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Abstract

Cats are strict carnivores and in the wild rely on a diet solely based on animal tissues to meet their specific and unique nutritional require-

ments. Although the feeding ecology of cats in the wild has been well documented in the literature, there is no information on the precise

nutrient profile to which the cat’s metabolism has adapted. The present study aimed to derive the dietary nutrient profile of free-living cats.

Studies reporting the feeding habits of cats in the wild were reviewed and data on the nutrient composition of the consumed prey items

obtained from the literature. Fifty-five studies reported feeding strategy data of cats in the wild. After specific exclusion criteria, twenty-

seven studies were used to derive thirty individual dietary nutrient profiles. The results show that feral cats are obligatory carnivores,

with their daily energy intake from crude protein being 52 %, from crude fat 46 % and from N-free extract only 2 %. Minerals and trace

elements are consumed in relatively high concentrations compared with recommended allowances determined using empirical methods.

The calculated nutrient profile may be considered the nutrient intake to which the cat’s metabolic system has adapted. The present study

provides insight into the nutritive, as well as possible non-nutritive aspects of a natural diet of whole prey for cats and provides novel ways

to further improve feline diets to increase health and longevity.
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The domestic cat (Felis silvestris catus) is adopted as a pet

in millions of homes and can be considered one of the most

popular pet animals worldwide. Cats were domesticated

approximately 9000–10 000 years ago in the Near East(1) and

are thought to originate from at least five distinctive subspe-

cies of F. silvestris from across the Near East region, namely

F.s. silvestris, F.s. lybica, F.s. ornate, F.s. cafra and F.s. bieti (1).

After domestication, descendants were dispersed across the

world with human assistance, and gave rise to today’s

domestic cat. A small subset of these domesticated cats has

undergone intensive selection directed at specific aesthetic

traits, leading to the development of so-called pedigree cats.

Nowadays, forty-one breeds are recognised by the Cat

Fanciers’ Association, including sixteen ‘natural breeds’(2).

These natural breeds are thought to be regional variants

originating from domesticated F. silvestris subspecies(3).

The initiation of domestication of wildcats is believed to

have coincided with the change from the hunter–gatherer

lifestyle of man in the Palaeolithic to the agricultural lifestyle

in the Fertile Crescent about 12 000 years ago(1,4). The perma-

nent human settlements stored grains and middens, providing

a new ecological niche for commensal species such as mice

and rats. These rodents became peridomestic and provided

a reliable food source for native wildcats. Wildcats then

became adapted to the urban environment and became com-

mensals like rodents(5). Wildcats in the urban environments

were tolerated by people and, over time and space, gradually

diverged from their ‘wild’ relatives by natural selection(6).

Overall, the domestic cat genome organisation is remark-

ably conserved compared with the human genome, with

cats displaying the fewest number of chromosomal changes

relative to man(7,8). Domestic cats also have retained a beha-

vioural repertoire, for example, the ability to hunt effec-

tively(9), which makes them very successful in the feral

environment. The modern domestic cat still seems to largely

resemble its wild ancestors genomically, morphologically

and behaviourally. The formation of distinct breeds and

the selection for breed-specific exterior traits over the past

50 years are unlikely to have resulted in major changes in

the physiology and metabolism of certain breeds, as pedigree

breeds are described as simple single-gene variants of

natural breeds(10).
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The domestic cat’s wild ancestors are known to be

obligatory carnivores, consuming predominantly prey. The

consumption of a diet composed of animal tissues throughout

evolution has led to unique digestive and metabolic adap-

tations (often referred to as idiosyncrasies)(11–14). Reduction

of redundant enzymes and modification of enzyme activities

will have had specific advantages in terms of energy expendi-

ture(11). Examples of these adaptations include:

(a) The high dietary protein requirement as a consequence

of a limited ability to decrease the enzyme activity of

amino acid-catabolising enzymes below a certain

threshold in response to a lowered protein intake(11).

The fact that other carnivorous animals, including fish

and birds, have developed the same adaptations in

protein metabolism(15–17) indicates an advantage to

carnivorous species in general.

(b) An inability for de novo arginine synthesis because of

reduced activity of two enzymes in the intestinal path-

way of citrulline synthesis (pyrroline-5-carboxylate

synthase and ornithine aminotransferase)(11).

(c) Two key enzymes in the pathway for taurine synthesis,

namely cysteine dioxygenase and cysteinesulfinic acid

decarboxylase, show low activities, thereby greatly

reducing the endogenous synthesis of taurine and

making this sulfonic amino acid an essential dietary

nutrient for cats(11). In addition, cats and dogs use taur-

ine almost exclusively as a source for bile acid conju-

gation, unlike other animals, which can use glycine

when taurine is limiting(11).

(d) Cats are unable to use carotenoids to synthesise retinol

because of a lack of carotene dioxygenase(11).

(e) Synthesis of vitamin D3 is prevented by the high activity

of 7-dehydrocholestrol reductase, an enzyme that

reduces the availability of the precursor for 25-hydroxy-

vitamin D(18).

(f) Cats are not able to synthesise niacin from tryptophan

because of an extremely high activity of picolinic

carboxylase. The activity of this enzyme is inversely

related to niacin synthesis(11).

(g) Cats have a limited ability to synthesise arachidonic acid

from linoleic acid, attributed to a low activity of D-6 and

D-8-desaturase(11,19).

(h) Cats show several adaptations in the metabolism of

starch and glucose, including a lack of salivary amylase

activity, low activity of pancreatic and intestinal amy-

lases(20,21), low hepatic glucokinase activity(22), lack of

hepatic fructokinase activity, necessary for metabolism

of simple sugars(21,23) and a non-functional Tas1R2

receptor resulting in an inability to taste sugar(24).

The above-mentioned adaptations are thought to have

evolved from nutrition solely based on animal tissues and

highlight the carnivorous nature of cats. Although the latter

is well recognised, there is a paucity of information on the

precise dietary nutrient profile responsible for these physio-

logical and metabolic adaptations of the domestic cat. Many

published studies have investigated the feeding habits of

free-ranging cats and specified the dietary items consumed.

However, there is no information in the literature of the nutri-

ent intake of cats from consumed dietary items.

