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Abstract

Primary goals of this thesis were to: 1) examine the in vivo digestion of
macronutrients from conventional or alternative feed ingredients used in practical diets of
juvenile gadoids (Atlantic cod and haddock), 2) document growth potential of fish at the
juvenile grower phase given varying levels of dietary protein and energy and 3) assess the
potential of in vitro pH-Stat methods for rapid screening protein quality of feed
ingredients, specifically for gadoids. All primary research questions were linked to and
built upon one another with the goal of gaining a better understanding of protein and
energy utilization of juvenile grower phase gadoids. Studies showed that cod and
haddock have a high capacity to utilize a wide range of dietary feed ingredients, such as
fish meals, zooplankton meal, soybean products (meal, concentrate and isolate) and
wheat gluten meal. New dietary formulations for gadoids may also utilize pulse meals,
corn gluten meal, canola protein concentrate and crab meal. Digestibility data in this
thesis is currently the only research that examined both in vivo and in vitro macronutrient
digestibility of a large number and wide range of individual ingredients, specifically for
gadoids. This is essential to gain new knowledge on protein and energy utilization as well
as for least-cost ration formulations and effective substitution of ingredients into new
formulations. Data has demonstrated a dietary digestible protein/digestible energy
(DP/DE) ratio of 30 g DP/MJ DE is required for gadoids during the juvenile phase (<100
g) to ensure maximum somatic tissue growth, high digestibility, maximum nitrogen and
energy retention efficiency and minimal excessive liver growth. Preliminary nutrient
requirement studies together with an applied nutritional approach has identified that feeds
for juveniles farmed in the Western North Atlantic should contain 50-55% crude protein,
<12% fat and <17% carbohydrate. Data in this thesis is currently the first aimed at
development and application of an in vitro closed-system pH-Stat assay for rapid
screening protein quality of test ingredients that is ‘species-specific’ to gadoids. It is
demonstrated that in vitro results generally reflected results obtained through
conventional in vivo protein digestibility methods. Studies resulted in the first generation
of a ‘gadoid-specific’ proteolytic enzyme extraction method and in vitro closed-system
pH-Stat assay which may be useful to investigate protein digestion, absorption and

metabolism of gadoids and further development of their feeds.
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Aquaculture in the global seafood supply

Aquaculture has become the world's fastest growing food production system over
the past two decades (FAO 2009a; Subasinghe et al. 2009). After the remarkable
increase in capture of both wild marine and inland fish during the 1950s and 1960s,
global fisheries production has leveled off since the 1970s. It is estimated that 75% of
the major marine fish stocks are either depleted, overexploited or being fished at their
biological limit. Moreover, rapid population growth, along with increases in the average
amount of fish consumed in developing countries, has led to rapid increases in global fish
demand. It is widely recognized that expansion of aquaculture will fill this gap and
relieve pressure on the already over-exploited wild-capture fisheries (Powell 2003;
Pickova and Markare 2007). Since the traditional wild-capture fisheries can only provide
a maximum of 100 mmt annually (Watanabe 2002, FAO 2009a); the world would face a
global seafood shortage of 50-80 mmt by the year 2030, if it were not for aquaculture
(Figure 1).
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Figure 1 Global seafood production (1950-2006) and predicted demand (FAO 2009a)
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It is predicted that aquaculture will provide the most reliable supply of high quality
protein for the world’s rapidly expanding population in the coming years (FAO 2009b)
and is, for the first time, set to contribute half of the fish consumed by the human
population worldwide (FAO 2009a).

Fish and seafood provide the global population with about 6% of its total protein
intake and about 16% of its total animal protein intake. At an annual growth rate of more
than 9%, aquaculture’s contribution to seafood supplies have grown from less than 4% in
1970 to over 32% in 2006 with an economic value of nearly $80 billion (USD). In
Canada, total aquaculture production has risen from <40,000 tonnes to >140,000 tonnes
in less than 20 years (1990-2008) contributing about $2 billion (CAD) into the Canadian
economy from direct and indirect sales (DFO 2010; Grydeland 2008) and provided
14,500 full-time equivalent jobs, many of which are located in rural, previously
economically-depressed regions (DFO 2010).

Protein sources derived from the ocean and aquaculture are increasingly replacing
traditional food sources such as red meats and other saturated fat-rich meats. Most
fishery products provide high quality dietary protein with a nearly ideal balance of
essential amino acids and typically contain lower levels of unhealthy saturated fats
associated with many terrestrial proteins (Santerre 2010). They are also rich in essential
minerals (e.g. Ca, Cu, I, Fe, Zn, and Se) and vitamins (e.g. fat-soluble vitamins A, E and
D and several water-soluble B vitamins) (Lall and Parazo 1995). There is also new
evidence that marine fish products may influence insulin metabolism (Lavigne et al.
2001; Ruzzin et al. 2007), modulate type-2 diabetes and protect pancreatic and skeletal
cells (Zhu et al. 2010) in humans. Marine fish are also a rich source of omega-3 long-
chain polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) (Sargent 1997; Sargent and Tacon 1999) which are known
to improve cardiac, vascular and brain functions, boost the immune response, support
retinal development in the fetus and nursing infant and may also help increase life span
by slowing the rate of telomere shortening (Ruxton et al. 2007; Farzaneh-Far et al. 2010;
Farrell et al. 2010). It is not surprising that the global demand for seafood products has

doubled in less than 50 years (Brown et al. 1998) and annual per capita consumption is
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expected to reach >20 kg by the year 2030 (FAO 2002; Watanabe 2002; Johnson 2008)

representing a global demand of 150 million tonnes (mmt).

The wild-capture gadoid fishery

From the earliest days of human exploration and population expansion into North
America, the fish known collectively as ‘gadoids’ have been the driving force behind the
development of the New World (Kurlansky 1997; Fagen 2006; Rose 2007). In the
Western North Atlantic Ocean, Atlantic cod and haddock are considered the most prized
of all gadoids and are the most valuable of all marine food fish (Scott and Scott 1988).
Many North American economies have been dominated by their fisheries dating back to
the arrival of John Cabot in 1497. Historical catch rates in North Atlantic waters are
likely higher than in any other fishery the world has ever known (Rose 2007). The
famous English biologist Thomas H. Huxley (1825-1895) once declared their stocks to be
“inexhaustible” (Huxley 1884) and this was believed for many generations. Of course,
the gadoid fishery was not inexhaustible and eventually, through a combination of
mismanagement, greed and overexploitation this lucrative industry was essentially shut
down in 1992 when a moratorium was placed on all fishing activities. Recently, it was
reported that the North Atlantic spawning stock biomass of >250,000 tonnes in the early
1970s had declined by almost 85% to only 39,000 tonnes by 2002 - about half of what
scientists judge the stock as a high risk for collapse (Horwood et al. 2006) and the stocks
continue to decline to levels far below the maximum sustainable yield (Hutchings et al.
2010). Yet, to this day, these gadoids remain in high demand on the North American
seafood market.

Gadoid aquaculture

Development

The market demand for Atlantic cod and haddock remains high in spite of the
collapse of the gadoid fishery in the 1990s. As such, there has been a renewed interest in
fish farming as a means to meet the demand for this valued seafood and to ease the strain
on wild populations that would have otherwise been fished into extinction. Since the

mid-1980s, development of gadoid farming has been a focus of governments and industry
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in countries that border the North Atlantic. Over the past 3 decades, advances have been
made in hatchery technologies, larval development, health management and development
of feeds; but commercial progress has been very slow due mainly to insufficient juvenile
production. In addition, the industry has been plagued with other problems including a
poor understanding of larval, juvenile and broodstock nutrition, fish health and disease
problems, early sexual maturation, low survival of larvae, skeletal deformities, limited
research and development and capital investment and high operational and feed costs
(Aiken 2003, Bricknell et al. 2006; Kjesbu et al. 2006; Rosenlund and Skretting 2006;
Treasurer 2008). Many of these problems are now being addressed, year-round annual
production is rapidly increasing and predictive growth models for various geographical
locations are being developed (Chambers and Howell 2006; Treasurer et al. 2006;
Bjornsson et al. 2007) for cod and haddock. Estimated global production of farmed
gadoids in the near future is as high as 200,000 tonnes (Kjesbu et al. 2006; Rosenlund
and Skretting 2006). However, due to high production costs and the recent global
economic crisis, current commercial aquaculture production has been limited to Western
Europe (>90% Norway and Iceland) (Hagen and Solberg 2010). In the past few years
(2002-2008), these two countries have established 536 cod farms (13 in Iceland and 523
in Norway) and 14 haddock farms (all in Norway) and have increased the number of
juveniles stocked into sea pens from 1.5 million to 21 million (Paisley et al. 2010). This
has resulted in increased production from less than 250 tonnes (approximate value of $1
million USD) to more than 16,500 tonnes (approximate value of $55 million USD)
(Norwegian Directorate of Fisheries 2010). Although other North Atlantic countries have
fallen far behind Norway and Iceland, industry experts still predict farmed gadoid
production to surpass that of farmed salmonids within 2 decades (Standal and Utne
2007).

Culture of gadoids in Eastern Canada

Culture protocols developed over the past decade at the NRCC Institute for
Marine Biosciences’ Marine Research Station (Ketch Harbour, Nova Scotia), Aquarium
and Marine Centre (Shippagan, New Brunswick), the Fisheries and Oceans Canada —
Biological Station (St. Andrews, New Brunswick) and Memorial University - Ocean
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Sciences Centre (Logy Bay, Newfoundland and Labrador) have been successfully used to
rear both Atlantic cod and haddock from egg to juvenile and provided experimental fish
for the studies presented in this thesis. Fertilized eggs (1.3-1.7 mm diameter) from
naturally-spawning, mixed-sex wild broodstock held at 6-10°C are collected from the top
40 cm surface of large (e.g. 45,000 L) broodstock tanks from late-December to mid-
January and are immediately surface-disinfected with 400 ppm of gluteraldehyde. This
spawning period is 3 months earlier than would occur in the wild and has been achieved
through photoperiod manipulation. Incubation occurs in either total darkness or very low
light levels at 5-8°C for 11-20 days in upwelling conical tanks (e.g. 100-250 L). Hatched
yolk-sac larvae are transferred to 3000-3500 L weaning tanks and are immediately
offered live rotifers to supplement their yolf-sac reserves, which become depleted after
only 5-9 days. Over several weeks (typically 10-12), the water temperature is gradually
increased to 10-12°C (1°C every couple days) to enhance feeding behaviour. The tanks
are equipped with mild aeration, low water velocity, protein skimmers and are exposed to
continuous 24 h moderate light intensity. Our lab has performed larval weaning in both
dark bottom and bright bottom tanks and both with and without ‘green water’. Newly
stocked larvae are fed rotifers (cultured on marine algae and baker’s yeast) up to 7-10 day
post-hatch (DPH) and then rotifers enriched with commercial high-DHA products until
about 25-30 DPH. Highly DHA-enriched Artemia nauplii are then fed until 37-52 DPH
after which weaning is begun (12-15 mm fork length), which typically lasts for about 1-2
weeks. During this weaning period, the proportion of live Artemia nauplii is gradually
reduced as various dry formulated microparticulate diets are introduced until feed
particles can be observed in the stomachs of metamorphosed larvae. We have used
commercial weaning diets from Italy, Norway, Japan and Canada and also several
experimental feeds produced in our laboratory and have seen specific growth rates in
excess of 15%/day and >88% larval survival (unpublished data). Although advances
have been made and high larval survival (>80%) can be achieved in laboratory studies,
the weaning period still remains one of the predominant bottlenecks for producing high
numbers of juveniles for commercial culture. Once weaned, the fish are cultured in the
same or similar tanks or deep raceways and fed commercially manufactured extruded

gadoids feeds based on recommended formulations (typically 50-60% crude protein and
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12-16% lipid) until they reach 3-5 grams (3-4 months). The juveniles are then transferred
to modified salmon sea cages for on-growing to market weight of 2-3 kg in about 36
months (Frantsi et al. 2002; Brown et al. 2003; Lanteigne and Leadbeater 2003).

Gadoid nutrition

The dietary nutrients required by fish are generally the same as those of terrestrial
animals in that they all require sources of protein and amino acids, lipid and essential
fatty acids, vitamins, minerals and energy for growth, reproduction and other normal
physiological functions (Lall and Tibbetts 2009). The major differences between fish and
terrestrial animals include: (a) higher protein levels relative to non-protein macronutrients
are required in the diet of fish (b) dietary energy requirements are lower for fish (e.g.
aquatic mode of life, poikilothermy and ammoniotelism), resulting in higher dietary
protein/energy ratios, (c) fish require some lipids that terrestrial animals typically do not,
such as omega-3 series PUFA for several marine and salmonid species and sterols for
crustaceans, (d) most fish (especially cold-water species) have a limited capacity to
utilize carbohydrates, (e) fish have the ability to absorb soluble minerals from the water
which minimizes the dietary need for certain elements and (f) fish have limited ability to
synthesize ascorbic acid and must depend upon dietary sources (NRC 2011). Information
on dietary nutrient requirements and bioavailability of farmed gadoids are limited. Initial
studies show relatively high protein requirements of 45-60% for juveniles (Lall and
Nanton 2002; Lall et al. 2003; Rosenlund et al. 2004; Arnason et al. 2010), a
phosphorous requirement of 0.96% (Roy and Lall 2003) and a low tolerance (12-16%
maxmum) for dietary lipid (Lie et al. 1988; Nanton et al. 2001).

Dietary protein

Proteins represent the largest components of fish at 65-75% of the total dry
weight (Wilson 2002). These proteins are the primary constituents of structural and
protective tissues (e.g. bones, ligaments, scales and skin), soft tissues (e.g. organs and
muscles) and body fluids (Lall and Anderson 2005). As such, for most marine fish like

gadoids, protein comprises the largest portion of the diet and is required for growth,
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tissue repair and reproduction and as a source of dietary energy (Wilson 2002). An

overview of the fate of ingested dietary protein in fish is presented in Figure 2.
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Figure 2 Fate of ingested dietary protein in fish (adapted from Rathmacher 2000; Sveier
2004)

Because most coldwater, carnivorous marine fish directly swallow food particles
with little mastication in the mouth and oesophagus (Gerking 1994; Houlihan et al.
2001), protein digestion does not begin until it reaches the acidic (< pH 4) stomach. In
the stomach, ingested food particles encounter mucous secreted from the non-parietal
cells that hydrate it and gastric fluids (e.g. HCI, KCI, NaCl) secreted by the parietal

oxynticopeptic cells that initiate protein digestion under endocrine and neuronal control
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(Wendelaar-Bonga 1993). The acidic nature of the gastric fluids help denature (open)
protein strands exposing peptide bonds to enzymatic attack and also activate pepsinogen
(a zymogen produced by the stomach’s chief cells) into its active form, pepsin (Smith
1989). Pepsin then actively cleaves ingested proteins into smaller polypeptides prior to
transit out of the stomach and into the alkaline pyloric caeca at which time the digesta pH
is raised (~ pH 7) by mixing with bicarbonate excreted by the acinar cells (Rust 2002).
Once in the pyloric caeca, proteins and polypeptides are further degraded into smaller
peptides and free amino acids under the action of alkaline proteases and peptidases (e.g.
trypsin, chymotrypsin, elastase, collagenase, aminopeptidases, carboxypeptidases, etc.)
via extracellular, membrane-linked and intercellular digestion (Kuz'mina and Gelman
1997). It is from this point forward into the small intestine that ingested and digested
proteins are absorbed through the brush-border of the enterocytes (intestinal cells) via
pinocytosis (proteins and peptides), active H* and/or Na'-assisted transport (peptides and
free amino acids) and passive diffusion (free amino acids) for delivery into the blood
stream and transport to the liver (Storelli and Verri 1993).

Although the ‘digestive system’ prepares ingested protein for absorption, it is the
role of the ‘endocrine system’ to regulate their metabolism in fish and mammals
(Houlihan et al. 1995; Garlick et al. 1998). As shown in Figure 2 above, these newly
absorbed protein products (now in the intracellular pool) can either be used for protein
biosynthesis (e.g. growth, tissue repair, reproduction) or broken down (deamination) for
use as dietary energy. Since dietary protein is the most expensive component of the diet,
exceeding the levels needed to satisfy a particular species’ dietary requirements results in
elevated nitrogenous waste (e.g. ammonia from the gills and urea in urine) excretion into
the surrounding waters, which is both economically and environmentally undesirable
(Lall and Tibbetts 2009). The hormonal regulation of these pathways in fish is not fully
understood but is likely through the action of glucose-uptake hormones (e.g. insulin,
insulin-like growth factor (IGF-1) and growth hormone (GH)) that all play a role in
promoting protein synthesis (Houlihan et al. 1995; Mommsen and Moon 2001) whereas
glucose-liberation hormones (e.g. catecholamines, glucagon, glucagon-like peptides and
glucocorticoids) promote protein catabolism for energy purposes (Maynard et al. 1975;

Dabrowski and Guderley 2002). With regard to protein sysnthesis, insulin, IGF-1 and
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GH appear to function by increasing amino acid uptake, increasing ribosomal
availability, increasing the numbers and types of messenger RNA (mRNA) and
increasing the rate of protein transcription (Manchester 1977; Dabrowski and Guderley
2002). As for protein catabolism for energy puposes, catecholamines, glucagon,
glucagon-like peptides and glucocorticoids function by increasing hepatic enzyme
activities in the short-term and altering their gene expression over the longer term
resulting in amino acid conversion to glucose (gluconeogenesis) in the liver (Mommsen
and Plisetskaya 1991; Duguay and Mommsen 1994; Plisetskaya and Mommsen 1996).

The primary goal of optimum diet formulation is to ensure that the highest
possible proportion of ingested protein ends up as tissue growth (shown as solid lines in
Figure 2) while minimizing the proportion that ends up being deaminated and catabolized
for energy (shown as dotted lines in Figure 2). The relative proportions of energy-
yielding nutrients in the diet (protein, lipid and carbohydrate) result in varying post-
prandial influxes of amino acids, fatty acids and sugars (Carter et al. 2001) which, in
some species, have a large effect on whether ingested proteins becomes new tissue
growth or get used as an energy source in the liver and ultimately excreted as nitrogenous
waste (e.g. branchial and urinary excretions). This will be discussed in more detail in the
following sections on dietary energy and DP/DE ratio.

The natural diet of wild gadoids off the coast of Eastern Canada is not only
piscivorous (fish-consuming) but also high in crustaceans and echinoderms, so these
species have an inherent capacity to utilize chitin- and ash-rich benthic foods, unlike that
of more pelagic species like salmonids (Lall and Nanton 2002; Morris and Green 2002).
The most commonly used sources of dietary protein for farmed gadoid are by-product
meals made from fish, krill, crustacean, poultry, corn and soybean. Dietary protein
requirements have been established by many authors over the past century and compiled
by Wilson (2002) for several fish including cold-water species farmed in Canada
including: Atlantic halibut, Atlantic salmon, Chinook salmon, coho salmon, sockeye
salmon, rainbow trout, brown trout, striped bass and plaice and are in the range of 40-
55% of the diet. A more detailed review taking into account various growth phases (e.g.
<20 g to >1.5 kg) has been compiled for Atlantic salmon, Pacific salmon and rainbow

trout and indicate that dietary protein requirements general decrease from ~50% to ~35%
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over this growth period (NRC 2011). Initial studies with farmed gadoids show protein
requirements of 45-60% of the diet for juveniles (Lall and Nanton 2002; Lall et al. 2003;
Rosenlund et al. 2004; Arnason et al. 2010). The protein requirement of gadoids appears
higher than other species due to poorer protein retention efficiency (Lie et al. 1988) and
this may be related to a lower tolerance for non-protein energy and less opportunity for
protein sparing.

Protein, a polymer of amino acids joined together by peptide bonds, when
hydrolyzed in the gastrointestinal tract of an animal supply amino acids and peptides for
tissue synthesis and repair and are also catabolized to provide energy. Amino acid
nutrition and metabolism in fish has been extensively reviewed (Wilson 2002; Lall and
Anderson 2005; Kaushik and Seiliez 2010). From a nutritional standpoint, the 20 known
amino acids are considered as being either non-essential (dispensable) or essential
(indispensable). Non-essential amino acids are those that can be synthesized by the
animal in gquantities sufficient enough to support maximum growth. Of the non-essential
(dispensable) amino acids, two are particularly unique for their ability to partially replace
two of the essential (indispensable) amino acids; tyrosine and cystine can spare ~50% of
a fishes’ dietary requirement for phenylalanine and methionine, respectively. Essential
amino acids (EAAS) are those that the animal cannot synthesize in sufficient quantities to
support maximum growth and, therefore, must be provided in the diet. To better explain
this, certain amino acids appear to be essential because the animal lacks the biochemical
mechanisms required to synthesize the chemical configurations of the carbon chain
skeletons of these amino acids (Jobling 1994). Most monogastric animals, including fish,
require the same 10 EAAs: arginine, histidine, isoleucine, leucine, lysine, methionine,
phenylalanine, threonine, tryptophan and valine. As stated, fish and other animals do not
truly have a requirement for protein; rather it is a requirement for the EAAs contained
within that protein. When a protein requirement is stated for a certain organism, it should
always be assumed that it is of high protein quality and adequately balanced in terms of
its amino acids. The ration which has the highest protein quality is typically the one
which supplies all of the EAAs needed in proportions most similar to those in which they
exist in the protein to be formed, plus an appropriate non-specific source of nitrogen to

form the non-EAAs (Maynard et al. 1975). Partial or complete EAA requirements of fish
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established using chemically defined, purified and natural ingredient diets using dose-
response methodologies have been reviewed by NRC (2011). Cold-water species farmed
in Canada examined to date include: Atlantic salmon, Chinook salmon, chum salmon,
coho salmon, sockeye salmon, rainbow trout, lake trout and Arctic char. Quantitative
EAA requirements (as a % of dietary protein) of these species are in the following range:
arginine (3.5-6.0%), histidine (1.0-1.8%), isoleucine (1.5-2.8%), leucine (2.7-9.2%),
lysine (3.0-8.4%), methionine (0.7-1.9%), phenylalanine (2.0-4.4%), threonine (2.6-
3.0%), tryptophan (0.3-0.9%) and valine (1.7-3.4%). Dietary EAA requirements for
gadoids have not yet been studied and will not be addressed in this thesis; however, for
experimental diet formulation, the EAA requirements of Atlantic salmon and rainbow

trout were followed.

Dietary energy

Energy is not a nutrient but it is released in the body from food during metabolic
oxidation of carbohydrates, fats and amino acids (NRC 2011). Because it is not a
physical organic or inorganic compound it cannot be quantified in the same manner as the
macronutrients. Energy is an abstraction that can only be measured in its transformation
from one form to another (NRC 1981). The most common method for determining the
gross energy content of fish feeds and feed ingredients is bomb calorimetry. This method
involves completely oxidizing the compound to carbon dioxide, water and other gases in
a bomb calorimeter and measuring the amount of heat that is released (e.g. heat of
combustion). Common units of measure for energy content of feeds is the calorie (equal
to 4.184 joules) and is defined as the amount of heat required to raise the temperature of 1
gram of water by 1°C measured from 14.5°C to 15.5°C (Lovell 1989). Since all organic
compounds in fish feeds release heat upon combustion, thus are potential sources of
dietary energy, the energy content of a diet will depend on its chemical composition, with
the mean values of heat of combustion of protein, lipid and carbohydrate being 5.64, 9.44
and 4.11 kcal/g, respectively (NRC 2011).

Fish consume food to satisfy their energy requirement (NRC 2011). This implies
that the caloric density of a diet plays a large role in regulating feed intake, which directly
affects the intake of other essential nutrients. Bioenergetics is the study of the balance
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between energy intake in the form of food and energy partitioning or utilization by
animals for life-sustaining processes such as maintenance, activity and tissue synthesis.
The partitioning of dietary or intake energy (IE) of feeds to that component retained (RE)
for productive purposes in fish was first proposed by NRC (1981) and is depicted in
Figure 3.

Intake energy
(1E)

Digestible energy
(DE) ) Fecal energy (FE) |

______

Metabolizable energy _Urinary energy (UE)
(ME) Gill excretion energy (ZE)

Net energy Heat incremejnt energy (HIE)
(N E) Waste formation energy (HWE)
Tissue biosynthesis energy (HrE)
Digestion & absorption energy (HdE)

Recovered energy Maintenance energy (HME)
Basal metabolism energy (HeE)

(R E) Voluntary activity energy (HjE)

Figure 3 Partitioning of dietary energy in food consumed by fish (adapted from NRC
1981, 2011; Bureau et al. 2002)

Gross energy or intake energy (IE) is the total amount of energy contained within

the diet. As with all dietary nutrients, total or gross amounts are of little value to the
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nutritionist when formulating diets due to the fact that animals do not utilize 100% of the
nutrients contained within a ration. Invariably, there will always be inefficiencies
resulting in nutrient losses in the form of faeces, urine and gill excretion. Ideally, for fish
production, it is necessary to minimize these losses in order to obtain maximum returns
as marketable products. The first task in evaluating the potential of any feedstuff for
inclusion in the diet is the measurement of its digestibility (Cho et al. 1982). This can be
defined as the extent to which dietary nutrients are broken down and absorbed from the
digestive tract. In fish, it is difficult to separate faeces from the water, and to avoid
contamination of the faeces with the uneaten food. This problem has required several
different approaches to those used in the measurement of digestibility for terrestrial
farmed animals and birds. Whereas total collection of faecal material from animals and
birds can be achieved with little difficulty, it is not feasible with fish. A method has been
developed by Post et al. (1965) and Smith (1971) however, this direct method requires
very specialized equipment, the necessity of force feeding and the physiological stress
caused by confinement. To overcome these shortcomings, indirect methods for
quantifying faecal output have been developed. These methods utilize inert markers such
as chromium oxide, acid insoluble ash, yttrium oxide and various others and changes in
the ratio of nutrient to marker between diet and faeces should reflect the extent to which
the nutrients in the diet have been digested, on the assumption that the marker is not
absorbed from the feed and is fully excreted in the faeces. Some common methods of
faecal collection in fish include manually stripping, anal suction, dissection, siphoning,
filtration and sedimentation (Cho et al. 1982). All methods have limitations and may
lead to either under or over estimations of digestibility. Once digestibility of a feedstuff
or diet has been measured, digestible energy (DE) can be calculated from the IE value.
DE is the IE content of the diet minus the energy loss in the faeces (DE = IE - FE).
Faecal energy (FE) losses for farmed fish usually account for 5-30% of IE depending
upon feed composition, processing and feeding rate (Jobling 1994). The DE content of a
well-digested food would approach its IE content. The DE content of numerous
commonly used practical fish feed ingredients are listed in Halver and Hardy (2002) for
rainbow trout and channel catfish and range from 2-13 MJ/kg for high-fibre and high-
carbohydrate products like alfalfa, canola, wheat, cotton-seed, whey and un-processed
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corn meals, 13-21 MJ/kg for processed corn and wheat, yeast, oilseed and animal,
crustacean and fish by-product meals to over 33 MJ/kg for vegetable and fish oils and
animal fats. The DE content (MJ/kg) of some purified ingredients commonly used in
experimental fish feeds were compiled by NRC (2011) and include casein (17), corn
starch (17), gelatin (12), glucose monohydrate (14), lactose (15) and sucrose (16).

