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Abstract
Purpose Sedimentary aquifers are prone to anthropogenic
disturbance. Measures aimed at mitigation or adaptation
require sound information on the reactivity of soil/sedi-
ments towards the infiltrating water, as this determines the
chemical quality of the groundwater and receiving surface
waters. Here, we address the issues of relevant sediment
properties, adequate analytical methods, borehole location
selection, detail of stratification, and required sample size,
to develop a protocol for efficient characterization of
subsurface reactivity on a regional scale.
Materials and methods The sequence of geological forma-
tions in the Dutch part of the North Sea Basin is documented
in the form of systematic descriptions of some 450,000
borings. The basic data are stored in a database that also
includes a limited amount of geochemical data collected for
specific research projects. Based on the borehole descriptions,
a Digital Geological Model of the Netherlands (DGM) has
recently been completed. We combined the results of a
statistical analysis of the existing geochemical data with
theoretical and practical considerations, to assess the degree of
variability of subsurface reactivity, the relevance of different
DGM-based stratifications, and the efficiency and possible
redundancy of analytical parameters.
Results and discussion We present two protocols for the
quantitative characterization of the reactive properties of the

soil and subsurface sediments of the Netherlands, down to a
depth of about 30 m below surface level. As numerous
strategies are already available for soil surveying, the
facies-based protocol for boring and sampling is aimed at
subsoil sediments. Stratification is a combination of
regional, lithological, and lithostratigraphical classifica-
tions. Selection of borehole locations and sampling depths
is first based on the a priori information. Given the results
of the first round, additional boring, sampling and analysis
are performed when necessary. The analytical protocol also
applies to soil surveys. It deploys limited means to obtain
the most relevant information on subsurface reactivity in
view of the priority environmental issues identified.
Conclusions With the progress of technologies for aquifer
architecture characterization and routine chemical analysis,
assessment of subsurface reactivity on a regional scale has
now become feasible. Lithological stratification is essential,
but regional and lithostratigraphical variability cannot be
ignored. With adequate stratification, a sample size of 45
per stratum was found sufficient in most instances. The key
analytes chosen appear to be statistically independent;
hence, a further reduction in analytical techniques would
result in serious loss of information.

Keywords Analytical protocol . Aquifer sediments .

Characterization . Geochemistry . Reactivity . Sampling
protocol

1 Introduction

Worldwide, sedimentary aquifers play an important role in
drinking water supply. For this reason, aquifer architecture
and hydraulic properties of aquifer sediments have since
long been, and are still being, subject of interest of many
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geohydrological studies (e.g. Biteman et al. 2004; Eaton
2006). Recent advances in affordable geophysical techni-
ques for regional surveying are expected to greatly aid in
delineating the physical characteristics of aquifers (see, e.g.
Bersezio et al. 2007; Chalikakis et al. 2008).

Because of the vulnerability of especially phreatic
groundwater resources to anthropogenic pollution, geo-
chemical aspects of groundwater resources have also
received increasing attention over the past decades. These
studies predominantly focus on water chemistry and
include topics such as groundwater (redox) zonation and
gradients; degree and scale of, and controls on water quality
variability and spatial distribution; source apportionment;
(bio)geochemical controls on contaminant degradation;
reactive transport modelling; aquifer vulnerability mapping;
and the determination of background/threshold concentra-
tions (for recent papers, see, e.g. Vissers 2005; Park et al.
2006; Hinkle et al. 2007; Robins et al. 2007; Báez-Cazull et
al. 2008, Griffioen et al. 2008; Hinsby et al. 2008;
McMahon and Chapelle 2007, Sochaczewski et al. 2008;
Spiteri et al. 2008).

The reactivity of the subsurface, such as its sorption and
degradation capacity, is key to reactive transport processes
and hence to all topics mentioned above. The EU Soil
Thematic Strategy (STS; COM 2006) recognises as one of
the principal soil functions the storage, filtering, and
transformation of substances, including water, carbon,
nutrients and pollutants. This function is of course not
restricted to the topsoil or vadose zone only, but continues
in subsoil sediments and even consolidated aquifers. In a
completely natural situation, a quasi-steady state develops
between the composition and reactivity of the subsurface
and the infiltrating water, determined by both the chemical
signature of the infiltrating water and the reactive com-
pounds of the aquifer (Zhu and Burden 2001; Vissers
2005). Under the transient conditions of anthropogenic
disturbance, the soil and sediment reactivity may mitigate
the disturbance and protect downflow groundwater and
surface water bodies, but less desirable side-effects, such as
increase of water hardness or mobilisation of trace metals,
may also occur (Larsen and Postma 1997; van Helvoort et
al. 2007; Visser et al. 2009). Under transient conditions,
knowledge of the subsurface reactivity is required to allow
prediction of groundwater quality and ensuing adequate
management. As climate change is also expected to
influence soil–water exchange reactions, data on previous
steady-state conditions will be less predictive of the future
development, making collection of sediment data the more
pressing. Recent examples from the Netherlands of prog-
nostic modelling studies at regional or national scale in
which information on the reactivity of the subsurface
sediment is needed as input are Tiktak et al. 2006; van
den Brink et al. 2007, van der Grift and Griffioen 2008.

Whereas strategies for soil surveying commonly include
some aspects of soil geochemistry also (e.g. organic matter,
nutrient content, priority metals and organic contaminants),
this is not the case for subsoil sediments. Analyses of
geochemical parameters that characterise aquifer reactivity
is laborious and expensive, the more so because of
sediment heterogeneity. Such analyses are therefore not
routinely performed and effective reactivity of the aquifer
sediment is deduced in many cases from the observed
patterns in groundwater chemistry only. In some studies,
qualitative analysis of the aquifer sediments is performed to
corroborate inferences from groundwater analyses and
modelling (e.g. Lee et al. 2007). Quantitative studies of
sediment reactivity are found mainly in connection with
local contaminant plumes, with some recent studies
addressing the problem of As mobilisation in drinking
water aquifers (Swartz et al. 2004; Shamsudduha et al.
2008). Over the last years, our group already explored
possibilities for a more regional characterization of aquifer
sediment reactivity (van Helvoort 2003; Hartog et al. 2004,
2005; van Helvoort et al. 2007). This showed that a facies-
based approach, as advocated by Allen-King (1998) and
following advances in hydraulic characterization (Bierkens
1996; Bierkens and Weerts 1994), indeed offers the
possibility to tackle the problem of aquifer sediment
heterogeneity.