The main objective of this literature study was to assess the

nutrient profile to which the domestic cat’s physiological and

metabolic system has adapted. For this purpose, the feeding

habits of feral cats (a free-ranging representative of the dom-

esticated house cat) were reviewed and data on the nutrient

composition of the different prey species were obtained

from the literature. The nutrient profile (DM, crude protein

(CP), ethereal extract (EE), N-free extract (NFE), ash, minerals

and energy) of the diet of feral cats was calculated.

Methods

Literature search and selection

In the period from January to May 2010, electronic literature

searches were conducted in Scopus and Web of Science to

identify potentially eligible studies reporting diet compositions

of free-roaming cats, as well as studies reporting whole-body

nutrient composition of prey species consumed by cats. The

literature search yielded fifty-five potentially eligible studies

(Table 1). Eligibility of studies to include in the data analysis

was based on four criteria. First, studies on feral cats were

included whereas studies on the diet composition of wildcats

were excluded. Second, for studies that used scat samples of

cats for the assessment of diet composition, a criterion was

set for the minimal number of collected scats samples. Trites

& Joy(25) stated that a minimal sample size of ninety-four

scats is required when comparing diets to distinguish moder-

ate effect sizes over time or between areas. These authors also

state that collecting too few samples increases the likelihood

of not finding a species in a scat sample that is consumed in

low numbers and that dietary preference of a single individual

becomes a larger part of the sampling error. Therefore studies

with a scat sample size lower than ninety-four were not

included in the present study. Third, for studies that used

stomach and/or gut samples of cats for assessment of diet

composition, the minimal number of collected samples was

arbitrarily set at thirty per study. Fourth, to guarantee the

‘wild’ and ‘human-independent’ feeding behaviour of the

cats, studies in which human-linked foods (for example,

food scraps, anthropogenic refuse, human refuse, human

garbage, rubbish) contributed more than 5 % of the biomass

consumed were not included. Based on these four criteria,

twenty-eight studies were excluded (Table 1). The remaining

twenty-seven eligible studies contained dietary information

of feral cats based on 6666 stomach, gut and scat samples.

Diet composition

To standardise the comparison of results among studies,

dietary item groups were created (see below) based on the

information provided in the twenty-seven eligible studies.

The category ‘mammals’ was split into subcategories ‘rodents’

(including rats, mice, voles, and other rodents), ‘rabbits’,

‘insectivores’ and ‘other mammals’.
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Table 1. Overview of the considered studies for inclusion in the calculations to determination the nutrient composition of feral cat diets

Study no. Reference Location Cat type Material Samples (n)* Reason for exclusion

1 Achterberg & Metzger(50) Germany Stray Stomach, gut 62 Stray cat data
2 Alterio & Moller(81) South Island, New Zealand Feral Gut 43
3 Bayly(31) South Australia Feral Stomach 20 n , 30
4 Biró et al.(82) Hungary Feral Stomach, gut 264
5 Bloomer & Bester(83) Marion Island, South Africa Feral Stomach 587
6 Bonnaud et al.(84) Port Cross Island, France Feral Scats 386
7 Borkenhagen(85) Germany Stray Stomach, gut 189 Stray cat data
8 Brickner-Braun et al.(86) Israel Stray Stomach 2531 Stray cat data, human-linked foods .5 %
9 Brooker(87) Western Australia Feral Stomach 8 n , 30
10 Campos et al.(88) South Eastern Brazil Stray Scats 97 Stray cat data, human-linked foods .5 %
11 Catling(30) New South Wales, Australia Feral Stomach 112
12 Clevenger(89) Balearic Islands, Spain Feral Scats NP Human-linked foods . 5 %
13 Coman & Brunner(90) Victoria, Australia Feral Stomach 80 Human-linked foods . 5 %
14 Cook & Yalden(91) Deserta Grande, Madeira, Portugal Feral Scats 8 n , 94
15 Dilks(92) Campbell Island, New Zealand Feral Scats 20 n , 94
16 Fitzgerald et al.(93) Raoul Island, Madeira Feral Gut 57
17 Germain et al.(94) France Feral Stomach 25 n , 30
18 Gil-Sanchez et al.(95) South East Spain Wild Scats 189 Data from wildcats
19 Harper(29) Stewart Island, New Zealand Feral Scats 219
20 Harper(96) Port Ross, Auckland Island, New Zealand Feral Scats 40 n , 94
21 Heidemann(97) North Germany Stray Stomach, gut 145 Stray cat data, human-linked foods .5 %
22 Hutchings(98) Victoria, Australia Feral Scats 159 % Human linked-foods .5 %
23 Jones & Coman(80) Mallee, Victoria, Australia Feral Stomach, gut 131

Jones & Coman(80) Kinchega National Park, Australia Feral Stomach, gut 65
Jones & Coman(80) Eastern Highlands, Australia Feral Stomach, gut 117

24 Kirkpatrick & Rauzon(99) Island Central Pacific Ocean, USA Feral Stomach 78 Data expressed in volume%
25 Langham(100) Hawkes Bay, New Zealand Feral Scats 361
26 Liberg(101) Southern Sweden Feral Scats 1437 Human-linked food .5 %
27 Lüps(102) Canton Berne, Switzerland Stray Stomach 83 Stray cat data, human-linked foods .5 %
28 Malo et al.(28) Central Spain Wild Scats 239 Wildcat data
29 Martin et al.(103) Western Australia Feral Stomach 93
32 Matias & Catry(104) Falkland Islands Feral Scats 373
31 Meckstroth et al.(105) South Bay, California, USA Feral Stomach 68 Human-linked foods . 5 %
32 Medina & Nogales(106) Tenerife, Canary Islands, Spain Feral Scats 477
33 Medina et al.(107) La Palma, Canary Islands, Spain Feral Scats 500
34 Medina et al.(108) Fuerteventura, Canary Islands, Spain Feral Scats 209
35 Milan(109) Majorca Island, Spain Feral Scats 75 n , 94
36 Moleon & Gil-Sanchez(110) South East Spain Wild Scats 101 Wildcat data
37 Niewold(111) The Netherlands Stray Gut 284 Stray cat data, human-linked foods .5 %
38 Nogales et al.(112) El Hierro, Canary Islands, Spain Feral Scats 221
39 Nogales et al.(113) Alegranze, Canary Islands, Spain Feral Scats 110
40 Nogales et al.(114) Tenerife, Canary Islands, Spain Feral Scats 248
41 Nogales & Medina(115) La Gomera, Canary Islands, Spain Feral Scats 135
42 Paltridge et al.(116) Central Australia Feral Stomach 336
43 Peck et al.(117) Juan de Nova Island, Mozambique Feral Scats 104
44 Phillips et al.(118) San Clemente Island, California, USA Feral Scats 602
45 Pontier et al.(119) Grande Terre Island, Guadeloupe Feral Scats 149
46 Read & Bowen(120) Roxby Downs, South Australia Feral Stomach 316
47 Risbey et al.(121) Western Australia Feral Gut 109
48 Santana et al.(122) Gran Canaria, Canary Islands, Spain Feral Scats 133
49 Sarmento(123) Portugal Feral Scats 220 Wildcat data
50 Snetsinger et al.(124) Mauna Kea, Hawaii, USA Feral Scats 87 n , 94
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Twenty studies reported the percentage of weight (PW)

