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Abstract 
 
When cows are milked with an automatic milking system (AMS), clinical mastitis (CM) cannot 
be detected adequately without using electronic sensing devices. This paper describes approaches 
to improve automated CM detection in AMS using sensor inputs and data mining. Sensor data 
and observational CM data, both at quarter level, were collected over two years at nine Dutch 
AMS farms. Decision-tree induction was used for model development using data from cows that 
were highly likely to be healthy or that were clearly suffering from CM. The model was 
validated including quarter milkings with a less clear CM status. A decision-tree was developed 
with sensitivity of 40% and specificity of 99% using a strict time-window (<24h) to coincide CM 
alerts and observations. Increasing the time-window to a suggested practical level (three days) 
increased sensitivity to 69.5% at the same specificity. In comparison to currently applied models, 
the decision-tree showed an improvement in CM detection, but the proposed sensitivity and 
specificity requirements were not achieved. Improvements in detection performance are expected 
when new sensor information (e.g. on-line somatic cell count sensors) is added.  
 
Introduction 
 
Worldwide, dairy farmers produce milk that has to meet certain milk quality standards. Although 
legislation dealing with these quality standards may differ between countries (e.g., Regulation 
(EC) No. 853/2004; United States Grade A Pasteurized Milk Ordinance; NZCP1: Code of 
practice, Version 5), they all require that abnormal milk, and milk from diseased (e.g. due to a 
clinical mastitis (CM) infection) or injured udders should be excluded from milk supplied for 
human consumption. They also agree that milkers are responsible for detecting abnormal milk, 
or methods achieving similar detection results are used. When milking in a parlor, detection can 
be done by a visual check of milk stripped from each quarter before cups are attached. However, 
when milking with an automatic milking system (AMS) there is no milker present during the 
milking process. To safeguard milk quality, it is essential that AMS use sensors. Detection 
models for CM process data collected by sensors during milking with AMS to generate a mastitis 
alert list. This reports cows likely to have CM that need a visual check by the farmer. The search 
for a perfect CM detection model – putting all cows with CM infection on the mastitis alert list 
without listing any cows erroneously – has been long. Automated CM detection models 
predominantly use electrical conductivity measures at cow or quarter level (Hogeveen et al., 
2010). Despite research efforts to develop CM detection models that meet suggested detection 
requirements (sensitivity (SN) >70%; specificity (SP) >99%; Mein and Rasmussen, 2008), those 
currently used by AMS have an SN of 36.8% and an SP of 97.9% (Mollenhorst and Hogeveen, 
2008). There is a clear need to improve automated CM detection models under field conditions. 
It would also be beneficial for detection models to provide information about the causal 
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pathogen. Three options merit exploration to improve automatic detection of CM using sensor 
data from AMS: 1) applying alternative algorithms for data pre-processing and classification, 2) 
adding information from other sensors, and 3) adding additional cow-level information, e.g. 
parity and somatic cell count (SCC) history. This paper summarizes several studies of these 
approaches to improve automated CM detection using sensor data from AMS.  
 
Applying Alternative Algorithms for Data Pre-processing and Classification or Prediction 
 
Data pre-processing: Mean or maximum values of electrical conductivity have been used as 
predictive variables for CM. Absolute values, differences between values from all quarters, and 
differences between values from previous milkings are most often used. However, mean and 
maximum values are not the only descriptors or variables that can describe a sensor measurement 
pattern. Better information might be obtained with other or additional sensor measurement 
descriptors. Therefore, a new concept of data pre-processing was implemented to develop new 
predictive variables based on sensor measurements of electrical conductivity, milk yield and 
color, measured within quarter milkings, for potential use by automated CM detection models 
(Kamphuis et al., 2008a). Data were collected on one AMS research farm in Germany. Figure 1 
describes steps used to transform raw data from sensor measurements at quarter level into 
predictive variables that express level, variability, shape of sensor output data. These were 
evaluated for their ability to detect CM by computing correlation coefficients and gain ratios. 
Results showed CM detection models may benefit from combining sensor data describing 
several milk characteristics or using variables that describe other sensor measurement pattern 
aspects than the mean and maximum value. Sensor measurements of electrical conductivity and 
milk color in the blue and green spectra showed the most potential for CM detection. Variables 
based on absolute sensor measurement values may be as important as variables based on 
expected values from previous quarter milkings or expected values based on other quarters.  

