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Abstract

Question: Mean Ellenberg indicator values (EIVs) inherit information about

compositional similarity, because during their calculation species abundances

(or presence–absences) are used as weights. Can this similarity issue actually be

demonstrated, does it bias results of vegetation analyses correlating mean EIVs

with other aspects of species composition and how often are biased studies

published?

Methods: In order to separate information on compositional similarity possibly

present in mean EIVs, a new variable was introduced, calculated as a weighted

average of randomized species EIVs. The performance of these mean randomized

EIVs was compared with that of the mean real EIVs on the one hand and random

values (randomized mean EIVs) on the other. To demonstrate the similarity issue,

differences between samples were correlated with dissimilarity matrices based

on various indices. Next, the three mean EIV variables were tested in canonical

correspondence analysis (CCA), detrended correspondence analysis (DCA),

analysis of variance (ANOVA) between vegetation clusters, and in regression on

species richness. Subsequently, a modified permutation test of significance was

proposed, taking the similarity issue into account. In addition, an inventory was

made of studies published in the Journal of Vegetation Science and Applied Vegeta-

tion Science between 2000 and 2010 likely reporting biased results due to the simi-

larity issue.

Results: Usingmean randomized EIVs, it is shown that compositional similarity is

inherited into mean EIVs and most resembles the inter-sample distances in cor-

respondence analysis, which itself is based on iterative weighted averaging. The

use of mean EIVs produced biased results in all four analysis types examined:

unrealistic (too high) explained variances in CCA, too many significant correla-

tions with ordination axes in DCA, too many significant differences between

cluster analysis groups and too high coefficients of determination in regressions

on species richness. Modified permutation tests provided ecologically better

interpretable results. From 95 studies using Ellenberg indicator values, 36

reported potentially biased results.

Conclusions:No statistical inferences should bemade in analyses relatingmean

EIVs with other variables derived from the species composition as this can pro-

duce highly biased results, leading to misinterpretation. Alternatively, a modi-

fied permutation test usingmean randomized EIVs can sometimes be used.

Introduction

Ellenberg indicator values (EIVs; Ellenberg et al. 1992) and

their geographic alternatives (e.g. Landolt 1977; Borhidi

1995; Hill et al. 1999; Pignatti 2005; Lawesson et al. 2009)

are frequently used by European vegetation scientists as

surrogates for measured environmental variables. Several

studies have demonstrated that the calculated mean of

EIVs for species present in the vegetation sample are often

a good estimate of real environmental conditions, even if

this relationship may be limited to certain parts of a given

gradient or to a particular vegetation type (for a detailed
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review, see Diekmann 2003). Some issues regarding EIVs

have undergone thorough discussion in the scientific liter-

ature, such as applicability outside their area of origin (e.g.

Gégout & Krizova 2003; Godefroid & Elı́as 2007), appropri-

ate interpretation in terms of ecological gradients (e.g.

Schaffers & Sýkora 2000; Wamelink et al. 2000, 2005) or

differences in calculation, such as whether to account for

species abundances (e.g. Ewald 2003; Käfer &Witte 2004).

Considering the use of EIVs in vegetation analysis, an often

recognized problem is the circularity of reasoning when

attempting to explain vegetation pattern using EIVs, as

these EIVs were themselves derived from empirical experi-

ence with vegetation (e.g. Exner et al. 2002). To quantify

the risk of this circularity in real analysis is, however,

nearly impossible, and one may also argue that the vegeta-

tion used as the source of information for the original con-

struction of EIVs usually differs considerably (in space,

scale or time) from the vegetation under study, causing the

actual effect of this circularity to be low. However, there is

yet another aspect of circularity that applies to the use of

calculated average species EIVs. The mean for a particular

sample is calculated as an average of tabulated species EIVs

weighted by species abundance (or presence–absence) data

(Ellenberg et al. 1992). This means that when calculated,

mean EIVs are derived from two information sources: (1)

tabulated species EIVs specifying the ecological behaviour

of species along main ecological gradients and (2) the spe-

cies composition of the vegetation samples for which the

mean EIVs are calculated. Due to the first information

source, themean EIVs contain external ecological informa-

tion, based on thorough expert knowledge about the spe-

cies ecological requirements (Ellenberg et al. 1992). The

use of the second source, however, also has its conse-

quences: calculated mean EIVs inherit information about

compositional similarity to other vegetation samples. Here-

after, this will be referred to as the similarity issue.

