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Abstract 

 

Background 
Coronary heart disease (CHD) continues to be a leading cause of morbidity and mortality 
among adults worldwide. Deregulated lipid metabolism (dyslipidemia) that manifests as 
hypercholesterolemia, hypertriglyceridemia, low high-density-lipoprotein (HDL) 
cholesterol levels or a combination of those, is an established risk factor for CHD among 
other established risk factors. Linoleic acid (LA, C18:2n-6) and alpha-linolenic acid (ALA, 
C18:3n-3) are polyunsaturated fatty acids (PUFAs) that cannot be synthesized de novo by 
human or animal cells, and therefore must be obtained from the diet. From these two 
PUFAs, two series of long-chain PUFAs are formed; the omega-6 series that are 
synthesized from LA, and the omega-3 series that are from ALA. Formation of these long-
chain PUFAs involves a series of alternate desaturation and elongation processes. These 
PUFAs, especially, omega-3 PUFAs, have long been observed to reduce CHD risk. In 
contrast to the consistently observed cardiovascular protective effects of omega-3 PUFAs, 
accumulating evidence suggests a potential pro-atherogenic effects of omega-6 PUFAs, 
which is now still under debate.  
 
It has been estimated that genetic factors account for 26%-69% of inter-individual variation 
in CHD risk. These genetic factors are thought to influence CHD risk both directly and 
through effects on known CHD risk factors such as plasma lipid levels. The heritability of 
plasma lipid levels (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides 
(TG)) is estimated to be about 50% (ranging from 28%-78%). With the success of recent 
genome-wide association studies (GWAS), many genetic variants underlying intermediate 
risk factors of CHD (including plasma lipid levels) and CHD itself have been identified. 
Whether this new genetic information could be used to improve CHD risk prediction is still 
marginally explored, and for some variants, the underlying mechanisms for their mediated 
effects on CHD risk are still unknown. The aim of this research is to investigate common 
genetic determinants of plasma lipid levels (cholesterol and polyunsaturated fatty acid 
levels) using a pathway-driven approach, and to explore whether such common genetic 
variants could be used to improve CHD prediction using a population based genetic 
approach. An additional aim was to explore the underlying mechanisms of cardiovascular 
protective effects of PUFAs using a genomic approach. 
 
Methods 
In order to explore whether common genetic variants are involved in determining plasma 
cholesterol levels, we used data from 3575 men and women from the Doetinchem cohort, 
which was examined thrice over 11 years. They were genotyped on 384 single nucleotide 
polymorphisms (SNPs) across 251 genes in regulatory pathways that control fatty acid, 
glucose, cholesterol and bile salt homeostasis.  
 



 
 

In order to explore whether common genetic variants could be used to predict future CHD 
risk, we used the data from CAREMA cohort that involved 15,236 middle-aged subjects 
and was followed up for a median of 12.1 years. 179 SNPs associated with CHD or its risk 
factors in GWAS published up to May 2, 2011 were genotyped in the 2221 subcohort 
members and 742 incident CHD cases. In addition, fatty acids from plasma cholesteryl 
esters were quantified in 1323 subcohort members and 537 CHD cases. They were used to 
explore whether δ-5 and δ-6 desaturase activities were associated with CHD risk.  
 
In order to perform a comparative analysis of the effects of fenofibrate and fish oil at 
transcriptome and metabolome level, 34 mice were randomized by weight-matching into 
three groups (n = 10 in control group, and n = 12 in fenofibrate or fish oil intervention 
group), and fed a research diet supplemented with sunflower oil (containing 81.3% oleic 
acid, 7% energy intake) in control group, sunflower oil (7% energy intake) and fenofibrate 
(0.03% w/w) in fenofibrate group, and fish oil (Marinol C-38 fish oil: 23.1% EPA and 
21.1% DHA, 7% energy intake) in fish oil group for 2 weeks. At the end of treatment, mice 
were fasted with drinking water available, and were subsequently sacrificed by cervical 
dislocation under isoflurane anesthesia. Blood was collected via orbital puncture. Livers 
were dissected, directly frozen in liquid nitrogen and stored at −80°C until further analysis. 
Microarray analysis was performed on individual mouse livers. The LC-MS method was 
used for measuring plasma lipids and non-esterified free fatty acids, and the GC-MS 
method was used for measuring a broad range of metabolites. 
 
Results 
In chapter 2, 3, and 4, common genetic variants in the genes along known cholesterol 
metabolic pathways, such as bile acid and bile metabolic pathways, the HDL cholesterol 
metabolic pathway, and the plasma total cholesterol metabolic pathway, are involved in 
determining plasma cholesterol levels. The modest effect associated with each individual 
variant, however, caused the amount of heritability explained by them in aggregate to be 
relatively small: 13 single nucleotide polymorphisms (SNPs) explained 4% of inter-
individual variation in HDL cholesterol levels (Chapter 3), whereas 12 SNPs explained 
6.9% of inter-individual variation in total cholesterol levels (Chapter 4).  
 
In chapter 5, we found that genetic variants in the FADS1 gene potentially interact with 
dietary PUFA intake to affect plasma cholesterol levels. A high intake of omega-3 PUFAs 
was associated with increased plasma non-HDL cholesterol levels, consistent with 
increased plasma LDL cholesterol levels observed in fish oil intervention studies. Increased 
LDL cholesterol levels could be due to hepatic downregulation of the LDL receptor gene 
(LDLR) in subjects with high omega-3 PUFA intakes. This is further confirmed by the 
findings described in Chapter 6 that the hepatic LDLR gene was significantly 
downregulated in fish oil treated mice. This study also confirmed PUFAs to be weak PPAR 
ligands. The increased plasma HDL cholesterol levels in the subjects with high PUFA 
intakes in Chapter 5 could be due to PPARs-mediated genes that are directly involved in 
HDL lipoprotein metabolism. All these may explain the changes in blood cholesterol levels 
upon PUFA intake observed in human studies.  



 
 

In Chapter 6, we found that not only downregulation in the hepatic lipogenic pathway but 
also upregulation in hepatic fatty acid oxidation pathways are involved in lowering plasma 
TG levels upon fish oil treatment. The striking parallel between fenofibrate and fish oil in 
hepatic downregulation of blood coagulation and fibrinolysis pathways suggest that hepatic 
activation of PPARα is potentially one of the mechanisms responsible for anticoagulation 
effects of fish oil treatment observed in humans.  
 
In Chapter 7, with confirmed effects of rs174547 in FADS1 on PUFA levels and δ-5 
desaturase activities and also protective effects of DHA on CHD, we observed a reduced 
CHD risk of increased δ-5 desaturase activity. Increased δ-5 desaturase activity could 
contribute to the intracellular increase of EPA and especially arachidonic acid (C20:4n-6) 
levels. Despite the potential pro-coagulant and pro-inflammatory effects of increased 
exposures of arachidonic acid and its derived eicosanoid metabolites, there is no evidence 
of increased CHD risk with increased habitual arachidonic acid intake so far. Some of the 
oxygenated metabolites of arachidonic acid were found to have anti-inflammatory and pro-
resolving actions. High dietary n-6 PUFA intakes or high plasma n-6 PUFA levels are 
associated with increased blood HDL cholesterol levels and reduced TG (or VLDL 
particle) levels. All these point to a potential cardiovascular protective effect of n-6 PUFAs. 
The fact that increased EPA and/or DHA levels associated with increased δ-5 desaturase 
activity protect against CHD is consistent with the current established cardiovascular 
protective effect of increased n-3 PUFA exposure, especially EPA and DHA.  
 
In Chapter 8, the current known common genetic variants associated with CHD risk factors 
(blood pressure, obesity, blood lipid levels, and type 2 diabetes) and CHD itself from 
published GWAS are examined to see whether they provide additional value in CHD risk 
prediction beyond established traditional CHD risk factors. We constructed several gene 
risk scores (GRS) for CHD that consisted of SNPs directly associated with CHD or 
intermediate CHD risk factors in GWAS, and tested their relationship to incident CHD and 
their potential to improve risk prediction. The weighted GRS based on 29 CHD SNPs 
predicted future CHD independently from established traditional risk factors. However, the 
GRS based on 153 SNPs associated with intermediate risk factors and the GRS based on 
the total 179 SNPs did not. None of them improved risk discrimination. Risk classification 
of CHD, measured by the net reclassification index, improved only when the GRS based on 
the 29 CHD SNPs was used. These results are generally consistent with the results from 
other recent studies that took a similar approach as ours. However, the final conclusions on 
GRS application could not be drawn at this early stage. With a great understanding of the 
genetic architecture of CHD in the future, more research should be done on this topic. 
 
Conclusions 
Our studies in this thesis demonstrated that common genetic variants along the known 
candidate cholesterol metabolic pathways are involved in determining the plasma 
cholesterol levels. PUFAs are not only weak PPARα ligands, but also inhibit SREBPs’ 
activities. All these could explain part of the cardiovascular protective effects (increased 
HDL cholesterol levels and reduced TG levels) of PUFAs, increased LDL cholesterol 
levels upon fish oil treatment in humans, and potentially reduced CHD risk of high δ-5 



 
 

desaturase activities. At present, many questions remain about the feasibility of genetic risk 
prediction of CHD. Clinicians should continue to inquire about family history of CHD for 
risk prediction, because this represents a simple, cheap, and useful risk factor for CHD that 
likely represents the net integrated effects from hundreds of genetic risk variants. 
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General introduction  
Coronary heart disease (CHD) continues to be a leading cause of morbidity and mortality 
among adults worldwide. It is caused by atherosclerosis in one or more of the coronary 
arteries. The development of atherosclerosis begins early in life with the deposition of 
lipids to form fatty streaks in the arterial wall occurring in childhood and adolescence (1, 
2). Rapid progression of the early lesions to fibrous plaques occurs in the third and fourth 
decades of life, with the rate of progression directly associated with the number of 
cardiovascular risk factors (1, 2). The presence of atherosclerosis early in life, its 
relationship to major cardiovascular risk factors at a young age, and its steady progression 
toward cardiovascular events later in life have indicated that the optional age to begin 
prevention of atherosclerosis and CHD is as young as possible (1-3). 
 
Deregulated lipid metabolism (dyslipidemia) that manifests as hypercholesterolemia, 
hypertriglyceridemia, low high-density-lipoprotein (HDL) cholesterol levels or a 
combination of those is an established risk factor for CHD among other established risk 
factors. The liver is of major importance in maintaining whole-body lipid metabolic 
homeostasis and integrates exogenous (dietary) source of lipids with endogenous de novo 
synthesis. Dietary lipids are taken up by intestinal cells and packed into chylomicron 
particles. Upon secretion into the systemic circulation, most of triglycerides (TG) in 
chylomicrons are hydrolyzed by lipoprotein lipase, releasing free fatty acids (FFAs) for 
uptake by peripheral tissues such as muscle and adipose tissue. The remaining chylomicron 
remnants are delivered to the liver. During fasting, plasma levels of insulin fall, whereas 
levels of glucagon and epinephrine increase, stimulating TG hydrolysis in adipose tissue. 
The released FFAs are transported to the liver. FFAs in liver can be oxidized in 
mitochondria to produce energy and ketone bodies, re-esterified to TG and stored in lipid 
droplets, or coupled to apolipoproteins and secreted as a constituent of very-low-density-
lipoprotein (VLDL) particles. Upon secretion, the TG in VLDL are hydrolyzed by the 
lipases in peripheral tissues resulting in cholesterol-dense low-density-lipoprotein (LDL) 
particles that are mainly taken up by the liver.  
 
Linoleic acid (LA, C18:2n-6) and alpha-linolenic acid (ALA, C18:3n-3) are 
polyunsaturated fatty acids (PUFAs) that cannot be synthesized de novo by human or 
animal cells. They are indispensable for normal development and function, and therefore 
must be obtained from the diet. From these two PUFAs, two series of long-chain PUFAs 
are formed; the omega-6 series that are synthesized from LA, and the omega-3 series that 
are from ALA. Formation of these long-chain PUFAs involves a series of alternate 
desaturation (insertion of a double bond by fatty acid desaturases) and elongation (addition 
of two carbon atoms by fatty acid elongases) processes that occur predominantly in the 
endoplasmic reticulum of the liver. These PUFAs, especially omega-3 PUFAs, have long 
been observed to reduce CHD risk (4-8). In addition to the established blood TG-lowering 
and HDL cholesterol increasing effects of PUFAs (6, 9), omega-3 PUFAs have also been 
observed to have anti-thrombotic, anti-inflammatory, and anti-arrhythmic effects in humans 
(5, 7, 8). However, the underlying mechanisms for most of these effects are still 
incompletely understood. In contrast to the consistently observed cardiovascular protective 
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effects of omega-3 PUFAs, accumulating evidence suggests a potential pro-atherogenic 
effect of omega-6 PUFAs (10-14), which is still under debate (6, 15, 16). 
 
Family history of premature CHD is an independent risk factor of CHD, suggesting that 
inherited genetic factors contribute to CHD risk (17-19). It has been estimated that genetic 
factors account for 26% to 69% of inter-individual variation in CHD risk (18, 20, 21). The 
influence of genetic factors on CHD risk decreases as age increases (17, 19). These genetic 
factors are thought likely to influence CHD risk both directly and through effects on known 
CHD risk factors such as plasma lipid levels. The heritability of plasma lipid levels (total 
cholesterol, LDL cholesterol, HDL cholesterol, and TG) is estimated to be about 50% 
(ranging from 28%-78%), significantly greater among young subjects than among old 
subjects (22). These observations have motivated investigators to undertake a variety of 
studies to identify the genes responsible for the heritability of CHD and its risk factors. 
Early candidate gene studies of CHD are however often plagued with a lack of consistency 
and reproducibility, most of which stems from studying one single nucleotide 
polymorphism, lack of power and/or population stratification. More recently, the 
completion of the Human Genome Project (23, 24) and the International Haplotype Map 
Project (25, 26) has made it possible to perform genome-wide screens for common DNA 
sequence variants that are associated with phenotypes of interest, including CHD and its 
risk factors. This approach benefits from being “hypothesis free”, and is therefore not 
subject to constraints and potential biases seen in candidate gene studies. This approach has 
substantially expanded our knowledge of the genetic basis of CHD and plasma lipid levels, 
with 24 and 95 unequivocal genetic loci recently identified to be associated with CHD and 
plasma lipid levels, respectively (27, 28).  
 
For the past 5 decades, the major CHD risk factors, namely, male sex, hypertension, 
dyslipidemia, smoking, and diabetes mellitus, have been well established (29, 30). On the 
basis of these factors, a number of risk prediction models have been developed, including 
the Framingham risk score (31) and the European cardiovascular score (SCORE) (32). 
These prediction models, however, cannot predict many cases of incident CHD, motivating 
the identification of new risk factors and the refinement of existing prediction models. 
Haunted by the notion of family history being one of the strong independent CHD risk 
factors, individual genetic variants identified from the genome-wide association studies on 
the association with CHD and its risk factors, have been tested to improve CHD risk 
prediction. Like for many other novel CHD risk biomarkers, however, many fundamental 
and specific questions remain to be answered: How many variants and what allelic 
spectrum underlie the genetic architecture of CHD? How many genetic variants are 
required to reliably improve risk prediction? Can genetic variants or gene risk scores 
improve CHD risk prediction beyond the established traditional CHD risk factors?  
 
Rationale 
With the success of recent genome-wide association studies, many genetic variants 
underlying intermediate risk factors of CHD (including plasma lipid levels, type 2 diabetes, 
and hypertension, etc.) and CHD itself have been identified. Whether this new genetic 
information could be used to improve CHD risk prediction is still marginally explored, and 
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for some variants, the underlying mechanisms for their mediated effects on CHD risk are 
still unknown. The aim of the research described in this thesis is to investigate common 
genetic determinants of plasma lipid levels (cholesterol and polyunsaturated fatty acid 
levels) using a pathway-driven approach and to explore whether such common genetic 
variants could be used to improve CHD prediction using a population based genetic 
approach. An additional aim was to explore the underlying mechanisms of cardiovascular 
protective effects of PUFAs using a genomic approach.  
 
Outline of this thesis 
In Chapter 2, a detailed review is presented on the potential influence of genetic variants in 
genes along bile acid and bile metabolic pathways on blood cholesterol levels. Chapter 3 
and 4 aim to explore genetic determinants of plasma HDL and total cholesterol levels using 
a candidate pathway-driven approach. In addition, in Chapter 4, it is examined whether the 
genetic information from these variants could add value to predicting future risk of 
hypercholesterolemia. In Chapter 5, the potential mechanism underlying the influence of 
dietary PUFAs on plasma cholesterol levels is explored using a population-based genetic 
approach. In Chapter 6, novel mechanistic insights on the TG-lowering and anti-thrombotic 
effects of fish oil (omega-3 PUFAs) treatment is explored in comparison with fenofibrate 
treatment in mice using a genomic approach. In Chapter 7, the genetic determinants of 
plasma PUFA levels, and potential effects of omega-6 and omega-3 PUFAs and desaturase 
activities on CHD risk are explored using a population-based genetic approach. In Chapter 
8, the current known common genetic variants associated with CHD risk factors (blood 
pressure, obesity, blood lipid levels, and type 2 diabetes) and CHD itself, derived from 
published genome-wide association studies, are examined to see whether they provide 
additional value in CHD risk prediction beyond established traditional CHD risk factors. 
Finally, in Chapter 9, the general discussion and conclusions are presented. 
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Abstract 
The liver is currently known to be the major organ to eliminate excess cholesterol from our 
body. It accomplishes this function in two ways: conversion of cholesterol molecules into 
bile acids (BAs) and secretion of unesterified cholesterol molecules into bile. BAs are 
synthesized in the hepatocytes, secreted into bile and delivered to the lumen of the small 
intestine where they act as detergents to facilitate absorption of fats and fat-soluble 
vitamins. About 95% of BAs are recovered in the ileum during each cycle of the 
enterohepatic circulation. Five percent are lost and replaced by newly synthesized BAs, 
which amounts to ~500 mg/day in adult humans. In contrast to the efficiency of the BAs’ 
enterohepatic circulation, 50% of the 1000 mg of cholesterol secreted daily into bile is lost 
in feces. It is known that rare human mutations in certain genes in bile acid and bile 
metabolic pathway influence blood cholesterol levels. With the recent success of genome-
wide association studies, we are convinced that common genetic variants also play a role in 
the genetic architecture of plasma lipid traits. In this review, we summarized the current 
state of knowledge about genetic variations in bile acid and bile metabolic pathway, and 
assessed their impact on blood cholesterol levels and cholesterol metabolic kinetics in the 
population.  
 
Key Words: cholesterol catabolism; bile acid synthesis; enterohepatic circulation; 
genetics  
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Introduction 
The liver is currently known to be the major organ to eliminate excess cholesterol from our 
body, despite the emerging role of the small intestine (1, 2). The liver accomplishes this 
function in two ways; it converts cholesterol molecules into bile acids (BAs), and secretes 
unesterified (free) cholesterol molecules into bile. BAs are exclusively synthesized in 
hepatocytes, secreted into bile and delivered to the lumen of the small intestine, where they 
act as detergents to facilitate absorption of dietary lipids, cholesterol, and fat-soluble 
vitamins. BAs are reabsorbed from the ileum by the action of specific transporter systems, 
transported from the intestine to the liver via the portal circulation and then resecreted into 
bile. During each cycle of this enterohepatic circulation, about 95% of BAs are recovered, 
and 5 percent are lost and replaced by newly synthesized BAs. Although the fractional loss 
of BAs per cycle is relatively small, total daily BA synthesis in adult humans amounts to 
~500 mg, accounting for 90% of the cholesterol that is actively metabolized in the body. In 
contrast to the efficiency of the BAs’ enterohepatic circulation, about 50% of the 1000 mg 
of cholesterol secreted daily into bile is lost in feces as neutral sterols, thereby, almost equal 
to the loss of cholesterol as BAs (3). The remaining 50%, together with half of the dietary 
cholesterol, is absorbed into enterocytes in the proximal small intestine, packed into 
chylomicrons, secreted into the mesenteric lymph and then enters the bloodstream. 
 
Liver is one of the two major organs to synthesize apoA-I. After initial lipidation of lipid-
poor apoA-I in the liver, the nascent HDL particle is secreted. With its intravascular 
maturation and remodelling, the HDL particle facilitates the uptake of peripheral 
cholesterol and its return to the liver directly or by transferring cholesterol to VLDL and 
LDL in plasma, which eventually deliver much of their cholesterol to the liver (4, 5). The 
liver can then channel the excess cholesterol for excretion into the bile. As the major 
physiological process for our body to clear excess cholesterol, the bile acid and bile 
metabolic pathway plays a critical role in the maintenance of whole-body cholesterol 
homeostasis. It has already been shown that rare human mutations in some genes in this 
pathway influence blood cholesterol levels dramatically: rare mutations in cholesterol 7a-
hydroxylase gene (CYP7A1) (6) and ATP binding cassette transporter G5 and G8 genes 
(ABCG5 and ABCG8) (7-9) cause elevated plasma cholesterol levels, while rare mutations 
in apical sodium bile acid transporter gene (ASBT) (10) cause reduced plasma cholesterol 
levels. With the recent success of genome-wide association (GWA) studies, we are 
convinced that common genetic variants in bile metabolic pathway also play a role in 
determining plasma cholesterol levels, but with a modest effect, individually (11-13). So 
far, the effects of genetic variants in bile acid and bile metabolic pathway on blood 
cholesterol levels haven’t systematically been reviewed. Therefore, in this review, we 
summarized the current state of knowledge about genetic variants in CYP7A1, ABCG5, 
ABCG8, NPC1L1, LXRa, HNF4α and other potentially relevant genes in this pathway 
(Figure 1), and assessed their impact on blood cholesterol levels and cholesterol metabolic 
kinetics in the population. The literature search for variations in genes in the bile acid and 
bile metabolic pathway was performed in PubMed using search terms: genetic variant or 
polymorphism or mutation and cholesterol. We also explored associations between 
common genetic variants in those genes important in this pathway and plasma LDL and 
HDL cholesterol levels in the publicly available meta-analysis of seven GWA studies (12). 
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Figure 1: Bile acid and cholesterol transport in enterohepatic circulation. Bile acids are taken up from the 
intestinal lumen mainly by the apical sodium-dependent bile acid transporter (ASBT) in the terminal ileum. After 
intracellular transport in the ileocyte mediated by ileal bile acid binding protein (I-BABP, not shown), bile acids 
are excreted by the heterodimeric organic solute transporter α/β (OST α/β) into the portal circulation. Upon 
reaching the liver sinusoids, bile acids are taken up by hepatocytes via Na+-dependent taurocholate cotransport 
peptide (NTCP) (conjugated form) or Na+-independent organic anion transporting polypeptides (conjugated or 
unconjugated form, not shown). The newly synthesized bile acids by a complex series of enzymes including 
cholesterol 7a hydroxylase (CYP7A1) and other enzymes in the hepatocytes, together with the ones taken up from 
the portal circulation, are secreted across the canalicular membrane into bile by the bile sale export pump (BSEP). 
After secretion into the bile, the majority of bile acids travel through the bile ducts to reach the intestinal lumen. A 
small proportion of bile acids can be taken up by cholangiocytes lining the bile ducts via ASBT and secreted 
across the basolateral membrane back into circulation, destined for either reuptake by the liver (cholehepatic 
shunt) or the systemic circulation. Hepatobiliary excretion of cholesterol is mediated by the heterodimer of ATP-
binding cassette protein G5 and G8 (ABCG5/ABCG8). With bile acids and phospholipids (its secretion is 
medicated by ABCB4 in canalicular membrane of hepatocytes) together, they form micelles in bile and are 
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secreted into small intestine. Niemann-Pick C1-like1 (NPC1L1) along the canalicular membrane of hepatocytes 
facilitates the reuptake of cholesterol from bile. Half of biliarily secreted and diet-derived cholesterol is taken up 
through NPC1L1 on the apical surface of absorptive enterocytes in the proximal small intestine. Together, with 
other absorbed lipids, they are packaged into chylomicrons and secreted into the lymph, and then enter the 
bloodstream. Part of the intracellular cholesterol of the enterocyte in the small intestine is excreted into lumen 
through ABCG5/ABCG8. Nuclear receptors important in regulating bile acids and cholesterol metabolism, such as 
farnesoid X receptor (FXR), liver X receptor alpha (LXRα), pregnane X receptor (PXR), retinoid X receptor alpha 
(RXRα), small heterodimer partner (SHP), liver receptor homologue-1 (LRH-1) and hepatocyte nuclear factor 4α 
(HNF4α), are also reviewed but not shown (for regulating mechanisms see reference 31 and 77). This figure was 
adapted from Kosters et al (85). 

 
1. CYP7A1 
The hydroxylation step catalyzed by the microsomal cytochrome P-450 enzyme cholesterol 
7α-hydroxylase (CYP7A1), yielding 7α-hydroxy-cholesterol, is the first step of the so-
called “classical pathway” of BA biosynthesis. CYP7A1 is considered to be the rate-
limiting enzyme for cholesterol catabolism into BAs. CYP7A1 induction stimulates the 
conversion of cholesterol to BAs, resulting in a relative deprivation of hepatic microsomal 
cholesterol content, followed by upregulation of LDL receptor expression and activity, 
which consequently reduces plasma LDL cholesterol levels (14). A frameshift mutation in 
the CYP7A1 gene (L413fsX414) has been identified in a family of patients with elevated 
plasma cholesterol levels, decreased BA excretion, and accumulation of cholesterol in the 
liver (6). Also, several common genetic variants in this gene have been found. Based on re-
sequencing data in a limited number (n = 20) of Caucasian subjects (15, 16), and HapMap 
CEU data (17), it is now known that a linkage disequilibrium (LD) block exists in 
Caucasians, spanning a 14-kb region from the proximal promoter (rs3824260) to the 3′ -
downstream (rs10504255) of the CYP7A1 gene. Two common SNPs (rs3808607, r.-
203A>C; rs3824260, r.-469C>T) in the proximal promoter region of CYP7A1 have been 
studied in relation to lipids. Since rs3824260 is in complete LD with rs3808607, rs3808607 
was most studied. Initially, Wang et al. (15) reported that CC homozygotes of rs3808607 
had higher plasma LDL cholesterol levels compared to common AA homozygotes in both 
family based and unrelated American Caucasian populations. This association was 
replicated in male subjects from the Framingham offspring study (18). In contrast, carriers 
of the C allele had lower plasma total cholesterol levels compared to AA homozygotes in 
139 Dutch hypertriglyceridaemic patients (19). No association was observed in Swedish 
male populations (16), which is perhaps due to the relative small sample sizes with 
deviated allele frequencies. Also, no association was observed in 715 male Dutch patients 
with coronary atherosclerosis (20). This may have been due to a less pronounced effect of 
this polymorphism in these preselected patients who had elevated total and LDL cholesterol 
levels.  
 
In other ethnic populations, genetic polymorphisms in the promoter region of CYP7A1 
were associated with blood cholesterol or apolipoprotein levels. Hegele et al. (21) studied 
three distinct Canadian populations. In 594 Hutterites, the C allele carriers of r.-203A>C 
had high HDL cholesterol and apoA-I levels compared to AA homozygotes; in 190 
Keewatin Inuit members, the C allele was the major allele and associated with lower 
plasma total and LDL cholesterol levels compared to AA homozygotes; and no association 
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was observed in an OjiCree population. In 1102 Micronesians, Han et al. (22) observed the 
rare CC homozygotes of r.-203A>C had a higher apoA-I levels compared to homozygote 
AA. In blacks (n = 1939), Klos et al. (23) found two SNPs (rs1023649, rs1023651) in the 
promoter region of CYP7A1 to be associated with plasma LDL cholesterol and total 
cholesterol levels with increased levels in carriers of the rare alleles. Moreover, a 5′ region 
CYP7A1 haplotype (consisting of rs1023649, rs8192871 and rs11786580) was associated 
with plasma apoA-I levels.  
 
In a population with hypercholesterolemia, mainly composed of Caucasians, Kajinami et al. 
(24) demonstrated that the rare C allele was independently and possibly gene-dose 
dependently associated with a poor response to atorvastatin in terms of LDL cholesterol 
lowering. This effect was more striking in men, and was enhanced by the coexistence of 
common variants of APOE (ε2 or ε4). This poor response was also only observed in 
subjects carrying ABCG8 19H, 54CC, 400TT and 632AA (for details see ABCG8 part) by 
the same investigators (25). Similarly, in 363 male Dutch patients with coronary 
atherosclerosis, Hofman et al. (20) observed a poor response to pravastatin among -203C 
allele carriers regarding serum total cholesterol levels. The poor reduction in LDL 
cholesterol levels among C allele carriers did not reach statistical significance compared to 
AA homozygotes (p = 0.09). Recently, in a GWA study of patients with coronary heart 
disease, C allele carriers responded poorly to atorvastatin regarding LDL cholesterol 
lowering, but it did not reach statistical significance (p = 0.06) (26). The poor response to 
statins among C allele carriers is reminiscent of the refractory hypercholesterolemia in 
response to HMG-CoA reductase inhibitors in 2 patients carrying homozygous rare 
frameshift mutation in CYP7A1 (6). In agreement with the difference in response to statins 
between CYP7A1 genotypes, the C allele was found to be associated with a higher 
response of plasma total cholesterol and HDL cholesterol levels to an increase in dietary 
cholesterol intake in Dutch intervention studies (27). Additionally, Kovar et al. (28) 
reported that CC homozygotes demonstrated a significant increase in serum total 
cholesterol and LDL cholesterol levels after a high-fat diet challenge. This increase was not 
observed in AA homozygotes. Interestingly, the same group earlier reported a larger 
decrease in plasma total cholesterol levels in C allele carriers after a pronounced change in 
dietary composition (greatly decreased meat, eggs, butter and animal fat consumption, and 
increased vegetables, fruits and vegetable oils consumption) over an 8-year-follow-up (29). 
 
It is speculated that r.-203A>C modulates transcriptional activity of the CYP7A1 gene. The 
-203C variant allele could be associated with decreased CYP7A1 gene expression and, 
consequently, decreased cholesterol catabolism into BAs. Studies on the transcriptional 
regulation of CYP7A1 revealed that the promoter region around position -203 contains 
several liver-specific elements (30, 31). According to GenBank data, the nucleotide 
sequence from -206 to -199 of the human CYP7A1 promoter is completely conserved in 
chimpanzee, orangutan, rhesus monkey, dog, mouse, rat and opossum. However, no 
association was observed between r.-203A>C and hepatic cholesterol 7a-hydroxylase 
activity in 21 liver biopsies obtained from patients who had undergone cholecystectomy 
(16). Additionally, no association was observed with plasma parameters of BA synthesis 
rate (7α-hydoxy-4-cholesten-3-one concentration) in 30 subject with asymptomatic 
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gallstone disease, and also with the synthesis rates of total BAs, cholic acid and 
chenodeoxycholic acid in another 30 subjects (16); however, the sample sizes in these 
studies were relatively small. In a recent study conducted among 65 Czech patients with 
ileal resection, serum cholesterol and non-HDL cholesterol adjusted 7α-hydoxy-4-
cholesten-3-one concentrations were significantly higher in -203 AA than CC 
homozygotes, and the differences were more pronounced in patients with extensive 
resection (32). Considering the high LD among common genetic variants in this gene in 
Caucasians, it cannot be excluded that another yet unidentified functional variant that is in 
high linkage disequilibrium with r.-203A>C is responsible for this observed influence on 
plasma total and LDL cholesterol levels.  
 
Overall, based on the current information described above, it can be concluded that genetic 
variation in the promoter region of CYP7A1 (r.-203A>C in Caucasian populations) is 
associated with blood cholesterol levels, particularly with LDL cholesterol. Moreover, in 
Caucasian populations, r.-203A>C may modulate the cholesterol response to drug and diet 
intervention. The rare C allele carriers may respond poorly to statin-based treatment, but 
strongly to a high fat diet regarding blood LDL levels. However, it should be noted that 
these gene (r.-203A>C) -drug or diet interactions were only investigated in very few 
populations, most with small sample size. Therefore, more research among multiple large 
cohorts is needed in the future before a final conclusion can be drawn. 
 
Regarding other important BA biosynthetic enzymes (such as sterol 27-hydroxylase 
(CYP27A1), important for alternative BA biosynthesis and sterol side chain oxidation; 
oxysterol 7a-hydroxylase (CYP7B1), converting oxysterol to BA intermediates in 
alternative BA biosynthesis; and sterol 12a-hydroxylase (CYP8B1), channelling BA 
intermediates ultimately into cholic acid) (3, 33, 34), rare mutations are reported in the 
CYP27A1 gene (35) and CYP7B1 gene (36, 37), but these mutations do not influence 
blood cholesterol levels. Based on the recent meta-analysis of seven GWA studies 
(Supplement table 1 and 2), common genetic variations in these genes may not have a large 
influence on plasma LDL and HDL cholesterol levels.  
 
2. ABCG5 and ABCG8 
Hepatobiliary secretion of BAs drives excretion of cholesterol from liver cells into bile, 
which is mediated by the heterodimer of ATP-binding cassette protein G5 and G8 (ABCG5 
and ABCG8) that are expressed in the canalicular membrane of the liver. Rare mutations in 
ABCG5 or G8 in human cause sitosterolemia that is characterized by an accumulation of 
sterols in blood and tissues, consequent to the enhanced intestinal absorption and decreased 
biliary removal of cholesterol and plant sterol (7-9). Since ABCG5 and G8 are also 
expressed in the apical membrane of the brush border of the small intestine, the effect of 
the augmented excretion of cholesterol from the liver into bile cannot be distinguished from 
that of the enhanced efflux of cholesterol from enterocytes to the small intestinal lumen 
with respect to influence on blood cholesterol levels. However, based on the observation 
that a patient with sitosterolemia who underwent a liver transplantation had a normalized 
plant sterol levels despite his genetic defect in the intestine (38), the effect on biliary 
cholesterol excretion in the liver may be more significant.  
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Given the important function of ABCG5 and G8 in the excretion of cholesterol, common 
sequence variants in the ABCG5 or ABCG8 gene may have subtle effects on sterol 
metabolism, and may contribute to inter-individual variation in blood cholesterol levels. 
Several polymorphisms and haplotype structures for ABCG5 and ABCG8 have been 
reported (39, 40). Several polymorphisms in ABCG5 (Q604E, rs6720173) and ABCG8 
(T400K, rs4148217; D19H, rs11887534; A632V, rs6544718; and Y54C, rs4148211) have 
been found to be associated with several facets of cholesterol metabolism, including 
cholesterol level, cholesterol kinetics, and individual responsiveness of blood cholesterol to 
dietary and pharmaceutical intervention (41). 
 
Regarding Q604E of ABCG5, Weggemans et al. (42) demonstrated that EE homozygotes 
had higher plasma total cholesterol levels than carriers of the wild-type allele. Viturro et al. 
(43) found that heterozygote boys had higher plasma total cholesterol, LDL cholesterol and 
apoB levels compared to homozygotes of wide-type allele, but only in those within the 
lowest tertile of saturated fat intake. However, other studies failed to observe any of these 
associations (44-48). In contrast, Acalovschi et al. (49) observed the opposite effect. The 
604E allele carriers had lower plasma total cholesterol levels and higher HDL cholesterol 
levels compared with QQ homozygotes in 68 siblings with gallstone disease. Also Plat et 
al. (50) observed lower serum LDL cholesterol levels among E allele carriers taking a low-
erucic rapeseed oil-based margarine and shortening diet in 112 healthy Dutch volunteers. In 
line with these findings of low blood cholesterol levels associated with the E allele, Gylling 
et al. (45) demonstrated that the E allele was associated with low cholesterol absorption 
from intestine (low serum cholesterol adjusted campesterol and sitosterol levels) and high 
cholesterol synthesis (high serum cholesterol adjusted cholestenol levels) in 262 Finish 
subjects with mild to moderate hypercholesterolemia. Along the same line, Santosa et al. 
(48) reported that homozygous 604E subjects had a larger reduction in cholesterol 
absorption and greater increase in synthesis during weight loss compared to heterozygotes 
and homozygous wild-type carriers in 35 hypercholesterolemic Canadian women. In 
dietary cholesterol intervention studies, Herron et al. (51) found that, after one additional 
egg consumption per day over 30 days, 640E allele carriers responded less compared to 
homozygote QQ with respect to plasma total and LDL cholesterol levels. However, an 
opposite trend was observed earlier by Weggemans et al. (42) regarding serum total 
cholesterol levels change after dietary cholesterol challenge, but without reaching statistical 
significance. No modulating effect was observed from Q604E on cholesterol lowering 
response to atorvastatin (25, 26). Overall, the various studies reviewed on effects of Q604E 
of ABCG5 gene on blood cholesterol levels and cholesterol metabolic kinetics suggest that 
the rare E allele are consistently associated with lower cholesterol absorption and higher 
cholesterol synthesis. No consistent result on association with total and LDL cholesterol 
levels could be drawn now. 
 
Several studies consistently demonstrated that subjects with the 19H allele of ABCG8 had 
lower blood total cholesterol levels (45, 47-49, 52) and lower LDL cholesterol levels (45, 
47, 48) compared to the subjects without. The association with LDL cholesterol levels was 
recently replicated in a GWA study (p = 1×10-11) (12). However, in another relatively big 
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study that consisted of 2012 patients with heterozygous familial hypercholesterolemia, 
Koeijvoets et al. (53) did not observe any association between this polymorphism and lipid 
levels. This may be due to the attenuation of the moderate effects from19H allele by high 
plasma cholesterol levels in these preselected subjects. The 19H allele was also observed to 
be more common in subjects with relatively low cholesterol absorption (45), and was 
associated with lower cholesterol absorption marker sterols (serum cholesterol adjusted 
campesterol, sitosterol, and cholestanol levels) (44, 45). Furthermore, it was associated 
with higher cholesterol synthesis marker sterols (serum cholesterol adjusted serum 
cholestenol and lathosterol levels) (45).  
 
The finding of a consistent association between D19H and cholesterol metabolic kinetics 
(baseline cholesterol levels, cholesterol absorption and synthesis) suggests that the 
substitution of histidine for aspartic acid at amino acid 19 alters the function of ABCG8. 
Since the plasma sterol (both cholesterol and phytosterol) levels were lower in individuals 
with histidine at this residual, one would expect an increased transporter function. This is 
supported by observations that the presence of the 19H mutant allele was associated with 
cholesterol gallstones, suggesting that the mutated allele might confer a more efficient 
transport of cholesterol into bile lumen, causing cholesterol hypersaturation of the bile and 
eventually promoting the formation of cholesterol gallstones (54). In the 19H allele 
carriers, this increased transporter function causes more efflux of cholesterol into intestinal 
lumen and as a result, inefficiency in intestinal cholesterol absorption, which consequently 
induces an upregulated endogenous cholesterol synthesis. This may explain the increased 
LDL cholesterol lowering response to atorvastatin in the 19H allele carriers (25, 26, 52). 
 
No association was observed between T400K of the ABCG8 gene and total and LDL 
cholesterol levels (44, 45, 47-50, 53, 55). In 120 male Czech participants, Hubacek et al. 
(46) reported that K allele carriers exhibited a smaller decrease in plasma total and LDL 
cholesterol levels than TT homozygotes after a pronounced change in dietary composition 
(considerably decreased red meat, eggs, and animal fat consumption, and increased 
vegetables, fruits, cereals, and vegetable oils consumption) over an 8-year-follow-up. 
However, in 143 healthy American Caucasians, Berge et al. (44) reported that the K allele 
was associated with lower levels of cholesterol absorption marker sterol (serum cholesterol 
adjusted sitosterol levels) and high cholesterol synthesis marker sterol (serum cholesterol 
adjusted desmosterol and lathosterol levels). In line with the lower absorption effect with K 
allele, in 120 healthy Dutch volunteers, Plat et al. (50) observed a higher campesterol and 
sitosterol absorption, and a stronger inhibitor effect of plant stanol ester on campesterol and 
sitosterol absorption in TT homozygotes. However, these associations were not replicated 
by Gylling et al. (45) in  262 Finish participants with mild to moderate 
hypercholesterolemia.  
 
Regarding A632V in ABCG8, Berge et al. (44) observed that the V allele was associated 
with a high plasma total cholesterol levels. In 380 Spanish children, Viturro et al. (43) 
found that the heterozygotes had higher plasma total cholesterol and apoB levels than AA 
homozygotes, but only in the group with low cholesterol intake. No association of A632V 
and total cholesterol levels was observed in other studies (46, 49, 50). No association was 
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observed between Y54C of ABCG8 and blood total and LDL cholesterol levels (44, 45, 47-
49). In 35 hypercholesterolemic Canadian women, Santosa et al. (48) showed that the 
heterozygous Y54C carriers had a smaller decline in cholesterol synthesis compared with 
homozygous YY carriers during weight loss through decreasing dietary energy intake and 
increasing energy expenditure. Additionally, in 139 female Czech subjects, Hubacek et al. 
(46) reported that the Y allele carriers had a larger plasma total and LDL cholesterol 
decrease compared to the homozygous CC allele carriers after a change in dietary 
composition (considerably decreased red meat, eggs, and animal fat consumption, and 
increased vegetables, fruits, cereals, and vegetable oils consumption) over 8 years’ follow-
up. No such association was observed in males (46).  
 
Overall, no consistent results on effects of T400K, A632V and Y54C in ABCG8 gene on 
blood cholesterol levels and cholesterol metabolic kinetics were reported so far. Failure to 
identify a consistent association may be due to variations in populations examined, 
including healthy, hypercholesterolemic, and overweight/obese subjects; modulating 
environmental factors such as diet or pharmaceutical treatments; or simply, a lack of power 
to allow for any robust conclusion to be drawn. No modulating effect was observed from 
T400K, A632V or Y54C on cholesterol lowering response to atorvastatin (25, 26). 
 
Recently, a series of GWA studies was conducted in Caucasian populations. The minor T 
allele of rs6756629 (R50C, C>T) in ABCG5 was reported to be associated with lower 
levels of total cholesterol (p = 1.5×10-11) and LDL cholesterol (p = 2.6×10-10) compared to 
the major allele (11). The minor A allele of rs4953023 (G>A) in ABCG8 was associated 
with lower levels of LDL cholesterol (p = 4×10-8) compared to the major allele (12). Based 
on the HapMap CEU data, these SNPs are in complete LD with each other and with D19H 
that showed similar association result. The minor T allele of rs6544713 (C>T) in ABCG8 
was associated with higher LDL cholesterol levels (p = 2×10-29) compared to the major 
allele (12). Rs6544713 is not in LD with the above three SNPs (r2 < 0.03), suggesting that 
it contributed an independent association.  
 
Common polymorphisms in ABCG5/G8 were also studied in non-Caucasian populations. 
In 100 hypercholesterolaemic Japanese subjects, Miwa et al. (56) reported that carriers of 
the M429V variant of ABCG8 or a specific haplotype (wild-type allele of Q604E ABCG5, 
and wild-type allele of C54Y, wild-type allele of T400K, mutant allele of M429V ABCG8) 
had higher cholesterol absorption efficiency than non-carriers. However, no difference was 
observed in serum lipid profiles in relation to common polymorphisms studied previously 
in Caucasian populations [ABCG5 (Q604E) and ABCG8 (A632V, T400K, D19H and 
C54Y)]. This might be explained by the fact that carriers of ABCG8 D19H and A632V 
polymorphisms are rare among Japanese compared to Caucasian populations. Interestingly, 
in 1046 Chinese, Chen et al. (57) observed that the heterozygote D19H of ABCG8 had a 
higher serum total and LDL cholesterol levels than homozygote DD, which is opposite to 
the effect observed in Caucasian populations. The author speculated that this opposite 
effect may be due to the specific Chinese dietary pattern with high intake of plant sterols. 
No association with C54Y and T400K of ABCG8 regarding total and LDL cholesterol 
levels was observed. A632V of ABCG8 was monomorphic in this Chinese population. 
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Recently, in 845 self-identified Puerto Ricans from Boston, Junyent et al. (47) reported that 
ABCG5/G8 (i7892T>C, rs4131229; 5U145A>C, rs3806471; Y54C; T400K) SNPs were 
significantly associated with HDL-C concentrations. Carriers of the minor alleles at these 
loci and homozygotes for the T400 allele displayed lower HDL cholesterol levels. A 
significant gene-smoking interaction was also found. Carriers of the minor alleles at 
ABCG5/G8 (Q604E; D19H; i14222A>G, rs6709904) SNPs displayed lower levels of HDL 
cholesterol only if they were smokers. Also, for ABCG8 T400K, smokers, but not 
nonsmokers, homozygous for the T allele displayed lower HDL cholesterol levels. The 
result further supported a significant haplotype global effect on lowering HDL cholesterols 
among smokers. The association between polymorphisms in ABCG5/G8 and plasma HDL 
cholesterol levels possibly reconciles with an old concept: hepatobililarily excreted 
cholesterol mainly originates from HDL-derived cholesterol (58). However, these 
associations were not observed in some earlier studies conducted in Caucasian populations 
with relatively large sample size (43, 45, 46) and also in recent GWA studies (Supplement 
table 2) (11, 12). Therefore, this issue needs further exploration. 
 
3. NPC1L1 
Niemann-Pick C1-like 1 (NPC1L1) is essential to the body’s ability to absorb cholesterol 
(59). The main function of NPC1L1 is to mediate the absorption of cholesterol, especially 
free cholesterol in the small intestine. Although there are conflicting reports about the 
relative expression level of NPC1L1 in human liver compared to the small intestine (59-
61), NPC1L1 on the canalicular membrane of the hepatocyte is postulated to have a role in 
conserving cholesterol from what would be otherwise unopposed efflux by ABCG5 and 
ABCG8 transporters in the liver (62). Both rare mutations and common polymorphisms 
have been reported in the NPC1L1 gene and associated with blood cholesterol levels, 
cholesterol kinetics and LDL cholesterol lowering response to ezetimibe.  
 
In the Dallas Heart Study, Cohen et al. (63) demonstrated that in African-Americans, rare 
non-synonymous genetic variations in NPC1L1 cumulatively contribute to the variability in 
cholesterol uptake and plasma LDL cholesterol levels. Nineteen nonsynonymous variants 
and one nonsense mutation were only present in low absorbers of cholesterol and not in 
high absorbers. These variants were found in 6.2% of African-Americans and were less 
frequent in Whites (1.8%) or Hispanics (1.7%). Average plasma LDL cholesterol levels 
were reduced with about 10% among African-Americans with one of the variant NPC1L1 
alleles. The variations were mostly found among sequences that are highly conserved 
across the phylogeny (63), most of which were found to interfere with the formation of a 
stable protein in a follow-up functional study (64). Interestingly, one of the rare variants 
that was only found in the high absorbers in the Dallas Heart Study, I1233N (63), was also 
identified as one of the compound mutations in a male Caucasian with hyperlipidemia who 
did not respond to ezetimibe treatment (65). This could indicate that the residual at I1233N 
may be one of the critical residuals upon which ezetimibe acts.  
 
Besides these rare mutations, polymorphisms in the NPC1L1 gene have been associated 
with variation in LDL cholesterol lowering response to ezetimibe (65-68). Simon et al. (66) 
identified a 3 SNP haplotype (consisting of g.-133A>G, g.-18C>A and g.1679C>G 
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(rs2072183, L272L)) that was associated with responsiveness to ezetimibe in two 
independent studies: carriers of the A-A-G haplotype had a significantly better response to 
ezetimibe compared to non-carriers. The minor allele of one of the SNPs in this haplotype 
(rs2072183) was subsequently reported to be associated with increased response to 
ezetimibe in two small cohorts of hyperlipidemic individuals (68). This result is also 
supported by an early study. Hegele et al. (67) reported that subjects carrying the haplotype 
consisting of all the major alleles of rs2072183, g.25342A>C (rs217428), and g.27677T>C 
(rs217434) had a smaller reduction in plasma LDL cholesterol in response to ezetimibe 
compared to non-carriers.  
 
