
Determination of traffic control tables by HPC

Eligius M.T. Hendrix, Siham Tabik1 and Rene Haijema2

Resumen— The concept of traffic control tables
(TCT) for an intersection is sketched and a Stochastic
Dynamic Programming model is outlined. The deter-
mination of a TCT by dynamic programming becomes
more cumbersome if more traffic flows and combina-
tion of lights are taken into account. This paper ex-
plains how High Performance Computing (HPC) can
be essential to do this job and sketches the challenges
of this research question.

Palabras clave— Stochastic Dynamic Programming,
traffic control, parallel implementation, Markov chain

I. Introducción

Fig. 1. Situation F2C2; at most one of two flows gets priority

Traffic lights are introduced at the beginning of the
previous century to make road traffic safer, at places
where traffic from different directions cross the same
road segment, called the intersection or crossing. By
giving right of way to traffic in some direction(s),
cars approaching from other directions need to wait
before they get priority. By controlling the traffic
lights, the overall delay or waiting time of the cars
can be kept to a minimum. In literature, the problem
is studied by queueing theorist as well as engineers
(see [5], [6], [9],[8], [10]). An optimal dynamic policy
is not reported except in [4].

The basis of optimal traffic control on a single
intersection is what we call a traffic control table
(TCT) that prescribes which combination of flows
should be given the right of way given the amount
of cars waiting in every queue. For illustration con-
sider the simple situation in Figure 1, called in [3]
the F2C2 case for having 2-Flows in 2-Combinations.
Either the left, or right flow has a green light, or all
lights are red to clear the intersection. For the ease of
reasoning, we abstract here from using amber lights.

Table I illustrates the concept of a TCT. It marks
the decision of which light to set on green, given the
queue length of both queues, when the light is in the
all-red state. In this example λ2 > λ1, such that on
equal queue length, it is convenient to give flow 2
the right of way. [4] model the generation of such a
table as a Stochastic Dynamic Programming (SDP)

1Dpto. Arquitectura de Computadores, Univ. De Málaga,
e-mail: eligius, stabik @uma.es.

2Operations Research and Logistics group, Wageningen Uni-
versity, e-mail: rene.haijema@wur.nl.

TABLA I

TCT for F2C2 when lights show all-red

q1 q2 0 1 2 3 4 5

0 2 2 2 2 2 2

1 1 2 2 2 2 2

2 1 1 2 2 2 2

3 1 1 1 2 2 2

4 1 1 1 1 2 2

5 1 1 1 1 1 2

problem in order to find that TCT that minimizes
the expected total waiting time in the system.

In Section II, the SDP model is outlined and the
iterative process to obtain traffic control tables from
that. Section III describes the parallel programming
approach used to exploit multicore systems. Section
IV provides the experimental set up where a compu-
tational illustration is given in Section V. Finally,
Section VI concludes.

II. TCT by Stochastic Dynamic

Programming

There are numerous ways to model traffic flows.
We focus here on a Markov chain view with time
slots are thought of as to be that big that one car
can pass by on a green light, usually taken as two
seconds. The state is described by the vector (q, l),
where the vector q tracks the number of cars in each
queue and l ∈ {0, . . . , ncomb} indicates the state of
the light, i.e. which of the ncomb combination has
right of way (l = 0 represents the all-red state).

The probabilities of going from one state to the
other depend on the TCT as well as on the proba-
bilities λj of a car arriving at the queues j (for all
j ∈ {1, . . . , nflow}. In order to get a finite state
space to allow numerical computations the queue
length is truncated to a maximum size Q, such that
qj ∈ {0, . . . , Q}.

For the F2C2 case of Figure 1, this means that the
state space is 3-dimensional: (q1, q2, l). The number
of possible states is ns = (ncomb+1)×(Q+1)nflow =
3(Q + 1)nflow. Consider the F4C2 case of Figure 2.
The state space is 5 dimensional and the number of
states is ns = 3(Q + 1)4. We observe that the num-
ber of states grows exponentially fast in the num-
ber of queues; this called the curse of dimensionality
in solving an SDP problem. Nevertheless up to the
F4C2 case, Haijema concludes that an optimal pol-
icy can relatively easily be computed on a PC with
a single processor. Although the curse of dimension-
ality is not resolved by HPC, HPC may stretch the
computational limit beyond the F4C2 case.