If two vegetation plots have exactly the same species

composition, their calculated mean EIVs will indeed be

identical. Likewise, mean EIVs of two plots differing in only

one or a few species will be very similar. Indeed, composi-

tional similarity corresponds to true ecological similarity

between the two plots, but not completely. This is because

real communities are structured not only according to the

ecological niche theory (Hutchinson 1957), by which the

use ofmean EIVs is also justified, but also by stochastic pro-

cesses not related to the ecological conditions of plots (Hub-

bell 2001). This implies that two plots with identical

ecological conditions do not need to have identical species

composition and vice versa. In case of mean EIVs, however,

the more similar the two plots are in terms of species com-

position, the more similar their calculated mean EIVs will

be. This may be illustrated by the apparent relationship

between the calculation of mean EIVs and the algorithm of

correspondence analysis (CA; Hill 1973) involving

weighted averaging. In CA, the ordination of samples and

species along the first ordination axis is derived by iterative

repetition of two steps: (1) calculation of sample scores as

the abundance weighted average species scores; and (2)

calculation of new species scores as the abundance

weighted average sample scores calculated in step 1 (the

scores are then rescaled and the process is repeated until

the scores become stable). If we use species EIVs as the ini-

tial species scores, the first step is identical to the calculation

of mean EIVs. Here also lies the historical context; Hill

(1974) derived CA as an extension of Whittaker’s (1960)

algorithm of gradient analysis, which was based on the

average of estimated species optima along themoisture gra-

dientweighted by species abundances. An interesting prop-

erty of the CA algorithm is that the result of the iterative

process is independent of the choice of the initial species

scores (indicator values); these can be set without previous

knowledge about species ecology simply as randomvalues.

The main aim of this paper is to quantify the amount of

compositional similarity preserved in mean EIVs and to

evaluate the influence of this similarity issue on analyses

that correlate mean EIVs to other aspects of species compo-

sition. Examined are four types of analyses commonly

employed by vegetation ecologists: constrained ordination

analysis, unconstrained ordination analysis, analysis of

variance between vegetation clusters and regression on

species richness. The performance of proposed modified

permutation tests, introduced to solve the problem of

biased results, is also tested. Finally, a literature search is

performed to estimate how frequently potentially biased

results have been published in scientific studies.

Methods

Data sets

Two vegetation data sets were used to illustrate the prob-

lem with mean EIVs on real data; the first one large

enough to allow for selection of randomly drawn subsam-

ples, and the second containing measured environmental

variables for each plot. For the first data set, which will be

referred to as the National database data set, 1000 forest veg-

etation samples were randomly selected from the Czech

National Phytosociological Database (Chytrý & Rafajová

2003), which was geographically stratified (Knollová et al.

2005). It covers a wide range of forest types and contains

plots ranging in size from 100 to 400 m2, sampled in the

region of the Czech Republic during the last century by

various authors using the Braun–Blanquet approach

(Westhoff & van der Maarel 1978). The second data set,

referred to as the River valley data set, consists of 97 forest

vegetation plots originating from a local study in the deep

valley of the Vltava River near Český Krumlov, Czech
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Republic. During the seasons 2001–2003, 150-m2 plots

evenly distributed along transects following the steep val-

ley slopes were sampled using also the Braun–Blanquet

approach. The data set includes measured environmental

factors, such as soil pH, aspect, slope, prevailing soil types

and soil depth. Given the strong ecological gradients pres-

ent in the valley, this data set also represents a wide range

of ecologically distinct vegetation types (for more detail,

see Zelený & Chytrý 2007). In both data sets, bryophytes

were excluded, identical species from different layers were

merged and data were transformed into presence–absence

form. Species Ellenberg values for temperature, continen-

tality, light, moisture, nutrients and soil reaction were

taken from Ellenberg et al. (1992).

Randomization of species EIVs

To illustrate the problems caused by the similarity issue, the

part of the information in mean EIVs originating from

external knowledge was separated from the information

about compositional similarity. This was achieved by the

randomization of species EIVs among the species in the

entire table and using these randomized values to calculate

mean EIVs (randomization includes also missing values in

cases of species without assigned species EIVs). This ran-

domization process removes the external ecological infor-

mation from mean EIVs but retains the information on

compositional similarity inherited in the values. These val-

ues can subsequently be used in parallel with mean EIVs

calculated from real species EIVs and the difference in per-

formances of these two variables can be attributed to the

external ecological information in mean EIVs. Addition-

ally, the performance of both (real and randomized) mean

EIVs can be compared to the performance of a random var-

iable, which contains neither ecological nor similarity

information. Hence, three calculated variables were used

in further analyses: (1)mean real EIVs, calculated as a mean

of real species EIVs and carrying both external ecological

information and information about compositional similar-

ity among plots (Fig. 1a); (2) mean randomized EIVs, calcu-

lated from species EIVs randomized among species in the

table and carrying only information about compositional

similarity among plots (Fig. 1b); and (3) random numbers,

obtained by randomization ofmean randomized EIVs among

plots and carrying no meaningful information at all

(Fig. 1c). Note that prior to analysis, species data were

transformed into presence–absence data and mean EIVs

therefore do not account for species abundances.

Identification of the similarity issue

It could be assumed that the more similar two samples are

in terms of their species composition, the more similar they

will also be in terms of mean real EIVs because similarity in

species composition reflects similarity in environmental

conditions. On the other hand, more similar samples will

not have more similar random numbers, as these do not

carry any information (ecological or otherwise). The ques-

tion is how is it with mean randomized EIVs. These values

carry no meaningful external ecological information

because the indicator values for individual species were
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Fig. 1. Schematic representation of the calculation of (a) mean real EIVs,

(b) mean randomized EIVs and (c) random numbers, the three alternative

variables used in the analyses (see text for details).
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randomized; so if plots having higher compositional simi-

larity also have more similar mean randomized EIVs, this

should be attributed to the similarity issue.