Digestion of fats and carbohydrates yield fatty acids and simple sugars and, in
turn, yield carbon dioxide, water and heat. However, digestion of proteins yield amino
acids which, in turn, yield ammonia (85-90%) and, to a lesser extent, urea (10-15%) as
well as carbon dioxide, water and heat (Kaushik and Cowey 1991). These products must
be excreted via the gills (ZE) or by the kidney as urine (UE). Quantifying ZE and UE
can be difficult as measurements of these losses require respirometers where fish must be
held under stressful conditions. If these losses can be quantified, metabolizable energy
(ME) value (ME = DE - (ZE + UE)) can be determined. ME content of the diet is
important as it accounts for these types of dietary energy losses and more closely reflects
the food energy in feeds that the fish can use for productive purposes.

After digestion and absorption of nutrients from a feedstuff, they are metabolized
for various biochemical functions including transfer of chemical energy from nutrients to
energy-rich molecules such as ATP, transformation of nutrients into biologically
important substances, ATP hydrolysis to perform physical or chemical work,
maintenance of cellular homeostasis, biosynthesis and/or turnover of tissues and physical
activity. All these processes require energy and result in the liberation or release of heat
by the animal. The energy in the form of heat that is lost at this point is termed the heat
increment (HiE) and can be subdivided into three components: waste formation energy
(HwE), tissue biosynthesis energy (H/E) and digestion and absorption energy (HgE).
Once these losses are quantified, they can be used to adjust the ME value to form the net
energy (NE) value (NE = ME - (HW.E + HE + H4E)). NE content of the diet is a better
estimate than ME as it accounts for these energy losses but is more difficult to obtain on a
routine basis.

Energy is also required by the animal for those functions of the body that are
essential for sustaining life regardless of whether or not the animal is consuming food.

The heat liberated at this point is termed maintenance energy (HmE) losses and are
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comprised of two components: basal metabolism (H.E) and voluntary or resting activity

(HjE) such as minor bodily movements. If these losses can be quantified, they can be

used to correct the NE value to form the recovered energy (RE) value (RE = NE - (HE +
H;E)). RE is the final step in the partitioning of dietary energy and is the portion of the
IE that is used by the fish for productive fish growth. It is the RE value that the fish
farmer and nutritionist should attempt to maximize by attempting to minimize the amount
of energy losses in the forms of faeces, urine, gill excretion and heat. RE content is the
best estimate of the true value of the diet because it accounts for all energy that is lost in
other forms than growth. RE content cannot be economically or routinely measured in
fish so the DE (and to a lesser extent the ME) is commonly used for practical fish feed

formulations since the faecal losses represent the largest fraction of losses in the IE.

Digestible protein/digestible energy (DP/DE) ratio

The most abundant and expensive component of marine fish diets is protein, so
maximizing its transformation into a marketable seafood product is always the ultimate
goal even when discussing other dietary components, such as calories from fats and
carbohydrates. In coldwater fish, ingested protein and amino acids can only be
efficiently converted into somatic tissue growth when there is a sufficient dietary non-
protein energy supply (Bureau et al. 2002). In many fish, increasing the levels of
digestible energy from non-protein energy sources can spare dietary protein for protein
biosynthesis, with lipids being the most effective due to the relatively low utilization of
glucose by coldwater species (Rychly 1980; Kaushik and de Oliva-Teles 1985; Médale et
al. 1991). To varying degrees, these non-protein energy sources have the ability to
supply fatty acids (from ingested dietary lipids) and/or glucose (from ingested dietary
carbohydrates) that can replace amino acids from entry into the tricarboxylic acid (TCA)
cycle (also referred to as the Krebs or citric acid cycle) for energy production purposes,
thereby ‘sparing’ them for protein synthesis. This is possible because the primary
metabolites that feed into the TCA cycle are acetyl CoA, acetoacetate, pyruvate, succinyl
CoA, fumarate, oxaloacetate and glutamate, all of which can be produced either from
fatty acids, glucose or amino acids (Maynard et al. 1975). This scenario promotes the
desired pathway shown in Figure 2 (solid lines). Alternatively, when insufficient non-
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protein energy is provided in the diet, a higher proportion of digested protein (amino
acids) is deaminated in the body’s cells to supply energy for metabolism a priori to
protein synthesis and the less desirable pathway (shown in dotted lines in Figure 2) is
followed. This scenario not only results in less than optimal nitrogen retention efficiency
and protein utilization, but also increased formation of nitrogenous waste products (e.g.
mainly ammonia and urea) that must be voided into the marine environment (Kaushik
and Cowey 1991). Therefore, a proper balance of protein and non-protein energy is
necessary to supply calories and amino acids for rapid growth, efficient feed utilization
and nitrogen retention efficiency and also to minimize water pollution (Bureau 2004).
Some of the metabolic consequences of lipid replacement of protein in marine fish diets
include lower ammonia excretion rates (Van Warde 1983), decreased oxygen
consumption (Cho 1987), inhibition of glycolysis (e.g. reduced conversion of ingested
protein into glycogen reserves) and lipogenesis (e.g. reduced conversion of ingested
protein into fat reserves) (Jurs et al. 1985) and increased amino acid utilization for
protein retention and tissue biosynthesis (Suérez et al. 1991). Peres and Oliva-Teles
(2001) demonstrated that both ammonia excretion and oxygen consumption were
inversely correlated to dietary non-protein energy levels and a decrease in the dietary
DP/DE ratio spared protein for metabolism, essentially due to decreased non-fecal
nitrogen and heat increment of feeding. The role of dietary protein and energy balance
on fish performance and the effects on the marine environment has been extensively
reviewed (Kaushik 1998). Since gadoids appear to have a low tolerance for dietary lipid
(maximum 12-16% of the diet, Lie et al. 1988; Nanton et al. 2001), relative to other
marine species like salmonids that are routinely fed diets containing 25-40% lipid, the
potential to achieve this protein sparing effect may be rather limited in gadoid diets.
However, determining the optimum DP/DE ratio is considered as one of the most
important criteria to develop diets for new farmed species. Both dietary protein and lipid
supply highly bioavailable forms of digestible energy (DE) to gadoids. However, the use
of protein as a dietary source of energy is undesirable because of the high cost of protein
relative to the cost of non-protein energy (Watanabe 2002). A proper balance of
digestible protein and digestible energy is necessary to maintain high growth rates and

good feed conversion efficiency (Lee and Putnam 1973), improve protein utilization and
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minimize excessive accumulation of lipid and glycogen in the somatic tissues and liver
and minimize undesirable nitrogenous waste output into the marine environment (Cho
and Kaushik 1985, 1990). While the estimated optimum DP/DE ratio for coldwater
species like rainbow trout and Atlantic salmon in the juvenile phase is 19-24 g DP/MJ
DE (Cowey 1992; Einen and Roem 1997; Storebakken 2002), the DP/DE ratio for larger
salmon (>2.5 kg) decreases to 16-17 g DP/MJ DE (Einen and Roem 1997). Information
on protein and energy utilization by gadoids is limited and this problem is also
confounded by the fact that the optimum DP/DE ratio changes with fish size, growth rate
and feed intake (Lupatsch et al. 2001). Given the marked differences in lipid tolerance
between gadoids and salmonids, the established DP/DE ratios for salmonids and other
species will not be suitable for use in feeds for farmed gadoids. Initial dietary protein
requirements of gadoids were estimated by feeding graded levels of dietary protein using
isoenergetic (isocaloric) diets and provided a good starting point to estimate the optimum
DP/DE ratio required for optimum growth of juvenile gadoids. However, growth
performance, feed conversion and nutrient retention efficiency of diets formulated with

varying combinations of protein and non-protein energy is still required.

Protein quality

Fish, animal and plant by-products are widely available for use as major sources
of dietary protein in marine fish feeds (Hardy 2010; Hardy and Barrows 2002). These
products can vary considerably in their protein quality and nutrient profile depending
upon the freshness, origin, species/cultivar, season of harvest, presence of anti-nutritional
factors (ANFs) and other factors associated with the raw material such as the drying
process, processing temperatures, storage and transport conditions and exposure to

humidity and ultraviolet light (Figure 4).
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Figure 4 Factors affecting dietary protein quality and the levels of its assessment
(adapted from Bender 1982; Pike 1991)

Not only the protein ‘quantity’, but the ‘quality’ has a marked effect on animal
performance, however, there is no one ‘single’ figure to describe the protein quality of
feed ingredients or complete diets (Bender 1982). It must be a combination of
biochemical analysis, essential amino acid (EAA) profiles (in particular the quantity and
availability of the most limiting EAAS), in vivo and in vitro protein and EAA
bioaccessibility and the efficiency of protein utilization measured by biological

evaluation (growth and nutrient metabolism studies) with the target species. With respect
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to the common and alternative feed ingredients and the complete diets used in the studies
presented in this thesis, we will address several of these areas; in particular biochemical
analysis, in vivo and in vitro protein hydrolysis and efficiency of protein utilization for
growth. After preliminary biochemical analyses, the major criterion for determining the
nutritive value of a protein source is the apparent digestibility coefficient (ADC).
Conventional biological methods for measuring protein ADC involves in vivo fish trials
that are time-consuming, require expensive facilities and use large numbers of animals.
In addition, total collection of faeces from fish is typically not possible, so indirect
methods must be used that involve the addition of inert markers to the diet (e.g. chromic
oxide, yttrium oxide, acid-insoluble ash, etc.) and then quantification in the diet and the
collected dried faecal samples, which may be costly.

Several in vitro protein digestibility methods have been developed over the past
century. These assays involve the use of various commercial enzymes like pepsin
(Sheffner et al. 1956), bacterial proteases (Ford and Salter 1966), papain (Buchanan
1969), trypsin (Maga et al. 1973), trypsin/chymotrypsin/aminopeptidase (Hsu et al. 1977)
and trypsin/chymotrypsin/aminopeptidase/bacterial proteases (Satterlee et al. 1979).
These methods are considered not suitable for fish assays because the enzymes are
derived from homeothermic animals, plants and bacteria that are anatomically and
physiologically different from ploikiothermic fish. Dimes and Haard (1994) developed
the first in vitro method that appears better-suited for use with fish. They demonstrated
that digestive proteases extracted from the pyloric caeca of rainbow trout used in a pH-
Stat assay correlated well (R?=0.82) with in vivo protein digestibility. The pH-Stat assay
has been used in human and farm animal nutrition research to estimate the in vitro protein
digestibility of feed/food ingredients in the past but these authors were the first to
introduce the method to aquafeeds. Although the other in vitro protein digestion
techniques discussed above have been investigated with aquatic animals, the pH-Stat
method has shown the most encouraging results with finfish and shrimps (Dimes and
Haard 1994; Alarcon et al. 2002; Lemos et al. 2009). The assay involves the proteolytic
enzyme hydrolysis of a test protein substrate at a target pH and directly measuring the
breakage of peptide bonds. When protein bonds are cleaved, free carboxyl (-COOH)
residues are liberated which allows for the exchange of hydrogen (H") protons (Wei et al.
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2003). This release of positively charged hydrogen ions causes the reaction mixture to
become more acidic. In order to counteract this decline of pH, the pH-Stat titration
system accurately adds titrant (e.g. NaOH) to maintain the target pH, thereby eliminating
the effects of changing pH on proteolytic activity and also the effects of buffering caused
by the newly released amino groups (Wei and Zhimin 2006). The pH-Stat system
software accurately records the total volume of titrant required to maintain the target pH
until protein hydrolysis is complete or the reaction is manually stopped. This titrant
volume, combined with various other data, is then used to calculate the degree of protein
hydrolysis (DH), which is a direct measurement of the number of peptide bonds that have
been cleaved during protein hydrolysis.

In vitro pH-Stat methods have been used to predict animal performance when fed
various feed formulations, to assess the effects of processing of plant protein
supplements, to assist in designing new feed formulations as well as to produce novel
feed/food hydrolysates (Adler-Nissen et al. 1983; Lemos et al. 2009; Lemos and Nunes
2008). Significant successes have been achieved with shrimps while most investigations
with finfish have encountered technological problems and poor repeatability. In vitro
pH-Stat methods have yet to be applied commercially to aquafeeds due the lack of a
standardized method, resulting in poor reproducibility within and between laboratories,
unaccounted variations in batch-to-batch enzyme activities and a poor understanding of
the effects of dietary history of the donor animals on enzyme profile and catalytic
activity. The major limitations for in vitro pH-Stat assays appear to be the need for
complete knowledge of the origin of enzymes and their activities because variations in
species, fish size/age and phenotype give results with poor reproducibility, pH-Stat
assays give inaccurate results for ingredients that have been pre-hydrolysed and the
digestive tissues must be extracted from live fish, thus a well-equipped analytical lab is
required to produce to enzyme fractions (Savoie 1994).

Under farmed conditions, food intake and digestion by fish are highly affected by
numerous biotic and abiotic factors (e.g. culture conditions, water quality, presence of
stressors, social interactions, changing feeding rhythms, nutritional and reproductive
status (Lall and Tibbetts 2009) that can vary temporally and among stocks of fish. All of
these factors, together with the well documented effects of fish size/age, phenotype,
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dietary protein level and seasonal variations on proteolytic capacity (Bassompierre et al.
1998a,b; Einarsson et al. 1997; Farde-Skjeervik et al. 2006; Kofuji et al. 2005; Olsen and
Ringg 1998) influence food digestion in fish in vivo, negatively affect the reproducibility
of both in vivo and in vitro results and ultimately complicate the application of in vitro
results to industrial conditions. It is widely recognized by human and animal nutritionists
that it is possible to make reasonable predictions in vitro for research and industrial use.
As such, in vitro pH-Stat methods can provide an attractive complement to biochemical
and in vivo biological methods as they are relatively inexpensive, require less animals and
results can be rapidly obtained (hours vs. weeks) using very small quantities of test
sample. These characteristics could make in vitro pH-Stat methods more suitable for
initial rapid screening under research and industrial conditions and certainly more
acceptable from the stand-point of animal welfare (Alarcéon et al. 2002; Fernandez-Garcia
et al. 2009). In vitro pH-Stat protein hydrolysis data is rare in the published aquaculture
literature with only rainbow trout (Dimes and Haard 1994) and white shrimp (Ezquerra et
al. 1997, 1998; Lemos et al. 2009) represented. From these publications, a small number
of predictive equations exist but are lacking for all other farmed fish species, including

gadoids.

Nutritional challenges and opportunities

The potential for gadoid aquaculture will not come without significant challenges.
The single largest nutritional challenge appears to be the high cost and shortage of fish
meal on the global market. Gadoids are cold-water marine fish that are predominantly
farmed in countries bordering the North Atlantic such as Canada, Norway, Scotland,
England and Iceland where their preferred seawater temperatures of 8 to 17°C can be
ensured (Beghle 1974; Jobling 1988). In these cold environments, feed represents the
largest production cost of marine fish farming (>50%) and protein is the most expensive
component of these feeds. Since gadoids in the juvenile grower phase have relatively
high protein requirements ranging from 45 to 60% of the diet (Lall and Nanton 2002; Lall
et al. 2003; Rosenlund et al. 2004; Arnason et al. 2010), their diets constitute high
proportions of fish meals (>65% of the diet), which are currently in high demand as the
primary protein source in aquafeeds. Fish meals have been the protein source of choice
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for the aquaculture industry for several decades due to their superior essential amino acid
profile, organoleptic properties, n-3 fatty acid content and favorable trace element content
and high nutrient bioavailability (Kaushik and Seiliez 2010). However, rising prices,
dwindling availability and ecological and socio-economic concerns have meant that
replacement of fish meal in marine fish feeds is now critical. Approximately 87% of all
small pelagic fish (e.g. anchovy, herring, mackerel, pilchard, sprat, menhaden, sardine
and saury) that are captured globally are used to produce fish meal and fish oil that are
used to feed farmed animals and pets. A significant proportion (~40%) of these fish
meals is used directly for the production of compound aquafeeds for fish farming even
though half of these wild stocks are now deemed as fully exploited (Pauly et al. 2005;
Tacon and Metian 2009). Due to the high cost of fish meal ($1000-2000/tonne) and the
negative impact of fish meal production on wild stocks of these small pelagic fish,
current formulations used to feed farmed gadoids and other cold-water marine fish are no
longer sustainable - economically or ecologically. As such, gadoid farming makes a net
negative contribution to global fish supplies (Naylor et al. 2000) as does the farming of
salmonids which currently dominate the cold-water marine aquaculture sector.
Significant reductions in the use of fish meal in the feeds for cold-water marine fish
aquaculture is accepted within the aquaculture industry and has become a private and
public-sector priority (Powell 2003; Gatlin et al. 2007; Lim et al. 2008; Tacon and
Metian 2008; Koeleman 2009; Naylor et al. 2009; Hardy 2010). In fact, there are now
indications that due to the major efforts by the aquaculture industry, salmon farming is
now approaching marine protein and oil neutrality (Crampton et al. 2010), but additional
efforts are still needed as gadoid diets are developed.

Reductions in fish meal use in aquafeeds will not only help marine fish farming
become more ecologically sustainable but can also assist the global capture fisheries by
reducing pressure on the already over-exploited wild populations. In addition to over-
fishing pressures, there are real concerns about entire marine ecosystems collapsing due
to climate change, ocean warming and increased ocean acidification (Boyce et al. 2010).
These environmental issues threaten the very base of the marine food chain (e.g. low-
trophic phytoplankton and zooplankton) and it will, undoubtedly, add an additional strain

on higher-trophic marine fisheries whose very existence depends on healthy ocean
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ecosystems. The simple fact is that consumer demand for seafood products like
salmonids and gadoids continues to grow and the wild capture fishery cannot satisfy this
demand. It is noteworthy to point out that contrary to popular belief, the conversion
efficiency of farmed marine fish is greater than that of their wild counterparts. Pauly
(1996) estimated that it takes 4.5 kg of wild small fish to produce 0.45 kg of wild large
fish (10:1) while studies have shown that farmed marine fish only require 1.8 kg (less
than 2:1). This is due to the fact that farmed fish lines are selectively bred for high
growth rate and good feed conversion efficiency, compound aquafeeds are formulated to
precisely meet the nutritional needs of the target species with highly digestible, energy-
dense ingredients and farmed fish expend considerably less dietary energy searching for
food. The conversion by wild fish per unit of product actually reaching the consumer
may be even lower than the value reported above given the high amount of wastage that
is commonly thrown over-board as non-target species by-catch and/or culls from size
grading that never reach the marketplace (Harrington et al. 2005), yet are killed none-the-
less.

Regardless of the problems associated with inefficient capture fisheries practices,
if the marine fish farming sector is to progress towards economic and ecological
sustainability, fish meal usage must continue to decline through increased use of other
marine, plant and terrestrial based ingredients (Tacon and Metian 2008). To effectively
achieve this goal in gadoid feeds, additional research is needed to gain a better
understanding of the specific nutrient requirements and digestive capabilities of the major
farmed gadoids (cod and haddock) during the juvenile grower phase. This knowledge
will be required for the further development of new compound feeds for gadoids that
optimize their economic and environmental sustainability, ensure rapid growth and good
feed efficiency and promote good fish health, immune response and disease resistance
(Watanabe 2002; Farrell et al. 2010; Hardy 2010).

As discussed previously, the culture of gadoids is poised to greatly expand in
many countries that border the North Atlantic; in particular Canada, Norway, Scotland,
England and Iceland where production tonnage is expected to equal or surpass that of
salmonid farming within 2 decades (Rosenlund and Skretting 2006; Standal and Utne

2007). This significant production will be accomplished through infrastructure that
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currently exists for salmonid farming (e.g. farms and feed companies). Unfortunately,
the current diet formulations and commercially available feeds for salmonids are not
likely suitable for feeding gadoids. As discussed before, gadoids are known to have
higher protein requirements (45-60%), lower tolerance for dietary lipid (12-16%) and
cannot utilize high levels of dietary carbohydrates (<17%) (Lall and Nanton 2002; Lall et
al. 2003; Rosenlund et al. 2004; Arnason et al. 2010). The most likely cause for the
higher protein requirement of gadoids is related to the metabolism of dietary lipid.
Unlike farmed salmonids, farmed gadoids store the major proportion of dietary lipid as
triacylglycerol (TAG) in the liver (Lie et al. 1986; 1988; Jobling et al. 1991; Dos Santos
et al. 1993; Morais et al. 2001; Nanton et al. 2001) due to a low lipid transport capability
(in the form of very low density lipoprotein (VLDL)) from the liver to the muscle and
other extra-hepatic tissues and low liver lipid catabolic activity (3-oxidation) in gadoids
(Nanton et al. 2003). These concerns of higher protein requirements and lower tolerance
for dietary lipid and carbohydrate pose considerable nutritional challenges for cost-
effective diet formulation for gadoids.

Nutritional development for gadoids does offer some distinct advantages over that
of salmonids. Firstly, salmonids must be fed supplemental dietary carotenoids (e.g.
astaxanthin and canthaxanthin) to obtain the typical reddish pink flesh colour expected by
the consumer (Choubert et al. 2009, 2010). These carotenoids are expensive, accounting
for up to 20% of feed costs or up to 8% of total production costs (Torrissen 1995; Baker
et al. 2002) and is highly ineffiecient with only about 15% actually becoming deposited
into the flesh (Buttle et al. 2001). Since gadoids are white-fleshed fish, carotenoid
supplementation to the diet is not required and thus represents a significant cost
advantage. Secondly, unlike salmonids, the gadoid digestive system shows high levels of
B-D-N-acetylglucosaminidase activity (Danulat and Kausch 1984; Danulat 1986a,b;
Gildberg 2004) which enable it to more efficiently break down and access the nutrients
within benthic invertebrates like crustaceans and echinoderms (Lall and Nanton 2002;
Morris and Green 2002). As such, gadoids may effectively digest underutilized chitin-
rich and ash-rich marine proteins sources of lower trophic levels better than salmonids
(Toppe et al. 2006), which could represent an additional cost advantage. Moreover, in

contrast to salmonids, gadoids do not develop intestinal enteritis when fed some
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terrestrial plant protein sources at high levels in the diet (Refstie et al. 2006; Olsen et al.
2007; Walker et al. 2010). Recent data indicates that up to 75% of fish meal can
effectively be replaced with plant proteins such as soy and wheat gluten with no negative
effects on feed intake, growth rate, feed conversion efficiency or the expression of genes
related to cellular stress, protein biosynthesis and energy metabolism (Lie et al. 2011).
This indicates that the adverse effects of plant-based ANFs on digestion, nutrient
absorption and fish health (Storebakken et al. 2000; Francis et al. 2001; Krogdahl et al.
2010) are likely not as severe for gadoids and that these more environmentally
sustainable ingredients with a lower cost may be used at higher levels than currently
possible in salmonid feeds. It is obvious that significant potential exists to reduce the use
of high-cost fish meals in gadoid diets by replacing fish meal with other more
economically cost-effective and more environmentally sustainable feed ingredients.
Although not a nutritional issues per se, the farming of gadoids offers the distinct
advantages for salmonid farmers that wish to expand their enterprises as production of
gadoids does not require a freshwater larval/juvenile phase and gadoids possess
physiological mechanisms (endogenous production of glycerol and anti-freeze
glycoproteins) that may permit them to be farmed in marine sites not suitable for farming

salmonids due to low winter water temperatures (Goddard and Fletcher 1994).

Aims of this thesis

Limited information exists on the nutrient requirements and the digestion,
absorption and retention efficiencies of dietary protein and energy of various feed
ingredients and compound feeds when fed to gadoids. With the rapidly rising demand
for, and price of, fish meals it is critical to gain a better understanding of how these
species utilize dietary protein and energy to enable feeds to be formulated with higher
levels of alternate protein sources to reduce the reliance on fish meals. The increased use
of alternate feed ingredients to fish meal can affect the nutrient balance of the finished
product (Shearer 1994, Kora et al. 1995). Therefore, this information is not only critical
for the development of feed formulations that promote rapid growth, efficient nutrient
utilization and are cost-effective, but also result in fish which have the desirable taste,
appearance and texture expected by the consumer. With fish meal supplies more limited
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than ever before and with increasing environmental, social and market pressures,
developing nutritionally complete diets for the ‘sustainable’ culture of gadoid fish must
be done at an unprecedented rate in order to ensure success and achieve the ambitious
production goals discussed above.

This thesis presents several studies that were designed to examine the growth
potential of gadoid fish at the juvenile grower phase fed practical diets, generate new data
on the digestive capacity of juvenile gadoids fed conventional feed ingredients,
compound feeds and alternative feed ingredients, build upon some of the known key
macronutrient requirements of gadoid fish and establish protocols and predictive
regression equations that can be used for in vitro rapid screening for protein quality of
feed ingredients, specifically for gadoids. The schematic below (Figure 5) shows the
outline of this thesis and the relationships between the various studies and how they are
linked to each other and build upon one another to address the ultimate research goal of
gaining a better understanding of protein and energy nutrition of farmed gadoids during

the juvenile grower phase.

Chapter 1
General introduction

Chapters 2 and 3
"\ Invivo protein and energy digestion studies

Chapter 4
Digestible protein/digestible energy ratio study

Chapters 5 and 6
In vitro protein digestion studies

Chapter 7
General discussion

Figure 5 Thesis outline
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The first part of the thesis (Chapters 2 and 3) focuses on determining the protein
and energy apparent digestibility coefficients (ADCs) for several feed ingredients fed to
gadoid fish. A wide range of feed ingredients including fish meals, zooplankton meals,
crustacean by-product meals, animal by-product meals and protein meals, concentrates
and isolates of plant origin (including oilseeds, pulses and grains) were tested. The data
from these chapters will provide new information on the digestive capacity of gadoids
when fed both conventional and non-conventional (alternative) feed ingredients and also
generated ‘gadoid-specific’ protein and energy ADCs that were not available in the
published literature. The ADC values from Chapter 2 were critical in order to formulate
the experimental diets used to determine the optimum DP/DE ratio further in this thesis
(Chapter 4). The results of Chapters 2 and 3 were then further used when generating
predictive regression equations in Chapter 6. Lastly, the gadoid-specific protein and
energy ADCs generated in Chapters 2 and 3 can be used by international aquafeed
companies when formulating and producing new gadoid feeds and also by other
researchers conducting nutritional development studies with gadoids.