To find a TCT that minimizes the expected wait-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wageningen University & Research Publications

https://core.ac.uk/display/29230929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 2. Situation with 4 flows and 2 symmetric combinations

ing time we apply the so-called value iteration (VA)
algorithm (for details see [7] and [3]). First a cost

function C(q, l) =

nflow∑

j=1

qj is defined that captures

the waiting time during the coming time slot for
the current state (q, l). Note that by Little’s law
minimizing the expected number of cars waiting also
minimizes the overall expected waiting time. Next a
so-called value vector Vn(q, l) that gives a valuation
for each state over the next n time slots, is to be
computed for n = 1, 2, 3, Clearly the cost over
0 periods is zero, hence we start the value iteration
algorithm with n = 0 and Vn(q, l) = 0 for all states
(q, l). Then one determines iteratively optimum de-
cisions a such that

Vn+1(q, l) = C(q, l) + min
a

Ee|aVn(T (q, l, a, e))

where T is a transformation function that gives the
state at which to arrive when at the current state,
the decision a is taken and arrival event e happens.
The whole is sketched in Figure 3. Notice that
the number of possible events is 2nflow, as at each
queue, a car may arrive or not. The probabilities
are determined from the vector of traffic intensities
(λ1, . . . , λnflow). If l = 0, i.e. all lights are red, the
decision a ∈ {1, . . . , ncomb}, i.e. one of the combina-
tions can be given a green light. In the other cases,
there are 2 possibilities; either the light stays as it is,
or is put in the all-red state to clear the intersection.

The converging part in the process is the differ-
ence Vn+1−Vn converging to a constant vector which
represents the average waiting time in the system.
Practical implementations require the translation of
the state (q, l) to a state number i and vice versa,
such that one works with two arrays with elements
Vn+1(i) and Vn(i). The convergence is measured by
keeping hold of the so-called span defined as span =
maxi(Vn+1(i)−Vn(i))−mini(Vn+1(i)−Vn(i)). This
is illustrated in Figure 4.

Fig. 3. Value function determination

01 02 03 04 05 0
0 5 0 1 0 0 1 5 0 2 0 0| max
mi n|

i t e r a t i o n s
C o n v e r g e n c e

Fig. 4. Convergence of the span for the F4C2 instance, cal-
culated by the parallel code on a quad-socket eight-core
Intel X7550 (Beckton).

III. Coding Value iteration

The value iteration process requires running the it-
erations up to convergence. At each iteration all val-
ues for the ns states of Vn+1 have to be determined.
If l = 0, this requires looking up ncomb× 2nflow val-
ues in Vn. As we have seen, this is less if one of the
combinations is green. We should look up 2nflow+1

and take the minimum over the two decisions.

Vn+1(ns) …

(2,ncomb) {0,…,2nflow}

…Vn(ns)

i

Fig. 5. Each Vn+1(i) is determined using 2 or ncomb ×Qnflow

elements of Vn, depending on the state of light.

In summary, the iterative process of value iteration
for the TCT generation can be sketched as follows:

for(i=0;i < nflows;i++)q[i]=1;
while(1){

for(i=0;i<num states; i++)
Vn+1[i]=Vn[i];

for(i=0;i<num states; i++){
compute decision(&light);
if(light==all red)

compute new state(ncomb,Vn ,Vn+1)
else if(light == green at one flow)

compute new state(light,Vn ,Vn+1);
compute max&min(Vn);