 
Figure 1. Data flow diagram representing steps to transform raw sensor data from individual 
quarter milkings into potentially predictive variables (from: Kamphuis et al., 2008a). 
 
Data classification and prediction: Decision-tree induction, an analysis method often used for 
classification (Quinlan, 1986), is believed to deal with unbalanced, noisy and incomplete data. 
These three characteristics apply to problems associated with data from automated CM detection 
systems: the low prevalence of CM results in data for analysis to be highly skewed, and sensor 
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data are by definition noisy and potentially incomplete due to malfunction or inadequate 
calibration. The application of decision-tree induction methodology for automated CM detection 
used data collected during a two-year study on nine Dutch dairy farms with AMS (Kamphuis et 
al., 2010). Sensor data of electrical conductivity, milk yield, and color were available for 3.5 
million quarter milkings, of which 348 had CM according to observations by participating 
farmers. Data were divided into training (two-thirds of all data) and test sets. Decision-trees were 
trained, with and without bagging and boosting (data mining techniques used to retrieve more 
informed decisions), with data from 243 quarter-milkings with CM and 24,717 quarter milkings 
with a very high likelihood of being healthy. They were validated using data from 105 quarter 
milkings with CM and a random sample of 50,000 quarter milkings without a CM observation.  
 
The decision-tree developed in combination with bagging techniques showed the best detection 
performance (Table 1). This decision-tree had 40% SN and 99% SP when a strict time-window 
of <24h was used so that CM alerts coincided with observations. This detection rate was similar 
to that of models currently used by AM systems (SN = 36.8%; Mollenhorst and Hogeveen, 
2008), but the number of false positive alerts was reduced by more than 50%. The large variation 
in gold standard definitions, data used, and time-windows applied made direct comparison with 
previously reported results difficult. Sherlock et al. (2008) suggested that the most practical time-
window would be from 48h before a CM observation until 24h after. When this extended time-
window was applied, SN increased to 69.5% with a SP of 99%, close to the suggested 
requirements of Mein and Rasmussen (2008). Furthermore, the developed CM detection model 
should be suitable for practical application because model building and validation were based on 
actual field data from commercial farms, alerts for CM had to be given within a narrow time-
window of less than 24h before CM were observed, and detection performance was based on a 
test set that included quarter milkings with uncertain mastitis status, closely mimicking practice 
(Hogeveen et al., 2010).  In an additional study to explore the use of sensor data for CM 
pathogen prediction, decision-tree induction was applied to 140 CM cases (110 Gram-positive 
cases) with both sensor data and bacteriological culture results (Kamphuis et al., 2011). Data 
were divided into training (n = 96) and test sets (n = 44). The decision-tree developed had an 
accuracy of 90.6% based on data in the training set. When only CM cases with high probability 
estimates for their Gram-status (either positive or negative) were considered, 74% of records in 
the training set could be classified with a stratified accuracy of 97.1%; however accuracy 
dropped to 54.5% when the model was validated. It was concluded that decision-tree induction 
was not able to use the sensor data for Gram-status prediction. 
 