However, common variants in NPC1L1 were not associated with cholesterol levels before 
treatment (66, 67), or in a general population (63). Recently, Chan et al. (69) demonstrated 
that the NPC1L1 2/2 haplotype (consisting of all the majors alleles of rs2072183, rs217428 
and rs217434) was associated with increased baseline plasma total and LDL cholesterol 
levels, apoB levels, and LDL-apoB pool size, and decreased LDL-apoB fractional catabolic 
rate (FCR). In addition, 2/2 haplotype carriers showed a greater reduction in plasma levels 
of total cholesterol and apoB levels and in LDL-apoB pool size, as well as a greater 
increase in LDL-apoB FCR after atorvastatin treatment over 6 weeks compared to non-2/2 
subjects. However, rs217428 and rs217434 were not associated with LDL cholesterol 
response to atorvastatin in a GWA study (26), and also, none of the SNPs (g.-133A>G, g.-
18C>A and rs2072183) showed an association with the LDL cholesterol response to statin 
treatment in a study by Simon et al. (66). In one study conducted in Chinese subjects, Chen 
et al. (70) reported that two common SNPs (g.-762T>C; g.1679C>G, rs2072183) were 
found among 50 Chinese through re-sequencing and they were in high LD. The C allele of 
-762T>C had a higher promoter activity based on luciferase assay. In 224 Chinese subjects, 
the -762C allele carriers had higher serum total and LDL cholesterol levels than TT 
homozygotes. It should be noted that regarding association with baseline blood cholesterol 
levels, the sample size of the two studies described above (69, 70) were still small. 
Although no SNP in NPC1L1 has reached the GWA significance-level in relation to blood 
LDL cholesterol levels in recent GWA studies (supplement table 1) (11, 12), considering 
the consistent gene-drug (ezetimibe) interaction regarding LDL cholesterol lowering 
response, the effect from these common genetic variants may only become manifest under 
stressed conditions such as ezetimibe treatment.  
 
4. LXRα  
Liver X receptor (LXR) is the major transcription factor that acts as a sensor of cholesterol 
levels via its interaction with oxysterols, which in turn, drives the disposal of excess 
cholesterol. Although there is a clear role of LXRα in inducing CYP7A1 in mice after a 
challenge with diets high in cholesterol (33), LXRα induction of CYP7A1 does not seem to 
occur in humans (71, 72). Nevertheless, LXRα is highly expressed in the liver and also 
abundant in the intestine (3, 73), and it potentially regulates the expression of ABCG5 and 
ABCG8 in the liver and intestine (73, 74). 
 
No phenotypic effect due to rare mutation in LXRα has been reported so far. One study 
conducted in 732 French-Canadians studied common polymorphisms in the LXRα gene 
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(75). Plasma total cholesterol levels were higher in carriers of the minor -115A, -840A and 
-1830C allele, compared with the -115G/G, -840C/C, and -1830T/T homozygotes at c.-
115G>A (rs12221497), c.-840C>A (rs61896015) and c.-1830T>C (rs3758674). No 
additional haplotype analysis was pursued due to the complete LD among the three SNPs. 
When continuous dietary intake of cholesterol was put into a model to check the its 
potential interaction with the three genotypes, LXRα -115G>A explained 1.8% and 2.1% of 
the variance in total cholesterol and LDL cholesterol levels, respectively, whereas the 
interaction term explained 2.9% and 2.8%, respectively. When subjects were divided into 
two groups according to the median intake of cholesterol (290.8mg) and -115G>A 
genotype, there was a positive association between dietary cholesterol intake and plasma 
total cholesterol and LDL cholesterol levels in -115A carriers, but not in -115G/G 
homozygotes. These results suggest that dietary cholesterol intake interacts with LXRα 
variants to modulate plasma total cholesterol and LDL cholesterol levels. In another study 
conducted in 2290 French subjects, carriers of the minor allele (-6A) of rs11039115 was 
associated with increased plasma HDL cholesterol levels in a dominant model (GG vs 
GA+AA) (76). This SNP is also located in the LXRα promoter region, but isn’t in LD with 
the three SNPs mentioned above.  
 
Recently, in a GWA study conducted in a Finnish birth cohort derived from a genetic 
isolate (n = 4763) (13), two SNPs (rs2167079 and rs7120118 in complete LD) in LXRα 
were associated with plasma HDL cholesterol levels (p = 2.23×10-8 and 1.53×10-8, 
respectively). The association between genetic variants in LXRα and plasma HDL 
cholesterol levels are understandable since LXRα is also highly expressed in adipose tissue 
and macrophages (3, 73), and it directly regulates genes involved in HDL lipoprotein 
metabolism, such as ABCA1, ABCG1, LPL, PLTP and CETP (73). To what extent this 
association is mediated through ABCG5/G8 is still unclear.  
 
5. HNF4α 
Hepatocyte nuclear factor 4α (HNF4α) plays a crucial role in the development and function 
of vital organs, such as the liver, colon, and pancreas. It is a major regulator of genes 
involved in the control of lipid homeostasis (77). HNF4α is involved in regulating 
expressions of BA biosynthetic enzymes (CYP7A1, CYP7B1, CYP8B1 and CYP27A1) 
(33, 34, 77-79), and also BA transporter of NTCP (77, 80). Mutations in HNF4α in humans 
are directly linked to the onset of MODY1 (maturity onset diabetes of the young 1) (81, 
82), and associated with variations in HDL cholesterol levels (81, 83). Common genetic 
variant in HNF4α (rs1800961) is associated with plasma HDL cholesterol levels in both 
candidate association study  (84) and GWA study (p = 8×10-10) (12). Since HNF4α also 
regulates hepatic expression of a number of genes directly involved in HDL lipoprotein 
metabolism, including apoA-I, apoA-II and SR-BI (77), it is not clear to what extent the 
HDL cholesterol modulating effect of HNF4α is mediated through BA metabolic pathway. 
 
6. Other genes 
Farnesoid X receptor (FXR) is the transcription factor that senses the intracellular levels of 
BAs. It inhibits BA synthesis via downregulation of CYP7A1, CYP8B1 and CYP27A1 (33, 
34, 79). The expression of BA transporters (NTCP, BSEP, ASBT, OSTα and OSTβ; for 
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their exact functions, see Figure 1) is, to a considerable extent, regulated by FXR (34, 79, 
85). Fibroblast growth factor 19 (FGF19), the recent discovered putative intestine-derived 
molecule regulating BA synthesis is also regulated by FXR (79, 86). Because of the central 
role of FXR in the maintenance of BA homeostasis, genetic variations in its sequence have 
been related to several dysregulations of BA metabolism, such as intrahepatic cholestasis of 
pregnancy [-1G>T, +1A>G (M1V), and 518T>C (M173T)] (87) and cholelithiasis (-
20647T>G, -1G>T and IVS7 -31A>T) (88). Recently, the role of FXR in LDL and HDL 
cholesterol metabolisms has been reviewed (34). However, common genetic variants in 
FXR seem not to have a big influence on blood cholesterol levels based on the recent meta-
analysis of seven GWA studies (Supplement table 1 and 2).  
 
LXR and FXR form obligate heterodimers with RXR proteins. The activities of the 
heterodimeric LXR and FXR receptors with respect to the regulation of cholesterol and BA 
metabolism are modulated by ligands that interact with the RXR subunit (89). Since RXRα 
is the predominant heterodimeration partner for nuclear receptors in the liver, its genetic 
variants have also been reviewed. Only one study on plasma cholesterol levels was reported 
(90). Three SNPs (rs3132293, rs3118570 and rs1536475) and their haplotypes were 
analyzed in 405 Alzheimer’s patients and 347 controls. None of the SNPs or haplotypes 
were associated with plasma cholesterol levels. However, based on the recent meta-analysis 
of seven GWA studies (Supplement table 2), it seems that common genetic variants in 
RXRα could potentially affect plasma HDL cholesterol levels.  
 
The pregnane X receptor (PXR), a nuclear receptor, inhibits CYP7A1 expression (33, 78, 
79, 91), and also CYP39A1 expression (92), one of the enzymes involved in alternative BA 
biosynthesis (33). Clinical activation of PXR is associated with hyperlipidemia and 
increased blood cholesterol levels (92). Based on the recent meta-analysis of seven GWA 
studies (Supplement table 1), it seems that common genetic variants in PXR affect plasma 
LDL cholesterol levels, relatively strongly.  
 
Short heterodimer partner (SHP) and liver receptor homologue-1 (LRH-1), two nuclear 
receptors, are involved in BA feedback inhibition of BA synthesis mediated by FXR (33, 
79). After binding BAs, FXR activates the transcription of SHP that is a common 
transcriptional repressor of nuclear receptor. SHP subsequently suppresses BA synthesis by 
directly participating in the inhibition of CYP7A1 expression through chromatin 
remodelling or binds to LRH-1, which is required for expression of CYP7A1 and CYP8B1 
(3, 33, 79). Based on the recent meta-analysis of seven GWA studies (Supplement table 1 
and 2), it seems that common genetic variants in SHP and LRH-1 could potentially affect 
plasma cholesterol levels.  
 
ABCB4 acts as a flippase and translocates phosphatidylcholine across the canalicular 
membrane (34). Genetic mutations and polymorphism in ABCB4 have been associated 
with progressive familial intrahepatic cholestasis type 3, gallstone and cholestasis of 
pregnancy (93). However, no association between ABCB4 genetic variants and blood 
cholesterol levels has been reported so far.  
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BA transporters are now understood to play central roles in driving bile flow. The 
pathophysiological consequences of genetic mutations and polymorphisms in these genes 
encoding BA transporters have been reviewed recently (80, 85). The effect of genetic 
variation in SLCO1B1 on statin-mediated cholesterol lowering efficacy has recently been 
highlighted (94-97). SLCO1B1 encodes OATP1B1, one of the organic anion transporting 
polypeptides (OATP) expressed on the hepatic sinusoidal membrane and facilitating the 
uptake of BAs and also statin-class drugs (34, 80, 85). A number of polymorphisms and 
haplotypes have been identified in SLCO1B1 to affect the pharmacokinetic profiles of the 
statin-class drugs (98). Two small candidate gene studies conducted in eastern Asian 
subjects and one GWA study conducted in  Caucasian subjects consistently reported that 
carriers of the C allele for rs4149056 (c.521T>C, V174A) had less reduction of total or 
LDL cholesterol levels with statin treatment compared to TT homozygotes (94, 95, 97). 
This could be explained by less efficient uptake of pravastatin, atorvastatin or simvastatin 
into hepatocytes in the C allele carriers compared to the TT homozygotes (97, 98). This 
reduced uptake of statins also explained the high risk of myopathy in the C allele carriers 
due to elevated systemic exposure to simvastatin in high dose users (80 mg 
simvastatin/day) (97). The V174A variation is predicted to be functionally ‘damaging’ in 
both SIFT and PloyPhen (99, 100), explaining the limited hepatic uptake of statins. The C 
allele of another SNP in SLCO1B1, rs11045819 (c.463C>A, P155T), is also reported to be 
associated with less total and LDL cholesterol reduction compared to AA genotypes in 420 
elderly hypercholesterolemic French subjects after extended-release fluvastatin treatment 
(96). As reviewed by Lefebvre et al. (34), BAs affect HDL cholesterol levels in both human 
and animal studies. Given the pivotal role of BSEP in generating bile flow (34, 85), and 
also the results of recent meta-analysis of seven GWA studies (Supplement table 1 and 2), 
common genetic variants in BSEP could affect plasma HDL cholesterol levels relatively 
strongly.  
 
Conclusion 
The studies reviewed above dealing with potential effects of genetic variations along bile 
acid and bile metabolic pathway on blood cholesterol levels and cholesterol metabolic 
kinetics are summarized in table 1. Together, with the latest results from GWA studies, we 
have sufficient evidence that genetic variants at CYP7A1, ABCG5, ABCG8, NPC1L1, 
LXRα and HNF4α loci affect blood cholesterol levels. Some of them also appear to 
modulate the association between blood cholesterol levels and environmental factors 
including dietary fat and some drugs (statins or ezetimibe).  
 
We note that conflicting results were reported for some genetic variants. This may be due 
to either different populations studied, different modulating environmental factors, or 
modest effect of each studied variant, especially when combined with small sample sizes. 
Large studies in the future or meta-analysis of all available similar studies (published or 
not) on these genetic variants may guide interpretation (101). Due to poor coverage of rare 
and structural variants in current GWA genotyping platforms and the stringent statistic 
criteria adopted in GWA studies (102), some important genetic variants in the reviewed 
genes may not have been captured so far. With more detailed cataloguing of these rare and 
structural variants and more advanced sequencing and genotyping technologies, they could 
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be well studied in the near future (103). Based on the results from recent meta-analysis of 
seven GWA studies, some common variants in genes involving regulating cholesterol and 
BA metabolism, such as RXRα, PXR, SHP and LRH-1 and also one of BA transporter 
gene, BSEP, could potentially modulate blood cholesterol levels. With more genetic 
variants in these genes explored in the future, new information will be obtained. Since the 
variants in the genes along the bile metabolic pathway exert their effect on cholesterol 
metabolism over a lifetime, all together, these that are repeatedly confirmed to be 
associated with lipid levels or response to lipid-lowering treatment may eventually be used 
in genetic risk scores to predict lipid levels or to individualize therapeutic options. The 
ultimate goal will be to optimize the risk-benefit ratio for therapies that decrease the 
cardiovascular risk. 
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Table 1 Summary of studies that have linked polymorphisms in genes along bile acid and bile metabolic pathways to variation in blood cholesterol levels, cholesterol 
kinetics and their responsiveness to interventions. a 

Genes Genetic variant Reference Study population Observed association b 

CYP7A1 r.-203A> C 
(rs3808607) Wang et al. (1998) (15) 24 Caucasian nuclear families and 295 

unrelated Caucasians plasma LDL-C higher in CC than AA 

  Couture et al. (1999) (18) 2330 Caucasians from Framingham 
offspring study 

plasma TC and LDL-C higher in AC than AA 
in men, no association was observed in women 

  Hofman et al. (2004) (19) 139 Dutch hypertriglyceridaemic 
patients TC lower in C allele carriers than AA 

  Abrahamsson et al. (2005)(16) 491 healthy male Caucasians; 179 MI 
survivors and 186 healthy controls. no difference in LDL-C among the genotypes 

  Hofman et al. (2005) (20) 715 male Dutch patients with coronary 
atherosclerosis 

no difference in TC, LDL-C and HDL-C 
among the genotypes, but lower reduction in 
serum TC in C allele carriers than AA in 
response to pravastatin 

  Hegele et al. (2001) (21) 594 Hutterites higher HDL-C and apoA-I levels in C allele 
carriers than AA 

  Hegele et al. (2001) (21) 190 Keewatin Inuit subjects lower TC and LDL-C in major C allele carriers 
than AA 

  Hegele et al. (2001) (21) 325 OjiCree subjects no association was observed 
  Han et al. (2002) (22) 1102 Micronesians higher apoA-I levels in rare CC than AA 

  Kajinami et al. (2005) (24) 324 hypercholesterolemic subjects, 
mainly Caucasians 

less LDL-C reduction in C allele carriers after 
atorvastatin treatment, more striking in men 
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and in ε2 or ε4 carriers of APOE 

  Kajinami et al.( 2004) (25) 337 hypercholesterolemic subjects, 
mainly Caucasians 

less LDL-C reduction in C allele carriers after 
atorvastatin treatment only in ABCG8 D19H 
variant carriers or ABCG8 homozygote (54CC, 
400TT, and 632AA) 

  Hofman et al. (2004) (27) 209 Caucasians for TC response and 
179 Caucasians for HDL-C response 

higher response of plasma TC and HDL-C in C 
allele carriers after an increase in dietary 
cholesterol intake 

  Kovar et al. (2004) (28) 11 healthy Czech men (6 CC 
homozygotes and 5 AA homozygotes) 

increased serum TC and LDL-C in CC after a 
high-fat diet challenge, which was not observed 
in AA 

  Hubacek et al. (2003) (29) 114 Czech males more reductions in TC and LDL-C in C allele 
carriers (p < 0.01 and p = 0.07, respectively) 

CYP7A1 rs1023649,  rs1023651 Klos et al. (2006) (23) 2054 whites and 1939 blacks 
two SNPs associated with TC and LDL-C in 
black with increased levels in carriers of the 
rare alleles, no association observed in white 

ABCG5 Q604E (rs6720173, 
C>G) Weggemans et al. (2002) (42) 486 Dutch subjects higher TC in EE than wide type allele carriers 

  Viturro et al. (2006) (43) 1227 healthy Spanish school children 
heterozygotes (CG) higher in TC, LDL-C and 
apoB levels than CC, but only observed in the 
70 boys of lowest tertile of saturated fat intake 

  Berge et al. (2002) (44) 142 healthy American Caucasians No difference in TC 

  Gylling et al. (2004) (45) 262 mildly to moderately 
hypercholesterolemic Finnish subjects 

No association between E allele carriers and 
wide type homozygotes in TC, LDL-C and 
HDL-C 
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  Hubacek et al. (2004) (46) 285 Czech participants No difference in TC, LDL-C and HDL-C 
  Junyent et al. (2009) (47) 845 self-identified Puerto Ricans No difference in TC, LDL-C and HDL-C 
  Santosa et al. (2007) (48) 42 overweight/obese Canadian women No difference in TC and LDL-C 

  Acalovschi et al. (2006) (49) 68 Romanian siblings with gallstone 
disease 

lower TC and higher HDL-C in E allele carriers 
than QQ 

  Plat et al. (2005) (50) 112 healthy Dutch volunteers lower LDL-C in E allele carriers than QQ, no 
difference in HDL-C 

  Gylling et al. (2004) (45) 262 mildly to moderately 
hypercholesterolemic Finnish subjects 

lower cholesterol absorption (lower level of 
serum cholesterol adjusted campesterol and 
sitosterol) and higher cholesterol synthesis 
(high levels of serum cholesterol adjusted 
cholestenol) in E allele carriers than QQ 

  Santosa et al. (2007) (48) 35 hypercholesterolemic Canadian 
women. 

larger reduction in cholesterol absorption and 
greater increase in synthesis in EE than Q 
carriers during weight loss 

  Herron et al. (2006) (51) 91 Caucasian subjects (40 men and 51 
premenopausal women) 

E allele carriers responded less compared to 
QQ in TC and LDL-C after 1 more egg 
consumption/day over 30 days, no difference in 
HDL-C 

  Kajinami et al. (2004) (25) 337 hypercholesterolemic subjects, 
mainly Caucasians 

No modulating effect from Q604E on 
cholesterol lowering response to atorvastatin 

ABCG8 D19H (rs11887534, 
G>C) Gylling et al. (2004) (45) 262 mildly to moderately 

hypercholesterolemic Finnish subjects 
lower TC and LDL-C in H allele carriers than 
DD, no difference in HDL-C 



Bile acid and bile metabolism and plasma cholesterol 

32 

  Junyent et al. (2009) (47) 845 self-identified Puerto Ricans lower TC and LDL-C in H allele carriers than 
DD, no difference in HDL-C 

  Santosa et al. (2007) (48) 42 overweight/obese Canadian women lower TC and LDL-C in H allele carriers than 
DD 

  Acalovschi et al. (2006) (49) 68 Romanian siblings with gallstone 
disease 

lower TC in H allele carriers than DD, no 
difference in HDL-C 

  Kajinami et al. (2004) (52) 338 hypercholesterolemic subjects, 
mainly Caucasians 

lower TC in H allele carriers than DD, no 
difference in LDL-C and HDL-C 

  Koeijvoets et al. (2008) (53) 2012 Dutch patients with heterozygous 
familial hypercholesteroemia no difference in TC, LDL-C and  HDL-C 

  Kajinami et al. (2004) (25) 337 hypercholesterolemic subjects, 
mainly Caucasians 

larger reduction in LDL-C in H allele carriers 
than DD in  response to atorvastatin 

  Kajinami et al. (2004) (52) 338 hypercholesterolemic subjects, 
mainly Caucasians 

larger reduction in LDL-C in H allele carriers 
than DD in response to atorvastatin, no 
difference in change of TC and HDL-C 

  Gylling et al. (2004) (45) 262 mildly to moderately 
hypercholesterolemic Finnish subjects 

H allele more common in the low cholesterol 
absorption tertile compared with intermediate 
and high absorption group 

  Berge et al. (2002) (44) 142 healthy American Caucasians 

lower cholesterol absorption marker sterols 
(serum cholesterol adjusted campesterol, 
sitosterol, and cholestanol levels) in H allele 
carriers than DD 

  Chen et al. (2008) (57) 1046 Chinese recruited from the 
general population 

higher TC and LDL-C in heterozygote D19H 
than homozygote DD, no difference in HDL-C 
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  Gylling et al. (2004) (45) 262 mildly to moderately 
hypercholesterolemic Finnish subjects 

lower cholesterol absorption marker sterols 
(serum cholesterol adjusted campesterol, 
sitosterol, and cholestanol levels) and higher 
cholesterol synthesis marker sterols (serum 
cholesterol adjusted cholestenol and lathosterol 
levels) in H allele carriers than DD 

ABCG8 T400K(rs4148217, 
C>A) Berge et al. (2002) (44) 143 healthy American Caucasians no difference in TC 

  Gylling et al. (2004) (45) 262 mildly to moderately 
hypercholesterolemic Finnish subjects no difference in TC, LDL-C and HDL-C 

  Junyent et al. (2009) (47) 845 self-identified Puerto Ricans no difference in TC and LDL-C, but K allele 
carriers had higher HDL-C than TT 

  Santosa et al. (2007) (48) 42 overweight/obese Canadian women no difference in TC, LDL-C and HDL-C 

  Acalovschi et al. (2006) (49) 68 Romanian siblings with gallstone 
disease no difference in TC and HDL-C 

  Plat et al. (2005) (50) 112 healthy Dutch volunteers no difference in LDL-C and HDL-C 

  Koeijvoets et al. (2008) (53) 2012 Dutch patients with heterozygous 
familial hypercholesteroemia no difference in TC, LDL-C and HDL-C 

  Chan et al. (2004) (55) 47 nonsmoking overweight/obese 
Australian men no difference in TC, LDL-C and HDL-C 

  Hubacek et al. (2004) (46) 285 Czech participants 
a smaller decrease in TC and LDL-C in K allele 
carriers than TT after changing dietary habits 
(less meat and more vegetable) 

  Berge et al. (2002) (44) 143 healthy American Caucasians lower cholesterol absorption marker sterol 
(serum cholesterol adjusted sitosterol levels) 
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and higher cholesterol synthesis marker sterol 
(serum cholesterol adjusted desmosterol and 
lathosterol levels) in K allele carriers than TT 

  Plat et al. (2005) (50) 112 healthy Dutch volunteers 

higher absorption in campesterol and sitosterol 
and a stronger inhibitor effect of plant stanol 
ester on campesterol and sitosterol  absorption 
in TT than K allele carriers 

  Gylling et al. (2004) (45) 262 mildly to moderately 
hypercholesterolemic Finnish subjects 

no difference in plasma cholesterol absorption 
and synthesis markers 

  Kajinami et al. (2004) (25) 337 hypercholesterolemic subjects, 
mainly Caucasians 

no modulating effect from T400K on 
cholesterol lowering response to atorvastatin 

ABCG8 A632V (rs6544718, 
C>T) Berge et al. (2002) (44) 143 healthy American Caucasians higher TC in V allele carriers than AA 

  Viturro et al. (2006) (43) 1227 healthy Spanish school children 

higher TC, LDL-C and apoB levels in 
heterozygotes than homozygotes of wide-type 
allele, but only in the low cholesterol intake 
group (380 children) 

  Hubacek et al. (2004) (46) 285 Czech participants no difference in TC, LDL-C and HDL-C 

  Acalovschi et al. (2006) (49) 68 Romanian siblings with gallstone 
disease no difference in TC and HDL-C 

  Plat et al. (2005) (50) 112 healthy Dutch volunteers no difference in LDL-C and HDL-C 

  Kajinami et al. (2004) (25) 337 hypercholesterolemic subjects, 
mainly Caucasians 

no modulating effect from A632V on 
cholesterol lowering response to atorvastatin 

ABCG8 Y54C (rs4148211, 
A>G) Berge et al. (2002) (44) 139 healthy American Caucasians no difference in TC 
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  Gylling et al. (2004) (45) 262 mildly to moderately 
hypercholesterolemic Finnish subjects no difference in TC, LDL-C and HDL-C 

  Junyent et al. (2009) (47) 845 self-identified Puerto Ricans no difference in TC and LDL-C, but C allele 
carriers had a lower HDL-C than YY. 

  Santosa et al. (2007) (48) 42 overweight/obese Canadian women no difference in TC and LDL-C 

  Acalovschi et al. (2006) (49) 68 Romanian siblings with gallstone 
disease no difference in TC and HDL-C 

  Santosa et al. (2007) (48) 42 overweight/obese Canadian women 
smaller decline in heterozygous Y54C carriers 
in cholesterol synthesis than YY during weight 
loss 

  Hubacek et al. (2004) (46) 285 Czech participants 
Y allele carriers had larger reduction in TC and 
LDL-C than the CC, but only in female 
subjects. 

  Kajinami et al. (2004) (25) 337 hypercholesterolemic subjects, 
mainly Caucasians 

no modulating effect from Y54C on cholesterol 
lowering response to atorvastatin 

ABCG8 M429V (A>G ) Miwa et al. (2005) (56) 100 hypercholesterolaemic Japanese 
subjects 

M429V variant associated with higher 
cholesterol absorption 

ABCG8 rs4131229 (T>C), 
rs3806471 (A>C) Junyent et al. (2009) (47) 845 self-identified Puerto Ricans 

lower HDL-C in rare allele carriers than wild-
type homozygotes, no difference in TC and 
LDL-C 

ABCG8 rs6709904 (A>G) Junyent et al. (2009) (47) 845 self-identified Puerto Ricans 
lower LDL-C in rare allele carriers than wild-
type homozygotes, no difference in TC and 
HDL-C 

NPC1L1 g.-113A>G-g.-
18C>A-g.1679C>G Simon et al. (2005) (66) 1208 hypercholesterolemic individuals 

participating in the ezetimibe+statin 
carriers of the haplotype consisting of A-A-G 
had a significantly improved LDL-C response 
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(L272L, rs2072183) treatment arm of the EASE trial (104) 
and 1132 hypercholesterolemic 
individuals participating in Vytorin vs. 
Atorvastatin clinical trial. 

to ezetimibe compared to non-carriers. 

NPC1L1 L272L 
(rs2072183,C>G) Pisciotta et al. (2007) (68) 

50 primary hypercholesterolemia 
intolerant to statin and 65 heterozygous 
familial hypercholesterolemia 

higher prevalence of the G allele in hyper-
responders, higher LDL-C reduction in G allele 
carriers than CC in response to ezetimibe 

NPC1L1 

g. 1735C>G 
(rs2072183)- 
g.25342A>C 
(rs217428)- 
g.27677T>C 
(rs217434) 

Hegele et al. (2005) (67) 101 Canadian dyslipidemic subjects 
lower reduction in LDL-C in subjects carrying 
the haplotype consisting of all the major alleles 
than non-carriers in response to ezetimibe 

NPC1L1 rs2072183-rs217428- 
rs217434 Chan et al (2008) (69) 37 obese Australian 

subjects carrying the homozygous haplotype 
(consisting of all the majors alleles) had 
increased baseline TC, LDL-C, apoB levels, 
and LDL-apoB pool size, and decreased LDL-
apoB fractional catabolic rate (FCR) compared 
to non-homozygous haplotype carriers. 

 rs2072183-rs217428- 
rs217434 Chan et al (2008) (69) 37 obese Australian 

subjects carrying homozygous haplotype 
(consisting of all the majors alleles) had a 
greater reduction in TC and apoB and in LDL-
apoB pool size, as well as a greater increase in 
LDL-apoB FCR after atorvastatin treatment 
over 6 weeks compared to non-homozygous 
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haplotype carriers. 

NPC1L1 g.-
762T>C(ss119336593) Chen et al. (2009) (70) 224 Chinese recruited from the hospital higher TC and LDL-C in C allele carriers than 

TT 

LXRα 

c.-115G>A 
(rs12221497), c.-

840C>A 
(rs61896015), and c.-
1830T>C (rs3758674) 

Robitaille et al. (75) 732 French-Canadians 
higher TC in carriers of the minor -115A, -
840A and -1830C allele, compared with the -
115G/G, -840C/C, and -1830T/T 

LXRα rs11039115 (c.-6G>A) Legry et al. (2005) (76) 2290 French subjects higher HDL-C in carriers of the A allele than 
GG 

HNF4α rs1800961 (C>T) Lu et al. (2008) (84) 3575 Dutch subjects higher HDL-C in CC  than carriers of the T 
allele 

SLCO1B1 V174A (rs4149056, 
T>C) 

Tachibana-Iimori et al. (2004) 
(94) 66 Japanese hyperlipidemic patients 

lower TC lowering effect in TC heterozygotes 
than TT homozygotes with pravastatin, 
atorvastatin or simvastatin treatment for 2 
months 

  Zhang et al. (2007) (95) 45 Chinese patients with coronary heart 
disease 

lower TC lowering effect in TC heterozygotes 
than TT homozygotes with pravastatin 
treatment for 1 month 

 P155T (rs11045819, 
C>A) Couvert et al. (2008) (96) 420 French hypercholesterolemic 

patients 

lower TC and LDL-C lowering effect in CC 
homozygotes than CA heterozygotes or AA 
homozygotes with extended-release fluvastatin 
treatment for 2 months 

a The results from GWA studies not included. 
b TC: total cholesterol levels, LDL-C: low-density lipoprotein cholesterol levels, HDL-C: high-density lipoprotein cholesterol levels; AA, TT, CC and GG mean the homozygous carriers for 
the corresponding nucleotides, and it is also true for the letters representing the amino acids. 
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Abstract  
The known genetic variants determining plasma HDL cholesterol (HDL-C) levels explain 
only part of its variation. 384 single nucleotide polymorphisms (SNPs) across 251 genes 
based on pathways potentially relevant to HDL-C metabolism were selected and genotyped 
in 3575 subjects from the Doetinchem cohort, which was examined thrice over 11 years. 
353 SNPs in 239 genes passed the quality control criteria. Seven SNPs (rs1800777 and 
rs5882 in CETP; rs3208305, rs328 and rs268 in LPL; rs1800588 in LIPC; rs2229741 in 
NRIP1) were associated with plasma HDL-C levels with false discovery rate adjusted q-
values (FDR_q) < 0.05. Five other SNPs (rs17585739 in SC4MOL, rs11066322 in 
PTPN11, rs4961 in ADD1, rs6060717 near SCAND1 and rs3213451 in MBTPS2 in 
women) were associated with plasma HDL-C levels with FDR_q between 0.05 and 0.2. 
Two less well replicated associations (rs3135506 in APOA5 and rs1800961 in HNF4A) 
known from the literature were also observed but their significance disappeared after 
adjustment for multiple testing (p = 0.008, FDR_q = 0.221 for rs3135506; p = 0.018, 
FDR_q = 0.338 for rs1800961, respectively). In addition to replication of previous results 
for candidate genes (CETP, LPL, LIPC, HNF4A and APOA5), we found interesting new 
candidate SNPs (rs2229741 in NRIP1, rs3213451 in MBTPS2, rs17585739 in SC4MOL, 
rs11066322 in PTPN11, rs4961 in ADD1 and rs6060717 near SCAND1) for plasma HDL-
C levels that should be evaluated further.  
 
Supplementary key words: high density lipoprotein, cholesterol, single 
nucleotide polymorphism, pathway-driven approach, random coefficient model. 
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INTRODUCTION 
Numerous clinical and epidemiological studies have demonstrated an inverse and 
independent association between plasma concentrations of HDL cholesterol (HDL-C) and 
the risk of coronary heart disease (1). The most popular mechanistic explanation has been 
that HDL functions in reverse cholesterol transport, removing cholesterol from peripheral 
tissues and delivering it to the liver for biliary excretion and to steroidogenic organs for 
steroid hormones synthesis (2). Although efflux of cholesterol from macrophages 
represents only a tiny fraction of overall cellular cholesterol efflux, it is in fact, the most 
important with regard to antiatherogenic effects (3). More recently, a variety of other 
functions of HDL have been described, primarily based on in vitro assays, including anti-
inflammatory, antioxidant, antithrombotic, and nitric oxide-inducing mechanisms that 
could also contribute to its antiatherogenic effects (4, 5).  
 
Current evidence suggests that blood lipids are complex phenotypes, influenced by both 
environmental and genetic factors. It has been well established that body weight (6), 
current smoking habits (7), exercise (8), alcohol use (9) and dietary fat intake (10) 
influence plasma HDL-C levels. Several twin and family studies indicate that heritability 
estimates for blood levels of HDL-C range from 24% to 83%, with most studies in the 40% 
to 60% range (11). Mutations in genes including ABC transporter A1 (ABCA1), 
apolipoprotein A1, and lecithin cholesterol transferase (LCAT) are implicated in rare 
mendelian forms of HDL deficiency and familial hypoalphalipoproteinemia (12, 13). A 
mutation in the cholesteryl ester transfer protein gene (CETP) found in two Japanese 
siblings causes CETP-deficiency and extremely elevated levels of HDL-C (14). Findings 
from candidate gene studies suggest that genetic polymorphisms, including single 
nucleotide polymorphisms (SNPs) located in CETP, lipoprotein lipase (LPL), hepatic lipase 
(LIPC) (15, 16), and apolipoprotein A1/C3 (17) genes are important sources of genetically 
determined variation in plasma HDL-C. However, they explain only a small part of the 
variation. Most of the DNA sequence variants that contribute to variation in plasma HDL-C 
levels in the general population are still largely unknown.  
 
Since low plasma HDL-C levels always cluster with other kinds of dyslipidemia and also 
insulin resistance, in this study, we extended the candidate gene scope and emphasized on 
the intricate links within lipid metabolic pathways and also between glucose and lipid 
metabolic pathways (18). We postulated that more genuine signals from the genes that are 
involved in the metabolism of HDL-C could be captured. The purpose of this study was 
twofold: first, to survey genetic variants in a large number of candidate genes in relation to 
plasma HDL-C levels, and second, to investigate whether these associations could be 
modified by traditional environmental factors, such as drinking, smoking and dietary fat 
intake. 
 
METHODS 
Study population 
Our study was conducted in Doetinchem, a town in a rural area in the east of the 
Netherlands. Random samples were taken from the municipal population register between 
1987 and 1991. A total of 12404 inhabitants aged 20-59 years were willing to participate 
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and underwent a first measurement (response 62%). A sub-sample was re-invited for a 
second measurement between 1993 and 1997 and 6100 participants were re-examined 
(response 79%). Between 1998 and 2002, a third measurement took place and 4917 
participants were re-assessed (response 75%). For each survey approval had been obtained 
from the Medical Ethics Committee. Informed consent was obtained from all participants. 
Overall, the Doetinchem Cohort consisted of 4662 persons for which three measurements 
were available. Participants who changed their smoking habits (n = 872), who had missing 
data on smoking status (n = 11) or who were pregnant at the time of measurement (n = 122) 
were excluded. Finally, 3779 participants met the inclusion criteria of this study. The 
design and detailed methods have been reported earlier (19). The subjects were surveyed on 
demographic, anthropometric and lifestyle information (smoking, alcohol use, physical 
activity and dietary habits), disease history and medications by questionnaires. A non-
fasting blood sample was taken from all participants, fractionated into blood plasma, white 
blood cells and erythrocytes and subsequently stored. A validated semi-quantitative food 
frequency questionnaire was used in the second and third surveys to assess the habitual 
consumption of 178 food items during the previous year (20). Nutrient and energy intake 
were quantified for each individual using a updated computerized Dutch food composition 
table.  
 
Laboratory assessment of HDL-C. 
Plasma HDL-C levels were assayed in the Lipid Reference Laboratory (LRL) of the 
University Hospital Dijkzigt in Rotterdam using standardized enzymatic methods within 
three weeks after storage. The LRL Rotterdam is a permanent member of the International 
Cholesterol Reference Method Laboratory Network. It has been standardized to the Centers 
for Diseases Control and Prevention (CDC) through participating in the CDC/National 
Heart Lung and Blood Institute Lipid Standardization Program. HDL-C was determined in 
the supernatant after precipitation of apoB-containing lipoproteins with phophotungstic 
acid/MgCl2 (Boehringer). The accuracy of HDL-C determination fulfilled National 
Cholesterol Education Program (NCEP) recommendations throughout the entire period. 
From December 1999, a homogen liquid method was used. From March 2002, the 
homogen liquid (2nd generation) was used. Whenever a new method was introduced, a 
careful calibration was performed to make sure there was no difference between different 
assaying methods. 
 
Gene and SNP selection and genotyping 
Candidate genes were selected by a pathway-driven approach based on literature, with 
emphasis on regulatory pathways that control fatty acid, glucose, cholesterol and bile salt 
homeostasis; for a recent review see reference 18. The selection procedure started from the 
master regulator genes encoding nuclear receptors (PPARs, LXR, and FXR), transcription 
factors (SREBPs) and continued by selecting their co-activators, co-repressors and target 
genes. In addition, hormonal receptors (insulin receptor) and their downstream signaling 
proteins were selected. Furthermore, several candidate genes, described in literature to be 
associated with blood lipids or blood pressure were added. The selection resulted in 251 
candidate genes.  
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Where possible eligible SNPs for these genes were selected based on published 
associations with any disorder or functional parameter, using databases from NCBI 
(PubMed, Gene and SNP), the Genetic Association Database (21) from CDC, and SNPper 
(22). In part limited by various constrains of the Golden Gate genotyping assay, a total of 
153 SNPs across 91 genes were finally selected from the literature. Subsequently, we used 
the web based program SNPselector (23) to query all 251 genes for potential candidate 
SNPs. We performed a “SNPs by gene” search, including 5kb 5’ and 1kb 3’ flanking 
sequences, with slightly modified default ranking settings. Firstly, SNPs located in repeat 
regions were excluded (Repeat_score>0), to avoid potential genotyping difficulties. 
Secondly, Caucasian minor allele frequencies (MAF_Caucasian>0) had to be available. 
Thirdly, SNPs in predicted transcription factor binding sites (Regulatory=*TFBS*) were 
preferred. Finally, subsequent ranking was based on the highest function score 
(Function_score), followed by the highest regulatory score (Regulatory_score), 
discriminating between SNPs that might affect gene transcript structure or protein product, 
and the regulatory potential of the SNP, respectively. A total of 226 SNPs across 178 
genes, selected with SNPselector, were included on the Illumina array. Four of the 251 
candidate genes remained without eligible SNPs in the SNP search described above. For 
each of these genes (SCAP, ACSL1, CEBPA, E2F4) a single SNP was handpicked based 
on Caucasian allele frequency, SNP location and validation information in NCBI SNP. 
Together a final set of 383 SNPs across 251 candidate genes, with one to seven SNPs per 
gene, passed the Illumina Assay Design Tool and were included. Besides the 383 selected 
SNPs, one Y chromosome marker was determined to serve as gender control. The complete 
list of SNPs and additional data for all SNPs are provided in supplementary table 1.  
 
Genomic DNA was extracted from the buffy coat fraction with a salting out method. A 
total of 139 subjects were not eligible for genotyping, mainly because DNA extraction did 
not succeed or DNA was not available. For 3639 subjects high throughput SNP genotyping 
was performed with the Illumina Golden Gate assay using the Sentrix Array Matrix 
platform (Illumina Inc, San Diego, California). Illumina GenCall software (version 
6.1.3.28) was used for automated genotype clustering and calling. Genotyping failed for 43 
subjects due to an overall absence of any signal. In addition, 21 subjects were excluded 
because of discordance for the gender control. For 28 SNPs the genotype calling did not 
succeed due to low signal (n = 11), overlap between the genotype clusters (n = 13), 
multiple genotype clusters (n = 3) or scattering of clusters (n = 1). For the eight SNPs most 
out of Hardy Weinberg Equilibrium (HWE), genotyping of the particular SNP was verified 
in a random sample (n = 96) using Taqman, pyrosequencing or sequencing. Two of these 
failed the verification and were excluded. Furthermore, genotype calling was not 
completely convincing for 42 SNPs. The latter were included in the analysis, but when an 
association was found with body mass index, waist circumference or lipids levels, 
genotyping was verified. All SNPs passed the verification. Finally, for 3575 participants 
data was available of 353 SNPs in 239 genes.  
 
Statistical analysis 
All analyses were performed with SAS version 9.1 software (SAS Institute, Cary, NC). 
Paired Student’s t tests and chi-square tests were used for comparisons of means and 
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proportions between measurement rounds. If data were not normally distributed, the 
Wilcoxon Signed-Rank test was used to make the comparison. Distributions of genotypes 
were tested for deviation from HWE by chi-square analysis (PROC ALLELE). Random 
coefficient models (multi-level modeling) were used to study the relationship between 
SNPs and repeated measurements of plasma HDL-C levels (PROC MIXED). Men and 
women were analyzed separately for five X-linked SNPs (rs2073115, rs3213451, 
rs5969919, rs1403543 and rs3048). When the overall difference was statistically 
significant, the Tukey-Kramer method was used to identify significant differences between 
the genotype groups. The exact follow-up time in years was put into the model as a 
continuous variable. To adjust for the potential confounding effects and to improve model 
fitting, age, age2, sex, current smoking (yes or no), alcohol use and body mass index (BMI) 
were added to the model as covariates. The intercept and time were treated as random 
effects allowing unique baseline levels and unique changes of plasma HDL-C 
concentration over time for each individual. Potential gene-environment interactions in 
relation to plasma HDL-C level were also explored using MIXED models by including 
interaction terms into the model. All reported p values were two-tailed, and statistical 
significance without adjustment for multiple testing was defined at α = 0.05 level. The false 
discovery rate (FDR) was applied to take multiple testing into account (PROC 
MULTTEST). To date, there is no conventional q value threshold to categorize a discovery 
as significant. As in similar research, a q value threshold of 0.20 was used to define 
significance (24). Certain SNPs in previously confirmed candidate genes affecting plasma 
HDL-C levels were also reported (p < 0.05) although their q values exceeded 0.2.  
 
RESULTS 
The mean age of the subjects at the first survey was 40.8 years, ranging from 20 to 60 years 
(table 1). More people took lipid-lowering medication in the second and the third round 
compared to the first examination. The average plasma HDL-C level increased from the 
first survey (1.26 ± 0.31 mmol/L) to the second survey (1.38 ± 0.38 mmol/L), but 
decreased slightly thereafter in the third survey (1.36 ± 0.39 mmol/L). Correlation 
coefficients between the three measurements of plasma HDL-C levels ranged from 0.76 to 
0.82. 
 
Twenty-eight SNPs were found to be significantly associated with variations in plasma 
HDL-C levels (p < 0.05, table 2) after adjustment for age, age2, sex, current smoking habit, 
alcohol use and BMI. Eleven of them had a FDR_q-value < 0.2 after adjustment for 
multiple testing; seven SNPs (rs1800777 and rs5882 in CETP; rs3208305, rs328 and rs268 
in LPL; rs1800588 in LIPC and rs2229741 in NRIP1) had a FDR_q value < 0.05, while 
four more SNPs (rs17585739 in SCMOL, rs11066322 in PTPN11, rs4961 in ADD1 and 
rs6060717 near SCAND1) had a FDR_q-value between 0.05 and 0.2. Two of the SNPs for 
which the significance disappeared after adjustment for multiple testing concerned less well 
replicated associations in the literature (rs3135506 in APOA5, p = 0.008 and FDR_q = 
0.221; rs1800961 in HNF4A, p = 0.018 and FDR_q = 0.338, respectively). With respect to 
the SNPs located on the X chromosome, a SNP in MBTPS2 (rs3213451) was associated 
with plasma HDL-C levels, but only in female subjects (p = 0.02 and FDR_q = 0.12). The p 
values for the above top SNPs (FDR_q-value < 0.2) did not change too much after we 
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excluded the subjects who had started lipid-lowering medication in each round of survey 
(data not shown).  
 
TABLE 1. General characteristics of the study population (n=3575, 1710 men and 1865 
women) 

 First Survey Second Survey Third Survey 
Time since baseline (yr) a - 6.0(5.9-6.1) 11.0(10.9-11.1) 
Age(yrs) 40.8 ± 9.8 46.7 ± 9.8 51.7 ± 9.8 
BMI(kg/m2) b 24.5 ± 3.3 25.4 ± 3.6 26.1 ± 3.8 
HDL cholesterol (mmol/L) b 1.26 ± 0.31 1.38 ± 0.38 1.36 ± 0.39 
Lipid-lowering medication (%) b 6(0.17) 52(1.45) 149(4.17) 
Current smokers (%) 915(25.6) 916(25.6) 916(25.6) 
Alcohol consumption (glass/day) a, b 0.57(0-1.43) 0.57(0-1.57) 0.71(0-1.71) 
Dietary intake Na   
Energy intake (kj/day) b - 9403 ± 2570 9081 ±2415 
Total fat (% energy) b - 35.0 ± 4.7 34.8 ± 4.8 
Saturated fat (% energy) b - 14.6 ± 2.3 14.4 ± 2.3 
Monounsaturated fat (% energy) - 13.3 ± 2.1 13.2 ± 2.2 
Polyunsaturated fat (% energy) - 6.8 ± 1.6 6.9 ± 1.6 
Cholesterol (mg/day) b - 240.1 ± 82.8 229.8 ± 79.6 
BMI, body mass index; Na: not available.  
Data are expressed as mean ± standard deviation or N(%) unless otherwise indicated. 
a Median (Q1-Q3). 
b Significant difference between the surveys, p<0.05. 
 
Compared to the ancestral allele, rs1800777 in CETP, rs3208305 in LPL, rs11066322 in 
PTPN11, rs4961 in ADD1, rs3135506 in APOA5, and rs1800961 in HNF4A were 
associated with decreased plasma HDL-C levels, while rs268 and rs328 in LPL, rs5882 in 
CETP, rs2229741 in NRIP1, rs1800588 in LIPC, rs17585739 in SC4MOL, rs6060717 near 
SCAND1 and rs3213451 in MBTPS2 were associated with increased plasma HDL-C levels 
(table 3 and supplementary table 2). Rs328 and rs3208305 in LPL, rs1800588 in LIPC, and 
rs17585739 in SC4MOL had relatively big effects on plasma HDL-C levels compared to 
other SNPs (≥ 0.1 mmol/L between the two homozygote genotypes).  
 
Considering that variation in plasma HDL-C level also relates to lifestyle factors, including 
smoking, body weight, alcohol use and dietary fat intake, we further examined whether 
these factors could modulate the observed associations between the 14 SNPs identified 
above (SNPs with FDR_q < 0.2, rs3135506 and rs1800961) and plasma HDL-C level. For 
dietary fat intake (saturated fat, monounsaturated fat and polyunsaturated fat), only 
information in the second and third surveys was included in the analysis, as information in 
the first survey is less valid. Interactions with the other lifestyle factors were based on three 
rounds of measurements. Before adjustment for multiple testing, there were possible 
interactions between NRIP1 genotype (rs2229741) and BMI , APOA5 genotype 
(rs3135506) and alcohol use (low vs. high), and  APOA5 genotype (rs3135506) and 
saturated fat intake (low vs. high) (p for interaction = 0.017, 0.023 and 0.042, respectively). 
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However, the significance of the interactions disappeared after adjustment for multiple 
testing (FDR_q > 0.2).  
 