The major objective of Chapter 4 was to determine the optimum DP/DE ratio for
hatchery-reared gadoids during the juvenile grower phase. Both dietary protein and lipid
are highly available sources of digestible energy (DE) for gadoids. However, the use of
protein as a dietary energy source is undesirable because of the high cost of protein
relative to the lower cost of non-protein energy sources. A proper balance of DP and DE
(DP/DE ratio) is necessary to maintain high growth rates, good feed conversion
efficiency, improve protein utilization, minimize excessive accumulation of lipid and
glycogen in the somatic tissues and liver and minimize undesirable nitrogenous waste
output in fish farm effluents. Thus, the DP/DE ratio is one of the most important factors
when defining macronutrient requirements for any farmed fish species and it is clear that
the requirements for salmonids and other marine fish are not suitable for use in feeds for
gadoids. In order to properly examine the effects of feeding diets containing various
combinations of protein and non-protein energy and to quantify the optimum DP/DE ratio
for juvenile gadoids, the gadoid-specific protein and energy ADCs from Chapter 2 were

necessary to precisely formulate the experimental diets used in Chapter 4.
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Fish, animal and plant by-products are widely available for use as major sources
of dietary protein in gadoid feeds. Conventional in vivo methods for assessing their
protein quality are based on determination of protein ADC as used in Chapters 2 and 3.
In vitro methods may be more suitable for research and industrial applications as they are
relatively inexpensive, require less animals and results can be rapidly obtained. Chapter
5 was aimed at the development of a working closed-system protocol for producing
digestive enzyme fractions extracted from gadoid fish, characterization of the major
serine proteolytic digestive enzyme activities and determination of the most suitable
substrate concentration [S] to use to measure the in vitro degree of protein hydrolysis
(DH) of test ingredients. The methodology developed in Chapter 5 was then applied in
Chapter 6 to measure the in vitro protein DH of the same test feed ingredients used to
determine the in vivo protein ADCs in Chapters 2 and 3. The data generated was then
used to generate predictive regression equations that are ‘species-specific’ to gadoid fish
and can be used for rapid screening of protein quality of existing and potentially new feed
ingredients for the further development of cost-effective and more environmentally
sustainable feeds for gadoid aquaculture.
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Chapter 2

Apparent digestibility of common feed ingredients by juvenile

haddock, Melanogrammus aeglefinus L.

This chapter was published as:

Tibbetts, S.M., Lall, S.P., Milley, J.E. (2004) Apparent digestibility of common feed
ingredients by juvenile haddock, Melanogrammus aeglefinus L. Aquaculture Research
35, 643-651.
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Abstract

The digestible energy (DE) content and the apparent digestibility coefficients
(ADCs) of nutrients in common feed ingredients available in Atlantic Canada for
haddock, Melanogrammus aeglefinus, feed formulations were determined. Juvenile
haddock (mean weight, 93.9+2.1g) were held in tanks equipped with fecal collection
columns and fed practical fish meal-based diets for 5 weeks. The experimental diets
consisted of a reference diet and six test diets, each containing 30% test ingredient, with
all diets being supplemented with chromic oxide (Cr,O3, 5 g/kg) as the inert digestion
indicator. Three marine fish by-products, herring meal (HM), shrimp meal (SM) and
crab meal (CRM) and three plant protein supplements, dehulled soybean meal (SBM),
canola meal (CAM) and corn gluten meal (CGM) were the test ingredients. The DE
content of HM, SBM, CGM, CRM, CAM and SM were 18.3, 17.9, 17.8, 12.4, 10.9 and
8.3 MJ/kg; respectively. Protein ADCs were 95.2, 92.4, 92.7, 83.6, 82.8 and 73.1%j;
respectively. Organic matter ADCs were 96.5, 88.6, 72.5, 68.4, 59.0 and 54.8%;
respectively. Lipid ADCs were 97.9, 83.0, 57.4, 62.0, 87.2 and 55.8%; respectively.
Based upon its high crude protein content and nutrient ADC and DE content, properly
processed dehulled SBM was found to be a good plant protein supplement to partially
replace HM in haddock feeds.

Introduction

Aquaculture of cold-water gadoids, like haddock, Melanogrammus aeglefinus,
and cod, Gadus morhua, is currently expanding in Atlantic Canada. Limited information
exists on their nutrient requirements, digestion, absorption and retention of major
nutrients and energy utilization from various feed ingredients and complete feeds (Lall
and Nanton 2002). In order to select potential feedstuffs for feed formulation for any fish
species, apparent digestibility coefficients (ADCs) of energy-yielding nutrients (starch
and sugars, fat, protein, non-starchy polysaccharides) must be measured (Cho and Slinger
1979; Lall 1991). Fish meal comprises the main source of protein in salmonid and
marine fish diets and the nutritional value of various fish meals for salmonids has been
investigated extensively (Anderson et al. 1993; 1997). Several factors affect the

utilization of fish meal and crustacean by-product meals, e.g. characteristics of the raw
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material (species, freshness, whole fish or scraps, etc.), processing methods, lipid
peroxidation and storage conditions of the meal (Tarr and Biely 1972; Pike et al. 1990).

The major by-product of crab and shrimp processing is the shell which contains
50-80% chitin, an amino polysaccharide (poly-R-(1—4)-N-acetyl-glucosamine)
(Muzzarelli 1977), which has almost the same chemical structure as cellulose (Kumar
2000) and is often incorrectly measured as crude fibre (Calvo-Carrillo et al. 1995). As a
result, nitrogen from chitin accounts for 10-15% of the total nitrogen in crab and shrimp
meals (Li et al. 2000). Chitin is not digested by salmonids (Lindsay et al. 1984) but it
appears to be highly digestible (>90%) by cod (Danulat 1987) and possibly haddock.

Partial replacement of fish meal with plant protein supplements such as dehulled
soybean meal (SBM), canola meal (CAM) and corn gluten meal (CGM) or complete
replacement with concentrates from these products has been successful in several
commercially important salmonid species (Higgs et al. 1995; Kaushik et al. 1995).
Factors limiting the use of plant protein sources include low protein content, high fibre
content, amino acid imbalance and the presence of toxins and anti-nutritional factors such
as trypsin inhibitor in SBM and tannins, sinapin, phytic acid, urucic acid and
glucosinolates in CAM (Krogdahl 1991). These components in feed ingredients may
reduce palatability, reduce protein, lipid and energy digestibility (Olli and Krogdahl
1995; Van den Ingh et al. 1996) and cause several other undesirable effects when
incorporated into fish feeds (see reviews of Storebakken et al. 2000; Francis et al. 2001).
However, plant-based protein sources can provide high-quality protein in fish diets when
properly incorporated into feed formulas, supplemented with purified amino acids and
properly heated during feed processing.

The objective of this study was to determine the ADCs of protein, organic matter
and lipid and the digestible energy (DE) content of local marine by-products (herring,
shrimp and crab meals) and plant protein supplements (dehulled SBM, CAM and CGM)
when included at 30% of the diet for haddock.
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Materials and methods

Experimental conditions and fecal sampling

Haddock juveniles hatched and reared to 275 days post hatch at the NRCC
Agquaculture Research Station, Institute for Marine Biosciences (Halifax, NS, Canada)
were used in this study. One hundred and sixty-eight fish were randomly distributed into
14, 100-L cylindro-conical fibreglass tanks, each equipped with a fecal collection column
similar to the Guelph system (Guelph, Ont., Canada) (Cho et al. 1982) and to those used
by Hajen et al. (1993a). The fish were acclimated to the tanks and experimental diets for
10 days prior to the trial. The experiment was conducted according to a randomized
block design and replicated twice. Each of seven experimental diets was fed to two
tanks, each containing 12 fish. At the beginning of the experiment, the haddock had an
initial mean weight of 93.9+£2.1g and the biomass density in each tank was approximately
7 kg/m®. Filtered (60 mm), UV-treated seawater (salinity, 28-30 ppt) was supplied to
each tank at a flow rate of 2 L/min in a flow-through system and continuously aerated
(9.5£0.1 mg/L dissolved oxygen). Water temperature was maintained thermostatically
(11.5+0.1°C) and monitored every 4 min using a submersible Optic StowAway Temp™
data logger (Onset Computer Corporation, Bourne, model WTAO08, MA, USA). During
the 5-week experimental period, fish were hand-fed to apparent satiety three times daily
during the week (0900, 1300, 1600 hours) and twice daily on weekends (0900, 1300
hours). All mortalities were collected, weighed and recorded on a daily basis. Each
weekday, after the final feeding (1600 hours), the tanks and fecal collection columns
were thoroughly cleaned with a brush to remove any residual particulate matter (feces
and uneaten feed). There were no fecal collections made on weekends. Fecal samples
were collected each morning (0830 hours) into 250 mL plastic bottles, centrifuged (2750
x g for 35min at 5°C) and the supernatant discarded. A minimum of 30 g of wet material
was collected from each tank and each sample was stored in a sealed container at -20°C
for the duration of the collection period. Fecal samples were then lyophilized, finely

ground and kept frozen at -20°C until further analyses.
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Experimental diets

A basal diet based on herring meal (HM) (Tablel) was formulated according to
digestible protein (DP) and DE values of feed ingredients for salmonids (NRC 1993).
The test ingredients included HM, shrimp meal (SM), crab meal (CRM), dehulled
soybean meal (SBM), canola meal (CAM) and corn gluten meal (CGM) and their
proximate composition is given in Table 2. Subsequently, one reference diet and six
experimental diets (Table 3) were prepared using the basal diet and test ingredient in a
70:30 percent ratio (w/w basis). The ingredients of the basal diet and all test ingredients
were finely ground (<500 pm) using a Fitz mill (Fitzpatrick, EImhurst, IL, USA) before
being combined with the remaining feed ingredients. Micronutrients (vitamins and
minerals) were pre-mixed with ground wheat as a base, using a twin-shell blender
(Paterson-Kelly, East Stroudsburg, PA, USA) prior to being added to the main ingredient
mixture. All ingredients including the lipid supplement (herring oil) were mixed in a
Hobart mixer (Model H600T, Rapids Machinery, Troy, OH, USA) and steam-pelleted
into 3.5-mm pellets (California Pellet Mill, San Francisco, CA, USA). The pellets were
dried in an air-convection drier at 30°C to form dry, sinking pellets and stored in air-tight

containers at -20°C until use. Diets were screened to remove fines prior to feeding.

Analytical techniques and statistical procedures

Experimental diets, test ingredients and lyophilized fecal samples were analyzed
in triplicate using the same procedures. Moisture was determined by weight loss after
drying for 24 h at 105°C, ash by incineration in a muffle furnace at 550°C for 24h, crude
protein (% nitrogen x 6.25) using the Dumas method (Ebeling 1968) using a Leco
nitrogen determinator (model FP-228, Leco, St. Joseph, MI, USA), gross energy using an
adiabatic bomb calorimeter (Parr Instrument, Moline, IL, USA), total lipid by ether
extraction (Tecator Soxtec System HT2 1045 extraction unit, Hoeganaes, Sweden)
following acid (4 N HCI) hydrolysis (Tecator Soxtec System 1047 hydrolysis unit),
chromic oxide by chlorine bleach digestion using a micromethod outlined by Suzuki and
Early (1991), organic matter was calculated by difference (100 - [moisture + ash]) and

carbohydrate was calculated by difference (100 - [moisture + ash + protein + lipid]).
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Nutrient ADCs for the reference and test diets were then calculated according to
Maynard and Loosli (1969). Using these data, nutrient ADCs were then calculated for
the test ingredients using the equation of Forster (1999). Dry matter digestibility was not
calculated because when feces are collected from fish held in seawater, there is a
considerable amount of non-dietary ash within the dried feces. This non-dietary ash
dilutes the concentrations of all fecal constituents and leads to erroneous results for dry
matter digestibility; however, its presence in the feces does not affect digestibility
estimates of other organic nutrients (Grisdale-Helland and Helland 1998).

Apparent digestibility coefficients were calculated from the average of two
replicate tanks receiving each experimental diet. Statistical analyses were performed
using analysis of variance (ANOVA) and in the case of a significant difference, treatment
means were differentiated using the Tukey’s multiple range test (SYSTAT® 8.0). Al
data reported as a percentage (ADC data), was arcsine transformed prior to ANOVA. A
5% level of probability (P<0.05) was chosen in advance to sufficiently demonstrate a

statistically significant difference.

Results and discussion

Apparent digestibility coefficient values (Table 4) and digestible nutrient levels
(Table 5) of the marine byproducts and plant protein supplements were evaluated. For
fish species such as rainbow trout, Oncorhynchus mykiss, Atlantic salmon, Salmo salar,
coho salmon, Oncorhynchus kisutch, Chinook salmon, Oncorhynchus tshawytscha,
gilthead seabream, Sparus aurata, European sea bass, Dicentrarchus labrax, red drum,
Sciaenops ocellatus, and Atlantic cod, protein digestibility in HM is high with ADC
values ranging from 87 to 98% (Smith et al. 1980; Pfeffer 1982; Lie et al. 1988; Cho and
Kaushik 1990; Anderson et al. 1992; Hajen et al. 1993b; McGoogan and Reigh 1996;
Alexis 1997; Gomes da Silva and Oliva-Teles 1998; Sugiura et al. 1998). Haddock was
found to digest the protein in HM equally as well or better (95%) than these species.
Likewise, the energy digestibility of HM determined in this study with haddock (93%)
falls within the range of 84-98% reported for rainbow trout, Atlantic salmon, gilthead
seabream and European sea bass (Smith et al. 1980; Cho and Kaushik 1990; Anderson et
al. 1992; Hajen et al. 1993b; Alexis 1997; Gomes da Silva and Oliva-Teles 1998). In
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fact, the DE values for HM measured with rainbow trout (18-19 MJ/kg) (Cho and
Kaushik 1990; Arzel et al. 1999) and with haddock (18.3 MJ/kg) were virtually the same.
Our finding on the ADC of lipid in HM with haddock (98%) is in agreement with the
high values (90-98%) reported for cold-water species like Atlantic salmon, Atlantic
halibut, Hippoglossus hippoglossus, rainbow trout and Atlantic cod (Lie et al. 1988; Cho
and Kaushik 1990; Sigurgisladottir et al. 1992; Grisdale-Helland and Helland 1998;
Berge et al. 1999).

Crab meal was more digestible than SM with ADC values for organic matter,
protein, energy and lipid of 68, 84, 83 and 62%, respectively, whereas SM was digested
at a lower rate in all cases with ADC values of 55, 73, 66 and 56%. ADC for energy of
CRM obtained with haddock (83%) was similar to rainbow trout (85%) (Smith et al.
1980). The ADC for energy in SM measured in haddock, however, was low at 66% (DE
=8 MJ/kg). Information on energy ADC of SM measured in other fish species is scarce;
however, similar DE values (9-10 MJ/kg) have been reported for shrimp (Somsueb
1993). The protein ADC for CRM was higher for haddock (84%) than rainbow trout
(72%) (Smith et al. 1980) and may be due to a large difference in ash content of the CRM
between the two studies. Typical ash content of CRMs are as high as 41% (Tacon 1987;
Johnson 1988; Van Lunen and Anderson 1990), whereas the CRM used in this study had
much lower ash content (27%). This higher protein ADC value obtained with haddock
may also be due to the utilization of chitin. Haddock, like cod, may indeed possess
substantial chitinase activities in their stomach, pyloric caeca and intestine that are not
present in other fish species (Danulat 1986a,b). In the case of rainbow trout, chitin
digestibility has been shown to be extremely poor (<5%) (Lindsay et al. 1984). The
apparent higher capacity of haddock to digest chitin compared with other fish species
would support our previous observations (Unpublished results) of improved growth rate,
feed efficiency and reduced hepatosomatic index in haddock with the addition of 4.7%
dietary chitin.

The plant protein supplements that were the most digestible were CGM and SBM
with organic matter ADC values of 73 and 89%, respectively, and protein ADC values of
93 and 92%, respectively. Organic matter and protein ADCs for CAM were lower (59

and 83% respectively). The most digestible plant protein supplement, in terms of dietary
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energy, was SBM (92%) followed by CGM (81%), whereas the energy in CAM was
poorly digested (60%). The ADC for CGM (81%) falls within the range reported for
rainbow trout (72-87%) (Smith et al. 1980; Cho and Kaushik 1990) and is the same
(80%) as that reported for gilthead seabream (Alexis 1997). The value for SBM (92%)
exceeds those reported for rainbow trout (66-82%), Atlantic salmon (72-80%), gilthead
seabream (45%), European sea bass (69-70%), Murray cod, Maccullochella peeliii peelii
(58%) and red drum (38%) (Smith et al. 1980; Cho and Kaushik 1990; McGoogan and
Reigh 1996; Alexis 1997; Gomes da Silva and Oliva-Teles 1998; Storebakken et al.
1998; De Silva et al. 2000; Refstie et al. 2000). Lipid ADC in SBM and CAM were 83
and 87%, respectively, which falls within the range reported for rainbow trout of 83-94%
(Austreng et al. 1980; Cho et al. 1982; Hilton and Slinger 1986; Cho and Kaushik 1990)
but are higher than reported for Atlantic salmon (71%) by Refstie et al. (2000). Lipid
content of CGM was low (<2%) and the ADC was also low (57%) compared with other
test ingredients.

Dehulled SBM and CGM were utilized significantly better than all other
alternative ingredients tested in this study with average protein ADC and DE contents of
92-93% and 18 MJ/kg, respectively. These values are close to, or equal to, those of HM
at 95% and 18 MJ/kg, respectively. In comparison with rainbow trout (Cho and Kaushik
1990), CGM is equally as good a source of DE for haddock (both at 18 MJ/kg) with ADC
values of 81% reported for both species (Cho and Slinger 1979; Arzel et al. 1999). On
the other hand, SBM was a superior source of DE for haddock (18 MJ/kg) than for
rainbow trout (13 MJ/kg) and other species (11-14 MJ/kg) (Smith et al. 1980; Cho and
Kaushik 1990; Arzel et al. 1999; Hertrampf and Piedad-Pascual 2000). In terms of
dietary protein, these two ingredients were well utilized by haddock in comparison with
other important fish species (salmonids, bass, rockfish, seabream) having a range of
protein ADCs (with our value for haddock) for CGM and SBM of 82-97% (93%) and 75-
97% (92%) respectively (Cho and Slinger 1979; Smith et al. 1980; Pfeffer 1982; Cho and
Kaushik 1990; Hajen et al. 1993b; Nengas et al. 1995; Alexis 1997; Lupatsch et al. 1997;
Refstie et al. 1997; Gomes da Silva and Oliva-Teles 1998; Sugiura et al. 1998;
Yamamoto et al. 1998; Lanari et al. 1999; Small et al. 1999; Refstie et al. 2000;
Papatryphon and Soares Jr 2001; Lee 2002).
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The results suggest that CAM was poorly utilized by haddock with an organic
matter ADC of 59%, which was similar to values reported for Chinook salmon (54-59%)
(Hajen et al. 1993b). Protein ADC of CAM was also lower (83%) than the other plant
ingredients and, in fact, the values reported for rainbow trout (Hilton and Slinger 1986),
turbot (Burel et al. 2000) and haddock were the same at 83%. Burel et al. (2000) also
reported that heat-treating of CAM increased its protein ADC from 83 to 92% for turbot
but this would increase the cost to the product. It appears that haddock utilize the energy
in CAM (11 MJ/kg) at the same rate as Chinook salmon and rainbow trout (11 MJ/kg)
(Smith et al. 1980; Anderson et al. 1992). This corresponds to a fairly low energy ADC
value of about 60% for all three species. Much discrepancy exists on energy ADC in
CAM for rainbow trout with values ranging from very low to moderate (45-75%) (Cho et
al. 1982; Hilton and Slinger 1986; Cho and Kaushik 1990). Energy ADC for haddock
and Australian silver perch, Bidyanus bidyanus, were also similar at 60 and 58%
respectively (Allan et al. 2000). Lipid ADC values reported for CAM in rainbow trout
(92%) are high (Cho et al. 1982; Hilton and Slinger 1986) and similar to that reported
here for haddock (87%). Like SM, the CAM used in this study was high in ash (7%) and
fibre (11%), compared with averages of 4% (ash) and 4% (fibre) for the other plant
ingredients. Mwachireya et al. (1999) concluded that high levels of fibre have the
greatest adverse effects on digestibility of canola products for rainbow trout and this also
seems to be the underlying reason for low digestibility in haddock, turbot and most other

species examined.

Conclusions

Due to high crude protein content, nutrient ADC and DE content, properly
processed dehulled SBM is a good plant protein supplement to partially replace HM in
haddock feeds. The relatively high DP and DE content, low ash content and good feed
attractant properties makes properly processed CRM a good marine fish by-product
alternative to partially replace HM in haddock diets. Future research should be directed
to verify the chitin digestibility and to determine the amino acid availability of CRM and
to further improve the processing conditions that will retain free amino acids and their

associated feed attractant properties. SM and CAM have limited potential for use in
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haddock diets due to their high ash and fibre contents, low DE content and poor organic
matter and protein ADC values. Additional effort is needed to improve the processing of

these feed ingredients to increase the digestibility and nutritive value of these products.
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Table 1 Composition of the basal diet (without oil)

Ingredient a/kg
Herring meal (70% CP)? 460.0
Wheat gluten meal® 50.0
CPSP-G* 50.0
Wheat middlings” 187.0
Whey powder* 70.0
Corn starch (pre-gel)® 61.0
Vitamin pre-mix' 19.5
Mineral pre-mix® 19.5
Choline chloride" 3.0
Total 920.0

#Corey Feed Mills (Fredericton, NB, Canada).

*Dover Mills (Halifax, NS, Canada).

“Concentre proteique soluble de poisson (soluble fish protein concentrate) (Sopropéche, France).
Farmers Co-operative Dairy (Truro, NS, Canada).

*National Starch and Chemical (Bridgewater, NJ, USA).

fVitamin A, 8000 IU; vitamin D3, 4500 IU; vitamin E, 300 IU; vitamin K3, 40 mg/kg; thiamin, 50mg/kg;
riboflavin, 70 mg/kg; pantothenate, 200 mg/kg; biotin, 1.5 mg/kg; folic acid, 20 mg/kg; vitamin B,, 0.15
mg/kg; niacin, 300 mg/kg; pyridoxine, 20 mg/kg; ascorbic acid, 300 mg/kg; inositol, 400 mg/kg; butylated
hydroxy toluene, 15 mg/kg; butylated hydroxy anisole, 15 mg/kg.

9Manganous sulphate, 40 mg/kg; ferrous sulphate, 30 mg/kg; copper sulphate, 5 mg/kg; zinc sulphate, 75
mg/kg; sodium selenite, 1 mg/kg; cobalt chloride, 2.5 mg/kg; sodium fluoride, 4 mg/kg.

"US Biochemical (Cleveland, OH, USA).

53



Table 2 Proximate composition of the six experimental feed ingredients

Nutrient (as-fed basis) Herring Crab Shrimp Soybean Canola Corn gluten
meal® meal” meal® meal® meal meal®
Moisture (%) 8.5 8.5 5.8 6.6 11.4 7.5
Ash (%) 14.4 26.7 37.7 5.7 6.9 1.4
Organic matter® (%) 77.1 64.8 56.5 87.7 81.7 91.1
Crude protein (%) 69.7 50.3 40.6 46.3 38.3 65.8
Lipid (%) 10.2 7.1 45 55 3.8 1.8
Carbohydrate' (%) 0.0 7.4 11.4 35.9 39.6 235
Gross energy (MJ/kg) 19.8 15.0 12.5 19.5 18.2 22.1

#Corey Feed Mills (Fredericton, NB, Canada).

bSt Laurent Gulf Products (Caraquet, NB, Canada).
“Island Fisherman’s Co-op (Lemeque, NB, Canada).
dCanbra Foods (Lethbridge, AB, Canada).

*Organic matter = 100 - (moisture + ash).

fCarbohydrate = 100 - (moisture + protein + lipid + ash).
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Table 3 Formulation of the seven experimental diets

Ingredient (g/kg) Herring Crab Shrimp Soybean Canola Corn gluten
Reference meal meal meal meal meal meal
Basal diet 9154 615.4 615.4 615.4 615.4 615.4 615.4
Test ingredient 0.0 300.0 300.0 300.0 300.0 300.0 300.0
Herring oil 79.6 79.6 79.6 79.6 79.6 79.6 79.6
Chromic oxide 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Total 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
Analysis (as-fed basis)
Moisture (%) 10.3 9.5 8.3 7.7 9.3 9.0 8.8
Ash (%) 9.1 10.5 13.3 16.3 8.2 8.2 6.6
Crude protein (%) 44.2 51.1 46.5 42.4 43.7 41.0 49.6
Lipid (%) 13.9 14.1 13.4 14.0 13.7 12.9 14.1
Carbohydrate® (%) 22.5 14.8 18.5 19.6 25.1 28.9 20.9
Gross energy (MJ/kg) 20.6 20.9 19.9 19.0 20.8 20.5 21.7

#Carbohydrate = 100 - (moisture + protein + lipid + ash).
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Table 4 Apparent digestibility coefficients (%) of major nutrients in the six experimental

feed ingredients

Ingredient Organic matter Energy Protein Lipid

Herring meal 96.5+2.7° 92.6+3.8°  95.2+0.6°  97.9+1.3°
Crab meal 68.4+4.9™ 82.7+0.8"  83.6+0.8°  62.0+4.6"
Shrimp meal 54.8+7.4 66.2+43.9°  73.1#1.7°  55.8+3.4°
Soybean meal 88.6+3.4° 92.042.2°  92.4+1.6%  83.0+6.0°
Canola meal 59.0+2.6% 60.1+1.2%  82.8#1.7°  87.2+1.6°
Corn gluten meal ~ 72.5+0.6° 80.8+1.1"  92.7#0.3°  57.4+2.9"

Values within each column having different superscript letters are significantly different (P<0.05).
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Table 5 Total and digestible contents® of major nutrients in the six experimental feed

ingredients (as-fed basis)

Organic
Ingredient matter (%)  Energy (MJ/kg) Protein (%)  Lipid (%)
Herring meal
Total 77.1 19.8 69.7 10.2
Digestible 74.4 18.3 66.4 10.0
Crab meal
Total 64.8 15.0 50.3 7.1
Digestible 44.3 12.4 42.0 4.4
Shrimp meal
Total 56.5 12.5 40.6 4.5
Digestible 31.0 8.3 29.7 2.5
Soybean meal
Total 87.7 19.5 46.3 55
Digestible 777 17.9 42.8 4.6
Canola meal
Total 81.7 18.2 38.3 3.8
Digestible 48.2 10.9 31.7 3.3
Corn gluten meal
Total 91.1 22.1 65.8 1.8
Digestible 66.0 17.8 61.0 1.0

'Digestible nutrient content = total nutrient content x ADC, where ADC is the apparent digestibility

coefficient.



