Suitable Rootstocks for Organically Grown Tomato and Cucumber in Relation to *Meloidogyne* spp.

J. Janse^a and A.W.G. van der Wurff^b Wageningen UR Greenhouse Horticulture P.O. Box 20 2665 ZG Bleiswijk The Netherlands

Keywords: resistance, graft, scion, root-knot nematodes, tomato, cucumber

Abstract

In organic greenhouse vegetable production, significant yield loss occurs due to root-knot nematodes (*Meloidogyne* spp.). Soil steaming is effective; however, it is not preferred, since beneficial soil micro organisms are eliminated. An inclusion of resistant hosts within the crop rotation is complicated by the broad host range of the nematode and the high level of specialization of companies towards production of fruit vegetables. Nearly all species of fruit vegetables are susceptible to a varying degree and complete resistance is absent. Even when rootstocks show partial resistance, this is broken down at high temperatures and with an increase in nematode densities. In addition, a lack of compatibility between the rootstock and graft is reported.

The objective of the research was to find a rootstock with a high resistance against the most important *Meloidogyne* species in greenhouses in the Netherlands, *M. incognita* and *M. hapla*. Secondly, rootstocks should combine resistance with high yield and quality.

In five experiments, 16 to 28 rootstocks per vegetable crop were tested for susceptibility, based on the number and size of root-knots and degree of nematode reproduction. In tomato (*Solanum lycopersicum* L.), one of the best performing rootstocks was 'PG76'; in cucumber (*Cucumis sativus* L.) 'RZ64-10' and 'Harry' performed well. In general, tomato rootstocks have a higher level of resistance against *M. incognita* compared with *M. hapla*. However, cucumber rootstocks seem to be more susceptible to *M. incognita* than to *M. hapla*.

INTRODUCTION

Root knot nematodes (RKN, *Meloidogyne* spp.) cause high economic losses in flower and vegetable production systems worldwide. *Meloidogyne incognita* is considered the most economically important species, as it has a worldwide distribution and a broad host range. Its attributed crop loss is estimated as 5% annually worldwide and it is considered as one as the major obstacles for adequate food supply in many developing countries (Hussey and Janssen, 2002).

In organic greenhouses, the occurrence of root-knot nematodes is one of the most important reasons for significant yield losses in tomato (*Solanum lycopersicum* L.) and cucumber (*Cucumis sativus* L.). In Dutch greenhouses with organically grown fruit vegetables, *M. incognita* (*Mi*) and *M. hapla* (*Mh*) are the most common root-knot nematodes, followed by *M. javanica* (*Mj*) (van der Wurff et al., 2010).

Soil steaming is often used as an effective method of control; however, it requires substantial amounts of energy and beneficial soil microorganisms may be eliminated. The use of cultivars or rootstocks with resistance against RKN represents a sustainable control option. Grafting may enhance tolerance to abiotic stress, increase yield, enhance efficient water and nutrient use, extend harvest periods and improve fruit yield and quality (e.g., Lee and Oda, 2003).

^a Jan.Janse@wur.nl

^b Andre.vanderWurff@wur.nl

However, nearly all species of fruit vegetables are susceptible to RKN to a varying degree. Even when rootstocks show partial resistance, this is broken down at temperatures above 28°C with increased nematode densities, especially in tomato (Dropkin, 1969; Fassuliotis, 1979). In addition, a lack of compatibility between the rootstock and graft is reported (e.g., Davis et al., 2008).

The objective of this research was to find rootstocks with a high resistance against *Mi* and *Mh*, which also had high yields and quality. The results of several experiments conducted with rootstocks of tomato and cucumber are presented.

MATERIALS AND METHODS

From 2005 to 2009, five experiments were conducted: experiment 1 to 5 with cucumber and experiment 3 to 5 with tomato. In experiments 1 and 2, cucumber rootstocks with 'Aviance' (Rijk Zwaan) were compared with ungrafted 'Aviance'. In experiments 3 and 4, cucumber rootstocks were not grafted. In experiment 5, cucumber rootstocks were grafted with the powdery mildew resistant 'Sudica' and 'Shakira' (both Monsanto) and 'Aviance' (Rijk Zwaan). In experiments 3, 4 and 5 tomato rootstocks were not grafted.