To investigate this in detail, a data set created of 100 ran-

domly selected vegetation samples from the National data-

base data setwas used to calculate matrices of compositional

dissimilarities among samples based on different distance

metrics: (1) Bray–Curtis distance; (2) relative Euclidean

(chord) distance; (3) chi-square (v2) distance; and (4) sam-

ple distance in the space of correspondence analysis

(defined by all CA axes). While the first three metrics are

commonly used to calculate resemblance matrices among

samples, e.g. in cluster analysis, the fourth one was

included to investigate how the methodological relation-

ship between the calculation of mean EIVs and the algo-

rithm used in CA (mentioned earlier) project into their

correlation. For comparison with these similarity matrices,

three matrices were calculated with absolute differences

between samples in terms of their: (a) mean real EIVs for

soil reaction; (b)mean randomized EIVs for soil reaction; and

(c) random numbers. We compared the compositional dis-

similarity matrices (1–4) on the one side with the differen-

tial matrices (a–c) derived from mean EIVs on the other,

using the Mantel statistic for matrix correlation (Legendre

& Legendre 1998). All analyses were repeated 100 times,

each time on a newly created data set of 100 randomly

selected samples and newly randomized EIVs.

Performance of mean EIVs in vegetation analyses

Constrained ordination analysis

To evaluate the bias in performance of mean EIVs as

explanatory variables in constrained analysis caused by the

similarity issue, two analyses were performed: (1) investiga-

tion of all six mean EIVs; and (2) comparison of mean EIVs

with a measured environmental variable. The ordination

method used was canonical correspondence analysis

(CCA; ter Braak 1986).

In the first analysis, the explanatory variables in CCA

were mean real EIVs, mean randomized EIVs and random

numbers, calculated for each of the six Ellenberg indicator

values. As a result, 3 9 6 = 18 variables were created and

used separately as the predictor in a series of 18 CCA analy-

ses. These analyses were performed on a subset of 100

plots, randomly selected from the National database data set.

To evaluate the stability of the pattern, the whole proce-

dure (i.e. 18 CCA analyses on 100 randomly selected plots)

was repeated 100 times, each time using a different subset

of 100 randomly selected plots.

In the second analysis, using the River valley data set, the

variance explained by mean EIVs for soil reaction was

compared with that explained by measured soil pH. The

explanatory variables used (in turn) were mean real EIVs

for soil reaction and its two randomized derivates (mean

randomized EIVs for soil reaction and random numbers), and

the actual and randomized soil pH. The analysis was

repeated 100 times, each time using newly randomized

variables (mean randomized EIVs, random numbers and ran-

domized soil pH).

Unconstrained ordination analysis

The River valley data set was used to calculate the sample

scores along the first three axes of a detrended correspon-

dence analysis (DCA, Hill & Gauch 1980), detrended by 26

segments. These scores were correlated with two variables

containing no external ecological information: mean ran-

domized EIVs for soil reaction and random numbers. Two

parameters were studied: the distribution of correlation

coefficients (r) and the number of significant (P < 0.05)

correlations with particular DCA axes. Each correlation

was repeated 1000 times, each time with newly generated

mean randomized EIVs and random numbers. A high number

of permutations was used to emphasize differences

between axes.

Analysis of variance among classification groups

Differences in mean EIVs among groups of samples assem-

bled according to their compositional similarity (e.g. by

cluster analysis) can be tested using analysis of variance

(ANOVA) or analogous, non-parametric methods. The

samples from the River valley data set were classified into

five groups, using a cluster analysis based on the relative

Euclidean (chord) distance and Ward’s clustering algo-

rithm (the same procedure was used in Zelený & Chytrý

2007, except that species data were transformed into pres-

ence–absence form in the present study). Next, one-way

ANOVA was performed on mean real EIVs for soil reaction,

mean randomized EIVs for soil reaction and random numbers,

respectively, where assignment of samples into groups was

used as a fixed factor. These analyses were repeated 100

times, each time with newly generated mean randomized

EIVs and random numbers, and the number of significant

results (P < 0.05) was counted.

Regression of species richness

The relationship between species richness and mean EIVs

representing environmental factors was analysed using

regression analysis. A data set of 100 randomly selected

vegetation samples from the National database data set was

used and subjected to linear regression analysis of species

richness on mean real EIVs for soil reaction, mean random-

ized EIVs for soil reaction and random numbers. For each

regression analysis, the coefficient of determination (R2)
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was calculated and the significance tested (P < 0.05). Each

regression was repeated 100 times, each time with a newly

selected set of 100 plots and newly generatedmean random-

ized EIVs and random numbers.

