was 0.95 (0.74-1.23) per SD increase in linoleic acid and 1.02 (0.80-1.30) per SD increase 
in arachidonic acid. ORs (95% CI) for total stroke were 0.94 (0.72-1.21) for alpha-linolenic acid 
and 1.16 (0.94-1.45) for EPA-DHA. 

Conclusion: In the present study, plasma n-6 or n-3 fatty acids were not related to incident 
stroke or stroke subtypes. 
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Introduction 
Worldwide, stroke is the second largest cause of death and a major cause of long-term disability.1,2 
Stroke was the third cause of burden of disease expressed in disability adjusted life years (DALY) 
in middle and high income countries in 2004, leading to substantial health care costs.1 A healthy 
lifestyle and diet are of utmost importance for the primary prevention of cardiovascular diseases, 
including stroke.3-5 Polyunsaturated fatty acids (PUFA) may influence the risk of stroke, but data 
on biomarkers of PUFA intake in relation to stroke risk are lacking.

Linoleic acid, belonging to the n-6 PUFA family, is the most abundant PUFA in the diet and it 
is mainly obtained from vegetable oils, such as sunflower oil and soybean oil.6 It is an essential 
fatty acid that can be elongated to arachidonic acid, which is also present in meat in small 
quantities.7,8 Alpha-linolenic acid is an essential fatty acid of the n-3 PUFA family and is present 
in soybean, canola, and flaxseed oil.6 Alpha-linolenic acid can be elongated to eicosapentaenoic 
acid (EPA) and docosahexaenoic acid (DHA). Because these conversions only take place to a 
limited extent,9 EPA and DHA are mainly derived from the diet, through fish consumption.6 

Biomarkers of dietary intake are widely used in epidemiological studies.10,11 They are considered 
to be a more accurate measure of intake than dietary records or questionnaire data, especially 
when the nutrient of interest varies widely within foods and food groups and when food 
composition tables are inaccurate for that specific nutrient.12 Furthermore, biomarkers are 
not dependent on a person’s ability to recall dietary intakes. Fatty acids can be measured as 
free fatty acids in serum (or plasma), as components of circulating triglycerides, erythrocyte 
membranes, platelets, phospholipids or cholesteryl esters, or in adipose tissue from various 
sites.13 Cholesteryl esters are found in plasma lipoproteins and reflect dietary intake of PUFA 
during the previous weeks.14,15 Whole serum, serum fractions, and erythrocytes also reflect a 
relatively short-term intake (between days and months). In long-term observational studies, 
adipose tissue is considered the best choice to assess habitual fatty acid intake, because it 
reflects the intake of fatty acids during the previous months to years.10,15 However, blood tissue 
is most widely used in observational studies because of its accessibility and the assumption 
that individuals do not make drastic short-term diet changes.10

There are only a few prospective studies on fatty acid status in relation to incident stroke.16-18 In 
a Japanese,17 but not in an American16 nested case-control study, total serum linoleic acid and 
arachidonic acid16 were inversely associated with incident stroke. Alpha-linolenic acid in serum 
cholesteryl esters and phospholipids was inversely associated with stroke risk in the American,16 
but not in the Japanese study.17 In Japan, however, both fatty acid intake and stroke incidence 
are very different compared to Western countries.17 A Swedish nested case-control study found 
a borderline positive association of EPA-DHA in erythrocytes with ischemic stroke in men but not 
in women, whereas EPA-DHA status was not associated with total stroke in men or in women.18 
In the Japanese and American studies, EPA and DHA were not related to stroke risk. 
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We investigated the associations of n-6 and n-3 fatty acids, measured in plasma cholesteryl 
esters with the risk of total stroke and stroke subtypes in a nested case-control study of Dutch 
adults.

Methods

Study population
We conducted a nested case-control study in the Monitoring Project on Risk Factors for 
Chronic Diseases (MORGEN study), a Dutch population-based cohort study. Blood samples and 
information on lifestyle, and cardiovascular risk factors were collected at baseline (1993-1997) 
in 21,953 subjects aged 20-65 years.19,20 The survey complied with the Declaration of Helsinki 
and the protocol was approved by the Medical Ethics Committees of TNO Prevention and 
Health, Leiden. Written informed consent was obtained from each participant. We excluded 
participants without dietary information, participants with a history of myocardial infarction or 
stroke at baseline, resulting in 21,335 participants. 

Vital status was checked through linkage with the national population register. Participants 
were followed for cause-specific mortality, including fatal stroke, through linkage with Statistics 
Netherlands. Information on nonfatal stroke was obtained from the national hospital discharge 
register as described in more detail elsewhere.21 It has been shown that on the national level 
data from the Dutch hospital discharge register can be uniquely matched to a person for at 
least 88% of the hospital admissions.21 Total stroke included I60-66, ischemic stroke included 
I63, I65, and I66, and hemorrhagic stroke included I60-I62 according to the International 
Classification of Diseases (ICD-10, WHO). For hospital admissions and for causes of death coded 
until January 1, 1996, corresponding ICD-9 codes were used. Participants were followed until 
incident stroke, death, date of loss-to-follow-up (predominantly because of emigration) or 1 
January 2006, whichever came first. 

All cases of incident stroke (n=200) that occurred during 8-13 years (median: 10.5 years) of 
follow-up were identified. For each case, one control was selected based on incidence density 
sampling.22,23 Controls were selected from those persons under study who survived at least as 
long as the index case. A person was eligible to serve as a control for multiple cases at a given 
moment in time and could serve both as control and case. Cases were individually matched on 
age (± 0.5y), gender, and enrollment date (± 0.5y). Plasma was available for 179 case-control 
pairs. Five participants were selected as a control twice. One participant served both as a control 
and as a case. 
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Measurement of plasma n-3 PUFA in plasma cholesteryl esters
Participants donated nonfasting blood at baseline. EDTA-plasma was stored at -80°C until 
analyzed in 2010. Fatty acids were measured in plasma cholesteryl esters by gas chromatography, 
as described previously.24 In short, to isolate cholesteryl esters, lipids from EDTA plasma were 
dissolved and separated by solid phase extraction silica columns (Chrompack, Middelburg, The 
Netherlands). The fatty acids were identified by comparison with known standards (Nu-chek 
prep, Inc. Elysian, MN, USA). Fatty acids were expressed as mass percentages of total fatty acid 
methyl esters (g/100g). A quality control plasma pool was analysed in duplicate in each run. 
Coefficients of variation of the controls (intra and inter assay combined) ranged between 3 and 
3.5%. Laboratory technicians were blinded to the status of the samples. Cases and controls were 
randomly distributed over the runs.

Data collection on risk factors
The baseline measurements were previously described in detail by Verschuren et al.25 Body 
weight, height, and blood pressure were measured at baseline by trained research nurses. 
Hypertension was defined as a systolic blood pressure ≥140 mmHg, a diastolic blood pressure 
≥90 mmHg, or the use of blood pressure lowering medication. Nonfasting plasma was 
analyzed for total and high-density lipoprotein (HDL) cholesterol, and hypercholesterolemia 
was defined as plasma total cholesterol ≥6.5 mmol/l or the use of cholesterol lowering 
medication. Self-administered questionnaires were used to assess the prevalence of diabetes, 
history of myocardial infarction or stroke, medication use, parental history of myocardial 
infarction, educational level, and cigarette smoking. Alcohol intake (based on a food frequency 
questionnaire26,27) was calculated in glasses/d and was categorized as no intake, low to 
moderate intake (men ≤2 and women ≤1 glasses/d), or high intake (men >2 and women >1 
glasses/d).

Statistical analysis
In descriptive analyses, we compared the prevalence of risk factors and mean levels (±SD) of 
plasma fatty acids between cases and controls. The significance of differences in crude means or 
frequencies of risk factors were assessed by paired t-test for continuous variables and Wilcoxon 
signed-rank test for categorical variables. Correlations between the different types of fatty acids 
in plasma were assessed with the Spearman rank correlation test. 

We used conditional logistic regression models to calculate odds ratios (OR) with 95% 
confidence intervals (95% CI) for the association of plasma levels of linoleic acid, arachidonic 
acid, alpha-linolenic acid, and EPA-DHA with incidence of stroke. The analyses were repeated 
for stroke subtypes, i.e. ischemic stroke and hemorrhagic stroke. ORs and 95% CI for stroke 
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were calculated per SD increase in the plasma fatty acids, based on the distribution of controls. 
In model 1, we adjusted for the matching factors age, gender, and enrollment date. In model 
2, we additionally adjusted for current cigarette smoking (yes/no), body mass index (kg/m2), 
alcohol intake (none, low to moderate or high), high educational level (completed higher 
vocational training or university), parental history of myocardial infarction (yes/no; for father 
<55 y and for mother <65 y), presence of diabetes mellitus (yes/no), hypertension (yes/
no), hypercholesterolemia (yes/no). Two-sided P-values ≤0.05 were considered statistically 
significant. All statistical analyses were performed with Statistical Analysis Software (SAS), 
version 9.2. 