for each consumed dietary item as part of the total biomass

consumed by feral cats and these data were used as reported

by in these studies. The remaining seven studies reported the

frequency of occurrence (FO) of dietary items in stomach,

gut and/or scat samples. Data reported as FO are generally

considered to underestimate the importance of large prey

and overestimate the importance of small prey(26). For this

reason, in the studies where data were reported as FO,

the PW for each dietary item was calculated according to

Fitzgerald & Karl(27):

PWprey i ¼
Nprey i £ BMprey i £ 100

SðNprey £ BMpreyÞ

where Nprey i is the number of individuals of prey i within

all samples, BMprey i is the biomass of prey i obtained from

the literature, and S(Nprey £ BMprey) was the total amount of

biomass consumed. The biomass of identified prey groups

was as follows: rats, 125 g(27); mice, 15·5 g(27); voles, 32·5 g(28);

unidentified rodents and insectivores, 50 g (estimated mean

weight of rodents/insectivores, based on data from Malo

et al.(28), Fitzgerald & Karl(27) and Harper(29)); rabbits, 215 g

( ¼ calculated daily fresh matter intake (FMI), see below);

birds, 50 g(29); reptiles/amphibians, 3 g(28); fish, 15 g(27); invert-

ebrates, 0·5 g(28).

Although vegetation (i.e. plant material and seeds) is found

in scat and stomach samples of cats, it usually represents

a minor to negligible component of the diet on weight

basis(30–32), and as a consequence was not taken into account

in the calculations to PW.

Nutrient composition of diet

For the approximation of the nutrient composition of the diet

consumed by the feral cats, the PW of each prey group was

combined with compositional data of each of these groups.

As these prey groups may contain several prey items, a

mean value was calculated based on available data. Preferably

compositional data of wild whole prey items were obtained

from the literature (see Tables 3 and 4). No whole-body nutri-

ent composition data were found in the literature for wild rats.

Therefore data based on captive rats were used. Each separate

study/diet composition (thirty in total) was used as an individ-

ual data point and all data were analysed with SPSS 16.0 for

Windows (release 16.0.2; SPSS Inc., Chicago, IL, USA), using

descriptive statistics.

Calculation of dietary intake

Daily FMI of cats was calculated based on estimated mean

energy requirements for an average feral cat in a population.

The energy requirement data for different age and reproduc-

tive classes were obtained from van Aarde et al.(33) and the

percentage distributions of age and reproductive classes

within a population of free-living feral cats were derived

from Scott et al.(34). These data were combined to obtain a

mean daily metabolisable energy (ME) requirement of

1258 kJ per cat. The estimated mean ME content of prey wasT
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calculated using modified Atwater factors(35) with 3·5 £ CP,

8·5 £ EE and 3·5 £ NFE. NFE was determined by difference

as 100 – CP – EE – ash. The data are presented in Table 3.

Daily FMI was calculated as the mean ME requirement divided

by mean ME content of prey (585 kJ ME/100 g as is) resulting

in 215 g fresh matter/feral cat per d. For prey items with a

body weight exceeding the daily FMI, i.e. rabbits, the daily

FMI was used instead of actual body weight for calculation

of PW of that item to conform to the calculations by Fitzgerald

& Karl(27).

Results

Dietary profiles

The twenty-seven articles included in the data analysis were

carried out on four continents (North America, Europe,

Africa and Australia) and included eighteen islands (Table 1).

The dietary profiles of feral cats as reported in these twenty-

seven studies are reported in Table 2. The main items

consumed by feral cats are mammals (78 %), followed by

birds (16 %), reptiles/amphibians (3·7 %) and invertebrates

(1·2 %). Fish consumption is reported in three studies, and

comprises of 0·3 % of the items consumed. The consumption

of plant material is reported in twenty-one studies, and fifteen

studies reported consumption of human-linked food items,

with one study (study 47) reporting an intake of 3·0 % on a

weight basis. Major mammals consumed are rabbits and rats

although there is a large variation between studies. In one

study (study 16), rats contributed 95·8 % to the total consumed

biomass. On study sites where rabbits were abundantly pre-

sent, they form a large proportion of the diet. On islands,

the prey items consumed by feral cats differ markedly from

that on the continents. Birds are an important part of the

feral cat diet on islands where nesting sea birds are present.

Marion Island (South Africa), an island with seabird colonies,

nesting seabirds contribute to 81·3 % (study 5) and 96·6 %

(study 55) to total biomass consumed (Table 2).

Macronutrient composition prey items

The whole-body macronutrient composition of different prey

species obtained from various literature sources is shown in

Table 3. Nutrients are expressed on a DM basis. The energy

content is expressed as kJ ME/100 g DM. Energy contents of

prey items varied reasonably, ranging from 1430 kJ/100 g DM

for reptiles to 1917 kJ/100 g DM for other mammals. DM con-

tents of prey species ranged from 24·8 % (reptiles) to 34·7 %

(invertebrates). The CP content of prey items was relatively

constant, ranging from 55·6 % DM for other mammals to

69·1 % DM for fish. The proportion of EE varied more widely

between prey items, ranging from 9·0 % (reptiles) to 31·0 %

DM (other mammals). NFE content varied considerably

between 0 % (rats) and 12·9 % DM (invertebrates). The ash

content of mammals was broadly similar, ranging from 9·4 %

(rats) to 14·9 % DM (insectivores). The ash content of birds,

reptiles, fish and invertebrates was 10·6, 15·2, 6·8 and 4·8 %

DM, respectively.