With the realisation of a revised and integrated strati-
graphic framework for both the onshore and offshore parts
of the Dutch territory (Weerts et al. 2003, 2005; Rijsdijk et
al. 2005) and the Digital Geological Model (DGM) and
revised 3D hydrogeological model REgional Groundwater
Information System (REGIS) of the Netherlands (Vernes
and van Doorn 2006), the challenge arose for a nationwide,
regional scale, quantitative characterization of sediment
geochemistry, down to a depth of about 30 m below surface
level, with focus on reactive properties. The intention is to
finalise this systematic nationwide survey by the year 2020.
In this paper, we address the issues of relevant sediment
properties, adequate analytical methods, borehole location
selection, detail of stratification and required sample size, to
develop a protocol for efficient characterization of subsur-
face reactivity on a regional scale.

Statistically based sampling strategies for soil surveying
have been extensively studied and described (e.g. de
Gruijter et al. 2006). In case of aquifer sediments, the need
of deep boreholes down to 30 m or more precludes a
completely 3D-random approach for sampling. Somehow, a
priori knowledge on aquifer architecture should be utilised
for guidance. A facies-based approach as point of departure
should aid in addressing sediment heterogeneity. For this,
we need to determine the required degree of detail in
stratification and assess variability within strata to deter-
mine the adequate number of samples. The latter will also
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depend on the statistical distribution of measured values
within the strata and the precision needed for the water
quality problem addressed. With respect to analysis, we
need to identify the basic set of compositional properties
that adequately describes the relevant aspects of subsur-
face reactivity from an environmental and societal point of
view. The analytical techniques chosen need to be robust
and have adequate long-term precision, because regional
characterization inevitably invokes a long term measure-
ment programme. At the same time, low detection limits
may be required in case small contents already determine
effective reactivity.

The protocol is worked out based on the situation in the
Netherlands with respect to both its geology and its geo-
information infrastructure. The relevance of the protocol
and its underpinning for similar sedimentary regions will be
discussed.

2 Background information

2.1 Geology

The Netherlands (land area about 34,000 km2) are located
in the northwestern part of Europe (Fig. 1). Geologically,
the area is part of the subsiding North Sea Basin, which is
enclosed by the Brabant Massif in the South and the
Rhenisch Massif in the East. A thick layer of unconsoli-
dated sediments was deposited during the Cenozoic; most
of the sedimentary formations that currently surface are of

Quaternary age (De Mulder et al. 2003; Busschers et al.
2005). An overview of the Quaternary formations with
depositional environment and approximate age is given in
Fig. 2.

The base of the Pleistocene sequence is formed by
marine sands and local clay layers containing ubiquitous
shell fragments (Maassluis Formation), that were deposited
when most of the area was still covered by a shallow sea.
On its retreat, the rivers Rhine (Waalre, Sterksel and Urk
Formations), Meuse (Beegden Formation), and the north
German river system (Peize and Appelscha Formations)
develop a large delta, mainly composed of fine and coarse
sands, and later on also gravel during Early and Middle
Pleistocene. The predominantly non-calcareous sediment
supply from the north-German system comes to a halt in
the Elsterian, when the northern part of what are now the
Netherlands is covered with ice. In this period, the
heterogeneous Peelo Formation was deposited, consisting
of amongst others heavy, glaciolacustrine clays in subgla-
cial erosion gullies. The southern fluviatile deposits up to
this age may have been locally reworked and sorted by
water and wind (Stramproy Formations). During the
Saalian, the ice also reaches the central parts (glacial
deposits of the Drenthe Formation) and most of the ice
pushed ridges are formed. Rhine and Meuse are diverted to
the west, still depositing coarse sands until the end of the
Pleistocene (Kreftenheye Formation). In the warm period
that follows the Saalian, marine sediments are again
deposited in the southwestern, northern and central part of
the Netherlands (Eem Formation). At its edges, thick peat

Fig. 1 Left overview of northwestern Europe showing the Netherlands (darker grey) and surrounding countries (base map data from www.esri.
com). Right map of the Netherlands with main lithological classification of surfacing sediments (NITG-TNO)
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layers develop (Woudenberg Formation). During the last
(Weichselian) ice age, the ice sheet does not reach the
Netherlands. Windblown sands and loess, and local fluvial
and lacustrine deposits are formed (continuation of the
Boxtel Formation that was deposited since the end of
Middle Pleistocene).

The retreat of the ice and consequent sea level rise mark
the beginning of the Holocene. The Rhine–Meuse system
becomes meandering/anastomosing, delivering on average
finer sediments than before (Echteld Formation). With
continued sea level rise, large tidal basins and lagoons are
formed at the present coastal margin, where (peri)marine
calcareous sands and silty clays are deposited (Naaldwijk
Formation). Sedimentation by Rhine and Meuse retreats to
the central and south-eastern area. Peat develops from the
margins of the intertidal area towards the centre and north
(Nieuwkoop Formation). A new transgression erodes the
peat, covering it with marine clays and fine grained Rhine–
Meuse sediments. From this period onwards, human
influence comes to dominate, in the form of endikements,
drainage, peat excavation, etc.

2.2 Mineralogical composition of Pleistocene and Holocene
sediments

Mineralogical studies of the subsurface sediments of the
Netherlands have been focussed on the heavy mineral
fraction of the sand deposits for provenance studies, and on

the clay fraction of the clay deposits. When subdivided into
grains size fractions, the mineralogical composition of the
various sediment types show broad similarities (Breeuwsma
1990).