Results
Cases comprised 93 ischemic strokes, 50 hemorrhagic strokes, and 36 unspecified strokes. Due 
to matching, case and control participants had a similar mean age of around 50 years and 53% 
of both cases and controls were male. Cases smoked more, were lower educated, had higher 
blood pressures, and had more often hypercholesterolemia or diabetes mellitus (Table 8.1). 
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Table 8.1 Characteristics of 179 Dutch stroke cases and 179 matched controlsa,b

a Values are means ± SD, unless indicated otherwise.
b Controls were matched on age, gender, and enrollment date.
c Paired t-test for linear values Wilcoxon signed-rank test for proportions.
d Completed higher vocational training or university.
e Nonfasting.

Cases
(n=179)

Controls
(n=179)

P-valuec

Male gender, %   53   53 -
Age, y   50.1 ± 9.5   50.0 ± 9.5 - 
Body mass index, kg/m2   25.8 ± 4.1   25.9 ± 4.3 0.74
Smoking, %
Never   21   40 -
Former   30   35 -
Current   49   26 <0.0001
Alcohol consumption, % 

Low   20   11 -
Moderate   49   63 -
High   31   26 0.51

High educational level,d %   12   22 0.01
Diabetes mellitus, %     5.6     0.6 0.001
Systolic blood pressure, mm Hg 132.1 ± 20.2 126.1 ± 16.1 0.002
Diastolic blood pressure, mm Hg   82.9 ± 12.0   80.9 ± 11.3 0.11
Hypertension, %   42.1   30.7 0.02
Plasma total cholesterol,e mmol/l     5.7 ± 1.1     5.6 ± 1.1 0.29
Plasma HDL-cholesterol,e mmol/l     1.3 ±  0.4     1.3 ±  0.3 0.23
Hypercholesterolemia, %   28.5   20.1 0.04



Plasma linoleic acid was inversely correlated with plasma arachidonic acid (r=-0.27). Alpha-
linolenic acid was positively correlated with EPA-DHA (r=0.29). Alpha-linolenic acid was inversely 
correlated with linoleic acid (-0.19) (all P<0.001). 

Table 8.2 shows fatty acid levels for stroke cases and matched controls. The n-6 PUFA linoleic 
acid and arachidonic acid contributed ~55% and ~6.5% respectively to total fatty acids in 
cholesteryl esters. N-3 PUFA levels alpha-linolenic acid contributed ~0.5% and EPA-DHA 
~1.3%, with an EPA to DHA ratio of ~3:2. Fatty acid levels did not differ between cases and 
controls, except for EPA-DHA which was higher in cases of total stroke (P=0.07) and cases of 
ischemic stroke (P=0.02). Of note, the standard deviation for EPA-DHA in cases was relatively 
large compared to controls. 

In Table 8.3, ORs (95% CI) of incident total stroke and stroke subtypes are presented per SD 
increase (based on the distribution of controls) in the n-6 and n-3 fatty acids. After adjustment 
for confounders, n-6 PUFA were not associated with incident stroke. The ORs (95% CI) for total 
stroke were 0.95 (0.74-1.23) per SD increase of linoleic acid and 1.02 (0.80-1.30) per SD increase 
of arachidonic acid. N-3 fatty acids were also not related to total stroke risk, with ORs (95% 
CI) for total stroke of 0.94 (0.72-1.21) for alpha-linolenic acid and 1.16 (0.94-1.45) for EPA plus 
DHA. In addition, no significant associations were observed between n-6 and n-3 fatty acid 
status and incidence of ischemic or hemorrhagic stroke.

119

N
-6 and n-3 PUFA status and incident stroke

Chapter 8

Table 8.2 Fatty acid proportions in plasma cholesteryl esters in 179 Dutch stroke cases and 179 matched 
controlsa,b

a Fatty acid levels are expressed as mass percentages of total fatty acids.
b Controls were matched on age, gender, and enrollment date.
c Fatty acid levels are expressed as means ±SD.
d Paired t-test.
e Paired t-test was performed on the log transformed values of EPA-DHA.

Fatty acids (g/100g)c Cases Controls P-valued

Total stroke n=179 n=179
Linoleic acid C18:2n-6 54.4 ± 5.8 55.2 ± 5.3 0.17
Arachidonic acid C20:4n-6   6.6 ± 1.7   6.5 ± 1.6 0.70
Alpha-linolenic acid C18:3n-3 0.53 ± 0.14 0.52 ± 0.15 0.80
EPA-DHA C20:5n-3 + C22:6n-3 1.43 ± 1.04 1.23 ± 0.56 0.07e

Ischemic stroke n=93 n=93
Linoleic acid C18:2n-6 54.2 ± 5.7 55.4 ± 5.5 0.15
Arachidonic acid C20:4n-6   6.7 ± 1.7   6.4 ± 1.5 0.15
Alpha-linolenic acid C18:3n-3 0.53 ± 0.13 0.52 ± 0.14 0.41
EPA-DHA C20:5n-3 + C22:6n-3 1.57 ± 1.25 1.25 ± 0.60 0.02e

Hemorrhagic stroke n=50 n=50
Linoleic acid C18:2n-6 53.5 ± 6.1 55.2 ± 4.6 0.14
Arachidonic acid C20:4n-6   6.4 ± 1.7   6.6 ± 1.7 0.49
Alpha-linolenic acid C18:3n-3 0.54 ± 0.14 0.54 ± 0.16 0.86
EPA-DHA C20:5n-3 + C22:6n-3 1.29 ± 0.78 1.12 ± 0.40 0.45e 8
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Discussion
The present nested case-control study in a general Dutch population, showed no association 
between cholesteryl ester plasma levels of n-6 fatty acids (linoleic acid and arachidonic acid) 
or n-3 (alpha-linolenic acid and EPA-DHA) fatty acids and incidence of total stroke or stroke 
subtypes.

Several methodological issues should be addressed. The nested case-control design is 
considered an efficient alternative to a full-cohort analysis.28 In addition, controls were 
selected based on incidence density sampling to reduce the likelihood of biased results.22,23 
Cholesteryl ester levels of linoleic acid, alpha-linolenic acid, EPA, and DHA are considered a 
reliable proxy of dietary intake of n-3 PUFA during the previous weeks.14,15 because they are 
not (alpha-linolenic acid and linoleic acid) or hardly (EPA and DHA) endogenously synthesized.9 
In Western diets, arachidonic levels are more influenced by synthesis from linoleic acid than 
by dietary intake.7

The blood samples had been stored for 12-17 years which may have affected the quality of 
plasma fatty acids. However, storage up to 10 years at -80°C did not significantly influence 

Table 8.3 Associations between plasma fatty acids and incident stroke, matched by age, gender, 
and enrollment datea

Abbreviations: EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; OR, odds ratio.
a Values are odds ratios (95% CI) per standard deviation increase, based on conditional logistic models.
b Crude model, matched for age, gender, and enrollment date.
c Additional adjustment for smoking, BMI, education level, alcohol intake, diabetes, hypertension, hypercholesterolemia.

Model 1b Model 2c

OR (95% CI) OR (95% CI)

Total stroke n=179 n=179
Linoleic acid 0.87 (0.71-1.07) 0.95 (0.74-1.24)
Arachidonic acid 1.04 (0.84-1.29) 1.02 (0.80-1.30)
Alpha-linolenic acid 1.03 (0.82-1.29) 0.94 (0.72-1.21)
EPA-DHA 1.23 (1.02-1.50) 1.16 (0.94-1.45)

Ischemic stroke n=93 n=93
Linoleic acid 0.79 (0.57-1.09) 0.81 (0.54-1.24)
Arachidonic acid 1.22 (0.93-1.62) 1.21 (0.88-1.67)
Alpha-linolenic acid 1.14 (0.84-1.56) 1.02 (0.71-1.46)
EPA-DHA 1.34 (1.01-1.78) 1.33 (0.96-1.84)

Hemorrhagic stroke n=50 n=50
Linoleic acid 0.74 (0.49-1.11) 1.01 (0.56-1.83)
Arachidonic acid 0.87 (0.59-1.29) 0.84 (0.51-1.39)
Alpha-linolenic acid 0.96 (0.62-1.49) 0.73 (0.40-1.32)
EPA-DHA 1.23 (0.90-1.68) 1.08 (0.75-1.57)



serum cholesteryl ester fatty acid profiles in a recent validation study.29 In addition, the number 
of detected fatty acids (15-20) and the percentage of unknown fractions (rule of thumb <5 
g/100g) were as expected. Furthermore, potential measurement error will have been random 
because the plasma samples of cases and controls were identically handled and analyzed in 
random order, and lab technicians were blinded for disease outcome.