Micronutrient and trace element composition
of prey items

The micronutrient and trace element compositions of the

different prey items are given in Table 4. The Ca concentration

of vertebrate species ranged between 2·6 and 3·8 % DM, while

invertebrates contained only 0·1 % Ca on a DM basis. The P

content ranged from 1·0 (invertebrates) to 2·7 % DM (voles).

Na and K content showed a relatively wide variance, ranging

from 0·35 (mice) to 0·83 % DM (other rodents) and 0·66 (birds)

to 1·33 % DM (invertebrates), respectively. Mg content was

fairly constant for most species, varying from 0·10 to 0·16 %

DM, with the exception of the Mg content in voles, which

was only 0·04 % DM. Fe, Cu and Zn content showed a wide

variation between prey species, ranging from 7·8 (invert-

ebrates) to 50·0 mg/100 g DM (insectivores), 0·74 (mice) to

12·24 mg/100 g DM (reptiles/amphibians) and 8·6 (rabbits) to

25·7 mg/100 g DM (invertebrates), respectively.

Nutrient profile

Data presented in Tables 2 to 4 were used to calculate the

nutrient profile of the natural diet of free-ranging feral cats.

Fig. 1(a) displays the calculated macronutrient composition.

The mean energy content of the natural diet was 1770 (SEM

13) kJ/100 g DM, with the DM content being 30·5 (SEM 0·4) %.

The calculated mean macronutrient composition on a DM

basis was 62·7 (SEM 0·30) % CP, 22·8 (SEM 0·5) % EE, 11·8

(SEM 0·1) % ash and 2·8 (SEM 0·3) % NFE. Fig. 1(b) shows

the calculated micronutrient composition of the dietary profile

of free-ranging feral cats, including the Ca:P ratio. A mean

mineral content (in g/100 g DM) of 2·64 (SEM 0·04) was

found for Ca, 1·76 (SEM 0·03) for P, 0·50 (SEM 0·01) for Na,

and 0·93 (SEM 0·01) for K. The mean Ca:P ratio was 1·51

(SEM 0·02). Trace element composition is shown in Fig. 1(c).

The mean trace element content (in mg/100 g DM) was 130

(SEM 4) for Mg, 29·6 (SEM 1·1) for Fe, 1·67 (SEM 0·12) for Cu

and 9·77 (SEM 0·19) for Zn.

Discussion

Knowledge about the feeding strategies, food items consumed

and composition of the natural diet of man and animals pro-

vides valuable insights for the formulation and selection of

appropriate diets to maintain health. The natural diet of

humans has received much attention over the past dec-

ades(36–41) and has provided new information regarding the

nutritional composition of the diet to which evolutionary

forces adapted the core metabolism and physiology over a

period of millions of years(36,40,42). Frassetto et al.(39) investi-

gated whether a natural diet confers health benefits in human

subjects and found that even short-term consumption of a

Palaeolithic-type diet has proven health benefits for glucose

metabolism and the cardiovascular system. In addition, the

composition of breast milk has provided valuable information

about the dietary nutrient profile to meet the nutrient require-

ment for optimal health and development of human infants(43).

For many captive, endangered and domesticated animal
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Table 2. Data of dietary profiles of feral cats found in the literature (% of weight)

Study no.*

23† 29†

Dietary item‡ 2 4 5 6 11 16 19 A B C 25 A B 30 32 33 34

Mammals 84·5 81·0 9·8 93·1 87·2 96·7 84·0 86·7 62·3 85·9 66·9 80·5 69·6 76·0 85·4 88·3 90·5
Rodents 3·5 69·3 9·8 72·1 2 95·8 81·0 10·7 1·8 2·4 51·3 25·0 23·5 21·0 25·7 18·1 31·3

Rats 2 4·3 9·8 69·8 2 95·8 81·0 2·1 2 2 39·1 2 2 17·2 12·2 14·5 9·1
Mice 3·5 10·3 2 2 2 2 2 8·5 1·8 2·4 12·2 2 2 3·8 13·5 3·6 12·6
Voles 2 51·6 2 2·3 2 2 2 2 2 2 2 2 2 2 2 2 2

Others rodents 2 3·1 2 2 2 2 2 2 2 2 2 25·0 23·5 2 2 2 9·6
Rabbits 70·0 8·3 2 21·0 82·6 2 2 74·3 56·4 43·2 2 53·2 34·3 55·0 59·7 70·2 57·8
Insectivores 9·5 0·6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1·4
Other mammals 1·5 2·8 2 2 4·6 0·9 3·0 1·7 4·1 40·3 12·6 2·3 11·8 2 2 2 2

Birds 10·0 18·7 81·3 6·6 6·6 3·1 13·0 8·9 18·2 12·9 23·9 12·9 8·4 23·3 0·8 4·5 6·5
Reptiles/amphibians 1·0 0·1 2 0·2 4·7 2 2·0 0·5 2·1 0·2 2 1·8 14·1 2 13·6 7·1 2·0
Invertebrates 1·0 þ 2 þ 1·5 0·2 1·0 1·2 0·9 0·3 1·6 2·6 6·8 2 þ 0·1 1·1
Fish 2 0·2 2 2 2 2 2 0·7 9·5 2 2 2 2 2 2 2 2

Carrion 2 2 8·9 2 2 2 2 2·0 6·9 0·7 7·4 2·2 1·1 2 2 þ þ

Eggs 2 2 þ 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Plant matter þ þ þ 2 2 þ 2 þ þ þ 2 þ þ 0·7 þ þ þ