The Quaternary sands are of course dominated by
quartz grains, the Rhine–Meuse also contain abundant
lithic fragments of sandstone and shale. Feldspar (ortho-
clase with lesser albite and virtually no plagioclase) is the
next important mineral. Muscovite is the common mica,
biotite is not always present (van Baren 1934). Glauconite
can be present in amongst others the Waalre Formation
and may also occur in the local eolian sediments derived
from it. The heavy mineral fraction (less than 0.5%) in the
Rhine–Meuse sands is characterised by an unstable
association of garnets, epidote, hornblende, and augite;
the typical stable heavy mineral suite of the eastern sands
comprises tourmaline, andalusite, kyanite, sillimanite and
staurolite. The main secondary minerals are calcite and
siderite, and iron and aluminium oxides. Calcite is mostly
biogenic and the highest contents are found in the marine
sands. The top of the eolian sands and especially the ice
pushed ridges have become completely decalcified. Sid-
erite may occur in brook deposits, where also vivianite
and high contents of iron oxides may be found. Gibbsite
(up to 1%) is the usual form of non-silica bound
aluminium. Pyrite frequently occurs in reduced sediments,
where highest contents are encountered in peat or organic-
rich layer, under marine influence.

north-German Rhine Meuse

Naaldwijk

Eem W'berg

calcareous sands, local clay layers levarg dna dnas esraoc ot enif

calcareous sands and silty clays nas muidem ot enif dna yalc

heterogeneous, local heavy clays eolian sands, Boxtel Fm in parts silty

heterogeneous, glacial till, boulder clays peat

Boxtel

Eolian, periglacial,
local

Echteld

Kreftenheye

Urk

Peize

Beegden

Maassluis

Appelscha

Drenthe

Peelo

Stramproy

Nieuwkoop

Glacial

Holocene

P
le

is
to

ce
ne

Fluviatile
Marine

Waalre

Sterksel

Fig. 2 Overview of relative age
and depositional environment of
the Quaternary Formations in
the Netherlands. The legend
gives the predominant litholo-
gies for each Formation
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The Holocene marine clays have about equal amounts of
illite and smectite, in addition to minor amounts of kaolinite
and chlorite. The riverine clays also contain vermiculite and
slightly less smectite, the more heavy clays are usually non-
calcareous. The proportion of free to silica-bound iron is
somewhat higher in the fluviatile clays than in the marine
clays. Conversely, gibbsite is slightly more abundant in the
marine clays (Breeuwsma 1990).

2.3 Societal perspective

Traditional use of the sedimentary subsurface in the
Netherlands (other than mining) primarily focuses on the

upper soil layer that is important for agriculture and above
ground infrastructure. Utilisation of the deeper soil/sedi-
ment mainly has been for groundwater extraction and
driving pile foundations through weak soil. Increasing
population and needs of modern society have greatly
intensified our interference with the subsurface. While
providing economic benefits, underground activities such
as subsurface energy storage or CO2 storage should help
better preserve our living environment. Plans and imple-
mentation of underground infrastructure have highlighted
the importance of preservation of archaeological heritage
(Malta Convention; EC 1992). The role of sedimentary
aquifers and aquitards in transporting and filtering water to

Table 1 Definition of geotop regions based on the geologic boundary observed between 15 and 30 m b.s.l. and the depositional environment of
the surfacing deposits

Geotop region Geohydrologic type of
geotop

Lower boundary of geotop defined by Surface formations or
deposits

Bottom of Top of

1. Coastal zone 1a A (or B) Boxtel Fm Eem or Waalre Fm Marine clays

1b A Boxtel Fm Kreftenheye Fm Peat or clay

1c B Naaldwijk Fm Eolian dunes

1d C Tertiary formation

2. Riverine
area

2a C aquitard within Kreftenhye Fm,
or

Fluvial

Kreftenheye Fm Urk Fm

2b B aquitard within Kreftenhye Fm Eolian

2c C Kreftenheye Fm Marine or peat

3. Ice pushed
ridges

3a B ice pushed material Sand or gravel

3b D Eem Fm Drenthe Fm Sand

3c C aquitard within Eem Fm Clay

4. South 4a1 D Beegden Fm Primarily eolian

4a2 C (or D) Beegden Fm Fluvial

4b C Boxtel (or Beegden or
Sterksel) Fm

Primarily eolian

4c B Sterksel or Stramproy or
Waalre Fm, or

aquitard within Stramproy or
Waalre Fm

Primarily eolian

4d1 D Stramproy Fm, or aquitard within Waalre Fm Primarily eolian

4d2 C Stramproy Fm, or aquitard within Waalre Fm Marine clay

5. North 5a1 D aquitard within Peelo Fm Primarily eolian

5a2 C aquitard within Peelo Fm Marine clay

5b1 D Eem or Drenthe Fm Primarily eolian

5b2 C Eem or Drenthe Fm Marine clay

5c1 B Drenthe Fm, or aquitard within Urk Fm Primarily eolian

5c2 C Drenthe Fm, or aquitard within Urk Fm peat

5c3 B Urk Fm Primarily eolian

6. East 6a D Tertiary formation Eolian or ice-pushed

6b B Drenthe or Urk Fm Eolian or ice-pushed
sand

7. South
Limburg

7a D Tertiary clays Löss or gravel

7b C Cretaceous| Löss or gravel

For explanation of the geohydrologic type, see text
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receiving brooks, rivers and wells no longer goes without
saying, as evidenced in Europe by amongst others the
Nitrate Directive (EEC 1991), the Water Framework
Directive and related Groundwater Directive (EC 2000;
2006). Point source pollution still poses problems. While
the inventory of contaminated sites is reaching completion
and various remediation technologies have been developed
and demonstrated (Spira et al. 2006; Hafker 2007; Simon
2008), especially the larger scale contamination of ground-
water poses a threat of ongoing spreading of organic
contaminants. Attention has also shifted towards diffuse
pollution by agriculture, as a main source of excess
nutrients (N,P), metals like Cd, Cu and Zn, herbicides and
pesticides, etc. A derived problem is subsurface Fe-sulphide
oxidation (in particular of pyrite), either as a result of the
input of nitrate as an oxidant or as an effect of intensive
drainage. This may lead to acidification, increase in
hardness, and/or mobilisation of metals, notably Ni (e.g.
Ritsema and Groenenberg 1993; Larsen and Postma 1997;
Boman et al. 2008).