Epidemiological studies of n-6 and n-3 fatty acid status and stroke are scarce. In a nested case-
control study in 192 American middle-aged men at high risk for cardiovascular diseases in the 
MRFIT study,16 the n-6 PUFA linoleic acid or arachidonic acid were not related to stroke risk. 
This is in line with the results of the present study. In our study, the n-3 PUFA alpha-linolenic 
acid status were also not associated with incident total stroke or ischemic stroke. In this respect 
our results differed from those of the MRFIT study, which had a similar distribution of alpha-
linolenic acid in serum cholesteryl esters, but a shorter follow-up time of 7 years. In the MRFIT 
study, a 1-SD higher alpha-linolenic acid level (0.13 g/100g) was associated with a 37% lower 
risk of total stroke (OR: 0.63; 95% CI: 0.43-0.92).16 

In the present study, plasma EPA-DHA was unrelated to total stroke incidence, which is in 
agreement with the MRFIT study16 and with a Swedish nested case-control study with 169 
cases of incident stroke and 738 matched controls.18 Although results were not statistically 
significant and confidence intervals were wide, we observed a borderline significant positive 
association of plasma EPA-DHA with ischemic stroke, but not with hemorrhagic stroke. 
Also in the Swedish study,18 a borderline positive association of EPA-DHA in erythrocytes 
was found with ischemic stroke, but only in men, not in women. Based on these results it is 
not possible to draw a conclusion on the association between plasma EPA-DHA and stroke 
incidence.

N-3 PUFA levels are low in cholesteryl esters. Therefore, the variation between persons may have 
been small compared to the within-subject variability. An American validation study reported 
that short and long-term reliability coefficients i.e. the ratio of between-person variance to 
total variance were >0.7 for cholesteryl ester linoleic acid, whereas these coefficients ranged 
between 0.4-0.5 for fatty acids that composed <1% of total cholesteryl ester fatty acids. The 
method variability was only <5% of the total variability.30 A low between to within person 
variation ratio will hamper finding significant associations between these fatty acids and stroke 
incidence, although inverse associations of cholesteryl ester alpha-linolenic acid with stroke16 

and EPA-DHA with CHD31 have been reported previously.

In conclusion, the present study did not find significant associations of plasma n-6 or n-3 fatty 
acids with incident stroke or stroke subtypes. The number of prospective studies on biomarkers 
of fatty acid intake and stroke is limited and those available are rather small. Therefore, more 
and larger prospective studies are needed to establish the relationship between PUFA status 
and stroke risk.
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This thesis addressed the relations of n-6 PUFA (linoleic acid and arachidonic acid) and n-3 
PUFA (ALA, EPA, and DHA) with cardiovascular diseases in a general Dutch population. The 
associations of both dietary intake and plasma levels of these fatty acids with incident CHD 
and stroke were examined prospectively by means of cohort and nested case-control studies. 
In addition, we reviewed the recent literature on dietary ALA intake, ALA tissue concentrations, 
and cardiovascular health in humans (Chapter 3).

Main findings
Tables 9.1 and 9.2 provide an overview of the results of this thesis. In Chapter 2 we concluded 
that a 4-5 en% difference in linoleic acid intake did not translate into either a different ratio 
of total to HDL-cholesterol or a different CHD incidence. An ALA intake in quintiles ranging 
from <1 g/d to >1.9 g/d was also not associated with incident CHD (Chapter 4). For EPA-DHA 
intake, we found an inverse dose-response relation with fatal CHD and fatal MI, but not with 
nonfatal MI. In the top quartile (~250 mg/d) a ~50% lower risk of fatal CHD and fatal MI was 
observed compared with the bottom quartile (~40 mg/d). For fish consumption, similar results 
were observed (Chapter 5). With regard to PUFA status, we observed an inverse, but statistically 
non-significant association between plasma cholesteryl ester linoleic acid and fatal CHD. When 
we pooled these data with those from similar prospective studies in a meta-analysis, however, 
a 5% higher cholesteryl ester linoleic acid level was related to a significant 9% lower CHD risk. 
Cholesteryl ester levels of arachidonic acid and the n-3 PUFA ALA, EPA, and DHA were not 
associated with CHD risk (Chapter 7).
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Table 9.1 Main findings on coronary heart disease

Abbreviations: ALA, alpha-linolenic acid; CHD, coronary heart disease; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; MI, 
myocardial infarction; PUFA, polyunsaturated fatty acids.

Fatty acid Fatty acid Intake Status

n-6 PUFA Linoleic acid No association with either the ratio 
of total to HDL-cholesterol or CHD 
incidence

Inverse, but non-significant 
association with fatal MI and 
sudden cardiac death

Meta-analysis: significant inverse 
association with CHD risk 

Arachidonic acid Not studied No association with fatal MI and 
sudden cardiac death

n-3 PUFA ALA No association with incident CHD No association with fatal MI and 
sudden cardiac death

EPA-DHA, fish Significant inverse association with fatal 
CHD and fatal MI, not with nonfatal MI

No association with fatal MI and 
sudden cardiac death

Chapter 9



An ALA intake ≥1.1 g/d was associated with a 35-50% lower risk of incident stroke, compared 
with an intake <1.1 g/d (Chapter 4). In women, an inverse dose-response relation was observed 
for EPA-DHA and fish intake with incident stroke, with a ~50% lower risk in the top quartile 
compared with the bottom quartile. For men, these associations were weaker and not statistically 
significant (Chapter 6). In plasma cholesteryl esters, n-6 or n-3 PUFA were not related to incident 
stroke (Chapter 8).

PUFA intake
In the MORGEN study, we assessed habitual PUFA intake by an FFQ that reflected the intake of 
the previous year. Fatty acid intakes were prospectively studied in relation to CHD and stroke 
by means of a prospective cohort design (Chapter 2, 4-6). 

Assessment of PUFA intake
One of the major methodological problems of fatty acid research is that fat intake is difficult to 
assess through dietary questionnaires and interviews.1,2 This leads to misclassification of exposure, 
which in turn may result in dilution of associations. Fat used for food preparation and added 
fat such as gravy and sauces are hard to quantify in dietary surveys. Additionally, PUFA such as 
linoleic acid and ALA are difficult to assess and disentangle, as they are both present in similar 
products, including margarines and cooking fats.3 To illustrate this, out of the top-10 products 
that contributed the most to the linoleic acid intake in our population, seven were also top-10 
ALA contributors (unpublished results). Examples of these products are soybean oil, margarine, 
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Table 9.2 Main findings on stroke

Abbreviations: ALA, alpha-linolenic acid; CHD, coronary heart disease; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; MI, 
myocardial infarction; PUFA, polyunsaturated fatty acids.

Fatty acid Fatty acid Intake Status

n-6 PUFA Linoleic acid Not studied  No association with incident 
stroke or subtypes

Arachidonic acid Not studied No association with incident 
stroke or subtypes

n-3 PUFA ALA Borderline significant inverse 
association with incident stroke, 
most pronounced for ALA from 
salad dressings.

No association with incident 
stroke or subtypes

EPA-DHA, fish Significantly inversely associated 
with incident stroke in women, but 
not in men

No association with incident 
stroke or subtypes

9



mayonnaise, and bread, which are part of commonly consumed diets. Similarly, ALA and linoleic 
acid in various foods are highly correlated with other fatty acids. An additional source of error is the 
calculation of PUFA intake with food composition tables. Most epidemiological studies with clinical 
endpoints use FFQ data. With an FFQ, people can be ranked according to their dietary intake.4

PUFA compositions of foods such as margarines and cooking oils have changed over time. 
Therefore, even if people have used the same brands of cooking oils and margarines during 
their lifetimes, their fatty acid intakes have changed. In the studies reported in this thesis, diet 
was assessed between 1993 and 1997, after which participants were followed until 2007. In the 
nineties, trans-fat was removed from margarines and cooking fats. Furthermore, in margarine 
spreads total fat content has been reduced and the ratio of saturated fatty acids to PUFA has 
been improved. The fatty acid composition of baseline diets in our study may therefore be 
less favorable than diets during follow-up. However, the overall fatty acid improvements in 
margarines and cooking fats probably occurred in the whole population, without necessarily 
affecting the ranking of individuals for specific PUFA intakes. The impact on our results of the 
addition of extra ALA in margarines is small, because this occurred only towards the end of our 
follow-up (after 2003), and only involved some brands.

PUFA intake and CVD
In controlled dietary experiments, dietary PUFA, which are mainly n-6 PUFA, have a favorable 
effect on plasma LDL-cholesterol, the total to HDL-cholesterol ratio5,6 and consequently CHD 
risk.7,8 However, most individual prospective cohort studies, including ours (Chapter 2), have 
failed to link a higher PUFA intake (or a lower saturated fat intake) to a lower CHD risk.9 In addition, 
we did not observe an association between linoleic acid intake and plasma cholesterol levels in 
a cross-sectional analysis. This is most likely due to the error in the single dietary assessment.10 

The predicted differences in plasma cholesterol based on the population distribution of linoleic 
acid are modest. The predicted difference for a 4-5 en% higher linoleic acid intake was -0.15 
for the ratio of plasma total to HDL cholesterol. This would correspond to a ~7% lower CHD 
incidence,7 which is hard to demonstrate in observational prospective cohort studies.11