Human-linked foods 2 þ 2 þ 2 2 2 2 2 2 2 2 2 þ þ 2 þ

Unidentified 3·5 2 2 2 2 2 2 2 2 2 0·2 2 2 2 2 2 2

Study no.*

Dietary item‡ 38 39 40 41 42 43 44 45 46 47 48 52 55 Mean SEM

Mammals 85·4 77·5 99·5 89·2 90·0 74·5 83·5 85·1 72·8 92·6 89·4 54·0 1·8 77·5 4·0
Rodents 14·3 12·1 8·0 70·6 90·0 74·5 83·5 11·6 5·4 4·2 5·9 33·0 1·8 31·9 5·8

Rats 2·8 8·7 2 60·9 þ 68·4 42·9 2 2 2 3·3 31·0 2 19·1 5·2
Mice 11·5 3·4 8·0 9·7 þ 6·1 30·7 11·6 5·4 4·2 2·6 2·0 1·8 5·6 1·2
Voles 2 2 2 2 2 2 2 2 2 2 2 2 2 1·8 1·7

Others rodents 2 2 2 2 90·0 2 9·9 2 2 2 2 2 2 5·4 3·1
Rabbits 71·1 65·4 91·5 18·6 þ 2 2 72·6 64·7 88·4 83·5 2 2 41·5 6·0
Insectivores 2 2 2 2 2 2 2 2 2 2 2 2 2 0·4 0·3
Other mammals 2 2 2 2 2 2 2 0·9 2·7 2 2 21·0 2 3·7 1·5

Birds 8·0 1·5 0·3 4·3 6·8 25·1 8·8 14·9 18·1 2·0 3·6 30·0 96·6 16·0 3·9
Reptiles/amphibians 5·9 20·9 0·1 6·3 2·6 0·2 5·6 2 8·3 0·9 6·6 3·0 2 3·7 0·9
Invertebrates 0·8 0·1 0·1 0·2 0·6 0·2 2·1 2 0·8 1·2 0·2 12·0 2 1·2 0·4
Fish 2 2 2 2 2 2 2 2 2 2 2 2 2 0·3 0·3
Carrion þ 2 2 2 2 2 2 2 2 0·2 2 þ 1·3 1·0 0·4
Eggs 2 2 2 2 2 2 2 2 2 2 2 2 2 þ þ

Plant matter þ þ þ þ 2 2 þ 2 þ 2 þ þ þ þ þ

Human-linked foods þ þ þ þ 2 þ 2 2 þ 3·0 þ 2 2 0·1 0·1
Unidentified 2 2 2 2 2 2 2 2 2 2 2 2 2 0·1 0·1

2 , Food item was not mentioned; þ , food item was present but not clearly quantified.
* Data of studies 4, 5, 16, 43, 44, 46 and 55 were calculated from frequency of occurrence to percentage of weight as mentioned in the Methods section. Study numbers correspond to those in Table 1.
† Data of studies 23 and 29 were divided in subsets, as data were derived from different geographic locations (see also Table 1).
‡ Large mammals (.5 kg body weight, i.e. sheep, cattle, kangaroos) were included within the ‘carrion’ category. Mammal, bird and reptile carrion was not quantified precisely and is included within the totals for each group. Cat fur,

non-organic and unidentified materials were included within the ‘unidentified’ category.
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species, the study of the natural diet has yielded data to suc-

cessfully improve their nutrition(44–48).

Here we report the nutrient profile of free-ranging feral cats

using reported rates of ingestion of various dietary (prey)

items in the literature. As expected, the results of the present

study clearly show that feral cats are true carnivores, with

the daily energy intake of feral cats from protein being 52 %,

from fat 46 % and from NFE only 2 %. Interestingly, a recent

study by Hewson-Hughes et al.(49) on voluntary macronutrient

selection by adult domestic cats showed that when given the

choice, adult cats select an intake target of about 420 kJ/d

from protein, about 280 kJ/d from fat and about 100 kJ/d from

carbohydrate, representing 52 % of daily energy intake

from protein, 36 % from fat and 12 % from carbohydrate.

These results are highly similar to the data presented here,

indicating that cats appear to have developed, in addition to

the above-mentioned metabolic adaptations, sensitive meta-

bolic regulation mechanisms to consume an overall dietary

macronutrient profile close to their evolutionary diet. The

nutrient profile provides information to further enhance

today’s feline diets.

In the present study we used feral cats as a free-ranging

model for domestic cats. Feral cats are described in the litera-

ture as cats which are descended from domestic cats, but are

born and live without human contact and have survived in

an ecosystem for many generations(50–52). The domestic

(feral) cat and wildcats are able to create fertile progeny(53),

which shows the close genetic resemblance between the

wildcat population and domestic feral cats. Also, the beha-

vioural repertoire of the feral cat to hunt effectively is remark-

ably conserved, with feral cats displaying similar hunting

methods to wildcats(54). The genetic variation between dom-

estic and feral cats is negligible and metabolic adaptations

are not likely to differ, making the feral cat a highly suitable

free-roaming model for the domestic house cat.

Table 3. Macronutrient composition of dietary ingredients of the feral cat diet

DM (%)

Dietary item Energy (kJ ME/100 g DM) DM (% as is) CP EE Ash NFE References

Rats 1965 33·4 60·1 30·5 9·4 0·0 (128–131)

Mice 1812 33·1 59·1 24·5 11·3 5·1 (60,131–133)

Voles 1638 31·1 64·5 17·2 12·7 5·6 (60,132,134)

Other rodents* 1745 31·1 65·5 22·1 12·4 0·0 (60,132)

Insectivores† 1644 31·2 61·6 19·0 14·9 4·5 (132)

Rabbits 1748 26·1 63·9 22·3 12·5 1·3 (77,135)

Other mammals‡ 1918 34·2 55·6 31·0 13·4 0·0 (134)

Birds§ 1642 31·6 64·6 15·9 10·6 8·9 (134)

Reptiles/amphibiansk 1430 24·8 65·7 9·0 15·2 10·1 (77,78)

Fish{ 1870 25·5 69·1 24·1 6·8 0·0 (136)

Invertebrates** 1812 34·7 62·3 20·0 4·8 12·9 (44,134,137–139)

ME, metabolisable energy; CP, crude protein; EE, ethereal extract; NFE, N-free extract (100 – CP – EE –ash).
* Derived from four different squirrel species.
† Derived from moles.
‡ Derived from ten different species of bats and opossums.
§ Derived from house sparrows.
kDerived from two different species of reptiles, commonly eaten by cats.
{Derived from three different species of fish, commonly eaten by cats.
** Derived from seven different species of invertebrates, commonly eaten by cats.

