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Hybridization in plants  

Early botanists believed in the theory of fixed species, according to which plants cross within 

kinds, resulting in fixed species. The concept of hybridization between species was conceived by 

Carol Linnaeus in the 18th century who, after observing a plant he thought was Linaria, was 

convinced that it was a relative of Linaria but with a hybrid nature due to its different floral 

structure, and he named it Peloria (Larson 1968). He later found more proof of interspecific 

hybrid plant species; but with little scientific evidence to back up the hypothesis, interspecific 

hybridization received little attention in his days and later on (Larson 1968). It was not until in 

the 20th century that cytogenetic studies brought light to interspecific hybridization as an 

important evolutionary phenomenon (Baack and Rieseberg 2007). Nowadays interspecific 

hybridization is accepted as one of the most important phenomena through which new species 

evolve, not only in plants but in animals as well (Carson et al. 1975; Dowling and Secor 1997; 

Ellstrand et al. 1996; Smulders et al. 2008; van Tienderen 2004).  

Crop-wild gene flow  

Since the development and commercial release of genetically modified (GM) crop varieties in the 

late 1980s, hybridization in plants has become a persistent topic of discussion. GM crop varieties 

are developed to improve crop yield, increase crop resistance and tolerance to biotic and abiotic 

stress factors, lower the production costs, improve weed and pest control - hence making crop 

production more environment-friendly - and improve food, feed and pharmaceutical qualities 

(James 2003; Warwick et al. 2009). However, the release of GM varieties has raised concerns 

both in the general public and among scientists about the potential risks associated with their 

commercial and hence large scale cultivation. As far as the environment is concerned, three 

ecological concerns have been raised which are associated with hybridization between transgenic 

crops and their wild relatives. Firstly, transgene ‘escape’ through crop-wild hybridization may 

render weedy wild relatives weedier in agricultural areas, for instance by incorporating into the 

weed species genes that confer tolerance to herbicides. Secondly, it may result in hybrid swarms 

that are more fit than the wild parent in its natural habitats and could displace the latter, resulting 

in genetic erosion. Thirdly, the crop-wild hybrids may show phenotypes diverging from the wild 

parent to the extent that they may invade new habitats (Chapman and Burke 2006; Groot et al. 

2003; Warwick et al. 2009).   
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In their often cited review, Ellstrand et al. (1999) put together documented evidence for crop-

wild hybridization, showing that 12 out of the 13 most important crops in terms of cultivation 

area hybridize with their wild relatives somewhere in the world. In the Netherlands, 23 out of 42 

domesticated species have small to substantial potential to hybridize with their wild relatives (De 

Vries et al. 1992).  Because crops can hybridize with their wild relatives, and because once the 

transgene escapes to the wild the process could hardly be reversed, crop-wild gene flow has 

become a subject of scientific scrutiny (Conner et al. 2003; Snow et al. 2005; Tiedje et al. 1989).  

After hybridization, the outcome of crop-wild gene exchange will depend on the performance of 

hybrids under natural conditions (Hails and Morley 2005). The net effect can be negative, for 

instance if crop genes reduce the hybrids’ competitive ability under natural conditions, or 

positive, if crop genes confer fitness advantages. Natural selection will weed out maladapted 

genotypes, and could lead to the establishment of successful transgressive phenotypes with high 

fitness (Burke and Arnold 2001). The fate of the hybrids will therefore be determined by their 

individual genetic composition and the selection pressure defined by the prevailing 

environmental conditions. It is within such a context that the effects of transgenes should be 

evaluated: the baseline is the dynamics of the crop-wild hybridization process, and effects of 

introduced transgenes in such a system are superimposed upon this baseline. It thus follows that 

both knowledge of the baseline system of hybridization as well as the putative effects of 

transgenes (Chapman and Burke 2006; Stewart et al. 2003) are needed for an adequate 

assessment of the effects of hybridization. One instance about the dynamics of crop-wild 

hybridization and introgression is the effect of linkage. Selection does not apply on genes 

affecting fitness alone, but on the genomic block of which the gene affecting fitness is part (Kwit 

et al. 2011; Stewart et al. 2003). Therefore, a (trans)gene neutral to fitness or mildly deleterious 

can be introgressed if it is linked to a gene that affects fitness positively, a phenomenon known as 

genetic hitchhiking. In the same way, a (trans)gene could be selected against if it is inserted close 

to a gene that confers reduced fitness, a phenomenon known as background selection (Figure 1).  

This study was initiated with the aim of understanding the basic dynamics of crop-wild 

hybridization and introgression. We used the crop-weed complex consisting of Lactuca sativa L 

and L. serriola L. to study the genetic process of introgression from crops to wild relatives. After 

crop-wild hybridization, the hybrids undergo selection by abiotic (drought, salinity, nutrient 

deficiency, cold, etc.) and biotic stress factors (disease, herbivore insects, competition). While 

some studies have looked into the effect While some studies have looked into the effect of 
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introgression of biotic stress resistance/tolerance genes (Cao et al. 2009; Hooftman et al. 2007c; 

Mason et al. 2003), abiotic stress factors have received little attention so far. We therefore 

evaluate the performance of the hybrids under the major abiotic stress conditions of salinity, 

drought and nutrient deficiency under greenhouse conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

Lactuca serriola L. and L. sativa L. 

Cultivated lettuce (Lactuca sativa L.) is one of the domesticated species with a possible 

ecological effect in the Netherlands due to its hybridization potential with its wild relative prickly 

lettuce (L. serriola L.) (De Vries et al. 1992).  L. sativa is an annual vegetable crop from the 

family Asteraceae or Compositae. It has been domesticated as early as 2500 B. C., probably in 

South-West Asia (De Vries 1997; Frietema de Vries et al. 1994). It is mostly harvested at the 

rosette stage and consumed as salad, with some types harvested as seeds and used for oil 

extraction (oilseed lettuce) or for the stem base (stalk lettuce). Among the members of the large 

Lactuca genus, L. serriola is the closest relative of L. sativa of which it is considered to be a 

progenitor and part of the primary gene pool (Koopman et al. 1998).  

L. serriola is a wild weed species original from the Mediterranean region but it has expanded its 

distribution worldwide (Lebeda  et al. 2004). It thrives in anthropologically disturbed areas such 

 

 

Gene conferring poor 
fitness: the block 
consisting of the gene itself 
and the linked loci will be 
selected against 

Gene conferring 
high fitness: the 
block consisting of 
the gene itself and 
the linked loci will 
be selected for Fitness 

Chromosome 

Figure 1 Selection and introgression apply on the genes affecting fitness and the linked loci (adapted 
from Stewart et al. 2003) 



 

13 

 

as roadsides, construction sites and agricultural fields, and along railways (Lebeda et al. 2001; 

Lebeda  et al. 2004). L. serriola and L. sativa have the same number of chromosomes 

(2n=2x=18), are completely cross-compatible in the two directions (L. serriola x L. sativa and L. 

sativa x L. serriola), and the resulting hybrids are viable and fertile (D’Andrea et al. 2008; De 

Vries 1990; Koopman et al. 1993). Morphologically, L. serriola is mostly distinct from L. sativa 

(Figure 2) (de Vries and Raamsdonk 1994), but some accessions of the two species have 

overlapping traits, making it difficult to draw a distinguishing line between them (Frietema de 

Vries et al. 1994). The morphological overlap in combination with crossing experiments and 

genotypic analysis has led to the suggestion that the two species may be conspecific (Frietema de 

Vries et al. 1994; Koopman et al. 2001). 

 

     

 

L. serriola has been expanding its geographical distribution in Europe from south to north 

(Bowra 1992; Hooftman et al. 2006; Lebeda et al. 2001). One of the hypotheses put forward for 

this invasion is the possibility that L. serriola has acquired new fitness traits from L. sativa 

through hybridization. Although L. sativa is mostly harvested before it produces seeds, the two 

species grow and flower sympatrically in many locations. For instance, seed production for L. 

sativa is done in open fields in certain regions in Southern Europe. In home gardens and the so-

called “amateur” gardens in the Netherlands, plants are sometimes not harvested and they are left 

to flower and produce seeds. Moreover, cases have been reported where the low market price of 

lettuce heads has prompted farmers not to harvest their lettuce crop, leaving hundreds hectares of 

lettuce to flower and produce seeds in open fields (D'Andrea et al. 2009). Furthermore, previous 

A B C 

Figure 2 Lactuca 
serriola (A) and L. 
sativa (C) plants and an 
F1 plant from a cross 
between the two species 
(B)  
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studies of L. sativa x L. serriola hybrids have shown that some of the hybrid lineages show 

improved vigour and fitness over the wild parent under field conditions and so may have the 

potential of displacing L. serriola in its natural habitats (Hooftman et al. 2009; Hooftman et al. 

2007b; Hooftman et al. 2005; Hooftman et al. 2008). 

Abiotic stress 

As stated above, the establishment of crop genes in the wild will depend on the selection pressure 

exercised over the hybrid plants by the prevailing natural conditions. Abiotic stress factors such 

as drought, salinity, nutrient deficiency and extreme temperatures are the primary factors that 

affect the growth of the plants (Boyer 1982; Munns and Tester 2008; White and Brown 2010; 

Witcombe et al. 2008). With climate change and land degradation, such stress factors are 

expected to become more important in agriculture in the future as well. For instance, salinization 

is expected to affect 50% of the arable land by 2050 (Wang et al. 2003). Therefore, abiotic stress 

factors are likely to play an important role in determining the fate of the hybrids after crop-wild 

hybridization by acting as selection forces.  

Conventional breeding for abiotic stress tolerance has been limited due to the complexity of the 

trait and the involved mechanisms (Cuartero et al. 2006; Farooq et al. 2009; Roy et al. 2011). 

Therefore, genetic modification is regarded as a potential solution to breeding for abiotic stress 

tolerant varieties (Bhatnagar-Mathur et al. 2008; Tester and Langridge 2010; Vinocurand Altman 

2005; Zhang et al. 2000). Many studies are currently undertaken on the application of genetic 

modification to improve plant tolerance to abiotic stress factors, and the release of abiotic stress-

tolerant varieties should be expected in the near future (Abdeen et al. 2010; Aharoni et al. 2004; 

Karaba et al. 2007).  With the increasing intensity of the abiotic stresses, if an abiotic stress 

tolerant variety happens to hybridize with a wild relative, the genes conferring tolerance will 

increase the fitness of the hybrids containing them, hence presenting an advantage over the wild 

plants.  

In this study we evaluated the performance of the hybrids under the major abiotic stress 

conditions of salinity, drought and nutrient deficiency. In order to decipher the performance of 

the hybrids under each of the mentioned stress factors, these factors were artificially created 

under greenhouse controlled conditions.  The hybrids were also grown on the field where they 

were subject to natural conditions and they were evaluated for vigour at the rosette stage, vigour 

at the adult stage, survival and seed production.  
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Scope of the thesis 

This project was part of the programme “Ecology Regarding Genetically modified Organism” 

(ERGO), an initiative of the Netherlands Organization for Scientific Research (NWO) established 

to fund and coordinate research on the ecological risks associated with the cultivation of GM 

varieties (http://www.nwo.nl/nwohome.nsf/pages/NWOA_6JNP94). ERGO programme focuses 

on three research themes, namely multitrophic interactions regarding gene-modified crops, 

effects of hybridization and introgression between crops and their wild relatives, and effects of 

gene-modified crops on soil ecosystem functioning. This project falls under the second research 

theme. It aimed at establishing a baseline about the genetic process of introgression from crops to 

wild relatives using L. sativa and L. serriola as crop-weed complex model with an emphasis on 

the contribution of the crop parent to the vigour and fitness of the hybrids and the effect of 

linkage on the likelihood of introgression of a specific crop genomic segment based on its 

genomic location. Because of the restrictions imposed on the cultivation of GM plant material, 

we did not use GM lettuce. Instead, research was carried out using conventionally bred lettuce 

varieties. Although crop-wild hybrids are bound to undergo selection under natural field 

conditions and greenhouse experiments are therefore likely to be  less representative of the 

growing conditions of the hybrids, controlled greenhouse experiments offer certain advantages 

over field experiments in terms of the number of experiments that can be run in a certain period 

of time and the possibility to creating conditions that mimic a certain stress factor so that the 

tolerance or resistance  of the plants to the stress can be deciphered. Combining greenhouse and 

field experiments can therefore give insight concerning the use of greenhouse results in 

predicting field conditions.  We therefore carried out greenhouse experiments on specific stress 

factors and run field experiments under natural conditions. Based on the knowledge that selection 

takes place during the early growth stage of crop-wild lettuce hybrids (Hooftman et al. 2009; 

Hooftman et al. 2005), the greenhouse experiments concerned the vigour of the hybrids at the 

rosette, whereas the field experiments encompassed the whole life cycle of the plants, from 

germination till seed production. 

The two major factors determining the outcome of crop-wild hybridization (hybrid genetic make-

up and the environment) are addressed by studying three hybrid classes F2, BC1 and BC2 

resulting from one crop-wild hybridization event under the major abiotic stress conditions of 

drought, salinity and nutrient deficiency. We answer the questions (i) whether there is evidence 
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of spontaneous hybridization between L. serriola and L. sativa, (ii) whether crop genes confer 

any (dis)advantage to the crop-wild hybrids under controlled conditions of non-stress and abiotic 

stress conditions and under field conditions, (iii) whether the (dis)advantageous effects of the 

crop are dependent on environmental conditions, and (iv) whether we can identify genomic 

regions where transgenes could be inserted with the purpose of mitigating their persistence after 

crop-wild hybridization. 

The second chapter of this thesis deals with the quantification of the occurrence of spontaneous 

crop-wild hybrids in natural populations of L. serriola both in Europe, the Middle East and 

Central Asia, using Bayesian methods of analysis and a set of simple sequence repeat markers 

(microsatellites). Based on the identified hybrids and their geographical localization, we discuss 

whether hybridization between L. serriola and L. sativa might have contributed to the recent 

spread of L. serriola in Europe.   

In the third chapter we analyse the genetic basis of plant vigour in a crop-wild F2 population 

under non-stress, drought, salt and nutrient deficiency conditions. Using Single Nucleotide 

Polymorphism (SNP) markers, we map Quantitative Trait Loci (QTLs) associated with vigour 

and define the role of the crop genome in the vigour of the hybrids. We define the genetic mode 

of action of the QTLs and their genomic localization.  

In the fourth chapter we assess the genetic effect of introgression by studying the vigour of the 

hybrids in two backcross populations BC1 and BC2 generated by backcrossing F1 progeny to the 

wild parent L. serriola, thus mimicking the introgression process of crop genomic segments into 

a wild genetic background.  While the selfing pathway might be more common in lettuce due to 

its selfing nature, the backcross pathway may take place as a result of a higher frequency of 

“pure” wild plants than the hybrids. By conducting experiments like the ones described in chapter 

three under control and abiotic stress conditions of drought, salinity and nutrient deficiency, we 

establish the effect of introgression of smaller and fewer crop genome segments into the wild 

genetic background.  

Because the experiments reported in chapters 3 and 4 were carried out under greenhouse 

controlled conditions, whereas spontaneous crop-wild hybridization takes place outside and 

hybrids are subject to natural conditions, chapter 5 deals with experiments with the BC1 

population conducted under semi-natural field conditions. In this chapter we establish a link 

between field and greenhouse conditions, and between plant vigour and fitness. We establish the 
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effect of genetic by environment (GxE) interaction on plant fitness, and investigate whether 

small-scale contained experiments could be used to assess potential ecological consequences in 

the field. In the general discussion (chapter 6) we discuss the above-mentioned research 

questions.    
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Abstract 

Interspecific gene flow can lead to the formation of hybrid populations that have a competitive 

advantage over the parental populations, even for hybrids from a cross between crops and wild 

relatives. Wild prickly lettuce (Lactuca serriola) has recently expanded in Europe and 

hybridization with the related crop species (cultivated lettuce, L. sativa) has been hypothesized as 

one of the mechanisms behind this expansion. In a basically selfing species such as lettuce, 

assessing hybridization in natural populations may not be straightforward. Therefore, we 

analysed a uniquely large dataset of plants genotyped with SSR markers with two programs for 

Bayesian population genetic analysis, STRUCTURE and NewHybrids. The dataset comprised 

7738 plants, including a complete genebank collection, which provided a wide coverage of 

cultivated germplasm and a fair coverage of wild accessions, and a set of wild populations 

recently sampled across Europe. STRUCTURE analysis inferred the occurrence of hybrids at a 

level of 7% across Europe. NewHybrids indicated these hybrids to be advanced selfed 

generations of a hybridization event or of one backcross after such an event, which is according 

to expectations for a basically selfing species. These advanced selfed generations could not be 

detected effectively with crop-specific alleles. In the northern part of Europe, where the 

expansion of L. serriola took place, the fewest putative hybrids were found. Therefore, we 

conclude that other conditions than crop-wild gene flow, such as an increase in disturbed habitats 

and/or climate warming, are more likely explanations for this expansion.  
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Introduction  

Gene flow through hybridization is a common phenomenon among closely related plant species. 

Recent studies have shown it to be more frequent between crop species and their wild relatives 

than assumed based on the supposition that domestication traits are likely to reduce fitness under 

natural conditions (Ellstrand 2003). For instance, gene flow was reported to occur between 12 of 

the 13 most important food crops and their respective wild relatives (Ellstrand et al. 1999). With 

the large-scale cultivation of genetically modified cultivars, gene flow from crops to their wild 

relatives has attracted public interest and concern, and has initiated research on gene escape and 

introgression in the framework of environmental risk assessment of transgenic plants (Pilson and 

Prendeville 2004; Snow et al. 2005; Chapman and Burke 2006; Warwick et al. 2008; Warwick et 

al. 2009).  

Gene flow may have evolutionary impact, especially when particular genes from crops would 

increase the fitness, and thus possibly the invasiveness of weeds, for instance, by increasing their 

adaptability to various climatic or environmental conditions (Ellstrand and Schierenbeck 2000; 

Langevin et al. 1990; Magnussen and Hauser 2007). In this regard, an invasive trend was 

reported for wild (weedy) prickly lettuce (Lactuca serriola), the closest wild relative of cultivated 

lettuce (L. sativa) in many Mediterranean, Central and Western European countries (Frietema de 

Vries et al. 1994; Lebeda et al. 2004b). Hooftman et al. (2006) reported a sweeping spread of L. 

serriola also in the Netherlands since 1980 and lists four possible reasons for this recent 

invasiveness: (1) a change in environment due to global warming; (2) increased landscape 

disturbance by human activities, which produces more suitable habitat; (3) micro-evolution of the 

species towards extended adaptability, and (4) hybridization between L. serriola and cultivated L. 

sativa. The latter reason would be a direct consequence of gene flow through interspecific 

hybridization, leading to the transfer and introgression of genes from the crop to the wild lettuce 

that confer increased fitness to the resulting crop-wild hybrids.  

Several aspects of gene flow in lettuce have been studied previously. De Vries (1990) showed 

that L. sativa can be crossed with L. serriola to form viable and fertile hybrids. Even though L. 

sativa and L. serriola are basically self-pollinators, Thompson et al. (1958) reported an out-

crossing rate of 1-5% among L. sativa varieties, and D’Andrea et al. (2008) an interspecific 

hybridization rate of up to 2.5% between the two species. Hooftman et al. (2005; 2009) studied 

the performance of the hybrids resulting from manual crosses between L. serriola and L. sativa 
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and Hooftman et al. (2007) modelled the long-term consequences of hybridization between the 

two species. These two studies established that hybrids between L. sativa and L. serriola are 

viable, fertile and that the hybrid offspring may even be fitter than the wild parent. Based on 

single fitness components, hardly any significant differences were detected between prickly 

lettuce and the hybrid plants, and backcrossed hybrids were morphologically indistinguishable 

from their wild parent (L. serriola) (Hooftman et al. 2005). Hence, the fact that only very few 

occurrences of crop/wild hybrid lettuce in the field have been reported (cf. Frietema de Vries et 

al. 1994) is not necessarily proof of a lack of occurrence as it may, at least in part, be due to 

problems in recognizing putative hybrids.  

In the present study, we aimed to quantify the spontaneous occurrence of gene flow between 

cultivated and wild lettuce in Europe. A number of methods can be used for the identification of 

hybrid plants in natural populations of wild relatives of crop species, including screening based 

on phenotypic traits (Ureta et al. 2008), tracking crop-specific markers (Morrell et al. 2005; 

Scurrah et al. 2008; Westman et al. 2001) and, in case of GM crops, tracking the transgene itself 

(Warwick et al. 2008). These methods do not work well in all cases. As already indicated, for the 

present study the use of morphological traits would be difficult because the hybrids resulting 

from crosses between L. serriola and L. sativa often look morphologically like L. serriola 

(Hooftman et al. 2005). The use of a transgene as a marker is also not applicable outside of 

contained conditions because, there is not (yet) any transgenic lettuce cultivar allowed for 

commercial cultivation. The “crop-specific” allele approach scans each locus for alleles with 

differences in occurrence between crop and wild relatives. Alleles far more frequent in crops are 

then used as indications for introgression from the crop when found in wild plants. This method 

has been regularly used to trace hybridization between crops and wild relatives, but suffers from 

two problems: (1) the definition of “crop-specific” alleles; and (2) how to distinguish their 

occurrence as a result of recent introgression from one as a result of a more ancient common 

ancestry (e.g. Van de Wiel et al. 2005). Thus, for this study, we used two Bayesian posterior 

probability-based methods, one as implemented in the software package STRUCTURE 

(Pritchard et al. 2000) and the other as implemented in NewHybrids (Anderson and Thompson 

2002), to analyse two large datasets of lettuce samples, one from the gene bank collection of crop 

(L. sativa) and wild lettuce (L. serriola), and the other set comprising of L. serriola samples 

collected across Europe in the period of 2002-2005. Together, these datasets constitute an 

exceptionally broad set for a study of gene flow between crops and hybrids. When Smulders et 
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al. (2008) compared STRUCTURE with NewHybrids to detect hybridization with cultivated 

poplar hybrids in offspring of wild Populus nigra trees, they found that NewHybrids was more 

informative on the degree of hybridization. As lettuce is highly selfing, we anticipated that 

putative hybrids would have a high likelihood of being advanced selfed generations. We 

therefore applied STRUCTURE to identify potential hybrid plants and NewHybrids to infer the 

number of selfings or backcrossings after an initial hybridization event between L. serriola and L. 

sativa. STRUCTURE results were checked using the programme InStruct (Gao et al. 2007), 

which takes into account the divergence from the Hardy–Weinberg equilibrium due to self-

fertilization. We compared the STRUCTURE results with a crop-specific allele approach, in 

order to assess to what extent the latter method still has its value with regard to its relative easy 

implementation for detecting gene flow between crop and wild relatives.  

Materials and methods 

Plant material 

We studied the crop-weed complex of cultivated lettuce (L. sativa) and wild prickly lettuce (L. 

serriola). L. serriola is a weed plant, which thrives in anthropogenically disturbed areas (Lebeda 

et al. 2001), whereas L. sativa is a vegetable crop species. The two species are closely related and 

have the same number of chromosomes (2n = 18) (Koopman et al. 1993; Koopman et al. 2001). 

They are readily crossable without any known barrier, and their hybrids are viable and fertile (De 

Vries 1990). L. serriola is mostly distinct from L. sativa based on their morphological traits (De 

Vries and Van Raamsdonk, 1994), but their hybrids, especially those resulting from backcrosses 

to L. serriola, are generally not distinguishable from the latter (Hooftman et al. 2005).  

We used plant material originating from two sources: the lettuce collection from the Centre for 

Genetic Resources, The Netherlands (CGN), and a recent collection of L. serriola from across 

Europe. CGN hosts the largest lettuce germplasm collection worldwide 

(http://documents.plant.wur.nl/cgn/pgr/ildb/download.htm), which has a comprehensive 

representation of genetic variation in cultivated lettuce, supplemented with a fair representation 

of wild relatives, particularly of L. serriola (Van de Wiel et al. 2010). This collection comprises 

lettuce accessions collected since 1940, with some over-representation of germplasm from 

Europe and the Middle East (Lebeda et al. 2004a). L. serriola accessions of this collection used 
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in this study are designated as “CGN L. serriola” and L. sativa accessions are designated “L. 

sativa”.  

The recent L. serriola collection was sampled from 2002 to 2005 within the EU project “Analysis 

of gene flow from crop to wild forms in lettuce and chicory and its population-ecological 

consequences in the context of GM-crop biosafety” (ANGEL, QLK3-CT-2001-01657, 

http://www.plant.wageningen-ur.nl/projects/angel/) (Van de Wiel et al. 2003). These L. serriola 

individuals are designated as “ANGEL L. serriola”. They were collected in 17 European 

countries (Austria, Bulgaria, Croatia, Czech Republic, Denmark, France, Germany, Greece, 

Hungary, Italy, Luxembourg, Netherlands, Poland, Portugal, Slovakia, Spain, Sweden and 

Switzerland) from ruderal sites such as roadsides, along railways, vicinities of riverbanks, crop 

fields and construction sites, and in vegetable kitchen gardens. The kitchen garden locations 

included “amateur gardens” in the Netherlands where L. sativa plants are more often left to 

flower than in professional cultivations and thus hybridization may have a good likelihood of 

occurrence (Hooftman et al. 2005). The particular advantage of the ANGEL and CGN datasets is 

that CGN has a comprehensive representation of germplasm cultivated world-wide as well as 

wild material collected from a large part of the areas where L. serriola occurs, and the ANGEL 

samples added more details and density on recent wild populations across the European 

continent.  

Genotyping 

Ten SSR markers, originally described by Van de Wiel et al. (1999), were used to genotype the 

individual plants (Table 1). The genetic positions for these ten markers have been determined on 

the lettuce genetic map (Truco et al. 2007). Eight marker loci were located on 8 different linkage 

groups and two loci were located on the ninth chromosome but with a distance of 86 cM. Thus, 

the loci were considered as genetically unlinked. The CGN samples were genotyped under the 

EU project “Molecular markers for genebanks: Application of marker technology for the 

improvement of ex situ germplasm conservation methodology” (PL96.2062) using a gel-based 

ABI PRISM® 377 DNA Sequencer (Applied Biosystems) (Van Hintum 2003, Van Treuren et al. 

2008). The ANGEL samples were genotyped using a capillary-based ABI PRISM® 3700 DNA 

Sequencer (Applied Biosystems). The two genotyping methods were checked for consistency and 

concordance by genotyping a random sample of CGN gel-scored accessions using the capillary 

method and by using three standard samples across all runs (Van Treuren et al. 2008). Five 
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individuals were included for each CGN L. serriola accession, and 2 individuals for each L. 

sativa accession as the crop accessions were expected to be more uniform than the wild 

accessions. Each ANGEL L. serriola collection site was represented by 30 individuals, which 

were all genotyped, and each site was considered as an ecological population. The loci amplified 

well in all the three data sets except for locus LsD103 which had a poorer amplification in both 

ANGEL and CGN L. serriola samples than in CGN L. sativa samples, hence showing species-

specificity and a potential for finding crop-specific alleles. 

After genotyping, individuals with more than 50% missing data were removed, together with 

CGN L. serriola samples whose country of origin was not recorded in the CGN passport data. In 

total, 7738 individuals remained: 2456 ANGEL L. serriola samples, 2462 CGN L. serriola 

samples, and 2820 L. sativa samples. The ten markers used for genotyping resulted in 14 to 54 

alleles per locus. The effective number of alleles per locus, calculated as 1/∑Pi
2, with Pi = allele 

frequency (Storme et al. 2004), ranged from 4 to 14 (Table 1), as many alleles were rare in both 

wild and cultivated lettuce.  