58



Chapter 3

Apparent protein and energy digestibility of common and
alternative feed ingredients by Atlantic cod, Gadus morhua
(Linnaeus, 1758).

This chapter was published as:

Tibbetts, S.M., Milley, J.E., Lall, S.P. (2006) Apparent protein and energy digestibility of
common and alternative feed ingredients by Atlantic cod, Gadus morhua (Linnaeus,
1758). Aquaculture 261, 1314-1327.
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Abstract

Studies were conducted with Atlantic cod, Gadus morhua (L.), to determine the
apparent digestibility coefficients (ADCs) of protein and energy and the digestible energy
(DE) content in feed ingredients widely available in Canada. We also tested the
assumption of “independency” used in digestibility studies. The feed ingredients
included two fish meals (herring, anchovy), one zooplankton meal (whole krill), two
crustacean by-product meals (crab, shrimp), two animal by-product meals (poultry by-
product, hydrolyzed feather), six oilseed meals (soybean, soy protein concentrate, soy
protein isolate, canola, canola protein concentrate, flaxseed), two pulse meals (white
lupin, pea protein concentrate) and two cereal grain meals (corn gluten, wheat gluten).
Protein ADCs were high for wheat gluten meal (99.9%), soy protein concentrate (98.6%),
soy protein isolate (97.4%), whole krill meal (96.3%), herring meal (93.3%), soybean
meal (92.3%), anchovy meal (92.2%), pea protein concentrate (89.8%), white lupin meal
(89.7%), crab meal (89.4%), canola protein concentrate (88.8%) and corn gluten meal
(86.3%); mid-range for poultry by-product meal (80.2%) and canola meal (76.0%); and
low for shrimp meal (66.7%), hydrolyzed feather meal (62.4%) and flaxseed meal (50.2—
55.0%). Energy ADC was high for whole krill meal (96.3%), wheat gluten meal
(95.4%), soy protein concentrate (94.9%), herring meal (92.8%), soy protein isolate
(92.1%), soybean meal (88.1%) and anchovy meal (86.4%); mid-range for canola protein
concentrate (83.3%), corn gluten meal (82.7%), crab meal (82.4%), pea protein
concentrate (76.7%) and white lupin meal (75.3%); and low for poultry by-product meal
(71.0%), canola meal (60.6%), hydrolyzed feather meal (58.9%), shrimp meal (41.4%)
and flaxseed meal (21.2-37.4%). From the protein ADC data, results clearly showed that
the basal diet and test feed ingredients were digested independently of one another in
nearly all cases, the only exceptions being for those diets containing test ingredients of
very high (>99%, wheat gluten) or very low (<67%, hydrolyzed feather and flaxseed)
protein ADCs. In the case of DE, the basal diet and test feed ingredients were digested

independently in all test diets without exception.
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Introduction

In recent years, marine culture of gadoids has expanded in Eastern Canada and
Western Europe. The production of species like Atlantic cod is expected to reach 140—
180,000 tonnes by the year 2010 (Rosenlund and Skretting 2006). These fish are known
to have a high protein requirement (50-60%) (Lall et al. 2003; Rosenlund et al. 2004) but
limited information is available on digestion of major nutrients and energy from various
feed ingredients (Tibbetts et al. 2004; Kim et al. 2006). Selection of potential ingredients
for feed formulation for any fish species requires knowledge of the apparent digestibility
coefficients (ADCs) of energy-yielding nutrients (starch and sugars, fat, protein, non-
starchy polysaccharides). Fish meal provides the main source of protein in salmonid and
marine fish diets. The nutritional value of various fish meals for salmonids grown in
Canada has been investigated extensively (Anderson et al. 1997; Lall and Anderson
2005). World-wide fish meal use for aquafeeds will reach 4 million tonnes by 2015,
representing >66% of the expected global supply (New and Wijkstrom 2002). With this
ever-growing demand for high-quality fish meals, fish feeds must increasingly be
formulated with alternate protein sources from marine, animal or plant origin that are
both economical and highly digestible (see review of Hardy 1996). The use of these
alternatives in on-growing diets must still be able to support similar fish performance
and, concurrently, have little or no adverse effects upon fish health and the environment.

Several factors can affect protein quality and the nutrient profile of fish,
zooplankton, crustacean and animal by-product meals. These include characteristics of
the raw material (species, freshness, whole animal or scraps), processing of the raw
ingredients such as the drying process and temperature, lipid peroxidation and storage
conditions of the meal (Pike 1991). The major by-product of crustacean processing is the
shell which contains 50-80% chitin, an amino polysaccharide (poly-p-(1—4)-N-acetyl-
glucosamine). The natural diet of cod consists of >37% chitin-rich crustaceans and
echinoderms including crabs, shrimps and brittle stars (see Lall and Nanton 2002). Cod
naturally produce significant concentrations of the digestive enzyme chitinase (Danulat
and Kausch 1984) and in vivo chitin digestibility may be as high as 90% for cod (Danulat
1987). Accordingly, crustacean by-products have been identified as good candidates to
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replace fish meal in diets for Atlantic cod (Toppe et al. 2006). At the same time,
crustacean by-product meals are usually high in ash content (>20%), which can adversely
affect digestibility of fish feeds (NRC 1993).

Poultry by-product and hydrolyzed feather meals are produced from the wastes
generated by the poultry processing industry. Production processes are similar to that of
fish meal with an extra Ca(OH), digestion in the production of hydrolyzed feather meal.
These animal by-product meals are generally high in crude protein (60-80%); however,
they tend to be methionine deficient. Poultry by-product meal can also be high in ash
(>15%) as a result of high bone content and is often variable in proximate composition.
Protein digestibility can be quite low for hydrolyzed feather meal due to high levels of
keratin (Dong et al. 1993; Hardy and Barrows 2002).

Partial replacement of fish meal with plant protein supplements or complete
replacement with concentrates from these products has been successful in several
commercially important salmonid species (Higgs et al. 1995; Kaushik et al. 1995) and
turbot (Regost et al. 1999). Factors limiting the use of plant protein sources include low
protein content, high fiber content, an amino acid imbalance, poor palatability and the
presence of anti-nutritional factors or toxicants (e.g. protease inhibitors, lectins, phytic
and/or erucic acid, sinapin, saponins, phytoestrogens, alkaloids, tannins, cyanogens,
glucosinolates). These factors adversely affect digestion, absorption, physiological
utilization of protein and amino acids, lipids and fatty acids and minerals and cause
several other undesirable effects when incorporated into fish feeds (see review of Francis
et al. 2001). Plant-based protein sources, however, can provide high nutritional value in
fish diets when properly incorporated into feed formulations, supplemented with purified
amino acids and feed attractants and properly heated during feed processing.
Unfortunately, many of the modified plant-based feed ingredients (protein concentrates,
isolates and glutens) become cost-prohibitive in least-cost ration formulations (Hardy
1996).

The objectives of the present study were to: (1) determine the apparent
digestibility coefficients (ADCs) of protein and energy and the digestible energy (DE)
content of a wide range of feed ingredients available in Canada including fish meals,

zooplankton meals, crustacean by-product meals, animal by-product meals and plant-
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based meals when included at 30% in the diet for Atlantic cod and (2) test the assumption
that the basal mix portion of the test diet (70%) and the test feed ingredient (30%) are
digested independently of one another (Cho et al. 1982).

Materials and methods
Fish

Atlantic cod juveniles were cultured at the NRCC Institute for Marine
Biosciences, Marine Research Station (Halifax, Nova Scotia) for use in this study. Three
hundred and sixty of these fish (89.9+4.0 g average weight) were temperature acclimated
in a single 2000 L circular fiberglass tank with flow-through (30 L/min), filtered (30 pm)
seawater (salinity, 28-30 ppt). Temperature acclimation involved a gradual increase in
water temperature (0.5°C per day) from 4 to 12°C over a 3-week period. During this
period, the fish were hand-fed EWOS™ 5.0 mm Marine Feed (EWQOS Canada, Surrey,
BC, Canada) twice daily (0900 and 1600 h) to apparent satiation. The proximate
composition (as-fed basis) of this diet was: moisture 63 g/kg, crude protein 551 g/kg,
lipid 119 g/kg, ash 106 g/kg, and gross energy 21 MJ/kg.

Experimental diets

A practical, fish meal-based basal diet (Table 1) was formulated according to
digestible protein (DP) and digestible energy (DE) values of feed ingredients for haddock
(Tibbetts et al. 2004). Seventeen experimental diets were subsequently produced
containing a mixing ratio (w/w basis) of basal diet (69.75%) and test feed ingredient
(29.75%). One additional diet containing 99.5% basal diet with no test feed ingredient
was also produced and served as the reference diet. All 18 experimental diets were
supplemented with chromic oxide (Cr,0s, 5 g/kg) as the inert digestion indicator
(Austreng 1978).

The test feed ingredients consisted of two fish meals (herring, anchovy), one
zooplankton meal (whole krill), two crustacean by-product meals (crab, shrimp), two
animal by-product meals (poultry by-product, hydrolyzed feather), six oilseed meals
(soybean, soy protein concentrate, soy protein isolate, canola, canola protein concentrate,

flaxseed), two pulse meals (white lupin, pea protein concentrate) and two cereal grain
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meals (corn gluten, wheat gluten). Their international feed number, proximate
composition, gross energy content and supplier are given in Table 2. Dry ingredients of
the basal diet and all test feed ingredients were finely ground (<800 um) using a Perten
Laboratory Mill (Model 3100, Perten Instruments, Huddinge, Sweden). Micronutrients
(vitamins and minerals) were pre-mixed with ground wheat as a base, using a twin-shell
blender (Paterson-Kelly, East Stroudsburg, PA, USA) prior to being added to the main
ingredient mixture. All ingredients were mixed in a Hobart mixer (Model H600T, Rapids
Machinery Co., Troy, OH, USA) and steam pelleted into 4.0 mm pellets (California
Pellet Mill Co., San Francisco, CA, USA). The pellets were dried in a forced-air drier at
80°C for 90 min to form dry, sinking pellets and stored in air-tight containers at —20°C

until use. Diets were screened to remove fines prior to feeding.

Digestibility system and fecal collection

After the 3-week temperature acclimation, the fish were randomly distributed into
a digestibility system consisting of 12 tanks (120 L capacity) each equipped with a fecal
collection column (Figure 1), which was a modification of the Guelph system (Cho et al.
1982). The modifications were made in order to (1) utilize a single, circular fiberglass
tank as the experimental unit rather than triple, grouped rectangular tanks and (2) increase
the rate and quantity of fecal recovery by repositioning the fecal collection column
directly below the drain at the bottom of the tank. This modification increased the
efficiency of fecal settlement by eliminating any requirement for horizontal flow. A gate
valve was installed at the connection between the tank and the fecal collection column so
that the column could be isolated from the effluent water and removed from the system
for cleaning at the end of each day without any disruption in water flow to the fish.

The fish were acclimated to these tanks and the experimental diets for 2 weeks
prior to beginning the trial. The experiment was conducted according to a randomized
block design and replicated twice. Each of the 18 experimental diets was fed to two
tanks, each containing 30 fish with an initial mean weight of 89.9+4.0 g. Filtered (30
um), UV-treated seawater (salinity, 28-30 ppt) was supplied to each tank at a flow rate of
3 L/min in a flow through system and continuously aerated (8.6+0.8 mg/L dissolved
oxygen; 91+6% gas saturation). The water temperature was maintained thermostatically
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(11.9+0.2 °C) and monitored daily. The rearing temperature of 12°C is within the
preferred zone of 9-17°C for Atlantic cod where gastric evacuation rate, appetite and
feeding rates are maximized (Jobling 1988). During the 10-week experimental period,
fish were hand-fed to apparent satiety 3 times daily during the week (0900, 1300, 1600 h)
and twice daily on weekends (0900, 1300 h). Any dead or moribund fish were collected,
weighed and recorded on a daily basis. Each week-day, after the final feeding (1600 h),
the tanks and fecal collection columns were thoroughly cleaned with a brush to remove
any residual particulate matter (feces and uneaten feed). There were no fecal collections
made on weekends. Fecal samples were collected each morning (0830 h) into 250 mL
plastic bottles, centrifuged (4000 rpm [2750 x g] for 20 min at 4°C) and the supernatant
carefully decanted and discarded. Approximately 17-18 h elapsed between the last
feeding and the fecal collection. A minimum of 40 g of wet material was collected from
each tank (20 g at each of 2 consecutive collection periods) and each sample was stored
in a sealed container at —20°C for the duration of the collection period. Fecal samples

were lyophilized, finely ground and stored at —20°C until further analyses.

Analytical techniques, calculations and data analyses

Test feed ingredients, experimental diets and lyophilized fecal samples were
analyzed in duplicate using the same procedures. Moisture was determined by drying in
an oven at 105°C for 18 h and ash by incineration in a muffle furnace at 550°C for 18 h
(Woyewoda et al. 1986). Crude protein (% nitrogen x 6.25) was measured by the Dumas
method (Ebeling 1968) using a Leco nitrogen determinator (Model FP-528, Leco
Corporation, St. Joseph, MI, USA). Total lipid was determined using a modified Bligh
and Dyer (1959) method. Organic matter was calculated by difference (100 — [moisture
+ ash]) and carbohydrate was calculated by difference (100 — [moisture + ash + protein +
lipid]). Gross energy was measured using an isoperibol oxygen bomb calorimeter (model
6200, Parr Instrument Company, Moline, IL, USA) equipped with a Parr 6510 water
handling system for closed-loop operation. Chromic oxide content of experimental diets
and fecal samples was determined by flame atomic absorption spectrophotometry using

an AAnalyst 300 atomic absorption spectrophotometer (Perkin-Elmer, Norwalk, CT,
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USA) following a microwave acid digestion procedure as described by Peach (2005, pp.
52-54) using a Multiwave sample preparation platform system (Perkin-Elmer, Norwalk,
CT, USA).

Diet digestibility (% dry matter digestibility) for the reference and test diets was
calculated as follows:

Diet digestibility (%) = 100 — (100 x [Cr,03 diet/Cr,03 feces])

Apparent digestibility coefficients (ADCs) of protein and energy for the reference
and test diets were calculated according to Maynard et al. (1979 p. 41) as follows:
% ADC =100 — (100 x [Cr,03 diet/Cr,03 feces] x [nutrient feces/nutrient diet])

Using these data, protein and energy ADCs for the single test feed ingredients
were calculated according to Forster (1999).
% ADC = ([a + b] x ADC test diet — [a] x ADC reference diet) x b™'
a = nutrient contribution of reference diet to nutrient content of test diet
b = nutrient contribution of test ingredient to nutrient content of test diet

To calculate the predicted test diet ADC, the following formula was used:
Test diet protein ADC or DE = ([0.7 x reference diet protein ADC or DE]
+ [0.3 x test ingredient protein ADC or DE])

Mean protein and energy ADC (or DE) + standard error (SE) were calculated
from the average of 2 replicate tanks receiving each experimental diet. Statistical
analyses were performed using analysis of variance, ANOVA (SYSTAT® 8.0) with a 5%
level of probability (P<0.05) selected in advance to sufficiently demonstrate a statistically

significant difference.

Results and discussion
Composition of test feed ingredients

The proximate composition and gross energy content of the 17 test feed

ingredients are reported in Table 2 along with their international feed numbers. The
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moisture content of the feed ingredients ranged between 5 and 12%. The crude protein
(68 and 75%) and lipid (10%) content of the fish meals are in the typical range of 55—

75% and 5-10%, respectively (Hardy 1996). The ash values were as expected with
herring meal at 10% and anchovy meal at 16% (NRC 1993). Since herring meal contains
higher protein and lower ash than anchovy meal, the gross energy content of the herring
meal was about 2 MJ/kg higher than anchovy meal (21 vs. 19 MJ/kg). The krill meal
used in this study was produced by finely grinding (<800 um) whole freeze-dried krill
(Euphausia superba) and thus the proximate composition was quite different from that
found in commercially produced krill meals. The earlier work of Storebakken (1988)
reported a proximate composition of 62% crude protein, 12% lipid, 16% ash and 5%
chitin in krill. Typically, krill meals produced from various species contain in the range
of 33-55% protein, 15-20% lipid and 15-28% ash (Hardy and Barrows 2002). The
whole krill meal used here contained considerably higher protein (72%), lower lipid (5%)
and had an ash content within the range reported (17%). The crab meal used in this study
was provided by a local company that has made significant improvements in processing
of Atlantic snow crab (Chionoecetes opilio) over the years. Crab meals typically contain
32% protein and 41% ash (NRC 1993) while the crab meal used in this study had a much
higher protein (54%) and lower ash (23%) content. The crude protein (37%) and lipid
(3.5%) contents of the shrimp meal were close to expected (Hardy 1996; NRC 1993),
whereas the ash content was very high (38%). Most shrimp meals typically contain 18—
27% ash (Hardy 1996; NRC 1993). The poultry by-product meal used in this study
contained 15% lipid, 11% ash and 66% crude protein. Typically, poultry by-product
meals contain 58-60% protein and 14-16% ash (Hardy 1996; Hardy and Barrows 2002).
The hydrolyzed feather meal contained the expected (80—85%) protein level (83%) but
higher levels of lipid (8%) and ash (4%) where typical levels are 5 and 3%, respectively
(NRC 1993; Hardy and Barrows 2002). The composition of soybean meal and canola
meal were as expected at 47 and 39% protein, 2 and 3% lipid and 6 and 7% ash,
respectively (Hardy 1996). Canola and soy protein concentrates are typically high (55—
80%) in protein (Hardy 1996) and the products used in this study were in that range (61
and 69%, respectively). As expected, the protein content of the soy protein isolate was

much higher at 86%. Further processing of these plant-based ingredients increased the
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gross energy (MJ/kg) contents (soybean meal [17], soy protein concentrate [19], soy
protein isolate [21] and canola meal [18], canola protein concentrate [19]). The pea
protein concentrate used in this study was an air-classified protein concentrate and
contained higher protein (49%) than regular pea meals which contain <25% protein
(Hardy 1996). The white lupin meal contained 38% protein, which is in the typical range
(35-43%) for dehulled lupin seeds (Hardy 1996). Both pulse meals contained relatively
high lipid (4 and 6%), low ash (3 and 5%) and high gross energy (19 MJ/kg), which is
comparable to some fish meals and other plant protein concentrates. Crude protein and
lipid content of the corn gluten meal were slightly higher than typically reported (62 and
4%) and may be the result of the slightly lower ash (1%) content (NRC 1993). The wheat
gluten meal used in this study was typically high (79%) in protein (Hardy 1996) and very
low in lipid (2%) and ash (0.5%). The flaxseed meal was produced by finely grinding
(<800 um) flaxseed press-cake and it contained relatively low amounts of protein (<31%)
and high carbohydrate (43%), which was similar to canola meal (45%). It should be
noted that differences in proximate composition of test feed ingredients do exist from
batch to batch given the variations in the season of harvest/catch of the raw materials and
processing conditions used by various production plants. In addition to differences in
their proximate composition, differences in digestibility also occur in feed ingredients
that appear to be the same. These effects and also the effect of fecal collection method on
ADC values will be discussed further.

Survival and feed acceptance

Over the 10-week experimental period, fish survival was high on all diets (96—
100% survival). It was observed that all diets were accepted equally well by the fish with
the exception of diets containing zooplankton meals, crustacean by-product meals and
pea protein concentrate. The zooplankton and crustacean meals induced a positive
feeding response. The diet containing pea protein concentrate was not readily accepted
by the fish. This can likely be attributed to the presence of soyasaponin 1 which occurs
naturally in peas and is described as having a bitter, astringent and metallic flavor (Price
et al. 1985).
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Test diet composition and digestibility

The proximate composition, gross energy content and dry matter diet digestibility
of the experimental diets are shown in Table 3. All diets had moisture contents in the
range of 8 to 10%. Protein and energy content ranged from 44 to 61% and from 18 to 21
MJ/kg, respectively and reflected the protein and energy contents of the test ingredients.
The ash content was in the range of 5 to 11% for the experimental diets with the
exception of the diet containing shrimp meal (15%). Digestibility of the reference diet
was 76% and most test diets were similar to or higher than that value (range, 73-81%),
with the exceptions of test diets containing white lupin meal, hydrolyzed feather meal,
canola meal, shrimp meal and flaxseed meal (range, 53-71%). This is likely due to high
levels of ash (>38%) in shrimp meal, carbohydrate (>40%) in canola, flaxseed and white
lupin meals and keratin protein in hydrolyzed feather meal. There were 2 consecutive
fecal collection periods for fish fed all experimental diets and ADCs of each diet at the 2
collection periods were compared by ANOVA. No significant differences (P>0.05)
between collection periods, with the exception of the diet containing flaxseed meal were
observed; accordingly, data for periods 1 and 2 were pooled for the remaining 17
experimental diets. For the diet containing flaxseed meal, there was a significant period
effect (P<0.05) where the diet ADC for period 1 was 53% but had significantly improved
to 59% by period 2. As a result, all further data analysis for this diet was treated
separately and denoted as flaxseed meal (period 1) and flaxseed meal (period 2),
respectively. The flaxseed meal used in this study was not a commercial product, rather
it was prepared in our lab by finely grinding press cake after oil extraction and was not
dehulled. This product likely was quite high in indigestible fiber (essentially “bulk™),
which promoted a laxative effect and had a pronounced effect on fecal output, as has
been observed with European seabass (Dias et al. 1998). Thus, it is not surprising that
diet digestibility was low. The significant increase in diet ADC from 53% in period 1 to
59% in period 2 indicates that the fish gut microflora may have adapted to this dietary
stressor by increasing in population in the presence of the elevated level of dietary fiber,
however, there is no evidence in the literature to support this claim. If these fish were

kept on this diet for a longer period of time, it is doubtful that the diet ADC would
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continue to improve significantly given the cold-water, carnivorous nature of Atlantic

cod.

Fish meals

Protein ADCs for the fish meals were high (Table 4). The value for herring meal
(93%) is similar to that previously reported for haddock (Melanogrammus aeglefinus)
(95-96%) (Tibbetts et al. 2004; Kim et al. 2006) and salmonids such as rainbow trout
(Oncorhynchus mykiss), Atlantic salmon (Salmo salar), coho salmon (Oncorhynchus
kisutch) and Chinook salmon at 89-96% (Anderson et al. 1997; Hajen et al. 1993;
Sugiura et al. 1998; Burel et al. 2000; Cheng and Hardy 2002). The value for anchovy
meal (92%) is similar to those reported for salmonid species, which is in the range of 86—
94% (Anderson et al. 1995; Hajen et al. 1993; Sugiura et al. 1998, 2000; Thiessen et al.
2004; Glencross et al. 2005). Protein ADCs of fish meals measured with cod are also
similar to those reported for turbot (Psetta maxima), seabass (Dicentrarchus labrax) and
Atlantic halibut (Hippoglossus hippoglossus) at 91-96% (Gomes da Silva and Oliva-
Teles 1998; Burel et al. 2000; Peach 2005). Energy ADCs for the fish meals were also
high (herring meal, 93% and anchovy meal, 86%) and are in the same range as those
reported for the species mentioned above (88-99%). As noted previously, differences in
ADC values of feed ingredients do occur frequently and are usually the result of species
differences, variations in the season of harvest/catch of the raw materials and processing
conditions used by various production plants. We have no control over these factors in
the present study as only one sample of each feed ingredient was used. In addition,
differences can occur due to procedures used by various laboratories including fecal
collection method, ADC equation used and variations in the formulation of the reference
diet. With regard to the fecal collection method and ADC equation used, it is well
documented that procedures involving manually stripping, anal suction or dissection
cause significant stress to the animal and likely result in fecal samples contaminated with
non-fecal nutrients (digestive enzymes, bodily fluids, sloughed epithelial cells, etc.).
Fecal samples obtained by these methods tend to underestimate ADC while methods
involving settlement, siphoning or screening may overestimate ADC due to leaching

losses. The method we chose to use involved the use of a settlement column like the one
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used on the original Guelph system where Cho et al. (1982) reported no significant losses
due to leaching. In addition, our modified tank design further reduced the likelihood of
leaching losses by increasing fecal recovery time. Variability in ADC values is also due

to the use of different equations to calculate ADC. Recently, Forster (1999) concluded
that the traditional equation used to calculate ADC (Cho et al. 1982) is flawed and, thus,
the ADC literature for fish contains values calculated by various equations. In a
preliminary work, we have confirmed the use of Forster's equation for our work with cod
(Tibbetts et al. 2006). While much of the data cited in this paper for comparison would
likely have been calculated using the traditional equation, the differences are typically
very small and not significant, but may partly explain some of the variation presented

especially for feed ingredients of low digestibility.

Zooplankton and crustacean by-product meals
Protein ADCs were high for whole krill (96%) and crab (89%) meals and low for

shrimp meal (67%). Although little published information exists for krill meal
digestibility in fish, a lower value (87%) has been reported for rainbow trout (Vens-Capel
and Horstmann 1978 in Storebakken 1988) and is likely due to differences in product
quality. Although a different product, the protein ADC of krill hydrolysate was found to
be almost the same (98%) in Atlantic halibut (Peach 2005). The 2% higher protein ADC
observed in halibut may be due to the lack of chitin present in krill hydrolysates,
regardless, the protein ADC of whole krill meal by cod is very high. Protein ADC of
crab meal measured in this study with cod (89%) is similar to that of Atlantic halibut
(88%) and both are higher than reported previously in our lab with haddock (84%)
(Tibbetts et al. 2004). This is likely the result of improved production protocols now
employed by the crab meal manufacturer as mentioned earlier. The low protein ADC
reported here for shrimp meal (67%) is similar to our previous report with haddock (73%)
and both are lower (82%) than that reported for Atlantic halibut (Tibbetts et al. 2004;
Peach 2005). The discrepancy between haddock/cod and other species may be due to the
unusually high ash content of the shrimp meal sample used in these studies. As such,
digestibility of shrimp meal by gadoids may have to be re-examined with alternate
shrimp meal sources. Energy ADC was high for whole krill meal (96%), mid-range for
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crab meal (82%) and low for shrimp meal (41%). The value reported for whole krill
meal (96%) is consistent with that reported for krill hydrolysate (97%) by Atlantic halibut
(Peach 2005). The energy ADC for crab meal in cod fully agrees with that reported for
haddock (83%) but the value for shrimp meal (41%) is significantly lower than those
reported for haddock and halibut at 66—-75% (Tibbetts et al. 2004; Peach 2005).