Two meta-analyses of cohort studies recently reported on the effect of a higher PUFA intake as a 
substitute for saturated fat. The meta-analysis of Jakobsen et al.12 showed that the replacement 
of 5 en% from saturated fatty acids by PUFA was significantly associated with a 13% lower risk 
for coronary events. This was, however, not supported by the meta-analysis of Siri-Tarino et al.13 
The latter meta-analysis mainly focused on the effects of saturated fat, but also (in sub-analyses) 
on the exchange of saturated fat by PUFA. The conflicting results of the two meta-analyses may 
be explained by the different methodologies used. Jakobsen et al.12 pooled study-specific HRs, 
based on individual data with similar statistical models for all included studies, as opposed to 
Siri-Tarino et al. The studies in the latter meta-analysis may therefore be less comparable and the 
pooled estimate less precise. Furthermore, Jakobsen et al.12 selected studies on basis of quality 
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of intake data, which may have decreased misclassification of exposure of the included studies 
in comparison with the studies included by Siri-Tarino et al.13 The large Nurses’ Health Study in 
which PUFA were inversely associated with CHD will have largely influenced the overall results of 
the meta-analyses. Jakobsen et al.12 included the results of the Nurses’ Health Study14 twice, by 
dividing the 14-year follow-up into two periods to take advantage of the repeated assessments 
of dietary intake (in 1980 and 1984) and the long follow-up. However, these sub-cohorts are not 
independent and the results of the nurses may contribute too much to the overall pooled estimate 
of Jakobsen et al.12 Siri-Tarino et al.13 used the most recent publication of the Nurses’ Health Study 
of Oh et al.15 with 20-years of follow-up. These two meta-analyses of prospective cohort studies 
showed different results on the effect of replacement of saturated fatty acids by PUFA. However, 
in a meta-analysis of eight RCTs, replacement of 5 en% of SFA by PUFA reduced coronary events 
by 10%.16 A contrast of only 5 en% in a prospective cohort study with a single assessment of PUFA 
intake may be too small to demonstrate a CHD benefit, due to measurement error.

In Chapter 4, we found no evidence that ALA intake within the narrow range of our population, 
i.e. quintiles ranging from <1.0 g/d to >1.9 g/d, was associated with incident CHD. In addition, 
we analyzed different ALA sources in relation to CHD and stroke, i.e. ALA from salad dressings 
(mayonnaise and soybean oil, which were the main ALA sources) and other ALA sources. Both ALA 
groups, however, were not associated with incident CHD. Our results were in line with the Zutphen 
Study in elderly Dutch men, with a range of ALA intake similar to our study.17 In contrast to our 
study, trans-fatty acid intake for the men in the Zutphen Study who were examined in 1985 was still 
quite high.18 In that study, ALA intake from sources also containing trans-fatty acids was positively 
associated with CHD, whereas ALA from sources without trans-fatty acids was not associated with 
CHD.17 Results on ALA and CHD from observational cohort studies are inconsistent. For example, 
in the Nurses’ Health Study, ALA was inversely associated with sudden cardiac death, but not with 
nonfatal MI.19,20 In the Health Professionals Follow-up Study, ALA was inversely associated with 
incident MI,21 nonfatal MI,22 and incident CHD,22 but not with sudden cardiac death22 or fatal CHD.22 
In a large case-control study from Costa Rica, ALA intake was inversely associated with nonfatal 
MI. The ALA intake in Costa Rica ranged from 1.1 g/d in the bottom decile to 2.4 g/d in the top 
decile. The population distribution of ALA intake in Costa Rica was higher than in the Netherlands. 
Despite that the results from Costa Rica suggested that benefits of ALA on CHD could already be 
achieved at modest levels (~1.8 g/d),23,24 this was, however, not supported by our prospective data. 

We found an inverse association of ALA intake with incident total and ischemic stroke, which 
was most pronounced for ALA from salad dressings (Chapter 4). Stratification on sources is 
potentially an interesting way to remove residual confounding by saturated fatty acids, present in 
for example margarines, but to a lesser extent in salad dressings. We adjusted for many potential 
confounders, including the intake of raw vegetables, which were also inversely associated with 
incident stroke in the same cohort.25 However, the associations may still be influenced by a 
healthier diet and lifestyle of those who regularly eat (raw) vegetables or salads. The fact that 
we found an inverse association of ALA intake with incident stroke but not with incident CHD 
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was surprising. Adjustment for systolic blood pressure, which is stronger related to stroke than 
to CHD, did not change our results. This raises the hypothesis that ALA has specific neurological 
effects.26-30 To the best of our knowledge, our cohort study was the first to show an inverse 
association of ALA intake with stroke. Confirmation of our findings in other prospective studies 
is warranted, before drawing conclusions. 

Despite potential measurement error and misclassification, we observed significant inverse 
associations of fish and EPA-DHA intake with both fatal CHD (Chapter 5) and stroke (Chapter 
6). In the MORGEN study, 40% of the population consumed fish less than once per month and 
30% at least once a week, which created a contrast in the distribution of intake of the population. 
Our results on CHD are in agreement with a large body of evidence from prospective cohort 
studies, indicating a cardio-protective effect for low doses (~250 mg/d) of omega-3 fatty acids 
in fish.31 In cohort studies, residual confounding by other lifestyle habits is always a concern, 
which can be overcome in double-blind RCTs. At present, the best estimate of risk reduction 
based on observational studies and trials of the association of modest fish consumption (1-2 
fish meals/week) on CHD is 36%.31 

In women, we observed a significant inverse association of EPA-DHA with incident stroke, 
whereas for men the association was inverse, but much weaker and not statistically significant. 
Our findings were similar to most other observational studies in Western countries, as described 
in Chapter 6. We could not explain the gender difference by different EPA-DHA distributions or 
different stroke types. It could be speculated that women are more aware of what is purchased 
and used for cooking. They may therefore report their diets more accurately than men, resulting 
in less misclassification of exposure. This is supported by validation studies of the used FFQ, in 
which reproducibility and validity for fish intake were higher for women compared to men.32 
The different associations for men and women with regard to dietary intake and cardiovascular 
disease endpoints deserve further study.

Conclusions for PUFA intake
The lack of an inverse association of linoleic acid with CHD in prospective cohort studies may 
be due to the limited range of distributions of intake in combination with measurement errors. 
Also for ALA, similar limitations applied, yet the total evidence for an inverse association of ALA 
intake with CHD is less convincing than for linoleic acid. The inverse association of ALA intake 
with incident stroke is of interest and may be biologically plausible. This therefore deserves 
further attention in other studies. The inverse relation of EPA-DHA with fatal CHD is supported 
by a large body of evidence from prospective cohort studies indicating a cardio-protective effect 
for low doses of EPA-DHA intake (~1 fish meal per week). In women, EPA-DHA was significantly 
inversely associated with stroke, whereas in men only a weak non-significant inverse association 
was present. Gender differences in observational nutritional epidemiology have received little 
attention and deserve further study.
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Plasma PUFA
We measured plasma cholesteryl ester PUFA in the Monitoring Project on Cardiovascular Disease 
Risk Factors (MP-CVDRF) and the MORGEN study, which are two Dutch population-based cohorts 
that were examined in different time periods (1987-1991 and 1993-1997, respectively). Fatty acid 
levels were studied in relation to fatal CHD (Chapter 7) and incident stroke (Chapter 8) with a 
nested case-control design. For CHD, we used both cohort studies, whereas for stroke we only 
used the MORGEN study, as nonfatal stroke was not assessed in MP-CVDRF. 

Assessment of plasma PUFA 
Fatty acid status can be measured as free fatty acids in serum (or plasma), as components 
of triglycerides, phospholipids, cholesteryl esters, erythrocytes, platelets or in adipose tissue 
from various sites.1 The amount of specific fatty acids varies between tissue fractions (Figure 
9.1). For the assessment of PUFA status, we used plasma cholesteryl esters, a fraction that is 
relatively stable over time if stored at -80°C.33 Cholesteryl esters and phospholipids are more or 
less comparable with regard to the time frame of intake. Alternatively, erythrocytes could have 
been used, which reflect intake of the previous months. However, erythrocytes are relatively 
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Figure 9.1 Fatty acid profiles in cholesteryl esters (A) , erythrocytes (B), phospholipids (C), and adipose 
tissue (D) (adapted from Hodson et al.35).
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sensitive to oxidation, because of hemoglobin-derived iron. Furthermore, erythrocytes require 
specific handling and storage conditions. 

The samples of MP-CVDRF were stored for 18-23 years at -30°C and the samples of the 
MORGEN study were stored for 12-17 years at -80°C. Storage up to 10 years at -80°C did not 
significantly influence serum cholesteryl ester fatty acid profiles in a recent validation study.33 
Salo et al.34 observed that despite marked alterations in the fatty acid composition after three 
years of storage at -20°C, the results of the two repeated measurements correlated highly with 
each other. Additionally, for linoleic acid, ALA, and EPA, plasma cholesteryl esters performed 
better than plasma phospholipids or plasma triglycerides, especially for ALA. Salo et al.34 
also reported that the relative decrease in PUFA proportions after three years of storage at 
-20°C was positively correlated with the number of double bonds of the PUFA. Unfortunately, 
like most prospective cohort studies, we do not have data on the specific effects of storage 
temperature and time on PUFA levels in our population, but probably oxidation of cholesteryl 
ester PUFA occurred, especially for the samples of MP-CVDRF that were stored at -30° C. The 
mean levels of the n-3 and n-6 PUFA were all lower in MP-CVDRF than in the MORGEN study 
(Chapter 7; Figure 9.2). 