Modified permutation test

Randomization of EIVs among species prior to calculation

of the weighted average can be used as the starting point

for a modified randomization test, which can be an alter-

native to the standard tests of significance. Null model per-

muting species EIVs was recently also implemented by

Jansen et al. (2011). A permutation test generally consists

of two steps: (1) creation of the null distribution for the test

statistic (e.g. correlation coefficient r) that would be

expected under the null hypothesis; and (2) comparison of

the observed test statistic with this null distribution and

estimation of its probability. For a standard permutation

test, the null distribution (step 1) is created by calculating

the test statistic using randomized data. To account for the

similarity issue, a modification of this first step is introduced

in the sense that the test statistic is calculated not using

randomized mean real EIVs but using (not randomized)

mean randomized EIVs instead (i.e. randomizing species EIVs

among species in the table instead of randomizing calcu-

lated mean EIVs). The performance of this modified per-

mutation test, as compared to the standard one, was

evaluated using the River valley data set in two analyses: (1)

relating mean EIVs to unconstrained ordination axes; and

(2) ANOVA of mean EIVs between classification groups

(the same five groups as described before).

To relate mean EIVs (or environmental measurements)

to ordination axes, the algorithm of Oksanen et al. (2011)

was followed, as implemented in the function envfit from

the R-library vegan. Instead of calculating the correlation

between an environmental variable and each ordination

axis, envfit calculates a multiple linear regression of the

environmental variable being the dependent variable and

site scores on ordination axes being the independent vari-

ables. The original function returns a table with normal-

ized regression coefficients, coefficient of determination

(R2) and significance based on the original permutation

test. The normalized regression coefficients multiplied by

the square root of the coefficient of determination are used

to locate the arrowhead of the vector projected onto the

ordination diagram. Note that normalized regression coef-

ficients are not correlation coefficients of environmental

variables with ordination axes. The coefficient of determi-

nation is used as a test statistic, and its null distribution is

created by 999 permutations of the environmental vari-

able. The modified permutation test usingmean randomized

EIVswas implemented into the function envfit.iv (App. S2).

Similarly, the function summary.aov using a parametric

ANOVA test was modified into summary.aov.iv by imple-

menting the modified permutation test, using an F-value

as the test statistic (App. S3). Along with the R scripts of

the modified functions, the River valley data set is also

provided (App. S4).

All analyses and most of the figures were calculated and

drawn in the R program, version 2.11 (R Development

Core Team 2010, Vienna, Austria).

Literature analysis

To evaluate the frequency of published studies reporting

results that are potentially biased due to the similarity issue,

a literature analysis was conducted. For this, the focus was

on studies published between 2000 and 2010 in the Journal

of Vegetation Science (JVS) and Applied Vegetation Science

(AVS). The selection of these journals was justified by the

fact that in a preliminary search in ISI Web of Knowledge

database (http://apps.isiknowledge.com) within the sub-

ject area of Ecology and Plant Sciences between the years

2000 and 2010, these two journals had the highest number

of studies citing the work of Ellenberg et al. (1992) (33

papers in JVS and 18 papers in AVS). Using the full text

search engine of the publisher’s website (http://onlineli

brary.wiley.com), all studies from JVS and AVS between

the years 2000 and 2010 containing the word ‘Ellenberg’

were identified and downloaded. Studies related to mean

Ellenberg indicator values were manually selected, and

within these, the way in which mean EIVs were used was

evaluated. Particularly, the focus was on the use of mean

EIVs in constrained ordination, unconstrained ordination,

ANOVA between clusters and correlation/regression with

species richness. It should be stressed that the aim of the

analysis was not to point out ‘wrong’ studies and to iden-

tify the ‘sinners’ who wrote them, but to document how

frequently mean EIVs are used in a way that may yield

biased results.

Results

Identification of the similarity issue

For all four distance metrics used, the matrix of composi-

tional dissimilarities correlated best (as expected) with

the differences among mean real EIVs, while the differ-

ences among random numbers showed no correlation

(Fig. 2). However, differences in mean randomized EIVs

also correlated to compositional dissimilarity, even

though they carry no external ecological information.

There were also remarkable differences between the four

applied distance metrics: Bray–Curtis and chord distance

showed relatively low correlation coefficients compared

to v2 and CA distances, with CA distance yielding highest

correlations.
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Performance of mean EIVs in vegetation analyses

Constrained ordination analysis (CCA)

In the first CCA analysis (Fig. 3), comparing the variance

explained by each of the six mean EIVs with their random-

ized alternatives, mean real EIVs always explained most,

while the amounts differed among particular Ellenberg

indicator values, with values being highest for moisture

and lowest for continentality. In contrast, mean randomized

EIVs showed variances that were very similar among the

six Ellenberg indicator values and these variances were

systematically higher than the variances explained by ran-

dom numbers.

In the second CCA analysis, in which the amounts of

variance explained by calculated mean EIVs and measured

soil pH were compared (Fig. 4),mean real EIVs for soil reac-

tion explained more variance (4.4%) than measured soil

pH (3.2%), while on average the variances explained by

both randomized soil pH and random numbers were similar

and lower (1.2%). However, comparison of variance

explained by mean real EIVs (4.4%) and mean randomized

EIVs (2.4%) revealed that only 4.4 – 2.4 = 2.0% of the

variance was related to external ecological information on

soil reaction, while 2.4 – 1.2 = 1.2% was caused by the

similarity issue (variance explained bymean randomized EIVs

minus that explained by random numbers). Therefore, even

though the mean real EIVs explain more variance than
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measured soil pH, the part of their explained variance truly

related to soil reaction is identical in both cases (3.2 –

1.2 = 2.0% for measured soil pH and 4.4 – 2.4 = 2.0% for

mean real EIVs). The fact that they are exactly identical

(2.0%) is probably just a coincidence; it can be argued that

EIVs for soil reaction reflect content of calcium in the soil

more than soil pH (Schaffers & Sýkora 2000).