Animal by-product meals

Protein ADCs were mid-range for poultry by-product meal (80%) and low for
hydrolyzed feather meal (62%). Animal by-product meals are highly variable in
proximate composition based upon several factors (raw material source and freshness,
production processes and storage) and, as such, the reported values for protein ADC are
also highly variable in fish studies. Protein ADC values reported for poultry by-product
meal for salmonids (Hajen et al. 1993; Sugiura et al. 1998; Bureau et al. 1999; Cheng
and Hardy 2002; Cheng et al. 2004) and Atlantic halibut (Peach 2005) are in a wide
range of 74-96%. Our value reported for cod (80%) is within this range and also
consistent with that reported (80%) for gilthead seabream (Sparus aurata) (Lupatsch et
al. 1997). Protein ADC of hydrolyzed feather meal is higher for salmonids at 71-87%
(Hajen et al. 1993; Sugiura et al. 1998, 2000; Bureau et al. 1999; Cheng et al. 2004) than
that reported here for cod (62%) but similar to that reported for Atlantic halibut (58%)
(Peach 2005). The highly variable nature of animal by-product meals is also reflected in
energy ADC where the values reported for the species listed above are also highly
variable for poultry by-product meal (65-91%) and hydrolyzed feather meal (57—85%).
Our values for poultry by-product meal (71.0%) and hydrolyzed feather meal (58.9%) are
consistent with those reported for Chinook salmon at 72% and 57%, respectively (Hajen
et al. 1993). The energy ADC of hydrolyzed feather meal is also similar to that of
Atlantic halibut at 62% (Peach 2005).

Oilseed meals
Protein ADC was high for soybean meal (92%), soy protein concentrate (99%)
and soy protein isolate (97%). Digestibility of soybean meal has been extensively studied

with various fish species and although there is a broad range reported on the protein ADC
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(76-98%), the value found here for cod (92%) is consistent with those reported for
rainbow trout (92%), coho salmon (93%) and haddock (92%) (Glencross et al. 2005;
Sugiura et al. 1998; Tibbetts et al. 2004). Similarly, there is a wide range of values (61—
92%) reported for energy ADC for the above species (Hajen et al. 1993; Lupatsch et al.
1997; Gomes da Silva and Oliva-Teles 1998; Morales et al. 1999; Lee 2002; Cheng and
Hardy 2003; Peach 2005; Glencross et al. 2005; Tibbetts et al. 2004) although the value
found for cod (88%) agrees with haddock (88%) (Kim et al. 2006). The protein ADC of
soy protein concentrate for cod (99%) is consistent with those reported for rainbow trout
(98%) and Atlantic halibut (100%) while the energy ADC (95%) is slightly higher than
those of rainbow trout (87%) and Atlantic halibut (92%) (Glencross et al. 2005; Peach
2005). The protein ADC of soy protein isolate for cod (97%) is close to that reported for
rainbow trout (98%) while the energy ADC (92%) is slightly lower than that of rainbow
trout (96%) (Glencross et al. 2005). Clearly, concentrating soybean meal into
concentrates/isolates has a positive effect on digestibility and may be attributed to a
reduction in anti-nutritional factors associated with raw soybean meal. This has been
confirmed with rainbow trout, Atlantic salmon and Atlantic halibut where no negative
effects on fish growth performance were observed with diets containing relatively high
levels of soy protein concentrate (Kaushik et al. 1995; Storebakken et al. 1998a, 1998b;
Berge et al. 1999). However, given that protein and energy digestibility of soybean meal
is already high for cod (92 and 88%, respectively), further processing significantly
increases cost of the products and therefore may not provide any additional benefit on a
price per digestible nutrient basis. The use of these ingredients in commercial cod feeds
will require growth studies and a full economic evaluation in a least-cost ration
formulation. Interestingly, it was recently found that, in contrast to salmon, cod do not
develop enteritis when soybean meal is included at high levels in the feed, which is very
promising, given the high dietary protein requirement of cod (Rosenlund and Skretting
2006).

Protein ADC was mid-range for canola meal (76%) and high for canola protein
concentrate (89%). For canola meal, this value is lower than other fish species which are
in the range of 83-95% (Hajen et al. 1993; Mwachireya et al. 1999; Burel et al. 2000;
Cheng and Hardy 2002; Tibbetts et al. 2004; Peach 2005) but the value for canola protein
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concentrate (89%) is consistent with rainbow trout (90%) reported by Thiessen et al.
(2004). The energy ADC of canola meal for cod (61%) is in the range (52—76%)
reported for salmonids and halibut (Anderson et al. 1992; Hajen et al. 1993; Mwachireya
et al. 1999; Burel et al. 2000; Cheng and Hardy 2002; Peach 2005) and was similar
(60%) to haddock (Tibbetts et al. 2004). The energy ADC for canola protein concentrate
is relatively unknown for most fish species with the exception of rainbow trout (reported
value of 86%, Thiessen et al. 2004), which is higher than the value obtained for cod
(83%). Like soybean meal, further processing of canola meal to produce canola protein
concentrate had a positive effect on both protein ADC (canola protein concentrate 89% >
canola meal 76%) and energy ADC (canola protein concentrate 83% > canola meal 61%).
However, it appears that ash is also concentrated to a relatively high level (>10%) which
is roughly double that of the soy products and, hence, the digestibility of energy of canola
protein concentrate is marginal. The use of canola products in cod and haddock (Tibbetts
et al. 2004) diets agrees with those of Burel et al. (2000) on rainbow trout and turbot, that
despite much progress in genetic engineering and processing technologies, the potential
use of rapeseed and canola-derived meals at higher levels in carnivorous fish feeds may
not be feasible. Protein and energy ADCs of flaxseed meal by cod were low. Although
there is little data for comparison among cold-water fish species, the values are better for
protein (81%) and energy (63%) for rohu (Labeo rohita) (Hossain et al. 1997), which is
not surprising given the warm water preference of that species. The product used in that
study was a commercial product with a higher protein and lower fiber and carbohydrate
content, while the flaxseed meal we used was produced in our lab by finely grinding
flaxseed press-cake after oil extraction. This product contained seed hulls which
contributed high levels of indigestible fiber to the experimental diet. When incorporated
at 30% of the diet, it likely increased the dietary fiber (bulk) concentration to a level that
induced a laxative effect. As a result of the increased gut transition rate, a pronounced
effect on fecal output was observed with the flaxseed diet. Increased dietary “bulk”
content caused a significantly increased fecal egestion time in European seabass as well
(Dias et al. 1998). Undoubtedly, this was the cause of poor digestibility of other nutrients
and energy, an observation supported by Mwachireya et al. (1999) who found that high
levels of dietary fiber had an adverse effect on nutrient digestibility.

74



Pulse meals

Protein ADC was high for pulse meals (90% for both) and mid-range for energy
ADC (pea protein concentrate, 77% and white lupin meal, 75%). The protein ADCs of
the pulse meals (90%) are consistent with those reported for rainbow trout (Morales et al.
1999; Burel et al. 2000; Glencross et al. 2003, 2005; Thiessen et al. 2003). The protein
ADC of pea protein concentrate is also similar to turbot (93%) but lower for white lupin
meal where a higher value (98%) has been reported (Burel et al. 2000). The higher
protein digestibility is likely due to the fact that the lupin meal used by Burel et al. (2000)
was finely ground and then extruded, whereas, lupin meal used here was finely ground
but not processed. Energy ADC of pea protein concentrate was highly variable (54-87%)
for rainbow trout (Burel et al. 2000; Thiessen et al. 2003) but there is good agreement
between the value for cod (77%) and that of turbot (78%) by Burel et al. (2000). Like
pea protein concentrate, the reported energy ADC values for white lupin meal are highly
variable (52—77%) for rainbow trout (Morales et al. 1999; Burel et al. 2000; Glencross et
al. 2003, 2005) but the value for cod (75%) falls within this range. The extruded lupin
meal used by Burel et al. (2000) also led to higher energy ADC by turbot (85%) as
compared to cod (75%). There appears to be some potential for the use of pulse meals in
marine fish diets, but they should be pre-extruded to increase the digestibility of non-
protein components and, in the case of pea protein concentrate, should be produced by
wet-milling to reduce the levels of soyasaponin 1 that may present off-flavors in the diet.
In a comprehensive review of pea proteins, Owusu-Ansah and McCurdy (1991) noted
that the major drawback of pea protein supplemented products was the objectionable
flavor and that further investigation was needed, especially with the concentrates. Since
feed intake was reduced in fish receiving the pea protein concentrate diet and it is well
known that a reduction in feed intake can elevate the level of metabolic fecal nitrogen,
overcoming the palatability problems may reveal the protein ADC to be even higher than
reported here (90%).

Cereal grain meals

Protein ADC was high for corn gluten meal (86%) and mid-range for energy
ADC (83%). The reported protein ADC values for salmonids (87-97%) are slightly
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higher than our value (86%) for cod (Anderson et al. 1992; Yamamoto et al. 1997, 1998;
Sugiura et al. 1998; Morales et al. 1999; Cheng and Hardy 2003; Thiessen et al. 2004)
while it was similar to those reported for other marine fish (79-93%) like haddock,
seabream and Atlantic halibut (Yamamoto et al. 1998; Tibbetts et al. 2004; Peach 2005).
Although there is some variation in the reported energy ADC values (76-91%) for
rainbow trout (Morales et al. 1999; Cheng and Hardy 2003; Thiessen et al. 2004), our
value for cod (83%) was within that range and similar to those recently reported for
haddock (81%) and Atlantic halibut (85%) (Tibbetts et al. 2004; Peach 2005). It has
been reported that corn gluten meal can effectively replace up to one-third of the fish
meal in diets for turbot (Regost et al. 1999) and there is good potential for its use in cod
diets, provided there are no adverse effects of xanthophylls present to pigment the flesh.
Protein ADC was high for wheat gluten meal (100%) as was energy ADC (95%). These
values are consistent with those reported for Atlantic salmon, coho salmon, rainbow trout
and European seabass with protein ADC of 100-101% and energy ADC of 98% (Sugiura
et al. 1998; Robaina et al. 1999; Storebakken et al. 2000). The use of wheat gluten meal
in the diet for Atlantic salmon has proven, not only to be equal to that of fish meal, but in
many cases, superior to using fish meal alone. In a comprehensive study with Atlantic
salmon, Storebakken et al. (2000) found no differences in growth of fish fed diets
containing 17% wheat gluten meal (35% of total dietary protein) compared to a diet
containing fish meal as the only protein source. They showed that partial replacement of
fish meal with wheat gluten meal led to increased protein, fat and energy ADCs as well
as availability of amino acids (except alanine and lysine). With such high digestibility,
lack of anti-nutritional factors and no offensive taste, wheat gluten meal, properly
supplemented with certain amino acids, shows significant potential as a fish meal
replacement in cod diets. However, like all plant protein concentrates, economics of feed

production will need to be considered.

Test diet independency

For digestibility data of single feed ingredients to be useful in least-cost ration
formulations, it is assumed that the protein ADC or DE content of the single feed
ingredient and the protein ADC or DE content of the basal mix portion of the diet are
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independent of one another (Cho et al. 1982). If this assumption is true, then the
calculated (or predicted) protein ADC or DE content of a test diet and the actual
measured protein ADC or DE content of the test diet would always be the same. This
assumption has been tested and validated for other species like rainbow trout, channel
catfish, carp, tilapia, ayu, seabass, Australian silver perch and Australian shortfinned eel
(Cho et al. 1982; Wilson and Poe 1985; Cho and Kaushik 1990; Watanabe et al. 1996a,
1996b; da Silva and Oliva-Teles 1998; Allan et al. 1999; Engin and Carter 2002) but yet
to be validated for Atlantic cod. We compared the predicted and measured values in
order to test this assumption using a wide range of test feed ingredients (Tables 5 and 6).
For the protein ADC data, our results clearly show that this assumption was true for
virtually all test diets, with the only exceptions being for those diets containing test
ingredients of very high (>99%, wheat gluten) or very low (<67%, hydrolyzed feather
and flaxseed) protein ADCs. In terms of DE, the assumption was true for all test diets
without exception. The correlation between measured and predicted values was very
high (Pearson correlations of 0.95 for protein ADC and 0.99 for DE). It would appear
that for the rare feed ingredient where independency does not hold true, the poor
digestibility of that particular ingredient would warrant its exclusion from diet

formulation.

Conclusions

This study has identified several highly digestible (>92% protein ADC and >85%
energy ADC) feed ingredients for Atlantic cod on-growing diets, including fish meals,
soy-based products, whole krill and wheat gluten meal. Other ingredients with some
potential include pulse meals, crab meal, corn gluten meal and canola protein concentrate
(85-90% protein ADC and 75-85% energy ADC). Due to high levels of poorly
digestible components (ash, fiber, carbohydrate and keratin), poultry and feather by-
products, canola, shrimp and flaxseed meals may have limited value as feed ingredients

for Atlantic cod diets.
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Table 1 Formulation and proximate composition of the basal diet (as-fed basis)

Ingredient a/kg
Herring meal (76.9% CP)? 480.0
Wheat gluten meal (80.1% CP)®  50.0
CPSP-G (73.2% CP)° 50.0
Wheat middlings (17.9% CP)" 168.0
Whey powder (10.4% CP)® 70.0
Krill hydrolysate (57.7% CP)f 20.0
Corn starch (pre-gel)® 56.0
Vitamin mixture” 19.5
Mineral mixture" 19.5
Choline chloride' 3.0
Herring oil! 64.0

Proximate composition (n=2)

Moisture (g/kg) 100.5
Crude protein (g/kg) 487.5
Lipid (g/kg) 120.6
Ash (g/kg) 63.1
Carbohydrate® (g/kg) 228.3
Gross energy (MJ/kg) 20.5

& St. Laurent Gulf Products Limited (Caraquet, NB, Canada).

b Roquette UK Limited (Northants, UK).

¢ Concentre proteique soluble de poisson (soluble fish protein concentrate) (Sopropéche, France).
¢ Dover Mills Limited (Halifax, NS, Canada).

¢ Farmers Co-operative Dairy (Truro, NS, Canada).

"SD-KH2, MaraVision Marine Products (Vancouver, BC, Canada).
9 National Starch and Chemical Company (Bridgewater, NJ, USA).
" Vitamin and mineral premixes according to Tibbetts et al. (2004).
' USB Corporation (Cleveland, OH, USA).

I Corey Feed Mills Limited (Fredericton, NB, Canada).

¥ Calculated as 1000 — (moisture + crude protein + lipid + ash).
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Table 2 Proximate composition and gross energy content (as-fed basis) of the test feed ingredients (n=2)

International feed Moisture Crude protein  Lipid Ash Carbohydrate®*  Gross energy
number (9/kg) (9/kg) (9/kg)  (g/kg) (g/kg) (MJ/kg)
Fish meals
Herring meal® 5-02-000 70.8 745.4 101.3 1044 0.0 20.8
Anchovy meal® 5-01-985 77.8 683.2 95.8 1576 0.0 19.1
Zooplankton and crustacean by-product meals
Whole krill meal® 5-16-423 47.7 723.9 52.9 1755 0.0 18.8
Crab meal® 5-01-663 91.3 540.4 57.1 2273 83.9 15.8
Shrimp meal’ 5-04-226 62.3 372.3 348 3838 146.8 12.4
Animal by-product meals
Poultry by-product meal®  5-03-798 50.2 663.4 1457 1076 33.1 22.0
Hydrolyzed feather meal® 5-03-795 58.0 835.0 79.4 38.1 0.0 22.7
Oilseed meals
Soybean meal" 5-04-612 113.7 473.1 20.4 59.8 333.0 17.4
Soy protein concentrate' 5-08-038 79.0 686.6 3.1 51.1 180.2 19.0
Soy protein isolate' - 76.4 855.7 44.0 44.7 0.0 21.2
Canola meal 5-06-145 63.1 389.1 265 71.0 4503 18.2
Canola protein concentrate — 47.5 614.5 27.3 1035 207.2 19.4
Flaxseed meal* - 120.5 309.9 95.1 463 4282 18.8



Table 2 (continued) Proximate composition and gross energy content (as-fed basis) of the test feed ingredients (n=2)

International feed Moisture Crude protein  Lipid Ash Carbohydrate®*  Gross energy
number (9/kg) (9/kg) (9/kg)  (g/kg) (g/kg) (MJ/kg)

Pulse meals

Pea protein concentrate' - 721 489.8 40.7 49.0 348.4 185

White lupin meal™ - 74.5 384.9 62.1 342 4443 18.9

Cereal grain meals

Corn gluten meal" 5-28-242 110.1 616.2 426 9.9 221.2 20.9

Wheat gluten meal” - 73.9 793.1 19.0 5.0 109.0 22.6

% Calculated as 1000 — (moisture + crude protein + lipid + ash).

b Scotia Garden Seafood Incorporated (Yarmouth, NS, Canada).

¢ Sindicato SA, Grupo Sipesa (Lima, Peru).

¢ Agion (Colorado Springs, CO, USA).

¢ St. Laurent Gulf Products Limited (Caraquet, NB, Canada).

" Island Fisherman's Co-Op (Lemeque, NB, Canada).

9 Rothsay (Dundas, ON, Canada).

" Bunge Canada (Oakville, ON, Canada).

" Soycomil® and Pro-Fam®, respectively; Archer Daniels Midland (Decatur, IL, USA).
I MCN BioProducts Incorporated (Saskatoon, SK, Canada).

% Bioriginal Food and Science Corporation (Saskatoon, SK, Canada).
" Parrheim Foods (Portage La Prairie, MB, Canada).

™ Alberta Department of Agriculture (AB, Canada).

" Roquette UK Limited (Northants, UK).
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Figure 1 Modified digestibility system used in this study (GV = gate valve; FCC = fecal collection column; EW = effluent water).
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Table 3 Proximate composition, gross energy content (as-fed basis, n=2) and diet digestibility (mean £ SE, n=4, ranked highest to

lowest) of the reference and test diets

Moisture Crude protein Ash Gross energy Diet ADC
(9/kg) (9/kg) (9/kg) (MJ/kg) (%)
Wheat gluten meal 90.7 595.3 50.1 21.1 81.1+0.5
Whole krill meal 89.3 560.8 98.4 20.0 80.2+0.4
Soy protein isolate 94.2 611.2 63.9 20.6 79.8+1.1
Herring meal 91.7 570.9 80.4 20.5 79.0£0.1
Soy protein concentrate 91.1 559.6 65.3 20.0 77.4+0.4
Anchovy meal 94.4 566.9 95.2 19.8 77.3+0.6
Corn gluten meal 100.2 535.6 53.1 20.5 77.0£0.4
Reference 100.1 493.9 69.7 20.4 76.0+0.7
Soybean meal 100.4 483.7 68.5 19.6 75.5£0.6
Canola protein concentrate 83.5 542.2 80.8 20.0 74.910.4
Crab meal 94.8 507.8 109.3 19.2 74.5+0.2
Poultry byproduct meal 81.8 548.5 82.9 20.8 73.3t1.2
Pea protein concentrate 87.9 495.1 65.9 19.9 72.7+0.3
White lupin meal 89.6 456.0 60.1 20.0 70.8+0.6
Hydrolyzed feather meal 83.0 599.3 60.4 21.1 68.4+0.7
Canola meal 88.4 468.6 70.7 19.8 66.8+0.6
Shrimp meal 85.4 463.3 154.1 18.2 60.9+0.5
Flaxseed meal (period 2) 102.7 439.5 63.2 19.9 58.8+0.1

Flaxseed meal (period 1) 52.7+0.3




Table 4 Apparent digestibility coefficients (%) for protein and energy and the DE content
(MJ/kg) of 17 common and alternate test feed ingredients and the reference diet for
Atlantic cod

Ingredient Protein ADC Energy ADC DE?
Reference diet 91.2 80.7 16.5
Fish meals

Herring meal 93.3+0.6 92.840.1 19.3+0.0
Anchovy meal 92.2+0.5 86.4+0.7 16.5+0.1

Zooplankton and crustacean by-product meals

Whole krill meal 96.3+0.6 96.3+0.6 18.1+0.1
Crab meal 89.4+0.7 82.4+0.7 13.0£0.1
Shrimp meal 66.7+1.4 41.4+4.0 5.1+0.5

Animal by-product meals

Poultry by-product meal 80.2+0.7 71.0£1.1 15.6+0.2
Hydrolyzed feather meal 62.4+0.3 58.9+0.3 13.3+0.1
Oilseed meals

Soybean meal 92.3£15 88.1+0.3 15.3+0.1
Soy protein concentrate 98.6+0.6 94.9+0.3 18.0+0.1
Soy protein isolate 97.4+0.6 92.1+0.8 19.5+0.2
Canola meal 76.0£1.6 60.6x1.7 11.0+£0.3
Canola protein concentrate  88.8+0.4 83.3£0.3 16.1+0.1
Flaxseed meal (period 1) 50.2£1.6 21.2+0.3 4.0+£0.1
Flaxseed meal (period 2) 55.0+1.1 37.4+0.1 7.0£0.0
Pulse meals

Pea protein concentrate 89.8+0.8 76.7£0.3 14.2+0.1
White lupin meal 89.7+£3.8 75.3£1.3 14.3+0.2

Cereal grain meals
Corn gluten meal 86.3£1.0 82.7+0.7 17.2+0.1
Wheat gluten meal 99.9+0.3 95.4+0.7 21.5+0.2

Values are mean £ SE (n=4 except for flaxseed meal where n=2).
& As-fed basis.
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Table 5 Apparent digestibility coefficients (ADC) for protein of the test diets—

comparison of measured vs. predicted values for determination of independency

Test diet Diet protein ADC
Measured Predicted P-value

Fish meal diets
Herring meal 92.0£0.2 91.8+0.2 0.55
Anchovy meal 91.6+0.2 91.5+0.2 0.79

Zooplankton and crustacean by-product meal diets

Whole krill meal 93.2+0.2 92.7+0.2 0.20
Crab meal 90.6+0.2 90.7+0.2 0.90
Shrimp meal 85.2+0.3 83.9+0.4 0.05

Animal by-product meal diets
Poultry by-product meal 87.8+£0.7 88.4+0.6 0.51
Hydrolyzed feather meal ~ 78.2+0.8°  82.0+0.6" 0.01

Oilseed meal diets

Soybean meal 91.5+0.4 91.5+0.4 0.99
Soy protein concentrate 94.0+£0.2 93.4+0.2 0.08
Soy protein isolate 92.8+1.1 92.3+0.8 0.74
Canola meal 87.3+0.4 86.6+0.5 0.32
Canola protein concentrate  89.9+0.5 90.1+0.4 0.77
Flaxseed meal (period 1) 79.7+1.7° 75.1+2.4° 0.03
Flaxseed meal (period 2) ~ 83.5+0.2°  80.4+0.3" 0.02

Pulse meal diets
Pea protein concentrate 90.3+0.6 90.3+0.6 1.00
White lupin meal 90.8+1.0 90.8+1.1 0.96

Cereal grain meal diets
Corn gluten meal 89.5+0.4 89.8+0.3 0.62
Wheat gluten meal 94.8+0.1*  93.8+0.1" 0.00

Values are mean + SE (n=4 except for flaxseed meal where n=2); values within same row having
different superscript letters are significantly different (P<0.05).



Table 6 Digestible energy (DE) content of the test diets — comparison of measured vs.

predicted values for determination of independency

Test diet Diet DE

Measured Predicted P-value
Fish meals
Herring meal 19.0+0.0 19.0+0.0 0.34
Anchovy meal 18.1+0.1 18.2+0.0 0.79

Zooplankton and crustacean by-product meals

Whole krill meal 18.6+0.1 18.5+0.0 0.28
Crab meal 17.2+0.0 17.1+0.0 0.38
Shrimp meal 14.5+0.2 14.4+0.2 0.88

Animal by-product meals

Poultry by-product meal 17.8+0.2 17.7+0.1 0.63
Hydrolyzed feather meal 16.8+0.1 17.0£0.0 0.21
Oilseed meals

Soybean meal 17.8+0.1 18.0+£0.0 0.20
Soy protein concentrate 18.6+0.0 18.7+0.0 0.63
Soy protein isolate 19.2+0.2 19.1+0.1 0.80
Canola meal 16.3+0.1 16.3+0.1 0.89
Canola protein concentrate 17.7+0.1 17.9+0.0 0.13
Flaxseed meal (period 1) 14.2+0.0 14.1+0.0 0.74
Flaxseed meal (period 2) 15.2+0.0 15.2+0.0 0.21
Pulse meals

Pea protein concentrate 17.3+0.1 17.4+0.0 0.34
White lupin meal 17.3+0.1 17.4+0.1 0.42
Cereal grain meals

Corn gluten meal 18.6+0.1 18.6+0.0 0.74
Wheat gluten meal 19.910.1 19.840.1 0.33

Values are mean + SE (n=4 except for flaxseed meal where n=2).
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Chapter 4

Effects of dietary protein and lipid levels and DP/DE ratio on
growth, feed utilization and hepatosomatic index of juvenile

haddock, Melanogrammus aeglefinus L.