Thus, the anthropogenic impacts and inputs for which
reactivity of the subsurface is of relevance are (1) oxidation
by drainage or infiltration of nitrate, (2) influx of organic
contaminants from in particular industrial, military and
agricultural activities, (3) excess nutrient inputs in the
topsoil and (4) diffusive input and secondary mobilisation
of trace metals. The response of the subsurface to these
impacts is determined by a relatively small number of
processes: (1) complexation, sorption and exchange of metal
ions and phosphate, sorption of organic substances, (2)
denitrification, decay of organic substances and (3) dissolu-
tion–precipitation of minerals. A regional scale chemical
characterization should, therefore, focus on parameters that
quantify the subsurface capacity for these processes.

3 Materials and methods

3.1 Geo-information infrastructure

All basic data on the subsurface of the Netherlands collected
from boreholes are stored within the so called Data and
Information on the Netherlands’ Subsurface (DINO) database,
which is managed by the DINO group within the Geological
Survey of the Netherlands (GSN; part of TNO, the Nether-
lands Organisation for Applied Scientific Research). The
archive holds records on borehole descriptions and measure-
ments, cone penetration tests, vertical electric soundings,
groundwater heads, and results of borehole sampling and
physical or chemical analyses (www.dinoloket.nl; Bosch
2000). The systematic borehole descriptions cover some
450,000 borings, down to a maximum depth of 4 km; the
majority of data stored concerns the upper 500 m. The DGM

and the REGIS 3D hydrogeological model are based on
these data. They are so called stacked-layer models, in which
the information is presented as top and bottom of every unit.
In total, 106 units are distinguished within the uppermost
500 m, for which lithostratigraphy, geometry and hydraulic
properties can be retrieved.

The geo-evolution of the North Sea Basin as described
above resulted in a sequence of geological formations that
differs for various parts of the Netherlands. To practically
deal with this geographical variation, the area of the
Netherlands has been divided into so-called geotop regions,
typical sequences of geological formations in certain parts
of the country. The geotop includes the upper part of the
subsurface from the surface level to a depth of 15–30 m.
The precise lower depth varies depending on the geological
and hydrogeological structure and the geochemical charac-
teristics of the region. From a geohydrological point of
view, the geotop is the part where a dynamic relation exists
between land use (including underground use), soil, upper
groundwater, and surface water, and where anthropogenic
influence is most noticeable. The Holocene Formations and
the Boxtel Formation are always rated as belonging to the
geotop. Their combined thickness is commonly less than
30 m but may be up to 80 m. In some cases, Tertiary
formations are part of the geotop. The geographical
stratification is based on two criteria:

& which boundary (according to DGM and REGIS) is
found at a depth between 15 and 30 m b.s.l.,

& what depositional environment is associated with the
surface formations.

In general the first criterion is leading, except in the coastal
zone, where the primary distinction is between the marine and
fluviatile environment. In total, 27 geotop regions are
distinguished; grouped into seven major regional units
(Table 1; Fig. 3). From a geohydrological perspective, four
main types of geotops can be found (see Table 1):

A. a confining top layer (e.g. in the western Holocene part
of the Netherlands);

B. a phreatic sandy aquifer (e.g. in the ice-pushed ridges);
C. a thin (<15 m) confining layer on top of a semi-

confined aquifer (e.g. the riverine area);
D. a thin (<5 m) phreatic aquifer (eolian sands and high

conductivity fluviatile sands) on top of a relatively
heterogeneous layer.

3.2 Available geochemical data for exploratory statistical
analysis

As discussed in the introduction, existing quantitative
studies—hence datasets—on subsurface sediment geochem-
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istry are scarce, and this situation is no different in the
Netherlands. Geochemical characteristics have not been
routinely analysed as part of the boring and sampling
programmes on which the DGM and REGIS model are based.
However, within a number of specific projects chemical
analyses have been performed. A brief inventory of the DINO
dataset showed that, by December 2006, geochemical data
were present from some 50 research projects, 80% of which
were available in digital form. Geochemical analyses that
were performed for at least 10% of the boreholes sampled
included: X-ray fluorescence spectrometry (XRF, 80%),
inductively coupled plasma–atomic emission spectrometry
after destruction byHF or aqua regia (ICP-AES, 50%), thermo
gravimetric analysis (TGA, 40%), and for less than 25% of the
boreholes also ICP-mass spectrometry (ICP-MS), high-
performance liquid chromatography, grain size (Malvern),
atomic adsorption spectrometry, and C/S analysis (LECO).

Nearly half of the borings concerned had a maximum depth
of less than 1.2 m (shallow soil borings), and borehole
locations were found to be concentrated in two areas: the
southern sand area, dominated by Pleistocene fluvial deposits
(geotop region 4), and the fluviatile clay and connected
western marine clay area, dominated by a Holocene, confining
layer on top of a sequence of Pleistocene sediments (geotop
regions 2b and 1a; see Table 1 and Fig. 3). These two areas,
that together cover the main lithostratigraphical units, were
therefore selected for exploratory statistical analyses. They
will be further referred to as the Pleistocene and Holocene
area, respectively. Samples from the Holocene area include
40% sands, as well as about 25% peats that were over-
sampled in comparison to their abundance. The majority of
the Pleistocene area is indeed sand samples.