TABLE 2. Association between SNPs and plasma HDL cholesterol levels 

Nearest Gene SNP MAF p a FDR_q b 
LPL rs3208305 0.30 <0.0001 <0.0001 
LPL rs328 0.11 <0.0001 <0.0001 
CETP rs1800777 0.03 <0.0001 <0.0001 
CETP rs5882 0.31 <0.0001 0.0002 
NRIP1 rs2229741 0.41 <0.0001 0.0013 
LIPC rs1800588 0.20 <0.0001 0.0025 
LPL rs268 0.02 0.0003 0.0164 
MBTPS2 c rs3213451 0.35 0.0231 0.1153 
SC4MOL rs17585739 0.06 0.0027 0.1190 
PTPN11 rs11066322 0.19 0.0031 0.1196 
ADD1 rs4961 0.21 0.0036 0.1264 
SCAND1 rs6060717 0.20 0.0061 0.1924 
PIAS1 rs1489599 0.43 0.0082 0.2211 
APOA5 rs3135506 0.08 0.0083 0.2211 
NCOR2 rs2229840 0.17 0.0099 0.2451 
LPL rs1059507 0.16 0.0114 0.2645 
MAP2K1 d rs17586159 0.02 0.0132 0.2862 
PRKCA rs7210446 0.40 0.0140 0.2862 
HNF4A rs1800961 0.04 0.0175 0.3383 
NRIP1 rs2229742 0.12 0.0196 0.3532 
ACADM rs11549022 0.30 0.0203 0.3532 
PRKCA rs17633437 0.37 0.0234 0.3886 
ILK rs2288283 0.13 0.0254 0.4014 
ADIPOQ rs17300539 0.07 0.0312 0.4722 
MYBBP1A rs751670 0.16 0.0383 0.4978 
MLYCD rs11649200 0.17 0.0384 0.4978 
NDN rs850791 0.09 0.0386 0.4978 
SAH rs5716 0.08 0.0386 0.4978 
NCOA2 rs10112498 0.39 0.0444 0.5518 

SNP, single nucleotide polymorphism; MAF, minor allele frequency; FDR, false discovery rate. 
a Adjusted for age, age2, sex, current smoking habits, alcohol use and body mass index. 
b Adjusted for multiple testing (348 SNPs) with the FDR method. 
c Statistical analysis was conducted in women only and was adjusted for multiple testing (5 SNPs) with FDR 
method. 
d There was only one subject with the genotype AA. This subject was incorporated into the genotype GA group 
during the statistical analysis. 
 
DISCUSSION 
In this longitudinal genetic association study, with a pathway-driven approach, we 
confirmed several genetic variants in genes along known HDL metabolic pathway to be 
associated with plasma HDL-C levels. At the same time, we found some new additional 
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candidate genes whose genetic variants may be associated with plasma HDL-C levels. For 
these genes the results need to be replicated in other population studies. 
 
TABLE 3. Distribution of plasma HDL cholesterol levels according to the genotypes of 14 
SNPs significantly associated with plasma HDL cholesterol levels. 

Nearest Gene SNP Nucleotide 
substitution a p(HWE) Frequency 

HDL-C 
(mmol/

L) 

LPL 

rs3208305 26696 T→A 0.97   
TT   315 1.39a 
AT   1490 1.32b 
AA   1767 1.27c 
rs328 (Ser447Ter) 22772 C→G 0.90   
GG   40 1.43a 
CG   683 1.36a 
CC   2851 1.28b 
rs268 (Asn291Ser) 16577 A→G 0.76   
GG   2 1.39 
AG   148 1.21a 
AA   3423 1.30b 

CETP 

rs1800777(Arg468Gln) 21427 G→A b 0.60   
AA   3 1.22 
AG   233 1.20a 
GG   3332 1.31b 
rs5882 (Ile422Val) 20200 A→G 0.20   
GG   328 1.35a 
AG   1563 1.31a 
AA   1682 1.28b 

NRIP1 

rs2229741 224 A→G 0.05   
AA   634 1.26a 
AG   1674 1.30b 
GG   1263 1.32b 

LIPC 

rs1800588 -557 C→T 0.63   
TT   149 1.39a 
CT   1134 1.30b 
CC   2267 1.29b 

SC4MOL 

rs17585739 3968 G→A 0.55   
AA   15 1.52a 
AG   401 1.32b 
GG   3159 1.30b 

PTPN11 

rs11066322 65613 A→G 0.02   
AA   150 1.36a 
AG   1049 1.28b 
GG   2342 1.30b 

ADD1 

rs4961 (Gly460Trp) 29064 G→T 0.67   
TT   146 1.27 
TG   1172 1.28a 
GG   2252 1.31b 

SCAND1 

rs6060717 -2441 C→T 0.81   
CC   134 1.23a 
CT   1127 1.31b 
TT   2309 1.30b 

APOA5 
rs3135506 (Ser19Trp) 169 G→C 0.66   
CC   19 1.24 
CG   508 1.27a 
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GG   3042 1.31b 

HNF4A 

rs1800961(Thr117/139Ile) 12351 C→T 0.44   
TT   3 1.17 
CT   250 1.26a 
CC   3321 1.30b 

MBTPS2 c 

rs3213451 3581 A→G 0.36   
GG   214 1.49a 
AG   860 1.43b 
AA   787 1.45 

SNP, single nucleotide polymorphism; p(HWE), p value from x2 test of Hardy-Weinberg Equilibrium; HDL-C, 
high density lipoprotein cholesterol.  
a Human mutation nomenclature(50). 
b Information on ancestral allele is not available from chimpanzee, but from macaque. 
c statistical analysis and calculation were only conducted in women. 
Genotypes with different letters marked with (a, b and c) differ significantly from each other in plasma HDL 
cholesterol levels.  
 
Genetic variants among CETP, LPL and LIPC have previously been found to be associated 
with plasma HDL-C levels in candidate gene studies (15, 16). Recently, in a series of 
genome-wide association (GWA) analyses (25-27), the associations between genetic 
variants from these genes and plasma HDL-C levels were also confirmed (rs711752, 
rs7205804, rs5880 and rs3764261 in CETP; rs326 and rs12678919 in LPL; rs11858164 and 
rs10468017 in LIPC). The influence from these genetic variants (rs1800777 and rs5882 in 
CETP, rs3208305, rs328 and rs268 in LPL and rs1800588 in LIPC) on plasma HDL-C 
levels was once again observed in our study. These above mentioned significant loci in 
LPL or LIPC are in fact located in one haplotype block (28), which makes them more 
frequently inherited together. All the loci in CETP are located in two connected haplotype 
blocks (28).  The roles these genes play in the metabolic process of HDL-C have well been 
elucidated either from experimentation in cell culture and in animal models or from 
observational and interventional studies in humans (3).  
 
Two less well replicated associations (rs1800961 in HNF4A and rs3135506 in APOA5) 
with plasma HDL-C levels were also observed in our study, although their statistical 
significance disappeared after adjustment for multiple testing. In line with our findings 
serum HDL-C concentration was lower in subjects with the T130I (rs1800961) mutation 
compared with those without this mutation in a study among Japanese patients with late-
onset type 2 diabetes (29). A large European Caucasian collection of MODY (maturity 
onset diabetes of the young) patients due to HNF4A mutations (30) also presented with 
lower fasting apolipoprotein A-ΙΙ, A-Ι and HDL-C levels than control subjects. Hepatic 
nuclear factor 4 alpha (HNF4A) regulates hepatic expression of a number of genes 
associated with lipoprotein metabolism, including genes encoding apoA-Ι, A-ΙΙ, A-ΙV, B, 
C-ΙΙ, C-ΙΙΙ, E, microsomal triglyceride transfer protein, cholesterol 7 α-hydroxylase, SR-BI, 
and PPARα (31). Mice with targeted mutations of HNF4A have a dramatic decrease in 
LDL and HDL cholesterol levels, and the HDL particles in these mice are small and lipid-
poor (31). These results altogether show that HNF4A is important in HDL-C metabolism. 
 
The APOA5 gene is located ~ 27 kb upstream of the well characterized APOA1/C3/A4 
gene cluster. It is suggested that HDL is a reservoir for apoA-V based on the observation 
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that there was a greater than 20-fold higher level of apoA-V in HDL than in VLDL of 
APOA5 transgenic mice (32). There are numerous reports on the association of genetic 
variants of APOA5 with low HDL-C levels, such as rs662799, rs651821, rs2075291 in 
Japanese populations (33) and Chinese populations (34). The SNP of rs3135506 is 
significantly associated with blood HDL-C levels in northern American (35) and Austrian 
Caucasian subjects (36). In our Dutch population, rs3135506 was associated with plasma 
HDL-C levels before adjustment for multiple testing. This SNP, substituting Trp for Ser at 
residual 19 within the predicted signal peptide, is the only common variant with known 
influence on APOA5 expression (37). Furthermore, another SNP (rs28927680) in linkage 
disequilibrium with rs3135506 (r2 = 0.98) is recently reported to be associated with HDL-C 
concentrations in a genome wide association analysis (27). Therefore, we think rs3135506 
is an important determinant of HDL-C levels.  
 
A SNP (rs2229741) in nuclear receptor interacting protein 1 (NRIP1) was found to be 
associated with plasma HDL-C levels in our study. Another SNP (rs2229742), ~ 1kb 
downstream of rs2229741 was also found to be associated with plasma HDL-C levels, 
although the significance disappeared after adjustment for multiple testing (table 2). These 
two SNPs are correlated with each other (r2 = 0.44). Two other SNPS (rs1297214 and 
rs2142450) in this gene are shown to be associated with age-sex/multivariable adjusted 
NMR intermediate HDL-C concentration in the Framingham Offspring study (Exam 4) 
using a generalized estimating equation regression (GEE) approach (p = 0.02/0.04 for 
rs1297214; p = 0.02/0.04 for rs2142450) (38). NRIP1 is reported to be involved in the 
estrogen regulation of apoA1 enhancer activity. At low ratios of NRIP1 to estrogen 
receptor α, estradiol repressed apoA1 enhancer activity, whereas at high ratios this 
repression was reversed (39). Recent studies have identified a hepatocyte specific role for 
NRIP1 as a cofactor for LXR in different ways, namely serving as a coactivator in 
lipogenesis and as a corepressor in gluconeogenesis (40). Since NRIP1 is a widely 
expressed cofactor for nuclear receptors involved in the regulation of metabolic gene 
expression (41), its exact role in HDL-C metabolism warrants further research.  
 
The SNP of rs17585739 in Sterol C4-methyloxidase-like (SC4MOL), that catalyzes sterol-
4α-methyl oxidation process in cholesterol biosynthesis (42), was associated with plasma 
HDL-C levels in our population. Another SNP (rs1550270) in this gene was also associated 
with multivariable adjusted NMR large HDL-C concentration (p = 0.03) and HDL size (p = 
0.04) in the Offspring Exam 4 of the Framingham SNP Health Association Resource (38). 
Interestingly, also along the cholesterol biosynthetic pathway, MVK (mevalonate kinase), 
encoding mevalonate kinase to convert mevalonate into 5-phosphomevalonate (2), is 
reported to possibly affect HDL-C concentrations in a recent genome wide association 
study (25). However, the SNP (rs7957619) in MVK we studied was not associated with 
plasma HDL-C concentrations (p = 0.45). Another SNP in a gene regulating this pathway, 
rs3213451 in MBTPS2, a metalloprotease required for intramembrane proteolysis of sterol 
regulatory element-binding proteins (2), was associated with plasma HDL-C concentrations 
in women in our study. Although this finding needs replication in other studies, it is 
tempting to speculate that de novo biosynthesis of cholesterol is an important contributor to 
plasma HDL-C. However, this remains to be confirmed. 
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Also for other SNPs, our results are more speculative. The results are inconsistent with 
those found in other studies, as in those studies no associations with HDL-C levels have 
been reported but with other (lipid) parameters. Also no association has been found 
between these genes and HDL-C in recent GWA studies. Therefore, also these findings 
need replication. The genetic variant of PTPN11 (rs11066322) is reported to be associated 
with serum ApoB levels and LDL cholesterol levels in a study conducted in Caucasian 
female twins (43), but in our study this genetic variant was associated with plasma HDL-C 
levels. Furthermore, the genetic variant of ADD1 (rs4961) has been associated with 
susceptibility to hypertension, but not with plasma HDL-C levels (44). However, we did 
find a significant association between rs4961 and plasma HDL-C levels in our study. 
SCAN-domain-containing protein 1 (SCAND1) is the nearest gene to the locus of 
rs6060717 that was found to be associated with plasma HDL-C levels in our study. 
SCAND1 is a widely expressed nuclear protein that may function as a key regulator of zinc 
finger transcription factor function (45). The capability of SCAND1 to interact with 
ZNF202 and PPARγ2 as two crucial transcription factors involved in lipid metabolism 
suggests that SCAND1 could function as important coregulator in lipid metabolism (46). In 
view of the above, a role of these genes in lipid metabolism is possible, but the association 
with HDL-C needs to be studied further. 
 
There are some limitations to acknowledge in our study, which could have lead to either 
type I (false positive) or type II (false negative) errors. We adopted the false discovery rate 
method to adjust for multiple testing, as we took a candidate gene approach (and not 
random markers on the genome), and Bonferroni correction would have been too stringent. 
We think it is justified to take a more liberal threshold of FDR_q-value < 0.2. Although we 
took this approach to avoid false-positive results, we cannot exclude the possibility that the 
novel SNPs are spuriously associated with plasma HDL-C levels; therefore, the results for 
novel SNPs need further replication in other populations. A number of factors could have 
resulted in a type II error, leading to the inability to detect a true underlying association. 
Firstly, only a limited number of SNPs within a candidate gene has been studied. Failure to 
find an association with these SNPs does not exclude the possibility that other SNPs in the 
gene are related to plasma HDL-C levels. Secondly, less common variants with low minor 
allele frequencies (between 0.001 and 0.01) have been proven to affect plasma HDL-C 
levels (47). Although our sample size is large enough to allow us to detect effects as low as 
0.4% variation in plasma HDL-C levels with 80% power (p = 0.005, FDR_q = 0.2) for such 
less common genetic variants, we did not take these less common variants into 
consideration in our study. Recently, some authors argued that with the findings from the 
previous linkage studies, candidate gene studies and also current genome wide association 
studies, we still cannot explain the high heritability of complex phenotypes. In fact, all the 
significant 13 SNPs (except rs3213451 in MBTPS2) identified in our study only explain 
4% of the inter-individual variation in average HDL-C concentrations over the three 
measurements in an additive model in our study. It is suggested that deep resequencing of 
some candidate genes to find these culprit (rare) variants may be a solution (48). Finally, 
our blood samples were taken from the subjects in a non-fasting condition. However, there 
was no clear association between the time to last meal and plasma HDL-C levels in the 
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second and third surveys (data not shown). Also others found that fasting does not 
influence HDL-C levels to a large extent (49). Therefore, we do not think the non-fasting 
condition has influenced our results. 
 
In conclusion, in addition to replication of previous results for candidate genes (SNPs 
among CETP, LPL, LIPC, HNF4A and APOA5), we found interesting new candidate SNPs 
for plasma HDL-C levels (rs2229741 in NRIP1, rs3213451 in MBTPS2, rs17585739 in 
SC4MOL, rs11066322 in PTPN11, rs4961 in ADD1 and rs6060717 near SCAND1). The 
validity and relevance of these novel associations with plasma HDL-C levels require 
further validation in other study populations.  
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ABSTRACT 
Background-Plasma total cholesterol (TC) levels are highly genetically determined. 
Although ample evidence of genetic determination of separate lipoprotein cholesterol levels 
has been reported, using TC level directly as a phenotype in a relatively large broad-gene 
based association study has not been reported to date.  
 
Methods and Results-We genotyped 361 single nucleotide polymorphisms (SNPs) across 
243 genes based on pathways potentially relevant to cholesterol metabolism in 3575 
subjects that were examined thrice over 11 years. Twenty-three SNPs were associated with 
TC levels after adjustment for multiple testing. We used 12 of them (rs7412 and rs429358 
in APOE, rs646776 in CELSR2, rs1367117 in APOB, rs6756629 in ABCG5, rs662799 in 
APOA5, rs688 in LDLR, rs10889353 in DOCK7, rs2304130 in NCAN, rs3846662 in 
HMGCR, rs2275543 in ABCA1, rs7275 in SMARCA4) that were confirmed in previous 
candidate association or genome-wide-association studies to define a gene risk score 
(GRS). Average TC levels increased from 5.23 ± 0.82 mmol/L for those with 11 or less 
cholesterol raising alleles to 6.03 ± 1.11 mmol/L for those with 18 or more (P for trend < 
0.0001). The association with TC levels was slightly stronger when the weighted GRS that 
weighted the magnitude of allelic effects was used.   
 
Conclusion-A panel of common genetic variants in the genes pivotal in cholesterol 
metabolism could possibly help identify those people who are at risk of high cholesterol 
levels. 
 
Key Words: cholesterol; single nucleotide polymorphism; pathway-driven approach; 
random coefficient model. 
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Introduction 
Mammalian cells require cholesterol for maintenance of membrane integrity and multiple 
cellular functions. Cells obtain cholesterol by either de novo synthesis in the endoplasmic 
reticulum or receptor-mediated uptake of lipoproteins, processes that are tightly controlled 
by feedback regulation to prevent the toxicity of excess unesterified cholesterol in 
membranes. Only 9% of the body cholesterol pool is easily accessible in plasma, the 
remaining 91% being found in tissues. Plasma total cholesterol (TC) levels represent a 
combination of cholesterol in structurally and metabolically heterogeneous groups of 
lipoprotein, such as very low density lipoprotein (VLDL), low density lipoprotein (LDL), 
high density lipoprotein (HDL) and cholesterol in other lipoproteins, among which 
cholesterol (and other lipids) and certain apolipoproteins are constantly exchanged (1-3). It 
is known that about two-thirds of the blood TC is attributable to LDL and the remaining 
mainly to HDL and VLDL. Ample evidence for a genetic basis of separate lipoprotein 
cholesterol levels has been reported so far (4-7). The heritability of TC levels has been 
estimated to be around 40-60% (8). However, plasma TC levels, as a comprehensive index 
of our body cholesterol pool, have rarely been explored directly as a phenotype in a 
relatively large, broad-gene based association study despite its being more sensitive in 
predicting cardiovascular disease risk compared with LDL cholesterol levels (9). 
 
In this study, we followed 3575 subjects over 11 years during which their plasma TC levels 
were measured three times, which enabled us to better account for intra-individual 
variation. In order to get a broad list of genes potentially relevant to cholesterol 
metabolism, we adopted a pathway driven approach to select genes known to be involved 
in the regulatory pathways that control fatty acid, glucose, cholesterol and bile acid 
homeostasis. We emphasized on the intricate links within lipid metabolism and between 
glucose and lipid metabolism through common transcriptional factors (10). By surveying 
genetic variants in this broad list of candidate genes, we want to provide some new insights 
into the genetic determinants of plasma TC levels, and investigate whether common genetic 
variants in genes involved in cholesterol metabolism could predict the plasma cholesterol 
levels.  
 
Materials and methods 
Study population 
Our study was conducted in Doetinchem, a town in a rural area in the east of the 
Netherlands. The design and detailed methods have been reported earlier (11). At baseline 
(round 1, 1987-1991), an age-and-sex stratified random sample of the population was 
drawn. A total of 12,405 subjects aged 20-59 yrs were willing to participate and underwent 
a first measurement. A random two-third of those measured in round 1 were invited for 
round 2 (1993-97), and 6,118 subjects participated. They were invited for a third 
measurement round (1998-2002) and 4,917 subjects participated. For 4662 participants, all 
three measurements were available. Participants who changed their smoking habits, had 
missing data on smoking status or were pregnant at the time of measurement were 
excluded. Finally, 3779 participants met the inclusion criteria for this study. Informed 
consent was obtained from all participants. In brief, the subjects were surveyed on 
demographic, anthropometric and lifestyle information, disease history and medication by 
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questionnaires. A validated semi-quantitative food frequency questionnaire was used in the 
second and third surveys to assess the habitual consumption of 178 food items during the 
previous year (12). A non-fasting blood sample was taken from all participants, 
fractionated into blood plasma, white blood cells and erythrocytes and subsequently stored 
at -20°C. Plasma TC was measured using a CHOD-PAP method (Boehringer) (13) after 
being sent to the Lipid Reference Laboratory of the University Hospital Dijkzigt (LRL) in 
Rotterdam once every week or three weeks. The LRL in Rotterdam is a permanent member 
of the International Cholesterol Reference Method Laboratory Network (14). For 
replication of associations between APOC3 SNPs (rs2854116 and rs4520) and TC levels, 
we used a random sample of 1984 subjects with a single measurement of TC from a 
population-based cohort study in Maastricht (15, 16), The Netherlands, which used the 
same methodology as the Doetinchem cohort.  
 
Gene and SNP selection and genotyping 
Genomic DNA was extracted from the buffy coat fraction with a salting out method. For 
3639 subjects high throughput SNP genotyping was performed with the Illumina Golden 
Gate assay using the Sentrix Array Matrix platform (Illumina Inc, San Diego, California). 
Gene selection started from the master regulator genes (encoding the nuclear receptors 
[PPARs, LXR, and FXR] or transcription factors [SREBPs]), and continued by selecting 
their associated co-activators, co-repressors and target genes. Several candidate genes, 
described in literature to be associated with blood lipids or blood pressure were also added. 
The SNPs in each gene were selected based on either published associations or the web-
based program SNPselector (17). Detailed information on the gene and SNP selecting 
procedures, quality control and the full gene and SNP list have been reported before (18). 
Two SNPs that failed in the Illumia assay (rs7412 and rs429358 in APOE) were 
successfully re-genotyped with a Taqman assay. In addition, 6 SNPs associated with blood 
total cholesterol levels from the latest genome wide association (GWA) study that was 
published after our initial gene selection (rs646776 in CELSR2, rs3846662 in HMGCR, 
rs2304130 in NCAN, rs10889353 in DOCK7, rs6756629 in ABCG5, and rs174570 in 
FADS2) (4) were genotyped by KBioscience (Hoddesdon, Hertfordshire, UK) using the 
KASPar chemistry, a competitive allele specific PCR SNP genotyping system using FRET 
quencher cassette oligonucleotides (http://www.kbioscience.co.uk). After exclusion of 
subjects for whom all genotypes failed, exclusion of failed genotypes and quality control, 
data were available of 361 SNPs in 243 genes for a total of 3575 participants. APOC3 
SNPs (rs2854116 and rs4520) were genotyped in the replication sample at the Leiden 
University Medical Center using the Sequenom iPLEX platform.  
 
Statistical analysis 
Statistical analyses were performed with SAS version 9.1 software (SAS Institute, Cary, 
NC), unless indicated otherwise. The paired Student’s t test and Chi-square test were used 
for comparisons of means and proportions between measurement rounds, respectively. The 
Wilcoxon Signed-Rank test was used for comparisons of alcohol consumption between two 
rounds of survey. Testing of deviation from Hardy Weinberg Equilibrium (HWE) and 
calculation of linkage disequilibrium (LD) were done with PROC ALLELE. For testing of 
deviation from HWE, the chi-square goodness-of-fit test was used (p < 0.05). The TC 
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levels of participants who took lipid-lowering medication at the time of survey were treated 
as missing values (Table 1). The intake of total fat and cholesterol was averaged over the 
second and third surveys and the medians (34.9 energy% and 224.9 mg/day, respectively) 
were used to categorize the subjects into low or high intake of fat or cholesterol. Since 
inheritance patterns of the causal alleles are unknown, an additive model was used, which 
gives good overall performance in any of the three potential modes of inheritance (19). 
Random coefficient models (multi-level modeling, PROC MIXED) were used to study the 
relationship between SNPs and repeated measurements of TC levels, which accounts for 
correlation between repeated measurements within subjects (20). Men and women were 
analyzed separately for the five X-linked SNPs (rs2073115, rs3213451, rs5969919, 
rs1403543, and rs3048). When the overall difference was statistically significant, the 
Tukey-Kramer method was used to identify significant differences between the genotype 
groups. To adjust for potential confounding effects and to improve model fitting, age, sex, 
current smoking status (yes or no), alcohol consumption, and body mass index (BMI) were 
added to the model as covariates. The exact follow-up time in years was put into the model 
as a continuous variable. Intercept and time were treated as random effects allowing unique 
baseline levels and unique changes of TC level over time for each individual. Gene*time 
interactions were explored by including interaction terms into the MIXED models. The 
odds ratio (OR) of having an average cholesterol level over the three rounds ≥ 6.5 mmol/L 
(hypercholesterolemia) in the subjects carrying ≥ 18 tota l cholesterol raising alleles was 
calculated using a logistic regression model adjusting for age, sex, current smoking habits, 
alcohol use and BMI. Subjects with < 18 total cholesterol raising alleles were used as 
reference. All reported p values were two-tailed, and statistical significance before 
adjustment for multiple testing was defined at the α = 0.05 level. The false discovery rate 
(FDR, PROC MULTTEST) was applied to take multiple testing into account. To date, 
there is no conventional q-value threshold to categorize a discovery as significant. As in 
similar research, a q-value threshold of 0.20 was used to define significance (21).  
 
Genetic risk score computation and analysis 
A genetic risk score (GRS) was calculated on the basis of those SNPs associated with TC 
levels after adjustment for multiple testing that were replicated in other studies. If SNPs 
were in LD (r2 > 0.9), only the SNP with the most significant main effect in our study was 
included in the score. As reported before (22), two methods were used to create the GRS: a 
simple count method (count GRS) and a weighted method (weighted GRS). Both methods 
assume each SNP to be independently associated with TC levels. We assumed an additive 
genetic model for each SNP, applying a linear weighting of 0, 1 and 2 to genotypes 
containing 0, 1, or 2 risk alleles (raising total cholesterol levels), respectively. The count 
method assumes that each SNP in the panel contributes equally to the cholesterol 
increasing effect and was calculated by summing the total number of risk alleles, producing 
a maximal score of 24. For the weighted GRS, each SNP was weighted by the β-
coefficients (Supplementary Table 4) obtained from the linear regression of individual SNP 
on average TC levels over the three rounds of measurements by using an additive model in 
a randomly selected half of the total subjects with no missing value in any of the SNPs 
included in GRS calculation (n = 1668). The weighted GRS was calculated by multiplying 
each β-coefficient by the number of corresponding risk alleles (0, 1 or 2) and then summing 
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the products. This produces a score out of 3.4 (twice the sum of the β-coefficients), which 
was then divided by 3.4 and multiplied by 24 to facilitate interpretation and comparison 
with the count GRS. The weighted GRS was associated with plasma TC levels in the other 
half of the subjects (n = 1669). In doing so, we reduced the bias of yielding overly 
optimistic associations between the weighted GRS and plasma TC levels. To improve the 
comparability, the association between count GRS and TC levels was also assessed in the 
same subjects (Supplementary Table 5). To assess possible discriminative improvement for 
hypercholesterolemia attributable to the GRS, we calculated the areas under the receiver-
operating characteristic curves (AUCs or c-index) from a logistic regression model 
including conventional risk factors only (age, sex, current smoking habit, alcohol use, and 
BMI) and a model which additionally included the GRS. This analysis was done in Stata 11 
(StataCorp, Texas). 
 
Results 
Mean age of the subjects at the first survey was 40.8 years, ranging from 20 to 60 years 
(Table 1). The average TC levels increased from the first survey (5.47±1.03 mmol/L) to the 
second survey (5.52±1.02 mmol/L), and the third survey (5.74±1.03 mmol/L). More people 
took lipid-lowering medication in the second (1993-1997) and third survey (1998-2002) 
compared to the first survey (1987-1991). Correlation coefficients between the 
measurements of TC levels ranged from 0.74 to 0.76. 
 
Table 1. General characteristics of the study population (n=3575, 1710 men and 1865 
women) 

 First Survey 
1987-1991 

Second Survey 
1993-1997 

Third Survey 
1998-2002 

Age (yrs) 40.8 ± 9.8 46.7 ± 9.8 51.7 ± 9.8 
BMI (kg/m2) 24.5 ± 3.3 25.4 ± 3.6 26.1 ± 3.8 
Current smokers (%) 915 (25.6) 916 (25.6) 916 (25.6) 
Alcohol consumption (glass/day) a,b 0.57 (0-1.43) 0.57 (0-1.57) 0.71 (0-1.71) 
Lipid-lowering medication (%) b 6 (0.17) 52 (1.45) 149 (4.17) 
Total cholesterol (mmol/L) b 5.47 ± 1.03 5.52 ± 1.02 5.74 ± 1.03 
Dietary intake Na   
Energy intake (kj/day) b - 9403 ± 2570 9081 ± 2415 
Total fat (% energy) b - 35.0 ± 4.7 34.8 ± 4.8 
Cholesterol (mg/day) b - 240.1 ± 82.8 229.8 ± 79.6 

BMI, body mass index; Na, not available. 
Data expressed as mean ± standard deviation or N (%) unless otherwise indicated. 
a Median (interquartile range). 
b P<0.05. 
 
Thirty-five SNPs were found to be significantly associated with TC levels (p < 0.05, Table 
2) after adjustment for age, sex, current smoking status, alcohol consumption and BMI. 
Twenty-three of them remained statistically significant after adjustment for multiple testing 
(FDR_q < 0.2). Eleven of them (rs7412 and rs429358 in APOE (23), rs646776 in CELSR2 
(4), rs1367117 in APOB (6, 7), rs6756629 in ABCG5 (4, 24), rs662799 in APOA5 (6), 
rs688 and rs5925 in LDLR (25, 26), rs10889353 in DOCK7 (4, 24), rs2304130 in NCAN 
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(4, 24), rs3846662 in HMGCR (4)) were reported to be associated with blood TC or LDL 
levels in candidate genetic association studies or GWA studies. For the other 12 SNPs, we 
explored the association with plasma cholesterol levels in the publicly available results of a 
meta-analysis of seven GWA studies on LDL and HDL cholesterol levels (5). In this meta-
analysis, rs2275543 in ABCA1 was associated with both LDL (p = 0.004) and HDL (p = 
1.437E-7) cholesterol levels. Also, rs7275 in SMARCA4 was associated with LDL 
cholesterol levels (p = 1.921E-6, Supplementary Table 1). For the two SNPs in APOC3 
(rs2854116 and rs4520) that were associated with TC levels in our study, no corresponding 
SNPs or tagging SNPs were genotyped or imputed in the meta-analysis dataset. Therefore, 
we carried out a replication study in 2221 subjects randomly selected from another 
population study using the same methodology as the Doetinchem cohort (details in 
Supplementary Table 2). Rs2854116 was not associated with TC levels (p > 0.05). Despite 
a larger difference in TC levels between genotypes of rs4520 in the replication samples 
than in the Doetinchem cohort, the association did not reach statistical significance (p > 
0.05). 
 
As an explorative analysis, we investigated whether TC levels changed differentially over 
the 11 years of follow-up for the genotypes of the above identified 13 significant SNPs (11 
replicated in literature, 2 replicated in the meta-analysis of GWA studies). Four SNPs 
(rs7412 in APOE, rs646776 in CELSR2, rs662799 in APOA5, and rs7275 in SMARCA4) 
interacted with follow-up time on TC levels (p for interaction<0.05, Supplementary Table 
3). No interaction between the above identified significant SNPs and gender was detected 
(data not shown). 
 
In order to evaluate to what extent the 13 identified SNPs in aggregate explained the 
variation in TC levels, we constructed a gene risk score for each subject by using a simple 
count (count GRS) or a weighted (weighted GRS) approach. One SNP (rs5925) was 
excluded from the GRS calculation because of its LD with rs688 in LDLR (r2 = 0.99). Both 
the count and weighted GRSs ranged from 7 to 21. The median count and weighted GRSs 
were 14 and 15.5, respectively. Demographic and life style characteristics (age, gender, 
current smoking status, alcohol consumption and BMI) did not differ significantly across 
quartiles of the count or weighted GRS (data now shown). Based on the count GRS, the 
average increase of TC levels per risk allele was 0.11 ± 0.01 mmol/L after adjustment of 
age, sex, current smoking status, alcohol consumption and BMI. 
 
Average TC levels increased from 5.23 ± 0.82 mmol/L for subjects with a score of 11 or 
less to 6.03 ± 1.11 mmol/L for subjects with a score of 18 or more (p for trend<0.0001, 
Table 3). Estimates were slightly higher (0.14 ± 0.01 mmol/L per 1 unit increase in 
weighted GRS) and the association between GRS and TC levels was slightly stronger when 
using the weighted GRS (Table 3 and Supplementary Table 5). In total, the variance in 
average TC levels explained by these 12 SNPs was 6.9% (7.2% and 6.7% in the low and 
high-fat intake group, respectively; 7.6% and 6.1% in the low and high-cholesterol intake 
group, respectively). Subjects in the  top 5% of the distribution of the number of TC raising 
alleles (≥ 18 risk alleles) had an increased odds of having hypercholesterolemia using 6.5 
mmol/L as a cut-off point (OR: 2.4; 95% CI: 1.7-3.5) as compared to the subjects with < 18  
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Table 2. Association between SNPs and repeated measures of plasma total cholesterol 

levels among 3575 men and women from the Doetinchem cohort.a 

Gene SNP Minor 
allele MAF P b FDR_q c 

APOE rs7412 T 0.08 <0.0001 <0.0001 
APOE rs429358 C 0.16 <0.0001 <0.0001 
CELSR2/PSRC1/SORT1 rs646776 G 0.23 <0.0001 <0.0001 
APOB rs1367117 A 0.31 <0.0001 <0.0001 
ABCA1 rs2275543 C 0.09 <0.0001 0.0031 
ABCG5 rs6756629 G 0.07 0.0001 0.0066 
APOA5 rs662799 G 0.07 0.0001 0.0066 
GNB3 rs5443 T 0.31 0.0005 0.0234 
LDLR rs688 T 0.43 0.0012 0.0493 
LDLR rs5925 C 0.43 0.0015 0.0541 
SMARCA4/LDLR rs7275 C 0.31 0.0022 0.0686 
ANGPTL3/DOCK7 rs10889353 C 0.35 0.0023 0.0686 
SREBF1 rs4925119 A 0.13 0.0029 0.0801 
CEBPA rs12691 T 0.15 0.0037 0.0935 
NCAN rs2304130 G 0.09 0.0042 0.0962 
PPARG rs3856806 T 0.12 0.0045 0.0962 
SREBF1 rs8066560 A 0.35 0.0046 0.0962 
APOC3 rs2854116 G 0.36 0.0049 0.0966 
APOC3 rs4520 T 0.27 0.0053 0.0995 
HMGCR rs3846662 C 0.45 0.0065 0.1166 
PLA2G7 rs1051931 A 0.19 0.0079 0.1344 
NDN rs850791 G 0.09 0.0119 0.1929 
MBTPS2d rs3213451 G 0.34 0.0341 0.1963 
ABCA1 rs2230806 A 0.26 0.0132 0.2047 
ESRRA rs2276014 T 0.16 0.0140 0.2078 
PTPN11 rs11066322 A 0.19 0.0161 0.2291 
FADS1 rs174546 T 0.33 0.0169 0.2314 
HRAS rs4963176 C 0.34 0.0176 0.2325 
CETP rs1800777 A 0.03 0.0196 0.2490 
SMARCA2 rs17712152 A 0.05 0.0237 0.2912 
PPARG rs709158 G 0.33 0.0291 0.3345 
LPL rs3208305 T 0.30 0.0291 0.3345 
PIAS1 rs1489599 G 0.43 0.0421 0.4681 
INSIG1 rs9769506 C 0.43 0.0437 0.4713 
SREBF2 rs222814 C 0.24 0.0476 0.4988 

SNP, single nucleotide polymorphism; MAF, minor allele frequency; FDR_q, false discovery rate adjusted q 
value. 
a Plasma total cholesterol levels of subjects who took lipid-lowering medication at the time of survey were treated 
as missing during the analysis. 
b P values were derived from random coefficient (MIXED) models after adjustment for age, sex, current smoking 
status, alcohol consumption and body mass index. 
c Adjusted for multiple testing (356 SNPs on the autosome) with the FDR method. 
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d Association was significant in men only and was adjusted for multiple testing with the FDR method (for 5 SNPs 
on the X chromosome). 
 
risk alleles. The GRS improved the discriminative accuracy of hypercholesterolemia, 
measured by the AUC, from 0.705 (95%CI: 0.684-0.727) for conventional risk factors (age, 
sex, current smoking habit, alcohol use and BMI) to 0.734 (95%CI: 0.713-0.755) when the 
count GRS was added (p < 0.0001) (Fig. 1). Similar improvement was obtained when the 
weighted GRS was included (data not shown).  
 
Discussion 
In this longitudinal study, out of 361 SNPs in 243 genes, 23 SNPs were associated with 
plasma total cholesterol levels. Eleven of them in 9 genes were reported in previous genetic 
association or GWA studies on associations with blood total or LDL cholesterol levels. 
Two (rs2275543 in ABCA1 and rs7275 in SMARCA4) were found to be associated with 
cholesterol levels in a meta-analysis of seven GWA studies. A gene risk score based on 
these significant SNPs was strongly associated with TC levels and the prevalence of 
hypercholesterolemia. Four of the SNPs (rs7412 in APOE, rs646776 in CELSR2, rs662799 
in APOA5, and rs7275 in SMARCA4) interacted with follow-up time on TC levels.  
 
Rs2275543 in ABCA1 was in high LD with the recently reported rs3905000 (r2 = 0.89) 
known to be strongly associated with total and HDL cholesterol levels (4). Compared to the 
major T allele of rs2275543, the C allele was associated with lower TC levels 
(Supplementary Table 3). This cholesterol decreasing effect (both HDL and LDL 
cholesterol levels) associated with the C allele was also observed in the results of a meta-
analysis of seven GWA studies (Supplementary Table 1) (5). Rare mutations in ABCA1 in 
humans, causing Tangier disease, were reported to affect not only plasma HDL cholesterol 
levels (6% of normal), but also total cholesterol levels (32% of normal) and LDL 
cholesterol levels (37% of normal) (27). SMARCA4 genetic variation (rs1529729) was 
recently reported to be associated with serum LDL cholesterol levels (r2=0.38 between 
rs1529729 and rs7275 in SMARCA4) (6). However, we think that rs7275 might tag certain 
functional SNPs in the LDLR gene due to its proximity to this gene (29kb upstream). This 
may explain the association between rs7275 and TC levels observed in our study. 
 
Among the 4 SNPs that interacted with follow-up time on TC levels, rs662799 in APOA5 
was recently reported to interact with dietary fat intake. G allele carriers had higher TC 
levels compared to AA homozygotes only in the high fat intake group (28). Therefore, we 
explored whether fat intake explained the strong TC increase over time in GG homozygotes 
observed in our study. However, adjustment for fat intake did not alter our results and no 
statistically significant interaction between dietary fat intake and rs662799 was detected 
(data not shown). Higher TC levels with alcohol consumption (29) and stronger positive 
associations between HDL cholesterol levels and alcohol consumption (30) have been 
reported in APOE ε2 carriers compared to ε3 or ε4 carriers. However, although alcohol 
consumption increased over the follow-up in our study, no statistically significant  
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Table 3. Plasma total cholesterol levels over three rounds of measurement according to gene risk score.a, c 

  Count Gene Risk Score (N) p for 
trend ≤11 (230) 12 (316) 13 (509) 14 (661) 15 (672) 16 (495) 17 (280) ≥18 (174) 

TC (1st measurement) 5.11±0.89 5.17±1.04 5.28±0.94 5.41±1.02 5.60±1.06 5.62±0.99 5.71±1.01 5.92±1.18 <0.0001 
TC (2nd measurement) 5.13±0.89 5.24±1.03 5.33±0.97 5.46±1.03 5.62±1.01 5.69±0.95 5.82±0.98 5.87±1.11 <0.0001 
TC (3rd measurement) 5.42±0.97 5.53±0.99 5.60±1.01 5.71±1.04 5.83±1.01 5.95±0.99 6.07±0.96 6.10±1.18 <0.0001 
Average TC over three 
measurements 5.23±0.82 5.32±0.93 5.41±0.88 5.55±0.95 5.72±0.96 5.78±0.90 5.90±0.92 6.03±1.11 <0.0001 

 Weighted Gene Risk Score (N)  <12 (86) 12~13 (95) 13~14 (177) 14~15 (313) 15~16 (364) 16~17 (356) 17~18 (177) ≥18 (101) 
TC (1st measurement) b 4.74±0.95 5.25±0.91 5.25±0.94 5.38±1.04 5.45±1.06 5.64±0.97 5.70±0.99 5.95±1.09 <0.0001 
TC (2nd measurement) b 4.97±1.22 5.11±0.89 5.33±0.89 5.38±1.01 5.49±1.01 5.73±0.98 5.76±0.91 6.04±1.16 <0.0001 
TC (3rd measurement) b 5.20±1.31 5.53±0.90 5.56±0.88 5.61±0.95 5.79±1.05 5.92±0.99 6.10±1.02 6.22±1.18 <0.0001 
Average TC over three 
measurements 4.97±1.05 5.31±0.81 5.39±0.83 5.47±0.91 5.59±0.95 5.79±0.90 5.89±0.91 6.11±1.06 <0.0001 

TC: plasma total cholesterol levels in mmol/L; values presented as mean ± SD. 
a The count gene risk score represents the number of unfavorable alleles (raising total cholesterol levels) at 12 SNPs. These 12 SNPs were rs7412 and rs429358 in 
APOE, rs646776 in CELSR2, rs1367117 in APOB, rs6756629 in ABCG5, rs662799 in APOA5, rs688 in LDLR, rs10889353 in DOCK7, rs2304130 in NCAN, 
rs3846662 in HMGCR, rs2275543 in ABCA1, and rs7275 in SMARCA4. The SNPs included in the weighted gene risk score computation were the same as in the 
count gene risk score. See the Methods section for detailed weighted gene risk score computation. The subjects who took lipid-lowering medication at the time of 
survey were excluded from the analysis. 
b The analyses of association between weighted gene risk score and TC levels were conducted in a random half of the subjects (n = 1669, see the Method section for 
the details). 
c The explained variation in average TC levels: 5.3% for the count gene risk score and 7.2% for the weighted gene risk score. 
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Fig. 1. Receiver-operating characteristic curves for hypercholesterolemia (total cholesterol levels ≥ 6.5 
mmol/L). The curves are based on logistic regression models incorporating conventional risk factors (age, sex, 
current smoking habit, alcohol use and BMI) with and without the count GRS. AUC = area under the curve; GRS 
= gene risk score. 
 
interaction between APOE genotype and alcohol consumption was observed (data not 
shown). Therefore these environmental factors could not explain our gene*time 
interactions. They may represent a differential effect of aging on TC levels according to 
genotype, but we can not rule out the possibility that our results are due to chance findings. 
This should be investigated further in other studies. 
 
We investigated whether the replicated SNPs in aggregate could predict plasma cholesterol 
levels. A statistically significant positive trend was consistently observed in each round of 
survey with each count GRS point associated with an increase of 0.11 mmol/L in average 
plasma TC levels. This effect is similar in size to the effect per count GRS point based on 
21 independent SNPs in 9 genes or loci on LDL cholesterol levels recently observed by 
Talmud et al.(6). These 21 SNPs could explain 14.6% of the LDL cholesterol variance. In 
our study, the variance in TC levels explained by the 12 SNPs was smaller (6.9%) and 
slightly higher in the low-fat (cholesterol) intake group compared to the high-fat 
(cholesterol) intake group. Additional independent variants (including common or rare 
SNPs and structural variants) in the genes included in our study or other genes, such as 
PCSK9 (5, 7), or context-dependent genetic effects (gene-gene or gene-environment 
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interactions) are likely to contribute in part to the remaining unexplained variance (31). 
Additionally, with fine-mapping to identify the causal variants underlying most of the 
reported associations, more variance will be explained in the future (31, 32). The weighted 
GRS that accounts for the strength of allelic effects performed slightly better than the count 
GRS on association with TC levels in our study. However, the improvement was not very 
substantial as also shown by other studies (6, 22). This may be because the effect for each 
allele tends to be normally distributed in most populations, and alleles with large effects are 
counterbalanced by those with smaller effects. When summing these effects, the weighted 
mean approximates that of the unweighted mean (33).  
 
It is well understood that for a particular disease or trait, most individuals will have 
inherited some sequence variants that confer increased risk and some variants that provide 
protection, resulting in an overall risk around the average. However, a small proportion of 
people will have inherited mainly variants that confer risk of developing disease (32). In 
our study, carrying ≥ 18 TC raising alleles (5% of the studied population) confers an OR of 
2.4 of the carrier having hypercholesterolemia. This indicates that occupancy of extreme 
distributions of certain traits (hypercholesterolemia in this case) is achieved in some 
individuals by carriage of a large repertoire of common alleles of modest effect (32, 34). In 
others, it will result perhaps, from carrying a small number of rare alleles of large effect, 
e.g. in LDLR. Addition of the GRS significantly improved the discriminative accuracy of 
hypercholesterolemia beyond that afforded by conventional risk factors with a 3% increase 
of the AUC. However, the actual predictive ability might have increased even more, as the 
increase in AUC may be an insensitive measure of the improvement in risk prediction when 
a novel risk factor is considered (22). Unfortunately, our current design prohibited us from 
estimating the predictive power of GRS more precisely by using other methods, such as net 
reclassification improvement (35). Nevertheless, our results suggest that a gene risk score 
based on a panel of comprehensive and independent risk alleles could be used to help 
identify those people who are at risk of high plasma cholesterol levels and enable early 
preventive strategies. Such scores may be more relevant to cardiovascular disease risk 
prediction because it may reflect life-time exposure better compared to a single-time-point 
measurement of cholesterol levels (26, 34). A recent study demonstrated that a GRS 
composed of 11 SNPs (including most of our top SNPs, such as rs10889353, rs646776, 
rs3846662, rs2304130, rs6756629, etc) was significantly associated with coronary heart 
disease and intima media thickness (even after adjusting for blood TC levels for intima 
media thickness) (4).    
 
We adopted the false discovery rate method to adjust for multiple testing. As we took a 
candidate gene approach (and not random markers on the genome), Bonferroni correction 
would have been too stringent and we consider it justified to take a more liberal threshold 
of FDR_q-value <0.2. A number of factors could have resulted in a type II error, leading to 
the inability to detect a true underlying association. Firstly, only a limited number of SNPs 
within a candidate gene have been studied. Failure to find an association with a SNP does 
not exclude the possibility that other SNPs in the gene are related to TC levels. Secondly, 
our candidate gene list may still not be broad enough, as some genes that are recently found 
to be involved in the cholesterol metabolism were not taken into account, such as PCSK9 
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(5, 7). Our blood samples were taken from the subjects in a non-fasting condition. 
However, TC levels at most change minimally in response to normal food intake in 
individuals in the general population (36); therefore, we think the non-fasting state has not 
influenced our results.  
 
In summary, in this relatively large, broad-gene based association study, we found that the 
common variants in genes in regulating cholesterol biosynthesis (HMGCR), VLDL 
metabolism (APOE, APOA5), LDL metabolism (APOB, LDLR), HDL metabolism 
(ABCA1, APOA5), intestinal or hepatic cholesterol efflux (ABCG5) affect plasma TC 
levels. We also demonstrated that a panel of SNPs in genes pivotal in cholesterol 
metabolism could possibly help identify those people who are likely to have high plasma 
cholesterol levels. 
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Abstract 
Background: The δ-5 and δ-6 desaturases, encoded by the FADS1 and FADS2 genes, are 
rate-limiting enzymes in polyunsaturated fatty acid (PUFA) biosynthesis. Single-nucleotide 
polymorphisms in the FADS gene cluster region have been associated with both PUFA 
levels in plasma or erythrocyte membrane phospholipids and cholesterol levels in recent 
genome wide association studies.  
 