Experiments 1 to 5 started, respectively, in March 2007 and extended fourteen weeks with ten replicates per rootstock; August 2007 for eleven weeks with eight replicates per rootstock, March 2008 for twelve weeks with five replicates per rootstock, August 2008 for ten weeks with five replicates per rootstock and March 2009 for twelve weeks with nine replicates per rootstock. For experiments 1 to 3, $16*10^3$, $9.3*10^3$, $4*10^3$ J2? *Mi* were inoculated per pot, respectively. In experiments 4 and 5, mixed populations of $19.2*10^3$ with *Mi:Mh* of 1:1 and $20.3*10^3$ with *Mi:Mh*;*Mj* of 64:33:3 were used.

All experiments were performed in a 144 m² greenhouse at Bleiswijk, The Netherlands (Longitude 51.989°, Latitude 4.476°), with temperatures ranging from 21.6 to 22.2°C. The minimum temperature was 18°C during the night and maximum temperature was 30°C during the day.

Rootstocks were organically propagated and rooted at Grow Group or Grootscholten, the Netherlands. After approximately 40 days, plantlets were transferred to ten litre pots. Pots contained coarse sand, were sealed with agryl cloth and positioned in rows with about two plants per m². Pots were irrigated with a standard nutrient solution with an electrical conductivity (EC) of 1.7 mS cm⁻¹. Stem diameters of plants were measured at a height of 15 cm above the soil.

Second-stage juvenile (J2) cultures were obtained from HZPC Research BV, Metslawier, The Netherlands. Per pot, J2 were added equally spaced around the stem. One day pre-inoculation until 24 h post-inoculation, irrigation was paused to prevent loss of RKN. After 10 to 14 weeks, roots were washed with tap water, dried with paper towels and weighed. Root-knot index (RKI) on a scale of 0 to 10 was recorded for each rootstock, according to van der Wurff et al. (2010). Following this procedure, roots were ut into 3 cm pieces, mixed together, and 50 g fresh weight roots of each rootstock were incubated for four weeks in a mistifier (Seinhorst, 1950) at 20°C. Nematodes were then collected and counted. In experiment 5, RKN were counted and the proportions of Mi, Mhor Mj were estimated subsequently with genus-specific quantitative PCR markers by Blgg AgroXpertus, Wageningen, The Netherlands.

Root-knot index, stem diameter, root weight (RW) data and number of RKN juveniles (J2) extracted from roots were log-transformed, where appropriate, and analyzed using the general linear model (GLM) procedure with a Tukey-test in SPSS 15.0.

RESULTS AND DISCUSSION

Prior to the experiments, an inventory was made of rootstocks with potential resistance against root-knot nematodes. In the first experiments with cucumber (experiment 1 and 2) and tomato (experiment 3), a wide range of rootstocks was tested. In following experiments, the most promising rootstocks were tested again; occasionally,

newly obtained rootstocks were added.

Cucumber

In experiment 1, rootstocks 'RZ64-10' and 'Harry' showed a lower RKI compared to the standard 'Aviance' and other rootstocks (Table 1). In subsequent experiments, 'Harry' and 'RZ64-10' showed comparable RKI. In experiment 2, rootstocks with parental species of *Cucurbita maxima* \times *C. moschata* showed a higher RKN compared to rootstocks with parental species of *Sycios angulatus* ('Harry') and *Benincasa* ('RZ64-10' and 'RZ64-12').

In experiments 1 and 4, 'RZ64-10' and 'RZ64-12' showed 90% less RKN reproduction when compared with 'Harry' and other rootstocks (Table 1). In experiment 2, reproduction of RKN in 'E88.035' and 'E88.036' was low.

In experiment 5, no interaction was observed between rootstock and scion in RKI ($F_{\text{rootstock x scion}} = 1.13$, df = 4, P = 0.35) (Table 1). Interestingly, an effect was seen (not shown) of scion on the weight of the rootstock ($F_{\text{rootstock x scion}} = 5.56$, df = 4, P<0.001) irrespective of its identity, i.e., 'Harry', 'RZ64-10' or 'RZ64-12'. Namely, a graft with 'Aviance' and 'Sudica' resulted in a significantly heavier rootstock compared with 'Shakira'.