Table 1 Information on the SSR markers used for genotyping 

Locus1 Repeat motif 
Linkage 
group 

Observed number 
of alleles 

Effective number 
of alleles 

LsA001 (GA)44(GT)11 1 51 12.67 
LsA004 (GA)19(GT)7(GAGT)4(GA)10(GAGT)2 (GA)21(GT)12 6 27 8.60 
LsB101 (GT)12(AT)5(GT)17 2 31 7.72 
LsB104 (GA)5(GT)7TATT(GT)12 (T)4(GT)8(GA)11 4 36 7.71 
LsD103 (TCT)17 9 14 5.56 
LsD106 (TCT)17(T)5(TCT)2 5 16 5.64 
D108 (TCT)35 4 48 11.65 
D109 (TCT)22 8 34 14.42 
LsE003 (TGT)24(TA)(TGT)10 (TAT)2(TGT)3 7 24 4.07 
E011 (TGT)26 3 24 4.61 
1 Originally described by van de Wiel et al. (1999) 

 

Data analysis 

Determination of population structure using STRUCTURE and InStruct 

Analysis for population structure was performed on the 7738 individuals using STRUCTURE 

(Pritchard et al. 2000) version 2.2 (Falush et al. 2007). It uses a model-based Bayesian method to 

cluster the plant samples in a number of clusters (K) based on their genotypes. The ancestry 

model was set to admixture with correlated allele frequencies and lambda 1.0. No prior 

population information was used in the analysis. After a number of combinations of burn-in and 
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Markov Chain Monte Carlo (MCMC) runs, the final number of runs was chosen so that the 

differences in likelihood for each run [lnP(D)] between different K’s was larger than the 

variability within runs of the same K. The length of the burn-in period was set to 80,000 with 

150,000 MCMC replication runs after burn-in. In order to identify potential crop-wild hybrids, 

STRUCTURE should correctly differentiate L. serriola from L. sativa based on the 10 SSRs. To 

avoid any bias, we did not impose two clusters (K=2) on the program, but we let it run from K = 

1 to 35 to check whether it would differentiate the two species or come to alternative 

subdivisions. The median of lnP(D) for six iterations of each K was considered (Saisho and 

Purugganan 2007), and the optimum number of clusters was determined by looking at the value 

of K with the highest likelihood (Pritchard et al. 2000) and the K value where the maximum 

number of information was gained in the analysis, i.e. where the lnP(D) value increased most 

from one K to the next (Evanno et al. 2005). To differentiate non-admixed and admixed 

(potentially hybrid) plants, we used a threshold posterior probability (Q value) of 0.90. Plants 

with Q value equal to or greater than 0.90 were considered as non-admixed; and those with Q 

value smaller than 0.90 were considered as admixed or potential hybrids (Vähä and Primmer 

2006; Burgarella et al. 2009).  

The data were also analysed with InStruct (Gao et al. 2007), a Bayesian-based program similar to 

STRUCTURE but specifically written for selfing species to account for divergence from the 

Hardy–Weinberg equilibrium due to self-fertilization. The length of the burn-in period was set to 

100,000 and 200,000 MCMC runs after burn-in with K=1 to K=10 and five iterations for each K. 

The optimum number of clusters and the classification of individuals as non-admixed or hybrid 

were done as described above for the STRUCTURE results. 

Inference of the hybrid generations using NewHybrids  

NewHybrids (Anderson and Thompson 2002) is Bayesian model-based software to calculate the 

posterior probability that each plant belongs to a certain category of parents or hybrids based on 

the genotypic information of the plants. We used NewHybrids version 1.1 to infer the generations 

of the hybrid plants identified by STRUCTURE. Because of the limited capacity of the software, 

only a subset of the samples analysed with STRUCTURE was used with NewHybrids, namely all 

the hybrids identified by STRUCTURE and a randomly chosen set of non-admixed plants from 

the two L. serriola datasets and L. sativa plants. These were 706 ANGEL L. serriola, 617 CGN 

L. serriola and 677 L. sativa individuals, totalling 2000 individuals. L. serriola and L. sativa 
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being basically self-pollinating species, hybrid plants were expected to belong to advanced 

selfing generations after either one cross between the two species or one back-cross to any of the 

two parents. Therefore, the categories considered here were non-admixed L. serriola and non-

admixed L. sativa considered as the parents of the hybrids (Parent 0 and Parent 1 respectively), 

early and advanced generations of selfing after one cross between the two parents (F1 and F2 as 

early generations and F7 as advanced generation) and in early and advanced generations of 

selfing after one backcross to either of the two parents (BC1 and BC1S1 as early generations and 

BC1S7 as advanced generation; Figure 1). The advanced hybrid generations should not be 

considered literally but as representative of various advanced inbred generations, as these cannot 

be distinguished reliably by the program in a dataset with only ten markers, due to little change in 

heterozygosity from one advanced generation to another. We ran NewHybrids using the uniform 

prior for both θ and the mixing proportion π and the program was left to run for 900,000 sweeps 

after burn-in. Because NewHybrids is less sensitive than STRUCTURE in differentiating 

between non-admixed and admixed individuals (Vähä and Primmer 2006), a threshold posterior 

probability (P value) of 0.70 was used to categorize an individual as belonging to a specific 

group.  

 

 

Is crop-wild hybridization the cause of the spread of L. serriola in Europe? 

To test whether crop-wild hybridization is the cause of the northward spread of L. serriola in 

Europe, a Pearson Chi-square test of independence was run on the most recent collection of L. 

serriola in Europe (ANGEL data set), testing whether the occurrence of the hybrids depended on 

Figure 1 Hybrid classes used 
in NewHybrids: the hybrids 
were categorized into early 
and advanced generations of 
selfing after one cross 
between the two parents and 
early and advanced 
generations of selfing after 
one backcross to either of the 
two parents, with the 
advanced generations 
representing the inbred 
generations. Advanced inbred 
generations cannot be 
differentiated due to limited 
change in heterozygozity 
from one generation to the 
next. 
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the region where the samples were collected. The origin of the samples was categorized in two 

groups based on the plant geographical regions of Europe (Frietema de Vries et al. 1994; 

Schaminée et al. 1992). The Southern region was represented by Portugal, Spain, south of France 

(below 45º of latitude), Italy, Switzerland, Hungary and Austria. The Northern region consisted 

of the remaining part of France, Luxembourg, the Netherlands, Germany, Czech Republic and 

Denmark. If crop-wild hybridization is responsible for the northward spread of L. serriola, we 

expect the Chi-square test to show a dependence between the occurrence of hybrids and the 

region (North and South) where the samples were collected and a bigger proportion of hybrids 

compared to non hybrids should be found in the Northern region. 

Results 

Distinction between wild L. serriola and cultivated L. sativa by STRUCTURE 

With the STRUCTURE analysis, lnP(D) gradually increased and no clear peak was reached up to 

K=35 (Figure 2A). Therefore, the choice of the number of clusters, K, was not based on the 

highest lnP(D) value but on the value of K where the maximum information was gained in the 

analysis (Evanno et al. 2005), which was from K=1 to K=2 (Figure 2A). At K=2, STRUCTURE 

well differentiated L. sativa from L. serriola.  

The plants with high posterior probability (>0.90) to one of the two groups coincided with L. 

serriola and the plants with high posterior probability to the other group coincided with L. sativa. 

“Admixed” plants with intermediate probabilities to both groups were considered as potential 

hybrids (Figure 3). To check whether the differentiation achieved by STRUCTURE between L. 

serriola and L. sativa was consistent, we checked K values larger than 2. At K=3, L. serriola 

remained distinct from L. sativa, with the third cluster arising by a split of the L. sativa cluster. At 

K=4, L. serriola samples were again clearly distinct from L. sativa samples, with both L. sativa 

and L. serriola being split into two clusters (Supplementary material, Figure S1). However, these 

clusters did not coincide with any recognizable biological or geographical group.  
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Occurrence of “admixed” (hybrid) plants 

At K = 2, potential hybrids had intermediate probabilities to the two clusters that coincided with 

L. serriola and L. sativa. Because the two clusters mirrored each other (as a Q value of 0.90 for 

one cluster is equivalent to 0.10 for the other), samples with Q values smaller than 0.10 were 

regarded as non-admixed L. sativa and samples with Q values greater than 0.90 as non-admixed 

L. serriola in the remainder of this study. Ninety-three per cent of ANGEL L. serriola and 87% 

of CGN L. serriola individuals clustered in these groups, resulting in 7% potential hybrids (181 

plants) among the ANGEL L. serriola individuals and 13% (312 plants) in the CGN L. serriola 

dataset (Figure 4A). The CGN dataset not only had a greater proportion of admixed individuals, 

but its putative hybrids also showed a more extended Q-value range (0.13 to 0.90) than the 

putative hybrids in the ANGEL dataset (0.32 to 0.90). 
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Figure 2 Analysis with STRUCTURE 
and InStruct. (A) STRUCTURE 
lnP(D) median as a function of the 
number of inferred clusters, K, up to 
K=35. (B) (C) InStruct lnP(D) median 
as a function of the number of inferred 
clusters  K, up to K=10. 
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Figure 3 Q graph of all the samples at K=2. The Y axis represents the Q-values and the X axis represents the plants: 
each plant is given a membership proportion into two groups (grey and white), corresponding to L. serriola and L. 
sativa, respectively. Putative hybrids are discernible as partly belonging to both parental groups, L. sativa (right) and 
the combined data-sets of L. serriola (left).   
 

On closer scrutiny of the CGN passport data the origin of the CGN accessions proved to be the 

major cause of the differences between the two datasets. Even though we had removed the 

samples whose origin was completely unknown before performing the analysis, CGN L. serriola 

hybrids with the lowest Q-values (0.13 to 0.35, so most “L. sativa”-like) were not obtained 

directly from their original habitats, but through research institutions or botanical gardens 

(Lebeda et al. 2004a). Such accessions have been shown to deviate genetically from material 

with an established origin in the same region, and some were even genetically identical to 

accessions from botanical gardens in other, distant, countries (Van de Wiel et al. 2010). By 

excluding all accessions without clearly established origins, the CGN L. serriola dataset became 

more similar to the ANGEL dataset: the lowest Q-value for CGN L. serriola hybrids increased to 

0.40, and the proportion of hybrids dropped to 9% (Figure 4B). Among L. sativa 5% (147 plants, 

Figure 4C) clustered as putative hybrids, with Q values ranging from 0.11 (close to non-admixed 

L. sativa) to 0.57.  

InStruct gave similar results as STRUCTURE. LnP(D) did not show any peak up to K=10 and 

the maximum information was gained from K=1 to K=2, making K=2 the optimum number of 

clusters (Figure 2B). At a threshold posterior probability of 0.90, the two programs classified 
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98% of the plants in the same categories (Table 2). The two per cent dissimilarity arose from 

InStruct identifying more L. serriola hybrids (0.16% among ANGEL and 3.25% among CGN L. 

serriola) and fewer L. sativa hybrids (0.39%) than STRUCTURE. These dissimilarities between 

InStruct and STRUCTURE were due to small differences in Q-values which ranged from 0.01 to 

0.08. The results by STRUCTURE were more conservative, and hence we used them for further 

analysis (Arrigo et al. 2011). 

 

 

 

B A 

C 
Figure 4 Number of individuals for each 
Q value range at K = 2. A) ANGEL and 
CGN L. serriola datasets; B) ANGEL and 
CGN L. serriola without the L. serriola-
CGN plants with uncertain origin data; C) 
L. sativa dataset.  
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Table 2 Comparison between the classification of hybrids by STUCTURE and InStruct: the two programmes categorize 98% of 
the data in the same classes of non-admixed and potential hybrids 

                    InStruct 
STRUCTURE 

ANGEL L. serriola  CGN L. serriola  L. sativa  Total 
STRUCTURE non-admixed hybrids  non-admixed hybrids  non-admixed hybrids  

ANGEL L. serriola           
    non-admixed1 2270 5        2275 
    hybrids 1 180        181 
CGN L. serriola           
    non-admixed     2059 91     2150 
    hybrids    11 301     312 
L. sativa           
    non-admixed        2654 19  2673 
    hybrids        30 117  147 
Total InStruct 2271 185  2070 392  2684 136  7738 
1 non-admixed: Q>0.90; hybrids: Q≤0.90 

 

In Europe, the putative L. serriola hybrids were more frequent in the South (Figure 5). In the 

ANGEL dataset, most of the putative hybrids were found in Spain, Portugal, Italy and southern 

France: 141 out of the 181 ANGEL potential hybrids came from this region. Q-values in the 

region were as low as 0.32. In the more northerly country of the Netherlands, only 10 out of 152 

samples (6%) were putative hybrids (Q-values 0.70-0.90). The 28 plants collected in the direct 

vicinity of amateur gardens did not indicate any increased likelihood of hybridization, as only 2 

of these plants were identified as hybrids (with Q=0.70). These represented 7% of the hybrid 

occurrence, which was similar to that of the randomly sampled populations. Taken together, the 

proportion of hybrids compared to non-admixed individuals was 10% in the Southern region, 

while it was 2% in the Northern region. A Chi-square test of independence showed that the 

occurrence of the hybrids differed between these regions (P<0.001, Table 3). This indicates that 

crop-wild hybridization is not a likely cause of the spread of L. serriola in Northern Europe.  

Table 3 Contingency table for the Chi-square test of independence between the occurrence of hybrids among 
ANGEL L. serriola individuals and the region where the samples were collected 

Hybrids Non-admixed Total 
South count 151 1135 1756 

 

expected 96 1190 

 North count 30 1119 700 

 

expected 85 1064 

 Total 

 

181 2277 2456 
Chi-square test of independence  73.52 (P<0.001) 

 

In the CGN L. serriola dataset, there was no difference in hybrid occurrence between Europe and 

the Middle East (9% and 10%, respectively). These figures could be biased due to the 



 

 

33 

 

overrepresentation of accessions from Europe in the genebank (Lebeda et al. 2004a). Outside of 

Europe, most of the L. serriola individuals from the wild habitats were collected from Israel and 

Turkey (89% of all Middle East individuals, Figure 5). The occurrence of hybrids in these two 

countries was 9%, which reflected the same pattern of hybrid occurrence as in the whole region.  

Inferences about likely generations of putative hybrid plants by NewHybrids  

NewHybrids classified non-admixed plants as L. sativa and L. serriola. Admixed plants belonged 

to advanced selfing generations after one hybridization event between L. serriola and L. sativa 

(represented by F7) and to advanced selfed generations after one backcross to either L. serriola or 

L. sativa (represented by 0_BC1S7 and 1_BC1S7, Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q > 0.90 

Q = 0.81-0.90 

Q = 0.61-0.80 

Q = 0.60-0.40 

ANGEL                     CGN 

  

  

  

  

  Q > 0.90 

  Q = 0.81-0.90 

Q = 0.61-0.80 

Q = 0.60-0.40 

Figure 5 Geographical origin of non-admixed (white triangles and circles) and putative hybrid L. serriola plants (coloured 
triangles and circles) as identified by STRUCTURE in ANGEL and CGN data sets. At each location the lowest Q value is 
represented.  
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Other classes were not represented at all or were represented by probabilities smaller than 0.006. 

At a threshold P value of 0.70, NewHybrids classified 1265 of the 2000 plants in one of the five 

categories. The remaining 735 had probabilities divided between two or three categories (Table 

4).   

We compared the NewHybrids and STRUCTURE results (Table 4). NewHybrids recognized as 

hybrids all 181 ANGEL L. serriola plants identified as potential hybrids by STRUCTURE, and 

97% of the 312 CGN L. serriola plants that STRUCTURE identified as potential hybrids. For L. 

sativa, NewHybrids recognized as hybrids 99% of the plants that STRUCTURE identified as 

hybrids. Conversely, NewHybrids also classified many of the STRUCTURE non-admixed plants 

as hybrids. Ten per cent of the ANGEL L. serriola plants identified as non-admixed by 

STRUCTURE were recognized as either hybrid or L. serriola (with higher probabilities for the L. 

serriola class, P>0.45), and 8% were classified as hybrids by NewHybrids. Of the CGN L. 

serriola plants identified by STUCTURE as non-admixed, NewHybrids classified 21% as 

undecided between non-admixed L. serriola and hybrids, and 34% as hybrids. Of the L. sativa 

plants identified by STRUCTURE as non-admixed, NewHybrids classified 10% as either non-

admixed or hybrids, and 13% as hybrids.  

 

Figure 6 Average category probabilities of all analysed plants by NewHybrids. Each class is represented by a colour; 
on the X-axis are individual plants and the Y-axis represents the probability values, which add up to 1. The plants 
categorise as non-admixed L. serriola and L. sativa and advanced hybrid generations. The remaining classes 
included in the analysis were not represented at all or were represented by very small probability values (P<0.006).  
 
Comparison between STRUCTURE and crop-specific allele method in identifying hybrids 

To assign alleles as “crop-specific”, we used the following criteria: 1) the frequency of the allele 

among L. sativa individuals is at least an order of two magnitudes higher than its frequency in the 
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L. serriola datasets (restricted to accessions with confirmed origin data for the CGN dataset) and 

2) to attain a fair level of representativeness, the putative “crop-specific” alleles should occur in 

more than 10% of the accessions of the L. sativa dataset. Only 6 alleles from 5 loci conformed to 

our criteria of “crop-specificity” (LsA001-187, LsD103-263, LsD103-266, LsD106-191, LsE003-

206 and E011-251); an additional 2 alleles (D109-251 and E011-254) conformed in the ANGEL 

L. serriola set only (Table S1, Supplementary material). For the CGN L. serriola set, both sets of 

alleles matched these criteria only when accessions from Europe were exclusively taken into 

account. The considerably higher frequency of the D109-251 and E011-254 alleles in accessions 

from the Middle East and Central Asia could be related to this area being the most likely centre 

of origin of cultivated lettuce. 

Table 5 shows a comparison of hybrid identification results from these crop-specific alleles with 

those from STRUCTURE. The number of plants with crop-specific allele(s) was higher in 

STRUCTURE hybrids than in STRUCTURE non-admixed L. serriola plants. However, the crop-

specific allele method identified only 9% of ANGEL and CGN L. serriola hybrids plants, 

significantly fewer than STRUCTURE (Pχ2<0.001). This is a very small number, even when 

taking into account that our necessarily strict criteria for when an allele could be considered as 

crop-specific, was expected to lead to conservative estimates of hybrids. Limiting the use of the 

crop-specific alleles to Europe, which enables using all 8 alleles of Table S1 (Suppl. material), as 

in the ANGEL dataset, does not really change this situation, except for the absolute numbers (25 

vs. 16 putative hybrids conforming to STRUCTURE and 16 vs. 8 not confirming to 

STRUCTURE, see Table 5).  
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Table 4 Comparison between NewHybrids and STRUCTURE results: NewHybrids classifies the hybrids as 7th generation of selfing after the initial cross 
between L. serriola and L. sativa (F7) or the 7th generation of selfing after one back-cross to either L. serriola (0-BC1S7) or L. sativa (1-BC1S7) (see Figure 1 
for an overview of classes). The ‘7th generation’ represents advanced selfed generations. 
               NewHybrids 
 
STRUCTURE L. serriola (Parent 0)  

L. sativa 
(Parent 1) F7 0-BC1S7 

1- 
BC1S7 

F7  
or 

0-BC1S7 

L. serriola 
or F7or  

0-BC1S7 

L. serriola 
or 

0-BC1S7 

F7 or 
1-

BC1S7 

L. sativa 
or 

1-BC1S7 

L. sativa 
or F7 or 
1-BC1S7 

Total 
STRUCTURE 

ANGEL L. serriola             

     Non-admixed 434   7  33 16 34    524 

     Hybrids  36 40  97   8   181 

CGN L. serriola             

     Non-admixed 135   7  89 25 40 9   305 

     Hybrids 2 7 40 33 2 129  8 91   312 

L. sativa             

     Non-admixed  411 4  25   39 42 9 530 

     Hybrids  1 29  52 6   59   147 

Total NewHybrids 571 419 109 87 79 355 41 82 206 42 9 2000 
 
 
 
Table 5 Frequency of crop-specific alleles1 among L. serriola datasets categorized as potential hybrids and non-admixed using STRUCTURE 

STRUCTURE groups ANGEL L. serriola CGN L. serriola 
from Europe 

CGN L. serriola 
from outside of Europe 

Hybrids (Q≤0.90)    
        Frequency STRUCTURE 181 84 93 
        Frequency of plants containing at least one crop-specific allele 16 2 14 
Non-admixed (Q>0.90)    
        Frequency STRUCTURE 2275 1105 831 
        Frequency of plants containing at least one crop-specific allele 8 1 2 
Total 2456 1189 924 
Chi-square value for goodness of fit between STRUCTURE and crop-specific alleles 150.44 

(P<0.001) 
80.04 

(P<0.001) 
67.11  

(P<0.001) 
1 crop-specific alleles used: LsA001-187, LsD103-263, LsD103-266, Ls D106-191, E003-206, E011-251 
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Discussion 

Even though crop-wild introgression is nowadays accepted as a common phenomenon, it is 

mostly recognized among cross-pollinating species, such as carrots (Magnussen and Hauser 

2007; Rong et al. 2010), sunflower (Arias and Rieseberg, 1994; Whitton et al. 1997) and chicory 

(Kiær et al. 2009). In self-pollinating species with restricted levels of cross-pollination such as 

lettuce it is expected to occur (Ellstrand 2003, D’Andrea et al. 2008), but rarely and difficult to 

detect. Nevertheless, we found an occurrence of 7% of putative L. sativa – L. serriola hybrid 

plants from the wild habitats of L. serriola in Europe (recently sampled wild populations) and 9% 

from L. serriola accessions present in the CGN genebank collection. The identification of lettuce 

crop-wild hybrids in natural wild population implies that L. serriola does hybridize with L. 

sativa, and that the hybrid lineages persist along with L. serriola non-admixed plants. These 

results are different from those found in soybean (Kuroda et al., 2010), which is a basically self-

pollinating species as well: although these authors found evidence for crop-wild hybridization, 

the hybrids did not persist in the natural habitats of wild soybean. Our results are consistent with 

previous studies in lettuce which showed that L. sativa-L. serriola hybridization produces some 

hybrid lineages more vigorous and fit that the wild parent (Hooftman et al. 2005), and that the 

persistence of the hybrids depends on their relative fitness and the species outcrossing rate 

(Hooftman et al. 2007).  

L. sativa and L. serriola are so closely related that some studies have labelled them as conspecific 

(Koopman et al., 2001). Despite this close relatedness, using the ten SSR markers, STRUCTURE 

and InStruct differentiated the two species and identified intermediate plants, which were 

potential hybrids. Simko and Hu (2008) obtained similar results using STRUCTURE on a smaller 

set in which they could distinguish cultivated (L. sativa) from two wild lettuce species (L. 

serriola and L. saligna). The use of large datasets may improve the power and accuracy for the 

identification of hybrids (Burgarella et al. 2009), as shown here. NewHybrids recognized nearly 

all hybrids detected by STRUCTURE, but also several putative hybrids among the other lines. 

Vähä and Primmer (2006) encountered the same trend with NewHybrids, as the program 

classified some non-admixed individuals as hybrids. As, in addition, NewHybrids could not 

handle all the available data of our dataset, NewHybrids results were used here solely for the 

determination of the hybrid classes. NewHybrids categorized the L. serriola hybrid plants as 

identified with STRUCTURE into two hybrid classes: advanced selfed generations after 

hybridization between L. serriola and L. sativa (represented by F7), and advanced selfed 
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generations after one back-cross to L. serriola (represented by 0-BC1S7). In a fine-scale field 

study of the self-pollinating species Medicago truncatula, Siol et al. (2008) found comparable 

results: many of the genotyped plants represented recombinant inbred lines (advanced selfed 

generations after a hybridization event) between the most frequently occurring highly inbred 

lines. In studies on the detection of spontaneous hybrids in perennial, cross-pollinating woody 

species, the identified hybrids usually belonged to early hybrid generations such as F2, BC1 and 

BC2 (Smulders et al. 2008; Schanzer and Kutlunina 2010).  

The higher frequency of hybrids found in the southern part of Europe for both L. serriola datasets 

could be related to the occurrence of seed multiplication in open air in the Mediterranean area 

(e.g. Portugal, Spain and Italy, in particular the Emilio-Romagna region), which is rare (or mostly 

under glass) in the north. On the other hand, the small subset of samples taken in the Netherlands 

near amateur gardens, one of the few places in the north where bolting and small-scale seed 

multiplication might occur, did not show a higher likelihood of hybrid occurrence as compared to 

randomly sampled populations. At such sites, bolting may only be haphazard, but it cannot be 

excluded that this is related to a possibly lower cross-fertilization rate under climatic conditions 

of northern countries.  

The posterior probability approach of STRUCTURE has shown to be a good tool to identify gene 

flow between closely related species using molecular markers for a wide array of organisms, such 

as in animals, e.g. the carnivorous marsupial Antechinus flavipes (Lada et al. 2008), in trees, e.g. 

various oak species (Burgarella et al. 2009), and also for gene flow between crop and wild forms 

in, for instance, alfalfa (Greene et al. 2008), beet, Beta vulgaris (Andersen et al. 2005), and 

chicory, Cichorium intybus (Kiær et al. 2009). The fact that the software uses genotypic 

information encompassing all the scored alleles and their frequencies enables it to obtain a more 

comprehensive picture of the individuals’ genetic make-up, without any previous bias of a priori 

grouping information or alleles identified as specific for any of such groups. Indeed, our trial of 

using the crop-specific allele approach did not work well. At best, it may lead to a conservative 

estimate of hybrids which logically followed from our necessarily strict definition of “crop-

specific” alleles, that is, only 6 alleles from 5 loci out of a total of 315 alleles from 10 loci could 

at most be used as such. Moreover, about a third of the hybrids indicated by the crop-specific 

alleles were identified as non-admixed plants by STRUCTURE. This could be attributed to small 

introgressions containing only one of the crop-specific alleles that were in the “noise” range of 

the more comprehensive analysis of STRUCTURE, but it could also be due to rare coincidental 
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occurrences of the allegedly crop-specific allele in non-admixed wild lettuce. Indeed, recent 

studies using “crop-specific” alleles often targeted more local situations with known 

combinations of crop cultivations and wild populations in the vicinity (e.g. Morrell et al. 2005 on 

introgression of sorghum into Johnson grass) or more widely different species combinations (e.g. 

Schulze et al. 2011 on garden strawberry Fragaria x ananassa and wild woodland strawberry F. 

vesca in Central Europe). Smulders et al. (2008), Rathmacher et al. (2010) and others 

successfully used species-specific alleles to detect gene flow and identify F1 hybrids between 

poplar species and hybrids. However, while crop-specific alleles are very effective in first 

generation hybrids, their power is lost in selfing and backcross generations, as each generation 

50% of the offspring will by chance not inherit the allele and become indistinguishable from non-

introgressed plants. Thus, while useful for detecting introgression in outcrossing, long-lived 

perennials, crop-specific alleles are not very effective in selfing annuals in which introgression is 

present in advanced inbred lines in the field. 

Introgression from crops to wild relatives has been connected to the invasiveness of some wild 

species such as Johnson grass (Sorghum halepense) (De Wet and Harlan 1975), Rhododendron 

ponticum (Milne and Abbott 2000), and sunflower (Rieseberg et al. 2007). Hooftman et al. 

(2006) suggested that introgression from L. sativa to L. serriola could be one of the reasons 

behind the recently observed increase of the latter in Europe, whereas D’Andrea et al. (2009) 

argued that this spread may be attributed mainly to the expansion of the favourable habitat due to 

climate warming and anthropogenic habitat disturbance, and to seed dispersal due to 

transportation of goods. The results of this study do not support the hypothesis of Hooftman et al. 

(2006). If introgression were behind the spread of L. serriola, we would expect to find more 

putative L. serriola hybrids than non-admixed L. serriola, particularly in North-Western Europe 

where the new invasiveness of L. serriola was most obvious. Moreover, we would also expect to 

observe more hybrids among the more recently collected L. serriola ANGEL data set (collected 

between 2002 and 2005) than in the mostly older CGN genebank collection. Both expected 

patterns were not visible in our data. Although a number of putative L. serriola hybrids were 

found with STRUCTURE, these did not constitute the dominant proportion of the L. serriola 

plants, neither in the ANGEL nor in the CGN data set. Moreover, hybrids were particularly rare 

in northern Europe. Hence, we found no evidence that crop introgression conferred an increased 

invasiveness to wild lettuce. Therefore, the expansion of L. serriola in Europe and in the 

Netherlands in particular resulted most likely from the combination of factors indicated by 
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D’Andrea et al. (2009). Nevertheless, with lettuce being a basically self-pollinating species, the 

occurrence of 7% of crop-wild hybrids among natural L. serriola populations is relatively high 

and reveals a potential of transgene movement from crop to wild relatives also for self-pollinating 

crops. After hybridization, however, the fate of the transgene will depend on many factors 

including the survival and fertility of the hybrids, the fitness effect of the transgene, and the 

relative fitness effect of the genomic region where the transgene is inserted (Stewart et al. 2003). 

The fitness effects of the genomic background in relation to environmental conditions is the topic 

of on-going experimental and modelling research in a joint project of Wageningen UR, 

University of Amsterdam and Groningen University in the Netherlands. 
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Abstract 

With the development and commercial release of transgenic crop varieties, crop-wild 

hybridization has received exceptional consideration due to the feared potential of transgenes to 

be transferred to wild species. Although many studies have shown that many crops can hybridize 

with their wild relatives and that the resulting hybrids may show improved vigour and fitness 

over the wild parents, little is still known on the genetic contribution of the crop parent to the 

performance of the hybrids. In this study we investigated the vigour of lettuce hybrids using 98 

F2:3 families from a cross between cultivated lettuce (Lactuca sativa L.) and its wild relative 

prickly lettuce (L. serriola L.) under non-stress and abiotic stress conditions of drought, salinity 

and nutrient deficiency. Using Single Polymorphism Nucleotide markers, we mapped 

quantitative trait loci associated with plant vigour in the F2:3 families and determined the allelic 

contribution of the two parents.  