Of concern is, however, whether the degree of oxidation was higher for samples with originally 
higher PUFA levels. This could have resulted in a different ranking of individuals as compared 
with the situation at baseline. That could in turn have distorted an association of higher PUFA 
levels with a lower risk of CHD or stroke, if it existed. The percentage of unknown fractions was 
higher for MP-CVDRF as compared with the MORGEN study, whereas for both cohorts, the 
percentage of unknown fractions did not differ between cases and controls. Furthermore, the 
ratio of palmitic acid to arachidonic acid (the largest SFA and PUFA contributors in cholesteryl 
esters), did also not differ between cases and controls, whereas this ratio was higher in the 
MP-CVDRF compared to the MORGEN study. This suggests that a potential decrease in PUFA 
levels was probably non-differential between cases of CHD or stroke and healthy controls in 
our nested cases-control studies.

In cholesteryl esters, linoleic acid, oleic acid, palmitic acid, and arachidonic acid together 
represent ~80% of the fatty acid spectrum and linoleic acid is by far the most important fatty 
acid fraction. This was also the case for our samples of MP-CVDRF and the MORGEN study 
(Figure 9.2). Besides by the diet, the spectrum is largely determined by the specificity of the 
enzyme lecithin, which has a preference for linoleic acid.36,37 Figure 9.1A and 9.2 also clearly 
show that n-3 PUFA are very low in cholesteryl esters (less than 1% of total fatty acids). For our 
samples, the analytical measurement error of the cholesteryl ester PUFA was small. Coefficients of 
variation of the quality control plasma pool, analyzed in duplicate in each run, ranged between 3 
and 3.5% (intra and inter assay combined). Laboratory technicians did not know which samples 
belonged to the cases and which to the controls. Furthermore, cases and controls were randomly 
distributed over the runs. An American validation study on cholesteryl esters reported, that short 



and long-term reliability coefficients, i.e. the ratio of between-person variation to total variation, 
were >0.7 for linoleic acid, whereas these coefficients ranged between 0.4-0.5 for fatty acids 
that composed <1% of total fatty acids. The variation of the method contributed for only <5% 
to the total variation, which means that the measurement itself was highly reproducible.38 A low 
between to within-person variation ratio will hamper finding significant associations between 
the studied fatty acids and fatal CHD.

Plasma PUFA and CVD
As discussed in previous chapters, none of the cholesteryl ester n-6 or n-3 PUFA was statistically 
significantly related to incident stroke (Chapter 8) or fatal CHD (Chapter 7). The few other 
published studies on plasma PUFA and stroke used different fractions and results were 
inconsistent.39-41 In Chapter 7, we additionally conducted a meta-analysis of prospective cohort 
studies that specifically used cholesteryl esters. In that meta-analysis, a 5% higher linoleic 
acid level, which was equal to ~1 standard deviation in the MORGEN study, was significantly 
inversely associated with a 9% lower CHD risk. The other fatty acids were not associated with 
CHD risk in the meta-analysis. 

In 2007, Harris et al.42 conducted a meta-analysis of 25 (nested) case-control and prospective 
cohort studies on tissue fatty acid composition and risk of CHD. For the subgroup of prospective 
studies, DHA, ALA (borderline statistically significant), but not EPA, were inversely associated 
with fatal CHD. Several differences in design could be responsible for the different results 
between their and our meta-analysis. Although Harris et al.42 combined data of a large number 
of studies, 16 of the 25 studies had a classical case-control design (based on prevalent cases), 
which is more prone to reverse-causation and selection bias. Seven studies (case-control 
studies only) were based on adipose tissue samples. The other 18 used various blood fractions, 
such as phospholipids, cholesteryl esters, and erythrocytes, which could cause substantial 
heterogeneity in the meta-analysis results. Finally, the analysis was based on crude PUFA 
levels. Potential confounding e.g. by body mass index and smoking, which appeared to be 
confounders in our nested case-control study, may partly explain discrepant results between 
the two meta-analyses.

Conclusions for plasma PUFA
The inverse association of plasma linoleic acid with CHD risk in our meta-analysis supports the 
hypothesis that linoleic acid protects against CHD. Plasma arachidonic acid and n-3 PUFA were 
not related to fatal CHD. No associations of plasma n-3 and n-6 PUFA with incident stroke were 
found. Should inverse associations of cholesteryl ester PUFA with CHD or stroke exist, then 
they will be hard to demonstrate in individual studies on PUFA status, if the variation between 
persons is small compared to the within-person variation.
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PUFA and cardiovascular diseases: intake or status?
As shown in Table 9.1 and 9.2, our results on PUFA intake and PUFA status differed. The results 
on plasma EPA-DHA (Chapter 7 and 8) did not support our results on EPA-DHA intake on fatal 
CHD (Chapter 5) and incident stroke (Chapter 6). Similarly, our results on ALA intake in relation 
to incident stroke (Chapter 3) were not supported by plasma ALA data (Chapter 8).

Biomarkers of intake
Fatty acid levels in human tissue may provide a more accurate measure of habitual intake than 
dietary records or questionnaire data, especially when the nutrient of interest varies widely 
in foods and food groups and when food composition tables are inaccurate for that specific 
nutrient.43 Furthermore, tissue levels are not dependent on a person’s ability to recall dietary 
intakes. Because linoleic acid and ALA are essential fatty acids, their concentration in tissue 
is expected to reflect dietary intake to some extent. This also applies to EPA-DHA, for which 
endogenous synthesis is limited.44-46 To overcome difficulties with subjective dietary assessment, 
PUFA status is often used as a biomarker of intake in epidemiological studies.47,48 Fatty acid 
status reflects the combination of fatty acid intake and metabolism in the body and is therefore 
a more proximal measure between exposure and disease.

Despite advantages of biomarkers of intake compared to dietary assessment methods, there are 
also disadvantages. PUFA status may be influenced by metabolic differences between people 
with regard to genetic background, background diet, gender, BMI, smoking etc. Additional error 

134

General discussionChapter 9

Figure 9.2 Cholesteryl ester fatty acid profiles in MP-CVDRF (left) and the MORGEN study (right).
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is introduced by day-to-day variation in tissue levels and exchange of fatty acids with other 
body pools. Furthermore, error is introduced by differences in tissue sampling handling, and 
storage, and by the laboratory measurement.49 

Correlations between PUFA intake and plasma PUFA
The average compositions of fatty acid intake and plasma cholesteryl ester fatty acids in the 
MORGEN study clearly differ (Figure 9.3). For the MORGEN study, we assessed the correlation 
coefficients between intake and status (n=457 participants; unpublished results). Cholesteryl 
ester linoleic acid, EPA, and DHA correlated reasonably well with intake whereas plasma ALA 
was only weakly correlated with intake (Table 9.3).

It is difficult to compare correlation coefficient between studies, because studies differ in 
populations, in distributions of intake, and in the fractions and dietary assessment methods that 
are being compared. Furthermore, intake can be expressed in absolute terms (g/d), relative to 
total energy intake, or relative to total fat intake. The time frames of intake and status information 
are also important. Additionally, in an experimental study, large contrasts in intake of specific 
fatty acids can be achieved, whereas in an observational cohort study intake of several fatty 
acids differ between people and the range of intake is often small. 

In our data, plasma values of PUFA indicated intake over the previous weeks, whereas FFQ 
data indicated intake over longer time periods (months to year), which will have affected the 
correlation between these two measures. Despite the different reference periods, correlation 

Figure 9.3 Dietary fatty acids (% of total energy intake; left) and cholesteryl ester fatty acids in the 
MORGEN study (right).
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Linoleic acid (C18:2n-
6), 54.52

Oleic acid (C18:1n-9), 
17.29

Palmi�c acid (C16), 
10.96

Arachidonic acid 
(C20:4n-6), 6.55

Palmitoleic acid 
(C16:1), 3.38

Undefined, 0.88

EPA (C20:5n-3), 0.85

ALA (C18:3n-3), 0.52
DHA (C22:6n-3), 0.51

Sum other frac�ons of 
<2%, 4.59
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coefficients were 0.30-0.40 for linoleic acid, EPA, and DHA, In a review by Hodson et al.,35 
correlation coefficients for PUFA in blood fractions compared with FFQ data of 8-9 studies 
largely varied (Table 9.4) Limited data are available for correlations between cholesteryl ester 
and FFQ PUFA, however, our correlation coefficients seemed reasonable compared to other 
validation studies. 

In a Dutch validation study, a correlation coefficient based on the comparison of adipose 
tissue with 19 24h recalls of 0.70 was reported for linoleic acid. The median correlation for the 
individual recalls was 0.28, which shows the dilution due to large day-to-day variation in fatty 
acid intake.50 Compared to the above mentioned extensive validation study on fatty acids, 
correlation coefficients between dietary and plasma PUFA of 0.30 are generally regarded as 
reasonable to good. However, a coefficient of 0.30 only explains <10% of the total variance. 
The remaining 90% of variance is explained by other factors, such as variation between people 
with reporting PUFA intake and metabolism. Therefore, differences between associations of 
intake and plasma PUFA with CVD endpoints could be expected.
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Table 9.3 Correlations between cholesteryl ester PUFA and dietary PUFA (n=457)a

a Spearman correlation coefficients.
b Correlation coefficients between intake and plasma PUFA are depicted in colored boxes.
c Correlation coefficients between intake of different PUFA are depicted in bold font.
d Correlation coefficients between plasma PUFA are depicted in italic font.