From experiments 4 and 5, it can be concluded that 'Harry', 'RZ64-10' and 'RZ64-12' were more susceptible to *Mi* compared to *Mh* or *Mj* (Table 2).

Seed production of ⁷RZ64-10' and ⁶RZ64-12' (*Benincasa* sp.) was discontinued. At this time, 'Harry' (*Sycios angulatus*) seems to be the only suitable and available rootstock for organic growers. However, 'Harry' has some disadvantages, namely variability in germination, moderate compatibility with scion, susceptibility to rot at the grafting place during growth and, despite the less visible root-knots, ongoing reproduction of RKN and thus an increase in *Meloidogyne* population size in soil.

Tomato

In experiment 3, all rootstocks showed a low RKI, except for 'Vigostar 4411' and 'E28.33458'. In addition, both showed high RKN reproduction rates (Table 3) of *Mi*.

Experiment 4 confirmed that the best rootstocks in experiment 3 have resistance against Mi because they showed a low RKI and reproduction of Mi compared with the standard 'Mecano'. Cultivar 'Vigostar 4409' showed a low reproduction of Mh as well as of Mi. Unfortunately, seed production of 'Vigostar 4409' was discontinued; therefore it was not investigated further. Nearly all rootstocks have a higher reproduction rate of Mh than of Mi, with on average a factor eight difference (Table 3).

In experiment 5, 'PG76' showed a low RKI. In contrast, all rootstocks from Green Seeds appeared to have little or no resistance against *Mi*, *Mh* or *Mj*. Despite the fact that plants were inoculated with twice as many *Mi* as *Mh*, reproduction of *Mh* was, with the exception of the cultivars from Green Seeds, on average ten times higher. A similar result was obtained in experiment 4. Remarkably, the average RKI in experiment 5 was relatively high compared with the two previous experiments; however, the number of offspring was lower when compared with experiment 3.

Of the six rootstocks investigated in experiments 3 to 5, 'Maxifort' and 'Emperador' appeared to have high reproduction of *Meloidogyne* spp., and 'DRO132' and 'PG76' seemed to have relatively low reproduction of *Meloidogyne* spp.

Cultivar 'PG76', and to a lesser extent, 'Brigéor' showed a low RKI. Both tomato rootstocks performed well. Cultivar 'PG76' seems especially promising, since it showed a low RKI, combined with a low RKN reproduction. Similar results were obtained by Cortada et al. (2009).

The standard 'Mecano' and rootstocks from Green Seeds had the thinnest stems and were therefore expected to grow more slowly (Table 4). Generally, it is assumed that root weight and stem thickness are indicators of growth rate.

ACKNOWLEDGEMENTS

This project was supported by the Dutch Ministry of Agriculture, Nature and Food Quality, within research program BO-12 (LNV). Thanks to Marc van Slooten for practical assistance and the breeding companies for kindly providing seeds.