Table 4. Micronutrient and trace element composition of dietary ingredients of the feral cat diet

Content (g/100 g DM) Content (mg/100 g DM)

Dietary item Ca P Na K Mg Fe Cu Zn References

Rats 2·6 1·5 0·50 1·03 0·11 18·1 0·78 7·3 (129–131)

Mice 2·9 1·7 0·35 1·00 0·11 23·8 0·74 12·2 (131,140,141)

Voles 2·9 2·7 0·43 1·20 0·04 33·2 1·37 10·6 (134)

Other rodents* 3·5 1·9 0·83 1·07 0·14 25·3 0·87 10·2 (142)

Insectivores† 3·4 1·7 0·42 1·05 0·14 50·0 1·18 12·0 (140)

Rabbits 2·4 1·7 0·54 0·94 0·16 30·2 1·60 8·6 (77)

Other mammals‡ 2·8 1·8 0·50 1·00 0·13 30·2 1·18 9·8 (77,129–131)

Birds§ 3·0 2·1 0·38 0·66 0·10 49·6 1·26 11·5 (131,143,144)

Reptiles/amphibiansk 3·8 2·6 0·50 0·95 0·15 17·9 12·23 19·7 (77,78)

Invertebrates{ 0·1 1·0 0·51 1·33 0·10 7·8 2·21 25·7 (134,137,138)

* Derived from fox squirrels.
† Derived from shrews.
‡ Data from rats, mice, voles, other rodents, insectivores and rabbits pooled together.
§ Data derived from five different bird species, commonly eaten by cats.
kData derived from two different species of reptiles, commonly eaten by cats.
{Data derived from two different species of invertebrates, commonly eaten by cats.
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As described above, the cat’s metabolism has adapted to a

carnivorous lifestyle with many of the known adaptations

relating to the protein, carbohydrate and vitamin component

of the diet. Almost all the metabolic adaptations related to

the carbohydrate component of the diet indicate the lack of

this nutrient in the evolutionary diet. It could be argued that

the shift from an obligatory meat-based natural diet to a

meat-based and grain-based pet food rich in carbohydrates

may place the cat’s metabolism under stress, and might have

unwanted negative health effects in the long run. Although

dietary carbohydrate intake could not directly be determined

in the present study, the NFE content was calculated. The frac-

tion consists of components such as sugars, starches, mono-

and disaccharides, but also water-soluble vitamins. Animal

tissue itself contains small amounts of glucose, glycogen,

glycoproteins, glycolipid and pentose but does not contain

starch. However, when consuming whole prey, the digesta

of prey items may contain some starch. These carbohydrate

sources may be the reason why cats have retained a limited

ability to digest starch. The starch content of prey species is

difficult to assess, as it is primarily based on the diet con-

sumed. However, as an example, the following calculation

provides an indication of the magnitude of starch ingestion

by feral cats. The starch content of the digesta of captive

young rabbits can be up to 130 g/kg DM, depending on the

starch source(55). Assuming that the mean starch content of

the digesta is approximately 100 g/kg DM, digesta moisture

content 80 %(56) and the digesta mass of rabbits 10 %(57), the

calculated starch content of a rabbit weighing 1·5 kg is 3·0 g

(0·2 % body weight). Wild rabbits forage primarily on grasses

and leafy weeds, with high contents of fibre and relatively

low contents of starch, making the latter a large overestimate.

Prey species consumed by cats show considerable differences

in digestive tract anatomy, with the digesta mass of rabbits

being as high as 10 % of body mass(57), while omnivorous

species such as the rat have a digesta mass of 0·5–2 % of

body weight(58). The ability of cats to secrete pancreatic amy-

lase may be beneficial in utilising the glycogen content of

prey. Based on the above calculations, it can be concluded

that the NFE content reported in the present study contains

little starch and as such is composed of other fibrous material.

Twenty-one of the twenty-seven studies reported small

amounts of plant material being found in the scats, stomach

and gut content of feral cats. Molsher et al.(59) reported that

cats frequently consume vegetation (FO of 26·3 %) consisting

mostly of a few strands of grass. The authors concluded,

however, that plant material is a minor component of the

diet of feral cats, as ingestion is likely to occur incidentally

while foraging for invertebrates.

The physiological minimum nutrient requirements of cats

for growth, maintenance and late gestation/peak lactation

have been accurately determined(35) and can be considered

to represent the limit of the adaptation capacity of domestic

cats in relation to dietary nutrient concentrations. Table 5

provides the minimum nutrient requirements and the rec-

ommended allowance of cats as provided by the National

Research Council expressed in units/MJ ME. As can be seen

from Table 5, there is a large difference between the
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Fig. 1. (a) Calculated macronutrient composition of the natural diet of free-

ranging feral cats. CP, crude protein; EE, ethereal extract; NFE, N-free

extract. The upper and lower hinges represent the 75th and 25th percentiles

of the dataset. The band within the box represents the median. The whiskers

extend to the 5 % and 95 % CI. The calculated means are: DM, 30·5

(SEM 0·4) g/100 g; CP, 62·7 (SEM 0·3) g/100 g DM; EE, 22·8 (SEM 0·5) g/100 g

DM; NFE, 2·8 (SEM 0·3) g/100 g DM; ash, 11·8 (SEM 0·1) g/100 g DM; energy,

1770 (SEM 13) kJ/100 g DM. (b) Calculated micronutrient composition of the

natural diet of free-ranging feral cats. The upper and lower hinges represent

the 75th and 25th percentiles of the dataset. The band within the box rep-

resents the median. The whiskers extend to the 5 % and 95 % CI. The calcu-

lated means are: Ca, 2·64 (SEM 0·04) g/100 g DM; P, 1·76 (SEM 0·03) g/100 g

DM; Na, 0·50 (SEM 0·01) g/100 g DM; K, 0·93 (SEM 0·01) g/100 g DM; Ca:P,

1·51 (SEM 0·02). (c) Calculated trace element composition of the natural diet

of free-ranging feral cats. The upper and lower hinges represent the 75th

and 25th percentiles of the dataset. The band within the box represents the

median. The whiskers extend to the 5 % and 95 % CI. The calculated means

are: Fe, 29·59 (SEM 1·08) mg/100 g DM; Cu, 1·67 (SEM 0·12) mg/100 g DM;

Zn, 9·77 (SEM 0·19) mg/100 g DM; Mg, 130 (SEM 4) mg/100 g DM.
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recommended CP allowance and the CP content consumed

by free-roaming feral cats. The data presented here on the

evolutionary diet of cats do not include digestibility and bio-

availability estimates of the different nutrients, making direct

comparison with the recommended allowance more difficult.