The vigour traits showed mild to high broad sense heritability across the treatments (H2 ranging 

from 0.51 to 0.99). Seventeen QTLs associated with vigour    and 6 QTLs associated with the 

accumulation of ions (Na+, Cl- and K+) were mapped on the 9 linkage groups of lettuce. Seven of 

the vigour QTLs had a positive effect from the crop allele and 6 had a positive effect from the 

wild allele across treatments, and 4 QTLs had a positive effect from the wild crop in one 

treatment and positive for the wild allele in another treatment. The dominance effect of the QTLs 

was not significant for 16 QTLs, while epistasis as non-additive interaction among the mapped 

QTLs played a significant role on the vigour of the hybrids.  
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Introduction  

Gene flow between crop species and their wild relatives may result in the introgression of crop 

genes into wild genomic background, or in the formation of new species through novel 

combinations of crop and wild genes (Burke and Arnold 2001; Hails and Morley 2005). The 

possibility of hybridization between transgenic crops and their wild relatives has brought interest 

on crop-wild gene flow to another level due to the potential ecological consequences, incited by 

the possibility that transgenes could also be introgressed into wild populations (Hall et al. 2000; 

Snow et al. 2005; Tiedje et al. 1989; Warwick et al. 2009; Wilkinson and Tepfer 2009).  

Gene flow can lead to hybrid plants containing crop alleles. However, if crop alleles are 

selectively neutral, many crop-wild hybridization events would be required to increase their 

frequency in the wild population. In order for the crop alleles to be established in the population 

of the wild relative with few crop-wild hybridization events, they have to provide a selective 

advantage to the fitness of the hybrid plants and their offspring (Lee and Natesan 2006). In the 

introgression and speciation processes, the unit of selection in the first generations of hybrids is 

not the crop gene as such, but genomic blocks from the crop consisting of the gene under 

selection and the surrounding linked genomic region (Stewart et al. 2003). Consequently, linkage 

between genes plays a crucial role in the introgression process, because a gene (or transgene) that 

has no effect on fitness may become introgressed just by hitchhiking along with a gene that 

increases fitness. Conversely, a (trans)gene could be selected against due to its proximity to a 

gene which reduces fitness. Such linkage would provide a natural mechanism against 

introgression and escape of transgenes into wild populations (Kwit et al. 2011; Stewart et al. 

2003).  

Multiple studies have focused on the rate of hybridization between crops and wild relatives, and 

on the occurrence of hybrids and their fitness in relation to the fitness of the wild parent (Arias 

and Rieseberg 1994; D’Andrea et al. 2008; Giannino et al. 2008; Hoc et al. 2006; Hooftman et 

al. 2009; Kiær et al. 2009). However, few studies have been conducted with the aim of 

understanding the specific contribution of the crop and wild parents to the fitness of the hybrids, 

the role of the genomic locations of the genes (as for instance assessed through quantitative trait 

loci, (Baack et al. 2008; Rose et al. 2009), and the role of epistasis and genotype by environment 

interaction on the fitness or vigour of the hybrids. Such knowledge could be exploited to identify 

crop genomic regions with a higher or lower likelihood of introgression into wild populations 
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(Kwit  et al. 2011; Stewart  et al. 2003), thus assessing the possibility of containing transgenes by 

utilizing integration events in regions with lower likelihoods of introgression.  

The combination of synthetic mapping populations and genetic linkage maps provides an 

excellent tool for studying the introgression process in an experimental set-up. It allows the 

determination of quantitative trait loci (QTL) affecting hybrid vigour or fitness, estimation of the 

contribution of each parent to the performance of the offspring under controlled or non-controlled 

conditions, and monitoring of specific genomic blocks in different generations after hybridization 

(Baack et al. 2008; Burke and Arnold 2001; Rieseberg et al. 2000; Stewart et al. 2003).  

In this study we investigated the contribution of the crop alleles to the performance of a crop-wild 

hybrid population derived from a cross between cultivated lettuce (Lactuca sativa L.) and wild 

prickly lettuce (Lactuca serriola L.). Cultivated lettuce and wild prickly lettuce are interfertile 

species whose hybrids are viable and fertile (De Vries 1990; Hooftman et al. 2005). Experiments 

have shown that lettuce crop-wild hybrids are more vigorous than their parents (Hooftman et al. 

2007a; Hooftman et al. 2005) and that this increased vigour may lead to improved fitness of their 

offspring (Hooftman et al. 2009). In this study, we investigated the genetic basis of improved 

hybrid vigour of lettuce hybrid plants. Under natural conditions the hybrids will most likely be 

subject to adverse conditions of abiotic stress such as drought, heat, cold, etc. Genetic 

modification presents a lot of potential for breeding for abiotic stress tolerance (Christou and 

Twyman 2004; Wang et al. 2003; Zhang et al. 2000). Tolerance to abiotic stress factors is a 

prominent goal of today GM breeding and evaluation, and the release of GM crop varieties 

tolerant to the major abiotic stress is expected in the near future for many crop species (Abdeen et 

al. 2010; Choi et al. 2011; Li et al. 2010). Therefore, we conducted experiments under controlled 

abiotic stress conditions of drought, salinity and nutrient deficiency in the progeny of a cross 

between L. sativa and L. serriola. We addressed the following questions: (i) how is the 

performance of the hybrids relative to the wild parent under non-stress and stress conditions? (ii) 

do crop alleles contribute an advantage or disadvantage to the crop-wild hybrids under non-stress 

and abiotic stress conditions (drought, salinity and nutrient deficiency)? (iii) how are the vigour 

QTLs distributed along the genome, and what is the nature of their allelic effects?  
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Materials and Methods 

Lactuca serriola and L. sativa 

Lactuca serriola, known as prickly lettuce, is a weedy species that thrives in ruderal, 

anthropogenic areas (Lebeda et al. 2001). It is the closest relative of cultivated lettuce (L. sativa) 

with which it is part of the primary gene pool and considered to be conspecific with (Koopman et 

al. 1998; Koopman et al. 2001). L. serriola and L. sativa form a classic crop-weed complex 

perfect for introgression studies. The two species have the same number of chromosomes (2n = 

2x = 18), are completely cross-compatible without any known crossing barrier, and the resulting 

hybrids are also viable and fertile (De Vries 1990; Hooftman et al. 2005; Koopman et al. 1993; 

Lindqvist 1960). Both species are autogamous with a limited rate of out-crossing by insects of 1 

to 5% for L. sativa (Thompson et al. 1958) and an interspecific hybridization rate of up to 2.5%  

between the two species  (D’Andrea et al. 2008). In an experimental set-up, D’Andrea et al. 

(2008) concluded that whenever L. serriola and L. sativa populations grow in sympatric 

proximity, cross-pollination between the two species should be expected to occur. 

Development of hybrid plants 

F1 progeny was created by crossing L. serriola and L. sativa in the greenhouse. L. serriola parent 

was a progeny of the genotype collected from Eys (Province of Limburg, the Netherlands) 

designated as “cont83” in the description of L. serriola genotype distributions in Europe, and it 

represents a commonly occurring genotype of L. serriola in North-Western and Middle Europe 

(Van De Wiel et al. 2010). For L. sativa parent, we used the commercial cultivar Dynamite, a 

butterhead lettuce developed by Nunhems Zaden. It harbours genes for resistance to aphids, 

downy mildew and lettuce mosaic virus (Van der Arend et al. 1999), which represent the main 

breeding goals of lettuce cultivars. L. sativa was used as the pollen donor, mimicking a scenario 

of pollen flow from a crop to its wild relative. Crossing was done according to the protocols by 

Nagata (1992) and Ryder (1999) and as described in (Hooftman et al. 2005). F2 seeds were 

produced by selfing of one F1 plant. F2 seeds were sown and 200 seedlings were randomly 

chosen, transplanted and genotyped as described below. The plants were selfed and the resulting 

F3 seeds were harvested per individual F2 plant.   
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Genotyping and construction of the linkage map 

The Compositeae Genome Project at UC Davis Genome Center has developed Single Nucleotide 

Polymorphism (SNP) markers from lettuce populations derived from crosses between closely 

related cultivars of L. sativa and between L. sativa and L. serriola. These SNPs were mined 

initially by re-sequencing PCR-amplified genes of interest between Lactuca sativa cv. Salinas 

and L. serriola acc. UC96US23 using Sanger sequencing (McHale et al. 2009) and by mining 

Illumina sequencing data aligned to reference EST assemblies 

(http://compgenomics.ucdavis.edu/compositae_SNP.php). cDNA libraries from parental lines 

were sequenced with Illumina Genome Analyzer II. These ESTs sequences encode genes for 

disease resistance and plant development. In this way, more than 10,000 SNPs were developed 

from 3,950 ESTs in four parental pair combinations, namely Salinas x Valmaine, Pavane x 

Parade, Emperor x El Dorado, and Thompson x Cisco. To improve the conversion success rate of 

bioinformatically identified SNPs to molecular markers, potential SNPs were filtered to 1083 

SNPs that had been previously assayed and shown to be robust; were polymorphic in more than 

one of the four parental pair combinations; were not located in intron/exon splice sites; were 

limited to one SNP per contig; were candidate genes of interest; were evenly distributed based on 

previous mapping work and the ultra-dense lettuce map; and the surrounding sequence was 

suitable for oligonucleotide design for the Illumina GoldenGate assay. The selected 1083 SNPs 

were converted into Custom GoldenGate Panels (OPA) for genotyping, using an Illumina 

BeadXpress . From the 1083 SNPs, a customized OPA of 384 SNPs which were polymorphic 

between the F2 parental lines was made specifically for the population.  

DNA was extracted from freeze-dried leaf samples of the 200 F2 and parent lines using the 

QIAGEN DNeasy 96 Plant Kit (QIAGEN, Venlo, the Netherlands) with slight modifications for 

dry plant tissue to obtain a minimum DNA concentration of 60 ng/µl. The DNA concentration 

was quantified using a NanoDrop 1000 Spectrophotometer V3.7 (Thermo Scientific). We 

genotyped 187 F2 individuals and the parents using the customized 384 SNP OPA in a 

BeadXpress assay. Out of the 384 SNPs, 355 were successfully scored in the 187 F2 and parental 

lines. Three hundred thirty-one markers were co-dominant, 16 were dominant for the L. serriola 

allele, and 8 were dominant for the L. sativa allele. The genotypes for the 187 F2 individuals were 

used to build a genetic linkage map using JoinMap® 4 (Van Ooijen 2006). Segregation distortion 

was tested against the expected allele frequency ratio of 1:1, using the χ2 test of goodness of fit 

with one degree of freedom. Markers within linkage groups were ordered using the maximum 
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likelihood option of JoinMap (Jansen et al. 2001). The linkage map was displayed using 

MapChart 2.2 (Voorrips 2002). 

Greenhouse experiments 

Based on the genotypes of the 187 F2 individuals, we selected a set of 98 F2 plants  that optimized 

the number of different combinations of parental haplotype blocks, using the program "Genetic 

Distance Optimization” (GDOpt) (Odong et al. 2011). The program uses adapted K-medoids 

clustering (Kaufman and Rousseeuw 1990) in which one individual in each of the K clusters acts 

as cluster centre and clusters are formed by minimizing the total distance of all individuals to the 

nearest of the K individuals designated as cluster centres. In order to obtain a good starting point, 

the initial configuration of cluster centers was provided by a modified version of Genetic 

Distance Sampling (Jansen and van Hintum 2007).  

F2:3 families were derived from the genotyped F2 plants by selfing, together with their parents in 

greenhouse experiments were used in greenhouse experiments in Wageningen, the Netherlands. 

We added to the experimental lines two additional lines, L. serriola acc. UC96US23 and L. sativa 

cv. Salinas which, together with the parental lines, were later used to estimate the environmental 

error. We carried out two experiments: (i) the “drought experiment” (March-April 2010), which 

comprised drought and control treatments and (ii) the “salt-nutrient experiment” (June-July 

2010), which comprised salt, nutrient deficiency and control treatments. Each F2 plant was 

represented by 12 F2:3 seedlings per treatment. The parents and the two additional lines were also 

replicated 12 times per treatment.  

During first establishment, the seedlings were irrigated twice a week for two weeks with water 

supplemented with nutrients. Subsequently, the treatments were started at the beginning of the 3rd 

week after transplanting of the seedlings, when the plants had 4 to 5 leaves. For the drought 

experiment, the plants in the control treatment were still watered twice a week, while the plants in 

the drought treatment were not given water at all . For the salt-nutrient experiment the plants 

were again irrigated twice a week but with added 100 mM of NaCl in the irrigation water. The 

plants under nutrient deficiency treatment received water to which no nutrients were added. The 

control plants received nutrients for the whole period of the experiment. Stress was applied for 

three weeks after which time the plants were harvested at the rosette stage, 35 days after 

transplanting. A photoperiod of 18ºC/16 hours of light and 15ºC/8 hours of darkness was 

maintained throughout the experiments by temperature control and application of artificial 
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lighting as needed. However, high summer temperatures influenced the greenhouse conditions 

during the salt-nutrient experiment when outside temperature reached as high as 35oC. 

Phenotypic measurements 

For each plant, vigour was determined by fresh and dry shoot biomass and shoot height. Shoot 

dry weight was measured after these were dried at 80ºC for 3 days. We also calculated shoot 

relative moisture content as the ratio of the amount of water in the shoot to the total shoot weight 

[(fresh weight-dry weight)*100/fresh weight]. The ion content (Na+, K+, and Cl-) for salt and 

control treatments of the salt-nutrient experiment was measured. Because ion content is measured 

based on dry matter, the 80ºC-dried shoots were dried again at 100ºC for 24 hours. The 12 plants 

per line per treatment were pooled, ground to fine powder, well mixed, and about 30 mg of dry 

matter was measured with the precise weight recorded. The ground samples were ashed at 545ºC 

for 5 hours, diluted in 3M formic acid, and further diluted 1000 times with extra-pure water. The 

diluted solutions were used in ion chromatography analysis on an 881 Compact IC pro (Metrohm 

AG, Herisau, Switzerland, Stolte et al. 2011). 

Analysis of phenotypic data  

Statistical analysis was performed using GenStat 13 (Payne et al. 2010 ). The drought and the 

salt-nutrient experiments were analysed separately. The significance of the different terms was 

determined by the analysis of variance, fitting the model: 

Response = general mean + block + genotype + treatment + genotype.treatment + error 

Broad sense heritability of the traits was estimated for each treatment separately as the proportion 

of the total variance accounted for by the genetic variance using the formula 

 H2 = Vg(F2)/(Vg(F2)+Ve/r);  

where Vg(F2) is the genetic variance among F2:3 families, Ve is the environmental variance, and r 

is the number of replications (Chahal and Gosal 2002). Vg(F2) was estimated based on the 

restricted maximum likelihood (REML) method from the mixed model:  

Response = general mean + block + F2 genotype + error;  

with the Response term representing the measured traits, and the term F2 genotype taken random. 

Ve was the error variance derived from a one-way analysis of variance of the model:  
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Response = general mean + block + parents + error; 

 with the term parents representing the two parents of the F2 plants and the two added lines (L. 

serriola acc. UC96US23 and L. sativa cv. Salinas).  

Quantitative Trait Loci analysis 

In order to effectively model genotype by environment interaction (GxE, with environments 

represented by the different treatments) through QTL by environment interaction (QTLxE), each 

trait was analysed individually using the single trait – multiple environment option of the 

program. Genome-wide association between markers and traits was decided based on a 

significance level of 0.05 corrected for multiple tests using the Li and Ji method (Li and Ji 2005). 

After the selection of the best variance-covariance model for the treatments (Malosetti et al. 

2004), the candidate QTLs were determined by initial genome scan. Final QTL positions were 

determined by composite interval mapping taking into account co-factors. The allelic effect of the 

detected QTLs in each treatment, the effect of QTLxE and the explained phenotypic variance of 

each QTL per treatment were determined by running a backward selection on the candidate QTLs 

in a mixed linear model, taking the QTL effect in each treatment as fixed terms and the 

interaction between each hybrid family and the treatment as random (Mathews et al. 2008). In 

that way, each QTL detected in one treatment was tested for its effect and significance in the 

other treatments. 

Epistasis was tested for the detected QTLs (Holland 2007). Each QTL region was represented by 

the genotypic scores of the most significant marker in a multiple regression model in GenStat.  

To avoid the effect of linkage, overlapping QTLs were represented by one SNP marker and no 

interaction was estimated for QTLs on the same linkage group even if they did not overlap. In 

each treatment, every trait was explained by the main effects of all the detected QTLs to which 

interaction between one pair of QTLs was added at a time.  QTL x QTL interaction was decided 

significant at a level of 0.05 which was corrected for the number of traits by the Bonferroni 

method (Bland and Altman 1995).  
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Results 

Phenotypic variation 

The analysis of variance revealed significant genotypic variation for the measured vigour traits 

(plant height, fresh weight, dry weight and relative moisture content; Pgenotype < 0.001), and there 

was significant genotype x treatment variation (Pgenotype x treatment < 0.001). Broad sense heritability 

of the traits ranged from moderate to high (0.51 ≤ H2 
≤

 0.99, Table 1), showing that the 

phenotypic variation among the F2:3 families was mainly explained by genetic factors. 

Heritability depended on the treatment. In the drought experiment, it was lower for all the traits 

under the drought conditions than under the control conditions, except for relative moisture 

content. In the salt-nutrient experiment, the heritability of the traits was comparable under control 

and salt treatments, whereas it was lower under nutrient deficiency treatment. Crop-wild 

hybridization released genetic variance: even when the means of the parents were not 

significantly different, heritability was relatively high as observed for dry weight under control 

(H2 = 0.90) and drought conditions (H2 = 0.66) and for relative moisture content under nutrient 

deficiency conditions (H2 = 0.89) (Table 1).  

For each trait and under all the treatments, there were F2:3 individuals whose measurements were 

equal to or greater than the means of the two L. serriola lines (Supplementary material Figure 

S2). Moreover, the mean for L. serriola parent was always comprised within the range of the 

means of F2:3 families for all the traits and under all the treatments (Table 1). It is evident from 

these results that crop-wild lettuce hybrid families have potential increased vigour in comparison 

to the wild parent under the four tested conditions (non-stress, drought, salt and nutrient 

deficiency conditions). 

Plant height positively correlated with biomass, except under salt treatment where fresh weight 

was negatively correlated with plant height (r=-18, Table 2). Under salt treatment, Na+, Cl- and 

K+ negatively correlated with plant height. The correlation between  ion content and plant 

biomass was apparently due to shoot moisture content as Na+ and Cl-  positively correlated with 

fresh weight and relative moisture content, but did not correlate with dry weight (r = 0.03 for Na+ 

and r = 0.07 for Cl-). The lack of correlation between ion content and dry weight indicates that 

the accumulation of ions in the shoots was not related to the biomass of the plants under salt 

treatment. 
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Genotypic data  

The linkage map comprised 345 SNPs (Figure 1) which, at a LOD score of 4, gave nine linkage 

groups (LG) representing the nine chromosomes of lettuce. These had a total length of 1312 cM, 

with an individual length of 105 to 174 cM per LG. Each LG had 33 to 48 markers, with a 

median distance between the markers of 1.2 to 3.2 cM, except for LG 9 that had 19 markers with 

a median distance between the markers of 4.2 cM. 

Table 1  Mean, range values and heritability for measured traits of the F2:3 families and their parents under drought, 
salinity, nutrient deficiency and non-stress conditions 

1 Control-D: control treatment in the drought experiment, Control-SN: control treatment in the salt-nutrient deficiency experiment;  

2 L. serriola and L. sativa not significantly different 
 

Based on the 331 co-dominantly scored SNPs in 187 F2 plants, the whole crop genome was 

represented in the F2 population. The average crop allele content in the F2 plants was 50% as 

expected, with individuals comprising of 28% to 66% crop alleles. The selection of the 98 F2 

plants for the experiment did not alter the average crop genome content. Using a significance 

level of 0.05 corrected for multiple tests by the Bonferroni method (α=0.05/331, Bland and 

Altman 1995), 8 markers (2.4%) had crop/wild allele frequency ratios that significantly deviated 

from the expected 1:1 ratio (χ2 ranging from 14 to 65). Three of these markers could not be 

  L. serriola 
mean  

L. sativa 
mean  

F2:3 families  
Trait Treatment Mean  Min Max H2 

Plant height (cm) Control-D1 35.88  25.69 32.95  26.49 44.99 0.84 
  Drought 21.63 17.85  20.52  16.80 26.43 0.82 
  Control- SN 1 57.68 22.85  43.31  13.17 89.28 0.98 
  Salt 27.08 14.72 25.68  13.34 53.53 0.99 
  Nutrient deficiency 21.22 12.12 18.91  10.03 48.07 0.98 
Fresh weight (g) Control-D 44.76 72.55  53.14  31.91 69.55 0.90 
  Drought 10.22  13.94  11.16  8.46 14.02 0.51 
  Control- SN 34.51 55.18  42.25  28.5 53.44 0.86 
  Salt 12.64 24.98  15.28  9.38 19.92 0.83 
  Nutrient deficiency 7.46 10.73  8.10  5.62 10.53 0.66 
Dry weight (g) Control-D 3.082 3.20  3.02  1.60 4.39 0.90 
  Drought 1.832 1.91  1.62  1.19 1.96 0.66 
  Control-NS 2.982 2.46  2.91  2.12 4.32 0.90 
  Salt 1.33 1.97  1.54  1.09 2.21 0.80 
  Nutrient deficiency 1.05 1.58  1.14 0.78 1.58 0.71 
Relative moisture  Control-D 93.09 95.62  94.44  93.07 95.73 0.82 
content (%) Drought 81.47 85.49  84.67  79.38 88.50 0.89 
  Control-SN 91.31 95.56  93.08  88.62 94.57 0.93 
  Salt 89.41 92.10  89.84  85.99 91.78 0.96 
  Nutrient deficiency 85.882 85.32  85.81  81.53 88.76 0.89 
Na+ (µg/g dry weight) Control- SN 11.02 13.24 9.19  3.18 20.70 - 

Salt 24.35 49.91 31.47  8.32 54.89 - 
Cl- (µg/g dry weight) Control- SN 10.51 19.28 15.56  7.24 22.13 - 

Salt 56.37 78.47 67.78  20.65 105.67 - 
K+ (µg/g dry weight) Control- SN 44.14 82.77 66.14 38.36 93.07 - 

Salt 49.91 39.22 49.10 23.39 72.92 - 
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placed on the map and the remaining five mapped on LG3 where they spanned a continuous 

segment of 76 cM, and they favoured the crop allele (Figure 1). The flanking markers had 

relatively high χ2 values as well (Pχ2=0.0015) on both sides of the segment, indicating a non-

random effect of distortion of the segment.  

Table 2 Pearson’s coefficients of correlation among the traits 

Trait Treatment Plant 
height 

Fresh 
weight 

Dry 
weight 

Relative 
moisture 
content 

Na+ Cl- 

Fresh 
weight 

Control-D* 0.28      
Drought 0.50      

 Control-SN* 0.04ns      
 Nutrient deficiency 0.40      
 Salt -0.18      
Dry 
weight 

Control-D 0.35 0.83     
Drought 0.29 0.58     

 Control-SN 0.59 0.61     
 Nutrient deficiency 0.24 0.76     
 Salt 0.33 0.77     
Relative 
moisture 
content 

Control-D -0.24 -0.19 -0.69    
Drought 0.31 0.64 -0.17    
Control-SN -0.68 0.13 -0.65    

 Nutrient deficiency 0.17 0.12 -0.52    
 Salt -0.80 0.17 -0.47    
Na+ Salt -0.56 0.56 0.03ns 0.69   
Cl- Salt -0.77 0.65 0.07ns 0.80 0.79  
K+ Salt -0.32 0.01ns -0.13ns 0.23 -0.31 0.20 
* Control-D: control treatment in the drought experiment, Control-NS: control treatment in the salt-nutrient deficiency 
experiment; ns: correlation coefficient not significant (P>0.05) 
 

QTL analysis  

Seventeen QTLs were mapped for vigour traits (plant height, fresh weight, dry weight and 

relative moisture content) and six QTLs were mapped for ion content traits (Na+, Cl- and K+).  

The details about the detected QTLs under control and stress conditions are shown in Table 4 and 

their locations on the linkage map are presented in Figure 1.  The QTLs were located on 8 linkage 

groups, with LG1 having no QTL. The dominance effects of the QTLs were not significant, 

except for two QTLs, one for fresh weight, and another one for Na+ content, showing that the 

vigour of the hybrids was not mainly due to the heterozygous genotypes.  QTL by environment 

interaction (here the environments represented by the treatments) was significant for all the 

vigour trait QTLs and Cl- content QTLs. This non-additive QTL effect from one treatment to 

another was due to the presence of a QTL in one treatment and its absence in another or to a 

differential QTL allelic effect characterized by unequal or opposite allelic effect from one 

treatment to another.  
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Eleven QTLs were detected in the drought experiment and seven of them had a positive effect 

from the crop allele. Five of the QTLs were common in the control and drought treatments, while 

three were specific to the control treatment and three were specific to the drought treatment. 

Fifteen vigour QTLs were detected in the salt-nutrient experiment with five of them having a 

positive effect from the crop allele and three QTLs having a positive effect from the crop allele in 

either the control or salt treatment and a positive effect from the wild allele in the nutrient 

deficiency treatment. Plant height was solely inherited from the wild parent in all the treatments, 

while the other vigour traits were inherited from both the crop and the wild parents. 

Although the QTLs were located on 8 out of 9 lettuce LGs, sixteen of the twenty-three detected 

QTLs were located on three LGs.  These were LG4, 7 and 9 and they constituted QTL hotspots 

because the QTLs overlapped on the same segments (Figure 1). On LG7 six QTLs overlapped on 

a chromosome segment of 28cM and two more QTLs overlapped in a neighbouring region. Five 

QTLs overlapped on LG 9 and three QTLs overlapped on LG4. 

Table 4 QTLs for vigour traits and ion content traits mapped under drought, salt, nutrient deficiency and non-stress 
conditions 

 
 

  QTL 
 x 
 E 

Additive and dominance effect per treatment 2 (% explained 
variance) 

Trait 
QTL 
name1 Most significant marker LG C-D3 D C-SN S N 

Plant  
height  
(cm) 

L-4-1 CLS_S3_Contig5228-3-OP4 4 yes -1.89(16) -0.54(4) -4.84(8) 
L-6-1 Contig13566-1 6 yes -3.15(6) -3.32(8) 
L-7-1 QGB11B18.yg-2-OP5 7 yes   -10.23(34) -8.66(46) -5.44(23) 

  L-9-1 CLS_S3_Contig2201-5-OP5 9 yes   -6.06(12) -3.97(10) -5.34(22) 
Fresh 
weight (g)  
  

FW-2-1 CLS_S3_Contig3908-1-OP5 2 yes -2.84    -0.77 
FW-3-1 Contig1242-5 3 yes  2.52(11) 1.09(12)  
FW-6-2 CLS_S3_Contig4649-3-OP5 6 yes -2.46(5)     

  FW-7-2 CLSS4482.b2_C18-6-OP5 7 yes 0.53(12) 0.91(8) -0.35(6) 
  FW-8-1 RHCLS_S3_Contig7957_5 8 yes 3.73(12) 2.85(14) 0.85(7) 0.37(6) 
  FW-9-2 CLS_S3_Contig2201-5-OP5 9 yes 3.35(9) 0.39(6) 0.06(11) -0.37(6) 
Dry weight 
(g) 
  

DW-3-2 Contig1242-5 3 yes    0.07(6) 
DW-4-2 CLS_S3_Contig4328-2-OP5 4 yes -0.34(18) -0.07(10) -0.32(20) -0.10(10) -0.06(5) 
DW-7-3 CLSS4482.b2_C18-6-OP5 7 yes 0.07(12) -0.23(11)   

Relative 
moisture  
content 
(%) 

RMC-4-3 CLS_S3_Contig5668-7-OP5 4 yes 0.41(25) 1.28(28) 0.30(4)  0.88(16) 
RMC-5-1 CLRY8019-1 5 yes 0.24(9) 0.40(3)    
RMC-7-4 QGB11B18.yg-2-OP5 7 yes   0.72(23) 0.98(32) -0.90(17) 

RMC-9-3 CLSM16121.b1_B24-1-OP5 9 yes 0.48(4) 0.40(7) 0.48(8) 
Na+ (µg/g 
dry matter) 

Na-7-5 
CLSM4311.b1_M21-1-OP5 7 NA4 - -  9.34/3.36(48) - 

Cl- (µg/g 
dry matter) 

Cl-7-6 CLSS4482.b2_C18-6-OP5 7 yes - -  10.29(24) - 
Cl-9-4 CLS_S3_Contig2201-5-OP5 9 yes - -  6.71(8) - 

K+ (µg/g 
dry matter) 

K-7-7 CLS_S3_Contig4590-1-OP5 7 yes - -  -8.44(24) - 
K-7-8 CLSS4482.b2_C18-6-OP5 7 No - - 5.23(8) 5.23(8) - 

 K-9-5 CLS_S3_Contig2201-5-OP5 9 No - - 3.68(5) 3.68(5) - 
1 QTL names are derived from the traits they determine followed by the linkage group on which they are located and the number 
of the QTL on that linkage group; 2 QTL effect for the crop allele: positive value: effect positive for the crop allele, negative 
value: effect positive for the wild allele).Underlined values: significant dominance effect; 3 C-D: control treatment of the drought 
experiment; C-SN: control treatment of the salt-nutrient experiment; D: drought treatment, S: salt treatment, N: nutrient 
deficiency treatment; 4 NA: not applicable because one QTL was detected per trait 
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Figure 1 Linkage map of 345 SNPs based on 187 F2 plants derived from a cross between L. sativa and L. serriola. The names of 

the markers are shown on the left of the LG bar and the distance is given on the right in centiMorgans.  The markers with 

distorted segregation are shown in red (distortion towards the crop allele).  The genomic localizations of the QTLs for plant height 

(L), fresh weight (FW), dry weight (DW), relative moisture content (RMC), sodium (Na), potassium (K) and chloride (Cl) as 

mapped under control (black), drought (red), salt (blue) and nutrient deficiency (green) conditions in 98 F2:3 families are represented 

by the blocks. Solid QTL block: effect positive for the crop allele; open QTL block: effect positive for the wild allele.
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Figure 1-Continued 

QTL epistatic effect 

Twenty-one QTL pairs epistatically affected the traits under the five treatments, increasing the 

explained phenotypic variance by 6 to 12% (Table 5). Heterozygosity did not play an important 

role in the epistatic effect: for 18 QTL pairs, the predicted means for homozygous genotype 
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combinations were equal to or greater than the predicted means for the heterozygous 

combinations.  Four of these QTL pairs were homozygous for the crop allele, six were 

homozygous for the wild allele, and eight of the QTL pairs were homozygous for the crop allele 

at one locus and homozygous for the wild allele at the other locus. 