Literature Cited

- Cortada, L., Sorribas, F.J., Ornat, C., Fé Andrés, M. and Verdejo-Lucas, S. 2009. Response of tomato rootstocks carrying the *Mi*-resistance gene to populations of *Meloidogyne arenaria*, *M. incognita* and *M. javanica*. Eur. J. Plant. Pathol. 124:337– 343.
- Davis, A.R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J.V., Lee, S.-G., Huh, Y.-C., Sun, Z., Miguel, A., King, S.R., Cohen, R. and Lee, J.-M. 2008. Cucurbit grafting. Critical Reviews in Plant Sciences 27:50–74.
- Dropkin, V.H. 1969. The necrotic reaction of tomatoes and other hosts resistant to *Meloidogyne*: reversal by temperature. Phytopathology 59:1632–1637.
- Fassuliotis, G. 1979. Plant breeding for root-knot nematode resistance. p.425–453. In: F. Lamberti and C.E. Taylor (eds.), Root-knot Nematodes (*Meloidogyne* species). Systematics, Biology and Control. Academic Press, New York.
- Hussey, R.S. and Janssen, G.J.W. 2002. Root-knot nematodes: *Meloidogyne* species. p.43–70. In: J.L. Starr, R. Cook and J. Bridge (eds.), Plant Resistance to Parasitic Nematodes. CAB International, United Kingdom.
- Lee, J.M. and Oda, M. 2003. Grafting of herbaceous vegetables and ornamental crops. Horticultural Reviews 28:61–124.
- Seinhorst, J.W. 1950. De betekenis van de toestand van de grond voor het optreden van aantasting door het stengelaaltje *Dity1enchus dipsaci* (Kühn) Filipjev) [The importance of the condition of the soil for the occurrance of the incidence of the stem and bulb nematode *Dity1enchus dipsaci*]. Plantenziekten 56:289–348. (in Dutch)
- van der Wurff, A.W.G., Janse, J., Kok, C.J. and Zoon, F.C. 2010. Biological control of root knot nematodes in organic vegetable and flower greenhouse cultivation. Report 321. Wageningen UR Greenhouse Horticulture, Bleiswijk. p.64.