This chapter was published as:
Tibbetts, S.M., Lall, S.P., Milley, J.E. (2005) Effects of dietary protein and lipid levels
and DP DE™ ratio on growth, feed utilization and hepatosomatic index of juvenile

haddock, Melanogrammus aeglefinus L. Aquaculture Nutrition 11, 67-75.
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Abstract

Juvenile haddock, Melanogrammus aeglefinus L. (initial weight, 13.5 + 0.1 Q)
were fed practical diets containing digestible protein to digestible energy (DP/DE) ratios
of 25-30 g DP/MJ DE as-fed using three protein levels (450, 500 and 550 g/kg) each at
two lipid levels (110 and 160 g/kg) for 63 days. The results showed mean weight gain
and feed conversion ratio were highest for diets containing 28.5 and 30.2 g DP/MJ DE.
DP/DE ratio had no significant effect on protein efficiency ratio except at the lowest level
(24.7 g DP/MJ DE) indicating a protein sparing effect of higher lipid when dietary
protein is below the requirement. Haddock appears to preferentially use protein as the
prime source of DE. DP/DE ratio had little effect on apparent digestibility (AD) of
protein while AD of lipid was significantly affected. Significant differences in AD of
energy and organic matter were found to be inversely related to the carbohydrate level of
the diet. DP/DE ratios of 28.5 g DP/MJ DE or lower resulted in significantly higher
hepatosomatic indexes. The highest whole-body nitrogen gains and energy retention
efficiencies were achieved at 28.5 and 30.2 g DP/MJ DE, whereas only slight differences
in nitrogen retention efficiencies were observed. The highest levels of energy retained in
the form of protein were achieved at 28.5 and 30.2 g DP/MJ DE. The diet that provided
the best growth, feed utilization and digestibility with minimal HSI contained 546 g/kg
protein (513 g/kg DP), 114 g/kg lipid, 164 g/kg carbohydrate, 17.0 MJ/kg DE and a
DP/DE ratio of 30.2 g DP/MJ DE.

Introduction

Haddock aquaculture is a relatively new industry in Atlantic Canada and Europe
and information on nutrient utilization and dietary requirements are limited (Lall et al.
2003). Initial studies with haddock show a protein requirement of 500-540 g/kg on a dry
matter basis for juveniles (Kim and Lall 2001; Kim et al. 2001), a phosphorous
requirement of 9.6 g/kg on an as-fed basis (Roy and Lall 2003) and that haddock
efficiently utilize nutrients from common feed ingredients available in Atlantic Canada
(fish meals, plant protein supplements, crustacean by-product meals) (Tibbetts et al.
2004). Unlike salmonids, gadoids like haddock store the major proportion of dietary

lipid as triacylglycerol in the liver with the lipid content of the muscle tissue rarely
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exceeding 10 g/kg (Nanton et al. 2001). A direct linear relationship between lipid
consumption and liver size (HSI) has been demonstrated in gadoid fishes like Atlantic
cod (Gadus morhua) (Lie et al. 1988; Jobling et al. 1991; Morais et al. 2001) and the
same has been observed in haddock when fed high amounts of dietary lipid (>120 g/kg
as-fed basis) (Nanton et al. 2001, 2003). Lie et al. (1988) has suggested that a reduced
feeding frequency (feeding ad libitum every third day versus every day) can reduce liver
indexes in Atlantic cod through a reduction in overall fat intake, however, growth rate is
significantly compromised. Both protein and lipid are highly available sources of energy
for fish (National Research Council 1993), however, DE content of carbohydrate may
vary among fish species (Wilson 1994). The use of protein as a dietary source of energy
is undesirable because of the high cost of protein relative to the cost of non-protein
energy (Watanabe 2002). A proper balance of digestible protein (DP) and digestible
energy (DE) (DP/DE ratio) is necessary to maintain high growth rates and good feed
conversion efficiency (Lee and Putnam 1973), improve protein utilization and minimize
excessive accumulation of lipid and glycogen in the somatic tissues and liver (Cho and
Kaushik 1985, 1990) and minimize undesirable nitrogenous waste output and improve
the quality of fish farm effluents. While the estimated optimum DP/DE ratio for
coldwater rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, reared
in freshwater is 20-24 g DP/MJ DE (Cowey 1992; Storebakken 2002), DP/DE ratio for
large salmon (>2.5 kg) decreases to 16-17 g DP/MJ DE. Information on protein and
energy utilization for most coldwater marine fishes is limited. Studies conducted on
gilthead seabream, Sparus aurata L., a warm water marine fish, show that optimum
DP/DE ratio changes with fish size, growth and feed intake (FI) (Lupatsch et al. 2001). It
appears that haddock diets must be low in lipid (<140 g/kg, DM-basis) and available
carbohydrate (<14 g/kg, DM-basis) to prevent excessive lipid and glycogen deposition in
the liver (Lall et al. 2003). Our initial studies (Kim and Lall 2001; Kim et al. 2001) were
designed to determine the dietary protein requirement of fish fed isoenergetic diets (~16.6
MJ DE/kg). The primary objective of this study was to examine the effects of feeding
juvenile haddock with diets containing various combinations of dietary protein and non-

protein energy on growth performance, feed conversion efficiency, HSI, diet digestibility
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and nutrient retention efficiency to find the optimum dietary DP/DE ratio for on-growing
fish.

Materials and methods

Rearing systems and experimental design

Haddock juveniles (mean initial weight, 13.5 + 0.1 g) hatched and reared at the
NRCC Institute for Marine Biosciences, Marine Research Station (Halifax, Nova Scotia)
were used in this study. Seven hundred and twenty fish were randomly distributed into
18 cylindrical fibreglass tanks (350 L capacity) at 40 fish per tank and acclimated to the
tanks for 10 days prior to the trial. During the acclimation period, the fish were fed
Zeigler™ Haddock Ration (Zeigler Bros, Inc., Gardners, PA, USA) twice daily (0900
and 1600 h). The proximate composition (as-fed basis) of this diet was: crude protein
520 g/kg, lipid 160 g/kg, nitrogen-free extract 95 g/kg, gross energy 23 MJ/kg, moisture
90 g/kg, ash 110 g/kg and fibre 25 g/kg. The DP and DE of this diet were measured
using fish weighing 94 g in the same manner as described by Tibbetts et al. (2004) and
were 480 g/kg and 20 MJ/Kg, respectively. The experiment was conducted as a 3 x 2
factorial design (three protein levels x two lipid levels) and each of six experimental diets
was fed to three replicate tanks (initial biomass density, 2 kg/m?). Filtered (60 pm), UV-
treated sea water (salinity, 28-30 g/L) was supplied to each tank at a flow-rate of 4 L/min
in a flow-through system. The water was continuously aerated in each tank (11 mg/L
dissolved oxygen) and maintained thermostatically at 12°C. The rearing temperature of
12°C was selected because it is within the preferendum zone of 9-17°C for Atlantic cod
where gastric evacuation rate, appetite and feeding metabolic rates are maximized (Bghle
1974; Jobling 1988). Photoperiod was controlled automatically (12-h light : 12-h dark)
with a light intensity at the water surface of 60 lux. During the feeding trial, fish were
hand-fed three times daily during the week (0900, 1300, 1600 h) and twice daily on
weekends (0900, 1300 h) to apparent satiation to avoid any uneaten feed. Weekly FI per
individual tank was recorded by weighing feed containers at the beginning of each week
and ensuring that all feed offered during the week was consumed by the fish. Any dead
or moribund fish were collected, weighed and recorded on a daily basis. Fish from each

tank were batch weighed and counted on days 0, 21, 42 and 63 after a 24 h fast and the
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mean weight (MW) was calculated. Specific growth rate (SGR) was calculated using the
equation of Ricker (1979). Feed conversion ratio (FCR) was calculated from weight of
feed consumed (grams of apparent dry matter FI) divided by wet weight gain (g). Protein
efficiency ratio (PER) was calculated from the wet weight gain (g) divided by the weight
of protein intake (grams of apparent protein intake). At the beginning of the trial, 10 fish
were randomly sampled after 24 h food deprivation and killed with an overdose of
tricaine methanesulphonate (TMS). At the end of the trial, four fish from each tank (72
in total) were randomly sampled in the same manner. These fish were weighed, the liver
removed and weighed (for calculation of HSI), the liver put back with the carcass, frozen

on dry ice and stored at -80°C until further analyzes.

Experimental diets

Six experimental diets (Table 1) were formulated to contain DP/DE ratios in the
range of 25-30 g DP/MJ DE as-fed using three protein levels (450, 500 and 550 g/kg)
each at two lipid levels (110 and 160 g/kg). Diets were formulated according to DP and
DE values of common feed ingredients for juvenile haddock (Tibbetts et al. 2004). Dry
ingredients were finely ground (<500 pm) in a Fitz mill (Fitzpatrick Co., EImhurst, IL,
USA) before being combined with the wet ingredients (choline chloride and herring oil).
Micronutrients (vitamins and minerals) were pre-mixed with ground wheat as a base,
using a twin-shell blender (Paterson-Kelly, East Stroudsburg, PA, USA) prior to being
added to the main ingredient mixture. All ingredients were mixed in a Hobart mixer
(Model H600T; Rapids Machinery Co., Troy, OH, USA) and steam-pelleted into 2.5 and
3.0 mm pellets (California Pellet Mill Co., San Francisco, CA, USA). The pellets were
dried in an air-convection drier at 30°C to form dry, sinking pellets and stored in air-tight
containers at -20°C until use. Diets were screened to remove fines prior to feeding. For
determination of nutrient digestibility, the same diets were supplemented with chromic
oxide (Cr,03, 5 g/kg) and steam-pelleted into 4.0 mm pellets.

Nutrient digestibility

To measure the apparent digestibility (AD) of organic matter, protein, energy and

lipid of the experimental diets used during the growth study, a second experiment was
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performed using 12 specially designed tanks. These were cylindro-conical fibreglass
tanks (100 L capacity), each equipped with a faecal collection column similar to the
Guelph system (Cho et al. 1982) and those used by Hajen et al. (1993). The
measurements were made using 156 haddock with a mean initial weight of 105.2 + 2.1 g
and a biomass density in each tank of approximately 14 kg/m®. The collection period
lasted until 30 g of wet faecal material was collected from each tank (33 days). The fish
were acclimated to the tanks and experimental diets for 10 days prior to the trial. The
experiment was conducted according to a randomized block design and replicated twice.
Each of the six experimental digestibility diets was fed to two tanks, each containing 13
fish. Filtered (60 um), UV-treated sea water (salinity, 28-30 g/L) was supplied to each
tank at a flow rate of 2 L/min in a flow-through system and continuously aerated to
maintain dissolved oxygen levels (10 mg/L). Water temperature was maintained
thermostatically (12°C) and monitored daily. During the experimental period, fish were
hand-fed to apparent satiety three times daily during the week (0900, 1300, 1600 h) and
twice daily on weekends (0900, 1300 h). All mortalities were collected, weighed and
recorded on a daily basis. Each week-day, after the final feeding (1600 h), the tanks and
faecal collection columns were thoroughly cleaned with a brush to remove any residual
particulate matter (faeces and uneaten feed). There were no faecal collections made on
weekends. Faecal samples were collected each morning (0830 h) into 250 mL plastic
bottles, centrifuged (2750 x g for 35 min at 5°C) and the supernatant discarded. The
faecal samples were stored in a sealed container at -20°C for the duration of the
collection period. Faecal samples were then lyophilized, finely ground and kept frozen at

-20°C until further analyzes.

Analytical techniques

In preparation for analyzes, the frozen fish carcasses (including all viscera and
liver) were lyophilized and finely ground. These samples were stored in air-tight
containers at -80°C until analysis. Lyophilized fish carcasses, diets and faecal samples
were analysed using the same procedures. Moisture was determined by weight loss after
drying for 24 h at 105°C, ash by incineration in a muffle furnace at 550°C for 24 h, crude
protein (% nitrogen x 6.25) by the Dumas method (Ebeling 1968) using a Leco nitrogen
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determinator (model FP-228; Leco Corporation, St Joseph, MI, USA), gross energy by a
Parr Adiabatic oxygen bomb calorimeter (model 1241; Parr Instrument Company,
Moline, IL, USA), total lipid by ether extraction (Tecator Soxtec System HT2 1045
extraction unit, Hoeganaes, Sweden) following acid (4 N HCI) hydrolysis (Tecator
Soxtec System 1047 hydrolysis unit) and chromic oxide content of digestibility diets and

faeces was measured by spectrophotometric micro-method outlined by Suzuki and Early
(1991).

Statistical procedures

Statistical analysis was performed according to Steel and Torrie (1960) using
analysis of variance (ANOVA) in accordance with a 3 x 2 factorial design to test the
influence of the main effects (dietary protein and lipid levels) and the interaction between
the two main effects (protein x lipid). Treatment means were differentiated using a-
posteriorly hypothesis testing with specified contrasts (SYSTAT v. 8.0). All data
reported as a percentage, was arcsine transformed prior to ANOVA and a 5% level of
probability (P<0.05) was chosen in advance to sufficiently demonstrate a statistically
significant difference. All correlations made between response variables were calculated
in SYSTAT by simple Pearson correlation matrix (SYSTAT v. 8.0). Estimation of the
DE requirement for maintenance (DEm) of juvenile haddock was determined by linear

regression analysis of DE retention and DE intake using Microsoft Excel.

Results and discussion

Survival, growth and feed efficiency

Proximate analyses of the experimental diets confirmed that the intended protein
levels (450, 500, 550 g/kg), lipid levels (110, 160 g/kg) and DP/DE ratios (25, 26, 27, 28,
29, 30 g DP/MJ DE) were achieved (Table 1). These DP/DE values fall within the range
(22-33 g DP/MJ DE) reported to promote high protein gains in other juvenile fish species
like rainbow trout, Atlantic halibut (Hippoglossus hippoglossus), Atlantic cod and
gilthead seabream (Lie et al. 1988; Cowey 1992; Aksnes et al. 1996; Lupatsch et al.
2001). After 63 days of feeding, fish receiving all experimental diets had achieved over
400% (401-470%) growth and survival of the fish throughout the growth trial was high
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(98-100%). All diets were accepted equally well by the fish as there were no significant
differences in FI among experimental diets (Table 2). Final mean weight gain (Table 2)
of fish fed diets containing 28.5, 29.3 and 30.2 g DP/MJ DE were significantly higher
than diets containing 24.7, 26.7 and 27.5 g DP/MJ DE. Weight gain was regulated solely
by increasing dietary protein level linearly and it was independent of dietary lipid level or
DP/DE ratio. Similarly, SGR of fish fed diets containing 28.5, 29.3 and 30.2 g DP/MJ
DE were significantly higher than all other diets. The average SGR obtained for haddock
in this study (2.34%/day) is the same as those reported for juvenile European sea bass,
Dicentrarchus labrax (2.3%/day) of similar size (Peres and Oliva-Teles 1999).

Like weight gain, FCR in this experiment was solely affected by protein content
of the diet rather than lipid level or DP/DE ratio as FCR significantly improved with
increasing protein level but lipid level within each protein level had no significant effect.
FCR improved linearly with increasing dietary protein level (y = -0.0089x + 1.179, R® =
0.76, n = 18, P<0.05). This indicates that the best FCR was achieved at the highest
protein level (550 g/kg) but the additional 50 g/kg lipid was not beneficial. Unlike
haddock, feed efficiency of juvenile sablefish, Anoplopoma fimbria, was significantly
improved by higher levels of both protein and lipid (Clarke et al. 2000). This difference
is likely due to haddock’s lower tolerance for dietary lipid. The range of FCR data in this
study (0.7-0.8 g feed per g gain) is consistent with previous reports with juvenile
haddock (0.6-0.9 g feed per g gain) (Kim and Lall 2001; Kim et al. 2001; Nanton et al.
2001, 2003; Roy and Lall 2003), Atlantic cod (0.7 g feed per g gain) (Morais et al. 2001)
and European sea bass (0.6-0.9 g feed per g gain) (Peres and Oliva-Teles 1999). Since
protein efficiency is generally regulated by the non-protein energy input of the diet, PER
is a good measure of the ‘protein-sparing effect’ of lipid and/or carbohydrate (Lie et al.
1988). By the end of the 63-day feeding trial, there were no significant differences in
PER between the experimental diets with the exception of the lowest DP/DE ratio (24.7 g
DP/MJ DE) which was significantly higher than all other diets. Therefore, at the higher
protein levels (500 and 550 g/kg), the 50 g/kg additional lipid had no effect on PER and
thus provided no protein sparing effect but it had a significant effect on PER at the lower
protein level (450 g/kg). The apparent protein sparing effect of higher lipid within the
450 g/kg protein level (450/110 versus 450/160) translated into significantly higher final
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weight gain, SGR, lipid gain and energy retention efficiency. This indicates that when
dietary protein is adequate, haddock preferentially use protein as the prime dietary energy
source, which is also the case for Atlantic cod (Lie et al. 1988). However, when dietary
protein is limited (i.e. below requirement), dietary lipid has the ability to spare protein in
haddock diets. This is also the case for European sea bass where the beneficial effects of
protein sparing occurred only with a low protein diet (400 g/kg) and not with a higher
protein diet (500 g/kg) (Dias et al. 1998). Likewise, in Atlantic cod, the beneficial effects
of protein sparing has been reported in lower protein diet (480 g/kg) and not at a higher
protein level (580 g/kg) (Morais et al. 2001). The PER values obtained in this
experiment (2.5-2.8 g gain/g protein intake) are similar to previous reports on haddock
(Kim and Lall 2001) and Atlantic cod studies (average, 2.3 g gain/g protein intake) of Lie
et al. (1988).

Nutrient digestibility

Although small (<2.5%) differences were found with respect to AD of protein, it
was consistently high (average, 92.7%) across all dietary treatment (Table 3). These
values are similar to those reported for Atlantic cod (91.2%) (Jobling et al. 1991) and
rockfish, Sebastes schegeli (91.8%) (Lee et al. 2002) fed similar diets. Although the
carbohydrate content of the diets varied from 117 to 278 g/kg, increasing carbohydrate
content had only a slight effect on protein AD, which is in agreement with reports on
Atlantic halibut (Grisdale-Helland and Helland 1998), Atlantic cod (Hemre et al. 1989),
Atlantic salmon (Aksnes 1995; Hemre et al. 1995; Grisdale-Helland and Helland 1997)
and European sea bass (Peres and Oliva-Teles 1999). Differences were observed in lipid
AD where diets containing 24.7, 27.5 and 29.3 g DP/MJ DE were significantly lower
than diets containing 26.7, 28.5 and 30.2 g DP/MJ DE. Results of the ANOVA indicated
the effect was from protein (P = 0.000) and not from lipid (P = 0.176), which is
consistent with Takeuchi et al. (1978) who reported AD of lipid in rainbow trout diets
was independent of dietary lipid level. Thus, varying the dietary protein and non-protein
energy levels has little effect on protein AD but has a strong effect on lipid AD for
haddock which is also the case for Atlantic halibut (Berge and Storebakken 1991).
Energy and organic matter AD were low for the diet containing the lowest levels of
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protein and lipid (450/110) (27.5 g DP/MJ DE) but increased significantly for the diet
with the highest levels of protein and lipid (550/160) (28.5 g DP/MJ DE). Since the
energy content of the diet is supplied by protein, lipid and carbohydrate and differences
in protein AD were negligible while there were large differences in lipid AD, the
significant differences in energy AD is attributed to either lipid or carbohydrate content,
or a combination of both. In the experimental diets, with a decrease in protein from 550
to 450 g/kg and lipid from 160 to 110 g/kg, the dietary carbohydrate content increases
from 117 to 278 g/kg. It is well known that increasing dietary carbohydrate in
carnivorous fish diets has a negative impact on diet digestibility (Sullivan and Reigh
1995; McGoogan and Reigh 1996; Sugiura et al. 1998). In this study, energy and organic
matter AD were inversely correlated to increasing dietary carbohydrate content (Pearson
correlation coefficients of -0.90 for energy and -0.92 for organic matter). The linear
relationship between increasing dietary carbohydrate level and declining organic matter
and energy AD is characterized by the following linear relationships: organic matter (y =
-0.6969x + 90.192, R* = 0.86, n = 24, P<0.05) and energy (y = -0.5318x + 93.018, R* =
0.80, n =24, P<0.05). Grisdale-Helland and Helland (1998) reported in Atlantic halibut a
7-10% reduction in organic matter AD at the highest level of carbohydrate. This is
consistent with our findings with haddock where we observed a 7.1-10.7% reduction in
organic matter AD at the highest dietary level of carbohydrate. Lie et al. (1988)
suggested that carbohydrate should not exceed 170 g/kg of the diet for Atlantic cod and
we confirm that organic matter and energy AD are significantly reduced for haddock in

all diets containing high levels of carbohydrate (>170 g/kg).

Hepatosomatic index, nutrient retention & maintenance energy requirement

Over the course of the 63-day feeding trial, the HSI of fish significantly increased
for all diets (Table 4) and both dietary protein and lipid levels had significant effects. As
dietary protein increased from 450 to 550 g/kg, HSI decreased accordingly and, similarly,
as dietary lipid level increased, HSI increased. Haddock accumulate dietary lipid in the
liver (Nanton et al. 2001) and biochemical studies show that transport of lipid as
lipoprotein from the liver to the muscle is low in haddock (Lall et al. 2003) and that there
is limited catabolic activity (B-oxidation) of lipid in the liver (Nanton et al. 2003). These
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factors can lead to the development of the ‘fatty liver’ condition in cultured haddock
which is undesirable because these fish inefficiently utilize dietary energy. However,
when juvenile haddock were fed up to 220 g/kg dietary lipid, although the HSI values
were high (>12%), the histological examination of the livers did not reveal any overt
pathologies or impaired liver function (Nanton 2002). This was also the case for Atlantic
cod where fish fed 160 g/kg lipid had large livers but there was no evidence of impaired
liver function (Morais et al. 2001). Nonetheless, fish with enlarged livers have lower
somatic tissue growth (as a % of whole-body weight) than fish with smaller livers so
minimizing the HSI in cultured haddock is of economic importance. A strong inverse
correlation between DP/DE ratio and HSI (Pearson correlation coefficient, -0.79) was
observed where the HSI values increased as DP/DE ratio decreased. The same effect has
been observed in sharpsnout seabream, Diplodus puntazzo, where fish on low DP/DE
diets had significantly higher HSI and, conversely, fish on high DP/DE diets had
significantly lower HSI (Hernandez et al. 2001). Our results indicate that DP/DE ratios
less than 29.3 g DP/MJ DE will produce haddock with HSI values greater than 9% and
that haddock diets must contain at least 500 g/kg protein and 110 g/kg lipid to reduce the
HSI. These results are in agreement with our earlier studies (Kim and Lall 2001; Kim et
al. 2001; Nanton et al. 2001) that reported that good growth and minimal HSI can be
achieved in juvenile haddock fed high levels of protein (500-550 g/kg) and low levels of
lipid (<120 g/kg). The fact that HSI in haddock was regulated not only by dietary protein
and lipid levels alone, but also by the combined effects of the DP/DE ratio has been
observed in Atlantic cod where Jobling et al. (1991) suggested that accumulation of liver
lipid was dependent not only upon total lipid content of the diet but also upon the
relationship between the dietary nutrients. Whole-body moisture content (Table 4) of
fish sampled after the 63-day growth period was significantly influenced by the dietary
lipid content but unaffected by either DP/DE ratio or protein level. Although the range is
small, it clearly shows that all diets containing higher lipid (160 g/kg), regardless of the
level of other dietary nutrients, resulted in fish with lower moisture content than fish fed
diets with lower lipid (110 g/kg). As there were no significant differences in whole-body
ash and virtually no differences in whole-body protein content of the fish in this study, it

can be concluded that the lower moisture content of the fish fed 160 g/kg lipid was as a
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result of higher whole-body lipid gain in fish fed the higher lipid level which was indeed
the case (Tables 4 and 5). Lipid, being high in energy (39.0 kJ/g), is translated into
significantly higher whole-body energy gains (Table 5) in fish fed 160 g/kg lipid, which
will be discussed further. The observation that whole-body ash and protein contents of
the fish in this experiment were virtually unaffected by varying DP/DE ratio is consistent
with the results for European sea bass where whole-body crude protein and ash contents
were not affected by varying the levels of dietary protein, lipid and nitrogen-free extract
(Lanari et al. 1999). The various levels of protein and lipid in the diets had highly
significant effects on energy gains (Table 5). Within each dietary lipid level, increasing
dietary protein from 450 to 550 g/kg, led to significant increases in energy gain.
Similarly, within each dietary protein level, increasing dietary lipid from 110 to 160 g/kg
led to significantly higher energy gains as well. Thus, the diet containing the highest
levels of protein and lipid (28.5 g DP/MJ DE) resulted in the highest energy gain which
was also the case for European sea bass (Lanari et al. 1999). However, we cannot
conclude that this DP/DE ratio is the optimum because the goal of raising these fish is to
produce marketable fish protein, which is in the form of the fillet flesh and not other
components like viscera and liver. It has already been demonstrated that the diets with
high dietary lipid (160 g/kg) all produced fish with enlarged livers (>11%). These
enlarged livers, being high in lipid, contribute considerable amounts of energy to the
whole-body energy content. It is better to examine whole-body nitrogen gain to have a
better indication of production of the marketable product. The highest nitrogen gains
(1.22-1.24 g/fish) were achieved when the DP/DE ratio was 28.5 and 30.2 g DP/MJ DE
indicating that high nitrogen gains can be achieved with 550 g/kg protein, even at the
lower lipid level (110 g/kg). However, these results were not reflected in nitrogen
retention efficiency as the differences were not as pronounced. The nitrogen retention
efficiency value (average, 40.7%) in this study is consistent with that reported previously
for juvenile haddock (41%), while our value for energy retention efficiency (45.6%) is
better than that reported previously for juvenile haddock (43%) (Kim and Lall 2001) and
is as a result of a more appropriate DP/DE ratio. The best performance of haddock in this
study was obtained with diets containing 28.5 and 30.2 g DP/MJ DE. However, 30.2 g
DP/MJ DE is more appropriate than 28.5 g DP/MJ DE due to a build-up of energy in the
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fish body which is not desirable if the energy retained is in the form of lipid, particularly
liver lipid. Liver lipid is of no commercial value because it will ultimately be discarded
with the liver during processing. Our recommendation of a diet containing 30.2 g DP/MJ
DE rather than 28.5 g DP/MJ DE for juvenile haddock is supported by a significantly
lower lipid gain observed in fish consuming the higher DP/DE ratio diet. To further
confirm this fact, energy retention by the fish as ‘lipid energy’ or as ‘protein energy’
(Table 6) was calculated based on the work of Rodehutscord and Pfeffer (1999). These
data clearly show that the fish fed diets containing 28.5 and 30.2 g DP/MJ DE had the
highest amounts of energy retained as protein but the 30.2 g DP/MJ DE diet had a much
lower and more acceptable level of energy retained as lipid. Energy retained as protein
was highly regulated by dietary protein content (Pearson correlation coefficient = 0.86)
whereas energy retained as lipid was highly regulated by both dietary lipid and DE levels
(Pearson correlation coefficients = 0.94 and 0.70, respectively). Finally, a preliminary
estimation of the maintenance energy requirement (DEm) was made by plotting the
energy intake (kJ DE intake/fish/day) against the retained energy (kJ DE retained/fish/
day) and regressing the curve back to neutral retained energy according to Rodehutscord
and Pfeffer (1999). The relationship was characterized by the equation: DE retained =
[(0.5621 x DE intake) - 1.1231], R* = 0.53, n = 18, P<0.05. Thus, the DEm for juvenile
haddock (13-60 g body weight) is 2.0 kJ DE intake/fish/day. Although additional data
must be collected with larger samples sizes, different sized fish and under various water
temperatures, this value is similar to the values reported for gilthead seabream (10-100 g
body weight) of 1.2-8.2 kJ DE intake/fish/day (Lupatsch et al. 1998) and rainbow trout
(1 g body weight) of 1.3 kJ DE intake/fish/day (Rodehutscord and Pfeffer 1999). It
provides a good initial estimate of DEm for juvenile haddock diets for further nutrition

research.