Table 5 Significant QTL x QTL interactions as detected by generalized linear model analysis fitting the main QTL 
effects and adding interaction between one pair of QTLs at a time 
   % 

 expl. 
variance  

Predicted genotypic means1 
Treat- 
ment2 

Trait QTL x QTL a/a a/h a/b h/a h/h h/b b/a b/h b/b 

C-D Plant height (cm) L-6-1 x RMC-5-1 11 32.7 31.8 35.5 30.1 33.4 34.5 34.0 32.6 31.9 
Dry weight (g) FW-6-2 x DW-4-2  8 2.9 2.7 2.6 2.5 3.2 3.1 2.5 3.2 3.5 
Relative moisture  
content (%) 

L-4-1 x RMC-5-1 7 94.8 94.7 93.5 94.6 94.4 94.2 94.7 94.5 94.4 

 
FW-2-1 x RMC-5-1  7 94.7 94.9 94.0 94.8 94.3 94.1 94.5 94.6 94.2 

D Plant height (cm) FW-8-1 x DW-4-2   12 18.2 21.3 20.4 19.7 20.8 20.2 20.7 19.4 21.8 

 
Dry weight (g) FW-3-1 x RMC-4-3 12 1.7 1.6 1.6 1.5 1.7 1.8 1.5 1.6 1.6 

 
Relative moisture  
Content (%) 

L-6-1 x FW-8-1 9 85.3 84.0 84.2 83.9 85.1 86.3 83.7 84.3 85.2 

 
           

C-SN 
Fresh weight (g) L-4-1 x L-9-1 

11 43.2 41.6 47.1
8 

44.4 43.1 38.8 39.5
1 

42.5 38.1 

 L-6-1 x RMC-4-3 11 45.7 41.0 42.9 35.8 43.1 43.5 39.2 42.1 42.0 

 
Dry weight (g) L-4-1 x L-9-1 9 2.9 2.8 3.2 2.8 3.1 2.8 2.4 3.0 3.1 

  
L-4-1 x L-7-1 8 2.8 2.9 3.4 2.7 2.9 3.2 1.9 3.0 2.8 

  
L-7-1 x  L-9-1 11 2.7 2.6 2.4 2.7 3.1 3.0 2.7 3.2 3.6 

  L-7-1 x FW-8-1 7 2.6 2.6 3.1 3.2 2.9 2.7 3.6 3.2 2.8 

 Relative moisture 
content (%) 

L-4-1 x L-9-1 
6 93.4 93.2 93.1 93.6 92.8

3 
92.8 94.0 92.9 91.9 

  L-9-1 x DW-4-2 6 93.2 93.6 93.7 93.3 93.0 92.7 93.3 92.9 91.6 
  DW-4-2 x RMC-5-1 6 94.0 93.7 92.4 93.4 93.2 93.1 92.0 92.4 92.9 
N Plant height (cm) L-7-1 x  L-9-1 6 11.2 7.7 14.0 13.1 20.0 25.4 15.6 25.7 31.6 
 Dry weight (g) L-7-1 x  L-9-1 12 1.3 1.2 1.1 1.1 1.2 1.2 1.0 1.1 1.3 
S Plant height (cm) L-4-1 x L-9-1 6 22.9 22.4 27.0 20.7 24.9 24.9 25.5 29.2 40.8 
 Fresh weight (g) FW-6-2 x RMC-5-1 7 15.4 15.5 14.6 16.2 15.5 14.4 14.5 14.7 16.6 

 
Relative moisture 
content (%)  L-9-1 x DW-4-2 

6 90.6 90.1 90.9 89.7 89.5 90.7 89.3 89.5 88.7 

1 a: homozygous for the crop allele, b: homozygous for the wild allele, h: heterozygous; 2 C-D: control treatment of the drought 
experiment, D: drought, C-SN: control treatment of the salt-nutrient experiment, N: nutrient, S: salt 
 

Discussion 

Early life stages of plants such as germination, seedling stage and vegetative growth are crucial 

phases as they determine the survival and reproduction of the plant, especially under stress 

conditions (Albacete et al. 2008; Donohue et al. 2010; Foolad 1996). In Avena barbata, early 

plant growth was found positively correlated to survival, fully grown plant biomass and plant 

fitness under field conditions (Latta and McCain 2009). In lettuce crop-wild hybrids, selection 

takes place on young plants, leading to surviving lineages with higher vigour and fitness than the 

wild genotypes (Hooftman et al. 2009; Hooftman et al. 2005). We studied the tolerance of young 

lettuce crop-wild hybrid plants to drought, salinity, and nutrient deficiency and mapped QTLs 

associated to plant vigour under those conditions in F2:3 families derived from a cross between L. 

serriola and L. sativa.    
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Crop genome content in the hybrids 

Interspecific crosses have been reported to result in high pre-zygotic segregation distortion in 

progeny (ranging from 22% to 90% of the markers) and to be associated with reproduction 

barriers (Jenni and Hayes 2009; Platt et al. 2010; Yue et al. 2009). The relatively low rate of 

distorted segregation in the F2 population (2.4%) is consistent with the close relatedness of L. 

serriola and L. sativa and the complete fertility between the two species (De Vries 1990; 

Koopman et al. 1993; Koopman et al. 2001). In the same crop-wild cross, Hooftman et al. (2011) 

observed a segregation distortion of 7.5% under greenhouse (no mortality) conditions. Their 

results are similar to ours with the differences in percentage accountable to different methods of 

correcting the significance level for multiple tests. The region on LG3 where the distortion was 

located in our study could unfortunately not be compared with Hooftman et al. (2011) results due 

to the lack of common markers. The occurrence of genomic regions which favour one of the 

parental alleles may result in an increase in frequency of one parental allele at the expense of the 

other allele in subsequent generations. This has introgression consequences: on one hand, further 

selfing of the hybrids will lead to a rapid fixation of the crop alleles in regions such as on LG3 

where the crop alleles are favoured over the wild alleles, regardless of the fitness effect of the 

crop (trans)genes. On the other hand, regions favouring the wild alleles will slow down the crop 

allele fixation, although none was identified in this cross. The identification of such genomic 

regions with pre- and post-zygotic segregation distortion could be exploited to minimize the 

introgression likelihood of transgenes. However, the use such regions in minimizing the escape 

of transgenes will depend on the stability of the distortion over generations and across genotypes. 

Phenotypic variation and heritability of the traits  

Hybridization between cultivated and wild lettuce resulted in a moderate to high heritability for 

the vigour traits and hybrids show improved vigour over the wild parent under non-stress and 

stress conditions. These results lend credence to previous experiments on lettuce which have 

shown that crop-wild hybrids could perform equally or better than the wild parent and that, 

depending on their fitness, hybrids could displace the wild taxon L. serriola in its natural habitat 

(Hooftman et al. 2005; Hooftman et al. 2008). The results also suggest that, if early vigour results 

in better fitness, lettuce hybrids could outperform the wild parent under stress conditions of 

salinity, drought and nutrient deficiency. These results are in line with the experimental results on 

radish (Raphanus spp.) (Campbell and Snow 2007; Campbell et al. 2006) in which hybrids 
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outperformed the wild parent in a new environment, hence indicating that hybrids could invade 

new ecological areas.  

QTL effects 

Hybridization brings together two species genomes and might result in the creation of new 

genotype combinations which will define the performance of the hybrids. Despite the close 

relatedness between L. serriola and L. sativa, a previous study has shown that the two species are 

molecularly distinguishable (Chapter 2). Improved hybrid vigour in early generations of hybrids 

has been associated with heterosis through dominance, overdominance and epistatic loci in 

repulsion phase (pseudo-overdominance) (Birchler et al. 2003; Burke and Arnold 2001). Hybrid 

vigour due to dominance and overdominance is expected to be short lived as it is associated with 

the advantage of the heterozygote genotypes which breaks down over subsequent generations due 

to selfing.  In this study additivity was the major allelic action at 16 of the 17 vigour QTLs 

identified in the F2 population. Dominance was significant for one vigour QTL (FW-2-1), hence 

dominance is likely not the most important genetic basis behind the improved vigour among F2:3 

families.   

Conversely, epistasis as a result of non-additive effect of genotypes at two QTLs was significant 

for the traits under stress and control conditions. Despite the proven importance of epistasis on 

polygenic traits (Tisné et al. 2010; Yu et al. 1998), it is often   underestimated due to the required 

large population size which is experimentally challenging to handle, combined with 

computational load, which makes it difficult to scan all pairs of loci, especially in highly 

heterozygous populations such as F2 (Carlborg and Haley 2004). In a whole genome epistasis 

analysis, (Bai et al. 2010) found that the interaction between identified QTLs accounted only for 

18% of all the interacting pairs of loci. We have probably also underestimated epistasis, as it was 

calculated only for those loci whose main effect was significant on their own and the background 

loci were not included in the interaction analysis. Despite the inclusion of only a subset of all loci 

in the analysis, the effect of epistasis was significant and it accounted for 6 to 12% of the 

phenotypic variance of the traits per pair.  

Many of the vigour QTLs mapped to the same genomic regions in this study, notably on LG4, 

LG7 and LG9. Co-localizing QTLs were also obtained by Baack et al. (2008) for traits related to 

survival and morphology in a recombinant inbred line population of crop-wild sunflower hybrids. 

QTL co-localization may be due to a pleiotropic effect, if one QTL affects more than one trait, 
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but it is also possible that the QTLs are genetically linked and inseparable with the markers and 

recombination events observed in this study. The combination of QTL hotspots with QTL x 

treatment interaction through opposite allelic effect across treatments makes it difficult to choose 

which QTL region favours which parental allele. Nevertheless, these regions will remain under 

selection, positively or negatively, depending on to the prevailing conditions (optimum, dry, 

saline or nutrient deficient). The QTL region on LG7 corresponds to the QTL for germination 

under low and high temperature with a positive effect from the wild allele (Argyris et al. 2005). It 

also overlaps with the QTL for the number of lateral roots in the bottom length of the tap root 

with a positive effect from the wild allele (Johnson et al. 2000), indicating that the region could 

be under positive or negative selection. Therefore, in the process of creating genetically modified 

cultivars, such QTL regions should be avoided when selecting a transgene insertion event 

because, if the regions are under positive selection, leading to an increased frequency of linked 

loci through genetic hitchhiking, neutral crop alleles or transgenes in the population  (Hooftman 

et al. 2011; Kwit et al. 2011; Stewart et al. 2003). 

From F1 progeny, the natural process of introgression in lettuce will continue with the creation of 

inbred lines through continued selfing or backcrosses to L. serriola, or a combination of the two. 

Therefore, further research encompassing generations of selfing and backcrossing to L. serriola is 

needed in order to establish the relevance of the detected QTL regions. Furthermore, this study 

was limited to plant vigour at an early stage of growth of the hybrid plants under controlled 

greenhouse conditions, while spontaneous crop-wild hybrids grow under natural field conditions. 

Additionally, greenhouse and field experiments are not always consistent (Gardner and Latta 

2008; Latta and McCain 2009). Hence, the hybrids should be evaluated on the field in order to 

correlated early vigour with adulthood and reproduction, and link individual stress treatment with 

field conditions which may encompass multiple abiotic stress factors in combination with biotic 

stress factors such as diseases and herbivores.  
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Abstract 

After crop-wild hybridization, some of the crop segments are established through selfing of 

the hybrids or introgressed by backcrossing to the wild parent or a combination of the two, 

depending on the reproductive system of the plants. In lettuce, selfing is the most likely 

pathway that the hybrids will follow due to its self-pollination nature. However, introgression 

through backcrossing to the wild parent is also likely to happen due to the high frequency of 

the wild plants relative to the hybrids. To test the effect of backcrossing on the vigour of the 

hybrids, two backcross populations of lettuce were created from a cross between L. serriola 

and L. sativa and backcrossed to L. serriola to generated BC1 and BC2 populations. Plant 

vigour was tested in the two populations under greenhouse conditions of non-stress and 

abiotic stress conditions of salinity, drought and nutrient deficiency.  Despite the decreasing 

crop genomic composition in the backcross populations, the hybrids were characterized by a 

substantial genetic variation and hybrids were identified under non-stress and stress 

conditions that performed equally or better than the wild genotypes, indicating that two 

backcrossing events did not eliminate the effect of the crop.  QTLs for plant vigour under 

non-stress and the mentioned stress conditions were detected in the two populations with a 

positive effect from the crop and the wild parents. Based on the location of the QTLs on the 

linkage groups, we suggest genomic regions where transgenes could be inserted in order to 

limit their persistence through genetic hitchhiking.  
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Introduction 

One of the debated ecological risks associated with the commercial cultivation of genetically 

modified crop varieties is the possibility of introgression of transgenes from crops to their 

wild relatives through hybridization. It is feared that introgression may increase the weediness 

of the wild relatives in agricultural areas, cause genetic erosion of the latter in wild 

populations, or result in crop-wild transgenic wild lineages invading new habitats (Groot et al. 

2003; Pilson and Prendeville 2004; Snow et al. 2005; Tiedje et al. 1989). Because 

hybridization between crops and their wild relatives is likely for most of the crop species 

(Ellstrand 2003; Ellstrand et al. 1999), the outcome of hybridization between crops and their 

wild relatives has become a subject of many research studies, using either transgenic or 

conventional crop varieties  (e.g. (Baack et al. 2008; Dechaine et al. 2009; Hooftman et al. 

2009; Snow et al. 2003).  

The net effect of crop-wild hybridization may be negative, for instance if crop genes reduce 

the competitive ability under natural conditions; or positive, if hybrids inherit combinations of 

additive positive traits from the crop and the wild parents (Burke and Arnold 2001). If hybrids 

are viable and fertile, hybridization can result in a swarm of hybrids in which crop and wild 

genomes interactively define the hybrid phenotypes. From the F1 progeny onwards, crop 

alleles can be fixed through selfing or through backcrossing to the wild parent. Natural 

selection will purge out maladapted genotypes, leaving those genotypes with the same or 

higher net fitness as the wild parent in the natural habitat of the wild taxon, or with broadened 

adaptation as a result of transgressive segregation (Lexer et al. 2003b; Rieseberg et al. 1999).  

Initially, any crop gene in a hybrid plant will be in a chromosome segment comprising the 

gene itself and other genes linked with it, and the fitness effect will depend on the effect of 

the whole chromosome segment (Hooftman et al. 2011). In the course of crop allele fixation, 

a gene that confers a selective advantage may be introgressed, but it will do so along with 

other loci tightly linked to it, even if these are neutral to fitness. In the same way, a gene may 

be selected against due to its linkage to a deleterious gene (Barton 2000; Kwit et al. 2011; 

Stewart et al. 2003). It is within such a context that the dynamics of the process of 

introgression from crops to wild relatives constitute a baseline for understanding the effects of 

transgene escape and fixation into wild taxa (Baack et al. 2008; Chapman and Burke 2006) .  

We have initiated a study in which we follow the genetic process of introgression from 

cultivated lettuce (Lactuca sativa L.) to its wild relative prickly lettuce (Lactuca serriola L.). 

The two species hybridize successfully, giving viable and fertile hybrids (De Vries 1990), 
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hence making a typical crop-weed complex.  Despite the limited outcrossing rate in the two 

species (D’Andrea et al. 2008; Thompson et al. 1958), we have identified crop-wild hybrid 

plants among natural populations of L. serriola which are a result of spontaneous gene flow 

between the two species (see Chapter 2).  

In a previous study we have explored the genetic basis of hybrid vigour in an F2 population 

resulting from a synthetic cross between cultivated L. serriola and L. sativa (see Chapter 3). 

We mapped QTLs for plant vigour, which co-localized in a small number of chromosome 

regions, with additive QTL main effect and epistasis as the major genetic effects. After 

hybridization, the crop segments will be established in the wild background or eliminated by 

selection either through selfing of the hybrids or through backcrossing to the predominant 

wild plants, or a combination of the two processes. Selfing generations after a single 

hybridization event between the crop and the wild parents are characterized by crop genomic 

segments which constitute an average of 50% of the hybrid genome. In contrast, every 

backcross to the wild parent decreases the crop genome content by half, while the crop 

genome segments become smaller through recombination (Supplementary material Figure 

S3). In this way, crop segments that contribute to the vigour and fitness of the hybrids get 

introgressed with a decreasing number of hitchhiking loci with each backcross generation. 

Therefore, the fitness effects of a transgene in the context of its genomic location will differ in 

the selfing and backcrossing pathways.  

In this study we follow up the crop-weed complex of L. sativa and L. serriola in a marker-

assisted introgression study, and we focus on BC1 and BC2 generations in which L. serriola 

was the recurrent parent, hence mimicking the introgression process from crops to wild 

relatives through repeated backcrosses with wild populations. We want to get answers to the 

following questions: (1) Do the backcross generations exhibit transgressive segregation for 

vigour? (2) Are the vigour QTL regions that were identified in the selfing pathway (F2 

population) also detected in the backcross populations? (3) How does the contribution of the 

crop to the vigour of the hybrids change with the increasing wild genetic background?  

Materials and Methods 

Generation of BC1 and BC2 hybrid progenies and genotyping 

The present study concerns two backcross populations, BC1 and BC2, back-crossed to L. 

serriola to mimic the natural introgression from a crop to its wild relative. Flowers from the 

F1 hybrid plant resulting from a cross between Lactuca serriola (collected from Eys, the 

Netherlands) and Lactuca sativa (cv. Dynamite), which was also used to create the F2 
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population (Chapter 3), were hand-pollinated with L. serriola pollen to generate BC1 lines 

according to the lettuce pollination protocols by Nagata (1992) and Ryder (1999). By the 

same method, BC2 plants were created using the same L. serriola parental line.  

Because the BC1 population was developed before the 1083 Single Nucleotide Polymorphism 

(SNP) markers were available (see chapter 3) 192 individuals of the BC1 population were 

initially genotyped using the then available 384 SNP markers (OPA 1 and 2, 

http://compgenomics.ucdavis.edu/compositae_SNP.php). One hundred sixty-seven SNPs 

were successfully scored in the 192 BC1 individuals but resulted in a sparse genetic linkage 

map. Based on the genotypes, 100 BC1 individuals were selected to be used in greenhouse 

experiments, using the program “Genetic Distance Optimization program” (GDOpt) (Odong 

et al. 2011). Forty-five of the 100 BC1 plants were backcrossed to L. serriola to generate BC2 

lines. At the same time, the BC1 lines were left to self-pollinate to BC1S1 seeds 

(Supplementary material Figure S3). Six hundred BC2 individuals (12 BC2 plants for each of 

the 45 back-crossed BC1 lines) were regenerated and selfed to produce BC2S1 seeds. When 

768 SNP markers were developed and a customized GoldenGate genotyping panel of 384 

SNPs which were polymorphic between the parents (L. serriola/Eys and L. sativa cv. 

Dynamite) was completed (Chapter 3), the 100 BC1 individuals were genotypes again in order 

to improve the map density of the BC1 population, along with 458 randomly chosen BC2 

individuals.  Based on their genotypes, a selection of 100 BC2 individuals was made using the 

program GDOpt and their BC2S1 progenies were used in greenhouse experiments  

Greenhouse experiments 

The BC1S1 and BC2S1 seeds of the selected 100 BC1 and 100 BC2 individuals were used in 

greenhouse experiments together with their parents (L. serriola/Eys and L. sativa cv. 

Dynamite). We also included two lines, L. serriola acc. UC96US23 and L. sativa cv. Salinas, 

which, together with the parents, were used to estimate the environmental error. The parents 

and the two additional lines were replicated 12 times per treatment, and each BC1 and BC2 

individual was represented by 12 BC1S1 and BC2S1 seedlings per treatment respectively.  

Experiments were conducted separately for the two populations, using the same set up as in 

the F2 experiments (Chapter 3). For each population, two experiments were carried out, one 

comprising salt and nutrient treatments together with a control treatment and another 

experiment comprising a drought treatment together with a control treatment.  The drought 

experiment for the BC1 population was carried out in the period of February-March 2009, the 

salt and nutrient experiment for the BC1 population was carried out in April-May 2009, the 
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drought experiment for the BC2 population was carried out in November 2009-January 2010 

and the salt and nutrient experiment of the same population was carried out in January-March 

2010. After transplanting, the plants were given water twice a week for two weeks after which 

the stress treatments were applied. For the drought treatment, the plants were not given water 

for three weeks; for salt treatment, irrigation water was supplied with 100 mM NaCl, and for 

nutrient deficiency treatment, plants were irrigated with water without nutrients for three 

weeks. At the end of the fifth week after transplanting (at the rosette stage) we measured plant 

vigour for individual plants as shoot height, shoot fresh weight and shoot dry weight (after 

drying at 80ºC for 3 days). We calculated shoot relative moisture content as the ratio of the 

amount of water in the shoot to the total shoot weight [(fresh weight-dry weight)*100/fresh 

weight].  

Construction of the linkage maps 

Out of 384 SNP markers, 347 were successfully scored in the 100 BC1 individuals and 348 in 

the 458 BC2 individuals. Genetic linkage maps of the two populations were built separately 

using JoinMap® 4 (Van Ooijen 2006). The BC2 population was handled as a back-cross 

population without selfing (BCb2F0) and the expected genotype segregation was adjusted to 

3:1. The marker grouping was kept the same as in the BC1 and F2 populations, and the order 

of the markers and their genetic distances were calculated based on recombination among the 

BC2 individuals.  The linkage maps were displayed using MapChart2.2 (Voorrips 2002). 

Analysis of phenotypic data  

Statistical analysis was performed using GenStat 13th Edition (Payne et al. 2010 ). The 

drought and the salt-nutrient experiments were analysed separately. The significance of the 

different terms was determined by the analysis of variance, fitting the model  

Response = general mean + block + genotype + treatment + genotype.treatment + error; 

with the term genotype representing the hybrid families (BC1S1 or BC2S1). Broad sense 

heritability of the traits was estimated for each treatment in each population as the proportion 

of the total variance accounted for by the genetic variance using the formula:  

H2 = Vg/(Vg+Ve/r); 

where Vg is the genetic variance for the BC1S1 or BC2S1 families, Ve is the environmental 

variance, and r is the number of replications (Chahal and Gosal, 2002). Vg was estimated 

based on the restricted maximum likelihood (REML) method from the mixed model:  
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Response = general mean + block + genotype + error;  

with the term genotype taken random. Because BC1S1 and BC2S2 families were segregating, 

the term Ve was the error variance derived from a one-way analysis of variance of the model:  

Response = general mean + block + parents + error;  

with the term parents representing the two parents (L. serriola/Eys and L. sativa cv. 

Dynamite) and the two added lines (L. serriola acc. UC96US23 and L. sativa cv. Salinas).  

Quantitative Trait Loci analysis 

The genetic linkage map, the genotype scores and the phenotypic means were combined for 

QTL analysis using the QTL analysis function of GenStat 14th Edition (Payne et al. 2011). 

Each trait was analysed individually using the single trait – multiple environment option of 

the program. The BC1 and BC2 populations were analysed separately. The BC2 population 

was handled as a BC1 population. To adjust for the calculation differences caused by the 

marker gaps due to the additional recombination event in the BC2 population, the gaps in the 

BC2 linkage map were filled with virtual markers which were given missing marker scores. 

Thirty-five virtual markers were added on LG1, 2, 3, 4, 5, 8 and 9, keeping a maximum 

distance of 12 cM between the markers (Figure 2).  

In order to effectively model genotype by environment interaction (GxE, with environments 

represented by the different treatments) through QTL by environment interaction (QTLxE), 

each trait was analysed individually using the single trait – multiple environment option of the 

program. Genome-wide association between markers and traits was decided based on a 

significance level of 0.05 corrected for multiple tests using the Li and Ji method (Li and Ji 

2005). After the selection of the best variance-covariance model for the treatments (Malosetti 

et al. 2004), the candidate QTLs were determined by initial genome scan. Final QTL 

positions were determined by composite interval mapping taking into account co-factors. The 

allelic effect of the detected QTLs in each treatment, the effect of QTLxE and the explained 

phenotypic variance of each QTL per treatment were determined by running a backward 

selection on the candidate QTLs in a mixed linear model, taking the QTL effect in each 

treatment as fixed terms and the interaction between each hybrid family and the treatment as 

random (Mathews et al. 2008). In that way, each QTL detected in one treatment was tested 

for its effect and significance in the other treatments. 

To test for QTL epistatic effect (QTL x QTL), the phenotypic means were regressed against 

the genotypes of the most significant markers for each QTL in a generalized linear model. 
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One marker was considered for each QTL region, and no QTL interaction was estimated for 

QTLs on the same LG. For each treatment, every trait was explained by the main effects of all 

the detected QTLs to which interaction between one pair of QTLs was added at a time. The 

interaction effects of the QTL regions that were unique to the BC1 population were also 

included in the QTLxQTL analysis in BC2. QTLxQTL interaction was decided significant at a 

level of 0.05 corrected for the number of the traits using the Bonferroni method (Bland and 

Altman 1995). 

Results 

Phenotypic variance among the hybrid families 

Backcrossing rendered the hybrid plants morphologically very similar to their wild parent, L. 

serriola. Vigour depended on the backcross families and varied between the treatments in the 

two hybrid populations as revealed by the significance of GxE (Pgenotype x treatment <0.001 for all 

traits). The BC1S1 and BC2S1 families showed a wide range of means for the vigour traits 

under stress and non-stress conditions (Table 1). Some trait-treatment combinations such as 

plant height under all the treatments and dry weight under control and drought conditions 

showed transgressive segregation over the two parents. For all traits and in both backcross 

generations the mean of the wild parent L. serriola was lower than the maximum mean of the 

hybrid families. In spite of a second generation of backcrossing from BC1 to BC2, for each 

trait-treatment combination individual BC1S1 and BC2S1 plants and families stood out that 

performed better than the two wild genotypes (L. serriola/Eys and L. serriola acc. 

UC96US23, Table 1 and Supplementary material Figures S4 and S5,), indicating that the BC2 

plants still contained crop genome segments which contributed positively to their vigour.  

Genetic variation as expressed by broad sense heritability of the traits ranged from 0.44 to 

0.95 in the BC1 experiments, showing that a substantial part of the phenotypic variation was 

due to genetic factors (Table 1). In the drought experiment, heritability decreased from control 

to drought treatment for all traits. In the salt-nutrient experiment, the heritability decreased 

from control to stress treatments (salt and nutrient deficiency) for plant height, fresh weight 

and dry weight, but it increased for relative moisture content, with a greater increase in the 

nutrient deficiency treatment (from 0.64 to 0.90).  