Objective: We examined whether genetic variations in the FADS gene cluster region 
interact with dietary intakes of n-3 and n-6 PUFAs to affect plasma total, HDL and non-
HDL cholesterol levels. 
 
Design: Rs174546, rs482548, and rs174570 in the FADS gene cluster region, dietary 
intakes of n-3 and n-6 PUFAs, and plasma levels of total and HDL cholesterol were 
measured in 3575 subjects of the second survey of the Doetinchem Cohort Study. 
 
Results: Significant associations between rs174546 genotypes and total and non-HDL 
cholesterol levels were observed in the group with a high intake of n-3 PUFAs (≥0.51% of 
total energy; P = 0.006 and 0.047, respectively), but not in the low-intake group (P for 
interaction = 0.32 and 0.51, respectively). The C allele was associated with high total and 
non-HDL cholesterol levels. Furthermore, the C allele was significantly associated with 
high HDL cholesterol levels in the group with a high intake of n-6 PUFAs (≥5.26% of total 
energy, P = 0.004), but not in the group with a low intake (P for interaction = 0.02).  
 
Conclusion: Genetic variation in the FADS1 gene potentially interacts with dietary PUFA 
intakes to affect plasma cholesterol levels, which should be investigated further in other 
studies. 
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INTRODUCTION 
The δ-5 and δ-6 desaturases, encoded by FADS1 and FADS2 genes, are rate-limiting 
enzymes in the biosynthesis of long-chain polyunsaturated n-3 (omega-3) and n-6 (omega-
6) fatty acids (n-3 PUFAs and n-6 PUFAs). They introduce cis double bonds at specific 
positions in a fatty acid chain (1, 2). FADS3 shares 62% and 70% nucleotide sequence 
homology with FADS1  and FADS2 respectively and encodes for an as-yet-uncharacterized 
protein (3, 4). These three genes are located on chromosome 11 (11q12-13.1) and form the 
FADS gene cluster (Figure 1) (3). Several single-nucleotide polymorphisms (SNPs) and 
haplotypes in this region have been shown to be associated with blood or erythrocyte 
membrane phospholipid PUFA concentrations in either candidate or genome-wide 
association (GWA) studies (5-11). Some of these SNPs have also been associated with 
blood cholesterol levels in recent GWA studies (12-14). Recent emerging evidence 
suggests that the observed association between genetic variation in the FADS gene cluster 
region with blood cholesterol levels is functionally related to the availability of PUFAs 
with four and more double bonds and its impact on the homeostasis of different 
glycerophospholipids (10). It has long been known that blood cholesterol levels are 
influenced by dietary PUFA intakes (15-21); however, the underlying molecular 
mechanisms of these associations are still unclear. We want to investigate whether the 
SNPs in the FADS gene cluster region participate in the influence of dietary PUFAs on 
blood cholesterol levels (22, 23). In the present study, we evaluated the potential interaction 
between three candidate SNPs in the FADS gene cluster region and dietary n-3 and n-6 
PUFA intakes on plasma total, HDL and non-HDL cholesterol levels.  
 
SUBJECTS AND METHODS 
Study population 
This study was performed within the framework of the Doetinchem Cohort Study, a 
regional survey aimed at monitoring risk factors for chronic diseases, conducted in a rural 
area in the east of the Netherlands. Institutional review boards approved the Doetinchem 
Cohort Study. A detailed description of the design and methods was published elsewhere 
(24). Briefly, subjects were surveyed between 1987 and 1991 for baseline information and 
a sub-sample of the subjects was followed up about every 5 or 6 years. The second survey 
of the Doetinchem Cohort Study was approved by the ethical review board of TNO and all 
participants provided their written informed consent. The subjects were surveyed on 
demographic, anthropometric and lifestyle information (smoking, alcohol use, physical 
activity and dietary habits), disease history and medications by questionnaires. A non-
fasting blood sample was taken from all participants, fractionated into plasma, white blood 
cells and erythrocytes and subsequently stored. A validated semi-quantitative food 
frequency questionnaire was used in the second and third surveys to assess the habitual 
consumption of 178 food items during the previous year (25). Nutrient and energy intake 
were quantified for each individual using the updated computerized Dutch food 
composition table (26). Detailed dietary n-3 and n-6 PUFA intakes were only available in 
the second survey; therefore, the data of the second survey were used in the present study. 
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Figure 1. Genomic context of rs174546, rs174570 and rs482548 and surrounding SNPs in the FADS gene 
cluster region. The genomic locations of genes in the FADS gene cluster region on chromosome 11 (61.32-61.42 
Mb) are shown. Arrows indicate rs174546, rs174570 and rs482548 according to their position on the genomic 
sequence. The data are from the UCSC Genome Browser ‘RefSeq Gene’ track (I). Pairwise disequilibrium 
coefficients for SNPs with MAF > 0.1% from HapMap CEU data (Phase II, release 22) in a 6.5kb interval 
(between rs4246215 and rs174550) in the 3′ UTR of FADS1 in which rs174546 is located are generated using 
Haploview software. The strength of the linkage disequilibrium between SNPs increases from white to black (r2 = 
1, depicted by black diamonds) or from purple to red (D′ = 1, depicted by red diamonds) using Haploview’s 
standard color scheme (II). The predicted or experimentally verified miRNA binding sites relative to rs174546 
from ‘PicTar miRNA and T-ScanS miRNA’ tracks at UCSC Genome Browser are shown as small vertical lines, 
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pink and green, respectively. MULTIZ vertebrate alignment of 11 mammal species shows evolutionary 
conservation (66). The lowest row shows the position of known SNPs according to dbSNP build 125 (III).                  
 
Characteristics of the study population have been reported before (27, 28). In brief, 48% of 
them were male. The mean age at the second survey was 46.7 ± 9.8 [SD] years. They had 
consistent smoking habits, and women were not pregnant at any of the three surveys. Intake 
of n-3 PUFAs (a-linolenic acid [ALA; 18:3n-3], eicosapentaenoic acid [EPA; 20:5n-3], all-
cis-7,10,13,16,19-docosapentaenoic acid [DPA; 22:5n-3], and docosahexaenoic acid  
[DHA; 22:6n-3]) and n-6 PUFAs (linoleic acid [LA; 18:2n-6], eicosadienoic acid [EDA; 
20:2n-6], dihomo-γ-linolenic acid [20:3n-6], arachidonic acid [AA; 20:4n-6], adrenic acid 
[22:4n-6], and all-cis-4,7,10,13,16-docosapentaenoic acid [22:5n-6]) were calculated in 
grams per day. N-3 PUFAs and n-6 PUFAs were summed up separately and converted to 
the percentage of the energy. 
 
Laboratory assessment of total and HDL cholesterol levels. 
Plasma total and HDL cholesterol levels were assayed in the Lipid Reference Laboratory 
(LRL) of the University Hospital Dijkzigt in Rotterdam using standardized enzymatic 
methods within three weeks after storage. Total cholesterol was measured using a CHOD-
PAP method (Boehringer) (29). HDL cholesterol was determined in the supernatant after 
precipitation of apoB-containing lipoproteins with phophotungstic acid/MgCl2 
(Boehringer) (30). Non-HDL cholesterol includes all lipoproteins that contain 
apolipoprotein B (apo B) and were calculated as total cholesterol minus HDL cholesterol 
(31). The LRL Rotterdam is a permanent member of the International Cholesterol 
Reference Method Laboratory Network (32). It has been standardized to the Centers for 
Diseases Control and Prevention (CDC) through participating in the CDC/National Heart 
Lung and Blood Institute Lipid Standardization Program. The accuracy of total and HDL 
cholesterol determination fulfilled National Cholesterol Education Program (NCEP) 
recommendations throughout the entire period (32-34).  
 
SNP Selection and Genotype determination 
SNPs were determined in 3575 subjects who participated in three surveys. Two SNPs 
(rs174546 in FADS1 3′ UTR and rs482548 in FADS2 3′ UTR) in the FADS gene cluster 
region (targets genes [FADS1 and FADS2] regulated by transcription factor SREBP1α (35)) 
were selected using the web-based program SNPselector that can prioritize the SNPs based 
on their potential functional impact in each gene, minor allele frequency, and haplotype 
block information (36). At the time of SNP selection, no study on associations of them with 
metabolic endpoints was available. They were included in a high throughput SNP 
genotyping platform-Illumina Golden Gate assay (Illumina Inc, San Diego, California). 
Illumina GenCall software (version 6.1.3.28) was used for automated genotype clustering 
and calling. The detailed quality control has been reported before (27). Another SNP 
(rs174570 in FADS2 intron_1) in FADS gene cluster region was selected later based on its 
latest published associations with blood cholesterol levels (12) and genotyped by 
KBioscience (Hoddesdon, Hertfordshire, UK) using the KASPar chemistry, which is a 
competitive allele specific PCR SNP genotyping system using FRET quencher cassette 
oligonucleotides (http://www.kbioscience.co.uk). 
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Statistical Analysis 
Deviation from Hardy-Weinberg equilibrium (HWE) and pairwise linkage disequilibrium 
(LD) were tested using R genetics package. The relationships between SNPs and plasma 
total, HDL and non-HDL cholesterol levels were explored with General Linear Models 
(GLM) using SAS version 9.1 software (SAS Institute, Cary, NC). To adjust for potential 
confounding effects and to improve model fitting, age, sex, current smoking (yes or no), 
alcohol use (glasses of alcohol per day), body mass index (BMI in kg/m2), fasting status 
(blood taken after ≥8 hours fasting: yes or no ), physical activity (meeting the guideline of 
physical activity: yes or no), and cholesterol lowering medication were added to the models 
as covariates. Multiple linear regression models were used to assess the relation between n-
3 PUFAs or n-6 PUFAs intake as percentage of energy and plasma HDL cholesterol levels 
with additional adjustment for n-6 PUFAs or n-3 PUFAs intakes (respectively) as 
percentage of energy if necessary. Dietary n-3 and n-6 PUFA intakes were also classified 
into two groups according to the PUFA-specific median value of the percentage of energy: 
n-3 PUFAs (low, <0.51 en%; high, ≥ 0.51 en%) and n -6 PUFAs (low, <5.26 en%; high, 
≥5.26 en%). The interactions between genotypes and dichotomized n-3 PUFAs (n-6 
PUFAs) intakes on total, HDL and non-HDL cholesterol levels were explored using GLM 
models by including additional interaction terms into the models. Distributions of 
continuous variables in groups were expressed as means ± SEMs. All reported p values 
were two-tailed, and statistical significance was defined at α = 0.05 level based on our 
candidate SNP approach.  
 
RESULTS 
The genotype distributions of the three SNPs studied were consistent with HWE 
expectations (Supplementary Table 1). The three SNPs were not in strong pairwise LD (r2 
= 0.01-0.36). Mean n-3 PUFA intake was 0.53% of the total energy intake, while mean n-6 
PUFA intake was 5.47% of the total energy intake. PUFA intake did not significantly differ 
according to FADS genotypes (P = 0.12-0.99, Supplementary Table 2). 
 
Subjects with high n-3 PUFA intakes had significantly higher HDL cholesterol levels than 
subjects with low n-3 PUFA intake (P = 0.02, Supplementary Table 3). No significant 
associations between n-6 PUFA intake and any of the lipid parameters were observed. 
Mean total, HDL and non-HDL cholesterol levels according to the genotypes of three SNPs 
are presented in Table 1. No associations were found between any of the SNPs and HDL or 
non-HDL cholesterol levels, but total cholesterol levels differed significantly according to 
the rs174546 genotype (P = 0.02). The C allele was associated with higher total cholesterol 
levels. However, this association was more pronounced and only statistically significant (P 
= 0.006) in subjects with a high n-3 PUFA intake (Table 2). In the high n-3 PUFA intake 
group, the C allele was also associated with higher non-HDL cholesterol levels (P = 0.047). 
However, the P values for interaction between rs174546 genotypes and n-3 PUFA intake 
on total and non-HDL cholesterol levels were not statistically significant (P for interaction 
= 0.32 and 0.51, respectively). Also, n-6 PUFA intake modified the association of the 
rs174546 genotype with lipid levels (Table 3). The C allele was associated with a 
statistically significant higher HDL cholesterol levels in subjects with a high n-6 PUFA 
intake (P = 0.004), while no difference was observed in group with a low n-6 PUFA intake 
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(P = 0.59; P for interaction = 0.024). PUFA intake did not modify associations between the 
other two SNPs (rs174570 and rs482548) and total, HDL or non-HDL cholesterol levels. A 
modest correlation between n-3 and n-6 PUFA intakes was observed in this population (ρ = 
0.23, p < 0.0001). Further adjustments of the above associations between PUFA intakes or 
SNPs and plasma total, HDL and non-HDL cholesterol levels with corresponding PUFA 
intake did not substantially change the results (data now shown). Results from haplotype 
analysis either including all three SNPs or only rs174546 and rs174570 showed that the 
haplotype associations seemed to be mainly derived from and were similar to those 
observed with rs174546 alone (data not shown). 
 
Table 1. Plasma total cholesterol, HDL cholesterol and non-HDL cholesterol levels 
according to rs174546, rs174570 and rs482548 in the FADS gene cluster region 

 
Total 

cholesterol 
(mmol/L) 

P1 
HDL 

cholesterol 
(mmol/L) 

P1 
non-HDL 

cholesterol 
(mmol/L) 

P1 

   rs174546       
TT (n = 362) 5.48 ± 0.092  1.27 ± 0.03  4.21 ± 0.09  

TC (n = 1503) 5.56 ± 0.07  1.30 ± 0.03  4.26 ± 0.08  
CC (n = 1505) 5.62 ± 0.08 0.02 1.31 ± 0.03 0.09 4.31 ± 0.08 0.11 

  rs174570       
TT (n = 95) 5.46 ± 0.12  1.28 ± 0.04  4.18 ± 0.12  

TC (n = 874) 5.52 ± 0.08  1.31 ± 0.03  4.21 ± 0.08  
CC (n = 2559) 5.57 ± 0.07 0.25 1.30 ± 0.02 0.52 4.27 ± 0.07 0.22 

  rs482548       
TT (n = 40) 5.67 ± 0.16  1.30 ± 0.06  4.37 ± 0.17  

TC (n = 590) 5.56 ± 0.08  1.31 ± 0.03  4.26 ± 0.08  
CC (n = 2914) 5.55 ± 0.07 0.72 1.30 ± 0.02 0.71 4.26 ± 0.07 0.75 
1 P values for differences between genotypes were obtained by using general linear models (ANOVA) adjusted for 
age, sex, BMI, fasting status, current smoking status, alcohol consumption, physical activity, and cholesterol 
lowering medication. 
2 All values are presented as adjusted mean ± SEM. 
 
DISCUSSION 
In the present study, the previously reported association between rs174546 in FADS1 and 
cholesterol levels was confirmed, while the association between rs174570 in FADS2 and 
cholesterol levels was not replicated. We observed that rs174546 genotypes potentially 
interacted with dietary n-3 and n-6 PUFA intakes to affect total, HDL and non-HDL 
cholesterol levels.  
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Table 2. Plasma total cholesterol, HDL cholesterol and non-HDL cholesterol levels according to n-3 PUFA intake and genotypes of rs174546, rs174570 
and rs482548 in the FADS gene cluster region1,4 

 Total cholesterol 
(mmol/L) 

HDL cholesterol 
(mmol/L) 

non-HDL cholesterol 
(mmol/L) 

 Low intake 
(<0.51 en%) 

High intake 
(≥ 0.51 en%) 

Low intake 
(<0.51 en%) 

High intake 
(≥ 0.51 en%) 

Low intake 
(<0.51 en%) 

High intake 
(≥ 0.51 en%) 

 rs174546       
TT (n = 362) 5.52 ± 0.113 5.46 ± 0.14 1.29 ± 0.04 1.26 ± 0.05 4.23 ± 0.12 4.20 ± 0.14 

TC (n = 1503) 5.58 ± 0.10 5.57 ± 0.12 1.30 ± 0.03 1.32 ± 0.04 4.28 ± 0.10 4.26 ± 0.13 
CC (n = 1505) 5.61 ± 0.10 5.68 ± 0.12 1.30 ± 0.03 1.32 ± 0.04 4.30 ± 0.10 4.36 ± 0.13 

P2 0.55 0.006 0.82 0.08 0.67 0.047 
rs174570       

TT (n = 95) 5.53 ± 0.16 5.42 ± 0.18 1.32 ± 0.05 1.24 ± 0.06 5.53 ± 0.16 5.42 ± 0.18 
TC (n = 874) 5.54 ± 0.10 5.54 ± 0.12 1.32 ± 0.03 1.30 ± 0.04 5.54 ± 0.10 5.54 ± 0.12 

CC (n = 2559) 5.55 ± 0.09 5.64 ± 0.11 1.30 ± 0.03 1.30 ± 0.04 5.55 ± 0.09 5.64 ± 0.11 
P2 0.98 0.064 0.52 0.40 0.98 0.064 

rs482548       
TT (n = 40) 5.78 ± 0.22 5.55 ± 0.25 1.29 ± 0.07 1.33 ± 0.09 4.49 ± 0.22 4.22 ± 0.26 

TC (n = 590) 5.55 ± 0.10 5.62 ± 0.12 1.33 ± 0.03 1.30 ± 0.04 4.22 ± 0.11 4.32 ± 0.13 
CC (n = 2914) 5.54 ± 0.09 5.61 ± 0.11 1.30 ± 0.03 1.30 ± 0.04 4.24 ± 0.09 4.31 ± 0.12 

P2 0.49 0.948 0.34 0.92 0.44 0.904 
1 n-3 PUFA, n-3 polyunsaturated fatty acids, includes a-linolenic acid (18:3n-3), eicosapentanoic acid (20:5n-3), docosapentaenoic acid (22:5n-3), and docosahexaenoic acid (22:6n-3); n-3 
PUFA intake was classified into low and high intake according to the median intake expressed as the percentage of energy. 
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2 P values for differences between genotypes were obtained by using general linear models (ANOVA) adjusted for age, sex, BMI, fasting status, current smoking status, alcohol consumption, 
physical activity, and cholesterol lowering medication. 
3 All values are presented as adjusted mean ± SEM.  
4 P values for interaction between genotypes of rs174546, rs174570, and rs482548 and n-3 PUFA intake (low and high) were obtained by including the interaction terms in the general linear 
models and were 0.32, 0.31, 0.59 for total cholesterol levels, 0.45, 0.36, 0.51 for HDL cholesterol levels, and 0.51, 0.60, 0.49 for non-HDL cholesterol levels, respectively. 
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Table 3. Plasma total cholesterol, HDL cholesterol and non-HDL cholesterol levels according to n-6 PUFA intake and genotypes of rs174546, rs174570 
and rs482548 in the FADS gene cluster region1,4 

 Total cholesterol 
(mmol/L) 

HDL cholesterol 
(mmol/L) 

non-HDL cholesterol 
(mmol/L) 

Low intake 
(<5.26 en%) 

High intake 
(≥5.26 en%) 

Low intake 
(<5.26 en%) 

High intake 
(≥5.26 en%) 

Low intake 
(<5.26 en%) 

High intake 
(≥5.26 en%) 

rs174546       
TT (n = 362) 5.55 ± 0.133 5.42 ± 0.12 1.30 ± 0.04 1.23 ± 0.04 4.25 ± 0.13 4.18 ± 0.12 

TC (n = 1503) 5.53 ± 0.11 5.60 ± 0.10 1.29 ± 0.04 1.32 ± 0.03 4.25 ± 0.12 4.27 ± 0.11 
CC (n = 1505) 5.64 ± 0.11 5.61 ± 0.10 1.30 ± 0.04 1.31 ± 0.03 4.34 ± 0.12 4.29 ± 0.11 

P2 0.06 0.07 0.59 0.004 0.15 0.43 
rs174570       

TT (n = 95) 5.63 ± 0.16 5.25 ± 0.18 1.30 ± 0.06 1.24 ± 0.06 4.33 ± 0.17 3.99 ± 0.19 
TC (n = 874) 5.52 ± 0.11 5.53 ± 0.11 1.29 ± 0.04 1.33 ± 0.03 4.23 ± 0.11 4.20 ± 0.11 

CC (n = 2559) 5.57 ± 0.10 5.57 ± 0.10 1.29 ± 0.04 1.31 ± 0.03 4.29 ± 0.11 4.25 ± 0.10 
P2 0.49 0.11 0.87 0.257 0.45 0.19 

rs482548       
TT (n = 40) 5.45 ± 0.29 5.74 ± 0.20 1.37 ± 0.10 1.27 ± 0.07 4.08 ± 0.30 4.47 ± 0.21 

TC (n = 590) 5.52 ± 0.11 5.62 ± 0.11 1.29 ± 0.04 1.33 ± 0.04 4.23 ± 0.12 4.29 ± 0.11 
CC (n = 2914) 5.57 ± 0.10 5.54 ± 0.10 1.29 ± 0.04 1.30 ± 0.03 4.29 ± 0.11 4.24 ± 0.10 

P2 0.60 0.30 0.65 0.443 0.49 0.34 
1 n-6 PUFA, n-6 polyunsaturated fatty acids, includes linoleic acid (18:2n-6), eicosadienoic acid  (20:2n-6), dihomo-γ-linolenic acid (20:3n-6), arachidonic acid (20:4n-6), adrenic acid (22:4n-
6), and docosapentaenoic acid (22:5n-6); n-6 PUFA intake was classified into low and high intake according to the median intake expressed as the percentage of energy. 
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2 P values for differences between genotypes were obtained by using general linear models (ANOVA) adjusted for age, sex, BMI, fasting status, current smoking status, alcohol consumption, 
physical activity, and cholesterol lowering medication. 
3 All values are presented as adjusted mean ± SEM. 
4 P values for interaction between genotypes of rs174546, rs174570, and rs482548 and n-6 PUFA intake (low and high) were obtained by including the interaction terms in the general linear 
models and were 0.13, 0.16, 0.21 for total cholesterol levels, 0.02, 0.42, 0.47 for HDL cholesterol levels, and 0.49, 0.31, 0.21 for non-HDL cholesterol levels, respectively. 
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The association between genetic variants in the FADS gene cluster region and blood 
cholesterol levels has been highlighted in three recent GWA studies (12-14). The minor T 
allele of rs174546 was associated with decreased LDL (10, 11, 14), HDL (13, 37) and total 
cholesterol levels (11) based on high LD among SNPs in the FADS1 3′UTR region (Figure 
1). Several miRNA target sites have been predicted in this region (Figure 1) (38, 39). Based 
on PolymiRTS and Patrocles databases, rs174546 is within one of the miRNA target sites, 
and it is also in complete LD with another miRNA target site polymorphism (rs174545) in 
this region, which results in disruption of one of the conserved miRNA target sites. The 
potential impact on FADS1 transcript abundance of rs174546 (or other SNPs in high LD 
with rs174546 in this region) is further corroborated by recently published human 
transcription data. The major C allele of rs174546 was positively associated with FADS1 
expression in lymphoblastoid cells (40), and also in the liver (13, 41), and adipose tissue 
(42) based on complete LD between rs174546 and rs174547. Rs174546 is in high LD with 
recently reported SNPs that are associated with plasma or erythrocyte membrane PUFA 
levels (5-11). It has been observed that the haplotype including the major C allele is 
associated with an increase in the levels of desaturase products, while associated with a 
decrease of its substrates (5-11). Despite the lack of a study directly assaying desaturase 
activity so far, all the above described evidence indicates that the major C allele of 
rs174546 may be associated with an increased efficiency of the fatty acid δ-5 desaturase 
reaction. The potential mechanism underlying the association between high desaturase 
activity and high total or LDL cholesterol levels (10, 11, 14) and high HDL cholesterol 
levels (13, 37) is still unclear. Since δ-5 and δ-6 desaturases are highest expressed in the 
liver (1, 2, 4), a major contribution of the liver desaturase–elongase enzyme system to the 
observed association between genetic variation in FADS1 and FADS2 genes and plasma 
cholesterol metabolism seems likely.  
 
In our population, significant associations between rs174546 and total and non-HDL 
cholesterol levels were only found in the group with a high n-3 PUFA intake, not in the 
group with a low intake. Non-HDL cholesterol is highly correlated with total apo B levels 
(31, 43, 44) and could indirectly indicate the total number of apo B containing particles 
(VLDL, IDL and LDL) (43-45). The major C allele of rs174546 is associated with 
increased levels of n-3 PUFA with four and more double bonds (5-11), whereas n-3 PUFA 
intervention decreases hepatic triglyceride synthesis and VLDL secretion (15, 18, 21). We 
would therefore expect that C allele-associated high desaturase activity would be associated 
with low non-HDL cholesterol levels in a high dietary n-3 PUFA intake population. 
However, we observed a non-HDL cholesterol increasing effect. Considering the kinetics 
of the whole apo B pool, this may suggest that with a high dietary n-3 PUFA intake C 
allele-associated high desaturase activity suppresses the uptake of apo B containing 
particles, such as VLDL remnants or LDL. This hypothesis is supported by both positive 
associations between serum n-3 PUFA levels and LDL cholesterol levels in a Japanese 
observational study (46) and increased LDL cholesterol levels in EPA and DHA or fish oil 
intervention studies (15-18, 20). It is also mechanistically supported by in vitro and in vivo 
observations of reduced rat hepatic precursor and nuclear (much stronger) form of SREBP-
1 with fish oil (or DHA) treatment (47-49). One of the isoforms encoded by SREBP-1 
(SREBP-1α) is a potent transcription factor regulating LDLR gene expression (35, 50). Our 
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lab recently demonstrated that feeding fish oil to mice downregulated hepatic LDLR gene 
expression (1.9 fold, Q-value = 4.23E-6; M. Boekschoten, personal communication), 
consistent with the previous observation in rabbits (51).  
 
A statistically significant interaction between dietary n-6 PUFA intakes and rs174546 
genotypes on HDL cholesterol levels was observed in our study. There was a significant 
difference in HDL cholesterol levels among rs174546 genotypes in the high n-6 PUFA 
intake group. In controlled trials, substituting carbohydrates isoenergetically with PUFAs 
(largely n-6) is associated with increased HDL cholesterol levels (19). Additionally, serum 
n-6 PUFA levels were positively associated with HDL cholesterol levels in both Caucasian 
and Japanese middle-aged men (46). The more efficient desaturase reaction associated with 
the major C allele (see above), together with a high dietary intake of n-6 PUFAs, could lead 
to much larger differences in the availability of n-6 PUFAs with four and more double 
bonds between C allele carriers and TT homozygotes of rs174546 (10) as compared to a 
situation when n-6 PUFA intake is low. These PUFAs, and especially their metabolic 
derivatives are potent activators of PPARs (52-55), resulting in the increased expression of 
genes directly involved in HDL production (56, 57). Interestingly, however, in TT 
homozygotes, HDL cholesterol levels were even lower in the high n-6 PUFA intake group 
than in the low intake group (P = 0.014). From a quantitative point of view, linoleic acid 
(precursor of n-6 PUFAs) is 10-100 times more abundant  in Western diets than α-linolenic 
acid (precursor of n-3 PUFAs)(8). N-3 and n-6 PUFAs competitively use the same 
desaturase–elongase enzyme system (58), and n-3 PUFAs are relatively potent PPARs 
ligands compared to n-6 PUFAs (53-55, 58). With a high n-6 PUFA intake, linoleic acid 
accumulates, especially in TT homozygotes. This potentially poses a strong inhibiting 
effect on n-3 PUFAs’ metabolism (58-61) and their associated HDL cholesterol increasing 
effects (17, 18, 21, 46, 62). This hypothesis is supported by our own observation that the 
association between dietary n-3 PUFA intake and HDL cholesterol levels became stronger 
after further adjustment for dietary n-6 PUFA intakes (Supplementary Table 4).  
 
The present study has some limitations. Firstly, we did not measure the internal levels 
(plasma or tissue membrane) of different PUFAs that are directly involved in the 
underlying biological processes. However, relatively strong correlations between dietary 
intakes of PUFAs and internal PUFA levels have been observed (15, 17, 59-61). 
Furthermore, the detailed questionnaire used in this study covered all food items habitually 
consumed in the Netherlands and was well validated for micronutrient intake (25). 
Secondly, despite the relatively large sample size, the interactions between n-3 PUFA 
intakes and rs174546 genotypes on total and non-HDL cholesterol levels did not reach 
statistical significance (P > 0.05), as larger sample size is needed to obtain statistical 
significance. Thirdly, considering our candidate SNP approach, the associations were not 
adjusted for multiple testing. However, our findings should be replicated in other studies. 
Fourthly, although non-HDL cholesterol and apo B levels do not change while other lipid 
profiles at most change minimally in response to normal food intake in the general 
population (63-65), our results based on the non-fasting condition should be investigated in 
other conditions in independent populations.  
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In conclusion, FADS1 genetic polymorphisms may play an important modulating role in 
the influence of dietary n-3 and n-6 PUFAs on plasma cholesterol levels. The health benefit 
of specific PUFAs may depend on our individual FADS1 genotypes or δ-5 desaturase 
activity. 
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Summary:  
Elevated circulating triglycerides, which are considered a risk factor for cardiovascular 
disease, can be targeted by treatment with fenofibrate or fish oil. To gain insight into 
underlying mechanisms, we carried out a comparative transcriptomics and metabolomics 
analysis of the effect of 2 week treatment with fenofibrate and fish oil in mice. Plasma 
triglycerides were significantly decreased by fenofibrate (-49.1%) and fish oil (-21.8%), 
whereas plasma cholesterol was increased by fenofibrate (+29.9%) and decreased by fish 
oil (-32.8%). Levels of various phospholipid species were specifically decreased by fish oil, 
while levels of Krebs cycle intermediates were increased specifically by fenofibrate. 
Plasma levels of many amino acids were altered by fenofibrate and to a lesser extent by fish 
oil. Both fenofibrate and fish oil upregulated genes involved in fatty acid metabolism, and 
downregulated genes involved in blood coagulation and fibrinolysis. Significant overlap in 
gene regulation by fenofibrate and fish oil was observed, reflecting their property as high or 
low affinity agonist for PPARα, respectively. Fenofibrate specifically downregulated genes 
involved in complement cascade and inflammatory response. Fish oil specifically 
downregulated genes involved in cholesterol and fatty acid biosynthesis, and upregulated 
genes involved in amino acid and arachidonic acid metabolism. Taken together, the data 
indicate that despite being similarly potent towards modulating plasma free fatty acids, 
cholesterol and triglyceride levels, fish oil causes modest changes in gene expression likely 
via activation of multiple mechanistic pathways, whereas fenofibrate causes pronounced 
gene expression changes via a single pathway, reflecting the key difference between 
nutritional and pharmacological intervention.  
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Introduction 
One of the components of the metabolic syndrome and frequent complication of insulin 
resistance is hypertriglyceridemia (7, 14). Similar to elevated plasma cholesterol levels, 
hypertriglyceridemia is considered an independent risk factor for atherosclerosis (7, 14, 
52). Elevation of circulating triglycerides (TG) in insulin resistance is related to the diverse 
actions of insulin on hepatic secretion of very low density lipoprotein (VLDL) particles (1). 
 
Apart from weight loss and increased physical activity, both of which improve insulin 
sensitivity, a limited number of therapeutic options exist to lower circulating TG (15, 29, 
56). A class of drugs that effectively lowers plasma TG are the fibrates. Reduction in 
plasma TG by fibrate treatment depends on baseline TG levels but can reach 40% (15). 
Fibrates also raise plasma levels of HDL-cholesterol, making it an attractive drug for the 
treatment of diabetic dyslipidemia, which is characterized by elevated TG and low HDL 
levels. Overall results of clinical trials, however, are mixed and not overwhelmingly in 
support of a broad application of fibrates to correct dyslipidemia and lower risk of coronary 
heart disease. The decrease in plasma TG by fibrates has been attributed to inhibition of 
synthesis and secretion of TG by the liver and stimulation of degradation of TG-rich 
lipoproteins (29, 56). Fibrates stimulate a large panel of genes involved in hepatic 
mitochondrial and peroxisomal fatty acid oxidation and lipoprotein metabolism by direct 
high-affinity binding and consequent activation of peroxisome proliferator-activated 
receptor alpha (PPARα) (13, 27, 29, 44, 56), thus serving as a direct pharmacological 
ligand of PPARα. PPARα is a transcription factor abundant in liver that mediates the 
adaptive response to fasting. 
 
Besides via pharmacological approach, plasma TG can be effectively lowered via 
nutritional intervention in the form of fatty fish or fish oil. Fish oil, rich in eicosapentaenoic 
acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), has long been 
considered as potential treatment to lower risk of coronary heart disease (12, 18, 19, 38). 
Similar to fibrates, fatty acids present in fish oil induce hepatic expression of numerous 
genes via activation of PPARα (51). In addition, EPA and DHA suppress activity of the 
pro-lipogenic transcription factor sterol regulatory element binding protein-1 (SREBP-1) 
by inhibiting proteolytic processing of SREBP-1, a process required to generate the active 
mature SREBP-1 protein (24, 25). While fenofibrate and fish oil thus both lower plasma 
TG and can activate the same transcription factor, a comparative analysis of the effects of 
fenofibrate and fish oil at transcriptome and metabolome level has yet to be performed. 
Therefore, to gain further insight into mechanisms underlying the effects of fenofibrate and 
fish oil on cardiovascular risk factors and to investigate whether these mechanisms are 
shared between fenofibrate and fish oil, we performed hepatic transcriptional profiling and 
plasma metabolite profiling in mice treated with fenofibrate or fish oil for two weeks. 
Inasmuch as fenofibrate and fish oil are already known to both stimulate PPARα-dependent 
gene regulation, the focus of the analysis was on genes and pathways uniquely regulated by 
either fenofibrate or fish oil. 
 
Materials and Methods 
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Animals and Experimental Design.  
12-week-old male C57BL/6 mice (Charles River, L'Arbresle Cedex, France) were housed 2 
per cage in a light-and-temperature controlled facility (lights on 6:30 to 18:30, 21°C) and 
acclimated for 3 weeks. The mice were randomized by weight-matching into three groups 
(n = 10 in control group, and n = 12 in fenofibrate or fish oil intervention group), and fed a 
research diet (No. D10012M, Research Diets, NJ, Supplementary Table 1) supplemented 
with sunflower oil (containing 81.3% oleic acid, 7% energy intake) in control group, 
sunflower oil (7% energy intake) and fenofibrate (0.03% w/w) in fenofibrate group, and 
fish oil (Marinol C-38 fish oil: 23.1% EPA and 21.1% DHA, 7% energy intake) in fish oil 
group for 2 weeks. Mice received fresh diet every 3rd day, and food consumption rate and 
body weight gain were monitored. At the end of treatment, mice were fasted from 7:00 to 
13:00 with drinking water available and were subsequently sacrificed by cervical 
dislocation under isoflurane anesthesia. Blood was collected via orbital puncture. Livers 
were dissected, directly frozen in liquid nitrogen and stored at −80°C until further analysis. 
Blood was centrifuged (4000 × g for 10 min at 4°C), and plasma was stored at −80°C. The 
animal experiments were approved by the animal ethics committee of Wageningen 
University. 
 
Affymetrix GeneChip microarray analysis.  
Total RNA was prepared from mouse livers using Trizol reagent (Invitrogen, Breda, The 
Netherlands), treated with DNase and purified on columns using the RNeasy Mini Kit 
(Qiagen, Venlo, The Netherlands) following the supplier’s protocol.  RNA concentrations 
were measured by absorbency at 260 nm, and the quality and integrity were verified with 
the RNA 6000 Nano assay on the Agilent 2100 Bioanalyzer (Agilent Technologies, 
Amsterdam, the Netherlands) according to the manufacturer's instructions. Microarray 
analysis was performed on individual mouse livers. Five micrograms of RNA were labelled 
using the Affymetrix One –Cycle Target Labelling Assay kit (Affymetrix, Santa Clara, 
CA). Hybridization, washing and scanning of Affymetrix Mouse Genome 430 2.0 Arrays 
were done according to standard Affymetrix protocols. Scans of the Affymetrix arrays were 
processed using packages from the Bioconductor project (16). Raw signal intensities were 
normalized by using the GCRMA algorithm (69). Probesets were defined according to Dai 
et al. using remapped CDF version 11.0.2 based on the Entrez gene database (10). The 
Affymetrix Mouse Genome 430 2.0 Arrays target 16,331 unique genes based on this CDF. 
Genes were filtered on expression value >20 in 5 samples, resulting in a set of 7,400 
expressed genes. The Bioconductor R package Linear models for microarray data 
(LIMMA) was used to identify differentially expressed genes. In order to balance between 
unspecific responses from the two treatments and relative weak transcriptional effects by 
fish oil, the genes that met the cut-off of mean absolute fold change > 1.2 and false 
discovery rate corrected q-value < 0.05 (55) were considered to be significantly regulated. 
Among the significantly regulated genes, only those that are associated with a canonical 
pathway in the Ingenuity Pathway Knowledge Base were considered for Ingenuity Pathway 
Analysis (IPA, Ingenuity Systems, Redwood City, CA). In addition, all genes represented 
on the array were also considered for the unbiased Gene Set Enrichment Analysis (GSEA) 
(58). This analysis was run using 1000 permutations per gene set. All microarray data are 
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MIAME compliant and have been submitted to the Gene Expression Omnibus (accession 
number GSE pending). 
 
Lipidomic and metabolic profiling.  
The LC-MS methods for measuring plasma lipids and non-esterified free fatty acids 
(NEFAs) and the GC-MS method for measuring a broad range of metabolites were 
identical to the methods reported by Wopereis et al (68). The samples were analyzed in 
randomized order. Data for each sample were corrected for the recovery of the internal 
standard for injection. The performance of the methods was carefully monitored by using 
multiple internal standards (5–10 depending on the method, including analogs and 2H- and 
13C-labeled metabolites) as described previously (68). Furthermore, a quality control 
sample prepared by pooling of plasma from all samples was analyzed after every 10th 
study sample. Batches were only accepted if the relative standard deviation (RSD) of the 
peak area ratio for all internal standards was < 20%. Metabolites were only accepted if the 
RSD was < 20%, unless large differences between treatment groups were observed. Batch 
to batch differences in data were removed by synchronizing medians of quality control 
samples per batch. Metabolites were annotated by using an in-house metabolite database 
containing retention time information, MS spectra (electron impact ionization for GC-MS 
data), MS/MS spectra (LC-MS), and accurate mass data (LC-MS) of reference substances. 
The confidence of identification was 100% unless indicated otherwise. Accurate MS and 
MS/MS data of reference substances and metabolites in the study samples were acquired by 
using Thermo LTQ-FT and Thermo LTQ-Orbitrap instruments (Thermo Fisher Scientific, 
Waltham, MA). Finally, the LC-MS NEFA dataset contained 22 free fatty acids; the LC-
MS lipid dataset contained 184 lipid metabolites; and the GC-MS dataset contained 137 
metabolites. Also, 41 different metabolite ratios and sums were calculated. Detailed 
information on these metabolites could be acquired upon request. 
 
Statistical analysis.  
Results are reported as mean ± SEM. The comparison of different groups was carried out 
using analysis of variance (ANOVA) and unpaired 2-tailed Student’s t test. The Kruskal-
Wallis test or Mann-Whitney U test was used if groups did not show equal variance. 
Spearman rank correlation was used to correlate hepatic gene expression signals with 
plasma metabolite levels. Differences were considered statistically significant when p < 
0.05.  
 
Results 
Changes in liver and body weight and selected plasma metabolites 
Mice received fenofibrate (0.03% w/w) or fish oil (3% w/w) in their feed for 2 weeks. 
Neither fenofibrate nor fish oil influenced food intake (Table 1). Fish oil but not fenofibrate 
significantly increased bodyweight (+6.2% vs +2.7%), while fenofibrate but not fish oil 
increased liver weight (+1.8% vs -0.1%, respectively). Fenofibrate raised plasma total 
cholesterol (+29.9%), whereas fish oil had the opposite effect (-32.8%). Both fenofibrate 
and fish oil reduced plasma triglycerides although the effect of fenofibrate was more 
pronounced (-49.1% vs -21.8%). Consistent with stimulation of hepatic fatty acid 
oxidation, fenofibrate markedly raised plasma ketone bodies (+316%). A similar effect was 
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observed for ribose. Interestingly, fish oil significantly reduced plasma levels of 
phospholipids (-42.3% for phosphatidylcholine and phosphatidylethanolamine), 
lysophospholipids (-28.0% for lysophosphatidylcholine and lysophosphatidylethanolamine) 
and sphingomyelins (-19.4%), which was not observed for fenofibrate.  
 
Fenofibrate reduced plasma total NEFA levels (-18.8%), with its effect equally distributed 
among the various fatty acid classes (SFA, MUFA, PUFA). Fish oil lowered total plasma 
NEFA to a similar extent as fenofibrate but its effect across the various fatty acid classes 
was different. Fish oil decreased levels of all n-6 and n-9 long-chain fatty acids and, as 
expected, increased plasma levels of n-3 polyunsaturated fatty acid levels (Table 2). The 
stronger reduction in monounsaturated fatty acids by fish oil compared to fenofibrate was 
mainly attributable to reduced levels of C18:1 fatty acids and presumably due to lower 
content of oleic acid in the feed of fish oil treated mice (Table 2 and Supplementary Table 
1).  
 

Table 1. General characteristics and selected plasma metabolite levels 
Parameter Control (n = 10) Fenofibrate (n = 12) Fish oil (n = 12) 

Food intake (g/day) 3.3 ± 0.1 3.5 ± 0.1 3.3 ± 0.1 
Body weight change (%) 1.6 ± 0.6 2.7 ± 0.8 6.2 ± 0.8*** 
Liver weight (% body weight) 3.9 ± 0.1 5.7 ± 0.1*** 3.8 ± 0.1 
Cholesterol levels‡ 0.67 ± 0.05 0.87 ± 0.05* 0.45 ± 0.04** 
Triacylglycerol (mmol/L)§ 0.55 ± 0.05 0.28 ± 0.02*** 0.43 ± 0.03* 
Triacylglycerol† 75.6 ± 6.2 38.9 ± 3.1*** 42.2 ± 2.9** 
Total ketone bodies‡ 0.30 ± 0.09 0.95 ± 0.08*** 0.26 ± 0.02 
β-hydroxybutyrate‡ 0.29 ± 0.09 0.91 ± 0.08*** 0.25 ± 0.02 
Glucose (mmol/L)§ 9.91 ± 0.49 10.63 ± 0.30 10.14 ± 0.55 
Glucose‡ 7.2 ± 0.7 8.5 ± 0.5 7.5 ± 0.5 
Ribose‡ 0.012 ± 0.003 0.030 ± 0.006*  0.015 ± 0.002 
Pyruvic acid‡ 0.93 ± 0.10 0.92 ± 0.07 0.69 ± 0.07 
Lactic acid‡ 12.30 ± 1.10 11.55 ± 0.74 10.05 ± 0.39 
Glycerol‡ 0.25 ± 0.03 0.19 ± 0.01 0.24 ± 0.02 
PC† 21.57 ± 0.90 21.21 ± 0.69 12.27 ± 0.54*** 
LPC† 23.95 ± 0.88 24.94 ± 0.72 17.20 ± 0.34*** 
LPE† 0.42 ± 0.03 0.40 ± 0.02 0.35 ± 0.02 
PE† 0.87 ± 0.07 0.73 ± 0.03 0.67 ± 0.03** 
SM† 1.55 ± 0.05 1.53 ± 0.04 1.25 ± 0.05** 
PC, phosphatidylcholine; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PE, 
phosphatidylethanolamine; SM, sphingomyelin.  
Data are expressed as mean ± SEM. 
†LCMS platform, n = 10, 12 and 12 for control, fenofibrate and fish oil group, respectively; arbitrary units used. 
‡GCMS platform, n = 9, 12 and 11 for control, fenofibrate and fish oil group, respectively; arbitrary units used. 
§Triacylglycerol assayed with the glycerol based kit; and glucose assayed with glucose oxidization based kit. 
*P < 0.05, **P < 0.01, ***P < 0.001 versus control.  
 
Fenofibrate and fish oil treatments lead to PPARα activation 
Since fenofibrate and EPA/DHA are known ligands of PPARα, we determined to what 
extent PPARα was activated by the two treatments. Fenofibrate and fish oil caused 
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upregulation of many genes involved in PPARα-dependent pathways such as hepatic fatty 
acid uptake (Fig. 1A), mitochondrial fatty acid β-oxidation (Fig. 1B), peroxisomal fatty 
acid β-oxidation (Fig. 1C), microsomal fatty acid ω-hydroxylation (Fig. 1D) and 
ketogenesis, including many classical PPARα target genes (Fig. 1E) (50). Consistent with 
fenofibrate being a higher affinity PPARα agonist compared to EPA/DHA, more 
pronounced inductions were observed in fenofibrate treated mice. These data demonstrate 
that fenofibrate and fish oil treatment led to activation of PPARα, in line with published 
data (36). 
 

 
 

Figure 1. Heat map showing the parallel induction of specific PPARα-dependent gene sets in liver of 
fenofibrate and fish oil treated mice. (A) Genes involved in fatty acid uptake, activation and binding. (B) Genes 
involved in mitochondrial fatty acid β-oxidation/oxidative phosphorylation. (C) Genes involved in peroxisomal 
fatty acid β-oxidation. (D) Genes involved in microsomal fatty acid ω-hydroxylation. (E) Genes involved in 
ketogenesis. The expression levels in the control (Con) mice were set at 1 (black) and expression levels in 
fenofibrate (Fen) and fish oil (Fis) treated groups were calculated relative to the control group. The definition of 
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the gene sets were based on reference (50). 
 

Comparative analysis of gene regulation by fenofibrate and fish oil 
Dendrogram of hierarchical clustering of the various mice based on the complete liver 
transcriptome showed that fenofibrate treated mice formed a highly distinct group from fish 
oil treated and control mice, illustrating the much more pronounced effects of fenofibrate 
on hepatic gene expression compared to fish oil (Fig. 2). Furthermore, since the three 
groups clustered separately, the analysis indicated that the variability in gene expression 
within the three groups was much less compared to the variability between the groups. In 
order to compare the whole hepatic genome effects of fenofibrate and fish oil, scatter plot 
analysis was carried out (Fig. 3). The similarity in gene regulation between fenofibrate and 
fish oil treated mice was relatively small, and was mainly observed with respect to 
upregulation of gene expression. Fold inductions of gene expression were generally higher 
in fenofibrate compared to fish oil treated mice. Interestingly, some genes strongly 
upregulated by fenofibrate were downregulated by fish oil, including Ly6d, Cidec, Pdk4, 
Defb1, Ucp2, Cidea and Pltp. Other genes were upregulated by fish oil but not by 
fenofibrate, including Mt2, Derl3 and Agxt2l1, or even strongly downregulated by 
fenofibrate, such as Clec2h, Aox3, Cyp2c37 and Hsd3b5 (Fig. 3). As fenofibrate and fish 
oil both activate PPARα, differential hepatic gene regulation by fish oil compared to 
fenofibrate suggest another type of regulatory mechanism by fish oil treatment not 
involving PPARα.  
 