None of the samples selected had been analysed for the
whole range of geochemical parameters included in the

Fig. 3 Division of the area of
the Netherlands in 27 geotop
regions. See Table 1 for more
details
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DINO database, not even for the subset obtained by the most
commonly used analytical techniques listed above. Steered
by data availability, and further based on the considerations
regarding required information (see Section 4.1), we focused
in the exploratory phase on XRF data for total contents of
Al, Ca, Fe, and S, LECO C/S analysis for elemental S and
organic C, and TGA for determination of organic matter and
carbonate content (Table 2). From the analytical variables as
listed in Table 2, the following five primary reactivity
variables were calculated that were used in the statistical
analysis:

Pyrite content: Pyr ¼ S �MFeS2 2Msð Þ=

Reactive iron: Fereact ¼ ½Fe2O3 � ð0:225 Al2O3�
0:91%Þ�»2MFe MFe2O3=

Clay content: Clay=αAl2O3−β (α, β dependent
on geographic region)

Organic matter: OM=2TOC or OM=TGA550

−0.07Clay
Carbonate: Carb=TGA850×MCaCO3/MCO2 or

Carb=CaO−(0.0488 Al2O3−0.1147%)

where Mi is the molecular mass of compound i, TOC is total
organic carbon, and TGAj is the incremental mass loss
between temperature j and the previous temperature. The (γ
Al2O3−δ) terms for reactive iron and carbonate are empirical
relations to correct for silica-bound iron or calcium,
respectively. The clay correction factor of 0.07 in the OM-
TGA550 relation is also an empirically derived factor.

3.3 General approach

Statistical analysis of the existing geochemical data is
combined with theoretical and practical considerations, to
assess the degree of variability of subsurface reactivity, the

relevance of different DGM based stratifications and the
efficiency and possible redundancy of analytical parameters.

4 Results

4.1 Analytical protocol

Given the discussion above on societal relevance, the
required regional scale chemical information to characterise
the subsurface reactivity should include:

& state and stability of pH and redox (relevant for
mobility of trace elements, speciation of redox-
sensitive elements, preservation of archaeological heri-
tage, corrosivity to underground infrastructure);

& reduction capacity (nitrate reduction, reductive degra-
dation of organic contaminants, but also in response to
drainage or injection of oxygenated water);

& contribution of pyrite to reduction capacity, in view of
release of potentially harmful trace metals;

& acid buffering capacity (atmospheric input, but espe-
cially in response to pyrite oxidation);

& retardation potential (to predict groundwater transport
time scales and concentration levels of metals and
organic contaminants).

Based on the knowledge on the lithology and mineral-
ogy of the subsurface sediments, a finite number of relevant
geochemical variables could be identified (Table 3). They
are currently used, or are considered desirable, as input in
models for reactive transport of contaminants, nutrient
availability to crop or nature areas, acidification buffering,
mobilisation of metals under changed hydrogeochemical
regime, etc. The main focus of the Dutch effort on regional
scale characterization of sediment geochemistry would be
on the mineral subsoil and deeper sediment rather than the

Table 2 Number of samples analysed for the variables considered relevant for each of the two areas selected for exploratory statistical analysis
(note that none of the samples is analysed for all variables)

Variable Analytical method Pleistocene area (southern sands)
Ntotal=1984

Holocene area (fluviatile and western marine
clays) Ntotal=1810

Total elemental S CS analyzer 54 1874 732 1649
XRF 1568 497

XRF & CS analyzer 252 420

Total Fe as Fe2O3 XRF 1965 1965 1625 1625

Total Al as Al2O3 XRF 1978 1978 1625 1625

Total Ca as CaO XRF 1984 1984 1625 1747
Carbonate content TGA850 0 122

Total Organic Carbon (TOC) CS analyzer 0 799 160 656
Organic Matter content (OM) TGA550 799 496
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organic topsoil, which is reflected in the variables selected
to be of primary importance (see Table 3). Table 4 provides
an overview of the commonly available analytical techni-
ques for these variables.

For most of the relevant reactivity variables, more than
one analytical technique is available, but some of these are
quite laborious as they involve several dissolution/extrac-
tion steps before final analysis. Also, weak selective
extractions are known to be highly sensitive to the exact
laboratory conditions and procedures (temperature, solid to
liquid ratio, extraction time, shaking frequency etc.), as well
as to overall sample composition (e.g. carbonate content for
non-buffered extractions). Therefore, these methods are less
desirable for routine environmental analysis, both from an
economic as from a quality assurance point of view. An
optimal or ideal standard analytical package would thus
make use of a small number of well-developed and
preferably automated techniques, for which detection limits,
duplicate precision (both within batches as on the longer
term), and standard trueness are known and of course
acceptable for the required purpose. Detection limits,
precision, and trueness of a number of the GSN laboratory
standard methods applied to natural soil/sediment samples
were recently assessed by van der Veer (2006), within the
framework of a geochemical soil survey of the Netherlands.
Also based on these results, the standard package for
geochemical characterization of soil and subsoil aquifer
sediments was set as follows:

& XRF, for total element content,
& TGA, for sedimentary organic matter and carbonate

content,
& CS elemental analyser, for total S and total and organic

C;
& Laser diffraction particle size, for grain size distribution

including clay content;
& extraction by 0.43 M HNO3 of so called geo-available

elements (hydroxides, carbonates, exchangeable metals;
see Smith and Huyck 1999), analysis by ICP-AES/MS;

& and for topsoil only: extraction by 0.01 M CaCl2 for
parameters such as pH and DOC.

Information on pH and Eh for the deeper subsoil is
considered to be sufficiently available from regional and
national groundwater monitoring networks; adequate col-
lection of predominantly anaerobic groundwater is not
easily incorporated into regular drilling campaigns.

It is expected that this basic analytical package, when
performed on a routine basis, can be performed for about
€250 (or $315) per sediment sample. Additional analyses
can of course be performed for specific purposes locally.
All chemical analyses are to be executed according to the
laboratory protocol in force. In the Netherlands, these
will be the protocols of TNO Geological Survey of the

Netherlands and, for the weak extractions, of the Chemical
Biological Laboratory for Soil of the Wageningen University
and Research Centre.

4.2 Boring and sampling protocol

4.2.1 Stratification

The aim of stratification in sampling design is to reduce
uncertainty in the determination of relevant statistics such
as mean, median, or 90 percentile (P90). The overall data
variance is split up into between stratum variance and
within stratum variance, with the latter intended to be much
smaller than the initial overall variance. Given a fixed
number of samples collected and analysed (usually based
on financial and logistic constraints), using the occurrence
of each of the strata distinguished as additional information
may greatly improve the precision of statistical predictions.
Prerequisites for adequate stratification in this case are thus:

& The spatial distribution of the strata to be distinguished
within the geotop must be known. For the case of the
Netherlands, this means that the strata should be well-
defined (hydro)geological/lithostratigraphical entities
within the DGM or REGIS model.