In the BC2 population, heritability of the traits among BC2S1 families ranged from 0.43 to 

0.85, which is comparable to the range found in the BC1 population (Table 1). Also 

comparable to the BC1 population is that the heritability decreased from control to drought in 

the drought experiment for all the traits in the BC2 population.  
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In the salt-nutrient experiment, heritability decreased from control to salt for fresh weight and 

dry weight, while it slightly increased for plant height and relative moisture content. In the 

same experiment, heritability considerably decreased under nutrient deficiency conditions for 

plant height, from 0.85 under control to 0.43 under nutrient deficiency conditions. The genetic 

changes due to a second backcross to the wild parent from BC1 to BC2 led to a decrease of the 

heritability of the traits for most of the trait-treatment combinations. The most remarkable 

changes were under nutrient deficiency conditions, where heritability decreased by 50% for 

plant height, while it increased by 34% for fresh weight, 23% for dry weight and 18% for 

relative moisture content in the same treatment.  

Table 1 Parental means and mean, minimum and maximum values and heritability of the BC1S1 and BC2S1families for 
vigour traits under non-stress, drought, salinity and nutrient deficiency conditions  

1 Control-D: the control treatment of the drought experiment, Control-SN: the control treatment of the salt-nutrient experiment  

 

  
L. serriola L. sativa 

 Hybrid families   
Trait Treatment  Mean Min Max H2  
     BC1S1    
Plant height (cm) Control-D1 31.42 23.52  30.87 27.43 36.19 0.86  
  Drought 16.58 13.19  16.05 13.53 18.53 0.74  
  Control- SN  33.36 17.95  28.75 22.39 42.64 0.95  
  Salt 16.72 14.70  17.18 13.40 24.93 0.95  
  Nutrient deficiency 10.57 8.75   10.07 7.88 13.35 0.86  
Fresh weight (g) Control-D 39.20 68.11  46.56 25.25 62.26 0.87  
  Drought 6.48 8.01  6.46 5.40 8.14 0.48  
  Control- SN 25.52 39.15  27.24 21.76 32.27 0.79  
  Salt 8.40 20.13  10.85 7.90 14.35 0.69  
  Nutrient deficiency 2.60 4.82  3.16 2.46 3.92 0.44  
Dry weight (g) Control-D 2.42 3.14  2.87 1.51 4.09 0.90  
  Drought 1.15 1.38  1.16 0.93 1.41 0.80  
  Control-NS 2.01 2.56  2.13 1.61 2.75 0.75  
  Salt 0.84 1.79  1.07 0.74 1.43 0.59  
  Nutrient deficiency 0.50 0.90  0.61 0.42 0.86 0.62  
Relative moisture Control-D 93.80 95.41  93.89 93.07 94.83 0.75  
content (%) Drought 81.97 82.56  81.77 79.26 84.74 0.69  

Control-SN 92.11 93.50  92.24 91.25 93.21 0.64  
Salt 90.00 91.18  90.18 89.23 91.24 0.67  
Nutrient deficiency 81.03 ns 81.85  80.77 77.84 85.09 0.90  

     BC2S1    
Plant height (cm) Control-D1    29.17 24.09 37.01 0.85  
  Drought 14.02 12.32  14.32 12.39 17.75 0.77  
  Control- SN  21.02 16.63  21.51 17.51 28.04 0.80  
  Salt 16.54 13.62  16.54 13.01 22.2 0.84  
  Nutrient deficiency 11.62 10.07  11.33 9.69 14.05 0.43  
Fresh weight (g) Control-D 27.21 67.25  38.59 23.38 54.89 0.73  
  Drought 5.24 ns 5.46  4.55 3.31 6.32 0.37  
  Control- SN 13.70 31.32  17.64 13.19 26.39 0.72  
  Salt 9.31 17.87  10.35 7.27 13.36 0.63  
  Nutrient deficiency 4.87 7.14  5.34 4.26 7.65 0.59  
Dry weight (g) Control-D 2.08 3.34  2.76 1.81 3.95 0.80  
  Drought 1.12 ns 1.22  1.06 0.88 1.27 0.50  
  Control-NS 1.03 1.88  1.31 0.96 1.94 0.71  
  Salt 0.84 1.29  0.92 0.65 1.21 0.61  
  Nutrient deficiency 0.68 0.83  0.71 0.50 1.16 0.76  
Relative moisture Control-D 92.28 95.06  92.86 92.06 94.03 0.78  
content (%) Drought 77.94 ns 77.53  76.12 71.72 80.39 0.77  

 Control-SN 92.52 94.06  92.61 91.79 93.79 0.73  
 Salt 90.95 92.85  91.24 89.92 92.36 0.76  
 Nutrient deficiency 85.88 88.26  86.70 84.49 89.48 0.79  
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Allelic composition of the hybrids and linkage maps 

BC1 individuals on average contained 26% crop genome with individual plants ranging from 

11% to 39%. The population was characterized by long crop segments in a heterozygous state 

which sometimes spanned all the markers on a whole linkage group (Figure 1A). One 

additional backcross to the wild parent resulted in a reduction of crop genome content to 14%, 

varying among BC2 individuals both in segment size and proportional amount, ranging from 

3% to 29% (Figure 1B). Twenty-five markers (7%) showed a segregation distortion towards 

the crop allele in the BC2 population. Because none of the markers was distorted in the BC1 

population, the segregation distortion in the BC2 population was most probably due to the 

selection of the 45 BC1 plants that were backcrossed to L. serriola to create the BC2 

population.  

The linkage maps, shown in Figure 2, consist of nine linkage groups (LG) which represented 

the nine chromosomes of lettuce (Truco et al. 2007). The same marker order was obtained in 

the BC1 and BC2 populations. The BC1 map was made of 347 markers spanning a total length 

of 1301 cM, while the BC2 map had 348 markers with a total length of 1403 cM. The linkage 

groups contained 34 to 50 SNP markers, except LG9, which had 18 markers. As mentioned in 

the QTL analysis subsection of Materials and Methods, virtual markers were added on the 

BC2 map to fill up the gaps for better QTL mapping results. These markers are underlined in 

the BC2 linkage map (Figure 2). 

 

 

Quantitative Trait Loci 

Twenty QTLs associated with plant vigour were mapped in the BC1 population, 5 for plant 

height, 4 for fresh weight, 4 for dry weight and 7 for relative moisture content (Table 2 and 

Figure 2). The QTLs were located on all linkage groups except LG2. Only three of these 
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Figure 1 Allelic 
composition of the 
selected BC1 (A) and 
BC2 (B) genotypes. 
Blue: homozygous for 
the wild allele; yellow: 
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QTLs had the same order of magnitude additive effect in all treatments. The remaining QTLs 

were significantly affected by QTLxE. QTLs for plant height had an additive effect positive 

for the wild allele in the two control treatments, drought and salt treatments. Under nutrient 

deficiency, two of the plant height QTLs had an additive effect positive for the wild allele, 

while three QTLs for the same trait were positive for the crop allele, including two QTLs (L-

3-3 and L-7-1) which had a positive effect for the wild allele in other treatments, hence 

showing opposite allelic effects from one treatment to another.  

Fresh weight QTLs were inherited from the crop as three of the QTLs for this trait showed a 

positive additive effect for the crop allele. Dry weight was inherited from both the crop and 

wild parent as three of the QTLs for the trait had a positive additive effect for the crop allele, 

while one QTL for that trait showed a positive additive effect for the wild allele. Relative 

moisture content QTLs were inherited from both the crop and the wild parents. Four of the 

QTLs mapped for this trait had a positive additive effect for the crop allele, while the additive 

effect was positive for the wild allele for the remaining three QTLs.   

Fewer QTLs were mapped in the BC2 than in the BC1 population (Table 2 and Figure 2). 

Thirteen QTLs were mapped in BC2 for vigour-related traits. Four of the QTLs were 

significant in all the treatments with the same additive effect, hence having non-significant 

QTLxE effect, while the remaining nine had were significantly affected by QTLxE. Two of 

the QTLs for plant height had a positive additive effect for the wild allele and they were 

significant under the control treatment of the salt-nutrient experiment and under salt 

treatment. The other two had a positive additive effect for the crop allele.  

The three fresh weight QTLs had a positive additive effect for the crop allele. For the dry 

weight QTLs, one had a positive additive effect from the crop allele and the other one was 

positive for the wild allele. Relative moisture content QTLs were inherited from both the wild 

and the crop parent.  

QTL epistatic effects 

QTL epistatic effects on the vigour traits were significant in the two hybrid populations and 

under stress and non-stress conditions. In the BC1 population epistasis was estimated for 10 

QTL pairs and it explained 4 to 9% of the phenotypic variance per individual QTL pair and 

up to 23% per trait. Nine QTL regions mapped in BC2 and 6 QTL regions unique to the BC1 

population were used for QTL epistatic effect analysis and they explained 3 to 11% of the 

phenotypic variance per QTL pair and up to 27% per trait (Table 3). There were more QTL 

pairs in the BC2 population showing significant interaction than in the BC1 population, which 
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could be due to the fact that more QTL regions were included in QTLxQTL interaction 

analysis in the BC2 population. None of the QTL pairs was significant in both populations. 

There was more consistency in QTL epistatic effect in BC2 than in the BC1 as only one QTL 

pair (L-3-3 x RMC-8-4) was significant for the same trait (plant height) under control and 

nutrient deficiency conditions while one QTL pair could affect more than one trait in the BC2 

population. 

Table 2 Quantitative trait loci mapped in 100 BC1S1 and 100 BC2S1 families for vigour traits under non-stress, 
drought, salt and nutrient deficiency conditions 

   
 QTL 
name 

  QTL 
 x 
 E 

Additive effect for the crop allele (% expl. variance) 

Trait Pop. Most significant marker LG C-D1 D C-SN N S 
Plant 
height  
(cm) 

BC1 L-7-1 QGF25M24-1 7 yes   -2.1(6) 0.4(3)  
 L-9-1 CLS_S3_Contig2201-5-OP5 9 yes   -

4.6(32) 
-0.8(13) -2.3(30) 

 L-1-1 QGC26E22.yg-2-OP4 1 yes    0.7(12)  
   L-3-3 QGF21B10.yg.ab1_PAP2_LE1382_12 3 yes  -0.5(6)  0.39(3)  
   L-5-2 CLS_S3_Contig1313-2-OP5 5 yes -1.2(11)  -1.7(4) -0.5(5) -1.5(13) 
 BC2 L-7-1 QGB11B18.yg-2-OP5 7 yes   -1.3(4)  -0.7(3) 
  L-9-1 CLS_S3_Contig2201-5-OP5 9 yes     -0.5(3) 
  L-4-4 Contig1094-1 4 no 0.4(1) 0.4(6) 0.4(1) 0.4(9) 0.4(2) 
  L-8-2 CLX_S3_Contig8250_1298 8 yes 1.5(8) 0.7(14) 1.9(19) 0.4(6) 1.57(24 
Fresh 
weight  
(g)  

BC1 FW-7-2 CLSS4482.b2_C18-6-OP5 7 yes 4.0(10) 0.2(4) 1.0(4) 0.3(27) 1.3(22) 
 FW-9-2 CLS_S3_Contig2201-5-OP5 9 yes 2.4(3)   0.3(17) 0.5(3) 
 FW-1-2 QGG6E14.yg.ab1_PHYB_1360 1 yes 4.3(11)  1.5(11) 0.1(4) 0.9(11) 

   FW-4-5 Contig6039-19 4 yes 3.04(6)     
 BC2 FW-7-2 CLS_S3_Contig7594-1-OP5 7 no 0.3(1) 0.3(9) 0.3(1) 0.3(5) 0.3(1) 
  FW-1-2 CLSS3922.b1_C21-4-OP4 1 yes 2.7(7)  2.3(19)  1.0(19) 
  FW-8-1 RHCLS_S3_Contig9441_1 8 no 0.3(1) 0.3(13) 0.3(1) 0.3(7) 0.3(2) 
  RMC-7-4 QGF25M24-1 7 yes 0.2(7)   -0.6(9)  
  RMC-1-3 CLRX9010-5 1 yes  -1.3(19) -0.2(5) -0.6(11) -0.2(8) 
  RMC-5-3 Contig2221-1 5 yes  0.7(6) -0.2(9)   
Dry 
weight  
(g) 
  
  

BC1 DW-7-3 CLSS4482.b2_C18-6-OP5 7 no 0.1(1) 0.1(15) 0.1(3) 0.1(19) 0.1(8) 
 DW-4-6 CLRY544-1 4 yes -0.4(16)  -0.1(4) -0.1(4)  
 DW-8-3 QG_CA_Contig5320_RPT3_LE1380_

1 
8 no 0.1(1) 0.1(6) 0.1(1) 0.1(7) 0.1(3) 

 DW-9-6 QGG16P08-1 9 yes   -0.1(4)  0.1(6) 
BC2 DW-7-3 QGF25M24-1 7 no 0.1(1) 0.1(25) 0.1(4) 0.1(12) 0.1(9) 

  DW-4-6 Contig7363-2 4 yes -0.2(6) -0.1(15) -0.1(8)   
Relative  
moistur
e  
content 
(%) 

BC1 RMC-4-3 CLRY544-1 4 yes 0.2(9) 0.6(6) 0.2(4) 1.2(17)  
 RMC-5-1 RHCLSM9436.b1_G08_1-OP3 5 yes 0.2(10)     
 RMC-7-4 CLSS4482.b2_C18-6-OP5 7 yes  -0.7(9) -0.2(6) -0.9(9)  
 RMC-3-4 QGF21B10.yg.ab1_PAP2_LE1382_12 3 yes    0.8(8) 0.2(5) 

  RMC-4-7 CLX_S3_Contig10345_1167_4 4 no 0.2(7) 0.2(1) 0.2(10) 0.2(1) 0.2(4) 
  RMC-6-3 QGB25B18-1 6 yes    -1.2(17)  
  RMC-8-4 CLS_S3_Contig9218-1-OP5 8 yes  -0.8(11)  0.5(3) -0.2(4) 
 BC2 RMC-4-3 Contig15389-1 4 yes 0.3(19) 1.2(14) 0.3(16) 0.9(23) 0.3(9) 
  RMC-7-4 QGF25M24-1 7 yes 0.2(7)   -0.6(9)  
  RMC-1-3 CLRX9010-5 1 yes  -1.3(19) -0.2(5) -0.6(11) -0.2(8) 
  RMC-5-3 Contig2221-1 5 yes  0.7(6) -0.2(9)   

1 C-D:  control treatment of the drought experiment; D: drought, C-SN: control treatment of the salt-nutrient experiment, N: nutrient 
deficiency, S: salt 
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Figure 2  Linkage maps of the BC1 and BC2 populations based on. Markers (replaced by their indexes) are 
shown on the right of the bar. The added virtual markers on the BC2 map with missing scores are underlined. 
Vigour QTLs as mapped in BC1S1 and BC2S1 families under non-stress (black), drought (red), salt (blue) and 
nutrient deficiency (green) conditions are shown next to the marker positions.  Open QTL block indicate a 
positive additive effect for the wild allele, and closed QTL block indicate a positive additive effect for the crop 
allele. Trait abbreviations: L: plant length, FW: fresh weight, DW: dry weight, RMC: relative moisture content 
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Figure 2 - continued 
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Figure 2 - continued 

This was the case for L-7-1 x L-8-2 which affected plant height under the two control 

treatments and drought conditions with the highest mean associated with the hybrid-wild 

genotype combination (b/h) in the three cases. L-9-1 x DW-4-6 affected relative moisture 

content in the two control treatments and in the nutrient deficiency treatment with the highest 

mean associated with the hybrid genotype combination (h/h). Under nutrient deficiency 

conditions, L-7-1 x FW-1-2 affected three traits: plant height, fresh weight and relative 

moisture content.  

While interacting QTLs for plant height had a higher mean for the crop-crop or wild-wild 

genotype combinations in the BC1 population, the highest mean for the same trait was 

associated with crop-wild genotype combinations in the BC2 population, showing the effect of 

the combination of QTLs inherited from the two parents in a repulsion phase. The genotype 

combination of a wild allele at the two epistatic loci (b/b) was associated with the highest 

mean for 3 out of 17 QTL pairs in BC1 and 3 out of 23 QTL pairs in BC2, indicating that the 

advantageous epistatic effect was mostly associated with the genotype combinations 

involving a crop allele at one of the two loci.  

Co-localization of QTL regions 

QTL regions on LG4 and LG7 were the most important in the two populations as they 

comprised most of the QTLs. Four QTLs were mapped on the same region on LG7 in the BC1 

and BC2 populations, one for each of the measured vigour traits (Figure 2). The QTLs for 
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fresh weight and dry weight had the same allelic effect which was positive for the crop allele 

under all the treatments. However, the plant height and relative moisture content QTLs 

showed allelic specificity for treatments in the two populations. On LG4, four QTLs were 

mapped around the same region in BC1 and the same region contained three QTLs in BC2, 

including two QTLs that were common in the two populations. In total 8 QTLs were common 

in the BC1 and BC2 populations on LG1, LG4, LG7, and LG9. Additionally, a QTL region 

was found in both populations on LG8 but it contained QTLs for different traits in the two 

populations.  

Table 3 Significant QTL x QTL interactions in the BC1 and BC2 populations, their explained phenotypic 
variance and the predicted means per genotype combination 
    % expl. 

variance 
Predicted mean per genotype combination2 

Pop. Treatment1 Trait QTLxQTL h/h h/b b/h b/b 
BC1 Control-D Plant height L-1-1 x DW-4-6 5 30.71 30.30 30.54 31.86 
 Dry weight L-1-1 x RMC-8-4 4 2.947 3.10 2.832 2.578 
 Relative moisture 

content 
L-7-1 x L-5-2 4 93.98 93.74 93.84 93.98 

 L-7-1 x RMC-5-1 5 94.09 93.62 93.96 93.89 
 

 
L-1-1 x L-5-2 4 93.77 93.95 94.00 93.8 

 Control-SN Plant height L-9-1 x RMC-5-1 4 26.14 27.20 29.29 33.79 
 

 
L-3-3 x RMC-8-4 5 29.76 28.49 27.46 29.94 

 Relative moisture  
content 

L-1-1 x L-5-2 7 92.18 92.40 92.30 92.11 

 Salt Plant height L-5-2 x RMC-8-4 4 17.85 16.61 17.01 17.68 
 

 
Fresh weight DW-9-6 x RMC-5-1 5 11.44 10.78 10.38 11.06 

 
 

Relative moisture 
content 

L-1-1 x L-5-2 7 90.07 90.34 90.25 90.02 
 

 
L-3-3 x DW-8-3 7 90.05 90.39 90.17 90.05 

 
  

L-3-3 x RMC-8-4 9 90.09 90.41 90.20 90.04 
 Nutrient  

deficiency 
Plant height L-3-3 x RMC-8-4 4 10.56 10.19 9.62 10.16 

 
 

DW-8-4 x RMC-5-1 5 9.85 10.41 9.18 10.79 
 Dry weight L-9-1 x DW-8-3 4 0.67 0.59 0.58 0.58 
 

 
Relative moisture 
content 

DW-8-3 x DW-9-6 5 80.17 80.87 81.53 80.86 

BC2 Control-D Plant height L-7-1 x L-8-2 5 28.87 29.04 31.06 28.69 
  Fresh weight FW-1-2 x DW-9-6 5 37.80 40.99 41.41 37.33 
    L-3-3 x RMC-6-3 8 29.61 40.00 39.01 38.89 
    L-7-1 x L-3-3 8 33.83 39.58 41.74 38.49 
 

 
Relative moisture 
content 

L-9-1 x DW-4-6 11 93.43 92.82 92.82 92.77 

   L-4-4 x L-8-2 4 92.77 93.04 92.85 92.78 
 Drought Plant height L-7-1 x L-8-2 5 14.42 14.29 15.11 14.02 
 Control-SN Plant height L-7-1 x L-8-2 5 21.20 20.69 23.71 21.16 
  Fresh weight L-4-4 x DW-9-6 8 19.65 17.22 16.97 17.76 
    L-3-3 x RMC-6-3 7 14.89 18.04 17.94 17.70 
  Dry weight L-4-4 x DW-9-6 8 1.46 1.26 1.28 1.32 
 

 
Relative moisture 
content 

L-9-1 x DW-4-6 7 93.09 92.56 92.64 92.54 

 Salt Plant height L-9-1 x RMC-5-3 5 16.91 16.04 16.11 16.98 
  Fresh weight DW-4-6 x L-5-2 4 11.50 10.34 9.88 10.44 
  Dry weight L-8-2 x FW-1-2 5 0.93 0.95 0.98 0.87 
 Nutrient  

deficiency 
Plant height 

L-7-1 x FW-1-2 
6 10.95 11.37 11.68 11.26 

  Fresh weight L-7-1 x FW-1-2 6 5.42 5.70 5.47 5.06 
   RMC-1-3 x RMC-5-3 5 5.73 5.20 5.19 5.41 
 

 
Relative moisture 
content 

L-9-1 x DW-4-6 6 87.87 86.45 86.84 86.56 

   DW-4-6 x RMC-1-3 6 86.01 87.65 86.24 86.63 
   L-7-1 x RMC-1-3 6 85.54 86.78 86.79 86.97 
   FW-1-2 x DW-9-6 8 86.76 86.53 86.13 86.92 
1.Control-D: control treatment of the drought experiment, Control SN: control treatment of the salt-nutrient experiment; 2 h: 
heterozygous genotype, b: homozygous for the wild allele 
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Discussion 

Performance of crop-wild hybrid lines 

Backcrossing of crop-wild hybrids to the wild parent is characterized by an increase of the 

genomic content of the wild parent accompanied by a decrease of the crop genome content in 

the form of fewer as well as shorter crop genome segments. As Hooftman et al. (2005) 

indicated, lettuce crop-wild hybrids are morphologically mostly not distinguishable from their 

wild parent L. serriola, and the likeness increases with further backcrossing to the wild 

parent. Despite the increasing resemblance with the wild parent among the BC2S1 individuals, 

the genetic variance for vigour-related traits did not change much from BC1 to BC2 as 

expressed by the broad sense heritability values for the traits in all the treatments, except for 

plant height under nutrient deficiency. This may indicate that the considered vigour traits are 

not genetically linked with the morphological traits which distinguish L. sativa and L. serriola 

parents (Hooftman et al. 2011).  

Studies on introgression of crop genes into wild relative genomes have shown that although 

the average fitness of the hybrids might be lower than the fitness of the wild relative, 

individual hybrid plants could have similar or better fitness than their wild parent, showing a 

potential for introgression of advantageous crop genes (Hauser et al. 1998; Mercer et al. 

2007). In our study the BC1S1 and BC2S1 families revealed lines showing transgressive 

segregation for vigour in the control and stress treatments, indicating that two generations of 

backcrossing to the wild parent did not eliminate the effect of the crop segments. The 

occurrence of BC2S1 families that outperform the wild parent shows that if vigour traits 

positively correlate with fitness under natural conditions, crop segments that confer improved 

vigour could be introgressed into the wild taxon, rendering it more vigorous under non-stress 

as well as under abiotic stress conditions.  

QTL effects 

Backcrossing has been applied in plant breeding for fine-mapping of QTLs and for the 

introgression of desired QTL alleles from wild donors into elite cultivars (Fulton et al. 2000; 

Ho et al. 2002; Robert et al. 2001). In crop-to-wild gene flow, repeated backcrossing to the 

wild parent is likely to take place as a result of the often much higher frequency of wild 

individuals compared to crop-wild hybrids. One of the direct consequences of repeated 

backcrossing to the wild species is the continuing decrease in crop genome segments, both in 

size as they become successively shorter and in frequency as each plant has fewer segments. 

Consequently, each backcrossing event is expected to reduce the detection power of QTL 
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analysis (Tanksley and Nelson 1996). Consistent with this, we detected more QTLs in the 

BC1 population than in the BC2 population for each of the considered vigour traits. However, 

despite the decreasing crop content, new QTLs with an additive effect from the crop allele 

were detected in the backcross populations compared to F2. In the previous chapter (Chapter 

3) plant height QTLs in the F2 population were entirely inherited from the wild parent. In this 

study, two additional QTLs were mapped for the nutrient deficiency treatment (L-1-1 and L-3-

3) in the BC1 population with an additive effect from the crop. In the BC2 population we 

detected two more QTLs for plant height (L-4-4 and L-8-2) with the same allelic effect in all 

the treatments which was positive for the crop allele, showing that the contribution of the crop 

to plant vigour could be underestimated depending on the population studied.  

Seven QTLs were common between F2, BC1 and BC2 populations on LG4, LG7 and LG9, 

three were common in at least two populations on LG1 and LG5, and one QTL was located in 

very close regions in the backcross populations on LG4 (Table 4). Detecting different QTLs 

in mapping populations of the same cross is a common ambiguity in plant breeding. The 

differences could be attributed to statistical power, especially with a number of lines in the 

population smaller than 200, to a combination of recessiveness, skewed linkage map (Jeuken 

et al. 2008), or to genetic variation between populations, with further backcrossing associated 

with decreasing QTL detection power (Tanskley and Nelson 1996). In the present study, the 

common QTLs were especially those with the greatest effects in terms of explained 

phenotypic variance per treatment and per trait, while the QTLs with small effect were 

mapped in one hybrid generation.  Linkage groups 4, 7 and 9 were the most important in BC1 

and BC2 populations as they showed regions that contained many and common QTLs in the 

two populations. The same regions were important in the F2 population (see chapter 3).   

Table 4 Recapitulation on common QTLs for vigour in the three hybrid populations F2, BC1 and BC2 under non-
stress (C), drought (D), salt (S) and nutrient deficiency (N) conditions. The positive sign shows a positive effect 
for the crop allele and the negative sign shown a positive effect for the wild allele 
   F2  BC1  BC2 
Trait QTL LG C D N S  C D N S  C D N S 
Plant height L-7-1 7 -  - -  -  +   -   - 
 L-9-1 9 -  - -  -  - -     - 
                 
Fresh weight FW-7-2 7  + + +  + + + +  + + + + 
 FW-8-1 8 +  - +       + + + + 
 FW-9-2 9    +  +  + +      
 FW-1-2 1      +  + +  +   + 
                 
Dry weight DW-7-3 7 - +    + + + +  + + + + 
 DW-4-6 4      -  -   - -   
                 

Relative moisture 
content 

RMC-4-3 4 + + +   + + +   + + + + 
RMC-5-1 5 + +    +         

 RMC-7-4 7 +  - +  - - -   +  -  
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Despite the overlapping QTL regions across hybrid populations, some QTLs showed 

treatment specificity per population. For instance, L-7-1 had a positive effect for the wild 

allele under nutrient deficiency conditions in the F2 population, but the same QTL region 

showed a positive effect for the crop allele under the same treatment in the BC1 population 

and it was not significant in the BC2 population. Conversely, RMC-4-3 was consistent across 

populations and treatments with a positive allelic effect from the crop, though it was not 

significant in the salt treatment of the F2 population. Such QTL interactions suggest that the 

regions might contain different treatment-specific genes which contribute to the vigour of the 

plants. Moreover, QTLs for different vigour traits were mapped in those same regions with 

opposite allelic effect.  Nevertheless, the involvement of the same regions in the vigour of the 

hybrids in three populations indicate that these regions will be under selection, either positive 

or negative, depending on the prevailing conditions, hence giving a hint on which regions to 

avoid when generating transgenic lettuce in order to avoid hitchhiking of neutral transgenes in 

the introgression process of crop genes into wild background. To our knowledge, this is the 

first study on introgression which combines a QTL analysis approach under different stress 

treatments to address the process of introgression.  

QTL epistatic effect was significant for vigour traits in the two backcross populations. 

Epistasis has been suggested as one of the major allelic actions affecting fitness in self-

pollinating species such as Arabidopsis thaliana (Malmberg et al. 2005) and rice (Mei et al. 

2003). Epistatic QTL effects are expected to play a major role in selfing populations and to 

decline with further backcrossing as a result of decreasing genetic variation (Tanksley and 

Nelson 1996). Our results show that the vigour traits were affected by the epistatic effect of 

the QTLs under stress and non-stress conditions, and that positive epistatic effects were 

associated with genotype combinations involving the crop allele. 

QTL epistatic effect in BC1 and BC2 populations emphasizes the genetic importance of the 

crop segments even after two backcrosses to the wild parent. Importantly, the combination of 

beneficial epistatic and additive allelic effects from two parents at different loci in repulsion 

phase has been associated with the origin of transgressive segregation that leads to the 

creation of superior or even ecologically diverging phenotypes (Latta et al. 2007; Lexer et al. 