 
 

Figure 2. Hierarchical clustering of microarray data from mice treated with fenofibrate, fish oil, or 
receiving control treatment. Dendrogram shows separate clustering of mice treated with fenofibrate compared to 
fish oil or control treated mice, illustrating the much more pronounced effects of fenofibrate on hepatic gene 
expression compared to fish oil.  
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Pathway analysis of microarray data  
To gain insight into pathways uniquely regulated by fenofibrate and fish oil, gene set 
enrichment analysis (GSEA) was performed. Partial overlap in the upregulated gene sets 
was observed between fenofibrate and fish oil, mostly covering various aspects of fatty acid 
metabolism (Fig. 4). Many gene sets were specifically induced by fenofibrate, including 
electron transport chain and TCA cycle (Fig. 4A). Also, a small number of gene sets was 
upregulated by fenofibrate but decreased by fish oil, including lipogenesis, glycolysis and 
gluconeogenesis, and the pentose phosphate pathway. Interestingly, autophagy, ABC 
transporters and arachidonic acid metabolism were specifically induced by fish oil (Fig. 
4B). In terms of downregulation, blood clotting cascades, complement cascades, and 
antigen processing and presentation were commonly regulated by fenofibrate and fish oil. 
Gene sets that were exclusively downregulated by fish oil included lipoprotein metabolism, 
cholesterol synthesis and esterification, and prostaglandin synthesis regulation. Taken 
together, several pathways specifically regulated by either fenofibrate or fish oil could be 
identified. Expectedly, most of the common regulation by fenofibrate and fish oil relates to 
PPARα-dependent gene sets connected to fatty acid catabolism.  

 
Table 2. Plasma non-esterified fatty acid levels 

Free Fatty acid Control (n = 10) Fenofibrate (n = 12) Fish oil (n = 12) 
Total NEFA 57.3 ± 3.0 46.5 ± 1.6** 46.1 ± 2.2** 
Total SFA 23.07 ± 1.08  19.45 ± 0.60** 20.99 ± 1.33 
C12:0 0.37 ± 0.02 0.38 ± 0.03 0.39 ± 0.05 
C14:0 1.16 ± 0.11 1.03 ± 0.08 1.30 ± 0.14 
C16:0 14.7 ± 0.8 13.0 ± 0.4 13.8 ± 0.7 
C17:0 0.77 ± 0.05 0.67 ± 0.03 0.74 ± 0.04 
C18:0 5.92 ± 0.22 4.31 ± 0.13*** 4.60 ± 0.47* 
C20:0 0.11 ± 0.01 0.06 ± 0.00*** 0.13 ± 0.02 
Total MUFA 22.69 ± 1.71 18.76 ± 0.80* 13.36 ± 0.54*** 
C16:1n-7 3.85 ± 0.46 3.21 ± 0.21 3.28 ± 0.13 
C18:1n-7/9 18.24 ± 1.24 15.14 ± 0.59* 9.76 ± 0.40*** 
C20:1n-9 0.60 ± 0.05 0.41 ± 0.02** 0.32 ± 0.02*** 
Total PUFA 11.06 ± 0.51 7.50 ± 0.32*** 11.58 ± 0.49 
Total PUFA (n-6)† 9.18 ± 0.43 6.25 ± 0.26*** 4.70 ± 0.24*** 
Total PUFA (n-3) 1.87 ± 0.10 1.25 ± 0.06*** 6.88 ± 0.32*** 
C18:2n-6/7 5.32 ± 0.30 3.93 ± 0.17*** 3.61 ± 0.21*** 
C18:3n-3 0.14 ± 0.01 0.09 ± 0.01** 0.22 ± 0.01*** 
C18:3n-6 0.13 ± 0.02 0.07 ± 0.00*** 0.07 ± 0.00** 
C20:2n-6 0.10 ± 0.01 0.07 ± 0.00** 0.04 ± 0.00*** 
C20:3n-6 0.24 ± 0.01 0.28 ± 0.01* 0.02 ± 0.00*** 
C20:3n-9 0.51 ± 0.04 0.76 ± 0.04*** 0.12 ± 0.01*** 
C20:4n-3 0.16 ± 0.01 0.09 ± 0.00*** 0.12 ± 0.01** 
C20:4n-6 3.12 ± 0.18 1.82 ± 0.10*** 0.90 ± 0.05*** 
C20:5n-3 0.04 ± 0.00 0.03 ± 0.00 1.90 ± 0.10*** 
C22:4n-6 0.11 ± 0.00 0.06 ± 0.00*** 0.02 ± 0.00*** 
C22:5n-3 0.07 ± 0.00 0.05 ± 0.00*** 0.62 ± 0.03*** 
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C22:5n-6 0.17 ± 0.01 0.04 ± 0.00*** 0.05 ± 0.00*** 
C22:6n-3 1.46 ± 0.09 0.99 ± 0.05*** 4.02 ± 0.19*** 

NEFA, non-esterified fatty acid; SFA, saturated fatty acids; MUFA, monounsaturated fatty acid; PUFA, 
polyunsaturated fatty acids. 
All metabolites were measured in the LCMS free fatty acid platform, arbitrary units used. Data are expressed as 
mean ± SEM.  
†C18:2n-6/7 is included in total n-6 PUFA calculation.  
*P < 0.05, **P < 0.01, ***P < 0.001 versus control. 
 

 
Figure 3. Similarities and differences in gene expression in livers between fenofibrate and fish oil treated 
mice. Scatter plot shows fold-change in gene expression after treatment with fenofibrate (x-axis) plotted against 
fold-change in gene expression after treatment with fish oil (y-axis). Selected genes that were upregulated or 
downregulated specifically by fenofibrate or fish oil are indicated. 
 
One of the gene sets specifically induced by fenofibrate corresponded to TCA cycle. In 
agreement with this finding, fenofibrate but not fish oil significantly raised plasma levels of 
several TCA cycle intermediates, including isocitrate, α-ketoglutarate, succinate, fumarate 
and malate (Table 3). In accordance with altered hepatic amino acid metabolic pathways 
upon fenofibrate and fish oil treatment, significant changes in plasma amino acids levels 
were observed in both treatment groups (Supplementary Table 3). Most assayed amino 
acids were increased by fenofibrate, including glutamate, glycine, isoleucine, leucine, 
phenylalanine, serine, tryptophan, tyrosine and valine, whereas only glycine was increased 
by fish oil (Supplementary Table 3). These data correspond well with downregulation of 
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genes involved in urea cycle and metabolism of amino groups in fenofibrate treated mice 
(Fig. 4A) (Supplementary Table 2). 
 
Genes specifically regulated by fenofibrate or fish oil treatment 
Venn diagrams were created to identify genes that were specifically regulated by 
fenofibrate or fish oil treatment (Fig. 5A and B). Most genes upregulated or downregulated 
by fish oil were similarly regulated by fenofibrate. To better characterize fenofibrate and 
fish oil-specific gene regulation, we compiled the top 40 of genes specifically upregulated 
(Fig. 5C and D) and downregulated (Fig. 5E and F) by fenofibrate and fish oil, 
respectively, and ranked according to fold change. Changes in gene expression by fish oil 
and fenofibrate are shown in parallel. 
 

Table 3. Plasma metabolite (organic acids) involved in TCA cycle 
Parameter Control (n = 9) Fenofibrate (n = 12) Fish oil (n = 11) 
Citrate 1.13 ± 0.08 1.19 ± 0.07 0.98 ± 0.06 
Fumaric acid 0.056 ± 0.07 0.098 ± 0.006*** 0.050 ± 0.004 
Isocitric acid 0.078 ± 0.003 0.092 ± 0.004* 0.075 ± 0.003 
Malic acid 0.38 ± 0.05 0.63 ± 0.05** 0.36 ± 0.03 
Succinic acid 0.0018 ± 0.0002 0.0030 ± 0.0002** 0.0024 ± 0.0002* 
α-Ketoglutaric acid 0.027 ± 0.003 0.047 ± 0.004** 0.031 ± 0.002 

All organic acids were measured in the GCMS platform, arbitrary units used. Data are expressed as mean ± SEM.  
*P < 0.05, **P < 0.01, ***P < 0.001 versus control.  
 
A relatively large proportion of top 40 genes specifically upregulated by fenofibrate were 
known PPARα target genes (50). In contrast to the classical PPARα target genes involved 
in fatty acid catabolism shown in Fig. 1, these genes, which included Cidec, Pdk4, Ucp2, 
Cidea, Pltp, Abcd2, Me1 and Fabp4, were downregulated by fish oil (Fig. 5C). Among the 
top 40 genes specifically downregulated by fenofibrate treatment, several genes are 
involved in complement cascade (C8b, C6 and C9), coagulation cascade (Serpine2 and 
F11) and general inflammatory regulation and response (Orm2, Bcl6, Saa1, Saa2, Ifit1, 
Il6ra, Il1r1 and Irf5) (Fig. 5E), which is consistent with the strongly downregulated acute 
phase response signaling (Ingenuity pathway analysis, data not shown), complement 
cascade and coagulation cascade in fenofibrate treated mice (Fig. 4A and Supplementary 
Table 2). Also, a number of fenofibrate-specific genes were related to steroid metabolism, 
which fits with reduction in androgen and estrogen metabolism as indicated by GSEA (Fig. 
4A). With respect to fish oil treatment, several of the top 40 genes specifically upregulated 
by fish oil are involved in amino acid metabolism (Agxt2l1, Aox3, Clpx, Cyp7b1 and 
Aadat) and arachidonic acid metabolism (Cyp2c37, Cyp2c44 and Cyp2j9) (Fig. 5D). Most 
of them were downregulated by fenofibrate, suggesting that the underlying mechanism of 
regulation is fish oil specific and not PPARα related. Among the top 40 genes specifically 
downregulated by fish oil, a marked enrichment of SREBP target genes was apparent (21, 
43) (Fig. 5F and Supplementary Table 2), which is consistent with the observed 
downregulation in both cholesterol and fatty acid biosynthetic pathways (Fig. 4B). 
Strikingly, expression of several SREBP1 targets involved in lipogenesis (Fasn, Elovl6, 
Fads2 and Fads1) was upregulated by fenofibrate, but downregulated by fish oil (Fig. 5F). 
The hepatic down- and upregulation of SREBP1 target stearoyl-CoA desaturase (Scd1, 
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Supplementary Table 2) by fish oil and fenofibrate was substantiated by corresponding 
changes in plasma Δ9-desaturation indices (stearoyl-CoA desaturase activity) (Table 4). 
 
The precise molecular mechanism behind the plasma TG lowering effect of fish oil remains 
controversial. To gain insight into potential mechanisms, we determined which genes 
showed the highest correlation with plasma TG levels in the combined control and fish-oil 
treated mice (Fig. 6A). Remarkably, many genes showing a highly significant negative 
correlation with plasma TG were PPARα target genes involved in fatty acid metabolism. In 
comparison, lipogenic and cholesterol biosynthetic genes, despite being strongly 
downregulated by fish oil, showed weaker correlation with plasma TG. Similar 
observations were made for correlations of gene expressions with plasma cholesterol levels 
and PC (Fig. 6A). Ingenuity pathways analysis on genes showing the highest positive or 
negative correlation with plasma TG, cholesterol and PC identified “fatty acid 
metabolism”, a PPARα regulated pathway, as the most significant pathway (data not 
shown). Pathways related to fatty acid or cholesterol biosynthesis were much less 
significant. Specific examples of genes showing a highly significant correlation with 
plasma TG, cholesterol or lysophosphatidylcholine are shown in Fig. 6B. These results may 
imply that the effects of fish oil on various plasma lipids may occur via changes in fatty 
acid oxidation via activation of PPARα, and to a lesser extent via suppression of fatty acid 
and cholesterol biosynthesis, which are under control of SREBP. 
 

Table 4. Liver Δ9-desaturation indices (Stearoyl-CoA desaturase activity) 
Δ9-desaturation indices Control (n = 10) Fenofibrate (n = 12) Fish oil (n = 12) 
LPC_C16:1/LPC_C16:0 0.036 ± 0.002 0.047 ± 0.001*** 0.02 ± 0.001*** 
LPC_C18:1/LPC_C18:0 1.23 ± 0.08 2.55 ± 0.12*** 0.79 ± 0.02** 
LPC_C20:1/ LPC_C20:0 2.78 ± 0.20 5.55 ± 0.19*** 0.86 ± 0.03*** 
Δ9-Desaturation indices were calculated from the ratios between C16:1(n-7) and C16:0, C18:1(n-7/n-9) and 
C18:0, and C20:1(n-9) and C20:0, respectively, in the plasma lysophosphatidylcholines. All 
lysophosphatidylcholine (LPC) were measured in the LCMS platform, arbitrary units used. Data are expressed as 
mean ± SEM.   
*P < 0.05, **P < 0.01, ***P < 0.001 versus control 
 
Discussion 
Using a combination of transcriptional and plasma metabolite profiling, we carried out a 
comprehensive comparison of the effects of fenofibrate and fish oil treatment in mice. Due 
to the treatment duration, some of the observed changes in gene expression changes will be 
secondary to metabolic perturbations elicited by the treatment, although a major portion of 
gene expression changes likely reflects direct regulation. Both fenofibrate and fish oil 
induced numerous genes involved in hepatic fatty acid catabolism and other PPARα-
dependent pathways. Fenofibrate consistently caused higher fold-inductions, in agreement 
with fenofibrate being a better PPARα agonist compared to the EPA and DHA (51). In 
contrast to fish oil, fenofibrate caused hepatomegaly and raised plasma ketone bodies, 
which are known PPARα-dependent effects. The data thus indicate that compared to 
fenofibrate, fish oil treatment leads to modest activation of PPARα in liver. However, while 
effects of fenofibrate are almost entirely mediated by PPARα, fish oil additionally acts 
upon other regulatory pathways to exert multiple effects, reflecting a property characteristic 
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of nutrients. 
 
Consumption of fish oil lowers circulating triglycerides in humans (19), which could be 
reproduced in mice. Fish oil fatty acids may stimulate post-ER presecretory proteolysis of 
ApoB via a mechanism dependent on fatty acid peroxidation, leading to reduced 
triglyceride secretion by hepatocytes (47). Alternatively, lowering of circulating TG may 
occur via the observed downregulation of fatty acids synthesis. In addition, a number of 
other mechanisms has been proposed, including activation of PPARγ in adipose tissue (12, 
18). Conflicting data exist on whether lowering of plasma TG and cholesterol by fish oil is 
dependent on PPARα (11, 59). We observed pronounced enrichment for PPARα targets and 
genes involved in fatty acid metabolism among genes showing the most significant 
negative correlation with plasma TG, cholesterol, and phospholipids. In comparison, 
lipogenic and cholesterol biosynthetic genes showed good correlation with plasma 
phospholipids but weaker correlation with plasma TG and cholesterol. Our results may 
suggest that the effect of fish oil on plasma TG and cholesterol primarily occurs via 
activation of PPARα, whereas the effect on plasma phospholipids seems to rely 
proportionally more on suppression of SREBP-dependent regulation of lipogenesis and 
cholesterol metabolism. 
 
In contrast to earlier studies in rats but in line with the effect in humans (13), fenofibrate 
increased plasma cholesterol, which in mice is almost exclusively carried in HDL. The 
reason for the discrepancy with previous rat studies is unclear (42, 57). Besides via changes 
in apoAI expression, which was slightly but significantly reduced by both fenofibrate and 
fish oil, the HDL-raising effect of fenofibrate in humans may be mediated via changes in 
Pltp expression and activity (33, 66). Alternatively, fenofibrate may raise plasma 
cholesterol levels in mice by downregulating Scarb1 (SR-BI), which was confirmed in our 
study (35). 
 
In line with numerous papers, fish oil downregulated expression of numerous SREBP target 
genes involved in fatty acid and cholesterol synthesis (24, 25, 59, 60). Although SREBP1 
and SREBP2 have both been suggested to be inhibited by PUFAs, data implicating 
SREBP1 in downregulation of gene expression by PUFAs are much more plentiful. 
Recently, the target of PUFAs was identified as Ubxd8, a ER membrane-bound protein that 
facilitates the degradation of Insig-1, thereby promoting proteolytic processing and 
activation of SREBP-1 (30). It was shown that PUFAs inhibit the activity of Ubxd8 (30). 
Hence, downregulation of hepatic fatty acid and cholesterol biosynthetic genes by fish oil 
may occur via inhibition of Ubxd8. 
 
While several classical PPARα targets involved in fatty acid oxidation were upregulated by 
both fenofibrate and fish oil, other established PPARα targets were induced only by 
fenofibrate, including Cidec, Cidea, Pdk4, Ucp2, Pltp, Abcd2, Me1 and Fabp4. With the 
exception of Abcd2, none of these genes are involved in fatty acid oxidation but instead 
participate in other (lipid) metabolic pathways. Interestingly, malic enzyme (Me1) is 
controlled by both PPARα and SREBP, as are Ucp2 (37, 50), Fads1, Fads2, Scd1, Acsl3, 
Acsl4 and Acsl5 (21, 50), Abcd2 (50, 67) and Fabp4 (26, 50). Similarly, the PPARα targets 
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Pltp and lipid droplet -associated protein Cidea were shown to be regulated by SREBP1 
(43, 64). Thus, it is possible that the above gene set is induced by fish oil via PPARα but 
that the effect is counterbalanced by suppression of SREBP-mediated transcriptional 
regulation. These data indicate that responsiveness to synthetic PPARα agonist may not 
always properly predict regulation by dietary PPARα agonists, as the latter act via multiple 
mechanistic pathways that may converge on a single gene.  
 
Data abound indicating that fish oil fatty acid and fibrates stimulate hepatic fatty acid 
uptake and catabolism (5), which likely explains the reduced plasma NEFA levels in 
fenofibrate and fish oil treated mice. Although fish oil caused much weaker induction of 
genes involved in fatty acid catabolic pathways compared to fenofibrate, the reduction in 
plasma NEFA was identical between the treatments. Fish oil may reduce plasma NEFA 
levels and increase weight gain by attenuating fatty acid release from adipose tissues (18, 
23, 45, 48), perhaps via activation of PPARγ. EPA and DHA present in fish oil are 
endogenous PPARγ ligands (9, 12, 61) and fish oil has been shown to upregulate PPARγ 
and its responsive genes in epididymal adipose tissue (8, 9, 17, 22, 39, 61). Fish oil may 
thus mimic the stimulatory effect of synthetic PPARγ agonists on fatty acid trapping (9, 12, 
61), and weight gain (3). Since we did not collect adipose tissue, it is impossible to 
determine whether fish oil induced PPARγ target genes in adipose tissue and whether it 
increased adipose tissue mass. 
 
Remarkably, pathways relevant to blood coagulation and fibrinolysis were strongly 
downregulated by fenofibrate and fish oil. Individual genes within these pathways were 
consistently downregulated by fenofibrate and fish oil, although the effect of fenofibrate 
was much more pronounced (Supplementary Table 2). Suppression of hepatic expression of 
these genes upon pharmacological PPARα activation has been reported in rats and monkeys 
(6, 28) and was shown to be PPARα dependent for fibrinogen α, β and γ chain (28). In 
humans, fibrates reduce plasma fibrinogen levels by 12-25% (65, 70). Recently, several 
genes in this pathway were found to be downregulated in human hepatocytes by synthetic 
PPARα agonist (49).  
 
A weak hypocoagulant effect of fish oil has been observed in studies in humans and is 
likely mediated by suppression of clotting factors. Fish oil was shown to decrease hepatic 
transcription of kallikrein B, fibrinogen β chain, antithrombin III, and protein C genes (60, 
63) and lower blood fibrinogen, factors II, V, VII, and X, antithrombin III, and protein C 
levels in rodents (2, 32, 40, 41, 63). Reduced activity of factor V, VII, VIII, IX, X, XI, and 
XII, and protein C (20, 34) and reduced plasma levels of fibrinogen, factor V, VII and X, 
protein C, antithrombin III, plasminogen activator inhibitor, and α2 antiplasmin were also 
observed in human fish oil intervention studies (4, 20, 34, 46, 54, 62). The striking parallel 
downregulation of blood coagulation and fibrinolysis pathways by fenofibrate and fish oil 
suggest they occur via a common mediator, e.g. PPARα.  
 
Interestingly, consistent with previous data showing enhanced TCA cycle flux (53) and 
increased TCA cycle enzymes (31) by synthetic PPARα ligand, plasma levels of all TCA 
cycle intermediates was induced by fenofibrate, perhaps as a result of enhanced amino acid 
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degradation by fenofibrate, as revealed by GSEA.   
 
In conclusion, the transcriptomic and metabolomic effects of fish oil and fenofibrate reflect 
the highly specific activity of fenofibrate towards PPARα, whereas fish oil engages 
additional regulatory pathways to impact numerous biological processes. Our data provide 
better insight into how fish oil modulates circulating levels of lipids and other metabolites 
in humans. Moreover, the data may provide clues towards additional potential health 
benefits of fish oil. 
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Figure 4. Overrepresented pathways in the liver after fenofibrate and fish oil treatments identified by Gene 
Set Enrichment Analysis. (A) Ranking based on the normalized enrichment score (NES) of pathways regulated 
by fenofibrate (black bars), with pathways regulated by fish oil shown in parallel (grey bars). Pathways with FDR 
q-value < 0.2 are shown. The NES reflects the degree to which a gene set in certain pathway is overrepresented at 
the top (upregulated) or bottom (downregulated) of the ranked gene list and is corrected for gene set size. Sources 
of the gene sets consist of BioCarta, GenMAPP, KEGG, Sigma-Aldrich pathway, and Signal Transduction 
Knowledge Environment. (B) Ranking based on the normalized enrichment score of pathways regulated by fish 
oil (grey bars), with pathways regulated by fenofibrate shown in parallel (grey bars). For additional information, 
see supplementary note. 
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Figure 5. Non-overlapping genes between fenofibrate and fish oil treatment. Venn diagrams show the overlap 
in significantly upregulated (A) and downregulated (B) genes after treatment with fenofibrate or fish oil for two 
weeks. Genes were included if mean fold-change (MFC) by fenofibrate or fish oil exceeded the value of 1.2 and 
Bayesian corrected q was lower than 0.05. (C) Top 40 genes most strongly upregulated (based on MFC) by 
fenofibrate but not fish oil. Known PPARα target genes upregulated by fish oil by >1.2 fold yet for which the 
effect failed to meet statistical significance due to large variation were removed in order to exclusively highlight 
fenofibrate-specific genes (Mogat1, Acot3, Cd36, Cpt1b, Slc16a13, Acot4, Crat and Slc27a4). (D) Top 40 genes 
most strongly upregulated by fish oil but not fenofibrate. (E) Top 40 genes most strongly downregulated by 
fenofibrate but not fish oil. (F) Top 40 genes most strongly downregulated by fish oil but not fenofibrate. 
Expression levels in the control mice (Con) were set at 1 (black) and expression levels in two treated groups were 
calculated relative to the control group. The list was sorted based on fold-change of fenofibrate (Fen: C and E) or 
fish oil (Fis: D and F) treated mice. 
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Figure 6. Correlation analysis between plasma metabolites and hepatic gene expression signals in control 
and fish oil treated mice. Spearman rank correlation analyses were conducted between plasma metabolites and 
hepatic gene expression signals for those genes that were statistically significant regulated after fish oil treatment 
(q < 0.05). (A) The respective top 20 positive (pos, r > 0.77) and negative (neg, r < -0.81) correlated genes with 
plasma triglyceride (TG), cholesterol, lysophosphatidylcholine (LPC), and phosphatidylcholine levels. The genes 
are either PPARα regulated and involved in fatty acid metabolism (neg side, in circle), or SREBP regulated and 
involved in lipogenesis and cholesterol biosynthesis (pos side, in square). (B) Scatterplots between plasma 
triglyceride (TG), cholesterol and lysophosphatidylcholine (LPC) levels and hepatic expression level of top 
correlated genes. AU: arbitrary units. 
 



Chapter 7 
 

Research article 
 

Endogenous desaturase activity and risk of coronary heart disease 
in the CAREMA cohort study 

 

Yingchang Lu, Anika Vaarhorst, Audrey H.H. Merry, Martijn E.T. 
Dollé, Robert Hovenier, Sandra Imholz, Leo J. Schouten, Bastiaan T. 
Heijmans, Michael Müller, P. Eline Slagboom, Piet A. van den 
Brandt, Anton P.M. Gorgels, Jolanda M.A. Boer, and Edith J.M. 
Feskens 
 
Yingchang Lu, Robert Hovenier, Michael Müller, Edith J.M. Feskens 
Division of Human Nutrition, Wageningen University and Research Center, Wageningen, 
The Netherlands 
Anika Vaarhorst, Bastiaan T. Heijmans, P. Eline Slagboom 
Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The 
Netherlands 
Audrey H.H. Merry, Piet A. van den Brandt 
Department of Epidemiology, CAPHRI School for Public Health and Primary Care, 
Maastricht University, Maastricht, The Netherlands 
Yingchang Lu, Martijn E.T. Dollé, Sandra Imholz, Jolanda M.A. Boer 
National Institute for Public Health and the Environment (RIVM), Bilthoven, The 
Netherlands 
Leo J. Schouten, Piet A. van den Brandt 
Department of Epidemiology, GROW School of Oncology and Developmental Biology, 
Maastricht University, 
Maastricht, The Netherlands 
Anton P.M. Gorgels 
Department of Cardiology, University Hospital Maastricht, 
Maastricht, The Netherlands 

 

(Submitted) 



ABSTRACT: 
BACKGROUND: The long-term role of fatty acid desaturases in the etiology of coronary 
heart disease (CHD) remains unexplained. C20:4n-6/C20:3n-6 and C18:3n-6/C18:2n-6 
ratios are markers of endogenous desaturase activity, but have never been studied in 
relation to incident CHD. Therefore, the aim of this study was to investigate the relation 
between these ratios as well as genotypes of FADS1 rs174547 and CHD incidence. 
 
METHODS: We applied a case-cohort design within the CAREMA cohort, a large 
prospective study among the general Dutch population followed up for a median of 12.1 
years. Fatty acid profile in plasma cholesteryl esters at baseline was measured in a random 
subcohort (n = 1323) and incident CHD cases (n = 537). Main outcome measures were 
hazard ratios (HRs) of incident CHD adjusted for major CHD risk factors. 
 
RESULTS: FADS1 genotypes were associated with plasma polyunsaturated fatty acid 
(PUFA) levels and δ-5 and δ-6 desaturase’ activity, but not with CHD risk. In multivariable 
adjusted models, high baseline δ-5 desaturase activity was associated with reduced CHD 
risk (P for trend = 0.02), especially among those carrying the high desaturase activity 
genotype (AA): HR (95% CI) = 0.35 (0.15-0.81) for comparing the extreme quintiles. High 
plasma C22:6n-3 (DHA) levels were also associated with reduced CHD risk. 
 
CONCLUSIONS: In this prospective cohort study, we showed evidence for a reduced 
CHD risk with increased δ-5 desaturase activity. This effect may be partly mediated by 
increased DHA levels. Furthermore, we confirmed effects of rs174547 in the FADS1 gene 
on PUFA levels and markers of δ-5 desaturase activities. 
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INTRODUCTION 
Polyunsaturated fatty acids (PUFAs) are generally believed to reduce coronary heart 
disease (CHD) risk.1-4 Intakes of n-3 PUFAs, especially eicosapentaenoic acid (EPA, 
C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) present in fish oil, are confirmed to 
prevent fatal CHD and sudden cardiac death in both observational studies and large-scale 
randomized controlled trials (RCTs).1,3 However, direct evidence for the preventive effect 
of n-3 PUFAs on non-fatal CHD was only recently found in some, but not all, large-scale 
RCTs.5-7 The replacement of saturated fatty acids by n-6 PUFAs protected against incident 
CHD based on a recent meta-analysis including 8 RCTs.8 As some of these RCTs also 
included n-3 PUFAs in addition to n-6 PUFAs,2,8 the effects specific to n-6 PUFAs, 
however, remain unclear. 
 
PUFA profile of various biological tissues is often used as a biomarker of dietary PUFA 
intake. Adipose tissue reflects the intake of past months to years, while erythrocyte 
membranes, and plasma or serum phospholipids or cholesteryl esters reflect the intake of 
several weeks.9,10 However, the PUFA profile in biological tissues does not only reflect 
dietary intake, but is also strongly dependent on the endogenous metabolism of PUFAs.10,11 
Therefore, PUFA biomarkers in biological tissues mirror the internal PUFA exposure that 
may be biologically more relevant. Several PUFAs can be endogenously synthesized by a 
series of alternate desaturation and elongation processes.11,12 The δ-5 desaturase and δ-6 
desaturase are rate-limiting enzymes for synthesizing long-chain n-3 and n-6 PUFAs.11,13-15 
They are encoded by the FADS1 and FADS2 genes on chromosome 11 (11q12-13.1), 
respectively.11,16 The potential functional genetic variants in these genes have been 
identified,17 and confirmed in recent genome-wide association studies.18,19 They have an 
impact on mRNA abundance of FADS1,20-24 and, as a result, on desaturase activity, plasma 
PUFA levels, and endogenous PUFA pools.17-19,24-27 Since it is difficult to directly assay the 
enzyme activities of δ-5 and δ-6 desaturase,11,13,14 especially in large-scale epidemiological 
studies, their activities have been traditionally estimated by using PUFA product-to-
precursor ratios.25,26  
 
Although few prospective cohort studies have investigated PUFA biomarkers in relation to 
the incidence of CHD,28 the relation with desaturase activities estimated from PUFA 
product-to-precursor ratios has, to the best of our knowledge, never been evaluated. In this 
prospective cohort study, we therefore aim to investigate whether δ-5 and δ-6 desaturase 
activity, that affect our life-time exposure to PUFAs, influence CHD risk. 
 
METHODS 
STUDY POPULATION 
We conducted a case-cohort study within the Monitoring Project on Cardiovascular 
Disease Risk Factors 1987-1991,29 one of the two monitoring studies that were included in 
the Cardiovascular Registry Maastricht (CAREMA) study. The CAREMA study was 
described in detail before.30 In total, 12,486 men and women, born between 1927 and 1967 
and living in the Maastricht area, participated in the Monitoring Project on Cardiovascular 
Disease Risk Factors and had given informed consent to retrieve information from the 
municipal population registries and from the general practitioner and specialist.  
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CARDIOLOGICAL FOLLOW-UP 
The cardiologic follow-up has been described before.30 In brief, 97.6% of the CAREMA 
members could be found by linking the cohort to the hospital information system of 
University Hospital Maastricht (UHM). They were linked to the cardiology information 
system of the Department of Cardiology to obtain information about the occurrence of 
myocardial infarction (MI), unstable angina pectoris (UAP), coronary artery bypass 
grafting (CABG), or percutanous transluminal coronary angioplasty surgery (PTCA). For 
participants who died, the cause of death was obtained from Statistics Netherlands. In 
addition, the CAREMA cohort was linked to the hospital discharge registry of the UHM to 
increase the completeness of the cardiologic follow-up. Follow-up ended on 31 December 
2003 with a median follow-up of 12.1 yrs (range: 0.0-16.9 yrs). 
 
SUBCOHORT AND INCIDENT CHD SELECTION FOR CASE-COHORT DESIGN 
For the present study, participants who were younger than 30 years at baseline (n = 2204), 
had a history of MI, UAP, CABG, or PTCA before baseline (n = 118), or were lost to 
follow-up (n = 2) were excluded. Thus, the eligible cohort consisted of 10,164 participants. 
All 620 participants who developed incident CHD during follow-up (315 MIs, 244 UAPs 
and 61 CHD deaths) were included in the case-cohort study. From the eligible cohort, 1483 
participants were randomly drawn as a subcohort.31 By randomly selecting a subcohort and 
using the appropriate statistics for this type of research design, the results are expected to 
be generalizable to the entire cohort without the need of biomarker measurements in the 
entire cohort.31-33  
 
RISK FACTOR DETERMINATION 
At baseline, all participants filled in a questionnaire on life-style characteristics, medical 
history, and parental history of MI. During a medical examination, information was 
collected on blood pressure, height, and weight. In addition, non-fasting blood samples 
were collected using EDTA tubes. The blood was centrifuged for 10 minutes at 1000 rpm 
and fractioned into blood plasma, white blood cells and erythrocytes and subsequently 
stored at -20°C. Within three weeks, the plasma samples were transported to the Lipid 
Reference Laboratory of the University Hospital Dijkzigt (LRL) in Rotterdam where the 
total and HDL-cholesterol levels were determined using a CHOD-PAP method.34 The LRL 
in Rotterdam is a permanent member of the International Cholesterol Reference Method 
Laboratory Network.  
 
FATTY ACID DETERMINATION 
Fatty acids from plasma cholesteryl esters were quantified by gas-liquid chromatography 
between 2010 and 2011 at the Department of Human Nutrition of Wageningen University. 
The case and non-case samples were randomly distributed over the batches. Peak retention 
times and area percentages of total fatty acids were identified by using known cholesteryl 
ester standards (mixture of FAME components from Sigma (MO) and NuChek (MN)) and 
analyzed with the Agilent Technologies ChemStation software (Agilent, Amstelveen, The 
Netherlands). For certain fatty acids, the values were too low to be reliably detected in 
some subjects, and “0” was assigned to their values. Interassay coefficients of variance in 
fatty acids in plasma cholesteryl esters were 1.68% for C16:0, 1.01% for C18:2n-6, 1.88% 
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for C20:4n-6, and 5.02% for C22:6n-3, respectively. Desaturase activities were estimated 
by calculating fatty acid product-to-precursor ratios, C20:4n-6/C20:3n-6 to reflect δ-5 
desaturase activity, and C18:3n-6/C18:2n-6 to reflect δ-6 desaturase activity. The subjects 
with “0” value for C20:3n-6 and C18:2n-6 were not included in the δ-5 and δ-6 desaturase 
activity analyses, respectively. Information on plasma fatty acids was available on 1323 
subcohort members and 537 CHD cases. 
 
DNA EXTRACTION AND GENOTYPING 
DNA was extracted from the white blood cell fraction (buffy coats), using a standard 
procedure.35 The resulting DNA pellet was dissolved in TE buffer and DNA concentrations 
were determined using the Nanodrop ND1000 Spectrophotometer. The single nucleotide 
polymorphism (SNP) of rs174547 was selected based on its association with blood 
cholesterol and triglyceride levels in a genome-wide association study.21 This SNP is in 
high linkage disequilibrium with several other SNPs around FADS1 and FADS2 gene 
region, which have an impact on mRNA abundance of FADS1,20-23 desaturase activity, 
plasma PUFA levels, and endogenous PUFA pools.17-19,24-27 Rs174547 was genotyped 
using the iPLEX Gold chemistry of Sequenom’s MassARRAY platform (San Diego, CA) 
at the Leiden University Medical Center. Sequenom’s MassARRAY® Assay Design 3.1 
Software was used for SNP assay design, and Sequenom’s SpectroTyper 4.0 software was 
used to call genotypes automatically, followed by manual review. The total genotyping 
success rate was 93%. Among the subjects who were measured for plasma fatty acid levels, 
information on rs174547 genotype was available for 1246 subcohort members and 492 
CHD cases. The genotype distribution was consistent with Hardy-Weinberg equilibrium 
expectations.  
 
STATISTICAL ANALYSIS 
Generalized linear models adjusted for age and sex were used to study the relations 
between rs174547 genotypes and PUFAs, δ-5 desaturase activity, and δ-6 desaturase 
activity. Cox proportional hazards models adapted for the case-cohort design according to 
the Prentice’s method32 were used to calculate hazard ratios as measures for relative risk.33 
We estimated hazard ratios for quintiles of fatty acids (expressed as the percentage of total 
fatty acids present in the chromatogram) and desaturase activities based on subcohort 
distributions, and the respective lowest quintile was used as reference. The base models 
included age and sex. Additional models were further adjusted for current smoking, systolic 
blood pressure, hypertensive medication use, total and HDL cholesterol, history of diabetes 
and parental history of MI. The models were also further adjusted for the total percentage 
of n-3 PUFAs or n-6 PUFAs in plasma cholesteryl esters where necessary. Additional 
covariates studied were alcohol use and physical activity. The significance of a linear trend 
across quintiles was examined by including the exposure as a continuous variable in the 
model. Potential interactions between continuous desaturase activity and dichotomized 
rs174547 genotype (homozygous major allele carriers vs. minor allele carriers) were tested 
by including interaction terms into the model. Statistical significance was considered to be 
met with a P value < 0.05 and all testing was 2-sided. All statistical analyses were 
performed with SAS version 9.1 software (SAS Institute, Cary, NC).  
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RESULTS 
The general characteristics of the study population by subcohort-case status are shown in 
Table 1. As expected, cases were older, more frequently male, had higher blood pressure 
and total cholesterol levels, lower HDL cholesterol levels, smoked more often, and more 
often reported to have diabetes and a parental history of MI.  
 
Carrying the minor G allele of rs174547 was associated with higher levels of substrates for 
desaturases (C18:2n-6, C20:3n-6, and C18:3n-3) and lower levels of products from 
desaturases (C18:3n-6, C20:4n-6, C20:5n-3, and C22:6n-3) in the plasma cholesteryl esters. 
Consequently, lower δ-5 and δ-6 desaturase activity, assessed by the ratio of C20:4n-6 to 
C20:3n-6 and C18:3n-6 to C18:2n-6, were observed in carriers of the G allele as compared 
to those with the AA genotype (Table 2).   
 
High baseline δ-5 desaturase activity was associated with reduced CHD risk (Table 3). A 
30% reduction in CHD risk was observed among the participants in the second, third, 
fourth and fifth quintile of δ-5 desaturase activity compared with those in the first quintile 
after adjustment for age, sex, systolic blood pressure, hypertensive medication use, current 
smoking, diabetes, total cholesterol, and high-density lipoprotein cholesterol (P for trend = 
0.02). Although the statistical interaction between rs174547 and δ-5 desaturase activity was 
not significant (P = 0.56), the protective effect of high δ-5 desaturase activity was mainly 
confined to subjects with the AA genotype (Table 4). In this group, the effect was stronger 
with a 65% risk reduction for the subjects in the fifth quintile compared with the first 
quintile (P for trend = 0.02). Rs174547 itself was not associated with CHD risk, the age- 
and sex-adjusted HR per G-allele being 0.99 (95% CI 0.84-1.16, Supplementary Table 1).  
 
No association was observed between δ-6 desaturase activity and CHD risk (Table 5), also 
not after stratification by rs174547 genotype (data not shown). 
 
The results for the four n-6 PUFAs that determine δ-5 and δ-6 desaturase activity are 
shown in Supplementary Table 2. No associations with CHD were observed for the C20 
precursor (C20:3n-6) and product (C20:4n-6, arachidonic acid) of δ-5 desaturase, or for the 
C18 precursor (C18:2n-6, linoleic acid) and product (C18:3n-6) of δ-6 desaturase after 
adjustment for age, sex, systolic blood pressure, hypertensive medication use, current 
smoking, diabetes, total cholesterol, and high-density lipoprotein cholesterol (P for trend > 
0.16).  
 
Regarding the n-3 PUFAs affected by desaturases, a significant inverse association was 
observed for C22:6n-3 (DHA). This association became stronger after adjustment for 
plasma total and HDL cholesterol levels, and percentages of n-6 PUFA in plasma 
cholesteryl esters (P for trend = 0.027, Supplementary Table 3). The proportion of plasma 
C20:5n-3 (EPA) was not associated with incident CHD (P for trend = 0.724, 
Supplementary Table 3). No association was observed between C18:3n-3 (α-linolenic acid) 
and CHD risk (data not shown). To explore whether there is any independent effect of δ-5 
desaturase activity on CHD beyond DHA, we additionally adjusted the models in Table 3 
and 4 for percentages of DHA. The association between δ-5 desaturase activity and CHD 
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Table 1. Baseline characteristics of sub-cohort subjects and cases of incident coronary heart disease in the CAREMA cohort study.* 
 Subcohort  

(n = 1323)† 
Cases  

(n = 537) 
Crude HR  
(95% CI)‡ Adjusted HR (95% CI)§ 

Age (y) 45.2 ± 8.5 49.7 ± 7.3 1.07 (1.06-1.09) 1.05 (1.04-1.07) 
Male sex 608 (46.0%) 392 (73.0%) 3.34 (2.69-4.15) 2.22 (1.66-2.99) 
Total cholesterol (mmol/L) 5.7 ± 1.1 6.4 ± 1.2 1.71 (1.56-1.87) 1.42 (1.26-1.60) 
HDL cholesterol  (mmol/L) 1.2 ± 0.3 1.0 ± 0.2 0.04 (0.03-0.06) 0.09 (0.05-0.16) 
Systolic blood pressure (mmHg) 119.2 ± 14.9 128.0 ± 16.9 1.03 (1.02-1.04) 1.02 (1.01-1.03) 
Hypertensive medication use 67 (5.1%) 58 (10.8%) 2.34 (1.63-3.35) 1.27 (0.79-2.05) 
Diabetes mellitus 13 (1.0%) 20 (3.7%) 5.33 (2.74-10.36) 2.83 (1.39-5.78) 
Current smoking 551 (41.8%) 304 (56.7%) 1.81 (1.49-2.21) 1.72 (1.33-2.22) 
Parental history of MI 452 (34.3%) 228 (42.5%) 1.40 (1.14-1.71) 1.51 (1.16-1.95) 

*Data are expressed as mean ± SD or n (%) unless otherwise indicated. HDL: high-density lipoprotein; MI: myocardial infarction; and HR (95% CI): hazard ratio and 95% confidence interval. 
†Including 84 cases. 
‡Hazard ratios were calculated per unit increase in total cholesterol, HDL cholesterol, and systolic blood pressure, and for the presence of the categorical traits. 
§All variables were added into one multivariable Cox proportional hazards model.   
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Table 2. Association of rs174547 in FADS1 with baseline PUFAs in plasma cholesteryl esters and desaturase activities in the sub-cohort (n = 
1246).* 

PUFA Rs174547 P  value† AA (545) AG (569) GG (132) 
n-6  PUFA 
C18:2n-6 (%) 44.30 ± 0.27† 44.88 ± 0.26 46.60 ± 0.54 7.48×10-4 
C18:3n-6 (%) 0.60 ± 0.009 0.48 ± 0.009 0.40 ± 0.019 6.87×10-28 
C20:3n-6 (%) 0.42 ± 0.005 0.43 ± 0.005 0.44 ± 0.010 0.051 
C20:4n-6 (%) 4.29 ± 0.05 3.56 ± 0.05 2.89 ± 0.09 3.92×10-46 

n-3 PUFA 
C18:3n-3 (%) 0.40 ± 0.005 0.41 ± 0.005 0.45 ± 0.010 3.28×10-4 
C18:4n-3 (%)‡ 0.18 ± 0.007 0.18 ± 0.007 0.17 ± 0.014 0.708 
C20:5n-3 (%) 0.56 ± 0.01 0.46 ± 0.01 0.40 ± 0.03 8.71×10-8 
C22:6n-3 (%) 0.34 ± 0.006 0.31 ± 0.006 0.30 ± 0.013 0.005 

δ-5§ 10.65 ± 0.09 8.59 ± 0.09 6.86 ± 0.19 6.40×10-85 
δ-6§ 0.014 ± 0.0002 0.011 ± 0.0002 0.009 ± 0.0005 2.51×10-27 

* 77 subjects in the subcohort had missing values for rs174547. PUFAs: polyunsaturated fatty acids. 
† General linear models were used, and all values are mean ± SEM, adjusted for age and sex.  
‡ Only few subjects were successfully measured (AA=161, AG=185, and GG=42).  
§ δ-5 and δ-6 desaturase activities were assessed by the ratio of C20:4n-6 to C20:3n-6 and C18:3n-6 to C18:2n-6 in plasma cholesteryl esters, respectively. 
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Table 3. Association between baseline δ-5 desaturase activity and incident coronary heart disease (CHD). 
 Quintile of δ-5 desaturase activity* P value for 

trend† First 
(6.45) 

Second 
(7.93) 

Third 
(9.07) 

Fourth 
(10.32) 

Fifth 
(12.52) 

Incident CHD, n 155 117 94 93 67  
Model 1‡ 1 0.70 (0.51-0.97) 0.60 (0.42-0.83) 0.60 (0.43-0.83) 0.49 (0.34-0.70) <0.0001 
Model 2§ 1 0.75 (0.54-1.06) 0.66 (0.46-0.94) 0.57 (0.39-0.82) 0.51 (0.35-0.75) <0.0001 
Model 3¶ 1 0.68 (0.47-0.98) 0.66 (0.45-0.96) 0.69 (0.46-1.01) 0.68 (0.45-1.02) 0.0249 
Model 4$ 1 0.71 (0.49-1.03) 0.70 (0.48-1.04)  0.74 (0.50-1.09)  0.77 (0.50-1.18)  0.1114 

* δ-5 desaturase activity was assessed by the ratio of C20:4n-6 to C20:3n-6 in plasma cholesteryl esters, and median ratios in each quintile are listed between brackets. 
† From models with desaturase activity included as a continuous variable. 
‡ Model 1 is adjusted for age and sex.  
§ Model 2 is adjusted for age, sex, systolic blood pressure, hypertensive medication use, current smoking, and diabetes. 
¶ Model 3 is adjusted for all covariates in model 2, total cholesterol, and high-density lipoprotein cholesterol. 
$ Model 4 is adjusted for all covariates in model 3 and percentages of C22:6n-3 (DHA) in plasma cholesteryl esters. 
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Table 4. Association between baseline δ-5 desaturase activity and incident coronary heart disease according to rs174547 genotypes. 

rs174547 
(# cases) 

Quintile of δ-5 desaturase activity* P value for 
trend† 

First Second Third Fourth Fifth  

AA 
(n = 205) 

1‡ 0.61 (0.27-1.41)  0.35 (0.15-0.79) 0.36 (0.16-0.80)  0.25 (0.11-0.54)  <0.0001 
1§ 0.60 (0.25-1.43) 0.35 (0.15-0.83) 0.48 (0.21-1.11) 0.35 (0.15-0.81) 0.022 
1¶ 0.63 (0.26-1.53) 0.40 (0.17-0.97)  0.55 (0.24-1.27)  0.44 (0.19-1.04)  0.087 

AG/GG 
(n = 276) 

1‡ 0.69 (0.46-1.03)  0.62 (0.38-1.00)  0.54 (0.31-0.93)  1.15 (0.57-2.33) 0.027$ 
1§ 0.62 (0.39-0.98) 0.71 (0.42-1.21) 0.72 (0.40-1.30) 1.64 (0.76-3.53) 0.463 
1¶ 0.63 (0.40-1.02)  0.75 (0.44-1.27)  0.78 (0.43-1.41)  1.86 (0.84-4.12)  0.649 

* δ-5 desaturase activity was assessed by the ratio of C20:4n-6 to C20:3n-6 in plasma cholesteryl esters. 
† From models with desaturase activity included as continuous variable. 
‡ Model was adjusted for age, sex, systolic blood pressure, hypertensive medication use, current smoking, and diabetes. 
§ Model was adjusted for age, sex, systolic blood pressure, hypertensive medication use, current smoking, diabetes, total cholesterol, and high-density lipoprotein cholesterol. 
¶ Model was adjusted for age, sex, systolic blood pressure, hypertensive medication use, current smoking, diabetes, total cholesterol, high-density lipoprotein cholesterol, and percentages of 
C22:6n-3 (DHA) in plasma cholesteryl esters. 
$ Hazard ratio per unit desaturase activity (95% confidence interval) = 0.89 (0.80-0.99). 
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Table 5. Association between baseline δ-6 desaturase activity and incident coronary heart disease (CHD). 
 Quintile of δ-6 desaturase activity* P value for 

trend† First 
(0.0055) 

Second 
(0.0084) 

Third 
(0.0104) 

Fourth 
(0.0132) 

Fifth 
(0.019) 

Incident CHD, n 92 99 93 122 131  
Model 1‡ 1 0.99 (0.69-1.42) 0.87 (0.60-1.25) 1.09 (0.76-1.55) 1.03 (0.73-1.45) 0.606 
Model 2§ 1 1.03 (0.70-1.51) 0.89 (0.61-1.31) 1.07 (0.73-1.58) 0.93 (0.63-1.36) 0.627 
Model 3¶ 1 1.07 (0.71-1.63) 0.86 (0.55-1.33) 1.11 (0.73-1.69) 0.96 (0.63-1.47) 0.897 

* δ-6 desaturase activity was assessed by ratio of C18:3n-6 to C18:2n-6 in plasma cholesteryl esters, and median ratios in each quintile are listed between brackets. 
† From desaturase activity as continuous variable in the Cox proportional hazards model. 
‡ Model 1 was adjusted for age and sex.  
§ Model 2 was adjusted for age, sex, systolic blood pressure, hypertensive medication use, current smoking, and diabetes. 
¶ Model 3 was adjusted for all covariates in model 2, total cholesterol, and high-density lipoprotein cholesterol. 
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risk attenuated, but there still existed a strong protective effect, especially among the AA 
carriers of rs174547 (HR: 95% CI = 0.44: 0.19-1.04 for comparing the extreme quintiles, 
Table 4). 
 