& The within-stratum variance for the reactivity properties
measured should be small compared to the overall
variance. If not, there is only limited gain in precision,
and a false impression of differences in reactivity might
be perceived that are actually statistically insignificant.

& Each stratum distinguished should be significantly
different from all other strata. Otherwise, similar strata
should be grouped, as together they then could be
characterised by a smaller number of samples or to a
better precision. Of course, a significant difference may
already be determined by only one of the reactivity
properties.

Based on the first prerequisite, geotop region, geolog-
ical formation and lithological class were considered for
stratification. Using the available data (see Section 3.2;
Table 2) the relevance of these classifiers with respect to
the other prerequisites was tested in two reconnaissance
studies for the Pleistocene and Holocene areas separately.
Figure 4 shows an illustrative example of the type of Box–
whisker plots used in the exploratory statistical analysis.
Statistical significance of differences between combina-
tions of geotop region, formation, and lithology were
assessed based on the 95% two-sided non-parametric
confidence interval of the median (Helsel and Hirsch
1992). The overall conclusion is that lithology provides
the main differentiation in subsurface sediment reactivity
but geological formations and geotop units also show
significant differences in reaction capacity within a single
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lithology class. Apparently, primary geological differences
in the lithological composition are dominant in determin-
ing differences in reaction capacity, while the time- and
space-dependent specific depositional environment and—
for secondary phases—diagenetic processes also make a
difference. A further subdivision based on geological
formation and geotop region thus aids in the geochemical
characterization of aquifer sediment strata for environ-
mental purposes.

4.2.2 Statistics per stratum

The primary aim of the planned nationwide characterization
of sediment geochemistry within the Netherlands is to
provide information at a regional scale, in support of
groundwater and surface water management (e.g. a Water
Board management area or the infiltration area for a
drinking water supply). It then depends on whether the
specific question to be answered refers to (1) the total or

Table 3 List of geochemical variables that are commonly used as input in, or would improve, various reactivity models

Commonly used Desirable extensions

OM/TOC Various OM fractions (fulvic acid, humic acid, refractory), effective reactivity of OM

C/N ratio of OM (for soil)

C/P ratio of OM (for soil)

Dissolved Organic Carbon (DOC) DOC fractions, C/N and C/O ratio of DOC

Available N, P (oxalate extractable)

Clay content Clay mineralogy, CEC of clay mineral fraction, grain size distribution, specific surface area

Oxide minerals (Fe, Al, Mn)

Cation Exchange Capacity (CEC) CEC of separate mineral fractions and OM

Exchangeable cations

Total metal and sulfur content Extractable metal content (0.43 M HNO3), mineralogy of priority metals, S and As

Carbonate content

pH Redox potential(Eh)

Soil moisture/groundwater composition

In bold, the variables selected as ‘priority’ reactivity variables for soil/sediment, in italics priority reactivity variables for pore water/groundwater

Table 4 Commonly available analytical techniques for priority reactivity variables as identified in Table 3

Reactivity variable Analytical technique

OM CS analyzer for TOC after carbonate dissolution; TGA at 450°C or 550°C

OM reactivity Micro-oxymax; TGA; Rock Eval; pyrolysis Gas chromatography–mass spectrometry (GC-MS)

Clay content Pipette; sedigraph; laser diffraction; calculated from total Al content (measured by XRF or ICP-AES after
destruction by HF or Aqua Regia)

Grain size distribution Pipette method, sedigraph, laser diffraction

Specific surface area BET analyzer, calculated from grain size distribution

Fe, Al, Mn oxides/hydroxides Selective extraction with, e.g. dithionite, citrate, oxalate, or 0.43 M HNO3, analysis by ICP-AES; for Fe:
calculated from total Fe and Al (XRF;ICP-AES)a

CEC, exchangeable cations Selective extraction with NH4-acetate or pH-buffered BaCl2, extraction by 0.43 M HNO3; analysis by ICP-AES

Directly bioavailable fraction Extraction by 0.01 M CaCl, analysis by ICP-AES

Carbonate Scheibler (selective extraction by HCl); TGA at 850°C; analogous to Fe oxides calculated from total Ca and Al
(XRF; ICP-AES)

Pyrite total S by XRF or CS analyzer; selective extraction

pH pH-electrode

Redox potential (Eh) Mainly derived from soil moisture/groundwater composition; potentiometry

Soil moisture/groundwater
composition

ICP-AES; ICP-MS for trace elements; ion Chromatography (IC) for anions

a Total reactive Fe can be viewed as all non-silicate-bound Fe, where silicate-bound Fe2O3 amounts to about 20 or 25% of total Al2O3 content (Huisman
and Kiden, 1998; Dellwig et al. 1999, 2002)
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average mass flux from, e.g. soil surface to groundwater, or
groundwater to surface water, or (2) the percentage of
cases, or fraction of the total area considered, where a
certain critical concentration will be exceeded. In the first
case, basically the average reaction capacity should be
determined with adequate accuracy (combined precision
and trueness). In the second case insight is needed into the
entire statistical distribution, which can be translated into
determining with adequate accuracy the median (P50), as
well as some lower/higher percentiles (e.g. P10, P25, P75,
P90). This is a multi-parameter stochastic approach, based
on variability and extremes in addition to central tendency,
but still on a regional scale, since no assertions are made as
to where exactly a certain situation will arise.

With respect to the type of statistical distribution in
relation to the nature of the reaction property to be assessed,
four typical ‘endmembers’ are discerned. They will be
worked out in examples below.