Fatential spectesRKI7RW8RKIRWRKIRWRKIRWRKICucurbita maxima \times Cucurbita maxima \times C. moschata $7.6e$ $244bc$ $3.5b$ $331c$ $2.4a$ $110b$ $3.3ab$ 84 3.6 Sycios angulatus $3.5b$ $331c$ $2.4a$ $110b$ $3.3ab$ 84 3.6 Unknown $5.8cd$ $157ab$ $6.1b$ $67a$ 66 3.6 Unknown $5.8cd$ $157ab$ $3.2a$ $83b$ $2.4a$ 66 3.6 Benincasa $2.0a$ $93a$ $3.2a$ $83b$ $2.4a$ 66 3.6 Cucurbita maxima \times C. moschata $7.4e$ $2.0a$ $93a$ $3.2a$ $83bc$ 58 3.9 Cucurbita maxima \times C. moschata $7.4e$ $202bc$ $7.3c$ $56a$ 53 $50a$ Unknown $5.3c$ $137ab$ $2.9a$ $70b$ $3.8abc$ 58 3.9 Cucurbita maxima \times C. moschata $7.4e$ $202bc$ $7.3c$ $56a$ 53 $50a$ Unknown $6.2b$ $6.2b$ $67b$ $6.2b$ $65c$ 53 53 Unknown $6.2b$ $57bc$ 33 $57bc$ 53 $57bc$ 53 Unknown $6.2c$ 53 $57bc$ 53 $57bc$ 53 $57bc$ 52 Unknown $6.2c$ 53 $57bc$ 53 $57bc$ 53 $57bc$ 53 Unknown $6.2c$ 52 $57bc$ 53 $57bc$ 53 5			Exp. 1	. 1	Exp. 2	. 7	Exp	Exp. 3	Exp. 4	4	EA	
	Cultivar	Parental species	RKI ⁷	RW^8	RKI	RW	RKI	RW	RKI	RW	RKI	RW
1Cucurbita maxima \times C moschata7.6e244bc 37^{1} Sycios angulatus3.5b331c2.4a110b3.3ab843.6 37^{1} Unknown6.6de199bc6.1b67a6.363.6 37^{1} Unknown5.8cd157ab93a3.2a83b2.4a663.6 37^{1} Unknown5.8cd157ab93a3.2a83b2.4a663.6 37^{1} Benincasa2.0a93a3.2a83b2.4a663.6 32^{1} Benincasa5.3c137ab2.9a76b3.8abc583.91 32^{1} Cucumis sativus7.4e202bc7.3c56a666.6c536 6^{2} Cucurbita maxima \times C moschata7.4e202bc7.3c56a6.2b66a66a6.2b66a6.2b66a6.2b6.0c539.51 9^{5} Cucurbita maxima \times C moschata6.2b87b6.6c539.511	Aviance ¹	Cucumis sativus	$8.1e^9$	202bc	7.3c	82b						
1 Sycios angulatus 3.5b 331c 2.4a 110b 3.3ab 84 3.6 7^{1} Unknown 6.1b 67a 6.1b 67a 3.3b 84 3.6 7^{1} Unknown 6.6de 199bc 6.1b 67a 83b 3.4a 66 3.6 7^{1} Unknown 5.8cd 157ab 9.3a 3.2a 83b 2.4a 66 3.6 10^{1} Benincasa 2.0a 93a 3.2a 83b 2.4a 66 3.6 12^{1} Benincasa 2.0a 93a 3.2a 83bc 58 3.9 1 2^{2} Cucumis sativus 7.4e 202bc 7.6b 3.8abc 58 3.9 1 6^{2} Cucumis sativus 7.4e 202bc 7.3c 56a 6.2b 66b 6.2b 6.2b 6.2b 6.6b 6.6c 53 9.1 1 6^{2} Cucumis sativus 7.3c 56a 6.2b 67b 6.2b 67b 6.2b 67b <td>Azman¹</td> <td>Cucurbita maxima × C. moschata</td> <td>7.6e</td> <td>244bc</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Azman ¹	Cucurbita maxima × C. moschata	7.6e	244bc								
T_1 Cucurbita maxima \times C. moschata6.1b67a T_1 Unknown $6.6de$ 199bc $6.1b$ $67a$ T_1 Unknown $5.8cd$ $157ab$ $2.9a$ $83b$ $2.4a$ 66 3.6 10^1 Benincasa $2.0a$ $93a$ $3.2a$ $83b$ $2.4a$ 66 3.6 10^1 Benincasa $2.0a$ $93a$ $3.2a$ $83b$ $2.4a$ 66 3.6 10^2 Benincasa $2.0a$ $93a$ $3.2a$ $83b$ $5.8abc$ 58 3.9 10^2 Benincasa $5.3c$ $137ab$ $2.9a$ $76b$ $3.8abc$ 58 3.9 2^2 Cucurbita maxima \times C. moschata $7.4e$ $202bc$ $7.3c$ $56a$ $6.2b$ $66a$ $6.2b$ $66c$ 53 6^2 Cucurbita maxima \times C. moschata $6.2b$ $87b$ $6.6c$ 53 $6.2b$ $87b$ $6.5c$ 53 0^5 Cucurbita maxima \times C. moschata $6.2b$ $87b$ $6.6c$ 53 $5.7bc$ 33 0^5 Unknown $6.2c$ 53 $5.7bc$ 33 $5.7bc$ 33 1^7 Unknown $6.2c$ 52 47 $5.7bc$ 53	Harry ³	Sycios angulatus	3.5b	331c	2.4a	110b	3.3ab	84	3.6	4	2.5a	42ab
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$TZ148^4$	Cucurbita maxima × C. moschata			6.1b	67a						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$RZ81-07^{1}$	Unknown	6.6de	199bc								
$ \begin{bmatrix} 10^{1} & Benincasa & 2.0a & 93a & 3.2a & 83b & 2.4a & 66 & 3.6 \\ 12^{1} & Benincasa & 5.3c & 137ab & 2.9a & 76b & 3.8abc & 58 & 3.9 \\ 1 & Cucumis sativus & 7.4e & 202bc & & & & & & & & & & & & & & & & & & &$	RZ82-07 ¹	Unknown	5.8cd	157ab								
12^1 Benincasa5.3c137ab2.9a76b3.8abc583.9 1 Cucumis sativus7.4e202bc7.3c56a 5^2 Cucurbita maxima × C. moschata7.3c56a 6^2 Cucurbita maxima × C. moschata6.2b66a 0^5 Cucurbita maxima × C. moschata6.2b87b6.6c 0^5 Cucurbita maxima × C. moschata6.2b87b6.6c53 0^5 Unknown6.2b87b6.6c53 1^1 Unknown6.2b87b6.2c47 V_{obsi} Unknown6.2c475.7bc33 V_{obsi} Vaboi6.2c476.2c47	$RZ64-10^{1}$	Benincasa	2.0a	93a	3.2a	83b	2.4a	99	3.6	8	2.4a	37a
1 Cucumis sativus7.4e202bc 5^{2} Cucurbita maxima × C. moschata7.3e56a 6^{2} Cucurbita maxima × C. moschata6.2b67b66a 0^{5} Cucurbita maxima × C. moschata6.2b87b6.6c 0^{5} Unknown6.2b87b6.6c 1^{1} Unknown6.2b87b6.6c V_{choi} Unknown6.2b87b6.6c V_{choi} Unknown6.2c5.7bc V_{choi} Unknown6.2c6.2c	RZ64-12 ¹	Benincasa	5.3c	137ab	2.9a	76b	3.8abc	58	3.9	12	3.3b	48b
 5² Cucurbita maxima × C. moschata 6² Cucurbita maxima × C. moschata 6³ Cucurbita maxima × C. moschata 6.2b 87b 66a 0⁵ Cucurbita maxima × C. moschata 6.2b 87b 6.6c Unknown ¹ Unknown ^{6.2c} 	Adrian ¹	Cucumis sativus	7.4e	202bc								
	$E88.035^{2}$	Cucurbita maxima × C. moschata			7.3c	56a						
09 ⁵ Cucurbita maxima × C. moschata 6.2b 87b 6.6c Unknown Unknown 1 ¹ Unknown 5.7bc Kohai	$E88.036^{2}$	Cucurbita maxima × C. moschata			6.2b	66a						
Unknown 4.8abc Unknown 5.7bc Vedai 0.2c	WS5299 ⁵	Cucurbita maxima × C. moschata			6.2b	87b	6.6c	53				
Unknown 5.7bc 1 ¹ Unknown 6.2c Vedai	$08-29^{1}$	Unknown					4.8abc	52				
Unknown 6.2c	$08-53^{1}$	Unknown					5.7bc	33				
Calata Kahai	Becada ¹	Unknown					6.2c	47				
Fushinari ⁶ 5.8bc 37 5.8bc	Sakata Kohai Fushinari ⁶	Cucumis sativus					5.8bc	37				