Estimates of macronutrient digestibility of whole prey items

can be extrapolated from the literature on whole-prey assimi-

lation by bobcats(60) and ocelots(61). In the study with bobcats,

Powers et al.(60) evaluated the nutritive and energy value of

winter diets of bobcats. Amongst others, a diet comprising

of four species of rodents (mice and voles) was fed to four

bobcats of wild origin. The apparent digestibility of CP and

EE was 82·0 and 92·3 %, respectively. In the recent study by

Bennett et al.(61), six diets (a commercial processed diet and

five species of whole prey) were fed to a total of six ocelots

to evaluate nutrient digestibility. The diets had similar digest-

ibility values, with CP digestibility ranging from 85 to 91 %,

and EE digestibility ranging from 96 to 99 %. The outcome

of these studies makes the use of modified Atwater coeffi-

cients (in which protein and fat digestibility are estimated as

79 and 90 %, respectively(35)) for energy prediction of whole

prey defendable but also the comparison of the recommended

CP requirements of cats and the evolutionary CP intake.

Data on bioavailability of micronutrients and trace elements

in felids consuming whole prey items are lacking. Further

research is needed to determine the precise nutrient digestibil-

ity of the natural diet, especially with respect to minerals

such as Ca, P, Mg and Fe, which are consumed in relatively

high concentrations compared with recommended allowances

determined using empirical methods. It is likely that the

absorption of minerals such as Ca and P is much lower

in prey items compared with the forms used to supplement

commercial feline diets.

Information on the precise nutrient digestibility of the feral

cat diet would allow conversion to a nutrient profile (and

nutrient ratios) to which the cat’s metabolism has been

exposed during evolution. This nutrient profile originates from

a cat population in which nutrition is a precondition for survi-

val and procreation. In domestic cats, the nutritional goals

may have gone beyond this, and are based on optimising

health and longevity and as such may not be optimal.

The median lifespan of a feral cat has been reported to be

4·7 years(62), while the domestic house cat has an average

life expectancy of 12–14 years(63). Although such a nutrient

profile may reflect the profile to which the cat’s metabolic

system has adapted, the question is whether it may be con-

sidered ‘optimal’ for today’s nutritional goals in pet feeding.

However, as stated earlier, valuable insights may be gained

by an approach of studying the diet of feral cats. For example,

the fatty acid composition is known to be influenced by the

nutritional fatty acid intake in both humans and animals(64,65).

The fatty acid composition, especially the PUFA content and

the n-6:n-3 ratio, differed considerably between wild or

free-ranging animals and captive or feedlot animals. The

n-6:n-3 ratios in captive or feedlot animals range between

6:1 to 19:1(66–68). It can be calculated that a diet based

on wild animal species contains a ratio about 2:1(66,67,69,70).

Domestic cats are fed commercially prepared foods containing

lipids from captive domestic animal species and thus will

consume a different fatty acid pattern compared with feral

cats. For instance, the typical n-6:n-3 ratios in dog foods

ranges between 5:1 to 17:1(71).

In addition to insights into the dietary nutrient intake, it is

also important to note that non-nutritive properties, such as

food consistency, texture, taste and temperature may play

an important role in maintaining optimal health and function.

Bond & Lindberg(72), in an investigation of the effect of

feeding whole carcasses to captive cheetahs compared with

feeding a commercial diet, concluded that feeding a more nat-

uralistic diet may better meet a cheetah’s physical, physiologi-

cal and nutritional needs. In addition, feed consistency and

texture have shown to be important in maintaining a balanced

microbial population in the gastrointestinal tract in different

animal species(73,74). Moreover, consumption of whole prey

provides for a relatively high intake of raw animal-derived

fermentative substances, such as cartilage, collagen and glyco-

saminoglycans, which may enhance gut health, stimulate

growth of a different subset of microbial commensals, and

optimise immune function in a different way compared with

Table 5. Recommended nutrient composition v. assessed nutrient composition of the ‘natural’ cat diet

National Research Council(35)

Growth Maintenance Late gestation/peak lactation
Present study

Nutrient (MJ/ME) Minimal Recommended Minimal Recommended Minimal Recommended Mean

Protein (g) 10·8 13·5 9·6 12·0 10·3 12·7 35·4
Fat (g) – 5·4 – 5·4 – 5·4 12·9
Ca (g) 0·31 0·48 0·10 0·17 0·00 0·65 1·5
P (g) 0·29 0·43 0·08 0·15 0·29 0·45 1·0
K (g) 0·16 0·24 – 0·31 – 0·31 0·53
Na (g) 0·07 0·08 0·04 0·04 0·00 0·16 0·28
Mg (mg) 9·6 23·9 12·0 23·9 24·9 29·9 73·4
Fe (mg) 4·1 4·8 – 4·78 – 4·78 16·7
Cu (mg) 0·26 0·50 – 0·29 – 0·53 0·9
Zn (mg) 3·0 4·4 0·00 4·42 2·51 3·59 5·5

ME, metabolisable energy.
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consuming foods which are for a large part derived from plant

origin and heat-treated.

Compositional data of prey species frequently preyed upon

by feral cats are not abundantly available in the literature.