}

if (max-min<epsilon) break;
}

To be able to model scenarios that involve more
complex and larger intersections, parallel computing
turns out to be essential. For this reason, we de-
veloped a first parallel implementation of the TCT
computation using a hybrid approach that mixes
data-sharing and data-privatizing programming ap-
proaches. The resulting parallel implementation al-
lows varying/adjusting the sharing level from 100%
sharing, where all threads share all the data to 0%
sharing, where each process works on its own data. A
preliminary performance analysis of the 100% shar-
ing implementation has shown that the workload per
iteration is irregular since cumputing one element
in the current value function vector may need from
2×2nflow to ncomb×2nflow of elements from the for-
mer one. After analyzing many scheduling strategies
in combination with different chunk sizes, we found
out that by mapping iterations, of a chunk size equal
to 1, in a round robin fashion among the participat-
ing threads provides the best performance results.
In the experimental results section, we only report
the scalability obtained by using the aforementioned
scheduling methodology. The optimal mapping and
chunk size may change when modeling larger number
of states.

IV. Experimental Testbed

Socket

Core

32KB

 L1D

256KB

 L2

Core

32KB

 L1D

256KB

 L2

Core

32KB

 L1D

256KB

 L2

Core

32KB

 L1D

256KB

 L2

Core

32KB

 L1D

256KB

 L2

Core

32KB

 L1D

256KB

 L2

Core

32KB

 L1D

256KB

 L2

Core

32KB

 L1D

256KB

 L2

18MB shared L3

QPIQPIQPIQPISMISMI

C

C

C

CC

C

C

C

CC

L3

C

C

C

CC

C

C

C

CC

L3

C

C

C

CC

C

C

C

CC

L3

C

C

C

CC

C

C

C

CC

L3

QPI QPI

Q
P
I

Q
P
I

Q
P
I

Memory Socket MemorySocket

(a) (b)

Fig. 6. Block diagrams of (a) single Beckton and (b) quad-
socket eigth-core Intel X7550 (Beckton).

All the experiments shown in this paper were
conducted on a quad-socket eigth-core Intel X7550
(Beckton). An architectural overview and character-
istics of this system appear in Figure 6 and Table II.

A. Intel Quad-socket Eight-core Beckton

The Intel Xeon 6500/7500-series (Beckton) is a
Nehalem-based processor with up to eigth cores and
uses buffering to support up to 16 DDR3 DIMMS per
socket (no FSB). The specific machine we use in the
experiments is X7550 that runs at 2.0 GHz, includes
eigth cores and is capable to perform around 70
GFLOPS double-precision in the LINPACK bench-
mark.

Each processor core includes a private 32KB L1
data cache, a private 256KB L2 cache and a shared
multi-banked 18MB L3 cache. The processor also
has four QuickPath interfaces (QPI), with a speed
of 6.4 GT/s, that can be used to interconnect up to
eight sockets. The processor cores support a 2-way

hyper-threading technology (there are two hardware
thread contexts per core).

The system used in the experiments includes four
sockets containing an X7550 processor each one. The
sockets are fully interconnected using QPI links and
share a total of 128GB main memory. Fig. 6 (a)
shows a block diagram of the X7550 processor, and
Fig. 6 (b) shows a block diagram of the complete
system.

V. Performance Results

01 02 03 04 05 06 0
0 2 0 4 0 6 0S peed up

t h r e a d s
S p e e d u pL i n e a r

Fig. 7. Speedup of the data-sharing parallel implementation
that exploits STM capabilities on quad-socket eigth-core
Intel X7550 (Beckton).

In this section we discuss only the performance
of the data-sharing part of the hybrid implementa-
tion since we are currently working on optimizing
the data-privatizing part which is based on message
passing. Performance evaluations were carried out
using the following configuration. For thread han-
dling and synchronization, we used OpenMP prag-
mas and directives included in icc compiler version
10.1 [2], [1]. We also used the maximum optimiza-
tion compilation option -O3. To exploit SMT sup-
port and increase the positive effect of data-sharing
in the considered multi-socket, multi-core platform,
we run two threads per core and bind them on
these cores along the execution. For the evalua-
tion process, a F4C2 instance was used with Q = 5,
nflow = 4, number of combination=2, epsilon = 0.1
and λ = (0.2, 0.2, 0.2, 0.2). Notice that this instance
implies having 85683 states.