Additional adjustment for parental history of MI, alcohol use or physical activity did not 
materially change any of the aforementioned associations (data not shown). 
 
DISCUSSION 
In this prospective cohort study, we observed an inverse association between δ-5 desaturase 
activity and incident CHD risk, but no association with δ-6 desaturase activity. This 
association was partly mediated by DHA. Furthermore we confirmed associations of 
rs174547 in the FADS1 gene with plasma PUFA levels and δ-5 desaturase activity.17-19,25,26 
Consistent with the established cardiovascular protective effects of n-3 PUFAs,1,3 and 
especially tissue DHA,4,28 high DHA in plasma cholesteryl esters was associated with a 
reduced CHD risk. However, no association was observed between arachidonic acid or 
other n-6 PUFAs related to δ-5 or δ-6 desaturase activity in plasma cholesteryl esters and 
CHD risk.  
 
Common genetic variants (including rs174547) in the FADS gene region have been 
associated with plasma lipid levels (total, LDL and HDL cholesterol, and 
triglycerides),18,21,36 glycemic traits (fasting glucose and beta-cell function),24 and resting 
heart rate37 in recent genome-wide association studies. However, none of them have been 
associated with CHD risk directly.36,38 This was also the case in our relatively large 
prospective study. In contrast, when using the estimated δ-5 desaturase activity based on 
the fatty acid proportion in plasma cholesteryl esters, we found a significant inverse 
association with incident CHD. This seems contradictory, as a strong association between 
rs174547 genotypes and estimated δ-5 desaturase activities was observed. However, the 
reduced risk was already observed with relatively low δ-5 desaturase activities (the second 
quintile) and remained constant over the following quintiles. Therefore, the majority of the 
participants with the GG genotype of rs174547 might have sufficient δ-5 desaturase 
activity to protect them from CHD. This might explain why no association between 
rs174547 genotypes and CHD risk was found. Both rs174547 genotypes and C20:4n-
6/C20:3n-6 ratio reflect endogenous δ-5 desaturase activity, but from two different 
perspectives. The former can be regarded as the desaturase effect conferred by a single 
common genetic variant in the FADS1 gene,19,24-27 and the latter as an approximate 
estimation of full desaturase activity.25,26 Their combination might provide the most 
accurate estimate of δ-5 desaturase activity. This might explain the stronger CHD risk 
reduction with high δ-5 desaturase activity in the subjects who inherited the AA genotype.   
 
The exact biological mechanisms that link δ-5 desaturase activity with CHD risk are still 
not well understood. Arachidonic acid, EPA, and DHA are currently considered to be 
potentially involved directly in the pathogenesis of CHD through thrombotic, 
inflammatory, arrhythmic and/or lipid regulatory pathways.1,3,11,12,39-41 δ-5 Desaturase is the 
key enzyme synthesizing these PUFAs, while δ-6 desaturase is important at the beginning 
of the n-3 and n-6 PUFA synthetic pathways.13,14 Therefore, it is biologically plausible that 
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CHD risk could be influenced by δ-5 desaturase activity, but not by δ-6 desaturase 
activity11,12 as was shown in our data. Increased δ-5 desaturase activity might contribute to 
the intracellular increase of EPA and especially arachidonic acid levels.15 In non-fish eating 
populations, arachidonic acid is the predominant tissue very-long-chain PUFA, reaching 
80% of the total.28,39 Despite the potential pro-coagulant and pro-inflammatory effects of 
increased exposures to arachidonic acid and its derived eicosanoid metabolites,2,12,39-43 there 
is no evidence of increased CHD risk with ≈ 5 -7 times habitual arachidonic acid intake 
based on short-term small-scale controlled feeding studies.2,44-48 Tissue arachidonic acid 
levels are generally not associated with CHD risk.28 This was supported by our finding 
based on the fatty acid profile in plasma cholesteryl esters, which suggests that arachidonic 
acic does not mediate the observed association between δ-5 desaturase activity and CHD 
risk. 
 
Our results showed that the protective effect of increased δ-5 desaturase activity on CHD 
could be partly mediated by increased endogenous exposure to DHA. The fact that 
increased DHA levels associated with increased δ-5 desaturase activity protect against 
CHD is consistent with the established cardiovascular protective effect of increased n-3 
PUFA exposure (EPA and/or DHA).1,3 Accumulating evidence from observational studies 
suggests DHA might be more protective than EPA on CHD,4,28 which is consistent with our 
findings. However, EPA and DHA are usually correlated with each other in tissues, and 
their potential effects cannot be easily discerned. In addition to blood triglyceride lowering 
and HDL cholesterol increasing effects of EPA and DHA, n-3 PUFAs have long been 
observed to have anti-thrombotic, anti-inflammatory, anti-arrhythmic, and blood pressure-
lowering effects in humans even though the underlying mechanisms for these effects are 
incompletely understood.1,3,11,12,41 Interestingly, the protective effects on fatal CHD and 
sudden cardiac death have been shown to level off with a modest intake of EPA and/or 
DHA (250mg/day), and little additional benefit was observed with higher intakes.1 This is 
also consistent with our results for δ-5 desaturase activity. Nevertheless, there might be 
other unidentified pleiotropic cardiovascular protective effects of increased δ-5 desaturase 
activity. For example, these desaturases are also significantly expressed in immune cells49 
that play important roles in atherosclerotic CHD progression. 
 
Our results should be interpreted in the context of several limitations. First, our analyses 
were based on a single baseline measurement of fatty acid levels that may not accurately 
reflect long-term fatty acid exposures. However, we did detect the established protective 
effect of DHA against CHD.1,3,4,11,12,28 Second, we estimated δ-5 and δ-6 desaturase 
activities based on n-6 PUFAs, while δ-5 and δ-6 desaturases are not only involved in n-6 
PUFA conversion, but also in n-3 PUFA conversion. However, in comparison to n-6 PUFA 
conversion, the amount of n-3 PUFA conversion is relatively small,15 which should not 
have affected our results. Third, other potential unmeasured environmental or physiological 
factors could have confounded the observed associations. However, the relatively large 
magnitude of the protective effect of increased δ-5 desaturase activity relative to the effect 
of other risk factors for CHD makes confounding with other unknown risk factors unlikely. 
Finally, our models that included total and HDL cholesterol may have been over-adjusted, 



Desaturase activity and CHD risk 

126 
 

as these are probably intermediates in the metabolic pathway between desaturase and CHD 
risk. 
 
In conclusion, in this prospective cohort study, we showed evidence for a reduced CHD 
risk with increased δ-5 desaturase activity that was partly mediated by DHA. δ-5 
Desaturase might play a fundamental role in protecting us from CHD. 
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Supplemental Appendix 
  

Supplementary Table 1. Association of rs174547 with incident coronary heart disease 
(CHD) risk. 

 rs174547 genotype rs174547 G allele* AA AG GG 
Incident CHD, n 234 259 56 - 
Model 1† 1.0 1.00 (0.80-1.26) 0.96 (0.67-1.37) 0.99 (0.84-1.16) 
Model 2‡ 1.0 1.15 (0.88-1.49) 0.91 (0.60-1.39) 1.02 (0.85-1.22) 

* The model assumes that each copy of the G allele contributes equally to coronary heart disease risk. 
† Model 1 was adjusted for age and sex.  
‡ Model 2 was adjusted for age, sex, systolic blood pressure, hypertensive medication use, current smoking, 
diabetes, total cholesterol, and high-density lipoprotein cholesterol. 
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Supplementary Table 2. Association between baseline n-6 PUFA in plasma cholesteryl esters (precursors and products of δ5- or δ6-desaturase) 
and incident coronary heart disease (CHD). 

 Quintile of C18:2n-6 (linoleic acid) P value for 
trend* First Second Third Fourth Fifth 

Incident CHD, n 127 125 102 97 86  
Model 1† 1 1.11 (0.80-1.54) 1.02 (0.72-1.44) 1.10 (0.78-1.56) 0.80 (0.57-1.13)  0.247 
Model 2‡ 1 1.16 (0.81-1.66) 1.27 (0.88-1.83) 1.30 (0.89-1.89) 0.91 (0.62-1.32) 0.861 
Model 3§ 1 1.09 (0.74-1.60) 1.34 (0.91-1.96) 1.38 (0.92-2.09) 1.01 (0.68-1.48) 0.395 
Model 4¶ 1 1.09 (0.74-1.61) 1.34 (0.91-1.96) 1.39 (0.92-2.09) 1.01 (0.69-1.49) 0.389 
 Quintile of C18:3n-6 P value for 

trend* First Second Third Fourth Fifth 
Incident CHD, n 93 109 100 107 128  
Model 1† 1 1.05 (0.74-1.50) 0.89 (0.62-1.28) 0.92 (0.64-1.32) 1.00 (0.71-1.41) 0.706 
Model 2‡ 1 1.12 (0.76-1.64) 0.90 (0.61-1.33) 1.02 (0.69-1.50) 0.93 (0.64-1.37) 0.867 
Model 3§ 1 1.13 (0.75-1.72) 0.90 (0.58-1.38) 1.01 (0.66-1.53) 1.05 (0.70-1.57) 0.605 
Model 4¶ 1 1.14 (0.75-1.73) 0.90 (0.58-1.39) 1.02 (0.67-1.56) 1.06 (0.70-1.61) 0.536 
 Quintile of C20:3n-6 P value for 

trend* First Second Third Fourth Fifth 
Incident CHD, n 88 80 107 125 137  
Model 1† 1 0.98 (0.68-1.43) 1.14 (0.80-1.64) 1.29 (0.91-1.82) 1.39 (0.99-1.96) 0.024 
Model 2‡ 1 0.91 (0.61-1.34) 1.06 (0.73-1.55) 1.14 (0.78-1.66) 1.43 (1.00-2.05) 0.011 
Model 3§ 1 0.94 (0.61-1.45) 1.13 (0.75-1.69) 1.00 (0.67-1.50) 1.11 (0.75-1.67) 0.494 
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Model 4¶ 1 0.95 (0.62-1.47) 1.15 (0.76-1.73) 1.03 (0.67-1.57) 1.14 (0.75-1.74) 0.420 
 Quintile of C20:4n-6 (arachidonic acid) P value for 

trend* First Second Third Fourth Fifth 
Incident CHD, n 127 107 120 79 104  
Model 1† 1 0.89 (0.63-1.24) 0.96 (0.70-1.34) 0.65 (0.45-0.92) 0.76 (0.54-1.06) 0.031 
Model 2‡ 1 0.86 (0.60-1.22) 0.92 (0.65-1.31) 0.64 (0.43-0.94) 0.77 (0.53-1.10) 0.088 
Model 3§ 1 1.06 (0.72-1.56) 1.09 (0.74-1.60) 0.79 (0.51-1.21) 0.86 (0.58-1.28) 0.163 
Model 4¶ 1 1.04 (0.70-1.55) 1.07 (0.73-1.58) 0.76 (0.48-1.20) 0.83 (0.53-1.28) 0.150 

* From models with fatty acids included as continuous variables. 
† Model 1 is adjusted for age and sex.  
‡ Model 2 is adjusted for age, sex, systolic blood pressure, hypertensive medication use, current smoking, and diabetes. 
§ Model 3 is adjusted for all covariates in model 2, total cholesterol, and high-density lipoprotein cholesterol. 
¶ Model 4 is adjusted for all covariates in model 3 and baseline n-3 PUFA in plasma cholesteryl esters.  
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Supplementary Table 3. Association of baseline C20:5n-3 (EPA) and C22:6n-3 (DHA) in plasma cholesteryl esters with incident coronary heart 
disease (CHD). 

 Quintile of C20:5n-3 (EPA) P value for 
trend† First 

(0.00)* 
Second 
(0.28) 

Third 
(0.38) 

Fourth 
(0.52) 

Fifth 
(0.83) 

Incident CHD, n 96 100 104 114 123  
Model 1‡ 1 0.81 (0.57-1.16) 0.88 (0.62-1.26) 0.82 (0.57-1.16) 0.82 (0.58-1.17) 0.348 
Model 2§ 1 0.86 (0.59-1.24) 0.91 (0.62-1.33) 0.88 (0.61-1.27) 0.76 (0.52-1.11) 0.243 
Model 3¶ 1 0.90 (0.60-1.34) 0.90 (0.59-1.39) 0.79 (0.52-1.20) 0.89 (0.58-1.35) 0.733 
Model 4$ 1 0.90 (0.60-1.35) 0.90 (0.59-1.39) 0.80 (0.52-1.22) 0.89 (0.58-1.35) 0.724 
 Quintile of C22:6n-3 (DHA) P value for 

trend† First 
(0.00)* 

Second 
(0.20) 

Third 
(0.27) 

Fourth 
(0.34) 

Fifth 
(0.46) 

Incident CHD, n 89 139 93 112 104  
Model 1‡ 1 1.45 (1.03-2.05) 0.87 (0.60-1.25) 1.07 (0.74-1.53) 0.93 (0.65-1.34) 0.286 
Model 2§ 1 1.49 (1.05-2.13) 0.84 (0.58-1.24) 1.13 (0.77-1.67) 0.86 (0.58-1.29) 0.268 
Model 3¶ 1 0.96 (0.65-1.43) 0.61 (0.41-0.92) 0.89 (0.59-1.34) 0.65 (0.42-0.99) 0.049 
Model 4$ 1 0.95 (0.64-1.40) 0.57 (0.38-0.87) 0.82 (0.53-1.26) 0.59 (0.37-0.93) 0.027 

* Median percentages of EPA and DHA in each quintile are listed between brackets. 
† From models with fatty acids included as continuous variables.  
‡ Model 1 is adjusted for age and sex.  
§ Model 2 is adjusted for age, sex, systolic blood pressure, hypertensive medication use, current smoking, and diabetes. 
¶ Model 3 is adjusted for all covariates in model 2, total cholesterol, and high-density lipoprotein cholesterol. 
$ Model 4 is adjusted for all covariates in model 3 and baseline n-6 PUFA in plasma cholesteryl esters.  
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Abstract 
Background: Genome-wide association studies (GWAS) have identified many single 
nucleotide polymorphisms (SNPs) associated with coronary heart disease (CHD) or its risk 
factors. Using a case-cohort study within the prospective CAREMA cohort, we tested if 
genetic risk scores (GRS) based on those SNPs are associated with and predictive for future 
CHD. 
 
Methods and Results: 742 incident cases, i.e. participants who developed CHD during a 
median follow up of 12.1 years (range 0.0-16.9 years) were compared with a randomly 
selected sub-cohort of 2221 participants selected from the total cohort (N = 21,148). 179 
SNPs associated with CHD or its factors in GWAS published up to May 2, 2011 were 
genotyped. Five GRS were investigated; an Overall GRS of all SNPs, a Risk Factor GRS of 
153 SNPs associated with CHD risk factors, a non-weighted and a weighted CHD GRS of 
29 CHD associated SNPs and a LASSO GRS of the 14 most discriminating SNPs identified 
using LASSO regression. The weighted CHD GRS (HR = 1.12 per weighted risk allele; 
95%-CI=1.04-1.21) and the LASSO GRS (HR = 1.39 per weighted risk allele; 95%-
CI=1.26-1.53) were associated with CHD independent of traditional risk factors. The net 
reclassification index (NRI) improved when the CHD or the LASSO GRS were added to a 
model including traditional CHD risk factors (NRI=3.3%, P=0.017; NRI=8.1%, P=0.001, 
respectively). 
 
Conclusions The weighted CHD GRS and the LASSO GRS are associated with CHD 
independent of traditional risk factors and particularly the LASSO GRSs may improve risk 
classification. 
 
Keywords: case-cohort study, genetic risk score, coronary heart disease, risk prediction 
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Introduction 
Coronary heart disease (CHD) is a complex disease influenced by both life-style and 
genetic factors. During the last years, genome-wide association studies (GWAS) have 
identified multiple common single nucleotide polymorphisms (SNPs) that are robustly 
associated with the risk of CHD1-6 and its risk factors including blood pressure7, 8 and 
plasma lipid levels.9, 10 It was hoped that GWAS would identify SNPs that were useful in 
predicting CHD risk.  Individually, however, these SNPs have a relatively small effect size. 
Greater effect sizes may be expected for genetic risk scores (GRS) that comprise the 
cumulative effect of individual SNPs.11, 12 
  
Two previous prospective studies investigated the association of a GRS with incident 
CHD.13, 14 Paynter and co-workers constructed a GRS from 101 published GWAS SNPs 
known to be associated with cardiovascular disease and its risk factors.13 The GRS was 
tested for an association with a combined end-point of CHD and stroke in US women. An 
association was observed, but this disappeared after adjustment for traditional 
cardiovascular risk factors. The association was somewhat stronger for a GRS based on 12 
of these SNPs which were previously shown to be associated with cardiovascular disease 
only.13 In a recent Finnish cohort a GRS based on 13 SNPs was independently associated 
with 10 year incidence of CHD.14 However, this GRS did not improve risk discrimination 
over traditional risk factors and a family history of MI.14  
  
An important observation from these studies was that SNPs identified in GWAS, which 
commonly compare cases with a history of CHD to control groups of various origins, were 
not always detected in population-based prospective studies.13, 14 Case-control studies may 
overestimate effect sizes of SNPs associated to disease,15 thereby potentially diluting a 
GRS based on these SNPs applied to a study with a prospective design, resulting in a poor 
association. To construct a meaningful GRS, it may therefore be important to select a 
subset of SNPs that are actually associated with CHD in a population-based setting. The 
complication is that it is not possible to select SNPs based on their association with CHD, 
construct a GRS and test this GRS in the same population, because this would result in 
over-fitting the data and over optimistic results. A combination of cross-validation and 
LASSO regression can avoid this problem.16-18 
  
In our study, we constructed five different GRSs on the basis of 179 SNPs that were 
associated with CHD or its traditional risk factors in GWAS published up to May 2, 2011, 
and investigated their association with the occurrence of CHD during a median follow-up 
of 12.1 years in a population-based setting. 
 
Material and methods 
Study population 
The Cardiovascular Registry Maastricht (CAREMA) study population has been described 
before.19 In short, the study participants, living in the Maastricht region, were selected from 
two large monitoring projects in the Netherlands: the monitoring project on cardiovascular 
disease risk factors (PPHVZ) 1987-1991 and the monitoring project on chronic disease risk 
factors (MORGEN Project) 1993-1997, including the transition year (1992) between these 
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two projects. Each year, a random sample of people aged between 20 and 59 years were 
selected from municipal registries of Maastricht and surrounding communities (i.e. Eijsden, 
Margraten, Meerssen, and Valkenburg aan de Geul). Between 1987 and 1997, 21,662 men 
and women, born between 1927 and 1997, were included in this study, of whom 21,148 
participants (97.6%) had given informed consent to retrieve information from the municipal 
population registries and from their general practitioner and specialist.  
 
Cardiologic follow-up 
The cardiologic follow-up has been described in detail earlier.19 In short by linking the 
cohort to the hospital information system of the University Hospital Maastricht (UHM), 
97.6% of the cohort members could be found (N=20,632). Next, these subjects were linked 
to the cardiology information system of the department of cardiology. For participants who 
died, the cause of death was obtained from Statistics Netherlands. In addition, the 
CAREMA cohort was linked to the hospital discharge registry of the UHM to enlarge the 
completeness of the cardiologic follow-up. 
 
All participants, who were younger than 30 years of age at baseline (N=3505), who had an 
acute myocardial infarction (MI), unstable angina pectoris (UAP), a coronary artery bypass 
graft (CABG) or a percutaneous transluminal coronary angioplasty (PTCA) before baseline 
(N=187), were lost to follow-up (N=17), or were included in the transition year 1992 
(N=2203), were excluded from further analysis. 
 
Case-cohort design 
During the follow-up period (median, 12.1 yrs; range, 0.0-16.9 yrs), which ended on 31 
December 2003, 742 participants developed incident CHD, consisting of 368 patients with 
incident MI, 294 patients with UAP and 80 patients who have died because of CHD. No 
blood for DNA extraction was available for 59 patients, and in 15 cases the DNA extraction 
was unsuccessful. Twenty-two cases were excluded because no complete information on 
traditional risk factors (i.e. total cholesterol, HDL-cholesterol, systolic blood pressure, 
current smoking, body mass index (BMI), current diabetes status and a family history of 
MI) was available. Thus the available case group consists of 646 patients.  
 
From the full eligible CAREMA cohort, randomly a sub-cohort of 2221 participants was 
drawn. No blood was available for 188 participants, DNA extraction was unsuccessful in 
49 participants and no complete information on traditional risk factors was available for 71 
participants. Thus the available sub-cohort group consisted of 1913 participants. 
 
Determination of risk factors 
At baseline, all participants filled in a questionnaire on medical history, parental history of 
MI, and lifestyle factors such as smoking. During a medical examination at baseline, 
information was collected on blood pressure, height and weight. In addition, non-fasting 
blood samples were collected using EDTA tubes. The blood was centrifuged for 10 minutes 
at 1000 rpm and fractioned into blood plasma, white blood cells fractions (buffy coats) and 
erythrocytes and subsequently stored at -20°C. Within three weeks, the blood plasma 
samples were transported to the Lipid Reference Laboratory of the University Hospital 
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Dijkzigt (LRL) in Rotterdam where the total and HDL-cholesterol levels were determined 
using a CHOD-PAP method.20 The LRL in Rotterdam is a permanent member of the 
International Cholesterol Reference Method Laboratory Network. 
 
SNP selection 
Using the GWAS Catalog,21 available at: www.genome.gov/gwastudies and accessed at 
May 2, 2011,  248 SNPs were identified that showed an association with coronary heart 
disease or with its intermediate risk factors (blood pressure, anthropomorphic traits (BMI, 
waist circumference and waist to hip ratio), blood lipid levels and type 2 diabetes) in at 
least two GWA studies or in a meta-analysis at a genome-wide significance levels (P < 
5*10-8). For the SNPs that were in perfect linkage disequilibrium (LD) (D’= 1; R2=1) with 
each other, one of them was excluded (N=22). For 29 SNPs it was not possible to design 
primers or they did not fit in the SNP assay designs, leaving 197 SNPs for genotyping. For 
a detailed overview see supplementary table s1. 
 
DNA extraction & Genotyping 
DNA was extracted from the white blood cell fractions (buffy coats), using a standard 
procedure.22 The resulting DNA pellet was dissolved in TE buffer and DNA concentrations 
were determined using the Nanodrop ND1000 Spectrophotometer. All SNPs were 
genotyped using the iPLEX Gold chemistry of Sequenom’s MassARRAY platform (San 
Diego, CA, USA). Sequenom’s MassARRAY® Assay Design 3.1 Software was used for 
the SNP assay designs, and Sequenom’s SpectroTyper 4.0 software was used to call 
genotypes automatically, followed by manual review. Nine SNPs failed genotyping (e.g no 
PCR product or an abnormal cluster plot), two SNP were removed due to a success rate 
lower than 90% and seven SNPs were removed because they were out of Hardy Weinberg 
equilibrium (P-value<0.001) calculated in the sub-cohort, leaving 179 SNPs for analysis. 
For details see supplementary table s1. Individuals (four cases and eight sub-cohort 
members) were removed if their success rate was lower than 80%, leaving 642 cases and 
1905 sub-cohort members. 
 
Statistical analysis  
Not every SNP was successfully genotyped in every person (for success rate per SNP see 
supplementary table s1). Therefore, we applied a multiple imputation method (R packages 
mi (version 0.08-08)) to impute these missing values. First, missing values for the SNPs 
were randomly imputed, where the chance of being a major homozygote, heterozygote or 
minor homozygote depends on the distribution of the particular SNPs. This process was 
repeated 20 times, thus 20 new datasets with non-missing data were created. Next, in every 
imputed dataset the appropriate analysis was performed. Finally the results from every 
imputed dataset were combined using the R package mitools (version 2.0). 
  
We composed different GRS. The first genetic risk score (GRS) indicated as Overall GRS 
was constructed by counting the number of all risk alleles previously associated with CHD 
and its intermediate risk factors (179 SNPs). Risk alleles associated with more than one risk 
factor were included only once. Using the same method, three additional GRS were 
constructed. The first one was based on SNPs previously associated with traditional risk 

http://www.genome.gov/gwastudies�
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factors including blood pressure, anthropomorphic traits (i.e, BMI, waist and waist/hip 
ratio), type 2 diabetes and blood lipid levels (153 SNPs, indicated as Risk Factor GRS). 
The next two were based on SNPs previously associated with CHD, namely a non-
weighted CHD GRS composed of 29 SNPs previously associated with CHD and a 
weighted CHD GRS. A weighted CHD GRS was based on all the 29 risk alleles for CHD 
multiplied by their log odds ratio divided by the log odds ratio of the SNP with the highest 
effect size. As a result the SNP with the highest odds ratio has a weight of one. For 
estimating the weights of the individual SNPs, the odds ratios of the relevant SNPs were 
obtained from two large GWAS on coronary heart disease.23, 24 For more details see 
supplementary table s2. 
 
Because it is not likely that all GWAS-identified SNPs would contribute to the risk of 
future CHD in our population-based prospective study,25 we also constructed a GRS based 
on least absolute shrinkage and selection operator (LASSO) regression (indicated as 
LASSO GRS). With LASSO regression it is possible to perform variable selection and 
shrinkage at the same time, which makes it an effective method for finding prediction rules 
based in high dimensional data.16-18 Since we did not have an independent population 
which could be used as a discovery population for selecting SNPs and their appropriate 
weights, a cross-validation approach in combination with LASSO regression was used. We 
divided our population in ten equally sized subgroups and nine of these groups were 
combined as a training dataset. In this training dataset relevant SNPs were selected using 
LASSO regression,16, 17 and their coefficients were calculated. Next, these SNPs and their 
coefficients were tested in the independent tenth group. This process was repeated for each 
of the ten testing sets. The resulting SNPs and their weights, based on the coefficients 
resulting from the LASSO regression, were then used to construct the LASSO GRS. To 
perform this analysis we used the R package penalized (version 0.9-32).18  
  
We tested whether the five different GRS were associated with future CHD, using Cox-
proportional hazards models with robust variance estimation to adjust for the case-cohort 
design according to the method of Prentice.26 These models were used to estimate the 10-
year risk of CHD using a base model with and without each GRS. The base model consists 
of the covariates sex, current smoking, history of diabetes, parental history of MI, HDL 
cholesterol, total cholesterol, systolic blood pressure and BMI. Age in years was used as 
the time-scale variable and we adjusted for delayed entry. The same analyses were also 
done for every SNP separately. 
  
Due to a change in scaling, the non-weighted CHD GRS theoretically ranges from 0-58, 
whereas the weighted CHD GRS ranges from 0-22.14, the hazard ratio of a weighted GRS 
cannot be directly compared to a non-weighted GRS. Thus, for comparing the effects of the 
different GRS, we calculated the z-scores for all five GRS in all individuals and performed 
the above analysis on these standardized GRS.  
  
To investigate whether using a GRS in addition to traditional risk factors improved risk 
discrimination, we compared the estimates of the 10-year risk of CHD between the base 
model based on the traditional risk factors alone and the base model plus the GRS using the 
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c-statistic. To assess the differences in c-statistic between the base-model and the base-
model with the GRS, we used the non-parametric method of DeLong et.al.27 Next, to see 
whether participants were categorized into more appropriate risk categories when using the 
GRS in addition to the traditional risk factors, these 10-year risk estimates were compared 
with the 10-year risks from the base model, using the net reclassification improvement 
index (NRI) as described by Pencina et al.28 However, this NRI is not directly applicable to 
our study because of non-cases (N=550) who left the study prematurely (i.e. before 10 
years of follow-up) and cases (N=208) that got an event after 10 years of follow-up.29 
Therefore cases who developed an event after 10 years of follow-up were treated as 
controls that left the study at 10 years of follow-up (N=208), which resulted in  434 cases 
and 2012 non-cases. Next, we calculated a Kaplan-Meier curve for the sub-cohort. Based 
on this Kaplan-Meier curve, weights were assigned to every individual. Weights of zero 
were assigned to non-cases who left the study before 10 years of follow-up (N=550). Using 
the 10-year risk estimates, subjects were divided in the following risk categories: 0-<2%, 2-
<5%, 5-<10%, and ≥10%. The choice of the risk categories were based on the SCORE 
risk.30 For all analyses we used the software R (version 2.10.1, www.r-project.org) in 
combination with the package survival (version 2.35-8) for calculating the Cox-
proportional hazards models according to Prentice and the Kaplan-Meier curve. For 
calculating the c-statistics and the corresponding p-values, we used the R package pROC 
(version 1.4.1).  
 
Results 
Baseline characteristics 
In Table 1, it is shown that all traditional risk factors for CHD are associated with future 
CHD in the CAREMA study population. When all traditional risk factors were entered in a 
Cox proportional hazards model, with age as the time-scale variable, BMI was no longer 
significantly associated with future CHD. 
 
Table 1. Baseline characteristics of the CAREMA case-cohort study and their association 
with future CHD 

Variables Cases 
(N=646) 

Sub-cohort 
(N=1913)* HR (95% CI)† Adjusted 

HR (95% CI)‡ 
Age (years) 50.2 ± 7.1 45.2 ± 8.4 1.08 (1.07-1.09)§ - 
Tot Chol (mmol/L) 6.3 ± 1.2 5.6 ± 1.1 1.47 (1.35-1.61) 1.33 (1.20-1.48) 

HDL-C (mmol/L) 1.0 ± 0.3 1.3 ±  0.3 0.05 (0.03-0.07) 0.14 (0.08-0.22) 

SBP (mmHg) 128.9 ± 17.1 120.2 ± 15.2 1.02 (1.02-1.03) 1.02 (1.01-1.03) 

BMI (kg/m2) 26.6 ±  4.0 25.0 ± 3.7 1.08 (1.05-1.10) 1.02 (0.99-1.05) 
Men 483 (74.8%) 870 (45.5%) 1.41 (3.31-50.3) 2.52 (1.93-3.29) 

Current smoking|| 373 (57.7%) 790 (41.3%) 2.03 (1.68-2.46) 1.95 (1.54-2.46) 

Type 2 diabetes 24   (3.7%) 17   (0.9%) 3.60 (1.83-7.08) 3.03 (1.46-6.26) 
Parental history of MI 270 (41.8%) 670 (35.0%) 1.31 (1.12-1.54) 1.41 (1.16-1.72) 

Results are presented as means ± SD or N (%) 
* Includes 101 cases 
† Univariate analysis; age in years was used as the time-scale variable 
‡ All the variables were added into one multivariable Cox proportional hazards models model and age was used as 
the time scale-variable.  
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§ Follow-up time in years was used as the time-scale variable 
|| Current smokers compared to non-current smokers  
HR, hazard ratio; 95% CI, 95% confidence interval; Tot Chol, total cholesterol; HDL-C, high density lipoprotein 
cholesterol; SBP, systolic blood pressure; BMI, body mass index; MI, myocardial infarction 
 
Genetic Risk Scores 
The Overall GRS constructed of all the 179 SNPs had a mean value (SD) of 182.9 (9.2) for 
all participants, with a range from 142 to 217 risk alleles. As shown in table 2, this Overall 
GRS was associated with CHD with a hazard ratio (HR) of 1.02 per risk allele (95% CI = 
1.01-1.03); after adjustment for the traditional risk factors the effect size further attenuated 
(HR/risk allele = 1.01; 95% CI = 1.00-1.02). For a detailed overview of all the separate 
SNPs from which the GRS was constructed, and their association with incident CHD 
before and after adjustment for traditional risk factors, see supplementary table s3. 
 
As shown in Table 2, the Risk Factor GRS constructed from the 153 SNPs selected for 
their previous association with CHD risk factors (blood pressure, anthropomorphic traits, 
blood lipid levels and type 2 diabetes) was associated with future CHD (HR/risk 
allele=1.02; 95% CI =1.01-1.03), but not after adjustment for all traditional risk factors 
(HR/risk allele=1.00; 95% CI =0.99-1.02). 
  
Next, the CHD GRS constructed from the 29 SNPs selected for their previous association 
with CHD was investigated. The CHD GRS was associated with future CHD with a HR of 
1.04 per risk allele (95% CI = 1.01-1.07). After adjustment for the traditional risk factors 
this GRS was no longer associated with future CHD (HR = 1.03; 95% CI = 0.95-1.12). The 
CHD GRS that was weighted for previously reported effect sizes of the included SNPs, 
however, was associated with future CHD both prior (HR = 1.15; 95% CI = 1.07-1.23) and 
after the adjustment for the traditional risk factors (HR = 1.12; 95% CI = 1.04-1.21). 
 
Cross-validation and a LASSO GRS 
Using LASSO regression,18 a subset of 14 SNPs was selected as the optimal predictor of 
CHD in the current data-set: rs10757278 (locus = 9p21.3, nearby genes = CDKN2A, 
CDKN2B), rs2925979 (locus = 16q23.2, nearby genes = CMIP), rs6882076 (locus = 
5q33.3, nearby genes = TIMD4), rs2954029 and rs6987702 (locus = 8q24.13, nearby genes 
= TRIB1), rs10889352 (locus = 1p31.3, nearby gene = DOCK7), rs2972146 (locus = 
2q36.3, nearby genes = IRS1), rs11556924 (locus = 7q32.2, nearby genes = ZC3HC1), 
rs514230 (locus = 1q42.3, nearby genes = IRF2BP2), rs8050136 (locus = 16q12.2, nearby 
gene = FTO), rs181362 (locus = 22q11.21, nearby genes = UBE2L3), rs646776 (locus = 
1p13.3, nearby genes = CELSR2, PSRC1, SORT1), rs925946 (locus = 11p14.1, nearby 
genes = BDNF) and rs2000999 (locus = 16q22.2, nearby genes = HPR). These 14 SNPs 
were used to construct a LASSO GRS with weighting factors (see supplementary table s4). 
This weighted LASSO GRS was associated with future CHD (HR = 1.48; 95% CI = 1.31-
1.29) and remained significantly associated with CHD after adjustment for traditional risk 
factors (HR = 1.39; 95% CI = 1.26-1.53). To be able to compare the effect sizes of the 
various GRSs tested, we computed the HR for each GRS per standard deviation (sd) 
increase in number of risk alleles (see table 2). The standardized HR of the LASSO GRS 
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(HR/sd increase = 1.49; 95% CI =1.31-1.69) was higher than that of the weighted CHD 
GRS (HR/ sd increase = 1.21; 95% = 1.10-1.33). 
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Table 2. Associations between the different genetic risk scores and future CHD. 

 

 

 

 

Genetic 
Risk Scores 

N 
SNPs 

Cases 
(N=642) 

Sub-cohort 
(N=1905) 

Coronary heart disease 
HR (95% CI) HR std†  (95% CI) P 

Overall GRS 179 184.1 ±  8.8 182.5 ±  9.2 1.02 (1.01-1.03) 1.20 (1.09-1.32) <0.001 
Adjusted for TRF* 1.01 (1.00-1.02) 1.07 (0.99-1.16) 0.084 
Risk Factor GRS 153 156.5 ± 8.3 155.3 ± 8.5 1.02 (1.01-1.03) 1.16 (1.06-1.27) 0.002 

Adjusted for TRF* 1.00 (0.99-1.02) 1.03 (0.95-1.12) 0.452 
CHD GRS 29 31.2 ±  3.3 30.7 ±  3.5 1.04 (1.01-1.07) 1.16 (1.04-1.26) 0.004 

Adjusted for TRF* 1.03 (0.95-1.12) 1.12 (0.85-1.49) 0.413 
Weighted CHD GRS 29 11.9 ± 1.3 11.6 ± 1.4 1.15 (1.07-1.23) 1.21 (1.10-1.33) <0.001 

Adjusted for TRF* 1.12 (1.04-1.21) 1.17 (1.06-1.30) 0.001 
LASSO GRS 14 4.0 ± 1.0 3.7 ± 1.0 1.48 (1.31-1.67) 1.49 (1.31-1.69) <0.001 

Adjusted for TRF* 1.39 (1.26-1.53) 1.40 (1.27-1.53) <0.001 
* Traditional risk factors include sex, current smoking (yes/no), systolic blood pressure, 
total cholesterol, HDL cholesterol, self reported diabetes (yes/no), body mass index and parental history of MI parents with MI, one parent with 
MI, both parents with MI). Age was used as the time scale variable 
† Increase in hazard ratio per standard deviation 
HR, hazard ratio; std, standardized; SNPs, single nucleotide polymorphisms; CHD, coronary heart disease; TRF, traditional risk factors; GRS, 
genetic risk score; LASSO, least absolute shrinkage and selection operator 
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C-indexes 
The discriminatory capabilities of the five GRSs without including other variables were low (c-
index = 0.547 for the overall GRS, 0.538 for the risk factors GRS, 0.527 for the CHD GRS, 
0.550 for the weighted CHD GRS, and 0.599 for the LASSO GRS; Table 3), but all statistically 
significant (see table 3). When using a prediction model based on all the CHD risk factors (c-
index = 0.816), only the LASSO GRS improved the fit of the model (c-index = 0.824, P = 
0.011), whereas the other GRSs did not.  
  
Table 3. Improvement in discrimination, as assessed with the C index, when the GRSs (Overall 
GRS, Risk Factor GRS CHD GRS, weighted GRS or LASSO GRS) are added to the  base 
model (composed age, sex, current smoking and the traditional risk factors*). 
Model C-index  P-value 
Overall GRS 0.547 <0.001 
Risk Factor GRS 0.538 0.002 
CHD GRS 0.527 0.021 
Weighted CHD GRS 0.550 <0.001 
LASSO GRS 0.599 <0.001 
Base model age, sex, current smoking plus traditional risk factors* 0.816 - 
Base model and overall GRS  0.816 0.966 
Base model and risk factor GRS 0.816 0.858 
Base model and CHD GRS  0.817 0.417 
Base model and weighted CHD GRS 0.818 0.134 
Base model and LASSO GRS 0.824 0.011 
*total cholesterol, HDL cholesterol, systolic blood pressure, self reported diabetes and family history of myocardial 
infarction  
GRS, genetic risk score; CHD, coronary heart disease; LASSO, least absolute shrinkage and selection operator 
 
Net reclassification index (NRI) 
In addition, we calculated the NRI, and found no improvement when the Overall GRS or the 
Risk Factor GRS were added to the base model (Table 4, for more details see supplementary 
table 5a-e). Reclassification improved for the non-weighted CHD GRS, but only with 2.3% (P 
= 0.035). When we used the weighted CHD GRS, 10.0% of the participants were classified into 
a more appropriate risk category, but for 6.7% of the population the classification got worse, 
thus the NRI improved with 3.3% (P = 0.017), which could be attributed to an improvement in 
reclassification for events (i.e. individuals who did have a CHD event; NRI = 2.5%, P = 0.044). 
An improved reclassification was observed for 23.4% of the population and a worsening for 
15.3% of the population when we used the LASSO GRS (NRI = 8.1%, P = 0.001). In this case, 
the net improvement in NRI could be accredited to an improvement for events (NRI = 5.0%, P 
= 0.017) as well as non-events (NRI = 3.1%, P < 0.001). 
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Discussion 
Over the past five years, the pace of identification of genetic variants underlying susceptibility 
to CHD has rapidly increased, leading to an interest in investigating if and how this information 
might be used in improving CHD risk prediction. Therefore, we constructed a GRS composed 
of 179 SNPs previously associated with CHD and its intermediate risk factors. This Overall 
GRS was associated with CHD, but not independently of traditional risk factors and did not 
improve risk prediction above a model using traditional risk factors. We separated this GRS 
into a weighted CHD GRS based on SNPs selected for previous association with CHD, and a 
Risk Factor GRS based on SNPs previously associated with intermediate CHD risk factors. The 
Risk Factor GRS was not associated with incident CHD. However, the weighted CHD GRS 
based on 29 CHD SNPs was associated with incident CHD, the effect being independent from 
the traditional risk factors. This weighted CHD GRS also improved risk reclassification and but 
not discrimination. 
 
Table 4. Improvement in reclassification of future CHD using a model with different genetic 
risk scores in addition to traditional risk factors* compared to a model with only traditional risk 
factors. 

Genetic risk score 
Reclassification 

P Up P Down NRI Z-score P-
value 

Overall GRS Event          0.015 0.013  0.001 0.185 0.427 
Non-event  0.013 0.017 0.003 0.912 0.181 
Total           - -  0.005 0.568 0.285 

Risk Factor GRS Event 0.011 0.004 0.007 1.217 0.112 
Non-event 0.006 0.006 0.001 0.288 0.387 
Total - - 0.008 1.234 0.109 

CHD GRS Event 0.041 0.023 0.019 1.611 0.054 
Non-event 0.023 0.027 0.004 0.845 0.199 
Total - - 0.023 1.813 0.035 

Weighted CHD GRS Event 0.065 0.040 0.025 1.706 0.044 
Non-event 0.027 0.035 0.008 1.512 0.065 
Total - - 0.033 2.125 0.017 

LASSO GRS Event 0.156 0.106 0.050 2.121   0.017 
Non-event 0.047 0.078 0.031 3.955 <0.001 
Total - - 0.081 3.264   0.001 

* sex, age, total cholesterol, HDL cholesterol, systolic blood pressure, body mass index, current smoking, diabetes and a 
parental history of MI. 
NRI, net reclassification index; SNPs, single nucleotide polymorphisms; P, proportion; GRS, genetic risk score; CHD, 
coronary heart disease; LASSO, least absolute shrinkage and selection operator 
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The effect of the Overall GRS can be diluted. GWAS-identified SNPs may confer very 
different and difficult to estimate risks for CHD (e.g. SNPs directly associated with CHD and 
those associated with risk factors) and in addition not all GWAS-identified SNPs may be 
associated with CHD in a population-based prospective study.15 Therefore, we used a new 
strategy to construct a GRS to overcome these limitations, namely a cross-validation approach 
in combination with LASSO regression, which can be used to achieve data selection and 
shrinkage at the same time.18 The association of the 14 SNP LASSO GRS with future CHD risk 
was stronger than the other GRSs, and modestly but significantly improved both risk 
discrimination and reclassification. Of the 14 SNPs selected, three (rs10757278, rs646776 and 
rs11556924)2, 4, 33 were previously reported to be associated with CHD in GWAs. Also, in both 
the LASSO GRS and the weighted GRS, rs10757278 was the SNP with the highest weight. Of 
the remaining 11 SNPs, one was previously associated with BMI (rs925946)31, two with 
diabetes (rs8050136 and rs181362)32-34 and eight with lipid levels (rs2925979, rs6882076, 
rs2954029, rs6897702, rs10889352, rs2972146, rs514230 and rs2000999).9, 35 For locus and 
nearby genes see supplementary table s4. 
  
Our findings for the Overall GRS based on all 179 SNPs are in line with that of a recently 
published large prospective cohort study.13 In this study, a GRS composed of 101 SNPs 
previously associated with CVD or an intermediate phenotype was not associated with CVD 
after adjustment for the intermediate CHD risk factors systolic blood pressure, total cholesterol 
and HDL cholesterol. This GRS also did not improve discrimination or risk reclassification.13 
The non-weighted CHD GRS was not associated with CHD after adjustment for traditional risk 
factors in our population, which confirms findings in a recently published large prospective 
cohort study of women, where a GRS composed of 12 SNPs associated with CHD was no 
longer associated with CHD after adjusting for traditional risk factors.13 A similar GRS, 
composed of 13 SNPs associated with CHD and sharing eight genetic variants with our CHD 
GRS, was tested in a large Finnish cohort study.14 In contrast to our findings, this GRS was 
associated with CVD after adjustment for traditional risk factors. In a recently published meta-
analysis of 14 case-control studies,23 a weighted GRS of 23 SNPs associated with CHD was 
constructed. This GRS was highly associated with CHD, although the outcome was not 
adjusted for traditional risk factors. The currently tested weighted CHD GRS encompassing 29 
SNPs was associated to future CHD in our prospective case-cohort also after adjustment for 
traditional risk factors. 
  
From our study we can conclude the following. First, a GRS composed of common SNPs 
previously associated with CHD and its traditional risk factors, currently has no value in 
predicting incident CHD compared to measuring classical biochemical parameters and systolic 
blood pressure measurement at one single point in time. Second, it might be important to 
account for the different effect sizes of SNPs in a GRS, given the fact that the weighted CHD 
GRS was still associated with CHD after adjustment for traditional risk factors and the non-
weighted GRS was not. These results are in line with Davies et al.25 Third, when using the 
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weighted CHD GRS in addition to traditional risk factors and when accounting for the fact that 
using a new predictor also can deteriorate reclassification, 3.3% of the participants were placed 
in a more appropriate risk category, for the LASSO GRS this was 8.1%.  
  
The SNPs we used for constructing the GRS were detected in GWA studies with large sample 
sizes. Our study has lower power to detect the small effect sizes, which will have contributed to 
our observation that most of SNPs were not significantly associated with CHD when analyzed 
individually. We did remove SNPs in complete LD, but not the ones in high LD, which could 
bias the results of the overall GRS and the risk factor GRS, depending on the regions that were 
over represented. For the CHD GRSs this is not an issue, since none of the included SNPs in 
the CHD GRSs were in very high LD with each other. Also, for constructing the LASSO GRS, 
highly correlated SNPs were not a problem, since penalized logistic regression methods, such 
as LASSO regression, only select one SNP from many correlated SNPs.36 The LASSO GRS 
was not tested in an independent population and therefore we cannot rule out that the LASSO 
GRS performs less if tested in an independent population. On the other hand, we used a cross-
validation in combination with LASSO regression approach to prevent over-fitting of the data. 
  