2003a; Lexer et al. 2003b). However, the fact that none of the QTL epistatic effect was 

common in the two populations makes the stability of the epistatic effect over generations 

questionable; makes make it difficult to predict the effect in further generations. 
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This study was carried out on plant vigour, based on the previous knowledge that lettuce crop-

wild hybrids undergo selection at an early stage of growth (Hooftman et al. 2009). It was run 

on a narrow crop-wild genotypic range because the hybrids were from a cross between two 

single crop and wild genotypes. In addition, the study was conducted under greenhouse 

conditions, and measured growth and vigour-related traits only for the rosette stage of 

development. Therefore, the results should be considered as baseline rather than as 

conclusive. Future experiments will consider the whole life cycle of hybrid plants from seed 

germination to seed production under field conditions, hence covering early and late plant 

vigour, natural selection and survival, and reproduction.   
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Abstract 

While greenhouse experiments are useful in studying specific conditions such as stress 

factors, field experiments are preferred for ecological studies as they are closer to the natural 

conditions. In this chapter, the BC1 population from a cross between L. serriola and L. sativa 

and backcrossed to L. serriola was used in two field experiments, in Wageningen and 

Sijbekarspel, the Netherlands. We studied the performance of the hybrids under natural 

conditions and determined the contribution of the two parents to germination, rosette vigour, 

adult vigour, survival and seed production of the crop-wild hybrids and the effect of genotype 

by environment interaction (GxE) on the traits. Under field conditions, the germination, 

vigour and reproductive traits were characterized by a moderate to high broad sense 

heritability (H2 ranging from 0.41 to 0.89). All traits were affected by GxE except for the 

traits survival which was similar at the two sites. The crop contributed for the vigour of the 

hybrids at the rosette stage and for the number of branches which in is an important trait for 

seed production, and for the total number of seeds. QTL regions associated with the traits 

were mapped and suggestions of chromosome regions where to insert or not insert a transgene 

in order to minimize its likelihood of persistence under natural conditions were given.
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Introduction 

Since the mid 1980’s, the development of genetically modified (GM) crop varieties has brought 

about a potential agricultural revolution which makes it possible to cope with the enormous 

challenge of feeding the increasing human population in spite of the increasing pressure on crop 

production due to biotic and abiotic stresses. However, the commercial cultivation of GM 

varieties has been associated with potential risks, both for humans and to the environment. 

Among the risks associated with the cultivation of GM varieties, the possibility of hybridization 

between GM crop varieties with their wild relatives has raised ecological concerns. On the one 

hand, the transfer of transgenes to wild relatives may produce more aggressive, and therefore 

difficult to manage weeds in agricultural areas. On the other hand, crop-wild hybrids resulting 

from hybridization may disturb the ecology and diversity of the wild relative taxon by displacing 

it in its natural habitats, hence causing genetic erosion (Auer 2008; Pilson and Prendeville 2004; 

Pirondini and Marmiroli 2008; van de Wiel et al. 2005).  

The consequences of crop to wild gene flow have been argued to be negligible based on the logic 

that crop-wild hybridization would result in mal-adapted hybrids due to crop genes that are 

supposedly less fit under natural conditions (Hails and Morley 2005). However, various studies 

have reported successful establishment of crop-wild hybrids under natural conditions (Kiær et al. 

2009; Morrell et al. 2005; Snow et al. 2010; Whitton et al. 1997). While crop species are 

evaluated according to their capacity to give the expected yield (e. g. grains, fodder, tubers, etc.), 

wild plants growing under natural conditions are under natural selection for their capacity to 

survive the harsh environmental conditions and to reproduce. Germination, survival and 

reproduction constitute the ultimate criteria that determine plant fitness under natural conditions 

because if a plant genotype does not germinate or survive or fails to produce seeds, it disappears 

from future populations. Crop-wild hybridization results not in a single, uniform hybrid, but 

rather in a swarm of hybrids and various offspring generations with a wide range of combinations 

of traits that may affect fitness. Hence, while selection by the prevailing natural conditions purges 

out less fit genotypes, those with fitness equal to or greater than the fitness of the wild parent 

have a chance to persist. Experimental studies on the consequences of crop-wild hybridization 

found individual hybrids that were just as fit as the wild parent (Gueritaine et al. 2002; Hauser et 

al. 1998; Hooftman et al. 2005). The effect of fitness-related traits might depend on the 
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experimental site, hence exhibiting genotype by environment interaction (GxE, Campbell et al. 

2006; Dechaine et al. 2009).  

Lactuca serriola L. is one of the wild species that is considered to be potentially affected by crop 

to wild gene flow due to its close relatedness with crop lettuce L. sativa and the crossability of 

the two species (De Vries 1990; Frietema de Vries et al. 1994). Therefore, L. serriola and L. 

sativa are one of the crop-weed complexes that have been the subject of crop-wild gene flow 

studies. These studies have established that L. serriola and L. sativa are completely cross-

compatible and they produce viable and fertile hybrids (De Vries 1990; Hooftman et al. 2005), 

and that whenever the two species populations grow sympatrically, interspecific hybridization 

should be expected to occur (D’Andrea et al. 2008). Lettuce crop-wild hybrids undergo selection 

under natural conditions and the surviving hybrids are as fit as or more fit than the wild parent 

(Hooftman et al. 2009; Hooftman et al. 2005). In their modelling studies, Hooftman et al. (2007) 

and Hooftman et al. (2008) showed that, despite the low cross-pollination rate of lettuce, crop-

wild hybrids could potentially displace L. serriola in its natural habitats.  

This study aims at broadening the knowledge on lettuce crop-wild hybrids by investigating the 

genetic basis of the fitness of the hybrids and the contribution of the crop and wild parents to that 

fitness. Using a quantitative approach, we determined the contribution of the crop and wild 

genomic segments to the vigour, survival and reproduction of the hybrids under field conditions. 

In the previous chapters, we have focused on the vigour of the hybrids and the contribution of the 

two parents under non-stress and abiotic stress conditions of salinity, drought and nutrient 

deficiency conditions. We identified the major genomic locations which control hybrid vigour 

under those conditions, and determined the role of the two parents in selfing (F2) and backcross 

(BC1 and BC2) generations of hybrids under controlled greenhouse conditions. The aim of the 

present study was to investigate the performance of the hybrid generations BC1 under field 

conditions, by looking at the whole plant life cycle from germination through early plant vigour, 

adult plant vigour, and survival to seed production. Specifically, we will (i) determine how 

vigour at young plant stage correlates with adult plant vigour, reproduction and survival among 

the lettuce hybrids, (ii) explore the effect of genotype by environment interaction on germination, 

plant vigour, survival and seed production, (iii) determine whether the crop confers any 

(dis)advantage to the germination, vigour and reproduction of the hybrids under field conditions, 

and (iv) localize the QTLs for germination, vigour, survival and reproduction in the hybrids. 
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Materials and methods  
Plant materials and experimental set up 

Ninety-eight BC1S1 families, progeny of L. serriola/Eys x L. sativa cv. Dynamite and 

backcrossed to their L. serriola parent, were used in field experiments. These are the same 

families used in the greenhouse experiments, and the creation of the lines was described in 

Chapter 4. In the field, the BC1S1 families were grown together with their parents and another set 

of 98 lettuce recombinant inbred lines resulting from a cross between L. serriola acc. UC96US23 

and L. sativa cv. Salinas (Truco et al. 2007) and their parents. For practical reasons, this chapter 

concerns the BC1S1 families and their parents only. The experiments were set up at two sites 

from spring until the end of fall of 2010 in the Netherlands. One site was in Wageningen (51° 59' 

North, 5° 39' East), where the soil was sandy; and the other site was in Sijbekarspel (52° 46' 

North, 06° 03' East) and was characterized by clayey soil (Soil data, Wageningen UR – Alterra, 

http://www.bodemdata.nl). The plots were ploughed to create disturbed soil, which is typical for 

the normal habitat of L. serriola. In Wageningen, no crop had been grown on the plot for the 

previous two years and a lot of weeds had been growing at the site. Therefore, the plot was 

sprayed with the herbicide Roundup three weeks before sowing. In Sijbekarspel no herbicide was 

applied. No fertilizers were applied at both sites. Seeds were sown directly on the field in 40 cm x 

40 cm squares. The squares were spaced at 10 cm between squares in the same row and 20 cm 

between rows in Wageningen (10 cm in Sijbekarspel as the plot size was limited). The squares 

were set up in a randomized block design with 12 blocks. Each family/line occupied one square 

per block, resulting in 12 replicates. Thirty seeds per family/line per replicate were sown directly 

in the squares. In Sijbekarspel the seeds were sown on April 26, 2010 and in Wageningen the 

seeds were sown a week later on May 3, 2010. The plots were watered right after sowing so as to 

give the seeds a chance to germinate. After the seeds had germinated, the plots were hand-

weeded in order to be able to score for germination.  

The experimental period was characterized by a cold spring during the germination stage with 

temperatures as low as 0ºC at the two sites. The beginning of summer was dry and hot at the two 

sites with temperatures as high as 35ºC in Wageningen and 33ºC in Sijbekarspel. The rest of 

summer and the beginning of fall were mildly hot and wet, followed by chilly temperatures 

towards the end of fall (Figure 1).  
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Figure 1 Temperature (left axis) and precipitation (right axis) in Wageningen and Sijbekarspel during the 
experimental period (data source: Wageningen UR Meteorology and Air Quality, Haarweg weather station, 
http://www.met.wau.nl; Koninklijk Nederlands Meteorologisch Instituut, Berkhout weather station, 
http://www.knmi.nl)  

Data collection 

Data were collected on seed germination, plant vigour at the rosette stage, plant survival, plant 

vigour at the adult stage and seed production (Table 1). Three weeks after sowing, germinated 

seedlings were counted for each square. After counting, the seedlings were thinned to 4 seedlings 

per square. Six weeks after sowing, two plants were collected per square and these were weighed 

after drying them at 80ºC for three days, giving the dry weight of the plants at the rosette stage. A 

week later, the plants were thinned again to one plant per square by choosing the plant closest to 

the centre of the square.  

Two months after sowing, the plots were visited daily to check for the appearance of the first 

flower and first seeds for each plant, which were recorded as flowering time and seed set 

respectively. To assess for reproduction, seeds from 10 randomly chosen, mature capitula were 

collected per plant and counted and the average number of seeds per capitulum was derived. The 

number of basal shoots and branches per plant were counted as well. The total number of capitula 

per plant was estimated using the equation that Hooftman et al. (2005) developed:  

Number of capitula = (50.6 x number of branches) + (177 x number of shoots) – 5.3  
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The total number of seeds per plant was then estimated by multiplying the number of capitula per 

plant by the average number of seeds per capitulum. Survival was scored throughout the 

experimental period. In Wageningen, the height of each adult plant was measured as the length of 

the main shoot of the plant. Due to practical reasons, plant height was not measured in 

Sijbekarspel. By the end of October 2010 there were about 30 plants at each site that had not 

flowered yet and showed no sign of doing so because the temperatures were dropping gradually 

with the approaching winter period. For the analysis of seed set these plants were scored as not 

having survived.  

Table 1 Traits measured in the field experiments  
Trait Stage of growth Unit 
Germination  Germination count and % 
Dry weight rosette  Vigour rosette  g 
Survival  Survival binary and % 
Number of reproductive basal  shoots  Vigour adult number 
Number of reproductive branches  Vigour adult number 
Adult plant height Vigour adult cm 
Number of seeds per capitulum Reproduction number 
Days to flowering Reproduction number 
Total number of capitula Reproduction number 
Total number of seeds  Reproduction number 

Analysis of phenotypic data 

Phenotypic data were analysed using GenStat 13th edition (Payne et al. 2010 ). Continuous data 

(number of branches, number of basal shoots, days to flowering, number of seeds per capitulum, 

total number of capitula, and total number of seeds) were analysed by two-way ANOVA with 

blocking with all interactions, using the terms “genotype” and “site” as factors and “block” as a 

block factor. For germination and survival, an analysis of deviance was conducted with a logistic 

generalized linear model for germination data and an ordinal linear regression using a logistic 

link function for the binary survival data.  

Broad sense heritability of the traits was estimated per site as a ratio between the genetic variance 

among the BC1S1 families and the total phenotypic variance: 

H2 = Vg/(Vg+Ve/r);   

where Vg is the genetic variance among the BC1S1 families, Ve is the environmental variance, 

and r is the number of replications (Chahal and Gosal 2002). Vg(BC1S1) was estimated based on the 

restricted maximum likelihood (REML) method from the mixed model:  

Response = general mean + block + BC1S1+ error;  
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with the Response term representing the measured traits, and the term BC1S1 taken random. Ve 

was the error variance derived from a one-way ANOVA of the model: Response = general mean 

+ block + parents + error; with the term parents representing the two parents of the BC1S1 

families and the two additional lines (L. serriola acc. UC96US23 and L. sativa cv. Salinas). 

We performed a path analysis to determine how vigour at the rosette and adult stages correlates 

with survival and seed production. The programme was written in GenStat and it was run on the 

means for continuous data and on percentages for germination and survival. Path analysis 

converts correlation coefficients between a set of independent variates and one response variate 

into direct and indirect effects. It gives a path coefficient between each dependent variate and the 

response variate which is a standardized partial regression between the two variates (Agbicodo 

2009). Path analysis was carried out separately for Wageningen and Sijbekarspel. The response 

variates were survival and the total number of seeds and the remaining traits were the 

independent variates.  

QTL analysis 

The linkage map and genotypes of the BC1 individuals, which were determined in Chapter 4, 

were combined with the phenotypic data of the field experiment in a QTL analysis. The trait 

“total number of seeds” was analysed in two ways, first by considering that all dead plants 

produced no seeds and giving them the value “0”, and second by considering them as missing, 

hence removing the bias imposed by survival. The single-trait multi-environment QTL mapping 

function of GenStat 14th edition was used for QTL analysis (Payne et al. 2011), using the 

procedure described by Mathews et al. (2008). After determining the genetic predictors and the 

best fitting variance-covariance model between the two sites (Malosetti et al. 2004), QTL 

candidates were determined by genome-wide scan (SIM) with a significance level of 0.05 

corrected for multiple tests by the Li and Ji method (Li and Ji 2005). The final candidate QTLs 

were defined by composite interval mapping (CIM) using the candidate QTLs as cofactors. The 

significance of each detected QTL in a specific site was determined by fitting a multi-

environment multi-QTL model and running a backward selection on the candidate QTLs 

(Mathews et al. 2008).  
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Results 

Phenotypic variation and genotype by environment interaction 

The phenotypic data are summarized in Table 2. The traits showed moderate to high broad sense 

heritability, H2, ranging from 0.52 to 0.89 in Sijbekarspel and from 0.41 to 0.89 in Wageningen, 

indicating a substantial genetic variation of the traits at the two sites. The range of the BC1S1 

families out-bounded the means for L. serriola and L. sativa parents for germination, vigour and 

reproduction traits at the two sites, showing a transgressive segregation of the traits over the two 

parents. Consequently, some BC1S1 families had higher means than the two wild L. serriola lines 

for vigour and reproduction traits, indicating improved vigour and fitness as a result of crop-wild 

hybridization. Seventy-nine BC1S1 families had a higher survival rate, 73 had more number of 

seeds, and 70 BC1S1 families had a higher or equal means for the two traits than or as the wild 

parent than L. serriola/Eys (their wild parent) in Sijbekarspel. In Wageningen, the numbers were 

lower, with 42 BC1S1 families having a higher or equal survival rate, 4 having more number of 

seeds and 4 having a higher means for the two traits. Comparing the hybrids with the two L. 

serriola lines, in Sijbekarspel 13 BC1S1 families had a higher or equal germination than the best 

of the two L. serriola lines, 62 had more number of seeds and 13 BC1S1 families had higher 

means than the two L. serriola lines. In Wageningen 22 BC1S1 had a higher or equal survival rate 

than the best of the two L. serriola lines, 4 had more number of seeds and one BC1S1 family had 

a higher mean than the two L. serriola lines for the two traits. 

Temperatures play a key role in lettuce germination with the increase in temperature associated 

with poor germination (Argyris et al. 2005). The low temperatures that occurred after sowing 

ensured a good germination of the seed at the two sites, with a higher germination rate recorded 

in Wageningen. Although L. sativa lines (cv. Dynamite and Salinas) germinated better than L. 

serriola lines and had higher dry weight at the rosette, they did not survive the field conditions, 

as only one plant of cv. Dynamite produced seeds in Wageningen and both lines died before 

flowering in Sijbekarspel. Conversely, the two L. serriola parental lines had a higher survival 

rate, but mortality of L. serriola/Eys in Sijbekarspel was high (50% survival vs. 91% in 

Wageningen). For the BC1S1 families, survival ranged from 8 to 100% with 25% and 20% of the 

BC1S1 plants failing to produce seeds in Sijbekarspel and Wageningen, respectively, with the 

plants starting to die in the 12th week after sowing. 
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Vigour and reproduction traits depended on the genotype of the BC1 used to produce BC1S1 seeds 

(Pgenotype <0.001) and they differed from site to site (Pgenotype.site <0.001, Supplementary material 

Table S2), showing significant genotype by environment interaction (GxE) for those traits among 

the BC1S1 families. Conversely, survival, though dependent on site (Psite<0.001), did not show 

significant GxE (Pgenotype.site=0.484 and Pgenotype.site.block=1). 

Table 2 Mean performance of the BC1S1 families, the parental lines and the additional two lines and broad sense 
heritability of the traits at Sijbekarspel and Wageningen 

BC1S1 families L. 
serriola 

/Eys 

L. sativa 
cv. 

Dynamite 

L. serriola 
acc. 

UC96US23 

L. 
sativa 

cv. 
Salinas Trait Site* Mean Range H2 

Germination (%) Sbk 51.14 22.78 – 70.56 0.83 48.33 62.22 25.28 60.83 
Wgn 63.04 34.17 – 83.61 0.85 66.11 82.22 35.00 72.78 

Dry weight rosette (g) Sbk 0.86 0.52 – 1.37 0.63 0.76 1.01 0.54 1.08 
Wgn 1.24 0.66 – 1.98 0.72 0.99 1.34 0.96 1.54 

Days to flowering Sbk 109 88 – 137 0.89 116 128 95 116 
Wgn 96 81 – 113 0.84 103 122 82 104 

Reproductive basal  
shoots (number) 

Sbk 11 5 – 18 0.62 10 0 4.16 0 
Wgn 8 5 – 13 0.89 10 1 1.25 0 

Reproductive branches  
(number) 

Sbk 28 20 – 36 0.52 31 0 36 0 
Wgn 28 22 – 35 0.41 29 25 42 0 

Total number of capitula 
 

Sbk 3386 1992 – 4267 0.64 3392 0 3566 0 
Wgn 2897 2159 – 3757 0.68 3239 4** 2333 0 

Seeds per capitula 
(number) 

Sbk 12 8 – 17 0.88 13 0 9.96 0 
Wgn 16 13 – 22 0.90 18 13** 19.08 0 

Total number of  seeds 
 

Sbk 30306 4202 – 55029 0.85 22480 0 26034 0 
Wgn 36643 5558 – 62538 0.88 53067 52** 45171 0 

Adult plant height (cm) Sbk 119.9971 93.58 – 156.58 0.89 155.50 72.78 - - 
Survival (%) Wgn 72.53 16.67 – 100 - 50.00 0 100 0 

Sbk 80.10 8.33 – 100 - 91.67 8.33 100 0 
* Sbk: Sijbekarspel, Wgn: Wageningen; **Absolute numbers for one L. sativa plant that survived and the 4 capitula that gave 
seeds 
 

Correlations among the traits 

Plant height was not included in the path analysis in Sijbekarspel because it was not measured. 

Despite this slight difference in traits included in the analysis, the path coefficients at the two 

sites were similar for most of the traits (Figure 2). In Wageningen, dry weight at the rosette stage 

positively correlated with seed germination, number of basal shoots and late flowering; but 

negatively correlated with the number of branches and plant height. In Sijbekarspel, dry weight 

positively correlated with seed germination rate and late flowering. Time of flowering showed a 

strong direct and indirect relationship with survival as late flowering plants tended to die at the 

two sites (Pa=-0.64 in Wageningen and -0.76 in Sijbekarspel), while plant height positively 

related to survival (Pa=0.31; Figure 2A). While germination rate positively correlated with 
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rosette vigour (r=0.38 in Wageningen and 0.45 in Sijbekarspel), germination rate was not related 

to survival or seed production at the two sites as the path coefficients were close to zero. Plants 

with high dry weight at the rosette stage tended to die as shown by the correlation coefficients 

between the plant height and survival (r = -0.31 in Wageningen and -18 in Sijbekarspel). 

However, the path coefficients between dry weight at the rosette stage and survival were less 

strong at the two sites (Pa=-12 in Wageningen and -0.03 in Sijbekarspel), probably due to the 

indirect correlations through other traits such as germination rate and the indirect path from the 

number of basal shoots to the height of the plants.  

Survival had a strong relationship with the number of seeds (Pa=0.70 in Wageningen and 0.67 in 

Sijbekarspel), which was understandable because seed production is the eventual outcome of 

survival. Although dry weight at the rosette stage did not relate with the total number of seeds (Pa 

close to 0 at the two sites), it was positively correlated with the number of basal shoots which in 

turn positively correlated with the number of seeds, showing a direct path from vigour at the 

rosette stage and vigour at the adult stage. Time of flowering had an important relationship with 

survival and consequently with the total number of seeds as the plants that flowered early tended 

to have a better survival rate and a higher total number of seeds (Figure 2B).  

QTL analysis 

Twenty QTLs were detected for vigour, survival and reproduction traits in Sijbekarspel and 

Wageningen, and they were found on all linkage groups (LG) except for LG2, as summarized in 

Table 3 and Figure 3. For each trait one to three QTLs were found, except for the number of basal 

shoots and the total number of capitula for which no QTLs were detected. The crop allele 

contributed positively to dry weight at the rosette stage, to days from sowing to flowering and to 

the total number of seeds. All traits had been analysed both in Wageningen and Sijbekarspel with 

the exception of plant height. In total, thirteen QTLs were detected both in Wageningen and 

Sijbekarspel, always with the same direction of the allelic effect (from the crop or from the wild 

parent).    
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Figure 2 Path coefficients (Pa) between vigour traits and survival (A) and seed production (B) and the 
correlations coefficients among the vigour traits (r) at Sijbekarspel and Wageningen. Only the correlations 
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greater than 0.10 or smaller than -0.10 are shown and negative correlation and path coefficients are shown by 
dashed lines 

Table 3 QTLs associated with germination, vigour, seed production and survival detected in the BC1 population 
in Sijbekarspel and Wageningen 

QTLxE 

Additive effect for the crop allele (% 
explained variance) 

Trait Closest marker LG Sijbekarspel Wageningen 
Germination (%) CLS_S3_Contig7056-1-OP5 8 n/a1 -7.13(13) -5.58(6) 
Rosette dry weight (g) QGF25M24-1 7 n/a1 0.14(17) 0.26(20) 
Survival (%) QGB25B18-1 6 no -21.16(26) -21.16(33) 

QGB11B18.yg-2-OP5 7 no -16.54(16) -16.54(20) 
Adult plant height (cm) CLS_S3_Contig6255-6-OP5 1 n/a1 - -7.76(43) 

CLS_S3_Contig2201-5-OP5 9 n/a1 - -11.15(89) 
Days to flowering QGB25B18-1 6 n/a1 5.66(9) 5.38(15) 
Number of branches RHCLS_S3_Contig9046_2 4 n/a1 2.47(12) 1.75(10) 
Number of seeds per 
capitulum 

Contig1262-2 3 yes -1.45(11) - 
Contig2010-3 3 no -0.88(4) 0.88(7) 
CLS_S3_Contig2201-5-OP5 9 no -1.37(10) -1.37(16) 

Number of seeds-1 
(dead plant given 0 seeds) 

QGB25B18-1 6 no -9475(18) -9475(21) 
QGB11B18.yg-2-OP5 7 no -9197(17) -9197(20) 
CLS_S3_Contig7056-1-OP5 8 no 3776(3) 3776(3) 
CLS_S3_Contig2201-5-OP5 9 no -5969(7) -5969(9) 

Number of seeds-2 
(dead plant considered as 
missing) 

QGF21B10.yg.ab1_PAP2_LE138
2_12 3 yes -6967(17) - 
Contig4740-1 5 yes - -5138(13) 
CLS_S3_Contig2201-5-OP5 9 no -5452(10) -5452(14) 

1 n/a: not applicable  QTL x environment effect not applicable because one QTL was detected for the trait  
 

GxE for the traits was observed through QTL by environment interaction (QTLxE) as well 

whenever there were more than one QTL detected per trait. QTLxE was characterized by a 

QTL detected at one site but not at the other or by a difference in magnitude of effect from 

one site to another.  

QTLxE was not significant for two traits, namely survival and total number of seeds 

estimated by considering dead plants as plants producing zero seeds. For survival, the non-

significance of QTLxE was in line with the phenotypic results as GxE was not significant for 

the same trait. For the three QTLs for the number of seeds calculated by assigning zero seed 

production to the dead plants, the lack of significant QTLxE indicated the effect of survival 

on that trait, because when the dead plants were considered as missing, three other QTLs were 

detected and their QTLxE effect was significant. The twenty mapped QTLs were located on 9 

regions of 8 LGs with vigour QTLs overlapping with reproduction QTLs (Figure 3). On LG7, 

a dry weight QTL co-localized with a QTL for survival and a QTL for the total number of 

seeds. On LG4, a QTL for seeds per capitulum was close to a QTL for the number of 

branches, and on LG9, three QTLs related to seed production overlapped with a QTL for 

plant height.  
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 Figure 3 Localization of the QTLs detected for plant vigour, survival and reproduction in Wageningen (black 
blocks) and Sijbekarspel (green blocks) on the BC1 linkage map. Open blocks: QTL positive for the wild allele; 
filled blocks: QTL positive for the crop allele; green; #seeds-1: total number of seeds estimated by including the 
dead plants; #seeds-2: total number of seeds estimated by excluding the dead plants 
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Table 4 Significant QTL epistatic effect on traits in the field experiments. QTLs are represented by the LGs on 
which they are located  

   Predicted means per genotype combination1 

Trait QTLxQTL h/h h/b b/h b/b 

Wageningen 

Number of basal shoots LG7xLG5 7 8.63 8.74 7.48 9.33 

Total number of capitula LG7xLG5 8 2926 2905 2696 3073 

Plant height LG9xLG4 5 120.50 108.60 125.70 124.50 
1 h: heterozygous genotype, b: homozygous genotype for the wild allele 

The epistatic effects of the QTLs on the traits were not significant in Sijbekarspel. In 

Wageningen, three traits were affected by QTL epistasis, namely the number of basal shoots, 

the number of capitula and the height of the plants (Table 4). QTL regions on LG5 interacted 

with the region on LG3 to affect the number of basal shoots and the number of capitula and 

increasing their phenotypes by 7 and 8% respectively. The highest value for these traits was 

associated with the homozygous genotypes for the wild allele at the two loci. Plant height was 

affected by the interaction between the QTL regions on LG4 and 9 with an increase of the 

phenotypic variance of 5% and a greater phenotype was associated with the combination of 

the homozygous genotype for the wild allele on LG9 and the heterozygous genotype on LG4.  

Discussion 

Despite the close relatedness between L. serriola and L. sativa (Frietema de Vries 1992; 

Koopman et al. 1998; Koopman et al. 2001), their hybrids were characterized by a substantial 

genetic variation for vigour and reproduction traits as indicated by the broad-sense heritability 

of the measured traits. This genetic variation resulted in transgressive segregation with some 

individual hybrids being as fit as or more fit than the wild genotypes in terms of survival and 

seed production. This contradicts the assumption that wild genotypes are already adapted to 

harsh natural conditions and therefore hybrids are bound to be less fit than them (Hails and 

Morley 2005; Latta and McCain 2009). In our study we observed at the two sites individual 

hybrid plants and hybrid families that performed equally well as or better than the wild 

genotypes in germination, survival and seed production, indicating that hybrids could 

compete or outperform the wild parent. Similar results were obtained by Hooftman et al. 

(2005) in field experiments on lettuce hybrids from the same parental lines and including one 

common field site (Sijbekarspel) among the ones used at the time, hence indicating the 

consistency of hybrid fitness over a wide range of environmental conditions represented by 

different years and sites (Wageningen). Hooftman et al. (2005) reported a gradual decrease in 

hybrid vigour and fitness with further generations of the hybrids. Despite this vigour and 

fitness breakdown, they also reported that the hybrids still showed better fitness than the wild 

plants in generations as advanced as the third generation backcrossed to the wild parent (BC3) 
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and the fourth generation of selfing F1, indicating that hybrid vigour and fitness was not 

completely due to heterosis. 