Adding New Sensor Information 
 
Kamphuis et al. (2008b) explored the value of including data from in-line measurements of 
somatic cell counts (SCC) for individual cow milkings for detection of CM (Data were collected 
from a research farm applying AMS in a pasture-based dairy system (Greenfield Project, 
Hamilton, New Zealand). Clinical mastitis was defined as quarters that were treated for mastitis 
with antibiotics. Three models were compared; the first model used electrical conductivity as the 
sole criterion for udder health, the second used SCC data only, and the third applied a fuzzy logic 
model to combine the two. With SN fixed at 80% for all, the false alert rate per 1,000 cow 
milkings and the detection success rate were similar between the first two models. When both 
information sources were combined, the false alert rate was reduced 2- to 3-fold, and detection 
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success rate increased by 2- to 3-fold. The fuzzy logic model had SP of 99.8% at the fixed SN 
level of 80% (Table 1). It was concluded that the CM detection model performed better when on-
line somatic cell count information at cow-milking level was added to electrical conductivity 
measurements.  
 
Adding Non-sensor Information 
 
The opportunity to improve CM detection performance by adding non-sensor information was 
explored by Kamphuis (2010). Cow information was added to a modified version of the CM 
detection model developed by decision-tree induction in combination with bagging as described 
above. The modification involved transforming a CM probability at quarter level to a CM 
probability at cow level. The CM detection model based on sensor data alone provided a prior 
probability estimate for a cow milking to be a CM event. Posterior probability estimates were 
calculated after probabilities of CM based on non-sensor cow-level information (e.g. parity and 
SCC history) were added. Adding cow-level information did not improve detection performance 
(Table 1). Contrarily, the model with combined information had a lower detection performance 
than the model based on sensor measurements alone.  
 
Table 1. Detection performance (Sensitivity (SN) and Specificity (SP)) of clinical mastitis 
detection models using sensor data from AMS 

Applied algorithm Sensor 
information 

used 

Cases1

 (n) 
Non-cases1 

(n) 
Time-

window 
 (h) 

SN 
(%) 

SP  
(%) 

DTI2 EC3, color, yield 243 24,717 <24h 24.7 99 

DTI & boosting EC, color, yield 243 24,717 <24h 38.1 99 

DTI & bagging EC, color, yield 243 24,717 <24h 40.0 99 

DTI & bagging EC, color, yield 243 24,717 48h4 66.7 99 

DTI & bagging EC, color, yield 243 24,717 72h5 69.5 99 

Fuzzy logic EC, SCC6 187,8 27,6997 72h5 809 99.89,10

DTI & bagging EC, color, yield 2617 259,7857 <24h 26.3 99 

DTI & bagging & NBN11 EC, color, yield, 
cow information 

2617 259,7857 <24h 20.2 99 

1Number of records used for training a model at quarter level. 2Decision-tree induction. 3Electrical conductivity. 
4Divided into 24h before a CM observation and 24h after a CM observation. 5Divided into 48h before a CM 
observation and 24h after a CM observation. 6Somatic Cell Count measured at cow level. 7Based on cow milkings. 
8CM cases were defined as quarters treated with antibiotics for mastitis. 9Performance based on training set, no 
additional test set was used for validation. 10Approximately, using ‘false alert rate ≈ 10 * (100 – specificity)’ 
(Sherlock et al., 2008). 11Naïve Bayesian network. 
 
Decision-tree induction can deal with sensor data collected in the field even though these data 
are noisy, incomplete, and unbalanced. When a strict time-window (<24h) was applied, SN was 
40% and SP was 99%, indicating that decision-tree induction can improve detection performance 
compared to currently used models. Widening the time-window to three days increased SN to 
69.5% with SP of 99% using sensors that measure electrical conductivity, color, and yield. While 
these models show performance improvements, current sensor technology does not achieve 
proposed detection requirements and it is unlikely that further algorithm development will result 
in further progress, thus other approaches are needed to improve automated detection. Inclusion 
of in-line SCC measurements at cow level improved CM detection performance, and SCC 
measurements at the quarter level can be expected to provide further improvement (Mollenhorst 
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et al., 2010). Song et al. (2010) reported on a new generation of color sensors which show 
promising results for CM detection. The results presented here indicate that new sensor 
information is the most likely route to improve CM detection in the future. New developments 
such as sensors working in the near infrared spectrum and measuring lactose dehydrogenase 
(Hogeveen et al. 2010) need to be evaluated for their potential to improve CM detection.  
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