Conclusions

All measured growth responses were lower when DP/DE ratio was 27.5 g DP/MJ
DE or less. The diet containing 29.3 g DP/MJ DE produced fish with rapid growth, high
nitrogen retention and reasonable HSI but digestibility, feed efficiency and nutrient gains
were comparatively low. Diets containing 28.5 and 30.2 g DP/MJ DE performed the best
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in virtually all cases, however, given the importance of producing haddock without
enlarged fatty livers, a diet containing 30.2 g DP/MJ DE is recommended for juvenile
haddock. This DP/DE ratio was achieved in a practical fish meal-based diet containing
548 g/kg protein, 114 g/kg lipid and 164 g/kg carbohydrate. This agrees with the
previous recommendations for Atlantic cod (540 g/kg protein and >170 g/kg
carbohydrate) and haddock (500-540 g/kg protein and >120 g/kg lipid).

Acknowledgements

Financial support for this work was provided by Heritage Aquaculture Limited
(Blacks Harbour, NB). Assistance by Laura Garrison with fish feeding and sample
preparation during the growth experiments and Steven Leadbeater and Ben Levy during
the digestibility experiments was gratefully appreciated. We acknowledge the generous
donation of crab meal used in this study by Julien Albert of St Laurent Gulf Products Ltd
(Caraquet, NB). The critical review and valuable suggestions of Dr Jeong-Dae Kim

during the preparation of this manuscript is also greatly appreciated.

100



Table 1 Composition of experimental diets with varying DP/DE ratios fed to juvenile
haddock (as-fed basis)

DP/DE ratio 27 25 29 26 30 28
Protein (g/kg) 450 450 500 500 550 550
Lipid (g/kg) 110 160 110 160 110 160
Ingredients (g/kg)

Herring meal* 453 470 545 560 635 640
Crab meal® 50 50 50 50 50 50
Corn gluten meal® 100 100 100 100 100 100
Wheat middlings® 281 214 193 127 125 70
Celufil® 50 50 50 50 35 35
Choline chloride* 6 6 6 6 6 6
Vitamin mixture® 10 10 10 10 10 10
Mineral mixture® 10 10 10 10 10 10
Herring oil’ 40 90 36 87 29 79
Analysis

Moisture (g/kg) 69 64 64 59 62 66
Crude protein (g/kg) 455 446 499 496 548 543
Lipid (g/kg) 106 150 112 157 114 165
Ash (g/kg) 92 90 101 99 112 109
Carbohydrate® (g/kg) 278 250 224 189 164 117
Energy (MJ/kg) 19.6 20.6 196 20.7 199 20.7
Measured

DP (g/kg) 415 412 464 461 513 506
DE (MJ/kg) 151 166 158 172 17.0 177
g DP/MJ DE 275 247 293 267 302 285

! Corey Feed Mills Ltd (Fredericton, NB, Canada).

2 St Laurent Gulf Products Ltd (Caraquet, NB, Canada).

® Dover Mills Ltd (Halifax, NS, Canada).

* United States Biochemical (Cleveland, OH, USA).

® Vitamin A, 8000 IU/kg; vitamin D3, 4500 1U/kg; vitamin E, 300 1U/kg; vitamin K, 40 mg/kg; thiamin, 50
mg/kg; riboflavin, 70 mg/kg; pantothenate, 200 mg/kg; biotin, 1.5 mg/kg; folic acid, 20 mg/kg; vitamin
B12, 0.15 mg/kg; niacin, 300 mg/kg; pyridoxine, 20 mg/kg; ascorbic acid, 300 mg/kg; inositol, 400 mg/Kkg;
butylated hydroxy toluene, 15 mg/kg; butylated hydroxy anisole, 15 mg/kg; ground wheat.

® Manganous sulphate, 40 mg/kg; ferrous sulphate, 30 mg/kg; copper sulphate, 5 mg/kg; zinc sulphate, 75
mg/kg; sodium selenite, 1 mg/kg; cobalt chloride, 2.5 mg/kg; sodium fluoride, 4 mg/kg; ground wheat.

" Shur-Gain Feeds (Truro, NS, Canada).

& Calculated as 1000 - (moisture + protein + lipid + ash).
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Table 2 Growth performance and feed utilization efficiency of haddock fed diets with varying DP/DE ratio for 63 days*

Specific Feed Protein
Initial Final Weight growth Feed conversion efficiency

DP/DE (P/L) weight? weight? gain rate® intake? ratio® ratio®

27.5 (450/110) 13.7+02" 550+05° 41.4+07° 221+003* 32.6+02" 0.79+0.01° 2.59 +0.02°
24.7 (450/160) 134+03 57.6+0.8° 441+05" 231+002° 335+01  0.76+0.01% 2.76 +0.03"
29.3 (500/110) 136+0.0 60.0+05° 464+05° 236+0.02° 347+07  0.75+0.01° 2.51 +0.02°
26.7 (500/160) 133402 57.7+02° 444+04° 233+003° 329+02  0.74+0.00° 2.57 +0.01°
30.2 (550/110) 13.8+0.0 615+12% 477+12%° 237+0.03° 324+06  0.68+0.01° 2.51 + 0.04%
28.5 (550/160) 132402  62.0+08" 488+07% 245+0.00° 33.7+14  0.69+0.02° 2.58 + 0.00%

! Mean + SE (n = 3). Values within the same column with different superscripts are significantly different (P<0.05).

2 g/fish

® 9%/day

* g feed/g gain

® g gain/g protein intake

" No significant differences detected.
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Table 3 Apparent digestibility coefficients® (%) of organic matter, energy, protein and

lipid in diets containing varying DP/DE ratios

Organic

DP/DE (P/L) matter Energy Protein Lipid

27.5 (450/110) 69.1+0.1* 77.0+05° 91.2+0.1*® 815+18°

24.7 (450/160) 73.0+0.0° 809+01° 924+02° 804+16°

29.3 (500/110) 76.2+0.3° 809+09° 93.1+0.3* 824+07®
26.7 (500/160) 773+1.2° 831+1.0° 929+05° 88.7+09°

30.2 (550/110) 798+02% 856+07 93.6+04° 86.2+16°

28.5 (550/160) 80.5+05% 857+07% 93.0+0.3* 850+04"

! Mean + SE (n = 2). Values within the same column with different superscripts are significantly different

(P<0.05).
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Table 4 Whole-body composition (wet-weight basis) and HSI of haddock fed diets with varying DP/DE ratios for 63 days*

DP/DE (P/L) Moisture (g/kg) Ash (g/kg)  Protein (g/kg) Lipid (g/kg) Energy (kJ/100 g) HSI? (%)
Initial 815.0 + 2.5% 26.7+1.4"™ 1285+3.0° 18.2+0.6*° 374.0+5.0° 5.3+0.2°
27.5 (450/110) 756.2 + 2.5° 266+08  151.9+20° 37.4+04° 6025+11.3" 10.9 + 0.2
24.7 (450/160) 742.4 +3.8° 261+05  1463+14" 528+0.3° 656.9+155° 12.6 +0.3°
29.3 (500/110) 760.6 + 2.5° 263+04  1521+16° 324+0.8° 580.3+9.6 9.3+0.2°
26.7 (500/160) 738.4 +3.2° 260+06  152.1+12° 488+0.3" 659.4+13.8° 11.9+0.2°
30.2 (550/110) 754.7 +3.2° 252+07  151.3+1.4™ 351+0.8° 603.3+12.1" 9.3+0.2"°
28.5 (550/160) 740.7 £ 4.7° 257+0.8  1542+22° 382+15° 652.3+17.1° 11.0 + 0.4

! Mean + SE (n = 3). Values within the same column with different superscripts are significantly different (P<0.05).
2 HSI (%) = (liver weight/total fish body weight) x 100.

" No significant differences detected.
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Table 5 Nitrogen, lipid and energy intake, gain (g or kJ per fish) and retention efficiency (%) of haddock fed diets with varying
DP/DE ratios for 63 days®

Nitrogen Lipid Energy

DP/DE (P/L) Intake Gain RE? Intake Gain RE? Intake Gain RE?

27.5 (450/110) 2.55+0.01° 1.0640.01°  41.6205" 3.7240.01° 1.81+0.01°  48.7x05° 564.9+3.8° 231.1+15°  40.520.3°
24.7 (450/160) 2.56%0.00° 1.07£0.01*  41.9+0.6 5.37+0.01° 2.80%0.00° 52.0%0.2° 606.8+1.6™ 270.0+£0.7™  44.3+0.1°
29.3 (500/110) 2.96+0.03° 1.18+0.02° 40.0£0.5° 4.15+0.04° 1.70£0.04°  41.1+1.3° 596.6+12.0°  244.6+4.9°  40.60.8°
26.7 (500/160) 2.77+0.01° 1.13+0.01° 40.8+0.4% 5.48+0.01° 2.58+0.01°  47.0%0.3° 594.2+3.6™° 271.5+1.6™  45.2+0.3°
30.2 (550/110) 3.03+0.02° 1.2240.01  40.120.5° 3.94+0.03° 1.91+0.04®  48.5%1.3° 565.5+10.0° 263.024.6°  45.9+0.3°
28.5 (550/160) 3.14+0.06* 1.24+0.01° 39.7+0.5° 5.96+0.11° 2.13+0.09°  36.1%2.1° 614.4+24.8° 286.3+11.6° 45.4%0.7°

! Mean + SE (n = 3). Values within the same column with different superscripts are significantly different (P<0.05).

2 Retention (%) = (gain/intake) x 100.
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Table 6 Energy retention (kJ/fish) as either protein energy or lipid energy in haddock fed
diets with varying DP/DE ratios for 63 days'

Total retained Retained as Retained as
DP/DE (P/L) Energy protein energy? lipid energy®
27.5 (450/110) 231.1+15° 157.9 + 1.1° 73.1+0.5°
24.7 (450/160) 270.0 + 0.7 159.5 + 0.4 110.5 + 0.3¢
29.3 (500/110) 244.6 + 4.9° 175.9 + 3.5 68.8 + 1.4°
26.7 (500/160) 2715+ 1.6™ 168.1 + 1.0%° 103.5+0.6°
30.2 (550/110) 263.0 + 4.6 180.9 + 3.2 82.0 +1.4°
28.5 (550/160) 286.3 + 11.6° 185.3 + 7.5¢ 101.0 + 4.1°

! Mean + SE (n = 3). Values within the same column with different superscripts are significantly different

(P<0.05).

2 Energy retention for protein was calculated for protein retention assuming 23.8 kJ/g retained protein.

® Energy retention for lipid was calculated for lipid retention assuming 39.0 kJ/g retained lipid.
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Chapter 5

In vitro pH-Stat protein hydrolysis of feed ingredients for

Atlantic cod, Gadus morhua. 1. Development of the method.

This chapter has been published as:

Tibbetts, S.M., Milley, J.E., Ross, N.W., Verreth, J.A.J., Lall, S.P. (2011) In vitro pH-
Stat protein hydrolysis of feed ingredients for Atlantic cod, Gadus morhua. 1.
Development of the method. Aquaculture 319, 398-406.
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Abstract

The method described here involves the extraction and partial purification of an
enzyme fraction from the dissected pyloric caeca of commercially farmed Atlantic cod,
Gadus morhua (1 kg fish) and the development of a pH-Stat method to predict protein
digestibility. ~ The various extraction and partial purification steps successfully
concentrated the alkaline serine protease enzymes, trypsin (>4-fold) and chymotrypsin
(>12-fold). It was found that the enzyme fractions produced in the manner described in
this study were completely stable for up to 8 months when stored at -20°C and at least 10
months when stored -80°C after which significant loss of enzyme activity can occur,
although the degree of protein hydrolysis (DH) of casein was unaffected after 12 months.
It is recommended that enzyme fractions produced in a similar manner should be stored
at -80°C and used within 8-10 months. The most suitable substrate concentration [S] to
use for closed-system in vitro pH-Stat DH assays was established using a standard
purified protein source (vitamin-free casein) with four [S] (0.25, 0.5, 0.75 and 1 mg
N/mL protein suspension solution). No significant differences (P>0.05) were found in
the DH values between the [S] tested. The DH curve for casein at a [S] of 0.5 mg N/mL
showed a rapid increase initially before leveling off at maximum DH (26%) which was
achieved within a moderate duration of the assay (5-6 hours). The closed-system pH-Stat
assay with a [S] of 0.5 mg N/mL and minimum assay duration of 8 hours is
recommended for further investigation of conventional and novel feed ingredients for

gadoid diets.

Introduction

The pH-Stat assay has been used in human and animal nutrition research to
estimate the in vitro protein digestibility of feed/food ingredients. The assay involves the
proteolytic enzyme hydrolysis of a test protein substrate and directly measuring the
breaking of peptide bonds. When protein bonds are cleaved, free carboxyl (-COOH)
residues are liberated which allows for the exchange of hydrogen (H") protons (Wei et
al., 2003). This release of positively charged hydrogen ions causes the reaction mixture
to become more acidic. To counteract this decrease in pH, the pH-Stat titration system

accurately adds titrant to maintain the target pH thereby eliminating the effects of
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changing pH on proteolytic activity and also the effects of buffering caused by the newly
released amino groups (Wei and Zhimin 2006). The pH-Stat system software accurately
records the total volume of titrant required to maintain the target pH until protein
hydrolysis is complete or the reaction is manually stopped. This titrant volume,
combined with various other data, is then used to calculate the degree of protein
hydrolysis (DH), which is a direct measurement of the number of peptide bonds that have
been cleaved during protein hydrolysis.

Although several in vitro protein digestion techniques have been investigated with
aquatic animals, pH-Stat methods have shown the most encouraging results with various
species of finfish and shrimps (Alarcén et al., 2002; Lemos et al., 2009). In addition,
some in vitro methods have been used to study larval nutrition that has been difficult to
conduct in vivo due to their small size and alternatively with tuna and whales because of
their large size (Carter et al., 1999; Hansen et al., 2009; Nordgy et al., 1993). In vitro
pH-Stat methods have also been used to predict performance of animals fed various feed
formulations, to assess the effects of processing of plant protein supplements, to assist in
designing new feed formulations and for producing novel feed/food hydrolysates (Adler-
Nissen et al., 1983; Lemos et al., 2009; Lemos and Nunes, 2008). Significant success
has been achieved with shrimps (Ezquerra et al., 1997; 1998; Lemos et al., 2009) while
many investigations with finfish have encountered technological problems and poor
repeatability (Dimes et al., 1994a,b; Bassompierre, 1997; EI-Mowafi et al., 2000). In
vitro pH-Stat methods have yet to be applied commercially to aquafeeds due the lack of a
standardized method which result in poor reproducibility within and between laboratories
and unaccounted variations in batch-to-batch enzyme activities. In addition, a poor
understanding of the effects of dietary history of the donor animals on enzyme profile and
catalytic activity may also lead to variations. The major limitations for in vitro pH-Stat
assays appear to be the need for complete knowledge of enzyme origin and activity
because variations in species, fish size/age and phenotype may give results with poor
reproducibility and pH-Stat assays have also been found to give inaccurate results for
ingredients that have been pre-hydrolysed. In addition, digestive tissues must be
extracted from donor fish, necessitating a well-equipped analytical lab to produce enzyme
fractions (Savoie, 1994).
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Most in vitro pH-Stat protein hydrolysis studies with finfish and shellfish have
used a finely ground test sample added to the reaction mixture at a substrate
concentration [S] of 1-2 mg of N per mL of solution (Alarcén et al., 1998; Carter et al.,
1999; Cordova-Murueta and Garcia-Carreno, 2002; Dimes and Haard, 1994; Dimes et
al., 1994b; Ezquerra et al., 1997; 1998; Garcia-Carrefio et al., 1997; Lan and Pan, 1993;
Shipton and Britz, 2002). However, the published literature does not appear to state the
reason for these chosen values. From the stand-point of method development, the [S] is
important because even small variations in the substrate protein concentration relative to
the amount of enzyme present can have large effects on in vitro DH results (Alarcon et
al., 2002; Rothenbuhler and Kinsella, 1985; Wei and Zhimin, 2006). For example,
Stinson and Snyder (1980) observed a significant decrease in the protein hydrolysis rate
of soy protein (SP) and bovine serum albumin (BSA) when the [S] was increased from
0.8 to 1.1 mg N/mL (SP) and 0.8-3.2 mg N/mL (BSA). In addition, a wide range of
hydrolysis duration times (less than 1 hour to over 48 hours) and hydrolysis temperatures
(15-37°C) have been reported in the literature. These long duration times may be
problematic. In an attempt to reduce the time required to achieve maximum degree of
protein hydrolysis (DH), four substrate concentrations [S] were examined in this study
(0.25, 0.5, 0.75 and 1 mg N/mL) under the hypothesis that food proteins have an inherent
capacity for digestion and that all test [S] would eventually result in a similar DH.

If research and industry laboratories are to adopt a standardized in vitro technique
for the rapid screening of protein quality of feeds and feed ingredients, a large supply of
enzyme fractions stable over weeks or months is needed. Since stored enzymes can lose
significant activity as a result of autohydrolysis, aggregation, protein unfolding and/or
suboptimal buffering and storage conditions (Xi et al., 2005), it is critical to assess the
stability or ‘usable shelf-life’ of enzyme fractions over time and under typical laboratory
storage temperatures. This quality-control aspect has received little attention previously.
It has not been reported for studies on in vitro protein digestion using digestive enzymes
extracted from fish or shellfish.

The present studies were designed to develop an enzyme extraction method and
closed-system in vitro pH-Stat protein hydrolysis protocol that is relatively inexpensive

and can be used to rapidly measure the degree of protein hydrolysis (DH) of feed
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ingredients for gadoid fish. Particular aims were: 1) to monitor the relative activity of
the two major serine protease enzymes (trypsin, chymotrypsin) extracted from farmed
Atlantic cod pyloric caeca, 2) determine the stability, in terms of protein concentration
and proteolytic activity, of the enzyme fractions stored at -20°C and -80°C over a period
of 12 months and 3) determine the influence of the [S] on pH-Stat hydrolysis assays

using a standard purified protein substrate.

Materials and methods
Fish

Twenty Atlantic cod (Gadus morhua L.) with an average weight of 1.2+0.1 kg
were purchased from a commercial marine fish farm (Cooke Aquaculture Ltd., St.
George, NB). The fish were cultured in Back Bay, NB in a standard floating marine sea
cage and fed once daily (1200 h) with a commercial marine fish diet (‘Europa 15°, 4.0
mm Extruded Cod and Haddock Feed, Skretting Canada, St. Andrews, NB). The
composition (as-fed basis) of this diet was: crude protein 55%, crude fat 15% and crude
fibre 1.5%. The fish were fasted for 46 h before being removed from the sea cage and
euthanized with an overdose (>100 mg/L) of tricaine methane sulfonate (AquaLife TMS,
Syndel Laboratories Ltd., Vancouver, BC, Canada).

To assess the fish health status, several physical and physiological measurements
were taken. Each fish was weighed (g) and measured for fork length (cm) to calculate
their condition factor (k). Duplicate blood samples were collected with needle (18 gauge)
and syringe (5 mL) from the dorsal caudal vein for determination of the packed red blood
cell volume (hematocrit value, Hct). The blood was drawn into heparinized micro-
hematocrit capillary tubes (Fisher Scientific Ltd., Pittsburgh, PA, USA) and centrifuged
at 19,200 x g for 2 minutes in an IECMicro-MB centrifuge (International Equipment
Company, Needham, MA, USA). Hct values were determined on a Lancer Critocap
micro-hematocrit capillary tube reader (Sherwood Medical, St. Louis, MO, USA). The
liver and pyloric caeca were dissected and visceral fatty tissues were removed. The
tissues were rinsed with copious amounts of saline solution (0.9% NaCl) to remove
contaminants (blood, urine, mucous, feed, feces, etc.) and then weighed to determine

hepatosomatic index (HSI) and the pylorosomatic index (PSI). The liver and pyloric
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caeca were quick frozen on dry ice, individually bagged and transferred to the National
Research Council’s Institute for Marine Biosciences, Marine Research Station (Ketch

Harbour, NS) and stored at -80°C until further processing.

pH measurement of pyloric caeca homogenate

Three frozen pyloric caeca were roughly chopped individually in a high-speed
Bead-Beater (Biospec Products, Bartlesville, OK, USA) and transferred to 15 mL Falcon
tubes where they were finely minced to a slurry with a PowerGen 700 homogenizer
equipped with a 7 mm x 195 mm homogenizing probe (Fisher Scientific Canada, Ottawa,
ON, Canada). The pH of each slurry was measured (in triplicate) with an Accumet®

pH/Conductivity meter (model 20, Denver Instrument Company, Denver, CO, USA)

Protease enzyme extraction of pyloric caeca

To ensure that the pyloric caeca used for enzyme preparation were from healthy
and uniform fish, tissue from any animal displaying one or more of the following
conditions was excluded: large (>1.3 kg) or small (<0.9 kg) body weight, obvious sexual
maturation (as indicated by discrete, engorged gonads), high (>1.4) or low (<1.2) k
factor, noticeable spinal and/or jaw deformity, caecal haemorrhaging and/or green liver.
The extraction procedure was modeled after Dimes and Haard (1994) with modifications
(Figure 1) and involved four steps: 1) crude enzyme extraction, 2) de-fatting, 3) enzyme
stabilization and 4) enzyme concentration. All solutions used for enzyme extraction
procedures were prepared fresh using Milli-Q water (Millipore Systems, Billerica, MA,
USA) and kept at 4°C. In addition, all enzyme extraction procedures were carried out in
a room at 4°C. The frozen pyloric caeca from eight fish were allowed to partially thaw
for 80 minutes at 4°C before being finely chopped. A known weight (110 g) of finely
chopped material was placed in a plastic beaker on ice and 3% the volume of extraction
solution (0.05 M Tris, 0.2 M NaCl at pH 8.0) was added. It was then covered with
aluminum foil and gently stirred for 5 hours at 4°C. The slurry (~330 mL) was
centrifuged at 3200 x g for 10 minutes at 4°C and the supernatant (S; fraction) was

removed and held on ice. Triplicate 0.5 mL aliquots of S; were taken, immediately
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frozen on dry ice and transferred to -80°C for subsequent determination of protein
concentration and proteolytic enzyme activity of the crude extract.

The pellet was re-suspended with 3x the volume of extraction solution (0.05 M
Tris, 0.2 M NaCl at pH 8.0) and an equal volume of ice-cold reagent-grade chloroform.
It was vigorously shaken by hand before centrifuging again as above. The chloroform
layer was discarded and the enzyme layer was pooled with the S; fraction. Twenty % (by
volume) of ice-cold reagent-grade chloroform was added to the S; fraction, vigorously
shaken and centrifuged as above. The enzyme layer was removed and the chloroform
layer was discarded. Two % (by volume) of Brij® 35 was added to the enzyme solution
(~650 mL) and it was gently stirred for 12 hours at 4°C before centrifuging. Triplicate
0.5 mL aliquots of the de-fatted extract were collected as described above. The de-fatted
extract had 7.5% (by volume) 0.2 M CaCl, added and it was stirred gently for an
additional 17 hours at 4°C. The solution was centrifuged as above, the pellet discarded
and ~645 mL of stabilized enzyme extract was produced. Triplicate 0.5 mL aliquots of
the stabilized extract were collected as described above.

The enzyme solution was dialyzed using Specta/Por® cellulose dialysis
membrane, mean weight cut-off (MWCO): 12,000-14,000 Daltons (flat width 45 mm;
diameter 28.6 mm; Cole-Palmer). It was cut into 22 cm strips and soaked in Milli-Q
water for 20 minutes and thoroughly rinsed with copious amounts of fresh Milli-Q water.
The enzyme solution was transferred equally to five dialysis tubes and dialyzed for 24
hours at 4°C against 4 L of 0.01 M sodium phosphate (pH 7.8) while being gently stirred.
Sodium phosphate was replaced with fresh solution after 8 hours and again after 16
hours. This step was performed to concentrate the target enzymes by the selective
removal of non-target molecules such as peptides and smaller molecular weight proteins
(<12 kDa). After 24 hours of dialysis, the solution was centrifuged as described above
and the pellet discarded. A blank fraction was prepared by carrying out the same steps in
the absence of pyloric caeca tissues.

The pH of enzyme and blank fractions was adjusted to pH 8.0 using 0.2 N NaOH
prior to freezing at -80°C according to Rothenbuhler and Kinsella (1985). The enzyme
fraction (643.5 mL) required 1.5 mL of 0.2 N NaOH to bring it to pH 8.02 and the blank
fraction (643.5 mL) required 1.4 mL to bring it to pH 8.03. Triplicate 0.5 mL aliquots
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were collected as described above. The remainder was transferred (in 5.5 mL aliquots) to
polypropylene cryogenic vials (80 vials for each fraction) and immediately frozen on dry

ice and stored at either -20 or -80°C until required.