Unconstrained ordination analysis (DCA)

There were remarkable differences between the perfor-

mance of mean randomized EIVs and random numbers when

correlated with DCA axes. Correlations with mean random-

ized EIVs (Fig. 5a) showed higher variability of correlation

coefficients than correlations with random numbers

(Fig. 5b). Similar differences could also be found in the

number of significant correlations: for mean randomized

EIVs, 52.4% of 1000 correlations with the first axis were

significant, 45.0% of those with the second and 38.6% of

those with the third axis. However, for random numbers,

the proportion of significant results was close to 5% for all

three main axes (4.2%, 4.9% and 4.9%, respectively)

corresponding to the 5% significance level used as a

threshold.

Analysis of variance among groups

For mean real EIVs, the effect of cluster was indeed signifi-

cant (Fig. 6a). When using mean randomized EIVs, 77% of

the analyses were still significant at P < 0.05 (one example

is in Fig. 6b), while for random numbers, only 6% were

significant. The use of mean randomized EIVs thus dramati-

cally increases the probability of getting significant results,

even though the values carry no external ecological

information.

Regression of species richness

For the 100 random sets of samples, coefficients of deter-

mination (R2) were highest for the regressions of species

richness onmean real EIVs (Fig. 7) and all 100 were signifi-

cant at P < 0.05. This is in itself not too interesting; the

(a) (b)

Fig. 5. Correlation coefficients along the first three DCA axes for (a) mean randomized EIVs for soil reaction and (b) random numbers. Each boxplot with

vertical histogram represents the distribution of correlation coefficients from 1000 analyses of the River valley data set, each time using newly generated

mean randomized EIVs and random numbers.
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Fig. 6. Differences in site mean EIVs for soil reaction between cluster analysis groups: (a) mean real EIVs and (b) mean randomized EIVs (one example

from the 100 randomizations performed). Even thoughmean randomized EIVs do not contain any ecologically relevant information, the differences among

the groups were often significant, as can be seen in the (b) example.
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comparison between mean randomized EIVs and random

numbers is more informative. Even though both these vari-

ables carry no external ecological information, regressions

on mean randomized EIVs often have higher coefficients of

determination than regressions on random numbers

(Fig. 7), and they are also much more often significant

(37% for mean randomized EIVs and 5% for random num-

bers). This means that even if species richness is regressed

on mean EIVs without meaningful external information,

the probability of getting a significant result is still high.

Modified permutation test

When the original permutation test was used, all six mean

EIVs were significantly related to the first two DCA axes

(P < 0.001, except continentality with P < 0.01; Table 1).

With the modified permutation test, however, continen-

tality is no longer significant, and temperature and nutri-

ents are now only significant at P < 0.05. In the case of

ANOVA of mean EIVs among groups of samples, the para-

metric test of significance returned all mean EIVs as highly

significant (Table 2). Using the modified permutation test,

temperature and continentality were no longer significant.

Literature analysis

Ninety-five papers were found to use Ellenberg indicator

values, published in JVS and AVS between the years 2000

and 2010 (55 in JVS and 40 in AVS; App. S1). Among

them, 36 papers carried analyses potentially biased due to

the similarity issue (21 in JVS and 15 in AVS; Table 1 in

App. S1). From these, two papers were using mean EIVs as

explanatory in CCA, 19 papers correlated mean EIVs with

sample scores along ordination axes in DCA or similar (15

of them also tested the significance of this correlation), 16

papers calculated ANOVA among groups of samples and

six papers calculated correlation (or regression) of mean

EIVs and species richness (all of them tested the signifi-

cance). In most cases, however, the potential bias was of

only minor importance and did not influence interpreta-

tion of the results.

Discussion

The results of this study clearly show that information on

compositional similarity between samples is inherited into

mean EIVs. Differences between mean EIVs are correlated

with compositional dissimilarity between samples, even

when all external information on species ecology is

removed by randomizing the individual species values
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Fig. 7. Coefficients of determination for regression of species richness on

mean real EIVs for soil reaction, mean randomized EIVs for soil reaction

and random numbers. For each variable, the regression was performed

100 times, each time using a new set of 100 vegetation samples randomly

selected from the National database data set.

Table 1. Relationship between six mean EIVs and the first two DCA axes –

Comparison between the results of the original permutation test and the

modified one.