1 The presence of a compound, rather than its content,
determines reactivity

For carbonaceous lithostratigraphic units, above a
certain minimum carbonate content, the exact carbonate
content is of little or no relevance. As long as carbonate
minerals are present acid buffering capacity is guaran-
teed and, given relatively fast dissolution, the passing
groundwater will become carbonate saturated. Analo-
gous terms may apply for redox relevant parameters.
Essential in these situations are:

& what is the required minimum content,
& what is the probability of (not) exceeding this

minimum (% of samples above/below the threshold)
& to what precision can this probability be estimated.

The average reactivity in this case can be equated to
the percentage of samples above the threshold times the
(maximum) reactivity at this content. In the multi-
parameter stochastic approach, it will probably suffice
to assert that there is maximum reactivity in x% of the
cases and barely any or no reactivity in 100–x% of the
cases.

2 Predominantly low reactivity determines the effective
reactivity

Sandy lithostratigraphic units generally have low
reaction capacities. Large part of the measured values
may be close to or below the detection limit. The
frequency of occurrence of higher contents of the
pertinent compound then largely defines overall reac-
tivity, where again its exact content may be less
relevant. An example is pyrite content; to remove nitrate
from infiltrating groundwater through pyrite oxidation,
pyrite does not have to be ubiquitous, and only some
pyrite may be sufficient for complete denitrification of
the passing groundwater. The disperse occurrence of
pyrite in an otherwise pyrite-poor sandy matrix may
thus effectuate denitrification of the entire aquifer. This
implies a non-linear relation between content and
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effective reactivity, whereby the average content may
actually give an overestimation of the effective reactiv-
ity. In a multi-parameter stochastic approach, the
statistical distribution of the low content values will be
highly important. Essential here are:

& the threshold content that differentiates marked
reactivity from low reactivity,

& the probability of being above or below this
threshold ant the accuracy of its estimate,

& on the basis of this, an estimate of the effective,
weighted average reactivity,

& possibly, for the multi-parameter stochastic ap-
proach, the value and accuracy of low percentiles
describing the low reactivity part of the distribution.

Cases 2 and 1 are to a certain extent mirror images.
In case 1, reactivity is the norm, and given the presence
of the reactive compound reactivity is fully expressed.
While the available reaction capacity will ultimately
determine its depletion, it does not determine current
reactivity. In case 2, we have the reverse, where lack of
reactivity is the norm and effective current reactivity
depends on the infrequent presence of the reactive
compound.

3 The relatively homogeneous content of the reactive
compound determines reactivity

This may occur for instance for the CEC in clayey
lithostratigraphic units. In such cases, focus should be on:

& the average (or median for the multi-parameter
stochastic approach) and its accuracy (confidence
interval)

Because of the homogeneity, possible non-linearity
between content and effective reactivity is not an issue
here.

4 The strongly inhomogeneous content of the reactive
compound determines reactivity

This situation exists for example for sedimentary
organic matter in heterogeneous deposits. The sorption
capacity for organic contaminants is governed by the
average OM content and the degree of retardation with
groundwater transport is directly dependent. To assess
the average effect, we need to estimate:

& the average (in case of non-linearity the weighted
average) and its accuracy.

For the multi-parameter stochastic approach, the
entire statistical distribution needs to be characterised,
through:

& the median and its accuracy,

& more extreme percentiles and their accuracy.

Case 4 is more or less an intermediate situation
between on the one hand case 3 and on the other hand
case 1 or 2. Conditional upon whether there is a
tendency towards either 1 or 2, focus in the multi-
parameter stochastic approach will be on the high or low
extreme percentiles. Case 4 implies a skewed distribu-
tion, for which accuracy of extreme percentiles is always
less (wide confidence intervals) than for the median.
Assuming a lognormal distribution may aid in improving
accuracy of the percentile value estimates, but introduces
model uncertainty in return. A further subdivision, in for
example sediment facies, might aid in the spatial
localization of subunits having higher reaction capacity.

4.2.3 Sample size

In the exploratory studies based on previously available
data, the number of samples per statistical stratum differed
widely. For the Holocene area, a deliberate oversampling
on peat had been performed. For the Pleistocene area, in
general sample size was larger for the more ubiquitous
sandy units than for the clay, loam, or peat units. Because
sands combine overall low reactivity with large variance,
this did not always result in a more accurate estimation of
their median contents, the more as these were often below
the detection limit themselves. A sample size of 45
collected samples per stratum was explored, based on the
results of the exploratory studies and general experience.
This would imply a relative oversampling of the sparser
lithologies in a boring. Given an average “loss” of around
10% of samples (that cannot be adequately classified, show
obvious analytical error, etc.) it leaves a minimum of one
sample for each 2.5% percentile step. This should be
sufficient to adequately describe most types of statistical
distribution.

Figure 5 shows the cumulative frequency distributions
obtained with this kind of sample size for a clay lithological
unit. The typical end-members are a normal type distribu-
tion, such as often found for the clay content, and a
lognormal type distribution, such as frequently observed for
organic matter. A normal distribution gives a near-linear
relation when sorted values are plotted against a linear
probability scale (see Fig. 5a), and—by definition—a linear
relation when plotted against the normal probability scale
(see Fig. 5b). A concave relation in Fig. 5a may imply a
lognormal distribution, which gives a (near-)linear relation
when the logarithms of the sorted values are plotted against
cumulative frequency (see Fig. 5c and d). Distributions
with outlying values, as is the case for organic matter in
Fig. 5, also result in highly concave relations when plotted
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linearly. They are best recognised in plots against the
normal probability scale; see the dotted lines in the plots of
Fig. 5 that show the effect of removal of the outlying
organic matter values. The clear bends in the curves for
organic matter and calcite are suggestive of a bimodal
statistical distribution.

4.2.4 Protocol

Boring campaigns will be carried out in two rounds. Upon
sampling and analysis of the first series of borings, a first
interpretation is to be made. Based on these results, it is
decided for which lithostratigraphical (sub)units additional
samples need to be collected to obtain a sufficiently
accurate characterization of the reactivity of the aquifer
sediments.