For most mammals, data from wild-living animals could be

obtained, with the exception of the rat. The rat data originate

from captive rat species, which might explain the somewhat

higher fat content compared with wild mice and voles (30·5

v. 24·5 and 17·2 % DM, respectively). Also, with regard to

the micronutrient and trace element composition of the differ-

ent prey species (Table 4), some interesting results were

found. First, the Fe content of insectivores (50·0 mg/100 g

DM) and birds (49·6 mg/100 g DM) is nearly twice as high as

for the other species. The group of insectivores includes

soil-dwelling species, like moles and some shrews, which,

because of their underground lifestyle, have undergone

specific haematological changes. These changes include a

higher serum Fe content, a higher Hb content, and a higher

Fe-binding capacity of the blood(75) and are thought to facili-

tate the uptake of O2 in an environment of reduced O2 and

increased CO2 tension. The same is true for flying birds.

Flying is one of the most O2-consuming activities, and facilitat-

ing O2 uptake through haematological changes enables flying

birds to carry out this strenuous activity. Garcia et al.(76) found

that the Fe concentration per unit body weight of starling birds

ranged from 153 to 185 parts per million, two to four times

higher than values for mammals and non-flying birds.

Second, the relatively high Cu and Zn contents for reptiles

and amphibians may be overestimated. The reported values

of both minerals in Carolina anoles (35·3 and 31·5 mg/100 g

DM, respectively) by Dierenfeld et al.(77) differ considerably

from those reported by Cosgrove et al.(78) (0·5 and 14·3 mg/

100 g DM, respectively). The latter Cu and Zn contents of

Carolina anoles are comparable and within the ranges of

mammalian species (Table 4). Considering the finding that

reptiles and amphibians only marginally contribute to the

total energy intake of free-ranging feral cats (Table 2) and

the fact that compositional data for reptiles and amphibians

in literature are scarce, it was decided not to exclude the

study of Dierenfeld et al.(77). The relatively high Cu and Zn

content of invertebrates is a normal pattern seen in many

invertebrate species, both terrestrial and aquatic. Invertebrates

are thought to be susceptible to accumulating heavy metals,

especially Cd, Zn and Cu(79). Nevertheless, the nutrient com-

position of the different species provides an indication of

the range of nutrient intakes of feral cats. Further compo-

sitional data of prey items consumed in conjunction with

digestibility data would provide more robust estimates and

ranges of the nutrient intake and metabolic exposure to nutri-

ents of cats.

The methods used in the present study are open to criticism.

The studies that were used to assess the dietary composition

of feral cats used different methods (scats v. stomach content)

and expressed their results in different ways (FO v. PW).

These various ways of studying the diet and expressing results

might produce biases that must be kept in mind. For example,

identification of prey remains is more difficult in scat analysis

than in analysis of stomach content. As a consequence,

prey that was consumed in lesser amounts can more easily be

overlooked when using scat analysis for dietary habit assess-

ment. However, the major features of the diet of cats are

thought to be sufficiently robust to be revealed despite the

differences in methodology(26). In addition, results expressed

as FO were converted to PW to standardise the comparison

of results. In these calculations assumptions needed to be

made such as the mean weight for each prey item consumed,

as described by Fitzgerald & Karl(27). For prey items with

body weights exceeding the daily FMI, i.e. rabbits, the daily

FMI (215 g fresh matter) was used instead of actual body

weight for calculation of PW. These calculations rely on the

assumption that when a cat catches a rabbit, it consumes its

full daily energy requirement in fresh matter (215 g). However,

when a fasting cat catches a large prey item it may eat far more

than 215 g of fresh matter. Jones & Coman(80) investigated the

mean weights of rabbits eaten per meal by cats and calculated

a mean FMI of 269–274 g. This would imply that the contri-

bution of rabbits to the dietary profile in the present study

may be underestimated. On the other hand, a cat may eat less

than 215 g of fresh matter if a larger part of its daily energy

requirement is already met by the previous consumption of

smaller prey items. In this situation the contribution of rabbits

to the dietary profile may be underestimated. In the literature,

a large variation is found in the assessment of daily FMI of

free-ranging cats to calculate PW. Fitzgerald & Karl(27) estimated

the daily maximum FMI within a cat population to be 170 g,

while, as previously mentioned, Jones et al.(80) calculated the

mean FMI for rabbits to be 269–274 g. On average, the calcu-

lated daily FMI in the present study reflects the mean of the

data range found in the literature. It should also be noted that

most of the studies made year-round observations of the dietary

habits of the feral cat, which means that seasonal fluctuation in

nutrient intake were not taken into account. Also the studies

used here for the calculation of the dietary nutrient profile of

feral cats were carried out on different continents and islands,

with the prey items consumed varying markedly between the

different studies. For example, birds were a more important

part of the feral cat diet on islands compared with continents

(Table 2). These differences are probably related to latitude,

climate and species diversity, and show that cats are general,

opportunistic predators, exploiting a wide range of prey(26).

However, a dietary nutrient composition was developed from

each individual study (n 30), and a mean (and standard error)

nutrient composition calculated. The differences in prey profile

between studies are thus reflected in the standard error, which

is remarkably small for most nutrients. Overall, the approach

taken in assessing the nutrient intake of feral cats can be criti-

cised. However, the relatively large number of studies used

(thirty data points from twenty-seven studies, yielding a total

of 6666 samples) to calculate the nutrient intake, combined

with the small range in nutrient composition between prey

items makes the current estimates relatively robust.

Conclusion

The present study provides estimates of the gross nutrient

intake of feral cats based on literature data of thirty different
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food consumption patterns. The calculated diet consists of

69·5 % water, and contains 62·7 % CP, 22·8 % EE, 11·8 % ash

and 2·8 % NFE on a DM basis. The starch content of the NFE

fraction is low. The fatty acid profile consumed by feral cats

has a ratio of n-6:n-3 in the order of 2:1, which differs from

the ratio consumed by pet cats (ranging between 5:1 to

17:1). Additional data on specific prey item composition com-

bined with estimates of the nutrient availability of prey items

or a composite diet would provide more accuracy to derive

a metabolic nutrient profile to which cats have adapted

throughout evolution. Future research focus on the nutritive

as well as non-nutritive value of consuming a natural diet of

whole prey may gain valuable insights into how the nutrition

of domestic cats can be further enhanced to increase health

and longevity.
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