Linoleic 
acid

ALA EPA DHA

Linoleic acid Plasma –
Absolute intake 0.28b 0.75c 0.05 0.11
Intake/total energy 0.34
Intake/energy from fat 0.30

ALA Plasma cholesteryl ester -0.19d –
Absolute intake 0.06 0.05 0.11
Intake/total energy 0.12
Intake/energy from fat 0.12

EPA Plasma cholesteryl ester -0.53 0.30 –
Absolute intake 0.34 0.95
Intake/total energy 0.36
Intake/energy from fat 0.37

DHA Plasma cholesteryl ester -0.17 0.07 0.63 –
Absolute intake 0.40
Intake/total energy 0.43
Intake/energy from fat 0.43
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Conclusions and implications 
Within the range of intake of this generally healthy Dutch population, linoleic acid intake 
was not associated with either a different ratio of total to HDL-cholesterol or a different CHD 
incidence. However, the inverse association of plasma linoleic acid with CHD risk in our meta-
analysis supported the hypothesis that linoleic acid protects against CHD. Both dietary and 
plasma ALA were not associated with CHD. Although the overall intake was low, we still had 
sufficient contrast in EPA-DHA and fish intake to find an inverse relation with fatal CHD and 
fatal MI. In contrast, the range of intake did not result in sufficient contrast in plasma EPA-DHA 
values, which did therefore not confirm the inverse associations of EPA-DHA intake with fatal 
CHD. ALA and, in women, EPA-DHA (and fish) intake were inversely associated with the risk of 
incident stroke. However, no associations were observed between plasma PUFA and stroke.

PUFA intake and plasma PUFA profiles are very different. Data on dietary intake and plasma 
values have their own specific drawbacks, and associations of intake and status with CHD or 
stroke are therefore not necessarily similar. Additionally, fatty acid profiles also considerably 
differ between tissue fractions. The lack of associations that were expected to be present raises 
concern regarding the validity of PUFA assessed from cholesteryl ester or other fractions as a 
biomarker of intake for epidemiological studies on PUFA. This does not imply that biomarkers 
of PUFA intake cannot be very useful as compliance marker in trials. 

For both intake and status data, the lack of inverse associations of PUFA intake or status with 
CHD or stroke in prospective cohort studies may be due to the limited range of variation between 
people in the population in combination with measurement error. Should inverse associations 
of PUFA with CHD or stroke exist, then they will be hard to demonstrate in individual studies 
if the variation between persons is small compared to the within-person variation. Within 
populations, a single FFQ or a single plasma measurement will therefore often be too limited 
to link PUFA exposure to CVD endpoints. Biomarkers can be an alternative, however, they are 
not a solution to measurement error of intake. 

References
1.   Arab L (2003) Biomarkers of fat and fatty acid intake. J Nutr 133 Suppl 3, 925S-932S.

 2. Cantwell MM (2000) Assessment of individual fatty acid intake. Proc Nutr Soc 59, 187-191.

 3. Stichting NEVO (2001) NEVO Tabel, Nederlands voedingsstoffenbestand 2001 Den Haag: 
Voedingscentrum.

 4. Staveren van FG, Elburg L, Erdelmann F (1992) Validity of dietary questionnaires in studies on nutrition 
and heart disease. Nutrition and Cardiovascular Risks. Basel. pp. 47-58.

 5. Mensink RP, Katan MB (1992) Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-
analysis of 27 trials. Arterioscler Thromb 12, 911-919.

139

G
eneral discussion

Chapter 9

9



 6. Mensink RP, Zock PL, Kester AD, Katan MB (2003) Effects of dietary fatty acids and carbohydrates on 
the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis 
of 60 controlled trials. Am J Clin Nutr 77, 1146-1155.

 7. Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, et al. (2007) Blood cholesterol and vascular 
mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective 
studies with 55,000 vascular deaths. Lancet 370, 1829-1839.

 8. Law MR, Wald NJ, Thompson SG (1994) By how much and how quickly does reduction in serum 
cholesterol concentration lower risk of ischaemic heart disease? BMJ 308, 367-372.

 9. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM (2010) Meta-analysis of prospective cohort studies evaluating 
the association of saturated fat with cardiovascular disease. Am J Clin Nutr 91, 535-546.

 10. Jacobs DR, Jr., Anderson JT, Blackburn H (1979) Diet and serum cholesterol: do zero correlations 
negate the relationship? Am J Epidemiol 110, 77-87.

 11. Kromhout D, Geleijnse JM, Menotti A, Jacobs DR (2011) The confusion about dietary fatty acids 
recommendations for CHD prevention. Br J Nutr 106, 627-632.

 12. Jakobsen MU, O’Reilly EJ, Heitmann BL, Pereira MA, Balter K, et al. (2009) Major types of dietary fat 
and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr 89, 1425-
1432.

 13. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM Meta-analysis of prospective cohort studies evaluating the 
association of saturated fat with cardiovascular disease. Am J Clin Nutr 91, 535-546.

 14. Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, et al. (1997) Dietary fat intake and the risk of 
coronary heart disease in women. N Engl J Med 337, 1491-1499.

 15. Oh K, Hu FB, Manson JE, Stampfer MJ, Willett WC (2005) Dietary fat intake and risk of coronary heart 
disease in women: 20 years of follow-up of the nurses’ health study. Am J Epidemiol 161, 672-679.

 16. Mozaffarian D, Micha R, Wallace S (2010) Effects on coronary heart disease of increasing polyunsaturated 
fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. 
PLoS Med 7, e1000252.

 17. Oomen CM, Ocké MC, Feskens EJ, Kok FJ, Kromhout D (2001) alpha-Linolenic acid intake is not 
beneficially associated with 10-y risk of coronary artery disease incidence: the Zutphen Elderly Study. 
Am J Clin Nutr 74, 457-463.

 18. Oomen CM, Ocké MC, Feskens EJ, van Erp-Baart MA, Kok FJ, et al. (2001) Association between trans 
fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: a prospective 
population-based study. Lancet 357, 746-751.

 19. Hu FB, Stampfer MJ, Manson JE, Rimm EB, Wolk A, et al. (1999) Dietary intake of alpha-linolenic acid 
and risk of fatal ischemic heart disease among women. Am J Clin Nutr 69, 890-897.

 20. Albert CM, Oh K, Whang W, Manson JE, Chae CU, et al. (2005) Dietary alpha-linolenic acid intake 
and risk of sudden cardiac death and coronary heart disease. Circulation 112, 3232-3238.

 21. Ascherio A, Rimm EB, Giovannucci EL, Spiegelman D, Stampfer M, et al. (1996) Dietary fat and risk 
of coronary heart disease in men: cohort follow up study in the United States. BMJ 313, 84-90.

140

General discussionChapter 9



 22. Mozaffarian D, Ascherio A, Hu FB, Stampfer MJ, Willett WC, et al. (2005) Interplay between different 
polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation 111, 157-164.

 23. Campos H, Baylin A, Willett WC (2008) Alpha-linolenic acid and risk of nonfatal acute myocardial 
infarction. Circulation 118, 339-345.

 24. Harris WS (2008) Cardiovascular risk and alpha-linolenic acid: can Costa Rica clarify? Circulation 118, 
323-324.

 25. Oude Griep LO, Verschuren WM, Kromhout D, Ocke MC, Geleijnse JM (2011) Raw and processed 
fruit and vegetable consumption and 10-year stroke incidence in a population-based cohort study 
in the Netherlands. Eur J Clin Nutr 65, 791-799.

 26. Blondeau N, Nguemeni C, Debruyne DN, Piens M, Wu X, et al. (2009) Subchronic alpha-linolenic acid 
treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy 
for stroke. Neuropsychopharmacology 34, 2548-2559.

 27. Blondeau N, Petrault O, Manta S, Giordanengo V, Gounon P, et al. (2007) Polyunsaturated fatty acids 
are cerebral vasodilators via the TREK-1 potassium channel. Circ Res 101, 176-184.

 28. Heurteaux C, Laigle C, Blondeau N, Jarretou G, Lazdunski M (2006) Alpha-linolenic acid and riluzole 
treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience 
137, 241-251.

 29. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, et al. (2000) Polyunsaturated fatty acids 
are potent neuroprotectors. EMBO J 19, 1784-1793.

 30. Nguemeni C, Delplanque B, Rovere C, Simon-Rousseau N, Gandin C, et al. Dietary supplementation 
of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke. Pharmacol Res 61, 226-
233.

 31. Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health: evaluating the risks 
and the benefits. JAMA 296, 1885-1899.

 32. Ocké MC, Bueno-de-Mesquita HB, Goddijn HE, Jansen A, Pols MA, et al. (1997) The Dutch EPIC food 
frequency questionnaire. I. Description of the questionnaire, and relative validity and reproducibility 
for food groups. Int J Epidemiol 26 Suppl 1, S37-48.