The hybrid families showed similar survival rates in Wageningen and in Sijbekarspel, hence 

the non-significance of GxE and QTLxE for this trait, although the effect of GxE was 

significant on the vigour and reproduction traits. The non-significance of GxE on survival 

indicates a potential for predicting the persistence of the hybrids in different environments 

based on their genotypes. The remainder traits measured on the field were characterized by 

GxE effect. However, the QTLs for each trait were common in the two environments, with 

QTLxE effect arising from differences in the magnitudes of the QTL between Wageningen 

and Sijbekarspel (for 11 out of 14 QTLs). However, generalization of these results is limited 

by the fact that the experiments were run in one year and at locations with limited climatic 

differences (Figure 1), although the two sites differed in soil type, which greatly influences 

water retention capacity and the type of weeds that occur. Moreover, the hybrids resulted 

from a single crop-wild cross. In their multi-environment study on the relative fitness of crop-

wild sunflower hybrids, which encompassed various crop-wild cross combinations and 

different wild populations, Mercer et al. (2006) reported that the relative fitness of hybrids 

depended on the population and on the local abiotic and biotic stress conditions. Therefore, 

the results of our study should be confirmed in multi-year-multi-environment experiments 

including hybrids from other lettuce crop-wild crosses.  

Even though early stages of growth are important for the vigour and reproduction of the adult 

plants, whether early growth traits such as germination and early vigour predict survival and 

seed production depends on the developmental processes and the growth stage at which 

selection takes place (Donohue et al. 2010). Temperature is one of the major factors affecting 

seed germination in cultivated and wild lettuce as high temperatures are associated with poor 

germination (Marks and Prince 1982; Valdes et al. 1985). In our study, the environmental 

conditions of low temperature and moist soil were favourable for germination, leading to 

limited selection at this stage of growth, and the first plants died in the 12th week after sowing 

when some plants had started to flower. The results contradict those obtained by Hooftman et 

al. (2005)  who did not moisten the soil after sowing and observed a high selection during 

germination and a high mortality of the plants in the first month after sowing (Hooftman et al. 

2009). The late selection in our experiments could explain the low correlations between early 

growth traits (germination and rosette dry weight) and adult vigour, survival and reproduction 

traits.   
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The same BC1 population was used in greenhouse experiments for vigour at the rosette stage 

under drought, salt and nutrient deficiency conditions (Chapter 4). Dry weight at the rosette 

stage showed high correlations between field and greenhouse experiments with the highest 

correlations observed between nutrient deficiency conditions and the two sites (Wageningen 

and Sijbekarspel) followed by drought and Sijbekarspel (Table 5). The same QTL region on 

LG7 was identified as associated with dry weight under all the treatments in the greenhouse 

and on the field at the two sites with a positive effect from the crop allele. Therefore, early 

plant vigour in the greenhouse can be well linked to early plant vigour on the field. On the 

field, germination positively correlated with dry weight at the rosette stage and the latter 

positively correlated with the number of basal shoots at the adult stage, indicating a positive 

correlation between early growth and adulthood.  However, dry weight at the rosette stage 

weakly correlated with survival and the number of seeds, making it difficult to establish a 

relationship between early vigour and survival and between early vigour and reproduction, 

although the relationship could be drawn indirectly vial the number of branches. Therefore, 

the greenhouse assessments only showed limited capabilities for predicting reproductive 

fitness in the field.  

Table 5 Pearson’s correlation coefficients for dry weight between field and greenhouse experiments in the BC1S1 
families based on means  

                             Field 
Greenhouse Wageningen (P-value) Sijbekarspel (P-value) 

Control drought 0.25 (0.010) 0.35 (<0.001) 

Drought 0.28 (0.004) 0.49 (<0.001) 

Control Salt-Nutrient 0.32 (0.001) 0.37 (<0.001) 

Nutrient deficiency 0.53 (<0.001) 0.54 (<0.001) 

Salt 0.46 (<0.001) 0.47 (<0.001) 

On the field, crop alleles contributed positively for biomass at the rosette stage (QTL on 

LG7), for the number of branches at the reproductive stage of the plants (QTL on LG4) and 

for the total number of seeds (QTL on LG8) with the three QTLs detected both in 

Wageningen and Sijbekarspel. These regions are likely to undergo positive selection under 

natural conditions because they directly or indirectly influence the reproduction of the 

hybrids. However, the QTL for dry weight on LG7 is complex because it overlaps with QTLs 

for survival and total number of seeds which are the most relevant traits determining the 

fitness of the plants. The same region contains a QTL for the number of lateral roots at the 

deep end of the tap root with a positive effect from the wild allele (Johnson et al. 2000). With 

regards to genetic hitchhiking and background selection and the introgression likelihood of 

transgenes based on their genomic location, such regions should be avoided when inserting 

transgenes because the genes in their genomic neighbourhood are likely to be hitchhiked, 

regardless of their effect on fitness (Kwit et al. 2011; Snow et al. 2010; Stewart et al. 2003). 
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In addition to the above-mentioned traits likely to be advantageous under field selection, crop 

alleles were also associated with late flowering (QTL on LG6) which is a favourable trait in 

lettuce crop due to its association with late bolting (Carvalho Filho et al. 2009; Ryder and 

Milligan 2005; Waycott et al. 1995). Conversely, late flowering is undesirable under field 

conditions as it negatively influenced survival and the total number of seeds (Figure 2). The 

QTL conferring late flowering overlapped with QTLs for survival and the number of seeds 

whose effect was positively inherited from the wild parent. Therefore this QTL region (LG6) 

could be a good candidate for the insertion of transgenes because the crop allele will most 

likely be selected against under natural conditions, resulting in background selection on the 

genes linked to it. However, it should be stressed again that these results are based on one 

crop-wild cross and one-year experiment. To confirm these QTL regions, multi-year and 

multi-location experiments should be conducted. Multi-year experiments with multiple 

generations of the same hybrids should also be used to confirm the genetic hitchhiking and 

background selection around the regions.  
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General discussion 

Hybridisation between crops and their wild relatives is a possible route along which 

transgenes could ‘escape’, i.e. disperse from a crop to related wild species and establish 

themselves in the environment. Studies on crop-wild hybridization have focused on various 

aspects of this process, namely the rate of hybridization (Arias and Rieseberg 1994; Ureta et 

al. 2008), the occurrence of spontaneous crop-wild hybrid plants (Bing et al. 1996; 

Magnussen and Hauser 2007), the performance of hybrids relative to the wild parent under 

laboratory, greenhouse and field conditions (Campbell  et al. 2006; Hooftman et al. 2009; 

Mercer et al. 2006a; Snow et al. 2001), the persistence of hybrids under natural conditions 

(Kuroda et al. 2010; Kuroda et al. 2008) and modelling the long term fate of crop-wild 

hybrids (Hooftman et al. 2007a; Hooftman et al. 2008; Huangfu et al. 2011). However, the 

contribution of crop genomic blocks to the performance of the hybrids has received little 

attention, with a few exceptions. To our knowledge, only studies in Helianthus (Baack et al. 

2008; Dechaine et al. 2009) and Brassica (Rose et al. 2009) have addressed this issue. 

While the rate of dispersal of the gene will depend on the frequency of hybridisation, 

establishment will be determined by a combination of the genetic make-up of the hybrids, the 

environmental conditions and the population dynamics of the wild populations. In this regard, 

the transgene does not occur isolated but imbedded in a region of the chromosome of the 

crop. For several generations of inbreeding or backcrossing to the wild species any fitness 

effect will depend on the effect of such a genomic block, not on that of a single gene. This 

thesis focuses on the contribution of the crop and wild parent to the performance of the 

hybrids in terms of vigour, survival and reproduction using a genetic approach of mapping 

populations, molecular markers and QTL analysis.  

The genomic location of a transgene has been suggested as one of the ways to limit its 

likelihood of introgression. If a transgene is located in a region close to a gene or QTL 

conferring reduced fitness, the transgene will have a lower likelihood of introgression once 

the crop hybridises with a wild relative because it will be selected against along the gene or 

QTL affecting fitness (Kwit et al. 2011; Stewart et al. 2003). This thesis aimed at determining 

the contribution of the crop to the vigour and fitness of the hybrids and the effect of linkage 

on the fate of crop segments in the hybrids using L. serriola and L. sativa as a model for crop-

weed complex. Because of the importance of the abiotic stress factors in natural selection, and 

because abiotic stress factors are the subject of present and future genetic transformation, we 

conducted greenhouse experiments on the contribution of the crop on the vigour of the 
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hybrids under the major abiotic stress conditions (drought, salinity and nutrient deficiency). 

Specifically, the thesis aimed at answering the following research questions: (i) whether there 

is evidence of spontaneous hybridization between L. serriola and L. sativa under natural 

conditions, (ii)  whether crop genes confer any (dis)advantage to the crop-wild hybrids under 

controlled non-stress conditions, under controlled conditions with abiotic stress, and under 

field conditions, (iii) whether the (dis)advantageous effects of the crop are dependent on 

environmental conditions, and (iv) whether we can identify genomic regions where transgenes 

could be inserted with the aim of mitigating their persistence based on the localization of the 

QTLs. 

Crop-wild hybrids grow under natural field conditions in which conditions will vary during 

the growing season. Therefore, field experiments are preferred to greenhouse experiments. 

However, greenhouse experiments offer certain advantages over field experiments, such as 

the number of experiments that can be run in a certain period of time, and, more importantly, 

in mimicking a certain stress factor so that the tolerance or resistance of the plants to the 

stress can be deciphered (Latta et al. 2007; Latta and McCain 2009). We conducted 

greenhouse experiments to study the tolerance of the hybrids to abiotic stress conditions of 

salinity, drought and nutrient deficiency at the rosette stage, expressed as plant height, fresh 

weight, dry weight and relative moisture content (Chapters 3 and 4). Two field experiments 

were carried out (Chapter 5) in order to link vigour under greenhouse conditions with vigour, 

survival and reproduction of the hybrids under field conditions. Below, I will discuss the 

above-mentioned research questions with regards to the experimental results of the previous 

chapters.  

Evidence of spontaneous hybridization between L. serriola and L. sativa 

A number of methods have been used for the identification of hybrid plants. Among these 

methods is screening based on morphological traits (Ureta et al. 2008), tracking crop-specific 

markers (Arias and Rieseberg 1994; Scurrah et al. 2008; Westman et al. 2001) and, in case of 

GM crops, tracking the transgene itself (Warwick et al. 2008). However, these methods are 

not applicable in all cases. For lettuce hybrids resulting from a cross between L. serriola and 

L. sativa, the use of morphological traits would not be possible because the hybrids cannot 

always be distinguished with a good degree of certainty from their wild parent (Hooftman et 

al. 2005). The use of a transgene as a marker to find evidence of hybridization among natural 

populations in lettuce is also not applicable because no transgenic lettuce variety has been 

released so far.  
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To establish whether hybridisation occurred, and in which way to identify such hybrid plants, 

we genotyped L. serriola and L. sativa genebank accessions from the lettuce collection of the 

Centre for Genetic Resources, the Netherlands (CGN) and another large set of L. serriola 

populations collected from its natural habitats in Europe from 2002 until 2005 (ANGEL L. 

serriola), with 10 microsatellite markers. It was found (Chapter 2) that the application of 

single, crop-specific alleles in identifying potential crop-wild hybrids in lettuce is inadequate. 

However, Bayesian analysis, such as implemented in the programme STRUCTURE 

(Pritchard et al. 2000), identified potential intermediate hybrid plants which constituted 7% of 

the ANGEL L. serriola dataset and 9% of the CGN L. serriola collected from the wild. The 

programme NewHybrids (Anderson and Thompson 2002) categorized the L. serriola hybrid 

plants identified with STRUCTURE into two hybrid classes: advanced selfing generation 

after hybridization between L. serriola and L. sativa and advanced selfing generation after 

one back-cross to L. serriola. 

Hybridization between L. serriola and L. sativa has been hypothesized as one of the reasons 

behind the recent northward spread of L. serriola in Europe (Frietema de Vries et al. 1994; 

Hooftman et al. 2006). Based on the proportion of the crop-wild hybrids among L. serriola 

populations relative to the “non-admixed” L. serriola plants and to the geographical location 

of the hybrids, this hypothesis was rejected in Chapter 2. If introgression was behind the 

spread of L. serriola, we would expect to find more putative L. serriola hybrids than non-

admixed L. serriola, particularly in North-Western Europe where the new invasiveness of L. 

serriola was most obvious. Moreover, we would also expect to observe more hybrids among 

the recently collected (between 2002 and 2005) L. serriola ANGEL data set than among the 

CGN accessions, most of which were collected decades earlier. Both expected patterns were 

not visible in our data. Therefore, other causes such as climatic warming, increase in 

anthropogenically disturbed areas and the spread of seeds through transportation networks are 

more likely responsible for the invasive behaviour of L. serriola (D'Andrea et al. 2009; 

Hooftman et al. 2006; Lebeda  et al. 2004).  

This study provides evidence that spontaneous hybridization occurs among basically self-

pollinating species with limited outcrossing rate such as L. serriola and L. sativa. The results 

are in line with those in wheat, another self-pollinating species for which evidence of gene 

flow from cultivated and wild species was found in the Mediterranean region (Arrigo et al. 

2011). The results lend credence to D’Andrea et al. (2008) who, based on hybridization 

experiments, concluded that whenever L. serriola and L. sativa grow in sympatry, the two 

species should be expected to hybridize. The occurrence of crop-wild lettuce hybrids among 
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L. serriola populations also shows that natural selection does not completely purge crop 

alleles or genomic segments, or not fast enough compared to the incidence of new 

hybridisation events. In a modelling study, Hooftman et al. (2008) indicated that, although the 

outcrossing rate could have an effect on the composition of a population after crop-wild 

hybridisation, the fitness of the hybrids had a greater effect. Therefore, once transgenic lettuce 

varieties will have been developed and grown in the field, the low rate of outcrossing in 

lettuce will allow the occurrence of introgression of a transgene from transgenic L. sativa into 

L. serriola x L. sativa hybrids. However, whether the transgenic hybrids can subsequently 

persist under natural conditions will depend on the fitness of the hybrids which in turn will 

depend on the genetic makeup of the hybrid including the effect of the transgene itself and the 

surrounding genes, and the prevailing environmental conditions. That is the subject of the 

following sections where we look at the vigour and fitness of the hybrids and how the crop 

and wild parents may contribute to that under greenhouse and field conditions.  

Performance of the hybrids 

Under greenhouse conditions, the hybrids showed a wide range of phenotypic variation for 

vigour-related traits, which was mainly due to genetic factors as broad sense heritability 

values of the traits ranged from moderate to high under stress and non-stress conditions in the 

selfing (F2:3, Chapter 3) and backcrossing (BC1S1 and BC2S1, Chapter 4) populations. In the F2 

population, individual hybrid plants and hybrid families were found that performed better 

than the two wild genotypes used in the experiments, among which the wild parent of the 

hybrid lines, hence showing that improved vigour of the hybrids over their wild parent is 

possible under non-stress conditions and stress conditions of salinity, drought and nutrient 

deficiency. Introgression of crop segments takes place through repeated backcrossing of the 

hybrids to the wild parent, hence we can expect a gradual decrease of crop genomic segments, 

both in frequency and size, in increasing wild genomic background (Baack and Rieseberg 

2007). Despite the reduction in crop segments among the backcross hybrids (backcrossed to 

L. serriola), hybrids performing better than the wild parent were also observed among BC1S1 

and BC2S1 hybrids, indicating that two backcrossing generations did not completely eliminate 

the effect of crop segments.    

Under field conditions (Chapter 5), vigour and fitness traits were characterized by moderate to 

high broad sense heritability, indicating that crop-wild hybridization results in new genetic 

combinations. Moreover, for each of the field-measured traits (germination, rosette and adult 

vigour, flowering time, survival and seed production) there were BC1S1 hybrid families that 

had the same performance as or even a better performance than the two wild genotypes. For 



104 

 

survival and seed production, 13% of the BC1S1 families had equal or higher survival rate 

and 63% had a higher number of seeds than the two L. serriola lines in Sijbekarspel, whereas 

the numbers were 22% for survival rate and 4% for seed production in Wageningen. The 

results contradict the theory that crop-wild hybrids are less fit than the wild plants due to 

domestication alleles inherited from the cultivated species (Hails and Morley 2005). Previous 

studies have reported a decrease in fitness among lettuce hybrids over generations (Hooftman 

et al. 2005), which could be due to heterosis breakdown (Burke and Arnold 2001). However, 

the dominance effect of 16 out of 17 QTLs associated with vigour traits was not significant in 

the F2 population,  and neither were the heterozygous genotypes associated with higher 

predicted means for QTL epistatic effect in the same population (Chapter 3), indicating that 

heterozygosity was not the most likely cause of the vigour of the hybrids.  Moreover, 

Hooftman et al. (2005) reported that, despite the reduced fitness among the hybrids over 

generations, hybrids belonging to the 3rd generation of backcrossing to the wild parent and the 

4th generation of selfing of the F1 plant were on average still fitter than their wild parent L. 

serriola. Therefore, although the differences in vigour between offspring of crosses and the 

wild parent gradually become smaller, the improved vigour and fitness of the hybrid as a 

result of additive main effects and additive interaction effects of the genes/QTLs are likely to 

persist in some offspring over several generations. Given sufficient selective advantage, and 

taking into account genetic drift in small weedy populations, this might locally result in the 

displacement of the wild parent (Hooftman et al. 2007a; Hooftman et al. 2008).  

Contribution of the crop to the vigour and fitness of the hybrids 

In the three hybrid populations (F2, BC1 and BC2), the crop contributed to the vigour of the 

hybrids at the rosette stage under stress and non-stress conditions through additive and 

epistatic allelic effects as revealed by QTL analysis. In the F2 population, the crop contributed 

to vigour through fresh weight and relative moisture content in the control, drought and salt 

treatments as the QTLs for these traits had a positive effect from the crop allele. In the 

nutrient deficiency conditions, some QTLs had a positive effect for the crop allele, while 

others had a positive effect from the wild allele. QTLs for dry weight were inherited from 

both parents under drought and salt conditions, whereas it was entirely inherited from the wild 

parent under control and nutrient deficiency conditions. The contribution of the two parents 

could be linked to domestication and selection effect. Plant weight has been the subject of 

positive selection in cultivated lettuce, as it is mostly harvested at the rosette stage to be 

consumed as salad (Ryder and Whitaker 1976). Conversely, plant height, a trait selected 

against in cultivated lettuce because of its association with early bolting (Carvalho Filho et al. 
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2009; Fukuda et al. 2011), was inherited from the wild parent under all the treatments. In the 

backcross populations (BC1 and BC2), fresh weight was again mainly inherited from the crop 

alleles under all the treatments. Dry weight was inherited from both parents under all the 

treatments except for the salt treatment under which the trait was inherited entirely from the 

crop. Relative moisture content was also inherited from both parents as QTLs were identified 

with a positive effect from the crop allele and others with a positive effect from the wild 

allele. Interestingly, for plant height, which was exclusively inherited from the wild allele in 

the F2 population, additional QTLs for the trait were detected in the BC1 and BC2 populations 

with a positive effect from the crop allele, which could be the effect of genetic variation due 

to fewer crop segments in increasing wild genetic background (Tanksley and Nelson 1996). 

Under field conditions, the crop contributed to the vigour of the BC1S1 hybrids at the rosette 

stage which was measured as dry weight. The dry weight QTL detected on LG7 in the BC1 

population in the greenhouse under the three stress and non-stress conditions was also 

detected in the field with an explained variance of 17 and 20%. Moreover, the crop 

contributed positively for the number of branches (QTL on LG4) which was positively 

correlated with the total number of seeds produced (Pa = 0.35 in Wageningen and 0.11 in 

Sijbekarspel) and for the total number of seeds (QTL on LG8). However, the QTLs for plant 

height, survival and the other QTLs for the number of seeds were inherited from the wild 

parent under field conditions. Therefore, the crop contributes partially to the vigour and 

fitness of the hybrids. The contribution of the crop to vigour and reproduction indicates that 

the crop alleles in the crop-wild hybrids are not bound to be purged by selection. In crop-wild 

sunflower a similar trend was obtained where crop alleles which contributed to vigour and 

reproductive traits were under positive selection under field conditions (Baack et al. 2008). 

Effect of genotype by environment interaction 

Fitness effects are relative to the environment in which they are being measured. For instance, 

Dechaine et al. (2009) observed in sunflower filed experiments that crop alleles conferring an 

increase in size were favoured in crop-wild hybrids, but at one field site only if three types of 

herbivores were present. Therefore, the effect of GxE is an important aspect in crop-wild 

hybridization as wild plants grow over a wide range of environmental conditions. If a  QTL is 

present but with different magnitudes in different environments, this  still allows a prediction 

of the performance of the hybrids but requires additional experiments, whereas the occurrence 

of QTLxE due to the presence/absence of the QTL or opposite allelic effect leads to a lack of 

correlation between environments, and renders any generalization impossible. In our 

experiments the vigour and reproductive traits depended on the environment under 
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greenhouse and field conditions. Under field conditions, survival was the only trait not 

affected by GxE and the QTLs associated with this trait had the same direction and magnitude 

(QTLxE not significant). The remaining traits (seed germination, dry weight at the rosette 

stage, number of branches, number of basal shoots, seeds per capitulum, total number of 

capitula and total number of seeds) were affected by GxE and the QTLxE effect was 

significant for the QTLs associated with those traits. The non-significance of GxE on survival 

means that the survival of the hybrids can be predicted based on their genotypes. In contrast, 

significant GxE means that the hybrids perform differently from one environment to another 

(based on the tested sites), hence making it difficult to generalize the results. Despite the 

significance of QTLxE for the rest of the traits, most of the QTLs were common between 

different treatments in the greenhouse and between the two field sites, with the same direction 

of the effect but with different magnitudes. Only few QTLs under greenhouse conditions had 

opposite allelic effect from one treatment to another (Chapters 3 and 4), and in the field a 

small number of QTLs (3 out of 16) was significant at one site but not significant at the other 

(Chapter 5). 

QTLs for vigour and fitness and the likelihood of introgression of a transgene based on 

its genomic location 

One way of limiting the likelihood of introgression of a transgene could be to target it to a 

chromosomal region where it is linked to a crop gene/QTL that generally confers reduced 

fitness. As the gene affecting fitness is selected against, the linked transgene will be reduced 

in frequency along with the gene in question, resulting in background selection against the 

transgene (Kwit et al. 2011; Stewart et al. 2003). Indeed, the chromosomal position of the 

transgene was speculated to negatively affect the fitness of the hybrids from a cross between 

transgenic oil seed rape and wild radish (Gueritaine et al. 2002). Up till recently, genetic 

transformation was a random event, without any prior knowledge on the genomic area where 

the transgene would be inserted. Advances in biotechnology have made it possible to 

transform a specific site (Cermak et al. 2011; Shukla et al. 2009; Townsend et al. 2009; 

Urnov et al. 2010). In the future, these technologies promise the possibility to target a 

transgene to a specific location in the genome. If we then could choose a region conferring 

reduced fitness in crop-wild hybrids, and be able to avoid regions containing a gene or QTL 

positively affecting fitness, this would be an additional mechanism to contain the transgene. 

But how well do we know where these regions are in lettuce, and how well can we predict 

that the putative regions identified will indeed confer the predicted fitness effect to the crop-

wild hybrids and their offspring across a range of natural conditions?  
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Based on the current cross between L. serriola/Eys and L. sativa cv. Dynamite, we suggest 

some regions on the lettuce genome where a transgene could be inserted or not inserted with 

the aim of mitigating its persistence after crop-wild hybridization (see Figure 1). The QTL 

region on LG7 should be avoided when inserting a transgene. This region was associated with 

the vigour traits (plant height, fresh weight, dry weight and relative moisture content) at the 

rosette stage under greenhouse conditions of non-stress, salinity and nutrient deficiency in F2, 

BC1 and BC2 populations. Under field conditions with the BC1 population, the same region 

was associated with plant dry weight at the rosette stage, survival and number of seeds 

(Figure 1). However, the region had an antagonistic allelic effect, with plant height, dry 

weight and relative moisture content sometimes inherited from the crop and other times from 

the wild under greenhouse conditions. Under field conditions, dry weight was inherited from 

the crop while survival and the number of seeds were inherited from the wild allele. 

Therefore, it would be difficult to predict the direction of selection, whether the region will be 

characterized by hitchhiking or background selection, and the best option would be to avoid 

the region altogether. LG4 contained many vigour QTLs under greenhouse conditions (for 

plant height, fresh weight, dry weight and relative moisture content) with positive effects 

from both the crop and the wild alleles (Chapters 3 and 4). Under field conditions, one QTL 

for the number of branches with a positive effect from the crop allele was detected on LG4. 

However, the field QTL did not overlap with the greenhouse QTLs, resulting in a scatter of 

QTLs on LG4. Therefore, predicting the direction of selection on LG4 would be difficult, and 

the advice would be to avoid inserting a transgene on it as well. The same applies for the QTL 

region on LG8 and it should be avoided as well. The QTL region on LG9 contained common 

QTLs between greenhouse and field experiments. Under greenhouse stress and non-stress 

conditions, the crop allele contributed positively for fresh weight and relative moisture 

content, whereas the wild allele contributed for plant height. However, under field conditions 

only the wild allele contributed for plant height at the adult stage and for the number of seeds 

per capitula and the total number of seeds. Therefore, under natural conditions, the crop allele 

at the QTL region on LG9 is likely to be selected against, thus making the region a good 

candidate for the insertion of a transgene. Likewise, the QTL regions on LG1 and 6 are likely 

to favour the wild allele and are candidates for the insertion of a transgene. The region on 

LG1 contained a QTL for plant height under field conditions with a positive effect from the 

wild allele. Under greenhouse conditions, the region on LG6 contained QTLs for plant height 

and relative moisture content with a positive effect from the wild allele. Under field 

conditions, the region contains QTLs for survival and seed production with a positive effect 

from the wild allele and a QTL for flowering with late flowering associated with the crop 
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allele. Therefore, the region will favour the wild allele under field conditions and the crop will 

be selected against, leading to background selection of the (trans)genes linked to the region in 

the crop genome.  

Based on segregation distortion and changes in linkage disequilibrium after the hybrids had 

been exposed to field conditions for two consecutive years, Hooftman et al. (2011) also 

suggested lettuce regions on which transgenes could be inserted with the aim of reducing their 

likelihood of persistence due to genetic hitchhiking. Unfortunately, a comparison between 

their results and ours was not possible due to a lack of common markers between their map 

and ours. An indirect comparison through the lettuce integrated map, which encompasses 

most of the SNPs used in the present study (Truco et al. 2007), was neither possible as 

common markers per LG were still limited to one or two. In the present study we used SNP 

markers because of the possibility for high throughput genotyping 

(http://dnatech.genomecenter.ucdavis.edu/illumina.html) and co-dominant scoring, and 

because they were developed from Expressed Sequence Tags (ESTs), making the detected 

QTL close to actual genes (McHale et al. 2009). Moreover, most of the SNPs are already part 

of the latest version of the lettuce integrated map which makes our results comparable to other 

crop-wild studies which used the said map such as Johnson et al. (2000) and Argyris et al. 

(2005) (Chapters 3 and 5), and  any future studies which will use the same map.  

Segregation distortion of a region towards one of the parents on a linkage map can be used to 

determine a chromosome region with limited likelihood of introgression (Hooftman et al. 

2011). In the F2 population a region on LG3 was identified with a segregation distortion 

towards the crop allele (Chapter 3). Such a distortion, if stable over generations, could also be 

exploited for limiting the introgression of transgenes. It would be better to avoid inserting a 

transgene into the region as it would increase the likelihood of persistence of the transgene 

once the crop hybridizes with a wild relative. However, the segregation distortion on LG3 was 

not observed in the backcross populations, which was most probably due to the fact that the 

distortion in F2 was biased towards the homozygous genotype of the crop allele, and detecting 

the same distortion in the backcross population would not be feasible as the crop genome is 

represented by the heterozygous genotypes.  

Can small-scale contained experiments predict potential ecological consequences?  

Although field experiments are more representative of natural conditions, they are labour-

intensive and depend on the prevailing environmental conditions so that only one experiment 

can be run per year in temperate regions for instance, and several years may be needed to 
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encounter various combinations of weather conditions across the growing season. Conversely, 

greenhouse experiments, though less representative of natural conditions, are easy to handle, 

can be manipulated to simulate a specific selection factor so as to understand its mechanism, 

and many experiments can be run in one location simultaneously and the whole year round. 

One important question that arises is whether and to what extent can small-scale contained 

greenhouse experiments predict field conditions. Our experiments can only partially answer 

this question because the greenhouse experiments were run on young plants (5 weeks after 

transplanting) only. Nevertheless, the greenhouse and field experiments showed some 

similarities based on the correlations of dry weight at the rosette stage between greenhouse 

and field measurement and the detection of the same QTL for dry weight at the rosette stage 

in the two environments (Chapter 5). Therefore, we can precautiously conclude that 

greenhouse experiments can explain at least some of the effects occurring under field 

conditions. Importantly, the rosette stage data did not completely predict the fitness of the 

plants in the field experiments, which underlines the notion that fitness-related experiments 

need to cover the whole life cycle of a plant. Therefore, one should ideally run complete life 

cycle experiments (from germination to seed production), in the field as well as in the 

greenhouse. 