DCA1 DCA2 R2
P (orig.

test)

P (perm.

test)

Light 0.477 0.879 0.600 <0.001 0.004

Temperature 0.350 0.937 0.471 <0.001 0.011

Continentality 0.726 0.688 0.148 0.004 0.452

Moisture �0.925 0.381 0.897 <0.001 <0.001

Nutrients �0.998 0.066 0.429 <0.001 0.032

Soil reaction �0.653 0.757 0.032 <0.001 <0.001

R2: goodness of fit (coefficient of determination) from the envfit function.

P (orig. test) and P (perm. test): significance of the relationship calculated

using the original permutation test and modified permutation test, respec-

tively. Significant values (P < 0.05) are in bold. DCA1 and DCA2: normal-

ized regression coefficients for the first and second axis of DCA,

respectively (see Methods for details).

Table 2. One-way ANOVA for mean EIVs between five groups of samples

assembled by cluster analysis.

F-value P (param. test) P (perm. test)

Light 36.242 <0.001 <0.001

Temperature 7.149 <0.001 0.148

Continentality 5.858 <0.001 0.511

Moisture 91.823 <0.001 <0.001

Nutrients 42.982 <0.001 <0.001

Soil reaction 31.741 <0.001 0.014

F-value: the value returned by parametric F-test. P (param. test) and

P (perm. test): significance of the analysis, calculated using the parametric

F-test and the modified permutation test, respectively. Significant values

(P < 0.05) are in bold.
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before calculating the sample mean (Mantel tests; Fig. 2).

The inheritance of compositional information (similarity

issue) is therefore not caused by the individual Ellenberg

species values, but originates in the process of creating a

mean value based on the samples’ species composition.

This is where the problem starts, with clear consequences

if this sample mean indicator value is subsequently related

to the samples’ species composition again (ordination or

classification) or to a variable derived thereof (e.g. species

richness). This also suggests that even if the sample value is

calculated not as the site mean but, for instance, as the

mode or median value (Möller 1987), the problem would

still persist (although possibly less so) because information

is still being used on the samples’ species composition.

Moreover, the similarity issue is not limited only to mean

EIVs, but also extends to other variables derived from the

species composition using external information about indi-

vidual species (e.g. proportion or diversity of plant func-

tional traits).

Our study focused in more detail on the performance of

mean EIVs in various vegetation analyses. The effect of the

similarity issue in these analyses has become obvious: stron-

ger relationships and more significant results occur than

the ecological information present in the mean EIVs actu-

ally allows for.

Concerning the use of mean EIVs as explanatory vari-

ables in constrained ordination analysis, we noted that

application of this method is rather infrequent in the sci-

entific literature (our analysis revealed two papers), per-

haps because the danger of circularity of reasoning (as

mentioned in the Introduction) is most obvious here. It

appears (Figs 3, 4) that the variance explained by mean

EIVs consists of three parts: (1) the part truly originating

from the external information on species ecology (the dif-

ference between the variance explained by mean real EIVs

and mean randomized EIVs); (2) the part resulting from the

similarity issue (the difference between the variance

explained by mean randomized EIVs and random numbers);

and (3) the part that would be explained by any random

variable (the variance explained by random numbers). If

the focus of the analysis is on the relative differences

between variances explained by mean EIVs for various

factors (Fig. 3), the results can be meaningful, although

the analysis itself is not too appealing. However, if the

focus is on the comparison of mean EIVs with measured

variables on the same ecological factor (as in the case of

mean EIVs for soil reaction and soil pH; Fig. 4), mean EIVs

will tend to be a better predictor and the extent of this

advantage is given by the part of the explained variance

resulting from the similarity issue. This may partly explain

why mean EIVs are often better predictors than measured

environmental variables (Dupré & Diekmann 1998; Smart

et al. 2010).

In contrast to constrained ordination, use of mean EIVs

to interpret unconstrained ordination is very common (19

papers). From the circularity of reasoning point of view,

‘indirect’ correlation of mean EIVs with sample scores

along unconstrained ordination axes is generally perceived

as more correct than ‘direct’ use of mean EIVs as explana-

tory variables in constrained ordination. However, this

impression is wrong. The sorting of samples along axes

reflects compositional similarities (similar samples are clo-

ser), and the similarity issue may cause a situation where

even mean EIVs with no external ecological information

(e.g. mean randomized EIVs) can have correlation coeffi-

cients with ordination axes that are spuriously high

(Fig. 5a) and with a high probability of being significant.

We might expect mean EIVs that contain no ecologically

relevant information to show correlations around zero, as

can indeed be seen in Fig. 5b using truly random values.

But although mean randomized EIVs do not contain actual

information on their own, differences between them do.

If, for instance, during the randomization many of the spe-

cies in a sample have by chance received high values

(leading to high mean EIVs), samples with similar species

composition will also tend to have high values. If these

samples are located at the right-hand side of the ordina-

tion axis this will lead to a positive correlation with the

first DCA axis scores. But if (new randomization) many

species from the original sample have received low values

by chance, similar samples (close by on the right-hand side

of the ordination) will also tend to have low mean EIVs,

leading to a negative correlation with the axis score this

time. This illustrates that a tendency exists towards stron-

ger correlations (away from zero; either positive or nega-

tive) and explains the wide distribution of correlation

coefficients in Fig. 5a when compared to the expected dis-

tribution in Fig. 5b. This tendency towards stronger corre-

lations does, of course, exist not only when species values

are randomly assigned. Information on similarity is inher-

ited in exactly the same way if the assigned species values

do have actual meaning (as is the case for true EIVs).