Table 1. Average root-knot index (RKI) and root weight (RW) (g) for cucumber rootstocks in five experiments.

Cultivar	Exp. 1	Exp. 2	Exp. 3	Exp	4^3		Exp. 5 ³	
Cultival	Mi^1	Mi	Mi	Mi	Mh	Mi	Mh	Мj
Aviance	414500b ²	41750b						
Azman	459500b							
			100561ab	2528				
Harry	415500b	21125b	c	3	225	71	2	0
TZ148		19125b						
RZ81-07	488500b							
RZ82-07	435000b							
RZ64-10	34000a	22500b	24485a	2235	63	121	0	0
			137639ab					
RZ64-12	58500a	35625b	с	2060	12	240	8	0
Adrian	276500b							
E88.035		14250a						
E88.036		15500a						
WS5299		35625b	601550c					
			100639ab					
08-29			с					
08-53			655907c					
Becada			266062bc					
Sakata Kohai			22616ab					
Fushinari			22646ab					

Table 2. Average number of root-knot nematodes (RKN) per 50 g roots of cucumber rootstocks in five experiments.

 ${}^{1}Mi = Meloidogyne incognita, Mh = M. hapla, Mj = M. javanica.$ ${}^{2}Letters (abc) indicate significant subgroups as determined with a Tukey-test at P=0.05 on log-transformed$ data.

³Numbers are estimated based on total *Meloidogyne* counts and *Mi*, *Mh* and *Mj* specific quantitative PCR markers.