In conclusion, GRSs based on CHD SNPs and the LASSO GRS are associated with future 
CHD independent of traditional risk factors. The weighted CHD GRS and especially the 
LASSO GRS improve risk reclassification. 
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Table s1. Quality control for the selected SNPs (based on association between CHD and intermediate risk factors from previously published 
GWAS) genotyped in the CAREMA cohort study. 
Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

SNPs selected for their association with coronary heart disease 
RS46522    17q21.32 46988597 UBE2Z, GIP, ATP5G1, 

SNF8 
CAD1  1.00 0.160 Yes 

RS216172   17p13.3 2126504 SMG6, SRR CAD1  1.00 0.843 Yes 
RS579459   9q34.2 136154168 ABO CAD1  0.99 0.412 Yes 
RS599839   1p13.3 109822166 CELSR2,PSRC1 CD2, CAD1 Abnormal 

clusterplot 
0.00  No 

RS646776   1p13.3 109818530 CELSR2,PSRC1,SORT1 MI(early onset)3, 
CHD4 

 0.99 0.687 Yes 

RS964184   11q23.3 116648917 APOA1 CAD1, TG5  0.99 0.708 Yes 
RS974819   11q22.3 103660567 PDGFD CAD1  1.00 0.638 Yes 
RS1122608  19p13.2 11163601 LDLR MI(early onset)3  0.99 0.352 Yes 
RS1333049  9p21.3 22125503 CDKN2A,CDKN2B CD In LD with 

rs10757278 
  No 

RS1412444  10q23.31 91002927 LIPA CAD6  0.99 0.130 Yes 
RS1746048  10q11.21 44775824 CXCL12 MI(early onset)3  0.96 0.328 Yes 
RS2505083  10p11.23 30335122 KIAA1462 CAD6  0.99 0.852 Yes 
RS2895811  14q32.2 100133942 HHIPL1 CAD1  1.00 0.889 Yes 
RS3825807  15q25.1 79089111 ADAMTS7 CAD1  1.00 0.405 Yes 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS4380028  15q25.1 79111093 ADAMTS7, MORF4L1 CAD6  1.00 0.156 Yes 
RS4773144  13q34 110960712 COL4A1, COL4A2 CAD1  1.00 0.555 Yes 
RS4977574 9p21.3 22098574 CDKN2A, CDKN2B MI(early onset)3, 

CAD1 
In LD with 
rs10757278 

  No 

RS6725887  2q33.2 203745885 WDR12 MI(early onset)3, 
CAD1 

 0.95 0.290 Yes 

RS6922269  6q25.1 151252985 MTHFD1L CD6  0.97 0.347 Yes 
RS9818870  3q22.3 138122122 MRAS CAD7  0.98 0.740 Yes 
RS9982601  21q22.11 35599128 SLC5A3, MRPS6, 

KCNE2 
MI(early onset)3, 

CAD1 
 0.97 0.238 Yes 

RS10757278 9p21.3 22124477 CDKN2A,CDKN2B MI8  0.96 0.614 Yes 
RS10953541 7q22.3 107244545 - CAD6  1.00 0.503 Yes 
RS11206510 1p32.3 55496039 PCSK9 MI(early onset)3, 

LDL-C9, 10 
 0.99 0.155 Yes 

RS11556924 7q32.2 129663496 ZC3HC1 CAD1  1.00 0.672 Yes 
RS12190287 6q23.2 134214525 TCF21 CAD1  1.00 0.144 Yes 
RS12413409 10q24.32 104719096 CYP17A1, CNNM2, 

NT5C2 
CAD1  1.00 0.377 Yes 

RS12526453 6p24.1 12927544 PHACTR1 MI(early onset)3, 
CAD1 

 0.98 0.142 Yes 

RS12936587 17p11.2 17543722 RASD1, SMCR3, PEMT CAD1  1.00 0.681 Yes 



Genetic risk prediction of CHD 

156 
 

Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS17114036 1p32.2 56962821 PPAP2B CAD1  0.99 0.119 Yes 
RS17465637 1q41 222823529 MIA3 MI(early onset)3, 

CAD1 
 0.99 0.210 Yes 

RS17609940 6p21.31 35034800 ANKS1A CAD1  0.99 0.298 Yes 
SNPs selected for their association with blood pressure 
RS381815   11p15.1 16902268 PLEKHA7 SBP11  0.99 0.267 Yes 
RS653178   12q24.12 112007756 ATXN2, SH2B3 DBP12 In LD with 

rs3184504 
   

RS1004467  10q24.32 104594507 CYP17A1 SBP11  0.99 0.680 Yes 
RS1378942  15q24.1 75077367 CYP1A1, CYP1A2, 

CSK, LMAN1L, 
CPLX3, ARID3 

DBP12  1.00 0.643 Yes 

RS1530440  10q21.2 63524591 c10orf107, TMEM26, 
RTKN2, RHOBTB1, 

ARID5B 

DBP12  1.00 0.705 Yes 

RS2384550  12q24.21 115352731 TBX3, TBX5 DBP11 Did not fit in 
i-plex 

  No 

RS2681472  12q21.33 90008959 ATP2B1 DBP11  1.00 0.670 Yes 
RS2681492  12q21.33 90013089 ATP2B1 SBP11 Did not fit in 

i-plex 
  No 

RS3184504  12q24.12 111884608 SH2B3 DBP11  1.00 0.653 Yes 
RS6495122  15q24.1 75125645 CSK, ULK3 DBP11 Did not fit in   No 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

i-plex 
RS9815354  3p22.1 41912651 ULK4 DBP11  1.00 1.000 Yes 
RS11014166 10p12.31 18708798 CACNB2 DBP11  0.99 0.687 Yes 
RS11191548 10q24.32 104846178 CYP17A1, AS3MT, 

CNNM2, NT5C2 
SBP12  1.00 0.304 Yes 

RS12946454 17q21.31 43208121 PLCD3, ACBD4, 
HEXIM1, HEXIM2 

SBP12  1.00 0.861 Yes 

RS16948048 17q21.33 47440466 ZNF652, PHB DBP12  1.00 0.568 Yes 
RS16998073 4q21.21 81184341 FGF5, PRDM8, c4orf22 DBP12  1.00 0.704 Yes 
RS17367504 1p36.22 11862778 MTHFR, NPPA, 

CLCN6, NPPB, 
AGTRAP 

SBP12  1.00 0.590 Yes 

SNPs selected for their association with diabetes type II 
RS5215     11p15.1 17408630 KCNJ11 Type 2 diabetes13  0.97 0.807 Yes 

RS5219     11p15.1 17409572 KCNJ11 
Type 2 

diabetes14, 15  0.94 0.616 
Yes 

RS864745   7p15.1 28180556 JAZF1 Type 2 diabetes16  0.97 0.201 Yes 

RS1111875  10q23.33 94462882 HHEX 
Type 2 

diabetes14, 17 
 

0.97 0.157 
Yes 

RS2237892  11p15.4 2839751 KCNQ1 Type 2 diabetes18  0.96 0.415 Yes 
RS2237897  11p15.4 2858546 KCNQ1 Type 2 diabetes19  0.97 0.013 Yes 
RS2383208  9p21.3 22132076 CDKN2A, CDKN2B Type 2 diabetes20 In ld with   No 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

rs10811661 

RS2943641  2q36.3 227093745 LOC64673, IRS1 Type 2 diabetes21 
Did not fit in 
i-plex   No 

RS4402960  3q27.2 185511687 IGF2BP2 
Type 2 

diabetes13, 14, 17 
 

0.99 0.917 
Yes 

RS4506565  10q25.2 114756041 TCF7L2 Type 2 diabetes22  0.97 0.032 Yes 
RS4607103  3p14.1 64711904 ADAMTS9 Type 2 diabetes16  0.98 0.334 Yes 
RS4689388  4p16.1 6270056 WFS1, PPP2R2C Type 2 diabetes21  1.00 0.710 Yes 

RS4712523  6p22.3 20657564 CDKAL1 
Type 2 

diabetes20, 21 
In ld with 
rs10946398   No 

RS4712524  6p22.3 20657865 CDKAL1 Type 2 diabetes19  0.96 0.313 Yes 
RS6769511  3q27.2 185530290 IGF2BP2 Type 2 diabetes19     
RS6931514  6p22.3 20703952 CDKAL1 Type 2 diabetes16  0.96 0.908 Yes 
RS7578597  2p21 43732823 THADA Type 2 diabetes16  0.98 0.820 Yes 

RS7754840 6p22.3 20661034 CDKAL1 
Type 2 

diabetes14, 17 
In ld with 
rs10946398   No 

RS7756992  6p22.3 20679709 CDKAL1 Type 2 diabetes23 
In ld with 
rs6931514   No 

RS7901695  10q25.2 114754088 TCF7L2 Type 2 diabetes13 
Did not fit in 
i-plex   No 

RS7903146  10q25.2 114758349 TCF7L2 
Type 2 

diabetes14-17, 20, 21, 
Did not fit in 
i-plex   No 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

23-25 
RS7961581  12q21.1 71663102 TSPAN8,LGR5 Type 2 diabetes16  0.96 0.274 Yes 

RS8050136  16q12.2 53816275 FTO 
Type 2 

diabetes13-15  0.96 0.002 
Yes 

RS10811661 9p21.3 22134094 CDKN2A,CDKN2B 
Type 2 

diabetes13, 14, 17 
 

0.98 0.826 Yes 
RS10923931 1p12 120517959 NOTCH2, ADAM30 Type 2 diabetes16  0.96 0.217 Yes 
RS10946398 6p22.3 20661034 CDKAL1 Type 2 diabetes13  0.98 0.598 Yes 
RS12779790 10p13 12328010 CDC123,CAMK1D Type 2 diabetes16  0.95 1.000 Yes 

RS13266634 8q24.11 118184783 SLC30A8 
Type 2 

diabetes13, 14, 17 
 

0.98 0.457 
Yes 

SNPs selected for their association with blood lipid levels 
RS328      8p21.3 19819724 LPL TG26, HDL-C26  0.96 0.027 Yes 

RS693      2p24.1 21232195 APOB 
TC4, LDL-C4, 26, 

27  0.98 0.468 
Yes 

RS7679     20q13.12 44576502 PLTP TG10  0.95 0.04 Yes 
RS12916 5q13.3 74692295 HMGCR TC5  0.99 0.927 Yes 
RS157580   19q13.32 45395266 APO cluster LDL-C4  0.97 0.884 Yes 

RS171457 7q11.23 142827855 
BCL7B, TBL2, 

MLXIPL TG9, 26 
In ld with 
RS2240466   No 

RS173539   16q13 56988044 CETP 
HDL-C10 No PCR 

product 0.00  No 



Genetic risk prediction of CHD 

160 
 

Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS174546  11q12.2 61326406 FADS1-2-3 TG5 In ld with 
RS174547   No 

RS174547  11q12.2 61570783 FADS1, FADS2, 
FADS3 TG10  0.98 0.608 Yes 

RS174570   11q12.2 61597212 FADS2, FADS3 LDL-C4, TC4  0.94 0.003 Yes 
RS181362 22q11.21 20262068 UBE2L3 HDL-C27  0.99 0.14 Yes 

RS255049   16q22.1 68013471 LCAT HDL-C27 Did not fit in 
i-plex   No 

RS386000 19q13.42 59484573 LILRA3 HDL-C5 In ld with 
rs3905000   No 

RS439401 19q13.32 50106291 APOE TG4  0.96 0.076 Yes 
RS442177 4q22.1 88249285 KLHL8 TG5  0.99 0.225 Yes 
RS471364   9p22.3 15289578 TTC39B HDL-C10  0.96 0.375 Yes 
RS492602 19q13.33 53898229 FLJ36070 TC5  0.99 0.437 Yes 
RS514230 1q42.3 232925220 IRF2BP2 TC5  0.99 0.752 Yes 

RS515135 2p24.1 21286057 APOB LDL-C10 Abnormal 
clusterplot 0.00  No 

RS562338   2p24.1 21288321 APOB LDL-C9, 28 In LD with 
rs515135   No 

RS581080 9p22.3 15295378 TTC39B HDL5  0.99 0.461 Yes 

RS599839   1p13.3 109822166 CELSR2.PSRC1 LDL-C2, 9, 28 No PCR 
product 0.00  No 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS605066 6q24.1 139871359 CITED2 HDL-C5 Out of HWE 0.96 <0.001 No 
RS629301 1p13.3 109619829 SORT1 LDL-C5  0.99 0.787 Yes 
RS645040 3q22.3 137409312 MSL2L1 TG5  0.99 0.786 Yes 
RS646776   1p13.3 109818530 CELSR2.PSRC1.SORT1 LDL-C4, 26, 27  0.99 0.687 Yes 

RS714052 7q11.23 72864869 MLXIPL TG10 
In ld with 
RS2240466   No 

RS737337 19p13.2 11208493 LOC55908 HDL-C5  0.96 0.456 Yes 
RS780094 2p23.3 27741237 GCKR TG4, 9, 26  0.97 0.451 Yes 
RS838880 12q24.31 123827546 SCARB1 HDL-C5  1.00 0.367 Yes 
RS964184 11q23.3 116154127 APOA1 TG10  0.99 0.708 Yes 
RS1042034 2p24.1 21078786 APOB TG5  1.00 0.697 Yes 
RS1084651 
(RS1652507) 6q26 161009807 LPA HDL-C5  1.00 0.787 

Yes 

RS1167998  1p31.3 62931632 DOCK7 TG4  0.98 0.174 Yes 

RS1169288 12q24.31 119901033 HNF1A TC5 
Did not fit in 
i-plex   No 

RS1260326 2p23.3 27584444 GCKR TG10  0.97 0.457 Yes 
RS1367117 2p24.1 21117405 APOB LDL-C5 Out of HWE 0.80 <0.001 No 
RS1495741 8p22 18317161 NAT2 TG5  1.00 0.080 Yes 
RS1501908  5q33.3 156398169 TIMD4, HAVCR1 LDL-C10  0.97 0.961 Yes 
RS1532085 15q21.3 56470658 LIPC HDL-C4  0.99 1.000 Yes 
RS1532624  16q13 57005479 CETP HDL-C4  0.97 0.710 Yes 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS1564348 6q25.3 160498850 LPA LDL-C5  0.98 0.086 Yes 
RS1689800 1q25.3 180435508 ZNF648 HDL-C5  0.99 0.076 Yes 

RS1748195 1p31.3 63049593 ANGPTL3 TG9 
In ld with 
RS12970134   No 

RS1800562 6p22.2 26201120 HFE LDL-C5  1.00 0.571 Yes 
RS1800588  15q21.3 58723675 LIPC HDL-C26  0.99 0.848 Yes 

RS1800775  16q13 55552737 
CETP. NUP93. 

SLC12A3. HERPUD1 
TG17, HDL-C26, 

29 
Did not fit in 
i-plex   

No 

RS1800961 20q13.12 42475778 HNF4A HDL-C5, 10  0.97 0.388 Yes 

RS1864163  16q13 56997233 CETP HDL-C9 
Did not fit in 
i-plex   No 

RS1883025 9q31.1 106704122 ABCA1 HDL-C5, 10  0.96 0.216 Yes 
RS2000999 16q22.2 70665594 HPR TC5  1.00 1.000 Yes 
RS2068888 10q23.33 94829632 CYP26A1 TG5  0.99 0.388 Yes 
RS2072183 7p13 44545705 NPC1L1 TC5  0.99 0.569 Yes 
RS2075650  19q13.32 45395619 TOMM40. APOE TC4  0.97 0.072 Yes 
RS2081687 8q12.1 59551119 CYP7A1 TC5  1.00 0.374 Yes 
RS2083637  8p21.3 19865175 LPL HDL-C4  0.98 0.200 Yes 

RS2131925 1p31.3 62798530 ANGPTL3 TG5 
In ld with 
RS1167998   No 

RS2144300  1q42.13 230294916 GALNT2 HDL-C9 
Did not fit in 
i-plex   No 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS2156552  18q21.1 47181668 LIPG HDL-C9 
Did not fit in 
i-plex   No 

RS2228671  19p13.2 11210912 LDLR TC4, LDL-C4  0.99 0.383 Yes 
RS2240466  7q11.23 72856269 MLXIPL TG4  0.98 1.000 Yes 

RS2247056 6p21.33 31373469 HLA TG5 
No PCR 
product 0.00  No 

RS2254287  6p21.32 33143948 B3GALT4 LDL-C9 
Did not fit in 
i-plex   No 

RS2255141 10q25.2 113923876 GPAM TC5  1.00 0.045 Yes 
RS2271293  16q22.1 67902070 CTCF. PRMT8 HDL-C4, 10  0.95 0.766 Yes 
RS2277862 20q11.22 33616196 ERGIC3 TC5  1.00 0.013 Yes 
RS2290159 3p25.2 12603920 RAF1 TC5  0.99 0.397 Yes 
RS2293889 8q23.3 116668374 TRPS1 HDL-C5  0.99 0.708 Yes 
RS2304130  19p13.11 19789528 NCAN TC4  0.99 0.393 Yes 
RS2338104 12q24.11 109895168 MMAB.MVK HDL-C9, 10  0.96 0.130 Yes 
RS2412710 15q15.1 40471079 CAPN3 TG5  1.00 0.624 Yes 
RS2479409 1p32.3 55277238 PCSK9 LDL-C5  0.99 0.056 Yes 
RS2642442 1q41 219040186 MOSC1 TC5 Out of HWE 0.93 <0.001 No 
RS2650000  12q24.31 121388962 LEF1 LDL-C10, 27  0.97 0.032 Yes 
RS2652834 15q22.2 61183920 LACTB HDL5  0.99 0.362 Yes 
RS2737229 8q23.3 116717740 TRPS1 TC5  1.00 0.759 Yes 
RS2814944 6p21.31 34660775 C6orf106 HDL-C5  0.99 0.930 Yes 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS2814982 6p21.31 34654538 C6orf106 TC5  1.00 0.394 Yes 
RS2902940 20q12 38524901 MAFB TC5  0.99 0.069 Yes 
RS2923084 11p15.4 10345358 AMPD3 HDL-C5  0.99 0.610 Yes 
RS2925979 16q23.2 80092291 CMIP HDL-C5  0.99 0.045 Yes 
RS2929282 15q15.3 42033223 FRMD5 TG5  1.00 0.241 Yes 
RS2954029 8q24.13 126560154 TRIB1 TG10  0.98 0.159 Yes 
RS2967605  19p13.2 8469738 ANGPTL4 HDL-C10 Out of HWE 0.93 <0.001 No 
RS2972146 2q36.3 226808942 IRS1 HDL-C5  1.00 0.155 Yes 

RS3136441 11p11.2 46699823 LRP4 
HDL-C5 Did not fit in 

i-plex   No 
RS3177928 6p21.32 32520413 HLA TC5 Out of HWE 0.99 <0.001 No 
RS3757354 6p22.3 16235386 MYLIP LDL-C5  1.00 0.839 Yes 
RS3764261 16q13 55550825 CETP HDL-C5  0.99 1.000 Yes 

RS3846662  5q13.3 74651084 HMGCR TC4 
Success-rate 
to low 0.86  No 

RS3846663  5q13.3 74655726 HMGCR LDL-C10 
in LD with 
rs3846662   No 

RS3890182  9q31.1 107647655 ABCA1 
HDL-C26 in LD with 

rs3905000   No 
RS3905000  9q31.1 107657070 ABCA1 HDL-C4  0.95 0.007 Yes 
RS4129767 17q25.3 73915579 PGS1 HDL-C5  0.99 0.499 Yes 
RS4148008 17q24.2 64386889 ABCA8 HDL-C5  0.99 0.310 Yes 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS4149268  9q31.1 107647220 ABCA1 
HDL-C9 Did not fit in 

i-plex   No 
RS4299376 2p21 43926080 ABCG5/8 LDL-C5  0.97 0.870 Yes 
RS4420638 19q13.32 50114786 APOE LDL-C10 Out of HWE 0.95 <0.001 No 
RS4660293 1p34.3 39800767 PABPC4 HDL-C5  0.98 0.903 Yes 
RS4731702 7q32.3 130083924 KLF14 HDL-C5  0.98 0.084 Yes 

RS4759375 12q24.31 122362191 SBNO1 

HDL-C5 No primer 
design 
possible   No 

RS4765127 12q24.31 123026120 ZNF664 HDL-C5  0.99 0.077 Yes 

RS4775041  15q22.1 58674695 LIPC 
HDL-C9, TG9 Did not fit in 

i-plex   No 
RS4846914 1q42.13 228362314 GALNT2 HDL-C10  0.95 0.777 Yes 
RS4939883  18q21.1 47167214 LIPG HDL-C4, 10  0.93 0.495 Yes 

RS5756931 22q13.1 36875979 PLA2G6 TG5 
Success-rate 
to low 0.89  No 

RS6029526 20q12 39106032 TOP1 LDL-C5  0.99 0.238 Yes 

RS6065906 20q13.12 43987422 PLTP 
HDL-C5 No PCR 

product 0.00  No 

RS6102059  20q12 39228784 MAFB LDL-C10 

No primer 
design 
possible   No 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS6450176 5q11.2 53333782 ARL15 HDL-C5  0.99 0.081 Yes 
RS6511720 19p13.2 11063306 LDLR LDL-C10  0.98 0.017 Yes 
RS6544713  2p21 44073881 ABCG8 LDL-C10  0.97 0.870 Yes 
RS6754295  2p24.1 21206183 APOB TG4  0.97 0.621 Yes 
RS6756629  2p21 44065090 ABCG5 TC4  0.99 0.345 Yes 
RS6882076 5q33.3 156322875 TIMD4 TC5  1.00 0.846 Yes 
RS6987702  8q24.13 126504726 TRIB1 TC4  0.99 1.000 Yes 
RS7134375 12p12.2 20365025 PDE3A HDL-C5  1.00 0.116 Yes 

RS7134594 12q24.11 108484576 MVK 
HDL-C5 Did not fit in 

i-plex   No 

RS7206971 17q21.32 42780114 OSBPL7 LDL-C5 
Did not fit in 
i-plex   No 

RS7240405  18q21.1 45413088 LIPG 
HDL-C30 In LD with 

RS4939883   No 

RS7241918 18q21.1 45414951 LIPG 
HDL-C5 In LD with 

RS4939883   No 
RS7255436 19p13.2 8339196 ANGPTL4 HDL-C5  0.99 0.022 Yes 
RS7395662  11p11.2 48518893 MADD. FOLH1 HDL-C4  0.98 0.061 Yes 
RS7515577 1p22.1 92782026 EVI5 TC5  1.00 0.750 Yes 
RS7557067  2p24.1 21208211 APOB TG10  0.97 0.667 Yes 
RS7570971 2q21.3 135554376 RAB3GAP1 TC5  1.00 0.011 Yes 
RS7819412  8p23.1 11045161 XKR6. AMAC1L2 TG10  0.97 0.964 Yes 



Genetic risk prediction of CHD 

167 
 

Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS7941030 11q24.1 122027585 UBASH3B TC5  1.00 0.474 Yes 
RS8017377 14q12 23953727 NYNRIN LDL-C5  1.00 0.892 Yes 

RS9411489 9q34.2 133184804 ABO LDL-C5 
Did not fit in 
i-plex   No 

RS9488822 6q22.1 116419586 FRK TC5  1.00 0.722 Yes 
RS9686661 5q11.2 55897543 MAP3K1 TG5  1.00 0.828 Yes 
RS9987289 8p23.1 9220768 PPP1R3B HDL-C5  0.99 0.337 Yes 

RS9989419  16q13 56985139 CETP 
HDL-C9, 30 Did not fit in 

i-plex   No 

RS10096633 8p21.3 19830921 LPL TG4, 27 
Did not fit in 
i-plex   No 

RS10128711 11p15.1 18589560 SPTY2D1 TC5 
Did not fit in 
i-plex   No 

RS10195252 2q24.3 165221337 COBLL1 TG5 
Abnormal 
cluster plot   No 

RS10401969 19p13.11 19268718 CILP2 TC10, LDL-C10  0.99 1.000 Yes 
RS10468017 15q21.3 58678512 LIPC HDL-C10  0.98 0.139 Yes 

RS10503669 8p21.3 19847690 LPL HDL-C9, TG9 
In LD with 
rs328   No 

RS10761731 10q21.2 64697616 JMJD1C TG5 
Did not fit in 
i-plex   No 

RS10889353 1p31.1 63118196 DOCK7 TC4  0.99 0.155 Yes 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS10903129 1p36.11 25768937 TMEM57 TC4  0.96 0.104 Yes 

RS11065987 12q24.12 110556807 BRAP TC5 
Did not fit in 
i-plex   No 

RS11136341 8q24.3 145115531 PLEC1 LDL-C5 
Did not fit in 
i-plex   No 

RS11206510 1p32.3 55496039 PCSK9 
LDL-C9, 10, MI 
(early onset)3  0.99 0.155 Yes 

RS11220462 11q24.2 125749162 ST3GAL4 LDL-C5 
Did not fit in 
i-plex   No 

RS11869286 17q12 37813856 STARD3 HDL-C5 
Did not fit in 
i-plex   No 

RS12272004 11q23.3 116603724 
APOA1, APOA4, 
APOA5, APOC3 LDL-C4, TG4    Yes 

RS12670798 7p15.3 21607352 DNAH11 TC5, LDL-C4    Yes 

RS12678919 8p21.3 19844222 LPL 
TG5, 10, HDL-
C10, LDL-C10    Yes 

RS12740374 1p13.3 109817590 
CELSR2, PSRC1, 

SORT1 LDL-C10    Yes 
SNPs selected for their association with anthropomorphic related traits 
RS6265     11p14.1 27679916 BDNF BMI31  0.94 0.888 Yes 
RS29941 
(rs29939) 19q13.11 39001372 KCTD15, CHST8 Weight31 

 
0.96 0.873 Yes 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS925946   11p14.1 27667202 BDNF BMI31  1.00 0.003 Yes 
RS987237   6p12.3 50803050 TFAP2B Adiposity32  1.00 1.000 Yes 

RS1121980  16q12.2 52366748 FTO BMI33 
No PCR 
product 0.00  No 

RS1558902  16q12.2 53803574 FTO WC34 Out of HWE 1.00 <0.001 No 
RS2568958  1p31.1 72765116 NEGR1 Weight31  0.97 0.962 Yes 
RS2605100  1q41 219644224 LYPLAL1 Adiposity32  0.99 0.017 Yes 

RS2844479  6p21.33 31572956 AIF1, NCR3 Weight31 
No PCR 
product 0.00  No 

RS3764261  16q13 56993324 CETP WC35  0.99 1.000 Yes 
RS6499640  16q12.2 53769677 FTO BMI31  0.96 0.401 Yes 
RS6548238  2p25.3 634905 TMEM18 BMI36  0.96 0.422 Yes 
RS7498665  16p11.2 28883241 SH2B1 BMI31, 36  0.97 0.094 Yes 
RS7561317  2p25.3 644953 TMEM18 BMI31  0.93 0.466 Yes 
RS7647305  3q27.2 185834290 SFRS10, ETV5, DGKG BMI31  0.95 0.421 Yes 

RS7826222  8q23.1 110184852 TRHR WC32 
No PCR 
product 0.00  No 

RS9930506 16q12.2 52387966 FTO BMI15, 31 
In LD with 
rs8050136   No 

RS10146997 14q31.1 79945162 NRXN3 WC34  1.00 0.385 Yes 
RS10838738 11p11.2 47663049 MTCH2 BMI36  0.95 0.313 Yes 
RS10913469 1q25.2 177913519 SEC16B, RASAL2 Weight31  0.93 0.049 Yes 
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Selected 
SNP  
(proxy SNP) 

Locus BP position Candidate genes Trait Reason not 
(successfully) 
genotyped  

Succes 
rate 

P-
value 
HWE 

Succesfully 
genotyped 

RS10938397 4p12 45182527 GNPDA2 BMI36  0.95 0.005 Yes 
RS11084753 19q13.11 34322137 KCTD15 BMI36  0.94 0.874 Yes 
RS12970134 18q21.32 57884750 MC4R WC31  0.96 0.952 Yes 

RS17782313 18q21.32 56002077 MC4R Obesity33, 36 
In LD with 
rs17782313   No 
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Table s2. Weights for the SNPs selected for their association with CHD. The weights are based on the log odds ratio as published in 
Schunker et al. 2011 or Peden et al 2011. 
 

  
SNP 

  
RA 

Subcohort Cases     

N RAF N RAF OR 
Weighting 

factor* Source 
RS107572781 G        1832 0.49 623 0.55 1.29 1.00 Schunkert et al. (2011) 
RS10953541 C        1902 0.76 641 0.75 1.08 0.30 Peden et al. (2011) 
RS11206510 T        1881 0.81 632 0.81 1.08 0.30 Schunkert et al. (2011) 
RS1122608  G        1887 0.76 640 0.76 1.14  0.51 Schunkert et al. (2011) 
RS11556924 C        1902 0.60 641 0.64 1.09 0.34 Schunkert et al. (2011) 
RS12190287 C        1901 0.64 641 0.65 1.08 0.30 Schunkert et al. (2011) 
RS12413409 G        1901 0.92 641 0.90 1.12 0.45 Schunkert et al. (2011) 
RS12526453 C        1865 0.66 616 0.65 1.10  0.37 Schunkert et al. (2011) 
RS12936587 G        1900 0.56 641 0.58 1.07  0.27 Schunkert et al. (2011) 
RS1412444  A        1900 0.33 639 0.35 1.09 0.34 Peden et al. (2011) 
RS17114036 A        1890 0.91 635 0.92 1.17  0.62 Schunkert et al. (2011) 
RS1746048  C        1838 0.86 622 0.87 1.09  0.34 Schunkert et al. (2011) 
RS17465637 C        1880 0.73 636 0.75 1.14  0.51 Schunkert et al. (2011) 
RS17609940 G        1897 0.81 637 0.81 1.07 0.27 Schunkert et al. (2011) 
RS216172   G        1898 0.35 637 0.35 1.07  0.27 Schunkert et al. (2011) 
RS25050832 C        1897 0.41 637 0.43 1.05 0.19 Schunkert et al. (2011) 
RS2895811  C        1901 0.41 641 0.41 1.07 0.27 Schunkert et al. (2011) 
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RS3825807  T        1901 0.58 641 0.57 1.08  0.30 Schunkert et al. (2011) 
RS4380028  G        1902 0.61 641 0.6 1.07 0.27 Peden et al. (2011) 
RS46522    T        1901 0.54 642 0.55 1.06  0.23 Schunkert et al. (2011) 
RS4773144  G        1901 0.45 642 0.46 1.07  0.27 Schunkert et al. (2011) 
RS579459   C        1890 0.23 633 0.23 1.10  0.37 Schunkert et al. (2011) 
RS646776   A        1887 0.79 641 0.82 1.11  0.41 Schunkert et al. (2011) 
RS6725887  G        1811 0.13 611 0.13 1.14  0.51 Schunkert et al. (2011) 
RS6922269  A        1866 0.26 615 0.27 1.06 0.23 Schunkert et al. (2011) 
RS964184   C        1880 0.14 639 0.14 1.13  0.48 Schunkert et al. (2011) 
RS974819   A        1901 0.31 642 0.31 1.07 0.27 Peden et al. (2011) 
RS9818870  T        1869 0.17 638 0.16 1.12  0.45 Schunkert et al. (2011) 
RS9982601  T        1859 0.13 626 0.15 1.18  0.65 Schunkert et al. (2011) 
1 Instead of rs10757278, rs4977574 was selected for replication in Schunkert et al.  
2 Instead of rs2505083, rs7920682 was selected for replication in Schunkert et al. 
* The weighting factor is determined by dividing the log odds ratio of a SNP by the log odds ratio of rs10757278 
(the SNP with the highest log odds ratio). 
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Table s3. . The association between the 179 successfully genotyped SNPs and incident CHD in the CAREMA study. 

  
SNP 

  
RA 

Subcohort Cases CHD CHD adjusted* 

N RAF N RAF HR (95% CI) P HR (95% CI) P 
SNPs selected for their association with coronary artery diseases 
RS10757278 G        1832 0.49 623 0.55 1.34 (1.17-1.53) <0.001 1.29 (1.05-1.59) 0.015 
RS10953541 C        1902 0.76 641 0.75 0.98 (0.84-1.14) 0.779 0.87 (0.77-0.99) 0.028 
RS11206510 T        1881 0.81 632 0.81 0.99 (0.83-1.17) 0.861 1.02 (0.88-1.17) 0.840 
RS1122608  G        1887 0.76 640 0.76 1.01 (0.87-1.18) 0.869 1.01 (0.89-1.15) 0.919 
RS11556924 C        1902 0.60 641 0.64 1.16 (1.01-1.32) 0.033 1.23 (0.93-1.63) 0.155 
RS12190287 C        1901 0.64 641 0.65 1.05 (0.92-1.21) 0.451 1.06 (0.94-1.20) 0.323 
RS12413409 G        1901 0.92 641 0.90 0.88 (0.69-1.14) 0.334 0.86 (0.71-1.04) 0.124 
RS12526453 C        1865 0.66 616 0.65 0.92 (0.80-1.06) 0.255 1.00 (0.89-1.13) 0.991 
RS12936587 G        1900 0.56 641 0.58 1.08 (0.95-1.24) 0.247 1.04 (0.93-1.17) 0.505 
RS1412444  A        1900 0.33 639 0.35 1.07 (0.93-1.24) 0.325 1.15 (0.77-1.73) 0.489 
RS17114036 A        1890 0.91 635 0.92 1.06 (0.85-1.33) 0.598 0.99 (0.80-1.23) 0.924 
RS1746048  C        1838 0.86 622 0.87 1.01 (0.82-1.23) 0.960 1.05 (0.88-1.25) 0.568 
RS17465637 C        1880 0.73 636 0.75 1.14 (0.99-1.32) 0.064 1.04 (0.92-1.17) 0.535 
RS17609940 G        1897 0.81 637 0.81 0.99 (0.83-1.17) 0.864 0.88 (0.63-1.24) 0.459 
RS216172   G        1898 0.35 637 0.35 1.02 (0.88-1.17) 0.809 1.09 (0.93-1.28) 0.286 
RS2505083  C        1897 0.41 637 0.43 1.07 (0.93-1.23) 0.322 1.00 (0.89-1.12) 0.942 
RS2895811  C        1901 0.41 641 0.41 0.99 (0.87-1.14) 0.905 0.99 (0.89-1.11) 0.864 
RS3825807  T        1901 0.58 641 0.57 1.00 (0.87-1.14) 0.956 1.04 (0.93-1.17) 0.447 
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RS4380028  G        1902 0.61 641 0.60 0.99 (0.87-1.13) 0.890 1.06 (0.95-1.18) 0.337 
RS46522    T        1901 0.54 642 0.55 1.10 (0.96-1.26) 0.168 1.07 (0.94-1.21) 0.327 
RS4773144  G        1901 0.45 642 0.46 0.99 (0.87-1.13) 0.846 0.99 (0.88-1.11) 0.818 
RS579459   C        1890 0.23 633 0.23 0.97 (0.84-1.13) 0.727 0.99 (0.87-1.12) 0.821 
RS646776   A        1887 0.79 641 0.82 1.27 (1.09-1.47) 0.002 1.25 (1.07-1.45) 0.004 
RS6725887  G        1811 0.13 611 0.13 1.05 (0.85-1.30) 0.637 1.08 (0.90-1.29) 0.395 
RS6922269  A        1866 0.26 615 0.27 1.06 (0.91-1.24) 0.431 1.07 (0.92-1.25) 0.386 
RS964184   C        1880 0.14 639 0.14 0.96 (0.8-1.170) 0.704 0.80 (0.56-1.14) 0.215 
RS974819   A        1901 0.31 642 0.31 1.02 (0.88-1.18) 0.812 0.96 (0.85-1.09) 0.552 
RS9818870  T        1869 0.17 638 0.16 0.94 (0.79-1.11) 0.452 0.92 (0.79-1.07) 0.285 
RS9982601  T        1859 0.13 626 0.15 1.19 (0.96-1.49) 0.114 1.16 (0.98-1.37) 0.092 
SNPs selected for their association with blood pressure 
RS1004467  T        1894 0.91 639 0.90 0.89 (0.70-1.14) 0.347 0.83 (0.69-0.99) 0.038 
RS11014166 A        1895 0.66 639 0.68 1.05 (0.91-1.20) 0.526 1.14 (1.00-1.30) 0.051 
RS11191548 T        1899 0.92 641 0.91 0.92 (0.72-1.18) 0.523 0.90 (0.75-1.09) 0.282 
RS12946454 T        1900 0.26 642 0.24 0.91 (0.79-1.06) 0.218 0.83 (0.68-1.03) 0.084 
RS1378942  G        1899 0.32 642 0.34 1.11 (0.96-1.28) 0.163 1.00 (0.88-1.12) 0.937 
RS1530440  C        1898 0.18 641 0.18 1.05 (0.88-1.25) 0.622 0.89 (0.77-1.03) 0.112 
RS16948048 G        1900 0.38 642 0.39 1.06 (0.93-1.22) 0.390 1.09 (0.97-1.23) 0.132 
RS16998073 T        1899 0.29 641 0.31 1.06 (0.91-1.23) 0.460 1.08 (0.95-1.22) 0.250 
RS17367504 A        1897 0.15 642 0.15 1.03 (0.85-1.26) 0.735 1.15 (0.98-1.36) 0.082 
RS2681472  T        1900 0.84 642 0.84 0.93 (0.77-1.13) 0.464 0.85 (0.73-0.99) 0.038 
RS3184504  T        1900 0.51 642 0.50 0.98 (0.86-1.12) 0.731 0.92 (0.81-1.06) 0.241 
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RS381815   T        1894 0.26 639 0.28 1.16 (0.99-1.36) 0.075 1.22 (1.08-1.38) 0.002 
RS9815354  A        1896 0.17 641 0.17 0.99 (0.83-1.17) 0.865 1.06 (0.92-1.22) 0.437 
SNPs selected for their association with diabetes type II 
RS10811661 T        1874 0.81 622 0.80 0.94 (0.79-1.12) 0.491 0.91 (0.76-1.08) 0.284 
RS10923931 A        1821 0.09 620 0.10 1.16 (0.90-1.50) 0.253 1.14 (0.81-1.59) 0.455 
RS10946398 C        1861 0.31 624 0.31 1.01 (0.88-1.17) 0.867 1.06 (0.94-1.20) 0.316 
RS1111875  C        1861 0.60 622 0.61 1.03 (0.89-1.18) 0.726 1.11 (0.81-1.53) 0.512 
RS12779790 G        1818 0.18 613 0.19 1.04 (0.87-1.25) 0.655 1.08 (0.92-1.25) 0.350 
RS13266634 C        1871 0.69 620 0.69 1.02 (0.88-1.18) 0.838 0.99 (0.87-1.12) 0.881 
RS2237892  C        1831 0.94 619 0.94 0.94 (0.70-1.27) 0.703 0.80 (0.59-1.09) 0.153 
RS2237897  C        1848 0.96 613 0.96 0.98 (0.69-1.39) 0.913 0.89 (0.54-1.45) 0.635 
RS4402960  A        1880 0.32 638 0.34 1.12 (0.97-1.30) 0.124 1.11 (0.98-1.25) 0.109 
RS4506565  T        1847 0.34 631 0.35 1.01 (0.88-1.17) 0.853 0.94 (0.72-1.22) 0.637 
RS4607103  C        1870 0.75 618 0.77 1.12 (0.97-1.30) 0.126 1.09 (0.96-1.24) 0.181 
RS4689388  A        1900 0.59 641 0.60 1.07 (0.94-1.23) 0.311 1.15 (0.89-1.49) 0.291 
RS4712524  G        1838 0.31 617 0.32 1.04 (0.89-1.20) 0.643 1.09 (0.97-1.24) 0.152 
RS5215     G        1856 0.37 627 0.36 0.93 (0.81-1.06) 0.270 1.03 (0.92-1.16) 0.639 
RS5219     A        1789 0.36 608 0.36 0.94 (0.82-1.09) 0.417 1.06 (0.95-1.20) 0.305 
RS6931514  G        1843 0.27 621 0.28 1.02 (0.88-1.19) 0.801 1.09 (0.96-1.23) 0.174 
RS7578597  A        1869 0.89 632 0.89 1.03 (0.83-1.27) 0.806 1.05 (0.87-1.26) 0.608 
RS7961581  C        1836 0.30 623 0.31 1.08 (0.93-1.26) 0.295 1.04 (0.91-1.19) 0.541 
RS8050136  A        1815 0.36 622 0.40 1.19 (1.04-1.38) 0.014 1.20 (1.07-1.34) 0.002 
RS864745   T        1857 0.52 631 0.50 0.91 (0.79-1.04) 0.159 0.90 (0.80-1.02) 0.090 
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SNPs selected for their association with blood lipid levels 
RS10401969 A        1888 0.93 641 0.92 0.85 (0.64-1.14) 0.279 0.76 (0.44-1.33) 0.338 
RS1042034 A        1901 0.78 641 0.75 0.88 (0.74-1.04) 0.123 0.83 (0.73-0.94) 0.005 
RS10468017 C        1863 0.72 625 0.70 0.95 (0.81-1.10) 0.460 1.00 (0.88-1.13) 0.965 
RS1084651 T        1898 0.85 637 0.85 0.88 (0.72-1.08) 0.234 0.92 (0.77-1.08) 0.302 
RS10889352 A        1882 0.66 637 0.68 1.13 (0.98-1.30) 0.082 1.07 (0.95-1.21) 0.249 
RS10903129 G        1820 0.55 620 0.53 0.96 (0.84-1.10) 0.594 1.05 (0.93-1.17) 0.437 
RS11206510 T        1881 0.81 632 0.81 0.99 (0.83-1.17) 0.861 1.02 (0.88-1.17) 0.840 
RS1167998  T        1877 0.66 633 0.68 1.11 (0.97-1.28) 0.138 1.07 (0.95-1.21) 0.256 
RS12272004 A        1855 0.07 606 0.06 0.85 (0.66-1.09) 0.193 0.77 (0.60-0.99) 0.043 
RS1260326 T        1863 0.42 615 0.44 1.07 (0.93-1.23) 0.343 0.91 (0.72-1.15) 0.426 
RS12670798 C        1888 0.23 640 0.24 1.01 (0.86-1.17) 0.949 0.91 (0.80-1.04) 0.173 
RS12678919 A        1857 0.89 625 0.90 1.19 (0.96-1.46) 0.107 1.02 (0.84-1.24) 0.831 
RS12740374 C        1854 0.79 626 0.82 1.26 (1.08-1.47) 0.003 1.24 (1.07-1.43) 0.004 
RS12916 C        1896 0.43 632 0.41 0.96 (0.84-1.10) 0.562 0.96 (0.85-1.09) 0.528 
RS1495741 G        1902 0.23 641 0.24 1.05 (0.89-1.24) 0.534 1.09 (0.95-1.24) 0.233 
RS1501908  G        1845 0.63 634 0.66 1.10 (0.96-1.26) 0.194 1.11 (0.99-1.25) 0.085 
RS1532085  G        1883 0.62 638 0.60 0.93 (0.81-1.06) 0.276 0.95 (0.84-1.06) 0.355 
RS1532624  C        1860 0.57 620 0.57 1.00 (0.88-1.15) 0.973 0.94 (0.83-1.05) 0.270 
RS1564348 T        1873 0.85 628 0.86 1.05 (0.88-1.25) 0.624 1.13 (0.97-1.32) 0.123 
RS157580   A        1844 0.62 630 0.63 1.01 (0.88-1.17) 0.842 0.99 (0.88-1.12) 0.837 
RS1689800 G        1893 0.37 637 0.37 1.00 (0.87-1.15) 0.998 0.93 (0.83-1.04) 0.225 
RS17216525 C        1846 0.92 633 0.91 1.02 (0.80-1.29) 0.901 0.97 (0.79-1.18) 0.729 
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RS174547   G        1871 0.33 618 0.33 1.05 (0.90-1.21) 0.555 1.04 (0.62-1.72) 0.896 
RS174570   C        1793 0.86 602 0.86 0.95 (0.78-1.16) 0.591 1.02 (0.86-1.20) 0.832 
RS1800562 G        1901 0.94 641 0.94 1.03 (0.79-1.34) 0.822 0.77 (0.62-0.96) 0.020 
RS1800588  T        1890 0.23 640 0.22 0.97 (0.82-1.13) 0.675 1.00 (0.87-1.16) 0.961 
RS1800961  T        1857 0.03 621 0.03 1.15 (0.72-1.85) 0.558 0.80 (0.30-2.14) 0.649 
RS181362 T        1890 0.21 634 0.24 1.17 (0.99-1.40) 0.071 1.24 (1.09-1.41) 0.001 
RS1883025  A        1836 0.25 609 0.25 1.02 (0.88-1.20) 0.766 0.91 (0.79-1.03) 0.140 
RS2000999 A        1901 0.20 642 0.24 1.32 (1.08-1.60) 0.006 1.21 (1.02-1.43) 0.027 
RS2068888 G        1896 0.55 637 0.54 0.96 (0.84-1.10) 0.568 0.86 (0.75-0.99) 0.034 
RS2072183 G        1890 0.23 635 0.22 1.01 (0.86-1.19) 0.900 0.96 (0.84-1.11) 0.582 
RS2075650  G        1859 0.14 624 0.15 1.01 (0.83-1.24) 0.893 1.00 (0.85-1.18) 1.000 
RS2081687 T        1901 0.35 641 0.37 1.10 (0.96-1.27) 0.176 1.13 (1.01-1.27) 0.036 
RS2083637  A        1874 0.74 622 0.75 1.01 (0.86-1.18) 0.933 0.90 (0.68-1.18) 0.433 
RS2228671  C        1883 0.88 640 0.89 1.22 (1.01-1.46) 0.037 1.16 (0.97-1.38) 0.101 
RS2240466  G        1873 0.90 621 0.89 0.91 (0.72-1.15) 0.412 0.95 (0.73-1.22) 0.670 
RS2255141 T        1902 0.30 641 0.32 1.06 (0.91-1.23) 0.450 1.12 (0.85-1.47) 0.425 
RS2271293  A        1817 0.87 620 0.87 1.02 (0.84-1.24) 0.837 0.93 (0.75-1.15) 0.503 
RS2277862 C        1901 0.85 642 0.83 0.90 (0.74-1.10) 0.317 0.97 (0.83-1.13) 0.697 
RS2290159 G        1895 0.80 637 0.80 0.93 (0.78-1.11) 0.440 0.88 (0.76-1.02) 0.078 
RS2293889 A        1890 0.41 635 0.41 1.01 (0.89-1.16) 0.853 1.00 (0.89-1.11) 0.958 
RS2304130  A        1886 0.91 640 0.91 1.01 (0.80-1.27) 0.933 0.93 (0.76-1.12) 0.426 
rs2241213 G        1834 0.47 623 0.45 0.95 (0.83-1.08) 0.444 0.99 (0.86-1.13) 0.860 
RS2412710 A        1901 0.02 641 0.03 1.08 (0.68-1.70) 0.758 0.82 (0.58-1.16) 0.251 
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RS2479409 G        1895 0.36 635 0.36 0.99 (0.86-1.13) 0.865 0.98 (0.88-1.10) 0.728 
RS2650000  A        1839 0.34 623 0.34 1.01 (0.88-1.17) 0.858 1.00 (0.89-1.13) 0.981 
RS2652834 A        1886 0.20 633 0.19 0.98 (0.83-1.16) 0.776 0.93 (0.80-1.08) 0.346 
RS2737229 T        1901 0.67 642 0.68 1.00 (0.87-1.15) 0.979 0.92 (0.79-1.09) 0.343 
RS2814944 T        1890 0.15 635 0.13 0.91 (0.76-1.09) 0.307 0.93 (0.77-1.11) 0.400 
RS2814982 G        1902 0.90 641 0.90 0.95 (0.75-1.19) 0.643 0.98 (0.81-1.19) 0.870 
RS2902940 A        1890 0.70 635 0.71 1.04 (0.90-1.19) 0.607 1.06 (0.61-1.85) 0.828 
RS2923084 G        1890 0.19 635 0.18 0.93 (0.79-1.09) 0.351 0.97 (0.84-1.12) 0.707 
RS2925979 T        1890 0.30 635 0.33 1.23 (1.05-1.44) 0.012 1.13 (0.93-1.38) 0.217 
RS2929282 A        1901 0.05 641 0.05 0.99 (0.74-1.33) 0.952 1.01 (0.79-1.30) 0.927 
RS2954029  A        1870 0.52 619 0.54 1.07 (0.94-1.23) 0.310 1.05 (0.94-1.18) 0.388 
RS2972146 T        1898 0.64 637 0.67 1.19 (1.05-1.36) 0.009 1.06 (0.94-1.19) 0.353 
RS328      C        1835 0.89 620 0.90 1.17 (0.95-1.44) 0.146 1.03 (0.84-1.26) 0.770 
RS3757354 C        1898 0.79 642 0.80 1.05 (0.89-1.23) 0.551 1.00 (0.86-1.17) 0.994 
RS3764261 C        1889 0.69 634 0.70 1.09 (0.95-1.25) 0.215 1.06 (0.94-1.20) 0.327 
RS3905000  T        1798 0.12 614 0.10 0.87 (0.72-1.06) 0.161 0.86 (0.54-1.39) 0.544 
RS4129767 G        1898 0.51 637 0.52 1.01 (0.89-1.16) 0.840 0.97 (0.86-1.09) 0.575 
RS4148008 C        1890 0.30 635 0.32 1.13 (0.97-1.31) 0.113 0.97 (0.85-1.10) 0.583 
rs6544713 T        1832 0.30 630 0.30 1.06 (0.91-1.23) 0.475 0.96 (0.85-1.08) 0.491 
RS439401 C        1838 0.66 602 0.65 0.99 (0.86-1.13) 0.827 0.98 (0.87-1.10) 0.678 
RS442177 T        1888 0.59 635 0.59 1.03 (0.90-1.18) 0.622 1.11 (0.99-1.24) 0.086 
RS4660293 C        1861 0.25 633 0.25 0.97 (0.83-1.13) 0.686 0.82 (0.72-0.94) 0.003 
RS471364   G        1841 0.12 612 0.13 1.08 (0.87-1.34) 0.464 1.08 (0.91-1.28) 0.369 
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RS4731702 C        1863 0.52 631 0.52 1.01 (0.88-1.15) 0.944 1.01 (0.91-1.13) 0.802 
RS4765127 G        1893 0.68 637 0.70 1.04 (0.89-1.20) 0.648 1.02 (0.88-1.17) 0.832 
RS4846914 G        1825 0.41 602 0.43 1.08 (0.94-1.25) 0.256 0.98 (0.86-1.11) 0.755 
RS492602 G        1899 0.44 640 0.45 1.05 (0.92-1.19) 0.517 1.04 (0.93-1.16) 0.483 
RS4939883  C        1777 0.84 602 0.86 1.15 (0.97-1.36) 0.106 1.20 (1.04-1.40) 0.015 
RS514230 T        1890 0.52 634 0.54 1.14 (1.00-1.31) 0.051 1.19 (0.94-1.51) 0.151 
RS581080 C        1897 0.19 636 0.19 1.01 (0.85-1.19) 0.938 0.97 (0.84-1.12) 0.639 
RS6029526 A        1888 0.47 632 0.46 0.97 (0.85-1.11) 0.690 1.01 (0.90-1.13) 0.925 
RS629301 A        1897 0.79 639 0.82 1.25 (1.07-1.45) 0.004 1.23 (1.06-1.42) 0.005 
RS6450176 T        1893 0.26 633 0.26 0.98 (0.85-1.14) 0.789 0.86 (0.76-0.98) 0.019 
RS645040 T        1890 0.79 634 0.79 0.98 (0.83-1.16) 0.808 0.91 (0.80-1.05) 0.195 
RS646776   A        1887 0.79 641 0.82 1.27 (1.09-1.47) 0.002 1.25 (1.07-1.45) 0.004 
RS6511720 G        1867 0.12 615 0.11 0.80 (0.67-0.95) 0.013 0.85 (0.71-1.01) 0.062 
RS6544713  T        1832 0.30 630 0.30 1.06 (0.91-1.23) 0.475 0.96 (0.85-1.08) 0.491 
RS6754295  T        1839 0.76 632 0.74 0.92 (0.78-1.08) 0.294 0.85 (0.75-0.97) 0.016 
RS6756629  C        1888 0.94 641 0.93 0.97 (0.74-1.27) 0.817 0.81 (0.65-1.01) 0.057 
RS6882076 G        1900 0.63 641 0.66 1.11 (0.97-1.27) 0.138 1.13 (1.00-1.27) 0.044 
RS693      T        1874 0.48 620 0.48 1.01 (0.89-1.16) 0.860 0.93 (0.83-1.04) 0.191 
RS6987702  C        1890 0.72 641 0.75 1.16 (1.01-1.34) 0.038 1.19 (1.04-1.34) 0.008 
RS7134375 C        1901 0.59 641 0.60 1.01 (0.88-1.15) 0.912 0.88 (0.79-0.98) 0.019 
RS7255436 C        1897 0.49 640 0.51 1.05 (0.93-1.20) 0.439 1.10 (0.89-1.36) 0.375 
RS737337 C        1826 0.08 616 0.10 1.12 (0.87-1.45) 0.393 1.11 (0.92-1.33) 0.275 
RS7395662  G        1871 0.59 632 0.58 0.89 (0.77-1.02) 0.091 0.88 (0.56-1.38) 0.574 
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RS7515577 T        1901 0.77 642 0.78 1.05 (0.90-1.23) 0.569 1.03 (0.90-1.18) 0.691 
RS7557067  A        1853 0.76 620 0.74 0.92 (0.79-1.08) 0.329 0.87 (0.76-0.99) 0.029 
RS7570971 A        1901 0.41 641 0.44 1.09 (0.95-1.24) 0.217 1.14 (1.02-1.27) 0.019 
RS7679     C        1807 0.20 622 0.19 1.02 (0.85-1.21) 0.869 1.04 (0.90-1.20) 0.595 
RS780093 T        1860 0.41 628 0.44 1.11 (0.96-1.27) 1.530 0.95 (0.85-1.07) 0.426 
RS7819412  C        1866 0.51 612 0.49 0.93 (0.81-1.06) 0.271 0.93 (0.82-1.04) 0.194 
RS7941030 C        1901 0.38 642 0.39 1.03 (0.89-1.18) 0.725 0.96 (0.86-1.07) 0.463 
RS8017377 A        1901 0.46 642 0.46 0.99 (0.86-1.13) 0.855 0.92 (0.82-1.03) 0.158 
RS838880 A        1901 0.69 641 0.71 1.03 (0.90-1.19) 0.643 1.01 (0.89-1.14) 0.890 
RS9488822 T        1899 0.67 640 0.67 1.00 (0.87-1.15) 0.990 1.09 (0.97-1.23) 0.149 
RS964184 C        1880 0.14 639 0.14 0.96 (0.80-1.17) 0.704 0.80 (0.56-1.14) 0.215 
RS9686661 T        1902 0.19 641 0.20 1.08 (0.91-1.29) 0.378 1.15 (1.00-1.32) 0.050 
RS9987289 A        1896 0.07 639 0.07 0.88 (0.69-1.11) 0.274 0.68 (0.53-0.88) 0.003 
SNPs selected for their association with anthropomorphic related traits 
RS10146997 G        1900 0.19 642 0.21 1.11 (0.93-1.32) 0.262 1.07 (0.93-1.23) 0.341 
RS10838738 C        1813 0.32 612 0.32 1.05 (0.91-1.22) 0.506 1.02 (0.90-1.16) 0.720 
RS10913469 G        1764 0.19 599 0.21 1.19 (0.98-1.44) 0.081 1.29 (1.10-1.51) 0.001 
RS10938397 G        1810 0.43 615 0.42 0.94 (0.83-1.08) 0.371 0.96 (0.86-1.07) 0.478 
RS11084753 G        1794 0.68 609 0.67 0.94 (0.81-1.09) 0.389 0.81 (0.70-0.94) 0.004 
RS1260326  T        1863 0.42 615 0.44 1.07 (0.93-1.23) 0.343 0.91 (0.72-1.15) 0.426 
RS12970134 A        1839 0.26 621 0.28 1.10 (0.94-1.29) 0.239 1.01 (0.89-1.15) 0.833 
RS2568958  A        1854 0.61 622 0.61 0.96 (0.84-1.11) 0.572 0.95 (0.83-1.10) 0.495 
RS2605100  G        1895 0.70 639 0.71 1.04 (0.90-1.19) 0.616 1.10 (0.98-1.24) 0.115 
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rs29939 G        1837 0.69 615 0.68 0.91 (0.78-1.06) 0.212 0.79 (0.66-0.93) 0.006 
RS3764261  C        1889 0.69 634 0.70 1.09 (0.95-1.25) 0.215 1.06 (0.94-1.20) 0.327 
RS6265     G        1792 0.79 612 0.78 0.91 (0.76-1.08) 0.267 0.99 (0.86-1.12) 0.825 
RS6499640  G        1841 0.57 614 0.57 1.03 (0.89-1.18) 0.728 1.04 (0.93-1.16) 0.551 
RS6548238  C        1831 0.83 618 0.82 0.96 (0.80-1.16) 0.694 0.91 (0.79-1.06) 0.225 
RS7498665  G        1859 0.36 626 0.38 1.06 (0.92-1.22) 0.455 1.04 (0.90-1.21) 0.562 
RS7561317  G        1767 0.83 596 0.82 0.98 (0.82-1.18) 0.858 0.93 (0.80-1.09) 0.368 
RS7647305  G        1824 0.81 602 0.80 1.01 (0.85-1.20) 0.902 0.97 (0.84-1.12) 0.671 
RS8050136  A        1815 0.36 622 0.40 1.19 (1.04-1.38) 0.014 1.20 (1.07-1.34) 0.002 
RS925946   T        1896 0.28 641 0.30 1.14 (0.98-1.32) 0.091 1.29 (1.10-1.51) 0.002 
RS987237   G        1899 0.19 641 0.18 0.95 (0.81-1.12) 0.561 0.96 (0.83-1.12) 0.613 
SNP, single nucleotide polymorphism; BP, base pair; RA, risk allele; RAF, risk allele frequency; CHD, coronary heart 
disease; HR, hazard ratio; CI, confidence interval; P, P-value; MI, myocardial infarction; CAD, coronary artery disease  
* Adjusted for sex, current smoking, systolic blood pressure, total cholesterol, HDL cholesterol, body mass index,  diabetes 
and family history of MI, age was used as the time scale variable 
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Table s4. Information about the subset of SNPs, their coefficients and the appropriate weighting factors. This subset of SNPs was selected 
using penalized regression (lasso) method. 
 