Moreover, ordination axes in DCA (and other eigenvalue-

based ordinations) are ordered according to decreasing

eigenvalues, which correspond to the variance in species

composition explained by a particular axis and conse-

quently also to the similarity among samples retained by

the sample scores. This is why the problem with biased

correlation coefficients and significances increases with

the importance of ordination axes, usually being strongest

for the first one. As a result, if we project post hoc mean

EIVs as vectors onto an ordination diagram, they will arti-

ficially tend to be more correlated with the ordination axes

of higher importance (e.g. more with the first than the sec-

ond axis). Also, their vectors will tend to be longer than

vectors for measured environmental factors due to the
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tendency towards higher correlation coefficients explained

above.

Comparison of mean EIVs among groups of samples

using ANOVA or t-test (or analogous non-parametric

analyses, e.g. Mann–Whitney U test, Kruskal–Wallis test)

is fairly common (16 papers). In the literature analysis,

three types could be distinguished, differing in how the

groups of samples were assembled: (a) according to

the species composition (vegetation type), (b) according to

the experimental treatment or management and (c)

according to the year of sampling. All three types can the-

oretically yield biased results if used with mean EIVs. This

is most obvious for case (a), but also in cases (b) and (c)

the groups may show internal similarity, e.g. if an experi-

mental treatment was applied for a period long enough to

cause convergence of the species composition (type b) or

if different plots experience similar compositional changes

in time (type c). In our study, only the first type was

tested, i.e. groups assembled according to vegetation type

(based on numerical classification). If analysed by ANO-

VA, differences and significances tended to be biased to

more optimistic values. Even if mean EIVs contained no

external ecological information (as in the case ofmean ran-

domized EIVs in Fig. 6b), differences among groups were

often highly significant. To what degree the similarity issue

biases ANOVA results mainly depends on the distance

measure chosen for clustering, because particular dis-

tances differ in how they reflect the similarity inherited by

mean EIVs (e.g. Bray–Curtis dissimilarity reflects this

much less than chi-square distance; Fig. 2). An extreme

case is probably TWINSPAN (Hill 1979), which assembles

the samples into groups according to their position along

the main ordination axis of CA. As mentioned earlier, the

weighted averaging algorithm of mean EIVs is closely

related to the algorithm of CA, which means that the simi-

larity among samples assembled into groups and the simi-

larity inherited into mean EIVs are of a similar kind (see

Fig. 2).

The relationship between mean EIVs and species rich-

ness is also occasionally subject to statistical inference (six

papers). The reason why the differences in species richness

would reflect compositional similarity among samples is

not necessarily trivial. A possible explanation is that local

species richness (number of species in a sample) is influ-

enced by the size of the species pool (Zobel 1997), and the

size of the species pool varies among vegetation types (or

habitats; e.g. Sádlo et al. 2007). Thus, for a data set cover-

ing a wide range of environmental factors and/or including

different vegetation types, similar plots will be of similar

vegetation type, they will have a similar size of the species

pool and hence also similar species richness. This also

means that the strength of the relationship between spe-

cies richness and compositional similarity among plots is

specific for each data set and perhaps increases with the

data set’s compositional heterogeneity. The National data-

base data set, which was used for the analysis (Fig. 7), is rel-

atively heterogeneous, covering wide range of ecologically

very different forest vegetation types. This is perhaps why

a relatively high number of regressions (37%) between

mean randomized EIVs and species richness was significant.

Other methods that may be influenced by the similarity

issue but were not analysed in this paper are classification

and regression trees (CART; Breiman et al. 1984), which

have recently experienced a boom in ecological literature

(e.g. De’ath & Fabricius 2000). The problem of biased per-

formance of mean EIVs as predictors may occur when the

dependent variable is derived from the species composi-

tion, which is the case for species richness in regression

trees or the grouping of samples into groups in classifica-

tion trees. Preliminary trials with these methods show that

if mean EIVs are used together with other (measured)

environmental variables, mean EIVs perform better, being

placed more close to the root of the tree. Such biased per-

formance may also be a result of the similarity issue, which

favours mean EIVs against the other (measured) factors. If

only mean EIVs are used as predictors, this problem does

not occur.

Our study does not of course prove that mean EIVs will

always perform better than measured variables, only that a

tendency exists for mean EIVs to outperform actual mea-

surements. Nevertheless, there may also exist true ecologi-

cal reasons for mean EIVs to perform better than

measurements. EIVs could be considered a form of bio-

indication, and the plants used as indicators can be sup-

posed to ‘measure’ exactly what is ecologically relevant.

Actual measurements on the other hand depend on arbi-

trary choices (depth of soil sampling, elements measured,

chemicals used for extraction, etc.). In addition, plants

integrate over all relevant factors (e.g. soil moisture con-

tent, water tension and air humidity, different nutrient

forms, etc.). They also integrate over time, while actual

measurements often only provide snapshots. EIVs may

thus be truly superior to measured variables inmany cases.