The first level of stratification is based on a division into
geographical units with more or less homogeneous geo-
hydrological build-up of the subsurface (the geotop regions
in the Netherlands). Preferably, the planned boring locations

are geographically spread within these units. Classes or strata
within the geographical units are defined as combinations of
lithology and lithostratigraphical unit (formation, member,
or layer). The choice for the latter is based on a priori
geological information (in the Netherlands included in the
DGM and REGIS models) and resulting expectations for
geochemical contrast.

Borings are executed and described according to the
boring protocol in force (see Bosch 2000 for the GSN
boring protocol). The type of equipment used should allow
collection of undisturbed samples down to the depth
required for the characterization study. As a rule of thumb,
two samples per metre will be collected down to a depth of
5 m below surface level, and one sample per metre below
this depth. However, sparse strata are oversampled (and
large units undersampled) to obtain a sufficiently accurate
characterization of their reactivity. Aim is to obtain a
minimum of 45 samples per stratum, if it occupies at least
1% of sediment volume within the subsurface of the geotop
region at hand.
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Samples are then analysed according to the analytical
protocol agreed. Sample classification (especially lithology
class, but potentially also lithostratigraphy) is adjusted
when necessary, based on the combined results of the
laboratory analyses and the original borehole descriptions.
The required statistics (mean, median, other percentiles of
the reactivity variables) and their confidence interval are
calculated for each stratum distinguished. Confidence
intervals are compared with desired accuracy. Additional
sampling and analyses, from a second series of borings, is
performed for:

& strata for which for some reason (e.g. too many adjusted
classifications) less than 45 samples were obtained,

& inhomogeneous strata for which the accuracy (for the
statistics calculated) is less than required,

& inhomogeneous strata for which it is concluded that a
further subdivision offers adequate differentiation in
sediment reactivity and is also practically possible (i.e.
the spatial location of the subunits is known through a
subsurface model such as DGM or REGIS).

In the second case, a multiple of the initial 45 samples
may be needed depending on the required increase in
accuracy, while in the last case the number of samples is
multiplied by the required number of subunits.

Final interpretation is based on the combined results of
the first and second round of sampling and analysis.

5 Discussion and conclusions

The case of the Netherlands shows that, with state-of-the-
art techniques for aquifer architecture characterization and
routine chemical analysis, assessment of subsurface reac-
tivity on a regional scale has become feasible. Because a
priori stratification is necessary, an adequate model of the
subsurface geology needs to be available. The Netherlands
in this respect are probably on the well-informed end of the
spectrum. Lithological stratification proved essential, infor-
mation on which is the least difficult to obtain, but
lithostratigraphical and regional variability could not be
ignored in our case. Due to the relative complexity of the
geology of the Netherlands, with a west–east gradient of
marine influence and north–south division with regard to
glacial impact, the number of regional strata is relatively
large. Lithostratigraphy as the only additional stratifier
might suffice in other sedimentary basins.

A concern from the exploratory studies was the geo-
graphical “clotting” of borehole locations. The non-random,
selective location of the boreholes might not have grasped
lateral gradients in sediment composition, reflecting for
example coastal proximity or distance from the main river

channel. For subregions 4b and 4d1; however, a comparison
could be made with results of a first pilot study where, using
the protocol developed, a more deliberate choice for the
spread of locations was made. In most cases, there was good
correspondence between the frequency distributions of the
old exploratory dataset and of the new data from the pilot
study. Most of the few differences could be explained by the
presence (old data) versus absence (new data) of detection
limit values, or a better discrimination between lithological
classes for the new dataset. The comparison thus verified that
a division in regions with more or less uniform hydro-
geological build-up of the subsurface adequately accounts
for spatial diversity.

Given sufficiently detailed stratification, a sample size of
45 per stratum was found to adequately describe the type of
statistical distribution. This implies that in most instances
the required type of statistic (mean or percentile) would be
determined with sufficient accuracy. The results of the
additional pilot study indicated that a smaller sample size
would not suffice for most units. To halve confidence
intervals, sample size needs to be quadrupled (√n-relation).
This would mean 180–200 samples per stratum for a
twofold better estimate. Additional subclassifiers could then
be the better alternative.

The benefit of additional classifiers was explored only
for the Pleistocene area. Geohydrological layering and
glauconite content sometimes provided additional separa-
tion, but stratification based on the sand median, sediment
colour, or position within the geohydrological framework
(recharge, discharge, or intermediate area; Broers 2004)
proved not to be of added value. Also, a subdivision in
sediment facies was considered, based on the data from the
pilot study where this information was collected on boring.
The facies subdivision specifically provided insight into
what exact spatial unit contains the higher reaction capacity
within an otherwise low reactivity sand group. In other
words, the occurrences of the high-percentile values can be
isolated based on their sedimentological setting. For the
nationwide survey, however, this would require a more
detailed geological model with reliable information on their
spatial occurrence, which is presently not available. Also in
other sedimentary basins this will generally not be the case.

The sampling protocol allows for a reclassification of
samples based on the results of the laboratory analysis. This
is because the classification from field observation and
visual inspection of the boring is expected to be less precise
than a stratification based on the measured grain size
distribution and organic matter content. This was indeed
confirmed by the additional pilot study data. From a purely
statistical point of view it can be argued that the larger
spread in reactivity per lithology class obtained from the
field classification is a better measure of the spread in the
model units of models such as DGM or REGIS. The spatial
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configuration of the units is based on borehole descriptions
that in most cases go without additional geochemical
analysis. However, in view of knowledge development, it
seems more pragmatic to optimise the accuracy in the
geochemical characterization of the stratum aimed at, and
separately assess the uncertainty in the correct field and
model classification.

The design of the standard analytical package was based
on the principle that the geochemical reactivity of the
subsurface is dominated by a limited number of soil
properties and processes for the Netherlands. If some key
analytes could be used as proxy for a number of reactive
properties, an even smaller number of analytical techniques
would of course be beneficial from an economic perspective.
However, within the strata defined, with their relatively
homogeneous mineralogical and chemical composition, the
key analytes appear to be statistically independent: prelim-
inary results from the pilot study, where all analytes were
available for all samples, showed that mutually explained
variance was usually less than 50%. Hence, a further
reduction in analytical techniques would result in serious
loss of information.
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