		RKI ¹¹				RKN			
Cultivar	Exp. 3	Exp. 4	Exp. 5	Exp. 3	Exp	o. 4	ł	Exp. 5 ¹⁴	
	Mi^{12}	Mi	Mi	Mi	Mi	Mh	Mi	Mh	Мj
Maxifort ¹	0.6	0.8ab ¹³	5.3cdef	40246abc	1707	993	137	716	0
Multifort ¹	0.6			4000a					
Optifort ¹	0	1.1ab	4.4cde	2330a	714	4201	27	333	(
DRO132 ¹	0	1.8ab	4.2cde	2770a	92	1319	8	225	0
DRO136 ¹	0			2337a					
Resistar ⁹	0	1.5b		5181a	97	2064			
Integro ⁶	0			10060abc					
Vigostar 4409 ⁶	0	0.9ab		25371abc	150	282			
Vigostar 4411 ⁶	6.0			141201bc					
RS7122 ²	0			31410abc					
RS7123 ²	0	0.8a		23520abc	225	5655			
Emperador ²	0	1.4ab	3.4bc	3570a	681	4775	77	799	2
Brigéor ⁷	0	1.0ab	1.9ab	9292abc	295	5162	23	841	2
$PG76^7$	0	0.3a	0.6a	6540ab	172	1814	31	127	(
Titron ¹⁰	0			5509ab					
E28.33197 ⁴	0			20327abc					
E28.33458 ⁴	5.2			990760c					
E28.33464 ⁴	0	0.6b	3.6bcd	22452abc	36	4125	24	243	(
500267 ⁵	0.2			7710abc					
500294 ⁵	0.2	1.1ab		5230ab	3	3717			
ST3505 ⁸	0								
Big Power ²			2.1ab				34	457	(
No5 ³			6.0ef				5434	1732	189
No7 ³			4.8cdef				3855	2061	155
AN-67 ³			5.0def				4416	4526	156
Tyking 5 ³			4.2cdef				2771	1455	262
DRO138 ¹			4.7cdef				103	935	(
Mecano ²		5.3d	6.4f		5013	883	4977	819	(

Table 3. Average root-knot index (RKI) and number of root-knot nematodes (RKN) per 50 g roots of tomato rootstocks in three experiments.

¹Morsanto, ² Rijk Zwaan, ³Green Seeds, ⁴Enza seeds, ⁵Syngenta, ⁶Nickerson-Zwaan, ⁷Gautier seeds, ⁸Uniseed, ⁹Hazera, ¹⁰Western Seed. ¹¹RKI ranges from 0 to 10, where 0 represents an absence of root-knots and 10 represents all roots with knots, hardly roots left and plant is dead. ¹²Mi = Meloidogyne incognita, Mh = M. hapla, Mj = M. javanica.¹³Letters (abc) indicate significant subgroups as determined with a Tukey-test at P = 0.05 on log-

transformed data.

¹⁴Numbers are estimated based on total *Meloidogyne* counts and *Mi*, *Mh* and *Mj* specific quantitative PCR markers.

Cultivar	R	loot weight (g)		Stem diameter (mm)		
Cultival	Exp. 3	Exp. 4^2	Exp. 5	Exp. 4	Exp. 5	
Maxifort	$80abcd^1$	28	150d	13.7bc	19.5de	
Multifort	107bcd					
Optifort	138bcd	25	93cd	13.2abc	18.4de	
DRO131	113bcd	15	119d	14.4bc	17.9de	
DRO132	76abcd					
Resistar	47ab	29		13.7bc		
Integro	126bcd					
Vigostar4409	32ab	25		12.7ab		
Vigostar4411	40abc					
RS7122	89bcd					
RS7123	156bcd	15		14.0bc		
Emperador	133bcd	29	75cd	14.2c	18.3de	
Brigéor	142bcd	29	68abc	13.5bc	14.4cde	
PG76	150cd	19	69bcd	13.7bc	16.4cde	
Titron	91abcd					
E28.33197	42abc					
E28.33458	219d					
E28.33464	34a	36	110d	11.2a	16.4cde	
500267	228d					
500294	174cd	24		13.1ab		
ST3505	64abcd					
Big Power			87cd		15.9bcd	
No5			46abc		13.8abc	
No7			32a		13.4ab	
AN-67			27a		12.4a	
Tyking5			30a		13.5abc	
DRO138			124d		19.7e	
Mecano		26	35ab	12.8abc	13.2a	

Table 4. Average root wei	ght (RW) (g) a	and stem diameter	of tomato rootstocks in the
experiments.			

¹Letters (abc) indicate significant subgroups as determined with a Tukey's test at P = 0.05 on log-transformed data. ²Roots of replicates of the same rootstock were pooled.