Prospective research on crop-wild hybridization in lettuce 

Various crop-wild introgression studies have been carried out on the change of crop allele 

frequency among crop-wild hybrids over multiple years with the aim of predicting the fate of 

the crop alleles under natural conditions (Cummings et al. 2002; Snow et al. 2010). In lettuce, 

exposure of the hybrids to field conditions over two years resulted in post-zygotic segregation 

distortion of the alleles at specific loci, although the role of the loci with respect to fitness was 

not known (Hooftman et al. 2011). In the present study, QTL regions were identified that 

affected hybrid vigour under greenhouse stress and non-stress conditions of salinity, drought 

and nutrient deficiency as well as QTLs affecting vigour and those affecting fitness of the 

hybrids under field conditions. However, the present study was based on a single crop-wild 

cross, whereas QTLs are relative to the genetic background in which they are measured, 

hence making it as yet impossible to generalize our results on lettuce in general. In their study 

on the germination of hybrid seeds from multiple crop-wild crosses in sunflower, Mercer et 

al. (2006a) reported an increase in seed germination rate and decrease in dormancy due to 

crop-wild hybridization. However, germination depended on the crop-wild crosses and the 

environment, and the performance of the crop-wild hybrids relative to the wild species 

depended on the crop-wild cross, the wild populations and the environmental conditions 
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(Mercer et al. 2006b). In their experiments on radish crop-wild hybrids Campbell et al. (2006) 

found that the hybrids had greater survival and fecundity then the wild lines in a new 

environment, different from the natural habitat of the wild parent. Therefore, a follow-up of 

the present study is recommended which should encompass multi-year-multi-location 

experiments to study the consistency of the QTLs detected in the present study. The predicted 

genetic hitchhiking and background selection around the QTLs should be assessed through 

multi-year field selection followed by intensive genotyping with markers within and around 

the mapped QTLs. A study on the performance of lettuce crop-wild hybrids with another 

crop-wild cross is underway (http://home.medewerker.uva.nl/y.hartman), hence covering the 

multi-cross aspect. Their results will complement ours and enrich the knowledge on 

hybridization, introgression and the fate of the hybrids in lettuce. 

Other natural selection aspects not considered in our experiments were seed germination in 

the following year after exposure to field conditions, herbivory, competition and diseases. 

Although germination was scored in the field, the seeds had been produced in the greenhouse 

and stored under optimum conditions of temperature and pressure. Moreover, the 

demographic life cycle of the plants was not complete in our study as the field-harvested 

seeds were not tested for germination. Competition was found significant on the fitness of 

radish crop-wild hybrids (Campbell and Snow 2007) but not significant in transgenic oilseed 

rape and wild radish crop-wild hybrids (Gueritaine et al. 2002). In our study, competition was 

not fully allowed in our experimental field plots as herbicide was applied in Wageningen and 

the two plots were weeded to enable the counting of seedlings, and herbivory (cf. (Dechaine 

et al. 2009) was not scored. Hooftman et al. (2007b) studied the introgression of downy 

mildew, the most important crop lettuce disease (Michelmore et al. 2008) and they found that 

the occurrence of the disease on lettuce hybrids and wild genotypes did not affect their 

reproductive fitness, suggesting that diseases constitute a major problem to crop lettuce but 

not to wild lettuce, and the introgression of disease resistance genes will not have any effect 

on the crop-wild hybrids. We therefore suggest the consideration of germination after seeds 

have remained on the soil under field conditions, herbivory and field competition in future 

studies in order to have a more complete picture of selection under field conditions.  

Implications for lettuce breeding 

Wild species of lettuce have been used in lettuce breeding.  Lactuca saligna was found to be a 

good source for downy mildew resistance (Jeuken and Lindhout 2002; Zhang et al. 2009), L. 

virosa was used as a source for aphid resistance (Van der Arend et al. 1999) and L. saligna 

and L. virosa accessions have been identified that are resistant to northern root knot nematode 
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(Kaur and Mitkowski 2011). L. serriola, which is considered as part of the primary gene pool 

of L. sativa (Koopman et al. 1993) was identified as a potential source for lettuce germination 

QTLs under adverse conditions (Argyris et al. 2005) and various disease resistance genes 

(McHale et al. 2009). The QTLs identified in this study could benefit lettuce breeding for 

salinity, drought and nutrient deficiency tolerance. The moderate to high broad sense 

heritability values for the studied vigour traits under the said stress conditions show that 

lettuce tolerance to those stress factors can be improved at the vegetative growing phase 

through breeding and selection. However, in order to avoid linkage drag from L. serriola, fine 

mapping of the QTLs will be required to distinguish between pleiotropic and linked QTLs 

and, if possible,  to separate unwanted from useful regions. One of such regions is on LG4 

where a dry weight QTL under control, salinity, drought and nutrient deficiency with a 

positive effect from the wild allele overlaps with a QTL for plant height (Chapter 3) which is 

an undesired trait in cultivated lettuce. 

Major conclusions 

1. In spite of the low out-crossing rate in crop and wild lettuce, we found evidence of 

spontaneous hybridization between L. serriola and L. sativa among natural 

populations of L. serriola. 

2. The geographical location and frequency of lettuce crop-wild hybrids led to the 

conclusion that crop-wild hybridization is not the main reason for the recent spread of 

L. serriola in Europe. 

3. Cultivated lettuce contributes positively to the vigour of the hybrids at the rosette 

stage under non-stress, salinity, drought and nutrient deficiency conditions through 

additive and epistatic allelic effects. 

4. This contribution is sustained over two backcrossing generations to L. serriola, 

indicating the potential of introgression of crop segments in the increasing wild 

genetic background. 

5. Under field conditions, cultivated lettuce contributes positively to plant vigour at the 

rosette stage, to the number of branches and to the total number of seeds.   

6. Although plant vigour and seed production traits were dependent on the environment 

per hybrid family, survival was not affected by GxE under field conditions, hence 

showing the potential to predict the survivorship of a plant based on its genotype. 

7. Based on the location and allelic effect of the QTLs for germination, vigour, survival 

and reproductive traits, we have suggested some genomic regions where transgenes 

could be inserted in order to mitigate their persistence in crop-wild hybrids.  
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Figure 1 Suggestions of genomic regions where a transgene could be inserted or not inserted to mitigate its 
persistence after crop-wild hybridization based on the localization and allelic effect of vigour and fitness QTLs 
of this study. The shown map is that of the BC1 population. The red bars indicate where a transgene should not 
be inserted because the segments are likely to undergo selection in favour of the crop allele, and the green bars 
indicate regions where a transgene could be inserted because the segments are likely to undergo selection in 
favour of the wild allele  
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Summary 

Many plant species can hybridise and produce fertile offspring. This happens where species 

areas meet, when species invade the area of another species, and between crops and their wild 

relatives. The latter has raised concern with regard to GM crops, as it constitutes a possible 

route along which the transgene could disperse from crops into related wild species, establish 

itself in the natural population, and persist under natural conditions. This may cause 

unintended ecological consequences such as the formation of weeds that are difficult to 

manage in agricultural areas or the formation of more fit crop-wild hybrids that could displace 

the wild species, thus causing genetic erosion.  

After crop-wild hybridization, the persistence of the hybrids and of the crop genes (including 

the transgenes) in later generations depend on their genetic make-up, which consists of 

specific combinations of wild and crop genomic blocks, and on the environmental conditions. 

Therefore, knowledge on the dynamics of crop-wild hybridization and introgression using 

conventional crop varieties is needed as it constitutes the baseline for putting into perspective 

the effects of transgene introgression under natural conditions.   

The present study focused on understanding the genetic process of hybridization and 

introgression from cultivated to wild relative species using Lactuca sativa L. and L. serriola 

L. as a model crop-wild complex with an emphasis on the contribution of the crop genome to 

the performance of the hybrids. It aimed at answering the following questions: (i) whether 

there is evidence of spontaneous hybridization between L. serriola and L. sativa under natural 

conditions, (ii)  whether crop genes confer any (dis)advantage to the crop-wild hybrids under 

controlled non-stress conditions, under controlled conditions with abiotic stress, and under 

field conditions, (iii) whether the (dis)advantageous effects of the crop are dependent on 

environmental conditions, and (iv) whether we can identify genomic regions where transgenes 

could be inserted with the purpose of mitigating their persistence after crop-wild 

hybridization. 

A large dataset of L. serriola and L. sativa plants from the Centre for Genetic Resources, the 

Netherlands (CGN) and another set of recently collected (between 2002 and 2005) L. serriola 

samples from Europe (ANGEL) that were genotyped with 10 microsatellite markers, were 

analysed with the Bayesian-based programme STRUCTURE. In spite of the low outcrossing 

rate in lettuce, an occurrence of 7% of crop-wild hybrids was found among the natural 

populations of L. serriola in Europe (ANGEL dataset) and 9% among CGN L. serriola plants 

collected from the wild. From the occurrence and geographical localization of the hybrids we 
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concluded that hybridization between L. sativa and L. serriola is not a likely cause of the 

recent spread of L. serriola in Europe.  

To test for the importance of the crop genomic segments to the performance of the crop-wild 

hybrids, F1 hybrid progeny was created by crossing L. serriola collected from Eys (the 

Netherlands) with L. sativa, cv. Dynamite. As selfing and backcrossing constitute the two 

possible routes along which a crop gene could become established in a wild genetic 

background, three subsequent hybrid generations were created, namely F2 (by selfing F1) and 

two backcross populations, BC1 and BC2 by backcrossing to the L. serriola parent. The three 

populations were genotyped with Single Nucleotide Polymorphism (SNP) markers for genetic 

analysis. Because of the importance of the abiotic stresses as selection factors under natural 

conditions and the prospective of generating GM crop varieties with enhanced abiotic stress 

tolerance, the three populations were evaluated for vigour at the rosette stage under 

greenhouse conditions of non-stress, drought, salinity and nutrient deficiency. The BC1 

population was also evaluated under field conditions at two locations (Wageningen and 

Sijbekarspel, the Netherlands) for hybrid performance from germination to seed production.   

Vigour under greenhouse conditions and germination, vigour and reproduction traits under 

field conditions were characterized by moderate to high broad sense heritability values, 

indicating that crop-wild hybridization generates genetic variation on which selection could 

act. Using a Quantitative Trait Loci (QTL) approach, we determined the contribution of the 

crop to the vigour and fitness of the hybrids. In the F2 population, 17 QTLs for vigour were 

detected with most of the QTLs for biomass having a positive effect from the crop allele, 

showing that cultivated lettuce can contribute positively to the vigour of the hybrids at the 

rosette stage under non-stress, salinity, drought and nutrient deficiency conditions. The 

dominance effects of the QTLs were not significant for 16 out of the mapped 17 QTLs, nor 

were the heterozygous genotypes associated with the highest means for QTL epistatic effect. 

This suggests that heterozygosity did not play a major role to the vigour of the hybrids. 

Conversely, QTL epistatic effect was significant for many of the trait-treatment combinations. 

In the BC1 and BC2 populations, the crop contributed mostly to the biomass traits through 

additive and epistatic QTL effect, indicating a potential of introgression of crop segments in 

the increasing wild genetic background. 

 

Under field conditions, cultivated lettuce contributed positively for the QTLs for plant vigour 

at the rosette stage, the number of branches and the total number of seeds among the hybrids, 

whereas QTLs for germination, survival and plant height had their positive allelic effect from 
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the wild allele. Genotype by environment (GxE) effect was significant on the vigour traits 

under greenhouse conditions of stress and non-stress and on germination, vigour and 

reproduction traits under field conditions. Survival was the only trait not affected by GxE and 

all the QTLs for the trait had the same direction and magnitude at the two sites. Therefore, 

one can predict the survival rate of lettuce crop-wild hybrids based on their genotypes. 

Despite the significance of QTLxE for the QTLs detected for the remainder of the traits, most 

of the QTLs were significant in more than one treatment with the same direction of allelic 

effect (either positive for the crop allele or for the wild allele) under greenhouse conditions or 

at the two sites under field conditions. Therefore, the significance of QTLxE for those QTLs 

would not prevent an estimation of the performance of a hybrid based on its genotype. Based 

on the location and allelic effect of the QTLs for germination, vigour, survival and 

reproductive traits in the current lettuce crop-wild cross, some genomic regions were 

suggested where transgenes could be inserted in order to mitigate their persistence in crop-

wild hybrids through genetic hitchhiking and background selection on linkage groups 1, 6 and 

9, and other regions in which it would be better not to insert a transgene on linkage groups 6, 

7 and 8.  
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Samenvatting 

Een aanzienlijk aantal plantensoorten kan hybridiseren en daarbij fertiele nakomelingen 

genereren. Dit gebeurt waar soortarealen elkaar ontmoeten, wanneer soorten binnendringen in 

het areaal van een andere soort, en tussen cultuurgewassen en hun wilde verwanten. Het 

laatste verschijnsel heeft de aandacht getrokken in verband met de opkomst van genetisch 

gemodificeerde (GG) gewassen, aangezien het een mogelijke route vormt waarlangs 

transgenen zouden kunnen verspreiden van gewassen naar verwante wilde soorten. Zo zouden 

ze zich kunnen vestigen in natuurlijke populaties en vervolgens zich handhaven onder 

natuurlijke omstandigheden. Dit zou weer onbedoelde ecologische gevolgen kunnen hebben 

zoals het ontstaan van onkruiden die moeilijk in bedwang te houden zijn in 

landbouwgebieden of het ontstaan van gewas-wild hybriden die de wilde soort verdringen, 

wat genetische erosie tot gevolg heeft.  

Na gewas-wild hybridisatie hangt de persistentie van de hybriden en de gewasgenen (met 

inbegrip van de transgenen) in opvolgende generaties af van de genetische samenstelling, die 

bestaat uit combinaties van gewas- en wilde genoomstukken, en van de 

milieuomstandigheden. Zodoende is kennis nodig over de dynamiek van gewas-wild 

hybridisatie en introgressie aan de hand van conventionele cultuurvariëteiten, aangezien dit de 

“baseline” (het uitgangspunt) vormt waarmee de effecten van transgeenintrogressie onder 

natuurlijke omstandigheden kunnen worden vergeleken.  

De onderhavige studie richtte zich op het begrijpen van het genetische proces in de 

hybridisatie en introgressie van gewas naar wilde verwant aan de hand van het gewas-wild 

complex in sla dat gevormd wordt door Lactuca sativa L. en L. serriola L., met de nadruk op 

de bijdrage van het gewasgenoom aan de prestaties van de hybriden. Het richtte zich op het 

beantwoorden van de volgende vragen: (i) of er aanwijzingen zijn voor spontane hybridisatie 

tussen L. serriola en L. sativa onder natuurlijke omstandigheden, (ii) of gewasgenen een voor- 

dan wel nadeel bieden aan de gewas-wild hybriden onder gecontroleerde omstandigheden van 

abiotische stress en geen stress, en onder veldomstandigheden, (iii) of voor- dan wel nadelige 

effecten van het gewas afhankelijk zijn van milieuomstandigheden, en of we genoomgebieden 

kunnen identificeren waar transgenen ingevoegd kunnen worden met het oog op het 

tegengaan van hun persistentie na gewas-wild hybridisatie.  

Een grote dataset van L. serriola en L. sativa planten uit de slacollectie van het Centrum voor 

Genetische Bronnen Nederland (CGN) en een andere dataset van recent (tussen 2002 en 

2005) verzamelde monsters uit Europa (EU onderzoeksproject ANGEL) die gegenotypeerd 
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zijn op basis van 10 microsatellietmerkers, zijn geanalyseerd met het Bayesiaanse 

softwareprogramma STRUCTURE. Ondanks het lage uitkruisingsniveau in sla vertoonde 7% 

van de planten uit natuurlijke populaties in Europa (ANGEL dataset) kenmerken van gewas-

wild hybriden en hetzelfde werd gevonden voor 9% van de CGN L. serriola planten die 

oorspronkelijk in het wild verzameld waren. Op basis van het voorkomen en de geografische 

verspreiding van de hybriden concludeerden we dat hybridisatie tussen L. sativa en L. serriola 

geen aannemelijk verklaring vormt voor de recente uitbreiding van L. serriola in Europa.  

Om het belang van de gewasgenoomsegmenten voor de prestaties van de gewas-wild 

hybriden vast te stellen werd een F1 hybride nakomelingschap geproduceerd door het kruisen 

van L. serriola uit Eys (Limburg, Nederland) met L. sativa, cv. Dynamite. Aangezien 

zelfbevruchting en terugkruising de twee mogelijk routes uitmaken waarlangs een gewasgen 

zich zou kunnen vestigen in een wilde genetische achtergrond, werden er drie opvolgende 

hybride generaties geproduceerd, namelijk een F2 (door zelfbevruchting van de F1) en twee 

terugkruisingspopulaties, een BC1 en een BC2 door terugkruising met de L. serriola-ouderlijn. 

De drie populaties werden gegenotypeerd met SNP merkers (Single Nucleotide 

Polymorphism = variaties gebaseerd op enkelvoudige DNA-basenwijzigingen) voor de 

genetische analyse. Vanwege het belang van verschillende typen abiotische stress als 

selectiefactoren onder natuurlijke omstandigheden en het vooruitzicht van de introductie van 

GG gewasvariëteiten met verbeterde tolerantie voor abiotische stress werden de drie 

populaties geëvalueerd voor groeikracht (“vigour”) in het rozetstadium onder 

kasomstandigheden zonder stress en met droogte, zout en nutriëntengebrek. De BC1 populatie 

werd ook geëvalueerd onder veldomstandigheden op twee locaties (Wageningen en 

Sijbekarspel, Nederland) met betrekking tot hybridenprestaties vanaf zaadkieming tot 

zaadproductie.  

Groeikracht (“vigour”) onder kasomstandigheden en zaadkieming, groeikracht en reproductie-

eigenschappen onder veldomstandigheden werden gekenmerkt door gemiddelde tot hoge 

waarden voor “broad-sense heritability” (erfelijkheidsfactor in brede zin), wat erop wijst dat 

gewas-wild hybridisatie genetische variatie genereert waarop selectie zou kunnen aangrijpen. 

Met gebruikmaking van een QTL-benadering (Quantitative Trait Loci = genoomposities 

gerelateerd aan kwantitatieve variatie in een eigenschap) bepaalden we de bijdrage van het 

gewas aan de groeikracht (“vigour”) en de “fitness” (mate van aanpassing aan 

groeiomstandigheden) van de hybriden. In de F2 populatie werden 17 QTLs voor groeikracht 

gedetecteerd, waarbij de meeste biomassa-QTLs een positief effect van het gewasallel 

vertoonden, hetgeen aangeeft dat cultuursla positief kan bijdragen aan de groeikracht van 
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hybriden in het rozetstadium onder omstandigheden zonder stress, en met zout, droogte en 

nutriëntengebrek. De dominantie-effecten waren niet statistisch significant bij 16 van de op de 

genetische kaart gezette 17 QTLs; evenmin was er een relatie tussen heterozygote genotypen 

en de hoogste gemiddelden voor het epistatische (interacties tussen genen) effect van QTLs. 

Dit suggereert dat de mate van heterozygotie geen overheersende rol speelde in de groeikracht 

van de hybriden. Daartegenover was het epistatisch effect van QTLs significant bij veel van 

de combinaties van eigenschap en groeiomstandigheden.  

Onder veldomstandigheden droegen allelen van de cultuursla positief bij in de QTLs voor 

plantgroeikracht in het rozetstadium, het aantal vertakkingen en het aantal zaden in de 

hybriden, terwijl QTLs voor zaadkieming, overleving van de plant en planthoogte een positief 

effect vertoonden van het wilde allel. Het GxE effect (“genotype by environment” = interactie 

tussen genotype en milieuomstandigheden) was statistisch significant bij de 

groeikrachteigenschappen gemeten onder kasomstandigheden met en zonder stress en bij 

zaadkieming, groeikracht en reproductie-eigenschappen gemeten onder veldomstandigheden. 

Plantoverleving op het veld was de enige eigenschap die geen invloed van GxE effecten 

vertoonde, en alle QTLs voor deze eigenschap hadden dezelfde richting en grootte op de twee 

veldlocaties. Zodoende zou men de mate van overleving van gewas-wild hybriden in sla 

kunnen voorspellen op basis van hun genotypen. Niettegenstaande de significantie van 

QTLxE effect (interactie tussen QTL en milieuomstandigheden) voor de QTLs voor de rest 

van de eigenschappen waren de meeste QTLs significant in meer dan één behandeling met 

dezelfde richting van het allelische effect (positief voor ofwel het gewasallel ofwel voor het 

wilde allel) onder kasomstandigheden of op de twee veldlocaties. Daarom zou het significante 

QTLxE effect voor deze QTLs een schatting van de prestaties van een hybride op basis van 

het genotype niet in de weg staan. Uitgaande van de locatie en het allelische effect van de 

QTLs voor zaadkieming, groeikracht (“vigour”), plantoverleving en reproductieve 

eigenschappen in de onderhavige kruising tussen gewas en wild konden enkele 

genoomgebieden gesuggereerd worden waar een transgen ingevoegd zou kunnen worden 

teneinde de persistentie in het milieu door middel van genetisch “meeliften” en 

achtergrondselectie tegen te gaan, te weten op “”linkage groups” (groepen van verbonden 

genetische merkers, genetische kaartequivalenten van chromosomen) 1, 6 en 9. Ook konden 

genoomgebieden worden aangewezen waar met dit doel een transgen beter niet ingevoegd 

zou kunnen worden, namelijk op “linkage groups” 6, 7 en 8.  
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Supplementary Material 

Chapter 2 

Table S1 Frequency of “crop specific” alleles in lettuce datasets 

SSR allele L. sativa ANGEL L. serriola 
CGN L. serriola 

CGN L. serriola  
Europe 

LsA001-187 0.1159 0.002 0 0.002 
D103-263 0.5286 0.000 0.0008 0.001 
D103-266 0.1813 0.004 0.0017 0.001 
D106-191 0.4122 0.000 0 0.003 
D109-251 0.1601 0.003 0 0.028 
LsE003-206 0.8888 0.000 0 0.003 
E011-251 0.1253 0.005 0 0.001 
E011-254 0.7904 0.006 0 0.163 

 

Figure S1 STRUCTURE Q graph of all datasets at A) K=3 and B) K=4: At higher K (>2) L. serriola remains 
distinct from L. sativa 
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Chapter 3 

Figure S2 Boxplots showing phenotypic variation among F2:3 plants (position 1), L. serriola acc. UC96US23 
(position 2), L. sativa cv. Salinas (position 3), L. serriola/Eys (position 4) and L. sativa cv. Dynamite (position 5) for 
dry weight (A), fresh weight(B), plant height (C) and relative moisture content (D) under the five treatments 

 

 

 

 

   

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

P4P3P2P1F2:3

7

6

5

4

3

2

1

0

P4P3P2P1F2:3

7

6

5

4

3

2

1

0

P4P3P2P1F2:3

6

5

4

3

2

1

0

P4P3P2P1F2:3

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

P4P3P2P1F2:3

30

25

20

15

10

5

0

P4P3P2P1F2:3

80

70

60

50

40

30

20

10

P4P3P2P1F2:3

80

70

60

50

40

30

20

10

P4P3P2P1F2:3

80

60

40

20

0

P4P3P2P1F2:3

35

30

25

20

15

10

5

0

P4P3P2P1F2:3

70

60

50

40

30

20

10

P4P3P2P1F2:3

100

80

60

40

20

P4P3P2P1F2:3

100

80

60

40

20

P4P3P2P1F2:3

60

50

40

30

20

10

P4P3P2P1F2:3

40

35

30

25

20

15

10

P4P3P2P1F2:3

94

92

90

88

86

84

82

80

P4P3P2P1F2:3

95

90

85

80

75

70

P4P3P2P1F2:3

98

96

94

92

90

88

P4P3P2P1F2:3

95

90

85

80

75

70

P4P3P2P1F2:3

90

80

70

60

P4P3P2P1F2:3

D 

A 

B 

C 

Drought Control_Drought Nutrient deficiency Control_Salt-Nutrient  Salt 



132 

 

Chapter 4 

Figure S3 Crossing and experimental scheme of the study on introgression process from cultivated to wild lettuce. The selfing 
pathway (F2) was  in chapter 3The back-crossing pathway (BC1 and BC2 populations) is the subject of chapter 4 
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Figure S4 Boxplots representing the phenotypic variation among BC1S1 (position 1) relative to L. serriola acc. 
UC96US23 (position 2), L. sativa cv. Salinas (position 3), L. serriola/Eys (position 4) and L. sativa cv. Dynamite 
(position 5) for vigour traits dry weight (A), fresh weight (B), plant height (C) and relative moisture content (D) 
under the five treatments 
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Figure S5 Boxplots representing the phenotypic variation among BC2S1 plants (position 1) relative to L. serriola 
acc. UC96US23 (position 2), L. sativa cv. Salinas (position 3), L. serriola/Eys (position 4) and L. sativa cv. 
Dynamite (position 5) for vigour traits dry weight (A), fresh weight (B), plant height (C) and relative moisture 
content (D) under the five treatments.  
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Chapter 5 

Table S2 Analysis of variance and deviance of the phenotypic data and the significance of GxE on the traits: all 
the traits measured at the two sites show significant GxE except Survival 

Trait Source of variation DF1 MS or MD2 P-value 
Germination Genotype x site x block 2447 4.8 <.001 
Dry weight genotype 101 1.03 <.001 
 Site 1 88.29 <.001 
 Genotype x site 101 0.38 0.007 
 residual 2231 0.27  
Number of  branches genotype 100 185.12 <.001 

site 1 312.71 0.006 
 Genotype x site 99 80.23 <.001 
 residual 1607 41.21  
Number of  basal shoots genotype 100 64.24 <.001 

site 1 4129.04 <.001 
 Genotype x site 99 32.84 <.001 
 residual 1614 11.72  
Days to flowering genotype 101 1440.2 <.001 
 site 1 105506.5 <.001 
 Genotype x site 101 354 0.001 
 Residuals 1903 235.3  
Number of seeds per capitulum genotype 100 65.9 <.001 

site 1 9060.06 <.001 
 Genotype x site 99 23.68 <.001 
 residual 1605 11.78  
Total number of capitula genotype 100 2.35 x 106 <.001 
 site 1 1.43 x 108 <.001 
 Genotype x site 99 1.23 x106 <.001 
 residual 1613 4.63 x105  
Total number of  seeds genotype 100 1.03 x 109 <.001 

site 1 1.54 x 1010 <.001 
 Genotype x site 99 6.15 x 108 <.001 
 residual 1602 2.30 x 108  
Survival genotype 101 5.80 <.001 
 block 11 3.20 <.001 
  site 1 25.8763 <.001 
 Genotype x site 101 1.00 0.484 
 Genotype x block 1111 1.14 0.001 
 Block x .site 11 3.51 <.001 
 Genotype x site. x lock 1111 0.63 1 
 residual 1111 0.63  
Plant height genotype 99 1847.2 <.001 

 residual 1000 648.4  
1 DF: degrees of freedom; 2 MS: mean square, MD: mean deviance 
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conditions", TTI Green Genetics Meeting, Utrecht 

Apr 13, 2011 

  
Presentation: "QTLs for plant vigour under non-stress, drought, salt and nutrient deficiency 
conditions and their effecton crop-wild introgression", Eucarpia Leafy vegetables 2011 

Aug 24, 2011 

►  IAB interview Dec 04, 2009 
►  Excursions  

Subtotal Scientific Exposure 15,1 credits* 
      
3) In-Depth Studies date 
►  EPS courses or other PhD courses   
  Principles of Ecological Genomics Feb 23-27, 2009 
  Quantitative genetics of selection response Jun 07-11, 2010 
►  Journal club   
  Literature discussions, Plant Breeding Oct 2007-Sep 2011 
►  Individual research training   
  Training on QTL mapping and analysis, Kyazma  Apr 27-29, 2009 

Subtotal In-Depth Studies 8,4 credits* 
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4) Personal development date 
►  Skill training courses   
  PhD Competence Assessments Feb 19 & Mar 12, 2008 
  Interpersonal communication for PhD students Oct 2008 
  Techniques for writing and presenting a scientific paper Jul 01-04, 2008 
  Information literacy including introduction to Endnote May 27-28, 2008  
  Workshop on scientific publishing Nov 05, 2008 
  Dutch I and II CENTA -WUR Sep 2009-Jun 2010 
►  Organisation of PhD students day, course or conference   
►  Membership of Board, Committee or PhD council   

Subtotal Personal Development 6,0 credits* 
    

TOTAL NUMBER OF CREDIT POINTS* 38.5 

Herewith the Graduate School declares that the PhD candidate has complied 
with the educational requirements set by the Educational Committee of EPS 
which comprises of a minimum total of 30 ECTS credits    

* A credit represents a normative study load of 28 hours of study. 
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