SNP Locus Nearby genes Coefficient weighting 
factor* 

Previously 
associated 

with: 
rs10757278 9p21.3 CDKN2A, CDKN2B 0.159 1.000 CHD 
rs2925979 16q23.2 CMIP 0.066 0.414 HDL 
rs6882076 5q33.3 TIMD4 0.006 0.039 TC 
rs2954029 8q24.13 TRIB1 0.001 0.007 TG 
rs6987702 8q24.13 TRIB1 0.011 0.067 TC 
rs10889352 1p31.1 DOCK7 0.023 0.142 TC 
rs2972146 2q36.3 IRS1 0.050 0.316 HDL-C 
rs11556924 7q32.2 ZC3HC1 0.031 0.198 CAD 
rs514230 1q42.3 IRF2BP2 0.021 0.135 TC 
rs8050136 16q12.2 FTO 0.063 0.394 DM2, BMI 
rs181362 22q11.21 UBE2L3 0.015 0.096 HDL 
rs646776 1p13.3 CELSR2, PSRC1, 

SORT1 
0.065 0.406 MI, LDL-C 

rs925946 11p14.1 BDNF 0.022 0.136 BMI 
rs2000999 16q22.2 HPR 0.128 0.804 TC 
* The weighting factor is set to 1 for the SNP with the highest coefficient 
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Table s5a. Reclassification of subjects when a Genetic Risk Score (GRS) composed of all 179 SNPs was used in addition to traditional risk 
factors (age, sex, current smoking, total cholesterol, HDL cholesterol, BMI, parental history of MI and self reported diabetes). 
 

Model  
without Overall GRS 

Model with Overall GRS 
 <2% 2%-<5% 5%-<10% ≥10% Total 

Incident cases 
<2% 61 1 0 0 62 
2%-<5% 1 128 4 0 133 
5%-<10% 0 1 126 2 129 
≥10% 0 0 4 106 110 
Total 62 130 134 108 434 
Non-cases 
<2% 1341 12 0 0 1353 
2%-<5% 13 389 7 0 409 
5%-<10% 0 11 157 4 172 
≥10% 0 0 3 75 78 
Total 1354 412 167 79 2012 
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Table s5b. Reclassification of subjects when a Genetic Risk Score (GRS) composed of the 153 CHD risk factor SNPs was used in addition 
to traditional risk factors (age, sex, current smoking, total cholesterol, HDL cholesterol, BMI, parental history of MI and self reported 
diabetes). 
 

Model without  
Risk Factor GRS 

Model with Risk Factor GRS 
 <2% 2%-<5% 5%-<10% ≥10% Total 

Incident cases 
<2% 61 1 0 0 62 
2%-<5% 0 131 2 0 133 
5%-<10% 0 1 126 2 129 
≥10% 0 0 1 109 110 
Total 61 133 129 111 434 
Non-cases 
<2% 1347 6 0 0 1353 
2%-<5% 8 398 3 0 409 
5%-<10% 0 2 169 1 172 
≥10% 0 0 1 77 78 
Total 1355 406 173 78 2012 
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Table s5c. Reclassification of subjects when a Genetic Risk Score (GRS) composed of the 29 CHD risk SNPs was used in addition to 
traditional risk factors (age, sex, current smoking, total cholesterol, HDL cholesterol, BMI, parental history of MI and self reported 
diabetes). 

 
Model  

without GRS 
Model with CHD GRS 

 <2% 2%-<5% 5%-<10% ≥10% Total 
Incident cases 
<2% 58 4 0 0 62 
2%-<5% 2 126 5 0 133 
5%-<10% 0 4 116 9 129 
≥10% 0 0 4 106 110 
Total 60 134 125 115 434 
Non-cases 
<2% 1330 23 0 0 1353 
2%-<5% 24 374 11 0 409 
5%-<10% 0 18 150 4 172 
≥10% 0 0 5 73 78 
Total 1354 415 166 77 2012 



Genetic risk prediction of CHD 

186 
 

 
 
Table s5d. Reclassification of subjects when a Genetic Risk Score (GRS) composed of the 29 weighted CHD risk SNPs was used in 
addition to traditional risk factors (age, sex, current smoking, total cholesterol, HDL cholesterol, BMI, parental history of MI and self 
reported diabetes). 
 

Model without  
Risk Factor GRS 

Model with Risk Factor GRS 
 <2% 2%-<5% 5%-<10% ≥10% Total 

Incident cases 
<2% 58 4 0 0 62 
2%-<5% 5 116 12 0 133 
5%-<10% 0 3 114 12 129 
≥10% 0 0 9 101 110 
Total 63 123 135 113 434 
Non-cases 
<2% 1326 27 0 0 1353 
2%-<5% 34 361 14 0 409 
5%-<10% 0 22 144 6 172 
≥10% 0 0 8 70 78 
Total 1360 410 166 76 2012 
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Table s5e. Reclassification of subjects when a weighted Genetic Risk Score (GRS) composed of SNPs selected using LASSO regression was used in 
addition to traditional risk factors (age, sex, current smoking, total cholesterol, HDL cholesterol, BMI, parental history of MI and self reported diabetes). 
 

Model  
without LASSO GRS 

Model with LASSO GRS 
 <2% 2%-<5% 5%-<10% ≥10% Total 

Incident cases 
<2% 47 15 0 0 62 
2%-<5% 14 97 22 0 133 
5%-<10% 0 15 83 31 129 
≥10% 0 1 17 92 110 
Total 61 128 122 123 434 
Non-cases 
<2% 1311 42 0 0 1353 
2%-<5% 88 289 32 0 409 
5%-<10% 0 47 113 12 172 
≥10% 0 0 17 61 78 
Total 1399 378 162 73 2012 
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Summary and synthesis 
With the success of recent genome-wide association (GWA) studies, many genuine 
common genetic variants underlying plasma lipid levels and coronary heart disease (CHD) 
risk have been identified in the past 5 years. These genetic loci, especially the novel ones, 
should provide the foundation to develop a broad biological understanding of lipid 
metabolism and CHD pathophysiology, and most importantly, to identify new therapeutic 
opportunities (drug targets) for the prevention and treatment of CHD. At the same time, 
these discoveries have been pursued to use genetic markers to usher in a new era of 
personalized (genetic) medicine by incorporating genetic information into formulas for risk 
prediction, including those to be used in the primary prevention of CHD. These new genetic 
markers, however, must be held to the same standards as used for other biomarkers before 
they could be brought to the general public and the patients. In order to explore these 
applications, this research was conducted focusing on lipid metabolism and genetic CHD 
risk prediction. 
 
Common genetic variants contributing to inter-individual variations in plasma lipid 
levels 
Chapter 2, 3, and 4 explored common genetic variants involved in plasma cholesterol 
metabolism using a pathway-driven approach. Common genetic variants in the genes along 
known cholesterol metabolic pathways, such as bile acid and bile metabolic pathways, the 
HDL cholesterol metabolic pathway, and the plasma total cholesterol metabolic pathway, 
are involved in determining plasma cholesterol levels. The modest effect associated with 
each individual variant, however, caused the amount of heritability explained by them in 
aggregate to be relatively small: 13 single nucleotide polymorphisms (SNPs) explained 4% 
of inter-individual variation in HDL cholesterol levels (Chapter 3), whereas 12 SNPs 
explained 6.9% of inter-individual variation in total cholesterol levels (Chapter 4). These 
observations are consistent with the results recently reported by the Global Lipids Genetics 
Consortium: 12.4% (total cholesterol), 12.2% (LDL cholesterol), 12.1% (HDL cholesterol), 
and 9.6% (triglycerides (TG)) of the total variance in each trait are explained by 121 loci in 
total. This corresponds to 25-30% of the genetic variance for each trait (1). One of the 
explanations for the limited heritability explained by identified common variants are the 
low-frequency variants (0.5% < minor allele frequency < 5%) and the rare variants (minor 
allele frequency < 0.5%) that are not well covered by current genotyping platforms (2). 
This has been demonstrated in a genetic study of plasma HDL levels long before the 
widespread use of GWA studies (3), and is further corroborated by later studies (4-6). At 
present, the emphasis has shifted towards the rare variant-common disease (trait) 
hypothesis. This is in accordance with the presence of a gradient of genetic effects that at 
one extreme, when the effects are the largest, result in single gene disorders with Mendelian 
pattern of inheritance, and at the other extreme, when the effects are modest or small, result 
in polygenic disorders with no simple pattern of inheritance (2, 7). The paradigm in the 
genetic studies of lipid traits is now shifting towards identification of low-frequency and 
rare variants with large effects (8). This shift has been partly accelerated by the availability 
of the next generation sequencing platforms, which enable identification of the low-
frequency and rare variants through whole exome and whole genome sequencing.  
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New insight in plasma lipid metabolism and CHD pathophysiology  
In chapter 5, we found that genetic variants in the FADS1 gene potentially interact with 
dietary polyunsaturated fatty acid (PUFA) intake to affect plasma cholesterol levels. A high 
intake of omega-3 PUFA was associated with increased plasma non-HDL cholesterol 
levels, consistent with increased plasma LDL cholesterol levels observed in fish oil 
intervention studies. Since the LDL receptor is the master regulator of plasma LDL 
cholesterol levels (9), increased LDL cholesterol levels could be due to hepatic 
downregulation of the LDL receptor gene (LDLR) in subjects with high omega-3 PUFA 
intakes. This is further confirmed by the findings described in Chapter 6 that the hepatic 
LDLR gene was significantly downregulated in fish oil treated mice. This study also 
confirmed PUFAs to be weak PPAR ligands. The increased plasma HDL cholesterol levels 
in the subjects with high PUFA intakes in Chapter 5 could be due to upregulated 
peroxisome proliferator-activated receptor (PPAR) mediated genes that are directly 
involved in HDL lipoprotein metabolism (10, 11). All the above may explain the changes in 
blood cholesterol levels upon PUFA intake observed in human studies.  
 
In Chapter 6, with a comparative transcriptomic and metabolic analysis of fenofibrate and 
fish oil treatment, we found that not only downregulation in the hepatic lipogenic pathway 
but also upregulation in hepatic fatty acid oxidation pathways are involved in lowering 
plasma TG levels upon fish oil treatment. The striking parallel between fenofibrate and fish 
oil in hepatic downregulation of blood coagulation and fibrinolysis pathways suggest that 
hepatic activation of PPARα is potentially one of the mechanisms responsible for 
anticoagulation effects of fish oil treatment observed in humans. However, definitive proof 
of this concept should come from well-powered human intervention studies on hepatic gene 
expression patterns with fish oil treatment.  
 
In Chapter 7, a protective effect of high δ-5 desaturase activity against CHD risk was 
observed, a finding which merits attention. Increased δ-5 desaturase activity contributes to 
the intracellular increase of EPA and especially arachidonic acid levels. Arachidonic acid 
and its derived eicosanoids have been regarded as negative factors in atherosclerosis, based 
on potential pro-inflammatory and pro-thrombotic activity. But arachidonic acid plays an 
important role in the normal growth and development of infants and protection of digestive 
tract epithelium (12). In non-fish eating populations, arachidonic acid is the predominant 
tissue long-chain PUFA, and could reach 80% of total PUFA (12, 13). Despite the potential 
pro-coagulant and pro-inflammatory effects of increased exposures of arachidonic acid and 
its derived eicosanoid metabolites (12, 14), there is no evidence of increased CHD risk with 
increased habitual arachidonic acid intake so far (15). Some of the lipoxygenation 
metabolites of arachidonic acid were even found to have anti-inflammatory and pro-
resolving actions (16). High dietary n-6 PUFA intakes or high plasma n-6 PUFA levels are 
associated with increased blood HDL cholesterol levels and reduced blood TG levels (15, 
17, 18). All these point to a potential cardiovascular protective effect of n-6 PUFAs. Thus, 
the long-term net effects of increased n-6 PUFA (including arachidonic acid) exposure in 
the pathogenesis of CHD remain to be destablished in future large-scale random controlled 
trials. The fact that increased DHA levels associated with increased δ-5 desaturase activity 
protected against CHD was consistent with the current established cardiovascular protective 
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effect of increased n-3 PUFA exposure, especially EPA and DHA. However, we could not 
rule out other unidentified pleiotropic cardiovascular protective effects of increased δ-5 
desaturase activity, for example in immune cells that are important in atherosclerotic CHD 
progression. 
 
Common genetic variants and CHD risk prediction 
In Chapter 8, we constructed several gene risk scores (GRS) for CHD that consisted of 
SNPs directly associated with CHD or intermediate CHD risk factors in GWA studies, and 
tested their relationship to incident CHD and their potential to improve risk prediction. The 
weighted GRS based on 29 CHD SNPs predicted future CHD independently from 
established traditional risk factors. However, the GRS based on 153 SNPs associated with 
intermediate risk factors and the GRS based on the total 179 SNPs did not. None of them 
improved risk discrimination. Risk classification of CHD, measured by the net 
reclassification index, improved only when the GRS based on the 29 CHD SNPs was used. 
These results are generally consistent with the results from other recent studies that took a 
similar approach as ours (19, 20). Although the final conclusions on GRS application could 
not be drawn at this early stage, several important insights into the future of CHD GRSs 
can be obtained. First, the predictive utility of GRSs that explain only a small fraction of 
the heritability will likely be marginal. To significantly improve risk prediction, genetic risk 
assessment will have to be significantly refined. It is suggested that approximately 20% of 
the heritability needs to be explained to provide similar discrimination as obtained from 
standard risk prediction model (21, 22). Second, incremental improvement by addition of a 
genetic biomarker must be shown beyond well-validated risk scores by use of standard 
metrics to evaluate their clinical performance. Therefore, useful genetic markers for risk 
prediction will need to be sufficiently uncorrelated with known CHD risk factors to provide 
independent information on risk (22). Third, it could be argued that any genetic marker 
should also provide incremental risk information over and above a model that incorporates 
family history, given that such information is often readily available (22).  
 
Future perspectives 
Since current (genome-wide) association studies have detected the common SNPs that 
explained the highest fraction of the genetic variance, the remaining variants to be found 
will explain exponentially smaller proportions of the remaining genetic variance. In view of 
the precipitous decline in the cost of DNA sequencing (23), approaches based on whole 
exome and whole genome sequencing are expected to dominate genetic studies of plasma 
lipid traits and CHD in the coming years. These studies will elucidate whether low-
frequency and rare variants account for a significant component of the “missing” 
heritability or alternative mechanism, such as epistasis, gene-environment interactions, 
and/or epigenetics might also play larger roles (2).  
 
The initial results of the 1000 genome projects indicate that each genome has about 250 to 
300 loss-of-function variants in the annotated genes and 50 to 100 variants previously 
implicated in inherited disorders (24). In addition, each genome has about 35 to 49 de novo 
germline base substitutions, a finding that indicates a germline mutation rate of 1×10-8 per 
base-pair per generation (24, 25). Furthermore, each genome has several large (>50 Kbp) 
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and about 100 heterozygous copy number variants covering about 3 Mbp (26-28). 
Collectively, the data indicate that humans differ in about 0.12% of their genomes, or about 
4 million DNA sequence variants, comprising about 3.5 million SNP and several hundred 
thousand structural variations (28). Empirical evidence demonstrated that both common 
and rare variants participated in determining common diseases (traits) (29-31). Each of us 
inherited some variants that confer risk and some variants that provide protection, and they 
will therefore have an overall risk around the average. A small proportion of us, however, 
will have inherited mainly variants that confer risk of developing the disease (32). Each of 
us is perhaps, genetically susceptible to certain disease across the whole disease spectrum 
(2, 32); but, most of us do not have overt diseases, either because the genetic variants act in 
a recessive way, or for other reasons such as the presence of modifier genes (33, 34) or 
absence of environmental triggers. 
 
Clinical significant improvements in predictive performance that are also cost-effective 
should represent the threshold for clinical utility of genetic risk prediction. Marginal 
improvements that meet an arbitrary threshold for statistical significance will not suffice for 
translation to clinical use. CHD may belong to one of the particular difficult phenotypes for 
genetic risk prediction. It may represent the culmination of multiple potential causal 
pathways (such as endothelial dysfunction, accelerated atherosclerosis, or thrombosis, etc), 
with each pathway having its own set of genetic associations. The allelic architecture of 
CHD in the general population is still not unresolved. If most of the genetic variation 
resides in rare variants not captured by HapMap SNPs, this variation would not be detected 
by GWA study. Current efforts to sequence the genome in large cohorts of individuals are 
under way (28), which will undoubtedly lead to uncovering many novel genetic variants 
that are biologically linked with disease. However, unless they identify rare variants with 
strong effects that also explain relatively large proportions of genetic variance, their value 
for risk prediction will likely be limited (2). So, at present, many questions remain about 
the feasibility of genetic risk prediction of CHD. Whether “we will get there” for genetic 
CHD prediction remains an open question (22). We hope, with a great understanding of the 
genetic architecture of CHD in the future, many challenges faced for genetic CHD risk 
prediction could be resolved. Now, clinicians should continue to inquire about family 
history for risk prediction, because this represents a simple, cheap, and useful risk factors 
for CHD that likely represents the net integrated effects from hundreds of genetic risk 
variants (that have yet to be discovered) with the accompanied “environmental” factors .  
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Summary 
 

Coronary heart disease (CHD) continues to be a leading cause of morbidity and mortality 
among adults worldwide. Deregulated lipid metabolism (dyslipidemia) that manifests as 
hypercholesterolemia, hypertriglyceridemia, low high-density-lipoprotein (HDL) 
cholesterol levels or a combination of those, is an established risk factor for CHD among 
other established risk factors. Linoleic acid (LA, C18:2n-6) and alpha-linolenic acid (ALA, 
C18:3n-3) are polyunsaturated fatty acids (PUFAs) that cannot be synthesized de novo by 
human or animal cells, and therefore must be obtained from the diet. From these two 
PUFAs, two series of long-chain PUFAs are formed; the omega-6 series that are 
synthesized from LA, and the omega-3 series that are from ALA. Formation of these long-
chain PUFAs involves a series of alternate desaturation and elongation processes. These 
PUFAs, especially, omega-3 PUFAs, have long been observed to reduce CHD risk. In 
contrast to the consistently observed cardiovascular protective effects of omega-3 PUFAs, 
accumulating evidence suggests a potential pro-atherogenic effect of omega-6 PUFAs, 
although this is still under debate.  
 
It has been estimated that genetic factors account for 26%-69% of inter-individual variation 
in CHD risk. These genetic factors are thought to influence CHD risk both directly and 
through effects on known CHD risk factors such as plasma lipid levels. The heritability of 
plasma lipid levels (total cholesterol, LDL cholesterol, HDL cholesterol, and TG) is 
estimated to be about 50% (ranging from 28%-78%). The completion of the Human 
Genome Project and the International Haplotype Map Project has made it possible to 
perform genome-wide screens for common DNA sequence variants that are associated with 
phenotypes of interest, including CHD and its risk factors. This approach has substantially 
expanded our knowledge of the genetic basis of CHD and plasma lipid levels, with 24 and 
95 unequivocal genetic loci recently identified to be associated with CHD and plasma lipid 
levels, respectively.  
 
Chapter 2, 3, and 4 explored common genetic variants involved in plasma cholesterol 
metabolism using a pathway-driven approach. For this we used data from 3575 men and 
women from the Doetinchem cohort, examined thrice over 11 years. They were genotyped 
on 384 single nucleotide polymorphisms (SNPs) across 251 genes in regulatory pathways 
that control fatty acid, glucose, cholesterol and bile salt homeostasis. Common genetic 
variants in the genes along known cholesterol metabolic pathways, such as bile acid and 
bile metabolic pathways, cholesterol biosynthetic pathway, VLDL metabolic pathway, 
LDL metabolic pathway, and HDL metabolic pathway, are involved in determining plasma 
cholesterol levels. The modest effect associated with each individual variant, however, 
caused the amount of heritability explained by them, in aggregate, to be relatively small. 
One of the explanations for the limited heritability explained by identified common variants 
is the fact that the low-frequency variants and the rare variants are not well covered by 
current genotyping platforms. In view of the precipitous decline in the cost of DNA 
sequencing, approaches based on whole exome and whole genome sequencing are expected 
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to dominate genetic studies of plasma lipid traits and CHD in the coming years. These 
studies will elucidate whether low-frequency and rare variants account for a significant 
component of the “missing” heritability or alternative mechanism, such as epistasis, gene-
environment interactions, and/or epigenetics might also play larger roles.  
 
In Chapter 5, the potential mechanism underlying the influence of dietary PUFA intake on 
plasma cholesterol levels is explored using a population-based genetic approach using the 
same data as described earlier. We found that genetic variants in the FADS1 gene 
potentially interact with dietary PUFA intake to affect plasma cholesterol levels. A high 
intake of omega-3 PUFA was associated with increased plasma non-HDL cholesterol 
levels, consistent with increased plasma LDL cholesterol levels observed in fish oil 
intervention studies. Increased LDL cholesterol levels could be due to hepatic 
downregulation of the LDL receptor gene (LDLR) in subjects with high omega-3 PUFA 
intakes. This is further confirmed by the findings described in Chapter 6 that the hepatic 
LDLR gene was significantly downregulated in fish oil treated mice. This study also 
confirmed PUFAs to be weak PPAR ligands. The increased plasma HDL cholesterol levels 
in the subjects with high PUFA intakes in Chapter 5 could be due to PPARs-mediated 
genes that are directly involved in HDL lipoprotein metabolism. All these may explain the 
changes in blood cholesterol levels upon PUFA intake observed in human studies.  
 
In Chapter 6, novel mechanistic insights on the TG-lowering and anti-thrombotic effects of 
fish oil (omega-3 PUFAs) treatment is explored in comparison with fenofibrate treatment in 
mice using a genomic approach. We found that not only downregulation in the hepatic 
lipogenic pathway but also upregulation in hepatic fatty acid oxidation pathways are 
involved in lowering plasma TG levels upon fish oil treatment. The striking parallel 
between fenofibrate and fish oil in hepatic downregulation of blood coagulation and 
fibrinolysis pathways suggest that hepatic activation of PPARα is potentially one of the 
mechanisms responsible for anticoagulation effects of fish oil treatment observed in 
humans.  
 
In Chapter 7, the genetic determinants of plasma PUFA levels, and potential effects of 
omega-6 and omega-3 PUFAs and desaturase enzyme activities on CHD risk are explored 
using a population-based genetic approach. Data were used from the CAREMA cohort that 
involved 15,236 middle-aged subjects and was followed up for a median of 12.1 years. For 
the first time, a protective effect of high δ-5 desaturase activity against CHD risk was 
observed. Increased δ-5 desaturase activity could contribute to the intracellular increase of 
EPA and especially arachidonic acid levels. Despite the potential pro-coagulant and pro-
inflammatory effects of increased exposures of arachidonic acid and its derived eicosanoid 
metabolites, there is no evidence of increased CHD risk with increased habitual arachidonic 
acid intake so far. Some of the oxygenated metabolites of arachidonic acid were found to 
have anti-inflammatory and pro-resolving actions. High dietary n-6 PUFA intakes or high 
plasma n-6 PUFA levels are associated with increased blood HDL cholesterol levels and 
reduced TG levels. All these point to a potential cardiovascular protective effect of n-6 
PUFAs. Thus, the long-term net effects of increased n-6 PUFA (including arachidonic acid) 
exposure in the pathogenesis of CHD remains to be delineated in future large-scale 
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randomized controlled trials. The fact that increased EPA and/or DHA levels associated 
with increased δ-5 desaturase activity protect against CHD is consistent with the current 
established cardiovascular protective effect of increased n-3 PUFA exposure, especially 
EPA and DHA.  
 
Individual genetic variants identified from the genome-wide association studies on the 
association with CHD and its risk factors, have been tested to improve CHD risk 
prediction. In Chapter 8, the current known common genetic variants associated with CHD 
risk factors (blood pressure, obesity, blood lipid levels, and type 2 diabetes) and CHD itself 
from published genome-wide association studies are examined to see whether they provide 
additional value in CHD risk prediction beyond established traditional CHD risk factors. 
We constructed several gene risk scores (GRS) for CHD that consisted of SNPs directly 
associated with CHD or intermediate CHD risk factors in GWA studies, and tested their 
relationship to incident CHD and their potential to improve risk prediction. The weighted 
GRS based on 29 CHD SNPs predicted future CHD independently from established 
traditional risk factors. However, the GRS based on 153 SNPs associated with intermediate 
risk factors and the GRS based on the total 179 SNPs did not. None of them improved risk 
discrimination. Risk classification of CHD, measured by the net reclassification index, 
improved only when the GRS based on the 29 CHD SNPs was used. These results are 
generally consistent with the results from other recent studies that took a similar approach 
as ours. However, the final conclusions on GRS application could not be drawn at this early 
stage. With a great understanding of the genetic architecture of CHD in the future, more 
research should be done on this topic. 
 
In conclusion, our studies in this thesis demonstrated that common genetic variants along 
the known candidate cholesterol metabolic pathways are involved in determining the 
plasma cholesterol levels. PUFAs are not only weak PPARα ligands, but also inhibit 
SREBPs’ activities. All these could explain part of the cardiovascular protective effects 
(increased HDL cholesterol levels and reduced TG levels) of PUFAs, increased LDL 
cholesterol levels upon fish oil treatment in humans, and potentially reduced CHD risk of 
high δ-5 desaturase activities. At present, many questions remain about the feasibility of 
genetic risk prediction of CHD. Clinicians should continue to inquire about family history 
of CHD for risk prediction, because this represents a simple, cheap, and useful risk factor 
for CHD that likely represents the net integrated effects from hundreds of genetic risk 
variants. 
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Samenvatting 
 
Hart en vaatziekte (HVZ) is wereldwijd bij volwassenen één van de meest voorkomende 
ziektes en een leidende doodsoorzaak. Een alom bekende risicofactor voor HVZ is een 
slecht functionerend vetzuurmetabolisme. Een slecht functionerend vetzuurmetabolisme 
wordt gekenmerkt door een hoog totaal cholesterol, hoge triglyceride niveaus, een laag 
HDL-cholesterol of door een combinatie van deze factoren. Linolzuur (C18:2n-6) en alfa-
linoleenzuur (C18:3n-3) zijn meervoudig onverzadigde vetzuren. Omdat deze meervoudig 
onverzadigde vetzuren niet door de menselijke of dierlijke cel zelf gesynthetiseerd kunnen 
worden, moeten deze vetzuren verkregen worden uit het dieet. Uit linolzuur en linoleenzuur 
worden, door een serie van afwisselende desaturatie en elongatie stappen, langketenige 
meervoudig onverzadigde vetzuren gevormd. Uit linolzuur worden omega-6 vetzuren 
gevormd en uit alfa-linoleenzuur worden omega-3 vetzuren gevormd. Van deze 
meervoudig onverzadigde vetzuren, in het bijzonder van de meervoudig onverzadigde 
omege-3 vetzuren, is het al langer bekend dat ze het risico op HVZ reduceren. De 
wetenschappelijke literatuur is eenduidig over het preventieve cardiovasculaire effect van 
omega-3 vetzuren. Voor omega-6 vetzuren daarentegen, alhoewel er over dit onderwerp 
nog steeds veel discussie is, is er opkomend bewijs voor een pro-atherogeen effect.  
 
De door genetische factoren te verklaren  inter-individuele variatie in HVZ risico wordt 
geschat op  26%-69%. Men denkt, dat deze genetische factoren HVZ zowel direct als 
indirect door een effect op HVZ risico factoren, zoals plasma lipiden niveaus, beïnvloeden. 
De erfelijkheid van plasma lipide niveaus (totaal cholesterol, LDL-cholesterol, HDL-
cholesterol en triglyceriden) wordt geschat op zo’n 50% (variërend van 28%-78%). De 
voltooiing van het “Human Genome Project” en het “International Haplotype Map Project” 
hebben het mogelijk gemaakt om genoom-wijde associatie studies naar veel voorkomende 
DNA varianten, die geassocieerd zijn met een bepaald fenotype, bijv. HVZ, uit te voeren. 
Deze genoom wijde benadering heeft geleid tot een substantiële toename in kennis over de 
genetische basis van HVZ en lipide niveaus.  
 
In hoofdstuk 2, 3 en 4 worden veelvoorkomende genetische varianten betrokken in het 
cholesterol metabolisme bestudeerd door middel van een mechanistische benadering. Voor 
deze studies maakten we gebruik van 3575 mannen en vrouwen uit het Doetinchem cohort. 
Deze mannen en vrouwen werden 3 keer in elf jaar onderzocht. In deze mannen en 
vrouwen werden 384 single nucleotide polymorphisms (SNPs) bepaald. Deze 384 SNPs 
waren gelokaliseerd in 251 genen, die vetzuur niveaus, glucose, cholesterol metabolisme en 
gal zout homeostasis reguleren. Veelvoorkomende genetische varianten in genen betrokken 
bij verschillende facetten van het cholesterol metabolisme, zoal het galzuur en gal 
metabolisme, de biosyntese van cholesterol, het VLDL metabolisme, het LDL 
metabolisme, het HDL metabolisme, zijn van invloed op cholesterol niveaus. Omdat het 
effect van alle individuele genetische varianten erg klein is verklaren alle bekende 
genetische varianten gezamenlijk maar een relatief klein deel van de erfelijkheid. Een van 
de mogelijke verklaringen voor de beperkte erfelijkheid van de reeds geïdentificeerde veel 
voorkomende genetische varianten, is dat de zeldzame genetische varianten niet goed 
gedekt zijn door de huidige genotyperings platforms. De drastische daling van de kosten 
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voor DNA sequencing in ogenschouw nemend wordt er verwacht dat sequencing gebaseerd 
op het gehele exoom of op het hete gehele genoom, de methode is die de genetische 
associatie studies naar lipiden niveaus en HVZ zal domineren in de komende jaren. Deze 
studies zullen ophelderen of lage frequente en zeldzame varianten verantwoordelijk zijn 
voor de significante component van “missende” erfelijkheid of dat een alternatief 
mechanisme, zoals epistasis, gen-omgevings interacties en/of epigenetica, misschien ook 
een rol speelt.  
 
In hoofdstuk 5 wordt het potentiele mechanisme verantwoordelijk voor de invloed van uit 
het dieet afkomstige meervoudig onverzadigde vetzuren op het cholesterol metabolisme 
bestudeerd met behulp van een populatie representatieve genetische benadering, gebruik 
makend van eerder beschreven data. We vonden dat genetische varianten in het FADS1 gen 
en uit het dieet afkomstige meervoudige onverzadige vetzuren, mogelijk een interactie 
effect laten zien op plasma cholesterol niveaus. Een hoge inneming van omega-3 
meervoudig onverzadige vetzuren was geassocieerd met een verhoogd plasma cholesterol 
niet zijnde HDL-cholesterol. Deze resultaten zijn consistent met de verhoogde plasma LDL 
cholesterol niveaus gevonden in visolie interventie studies. Verhoogde LDL cholesterol 
niveaus kunnen veroorzaakt worden door een neerwaartse regulatie in de lever van het LDL 
receptor gen (LDLR) in personen met hoge omega-3 meervoudig onverzadigde vetzuur 
inneming. Dit wordt verder bevestigd door de bevinding in hoofdstuk 6, dat het LDLR gen 
neerwaarts is gereguleerd inlevers van muizen die behandeld werden met visolie. Deze 
studie bevestigd ook dat meervoudig onverzadigde vetzuren zwakke liganden zijn voor 
PPAR. De verhoogde plasma HDL cholesterol niveaus in personen met een hoge 
meervoudig onverzadigde vetzuur inneming in hoofdstuk 5, kunnen veroorzaakt zijn door 
PPAR-gemedieerde genen, die betrokken zijn in het HDL lipoproteïne metabolisme. Dit 
alles zou de door meervoudig onverzadigde vetzuren geïnduceerde veranderingen in bloed 
cholesterol niveaus in mensen kunnen verklaren.  
 
In hoofdstuk 6 worden, gebruik makende van een genomics benadering nieuwe 
mechanistische inzichten omtrent trilglyceriden verlagende and antitrombotische effecten 
van een visolie (omega-3 meervoudig onverzadigde vetzuren) behandeling in vergelijking 
met een fenofibraat behandeling in muizen besproken. We vonden dat niet alleen de 
neerwaartse regulatie van de hepatische productie van vetzuren, maar ook de opwaartse 
regulatie van het hepatisch vetzuur oxidatie mechanisme, betrokken is bij de verlaging van 
plasma triglyceride niveaus door een visolie behandeling. Er bestaat een opvallende parallel 
tussen fenofibraat en visolie. Beide induceren namelijk een neerwaartse regulatie van bloed 
stollings- en fibrinolytische mechanismen in de lever. Dit suggereert dat de hepatische 
activatie van PPARά een van de mogelijke mechanisme is, dat verantwoordelijk is voor het 
antistollings effect van visolie gevonden in humane studies. 
 
In hoofstuk 7, worden de genetische determinanten van plasma meervoudig onverzadigde 
vetzuren en de potentiële effecten van omega-6 en omega-3 meervoudig onverzadigde 
vetzuren en desaturase enzym activiteiten op HVZ beschreven, gebruik makend van een 
populatie representatieve genetische benadering. De gebruikte data waren afkomstig van 
het CAREMA cohort, een studie met 15,236 mensen van middelbare leeftijd, die gevolgd 



Summary 

208 

zijn gedurende een mediane tijd van 12.1 jaar. Voor het eerst, is er een beschermend effect 
van een hoge δ-5 desaturase activiteit op HVZ gevonden. Een verhoogde δ-5 desaturase 
activiteit kan bijdrage aan de intracellulaire verhoging van EPA en in het bijzonder, 
arachidonzuur niveaus. Ondanks de potentiele stollings en pro-inflammatoire effecten van 
een verhoogde blootstelling aan arachidonzuur en van arachidonzuur afgeleide 
metabolieten, is er tot nu toe geen bewijs, dat een verhoogde dagelijkse inname van 
arachidonzuur geassocieerd is met HVZ. Enkele van de van arachidonzuur afgeleide 
geoxideerde metabolieten hebben een anti-inflammatoir effect en een verhoogd oplossend 
vermogen. Een hoge inneming van uit de voeding afkomstige n-6 meervoudig 
onverzadigde vetzuren of van hoge plasma n-6 meervoudig onverzadigde vetzuur niveaus 
zijn geassocieerd met een verhoogd HDL-cholesterol en met gereduceerde triglyceride 
niveaus. Al het bewijs wijst in de richting van een potentieel cardiovasculair beschermend 
effect van n-6 meervoudig onverzadigde vetzuren. Daarom is het van belang het netto lange 
termijn effect van een verhoogde blootstelling aan n-6 meervoudig onverzadigde vetzuren 
(inclusief archidonzuur) op de pathogenesis van HVZ te onderzoeken in een toekomstig, 
grootschalig, gerandomiseerd en gecontroleerd onderzoek. Het feit dat verhoogde EPA 
en/of DHA niveaus geassocieerd zijn met verhoogde δ-5 desaturase activiteit en 
beschermend werken tegen HVZ, is consistent met het al reeds bewezen cardiovasculair 
beschermende effect van een verhoogde blootstelling aan n-3 meervoudig onverzadigde 
vetzuren, in het bijzonder aan EPA en DHA. 
 
Er is getest of individuele genetische varianten, die in genoom-wijde associatie studies 
geassocieerd zijn met HVZ en met risicofactoren voor HVZ, de risicopredictie van HVZ 
verbeteren. In hoofdstuk 8, wordt voor genetische varianten, die in reeds gepubliceerde 
genoom-wijde associatie studies  geassocieerd zijn met risicofactoren voor HVZ 
(bloeddruk, obesitas, bloed lipide niveaus en type 2 diabetes) of met HVZ zelf, getest of ze 
de risicopredictie gebaseerd op alleen traditionele risicofactoren voor HVZ kunnen 
verbeteren.  
 
We hebben verschillende genetische risico scores voor HVZ risicopredictie, bestaande uit 
SNPs die direct geassocieerd waren met HVZ in GWAS of uit SNPs die geassocieerd 
waren met een intermediaire risicofactor voor HVZ in GWAS, geconstrueerd. Voor deze 
genetische risico scores hebben we onderzocht of ze geassocieerd waren met incidente 
HVZ en of ze de potentie hadden om de risicopredictie voor HVZ te verbeteren. De 
gewogen genetische risico score gebaseerd op 29 HVZ SNPs voorspelde toekomstige HVZ 
onafhankelijk van traditionele risicofactoren. Daarentegen, de genetische risico score 
gebaseerd op 153 SNPs geassocieerd met intermediaire risico factoren en de genetische 
risico scores gebaseerd op 179 SNPs deden dit niet. Geen van deze risicoscores verbeterden 
het risico onderscheidend vermogen voor HVZ. Risico classificatie voor HVZ, gemeten 
met de net reclassificatie index, verbeterde alleen bij de gen risico score gebaseerd op 29 
HVZ SNPs. Deze resultaten komen over het algemeen overeen met gelijksoortige, recent 
verschenen studies. Desalniettemin kunnen we in dit vroege stadium nog geen definitieve 
conclusies trekken over de toepassing van gen risico scores. Om ons begrip van de 
genetische architectuur van HVZ in de toekomst te verbeteren, zouden we meer onderzoek 
naar dit onderwerp moeten doen.  
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Concluderend, de studies in dit proefschrift tonen aan dat veel voorkomende genetische 
varianten in genen in het cholesterol metabolisme, betrokken zijn bij de bepaling van 
cholesterol niveaus. Meervoudig onverzadigde vetzuren zijn niet alleen zwakke PPARά 
liganden, maar remmen ook SREBP activiteit. Dit alles verklaart gedeeltelijk het 
cardiovasculair beschermend effect (verhoogde HDL-cholesterol niveaus en gereduceerde 
triglyceride niveaus) van meervoudig onverzadigde vetzuren. Ook verklaard dit alles 
gedeeltelijk de verhoging van LDL cholesterol door een visolie behandeling in mensen en 
het potentieel verminderd HVZ risico van een hoge δ-5 desaturase activiteit. Momenteel 
zijn er nog veel vragen over de haalbaarheid van genetische risicovoorspelling voor HVZ. 
Clinici zouden door moeten gaan met navraag naar familiegeschiedenis van HVZ, omdat 
dit een simpele, goedkope en bruikbare risicofactor voor HVZ is, die waarschijnlijk het 
netto geïntegreerde effect van honderden genetische varianten vertegenwoordigd.  
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