But in order to settle such issues we need unbiased com-

parisons accounting for the similarity issue.

Modified permutation tests may be a partial solution for

analyses where a test of significance is required but stan-

dard tests yield biased results due to the similarity issue. The

modified test changes the null hypothesis from ‘there is no

statistical relationship between variable X and mean EIVs’

into ‘variable X is not related to the information based on

external ecological data in mean EIVs’, i.e. accounting for

the relationship caused by the similarity issue. Its result

makes more ecological sense. For example, given the small

spatial scale of the River valley data set, the originally signifi-

cant effect of continentality when regressed on DCA axes
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(Table 1) or when tested for differences among vegetation

types (Table 2) was difficult to interpret. After the modi-

fied permutation test was applied, it appeared that conti-

nentality (and also other factors) should not have been

considered significant. In the past, significant relationships

for unlikely Ellenberg factors were sometimes explained

by their interrelated nature. For example, Chytrý et al.

(2009) used this argument to explain why the plots in a

fertilization experiment significantly differed in mean EIVs

for continentality, even if this was not experimentally

manipulated.

Practical considerations

Ellenberg indicator values are a highly valuable tool for

the interpretation of vegetation patterns. To ensure that

such interpretations are free of bias, several practical rec-

ommendations for the use of mean EIVs in analyses of veg-

etation data can be based on the results of this study.

1. In constrained ordination analysis (e.g. RDA and CCA),

mean EIVs should not be used as explanatory variables

together with measured environmental variables because

mean EIVs will tend to explain more variance than the

measured variables.

2. In unconstrained ordination (e.g. DCA), correlations

with ordination axes offer a quick and simple interpreta-

tion aid, but should not be tested because the probability of

obtaining significant results is spuriously high. Further-

more, also here it should be taken into consideration that

mean EIVs will tend to show higher correlations thanmea-

sured environmental variables. Preferably, separate dia-

grams should be made for mean EIVs and measured

environmental factors. Also, it should be kept in mind that

mean EIVs tend to be correlated more strongly to ordina-

tion axes of higher importance.

3. Among clusters derived from species composition,

differences in mean EIVs should not be tested (e.g. by

ANOVA, t-test or non-parametric alternatives). A modified

permutation test, as proposed in this study, may be used

instead.

4. Variables derived from the species composition (e.g.

species richness and the proportion of species traits) should

not be correlated tomean EIVs unless the modified permu-

tation test is used.

5. In classification and regression trees with dependent

variables directly derived from species composition (e.g.

species richness in the case of regression tree or cluster

assignment according to similarity in the case of classifica-

tion tree), mean EIVs and measured environmental

variables should not be used as possible predictors at the

same time.Mean EIVs will tend to be better predictors than

measured environmental factors, occurring at higher levels

of the tree hierarchy. Additionally, the variance explained

by such a tree will be too optimistic.

Conclusion

Three main points can bemade from this study:

1. Mean EIVs always inherit information on composi-

tional similarity.

2. Using mean EIVs in vegetation analyses (or in other

analyses utilizing aspects of species composition) leads to

stronger relationships and more significant results than is

actually warranted by the external ecological information

present in these values.

3. Mean EIVs will have an inappropriate advantage in

vegetation analyses compared to actual environmental

measurements.
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Chytrý, M., Hejcman, M., Hennekens, S.M. & Schellberg, J.

2009. Changes in vegetation types and Ellenberg indicator

values after 65 years of fertilizer application in the Rengen

Grassland Experiment, Germany. Applied Vegetation Science

12: 167–176.

De’ath, G. & Fabricius, K.E. 2000. Classification and regression

trees: a powerful yet simple technique for ecological data

analysis. Ecology 81: 3178–3192.

Journal of Vegetation Science
Doi: 10.1111/j.1654-1103.2011.01366.x© 2011 International Association for Vegetation Science 11
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Landolt, E. 1977. Ökologische Zeigerwerte zur Schweizer
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genössischen Technischen Hochschule, Stiftung Rübel, Zürich 64:
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Supporting Information

Additional supporting information may be found in the

online version of this article:

Appendix S1. Review of papers published in Journal

of Vegetation Science and Applied Vegetation Science from 2000

to 2010, which report analysis results using mean EIVs

potentially biased due to the similarity issue.

Appendix S2. R function envfit.iv with modified test

of significance of relationship between mean EIVs and

sample scores along axes of unconstrained ordinations.

Appendix S3. R function summary.aov.iv calculat-

ing one-way ANOVA among groups, using modified

permutation test.

Appendix S4. River valley data set, containing two

files: vltava-spe.csv withmatrix of sample species data, and

vltava-spec.eiv.csv with matrix of species Ellenberg indica-

tor values. The data set is intended for use with envfit.iv

and summary.aov.iv functions.

Please note: Wiley-Blackwell are not responsible for

the content or functionality of any supporting materials

supplied by the authors. Any queries (other than missing

material) should be directed to the corresponding author

for the article.
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