 33. Matthan NR, Ip B, Resteghini N, Ausman LM, Lichtenstein AH (2010) Long-term fatty acid stability in 
human serum cholesteryl ester, triglyceride, and phospholipid fractions. J Lipid Res 51, 2826-2832.

 34. Salo MK, Gey F, Nikkari T (1986) Stability of plasma fatty acids at -20 degrees C and its relationship 
to antioxidants. Int J Vitam Nutr Res 56, 231-239.

 35. Hodson L, Skeaff CM, Fielding BA (2008) Fatty acid composition of adipose tissue and blood in 
humans and its use as a biomarker of dietary intake. Prog Lipid Res 47, 348-380.

 36. Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M (1997) Kinetics of the incorporation 
of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 
18-month controlled study. J Lipid Res 38, 2012-2022.

 37. Zock PL, Mensink RP, Harryvan J, de Vries JH, Katan MB (1997) Fatty acids in serum cholesteryl esters 
as quantitative biomarkers of dietary intake in humans. Am J Epidemiol 145, 1114-1122.

141

G
eneral discussion

Chapter 9

9



 38. Ma J, Folsom AR, Eckfeldt JH, Lewis L, Chambless LE (1995) Short- and long-term repeatability of 
fatty acid composition of human plasma phospholipids and cholesterol esters. The Atherosclerosis 
Risk in Communities (ARIC) Study Investigators. Am J Clin Nutr 62, 572-578.

 39. Simon JA, Fong J, Bernert JT, Jr., Browner WS (1995) Serum fatty acids and the risk of stroke. Stroke 
26, 778-782.

 40. Iso H, Sato S, Umemura U, Kudo M, Koike K, et al. (2002) Linoleic acid, other fatty acids, and the risk 
of stroke. Stroke 33, 2086-2093.

 41. Wennberg M, Bergdahl IA, Stegmayr B, Hallmans G, Lundh T, et al. (2007) Fish intake, mercury, long-
chain n-3 polyunsaturated fatty acids and risk of stroke in northern Sweden. Br J Nutr 98, 1038-1045.

 42. Harris WS, Poston WC, Haddock CK (2007) Tissue n-3 and n-6 fatty acids and risk for coronary heart 
disease events. Atherosclerosis 193, 1-10.

 43. Willett W (1998) Issues in analysis and presentation of dietary data. In: Willett WC, editor. Nutritional 
Epidemiology. 2nd ed. New York: Oxford University Press, Inc. pp. 321-346.

 44. Brenna JT, Salem N, Jr., Sinclair AJ, Cunnane SC (2009) alpha-Linolenic acid supplementation and 
conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent 
Fatty Acids 80, 85-91.

 45. Goyens PL, Spilker ME, Zock PL, Katan MB, Mensink RP (2006) Conversion of alpha-linolenic acid in 
humans is influenced by the absolute amounts of alpha-linolenic acid and linoleic acid in the diet 
and not by their ratio. Am J Clin Nutr 84, 44-53.

 46. Burdge GC, Calder PC (2005) Conversion of alpha-linolenic acid to longer-chain polyunsaturated 
fatty acids in human adults. Reprod Nutr Dev 45, 581-597.

 47. Baylin A, Campos H (2006) The use of fatty acid biomarkers to reflect dietary intake. Curr Opin Lipidol 
17, 22-27.

 48. Fekete K, Marosvolgyi T, Jakobik V, Decsi T (2009) Methods of assessment of n-3 long-chain 
polyunsaturated fatty acid status in humans: a systematic review. Am J Clin Nutr 89, 2070S-2084S.

 49. Hunter D (1998) Biochemical indicators of dietary intake. In: Willett W, editor. Nutritional Epidemiology. 
pp. 174-243.

 50. van Staveren WA, Deurenberg P, Katan MB, Burema J, de Groot LC, et al. (1986) Validity of the fatty 
acid composition of subcutaneous fat tissue microbiopsies as an estimate of the long-term average 
fatty acid composition of the diet of separate individuals. Am J Epidemiol 123, 455-463.

142

General discussionChapter 9



Summary in Dutch 
(Samenvatting)



Dit proefschrift richt zich op cis-meervoudig-onverzadigde vetzuren in de voeding. Deze 
vetzuren, met meer dan één dubbele binding, worden verder ingedeeld als n-6 (of omega-6) 
en n-3 (of omega-3) vetzuren. N-6 vetzuren dragen voor 85-90% bij aan de totale inname 
van meervoudig-onverzadigde vetzuren en n-3 vetzuren leveren de overige 10-15%. Het n-6 
vetzuur linolzuur is het meest voorkomende meervoudig-onverzadigde vetzuur in de voeding 
en heeft als belangrijke bronnen plantaardige oliën, zoals zonnebloemolie en sojaolie. Het is een 
‘essentieel’ vetzuur, wat betekent dat de mens het niet zelf kan aanmaken. Alfa-linoleenzuur is 
een essentieel n-3 vetzuur uit plantaardige bronnen. Het komt vooral voor in sojaolie, canolaolie, 
lijnzaadolie en walnoten. Eicosapentaeenzuur (EPA) en docosahexaeenzuur (DHA) zijn n-3 
vetzuren die veel voorkomen in vis. Het menselijk lichaam kán alfa-linoleenzuur omzetten in 
EPA en vervolgens DHA, maar de opbrengst hiervan is laag.

Hoewel er de afgelopen tientallen jaren al veel onderzoek naar is gedaan, is de rol van 
meervoudig-onverzadigde vetzuren in relatie tot het voorkómen van coronaire hartziekten en 
beroerte nog steeds onderwerp van discussie. Inconsistente resultaten uit epidemiologische 
studies komen mogelijk deels door methodologische beperkingen van (subjectieve) 
voedingsvragenlijsten. Dit probleem zou vermeden kunnen worden door vetzuurniveaus in  
bloedplasma te meten als objectieve indicator (“biomarker”) voor de inname van vetzuren. In dit 
proefschrift worden inname en plasmaniveaus van verschillende n-3 en n-6 vetzuren onderzocht 
in relatie tot coronaire hartziekten en beroerte in de Nederlandse situatie.

We hebben gegevens gebruikt van ruim 20.000 mannen en vrouwen in de leeftijd van 20 tot 
65 jaar die aan het begin van het onderzoek geen hart- en vaatziekten hadden. De gegevens 
zijn afkomstig van het MORGEN-cohort van het Rijksinstituut voor Volksgezondheid en Milieu 
(RIVM) te Bilthoven. MORGEN staat voor “MOnitoring van Risicofactoren en Gezondheid in 
Nederland”. In het MORGEN-cohort is het vóórkomen van leefstijl- en risicofactoren gemeten 
bij een steekproef van inwoners van Amsterdam, Doetinchem en Maastricht. Tussen 1993 
en 1997 zijn alle deelnemers onderzocht. Daarna werd bijgehouden welke mensen in het 
ziekenhuis werden opgenomen of overleden. Hiervoor is gebruik gemaakt van de Landelijke 
Medische Registratie (LMR) van ziekenhuisopnames en de doodsoorzakenstatistieken van het 
Centraal Bureau voor de Statistiek. De mensen, van wie de gebruikelijke voedselconsumptie 
per persoon was nagevraagd met een vragenlijst over 178 voedingsitems, werden tien jaar 
gevolgd. Gedurende die tijd werd geregistreerd wie van de deelnemers hart- en vaatziekten 
kregen. De samenhang tussen de inname van de verschillende vetzuren en het optreden 
van coronaire hartziekten en beroerte werd onderzocht met behulp van cohort studies. In 
geneste case-controle studies werd de relatie tussen vetzuurniveaus in het bloed met coronaire 
hartziekten en beroerte bestudeerd. 

In hoofdstuk 2 hebben we onderzocht of een hogere inname van linolzuur, uitgewisseld 
met een isocalorisch lagere inname van koolhydraten, gerelateerd was aan een lager risico 
op coronaire hartziekten. De belangrijkste voedingsbronnen van linolzuur waren margarine 
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(21%), oliën (13%), brood (12%), noten (10%), varkensvlees (10%) en sauzen (9%). Gedurende 
de onderzoeksperiode van 10 jaar kregen 280 van de 20069 mannen en vrouwen coronaire 
hartziekten. Diabetespatiënten en deelnemers die medicijnen gebruikten tegen een hoge 
bloeddruk of een hoog cholesterol waren uitgesloten van deze studie. De inname van linolzuur, 
ingedeeld in 5 gelijke groepen (quintielen), liep op van 3.6 tot 8.0 procent ten opzichte van de 
totale energie-inname. Bij vrouwen, maar niet bij mannen, hing een hogere linolzuurinname 
samen met lagere bloedwaarden van totaal cholesterol en HDL-cholesterol. Er was geen 
relatie tussen linolzuur met de ratio van totaal/HDL-cholesterol en ook niet met de kans om 
coronaire hartziekten te krijgen. De hazard ratio’s van de quintielen waren niet significant 
verschillend van het laagste quintiel van linolzuurinname en varieerden tussen 0.83 en 1.00. 
Onze conclusie was dat een verschil van 4-5 energieprocent van de inname van linolzuur of 
koolhydraten zich niet vertaalde in een andere totaal/HDL-cholesterolratio of een ander risico 
op coronaire hartziekten. 