In general, the parallel implementation using data-
sharing shows very good scalability up to one Socket,
reaching speedups equal to 2 × #cores on 8 cores,
as shown Figure 7. However, when the evaluation
includes cores of different Sockets, the speedup starts
to decay substantially. This is mainly due to the
increase of L3 misses and wait times.

VI. Conclusions

The process of value iteration can be used to de-
rive Traffic Control Tables for intersections that min-
imize expected waiting time. Due to higher traffic
intensity, and more complex situations, the number
of necessary states to be considered in each iteration
grows polynomially in the queue length and exponen-
tially in the number of flows. Use of multicore sys-
tems can be a promising approach and is essential to
provide benchmarks for heuristic approaches. A hy-
brid parallel implementation has been developed to

TABLA II

Architecural summary of the multi-core platform used in the experiments

Intel X7550 4 sockets

cores/socket SMT L1D cache L2 cache L3 cache memory
8 yes 8×32KB 8×256KB 1×18MB 128GB

exploit the potential of multi-socket multi-core archi-
tectures. Preliminary speedups of the data-sharing
implementation have been measured for a medium
sized instance called F4C2.

Currently, we are exploring new techniques such
as software prefetching and cache blocking to fur-
ther improve the performance of the data-sharing
implementation at one Socket level. In addition,
we are working on optimizing the communications
in the data-privatizing implementation to improve
the performance among multiple Sockets. The in-
tention is to apply the techniques to the F12C4 case
given in Figure 8. for which no optimum TCT has
been derived yet. Updating one value of the value
function requires the evaluation of several times 212

states due to the possible events. Moreover, using a
minimum queue length of Q = 2, this has to be done
for 5 × 312 = 2.7 mln states. Future investigation
will look at using interpolation to keep the number
of states limited to that number.

Fig. 8. Instance of intersection with 12 flows, 4 combinations

Agradecimientos

This work is supported by grants from the Span-
ish Ministry of Science and Innovation (TIN2008-
01117, TIN2006-01078), Junta de Andalućıa (P08-
TIC-3518), in part financed by the European Re-
gional Development Fund (ERDF). Eligius Hendrix
is fellow of the Spanish “Ramon y Cajal” contract
program and Siham Tabik of the “Juan de la Cierva”
program, co-financed by the European Social Fund.

Referencias

[1] The OpenMP API specification for parallel programming,
http://openmp.org/wp/openmp-specifications/.

[2] Intel Compilers for Linux, http://software.intel.com/en-
us/articles/intel-c-compiler-professional-edition-for-
linux-documentation/ (2009).

[3] R. Haijema, Solving large structured markov decision
problems for perishable inventory management and traf-
fic control, Ph.D. thesis, Univeristy of Amsterdam - Tin-
bergen Institute - Amsterdam School of Economics, 12
2008.

[4] R. Haijema and J. van der Wal, An MDP decomposition
approach for traffic control at isolated signalized intersec-
tions, Probability in the Engineering and Informational
Sciences 22 (2008), no. 4, 587–602.

[5] G. F. Newell, Approximation methods for queues with
applications to the fixed-cycle traffic light, SIAM Review
7 (1965), no. 2, 223–240.

[6] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsia-
los, and Y. Wang, Review of road traffic control strate-
gies, Proc. of the IEEE, vol. 91, IEEE, 2003, pp. 2043–
2067.

[7] M. L. Puterman, Markov decision processes: Discrete
stochastic dynamic programming, Wiley Series in Proba-
bility and Mathematical Statistics, 1994.

[8] M. S. van den Broek, J. S. H. van Leeuwaarden, I. J. B. F.
Adan, and O. J. Boxma, Bounds and approximations for
the fixed-cycle traffic-light queue, Transportation Science
40 (2006), 484–496.

[9] J. S. H. van Leeuwaarden, Delay analysis for the fixed cy-
cle traffic light queue, Transportation Science 40 (2006),
no. 2, 189–199.

[10] M. Wiering, J. van Veenen, J. Vreeken, and A. Koop-
man, Intelligent traffic light control, technical report UU-
CS-2004-029, Institute of information and computing sci-
ences, Utrecht University, 2004.