Hoofdstuk 3 beschrijft de actuele literatuur (gepubliceerd vanaf 2008) over alfa-linoleenzuur 
in relatie tot cardiovasculaire risicofactoren en ziekten bij mensen. Als er extra alfa-linoleenzuur 
wordt ingenomen, stijgt het niveau ervan in het bloed. Echter, de effecten op ziekterisico zijn 
nog onduidelijk. Het wachten is op langere-termijn interventiestudies waarmee het individuele 
effect van alfa-linoleenzuur op hart- en vaatziektenrisico bestudeerd kan worden.         

In hoofdstuk 4 hebben we gekeken of een hogere alfa-linoleenzuurinname resulteerde in 
een kleinere kans op het optreden van coronaire hartziekten en beroertes. De belangrijkste 
voedingsbronnen van alfa-linoleenzuur waren mayonaise (15%), margarine (14%), sojaolie (8%) 
en brood (8%). Tijdens de onderzoeksperiode kregen 280 mensen een coronaire hartziekte en 
221 mensen een beroerte. De inname van alfa-linoleenzuur varieerde van minder dan 1.0 g/d 
in het laagste quintiel tot meer dan 1.9 g/d in het hoogste quintiel. Alfa-linoleenzuur bleek 
niet samen te hangen met het risico op coronaire hartziekten, met hazard ratio’s  (quintielen 
2-5) die varieerden tussen 0.89 en 1.01 zonder dat deze significant verschilden van de groep 
mensen met de laagste 20% van de inname. Echter, ten opzichte van deze laagste 20%, had 
de rest van de onderzoeksgroep een 35-50% lager risico op een beroerte. In aanvulling op 
bovenstaande resultaten hebben we alfa-linoleenzuur uit dressings (mayonaise en sojaolie), 
waar weinig verzadigd of transvet in zit, apart onderzocht van alfa-linoleenzuur uit andere 
bronnen. Dit omdat alfa-linoleenzuur in veel voedingsmiddelen sterk positief gecorreleerd 
is met gehaltes van verzadigd en transvet, en het daardoor lastig is om de effecten van 
elkaar te scheiden. Het bleek dat de gevonden inverse associatie met beroerte wél duidelijk 
zichtbaar was voor alfa-linoleenzuur uit dressings, maar niet voor alfa-linoleenzuur uit andere 
bronnen. Met coronaire hartziekten zagen we opnieuw geen associatie. Onze conclusie was 
dat een lage inname van alfa-linoleenzuur een risicofactor zou kunnen zijn voor een beroerte, 
maar dat dit wel eerst moet worden bevestigd in andere epidemiologische studies en 
interventiestudies. 
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In Nederland wordt weinig vis gegeten. In hoofdstuk 5 hebben we onderzocht of er binnen de 
steekproef uit de Nederlandse bevolking toch een associatie te zien was van EPA-DHA en vis 
met het optreden van coronaire hartziekten. In de onderzoeksperiode overleden 647 van de 
21.342 personen, van wie 82 aan coronaire hartziekten. Verder overleefden 252 personen een 
hartinfarct. Het risico op sterfte aan een coronaire hartziekte was 49% lager bij personen die 
relatief veel visvetzuren (meer dan 194 milligram per dag) binnenkregen, dan bij mensen met 
weinig visvetzuren in hun voeding (minder dan 62 milligram per dag). Als er specifiek gekeken 
werd naar het hartinfarct, was het risico zelfs 62% lager. Een hartinfarct zonder dodelijke afloop 
hing niet samen met de visvetzuren. Vergelijkbare resultaten werden gevonden als de mensen 
werden ingedeeld op hun visconsumptie, overeenkomend met meer dan 14 gram vis per dag 
ten opzichte van minder dan 3,3 gram. De resultaten sluiten aan bij ander wetenschappelijk 
onderzoek waarbij visvetzuren vooral lijken te beschermen tegen levensbedreigende 
ritmestoornissen, die vaak een rol spelen bij een dodelijk hartinfarct. Een kleine hoeveelheid 
visvetzuren (EPA en DHA) in de voeding zou dus al het risico kunnen verminderen op het risico 
om te overlijden aan een hartziekte, met name aan een hartinfarct. 

In de literatuur zijn er aanwijzingen dat de mogelijke bescherming van EPA-DHA en vis tegen 
beroerte bij vrouwen sterker is dan bij mannen. Dit werd bestudeerd in hoofdstuk 6. De meeste 
van de  221 beroertes (n=142) waren het gevolg van een bloedstolsel in de bloedvaten van de 
hersenen (inclusief 60 transiente ischemische attacks; TIA’s). Verder waren er 47 het gevolg van 
een hersenbloeding. Van 32 beroertes was de oorzaak niet bekend.  Bij vrouwen bleek het risico 
op een beroerte 51% lager te zijn bij de hoogste 25% van de visvetzuurinname vergeleken met 
de laagste 25%. Bij mannen leek EPA-DHA ook gunstig  te zijn, maar de resultaten waren veel 
minder duidelijk en zeker niet statistisch significant. Vergelijkbare resultaten werden gevonden 
voor visconsumptie. We konden de verschillende resultaten tussen mannen en vrouwen niet 
verklaren door een andere inname van EPA-DHA of vis, of door verschillen in de typen beroerte. 
In de literatuur zijn er ook geen aanwijzingen dat het effect van EPA-DHA of vis op beroerte bij 
vrouwen anders is dan bij mannen. Bij vervolgonderzoek is het dus met name belangrijk om 
erachter te komen of er een fysiologische verklaring is voor de verschillende resultaten tussen 
de geslachten. 

In hoofdstuk 7 hebben we onderzocht of n-6 en n-3 vetzuren gemeten in plasma cholesteryl 
esters (een onderdeel van bloed) gerelateerd waren aan sterfte aan coronaire hartziekten. Voor 
deze studie hebben we gegevens van het MORGEN-cohort en van het ‘Peilstationsproject’ 
(een iets oudere, maar vergelijkbare steekproef van het RIVM) gecombineerd. De deelnemers 
waren 8-19 jaar gevolgd voor het optreden van ziekte. Voor elk van de 279 deelnemers die 
overleden aan een coronaire hartziekte werd een vergelijkbaar, ander persoon geselecteerd van 
hetzelfde geslacht en dezelfde leeftijd, die tot dat moment niet was overleden. De patiënten en 
de geselecteerde gezonde mensen kwamen in ons geneste case-controle onderzoek terecht en 
we bepaalden bij hen vetzuurniveaus in het bloed. Een hoger niveau van linolzuur hing samen 
met een lager risico op een fatale hartziekte, maar dit was niet statistisch significant. Echter, als 
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we de resultaten van vergelijkbare andere prospectieve epidemiologische studies combineerden 
in een meta-analyse, vonden we dat een 5% hoger plasmaniveau van linolzuur overeenkwam 
met een 9% lager risico op coronaire hartziekten.  Arachidonzuur, alfa-linoleenzuur, EPA en 
DHA waren niet gerelateerd aan coronaire hartziekten.

In hoofdstuk 8 deden we een vergelijkbaar genest case-controle onderzoek, maar dan voor 
beroerte. We gebruikten hiervoor alleen het MORGEN-cohort. Uitgaande van de 179 mensen die 
een beroerte hadden gekregen werd een steekproef getrokken van 179 vergelijkbare deelnemers 
zonder beroerte. De vetzuurniveaus van linolzuur, arachidonzuur, alfa-linoleenzuur, EPA en DHA 
in bloedplasma bleken niet gerelateerd aan het risico op een beroerte. 

De belangrijkste bevindingen, methodologische aspecten en de interpretatie van de resultaten 
worden beschreven in hoofdstuk 9. Onze hypothese dat linolzuur een gunstig effect zou hebben 
op het risico op coronaire hartziekten werd bevestigd in onze biomarker studie, maar niet als 
we de linolzuurinname gebaseerd op de voedingsvragenlijst analyseerden. Voor EPA-DHA 
vonden we juist een gunstig effect op coronaire hartziekten en beroerte met behulp van de 
voedingsinformatie maar niet op basis van de vetzuurniveaus in het bloed. Hetzelfde gold voor 
alfa-linoleenzuur in relatie tot beroerte. Mogelijk zijn de discrepanties tussen de bevindingen 
(deels) te wijten aan de beperkte verschillen binnen de Nederlandse bevolking in combinatie 
met de meetfouten de inherent zijn aan de gebruikte methoden om vetzuurinname te meten.
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Verder heb je vele verhalen van me aangehoord over mijn dagelijkse beslommeringen. Jij gaf 
mij rust en ruimte om mijn doelen te bereiken. Jouw grote interesse in voeding en gezondheid, 
jouw kritische vragen en nuchtere kijk waren erg welkom. Daarnaast gaf je me veel inzicht in 
de wereld van de media vanuit jouw achtergrond als journalist. Ik denk dat wetenschap en 
media prima samen gaan! Na een jarenlange weekendrelatie, delen we sinds een jaar een huis 
in Voorburg. Alleen… ik was er meestal niet… Dus, zullen we dan nu echt gaan sámenwonen?
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