Measurement of protein concentration and protease activity

Protein concentration of the enzyme fractions was measured by protein-dye
binding according to Bradford (1976) with lyophilized bovine plasma gamma globulin
(Bio-Rad Laboratories, Hercules, CA) as the standard. The measurement of activity was
a modification of Gawlicka et al. (2000) and Laine et al. (1993). L-BAPNA (N,-
benzoyl-L-arginine 4-nitroanilide hydrochloride, Sigma-Aldrich, St. Louis, MO) and Suc-
AAPF-pNA  (N-succinyl-alanine-alanine-proline-phenylalanine-p-nitroanilide, Sigma-
Aldrich, St. Louis, MO) were used to measure the activities of trypsin and chymotrypsin,
respectively. Fresh stock solutions of 1 mM L-BAPNA and 0.7 mM Suc-AAPF-pNA
were prepared by dissolving the substrates in 1% anhydrous dimethyl sulfoxide (DMSO
99.9% pure, Sigma-Aldrich, St. Louis, MO) and making up to concentration in 0.1 M
Tris-HCI, 0.02 M CaCl; at pH 7.9. Samples were thawed on ice, diluted (1:1 v/v) with
0.01 M sodium phosphate at pH 7.8 and kept on ice. Using a standard 96-well, flat-
bottom plate, 10 uL of diluted sample was placed in triplicate wells along with 200 pL of
either L-BAPNA substrate solution (for trypsin determination) or Suc-AAPF-pNA
substrate solution (for chymotrypsin determination). The blank consisted of 10 pL of
0.01 M sodium phosphate at pH 7.8 and 200 pL of 0.1 M Tris-HCI, 0.02 M CaCl, at pH
7.9. The optical density (OD) at 405 nm was measured at 15 second intervals over a 30
minute period using a microplate reader in kinetic mode at 25°C. The linear portion of
the curve that produced an R? value of >0.99 was selected to calculate the enzyme rate.

Total activity of trypsin and chymotrypsin was calculated as follows:

Total activity (U/pUL) = [AOD + (g x I)] % [V + Vs] x DF

where: U = amount of enzyme activity to produce 1 umol of product per minute
AOD = change in optical density per minute

€ = extinction coefficient for p-nitroanilide at 405 nm (8800/M cm)
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| = light path in each well (0.623 cm)
Vi = total assay volume (210 uL)

Vs = sample volume (10 pL)

DF = dilution factor (2)

Specific activity was calculated as:

Specific activity (U/ug protein) = (total activity in U/pL + protein content in pg/pL)

In vitro degree of protein hydrolysis (protein DH)

The closed-system pH-Stat hydrolysis assay procedure was conducted using
equipment from Radiometer Analytical SAS (Lyon, France) and included an ABU901
autoburette connected to a PHM290 pH-Stat controller feeding data to MS-Excel-based
PHM290_E software. A hydrolysis temperature of 25°C was maintained with a Neslab
RTE-111 heating/chilling recirculating waterbath and jacketed 100 mL capacity
hydrolysis vessel. Prior to running a hydrolysis assay, a vial of enzyme fraction (or blank
fraction) was thawed at room temperature for 15-30 minutes. The amount of vitamin-free
casein required to produce 0.25, 0.5, 0.75 or 1 mg N per mL was placed directly into a
100 mL hydrolysis vessel with 50 mL of 0.02 M CaCl;, with 0.01% NaN; and a magnetic
stir bar. The suspension was gently stirred for 59 minutes to dissolve the soluble protein
fraction and to stabilize the pH. This solution mixture was used because supplemental
calcium helps stabilize the enzymes by reducing enzyme autohydrolysis throughout the
assay and sodium azide (NaNs3) acts as an effective antimicrobial agent to inhibit bacterial
growth over the assay duration. The initial pH was adjusted to 8.0 using 0.2 N NaOH
(pH 12.7). The assay pH of 8.0 was selected given the overwhelming body of knowledge
showing that slightly alkaline pH promotes optimum catalytic activity of proteolytic
enzymes extracted from pyloric caeca of cold-water marine fish and hepatopancreas of
shrimps, crayfish and prawns and in particular for Atlantic cod Asgeirsson et al., 1989;
Asgeirsson and Bjarnason, 1991; Raae and Walther, 1989). This pH is also a
requirement of the pH-Stat principle to function in alkaline medium with alkaline
enzymes (>7.8, Adler-Nissen, 1986). Five mL of the thawed, vortexed enzyme fraction
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(or blank fraction) were added to the hydrolysis vessel to initiate the pH-Stat assay. The
volume of NaOH required to maintain the suspension at pH 8.0 over the hydrolysis
duration (10 hours) was automatically logged in the software at 5 minute intervals and
was used to calculate the degree of protein hydrolysis (DH). Each pH-stat assay was
performed in duplicate on each test [S] for both the enzyme and blank fractions. Initial
tests revealed that the pH electrode became unstable after several assays, presumably due
to a build-up of protein and/or lipid. Soaking in acidic buffer (pH 4), washing with
acetone followed by a distilled water rinse and then calibrating with pH 7.0 and 10.0
buffers (Caledon Laboratories Ltd., Georgetown, ON, Canada) prior to each DH assay
resolved this problem. The procedure used a ‘blank’ prepared in the identical manner as
the enzyme fraction except without any pyloric caeca. All enzyme fractions used for pH-
Stat assays in this study had protein concentration and enzyme activities measured by the

methods described above.

Calculation of degree of protein hydrolysis (DH)

The titrant used in this procedure was sodium hydroxide (NaOH) and the exact
normality of every fresh batch of ~0.02 N NaOH was standardized (in triplicate) against a
known concentration of hydrochloric acid (HCI). The degree of protein hydrolysis (DH)
was calculated according to Adler-Nissen, et al. (1983), Adler-Nissen, (1986) and Lemos,
et al. (2009) as follows:

%DH = (B x Np x 1/a x 1/M, x1/h) x 100
where:
B = consumption of NaOH for hydrolysis (mL) — consumption of NaOH for blank (mL)
Np = normality of NaOH titrant (meqv/mL)
o = average degree of dissociation of the o — NH groups
1/a0= 1.5 at 25°C and pH 8.0 (Adler-Nissen et al., 1983)
M, = total mass of protein (g) in the reaction mixture
(e.g. protein contributed from test ingredient and added enzyme)

hit = total number of peptide bonds in casein (8.2 meqv/g protein, Adler-Nissen, 1986)
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The DH data calculated every 5 minutes over the 600 minute (10 hour) hydrolysis assay
was fitted to a best-fit regression curve (minimum R? values of 0.99) according to
Alarcon et al. (2007).

Statistical procedures

Statistical analyses were performed according to Steel and Torrie (1960) using
one-way analysis of variance (ANOVA), repeated measures analysis of variance (RM-
ANOVA) and treatment means were differentiated using the pairwise multiple
comparison procedures (Tukey multiple range test) using SigmaStat® v.3.5 software. A
5% level of probability (P<0.05) was chosen in advance to sufficiently demonstrate a
statistically significant difference. All raw data was confirmed to have a normal
distribution and constant variance using the Kolmogorov-Smirnov test (SigmaStat® v.
3.5).

Results and discussion
Fish

The fish were starved for 46 hours prior to sampling the pyloric tissues. This was
done according to Lemieux, et al. (1999) working with similar sized Atlantic cod (40-50
cm vs. 44 cm average in this study) who found that after 2 days of feed withdrawal, less
than 0.5% of the body weight consisted of food remaining in the gut. Dimes and Haard
(1994) also used a 48 hour fast prior to collection of digestive enzymes from pyloric
caeca of large rainbow trout (250-500 g). Gildberg (2004) has shown that the activities
of digestive enzymes (particularly trypsin and chymotrypsin) remain at high levels in
farmed cod over long (>10 days) starvation periods. The fish used for preparation of
enzyme fractions (n=8) were of uniform size and body condition with average body
weight of 1.1+0.03 kg, fork length of 43.7+£0.7 cm, condition factor, k of 1.3+0.0,
hepatosomatic index, HSI of 10.0+0.6%, hematocrit value, Hct of 26.5+£0.9%,
pylorosomatic index, PSI of 1.4+0.1%, pyloric caeca pH of 6.84+0.08 and had no
indication of sexual maturation, skeletal deformities, caecal haemorrhaging or green

liver. The k factor reported here for commercially farmed cod in Atlantic Canada (1.3) is
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similar (1.0-1.3) to that reported for commercially farmed cod in Norway and Iceland
(Arnason et al., 2010; Gildberg, 2004). In addition, the fish had a liver size index (HSI,
10%) which is typical of farmed gadoids in Atlantic Canada. Gildberg (2004) reported
an HSI value of 14.4% but used fish fed a commercial feed (BioMar Ecolife 20% fat) that
was 5% higher in lipid than the one fed to the cod in this study (Skretting Europa 15%
fat). The 10% HSI value of the farmed cod used in this study is consistent with Arnason
et al. (2010) who reported HSI values of 10-12% in similar sized cod fed diets containing
43-57% crude protein and 10-16% crude fat. The PSI of fish used in this study (1.4%) is
in the same range (average, 1.1%, range 0.7-2.5%) as those measured previously in our
lab with gadoids fed similar commercial gadoid feeds (unpublished results) and also
commercially farmed cod in Norway (Gildberg, 2004). A schematic of the entire
digestive tract of Atlantic cod is shown in Figure 2. The pyloric caeca in gadoids is
relatively small compared to other species, representing only about ~5% of the total
digestive tract length, ~12% of the fork length and ~1.5% of the fish body weight. For
example, the PSI reported for farm-raised Atlantic cod in this study (1.4%) is much lower
than that of rainbow trout which is 2.8-3.8% (Bassompierre et al., 1998). Some
morphological properties of Atlantic cod pyloric caeca have previously been reported by
Buddington and Diamond (1986; 1987) and include the number of blind diverticula or
caecal ‘fingers’ (222), average caecal diameter (1.2 mm), caecal length (2.5 cm) and
caecal wall thickness (0.8 mm) and they also determined that the pyloric caeca of cod
likely accounts for >70% of total enzymatic digestion, making it the most suitable
digestive tissue for in vitro protein hydrolysis studies. The average packed red blood cell
volume (Hct; 26.5%) and pH of the pyloric caeca homogenate (6.8) of the fish used in
this study are within the typical ranges of 20-41% and pH 6.8-7.1, respectively reported
for farmed marine fish (Hansen et al., 2007; Lie et al., 1990; Sandnes et al., 1988;
Danulat and Kausch (1984).

Protease enzymes
The de-fatting steps used here were performed to reduce the amount of lipids in
the mixture. Ezquerra et al. (1997, 1998) have shown that they can interfere with

subsequent purification steps and that these particular solvents (chloroform and Brij® 35)
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would be gentle enough so as to not cause protein damage and reduced enzyme activity.
The calcium chloride (CaCl,) stabilization step was performed to provide the extract with
supplemental calcium. This has been shown to favor the extraction of proteins
(Bassompierre, 1997) and to help stabilize the enzyme extracts during frozen storage by
reducing enzyme autohydrolysis (Kristjansson, 1991). During enzyme activity assays,
sodium phosphate was chosen as the diluent because of its very low buffering capacity
(pK; = 6.8) and, as such, it has virtually no interference with the enzymatic hydrolysis of
the purified substrates (Treimo et al., 2008)

The ‘marker enzymes’ were trypsin and chymotrypsin because they have been
clearly shown to make up the major enzymes produced by the pancreatic cells for
proteolytic function in the pyloric caeca of cold-water fish including Atlantic cod. These
enzymes have been well characterized in terms of structure, function and stability
(Asgeirsson et al., 1989; Asgeirsson and Bjarnason, 1991; Raae and Walther, 1989).
They were tracked as marker enzymes since it is not possible (or useful) to track all
enzymes present in a pyloric caeca-derived enzyme cocktail even though other important
proteases (e.g. elastase, collagenase, aminopeptidases, etc.) likely play a role in
conjunction with trypsin and chymotrypsin. Since their molecular weights are in the
range of 24-26 kDa, the cellulose membrane used for dialysis (MWCO 12-14 kDa) was
specifically selected to promote their retention along with other similar sized proteases.

The protein concentration and specific activities of the enzyme fractions
throughout the various extraction steps along with the final blank fraction are shown in
Table 1. Each extraction step reduced the total amounts of other components (e.g. other
proteins, enzymes and lipids) resulting in an overall reduction in the total protein
concentration from 5.02+0.43 pg/pL to 0.98+0.06 pug/uL. The protein concentration of
the blank fraction was below the detection limit. The 80% decrease in protein
concentration is less than previous reports (99%) with rainbow trout (Bassompierre et al.,
1993; Kristjannson, 1991). This study was aimed at producing species-specific enzyme
fractions easily and inexpensively. As stated by Garcia-Carrefio et al. (1993), full
purification is time-consuming and expensive and not of value in an applied study such as
this. Thus, we did not attempt to purify the fractions to the same extent as was reported

in the previously mentioned studies where a final purification was performed by gel
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permeation chromatography. The intent was to enrich a mixture of various proteases
rather than isolation of single enzymes. If we compare our decreased protein
concentration to that of rainbow trout to the point just prior to gel permeation
chromatography (Kristjannson, 1991), the results are the same (80.5 and 80.4%,
respectively). Each extraction step was performed to enrich the total concentration of
proteases and, in particular, the marker enzymes trypsin and chymotrypsin.
Chymotrypsin is reported be the most highly active protease enzyme in marine fish like
Atlantic cod and Senegalese sole (Gildberg 2004; Gamboa-Delgado et al. 2011). Large
increases in enzyme activities (trypsin, >4-fold, chymotrypsin, >12-fold) were measured
throughout the extraction steps indicating that the extraction procedure was successful in
concentrating these enzymes. The specific trypsin and chymotrypsin activity levels in the
final extract were 0.50+0.01 and 3.05+£0.15 U/ug protein, respectively, while the final
blank fraction was confirmed to have no proteolytic activity (Table 1). Making enzyme
activity comparisons with published literature is difficult. Reported values for fish
pyloric caeca enzyme extracts processed at similar levels are highly variable due to
species differences, nutritional history, culture conditions of donor fish used,
extraction/purification techniques and different activity assay conditions (e.g. different
substrates, incubation temperature and/or pH, method of calculation, reporting units, etc.)
(Alarcon et al., 1995; Hidalgo et al., 1999; Pérez-Jiménez et al., 2009).

Enzyme storage time and temperature

One of the primary goals of this study was to assess the stability, in terms of
protein concentration and proteolytic activity, of the enzyme fractions stored at -20°C and
-80°C over a period of 12 months. The results provide very important quality-control
information for this study and also for future studies with respect to the thermal stability
or usable “shelf-life” of enzyme fractions produced in the manner described in this paper.
It has been suggested that protein extracts stored in adequate buffer solutions in sterile
glassware or polypropylene tubes maintain their shelf-life stability for ‘years’ when
frozen at -20 or -80°C without an anti-microbial additive, although repeated freeze-thaw
cycles can rapidly degrade them (Pierce Biotechnology Inc. 2010). The enzyme fractions

produced for this study were extracted and stored frozen in Tris/NaCl and sodium
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phosphate solutions in polypropylene cryogenic vials without an anti-microbial additive
and were only thawed once. Measurement of the enzyme activity showed that under
these conditions, the enzymes are indeed stable (Figure 3). Protein content of the enzyme
fractions remained relatively constant over 12 months at storage temperatures of -20 and
-80°C and the trypsin activity showed no significant change over 10 months, having
retained over 94% of their initial activity. Although there was a significant activity loss
by 12 months (83% of initial activity) when stored at -80°C, there was no significant
difference relative to those stored at -20°C over the same period of time. At -80°C, the
chymotrypsin after 12 months storage showed no significant loss of activity and retained
88% of its initial activity. However, when stored at -20°C, chymotrypsin showed a
significant loss of activity after 8 months (70% of initial activity) and this may be related
to the formation of protein damaging ice crystals that can form at -20°C when no
cryoprotectant (e.g. glycerol, ethylene glycol, etc.) is used. This rarely occurs at -80°C
provided there are not multiple freeze-thaw cycles (Pierce Biotechnology Inc., 2010). A
similar study with Atlantic salmon showed that the pyloric caeca enzyme extracts
exhibited good stability at -70°C having retained full activity for 3 months (Kristinsson
and Rasco, 2000). However, the activity decreased to 80% of its initial activity after 4
months compared to 8-10 months for the cod enzyme extracts in this study. Given that
pyloric caeca of cod is virtually free of visceral fatty tissues whereas salmon is
completely engulfed in fatty tissues and together with the de-fatting steps in the present
method, it is possible that the enzymes fractions produced in this study may have been
less susceptible to degradation. As a final quality control check, the results of degree of
protein hydrolysis (DH) of vitamin-free casein was compared using fresh enzyme
fractions (To months) Versus ones stored for 12 months at -80°C (T12 months). The DH was
statistically the same (P=0.839) with values of 23.5+1.8% and 23.3+0.5%, respectively.
It is recommended that enzyme fractions produced by these methods be stored at -80°C

and be used within 8-10 months.

Effect of varying substrate concentrations

The pH-Stat assay temperature of 25°C is within the range of temperatures used
in previous studies with finfish and shellfish (15-37°C). A temperature of 25°C was
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selected in this study based on work with rainbow trout (Dimes et al., 1994b) and also
because it has been shown specifically for Atlantic cod pyloric caeca enzymes that the
catalytic efficiency of trypsin-like enzymes is 17 times higher than that of bovine trypsin
at 25°C (Asgeirsson and Bjarnason, 1991). Bjarnason (2001) also reported the optimum
catalytic temperature range for gadoid trypsin and chymotrypsin to be 20-40°C. The
blanks run in these studies were used to account for background protein hydrolysis that
occurs for non-enzymatic reasons (eg. stirring motion, hydration, atmospheric gases, pH-
probe fluctuations, etc.). During early studies, Pedersen and Eggum (1983) assumed that
measuring non-enzymatic hydrolysis was not necessary and would not increase the
agreement between in vitro and in vivo results, while Alarcén et al. (2002) proved that
this assumption was incorrect by demonstrating that non-enzymatic hydrolysis is highly
variable between samples and can account for >35% of total protein hydrolysis. Pedersen
and Eggum (1983) pointed out that in vivo digestion is a combination of both enzymatic
hydrolysis and non-enzymatic hydrolysis, however, several authors have demonstrated
better agreement between in vivo and in vitro results when non-enzymatic hydrolysis was
accounted for. The research presented in this study is the first time a procedural blank
has been used to account for pH-change that occurs from non-enzymatic hydrolysis,
whereas previous studies with salmonids, other marine fish and shellfish have either used
distilled water or no blank at all.

In previous pH-Stat studies with aquatic animals, protein substrate concentrations
[S] in the range of 1-2 mg of N per mL of solution were used. The reason for this range
is not clear and it is troubling from the stand-point of method development. Under
highly-controlled conditions using purified trypsin as the enzyme and bovine serum
albumin (BSA) as the protein substrate, Wei and Zhimin (2006) demonstrated a large
effect of varying [S] (0.3-2.4 mg/mL) on protein hydrolysis rate and final DH. Use of 1-
2 mg N/mL [S] may have originated from the original work of Hsu et al. (1977) and
Maga et al. (1973) using an in vitro pH-Shift method with laboratory rats. In these
studies, a high correlation between in vitro DH and in vivo protein digestibility was
achieved within 3-10 minutes using 1-2 mg N/mL solution. Subsequent studies with
aquatic animals appear to have adopted these [S] as the standard. Researchers working

with salmonids, sparids, tuna, shrimps and abalone have used [S] in the range of 0.7 to
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1.6 mg N/mL with differences in protein content and proteolytic activity of the enzyme
fractions (Alarcon et al., 1998; Carter et al., 1999; Cordova-Murueta and Garcia-Carreno,
2002; Dimes and Haard, 1994; Dimes et al., 1994b; Ezquerra et al., 1997; 1998; Garcia-
Carrefio et al., 1997; Lan and Pan, 1993; Shipton and Britz, 2002). However, these
studies did not attempt to optimize the [S] for the assay. Only Alarcon et al., (1999,
2002) working with seabream assessed the effect of varying [S] on DH.

Enzymatic assays of this type typically never reach a true plateau, rather they
exhibit an initial rapid hydrolysis rate and then a much slower rate that is generally
insignificant, making pH-Stat-generated curves difficult to model (Wei and Zhimin,
2006). A typical example with rainbow trout and carp shows that after about one-third of
an 11.5 hour assay, the process of hydrolysis significantly slows down to what appears to
be a plateau, but still rises slightly (Grabner, 1985). This is thought to be due to the ever-
decreasingly available hydrolysis sites, enzyme exhaustion and enzyme autodigestion or
activity inhibition by hydrolysis products, metal ions and/or indigestible residues and
several other exogenous factors (Quaglia and Orban, 1987; Wei and Zhimin, 2006). The
use of best-fit curve modeling allows for determination of the theoretical maximum DH
and time required to achieve it as opposed to selection of arbitrary assay durations. The
study results were also verified by comparing the linear slopes (R®>0.99) of each
hydrolysis curve over the first 90 minutes of the assay.

For each pH-Stat assay conducted to determine the optimum [S], duplicate
samples of each enzyme fraction were analyzed in triplicate to measure their enzyme
activity levels (Table 2). There were no significant (P>0.05) differences in trypsin and
chymotrypsin activities at 0.44-0.47 and 3.2-3.7 U/uL, respectively. Our results for the
casein DH using Atlantic cod enzymes are in agreement with the relevant literature for
salmonids. The maximum DH values were in a tight range of 23.0-25.6% (see Table 2
and Figure 4) with no significant (P>0.05) difference between the [S] tested. The casein
DH achieved in this study (23-26%) is similar to the range reported for salmonids (23-
27%; Dimes et al., 1994a, Dimes and Haard, 1994) upon which this work was based.
The assay duration time and volume of NaOH titrant required to achieve maximum DH
was, however, proportionally affected by the [S] ranging from less than 5 hours to

approximately 8 hours and less than 6 mL to greater than 21 mL, respectively. This
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result demonstrates that the same DH can be achieved in a shorter period of time with
less use of NaOH titrant, supporting our hypothesis that food proteins may have an
inherent capacity for digestion and that the same maximum DH can be obtained using the
pH-Stat assay regardless of [S]. Plots of [S] versus assay duration and titrant volume
required shows significant linear relationships (Minutes = {262.9 x [S]} + 209.3, R?*=0.85
and mL NaOH = {21.4 x [S]} + 0.72, R?=0.99) demonstrating the high proportionality
between [S] and both assay duration and titrant consumption. A [S] of 0.5 mg N/mL was
used for subsequent DH studies based on the curve progression over 10 hours having a
rapid increase initially and then leveling off at maximum DH (26%) in a moderate assay
duration (~6 hours) with minimal use of titrant (<12 mL). In addition, by comparing
slopes of the linear portion (R*>0.99) of each hydrolysis curve over the first 90 minutes,
the most rapid proteolysis clearly occurred at a [S] of 0.5 mg N/mL (>0.18). Thereafter,
the rates fell to <0.12 at [S] of 0.75 and 1 mg N/mL. The use of 0.5 mg N/mL is also
supported by non-linear regression analysis (Figure 5) that suggest the optimum [S] (DH
= {-12.4 x [S]}? + {14.0 x [S]} + 21.3, R?=0.93) to be 0.56 mg N/mL. This result closely
supports that of Rothenbuhler and Kinsella (1985) working at 37°C with purified
enzymes and various protein substrates (sodium caseinate, bovine serum albumin and
defatted soy protein). They found the optimum [S] to be 3 mg protein/mL, when
expressed in terms of nitrogen (N/P conversion factors of 6.38 for sodium caseinate and
6.25 for bovine serum albumin and defatted soy protein) equals 0.47 and 0.48 mg N/mL,

respectively.

Conclusions

These studies have demonstrated that the various extraction and partial
purification steps successfully concentrated the alkaline serine protease enzymes, trypsin
and chymotrypsin. Close agreement was found with published in vitro casein DH values
for salmonids and Atlantic cod. The closed-system in vitro pH-Stat assay with a [S] of
0.5 mg N/mL and minimum assay duration of 8 hours is recommended for further
investigation of conventional and novel feed ingredients for gadoid diets. It was also
found that the enzyme fractions produced under the present extraction protocol were
completely stable for up to 8 months when stored at -20°C and at least 10 months when

124



stored -80°C after which significant loss of enzyme activity losses can occur, although
casein DH was unaffected after 12 months. As such, we recommend that enzyme
fractions produced in a similar manner should be stored at -80°C and used within 8-10

months.
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Table 1

Protein concentration and specific activity of enzyme fractions® extracted from Atlantic

cod pyloric caeca

Specific activity
Protein concentration (U/ug protein)
Extraction step (Hg/pL) Trypsin Chymotrypsin
Crude extract 5.02+0.43 0.12+0.01 0.25+0.03
De-fatted extract 2.02+0.03 0.29+0.00 0.95+0.02
CacCl, stabilized extract 1.69+0.02 0.33+£0.01 1.42+0.01
Final extract after dialysis  0.98+0.06 0.50+0.01 3.05+£0.15
Final blank fraction -0.10+0.06 0.00+0.01 -0.01+0.02

#Mean * SE (n=3)
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Pyloric caeca
110g

Homogenized (1:3 w/v) with cold extraction solution (0.05
y MTris, 0.2 M NaCl at pH 8.0) for 5 hours at 4°C

Crude extract

Centrifuged (10 min., 4°C, 3200 x Q)

I:;Z:I Residue

Extracted with same solution (1:3 v/v) and an equal volume of cold
chloroform and centr*ifuged (10 min., 4°C, 3200 x g)

\ 4 v
Pogled <—|i| Organic layer and
1 residue discarded

Partitioned with 20% (v/v) cold chloroform and
centrifuged (10 min., 4°C, 3200 x @)

v v
Aqueous Organic layer
layer discarded

Gently stirred with 2% (v/v) Brij® for 12 hours at 4°C and
! centrifuged (10 min., 4°C, 3200 x g) and pellet discarded

| De-fatted extract |

Gently stirred with 7.5% (v/v) 0.2 M CaCl, for 17 hours at 4°C

v and centrifuged (10 min., 4°C, 3200 x g) and pellet discarded

| Stabilized extract |

Dialyzed against 0.01 M sodium phosphate (pH 7.8) solution (1:100 v/v) for 24 hours at 4°C (fresh
solution replaced every 8 hours) and centrifuged (10 min., 4°C, 3200 x g) and pellet discarded.
: Extract adjusted to pH 8.0 with small amount (<2 mL) of 0.2 M NaOH

| Final extract |

v

Aliquoted in 5.5 mL in polypropylene cryovials, immediately
frozen on dry ice and stored at -20 and -80°C

Figure 1
Flow diagram of the preparation of Atlantic cod proteolytic enzyme fractions
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Pyloric caeca with Upper intestine
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Figure 2 Digestive tract of Atlantic cod, Gadus morhua (Linnaeus, 1758) with the liver
removed. Measurements of the fish pictured above: fork length = 47.5 cm; entire
digestive tract length (oesophagus to anus) = 101.0 cm (212.6% of fork length); pyloric
caeca length = 5.5 cm (5.4% of intestinal length, 11.6% of fork length); stomach length =
3.0 cm (3.0% of intestinal length, 6.3% of fork length). ~ Pancreatic cells diffused
throughout the caecal tissues.
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Table 2

Effect of substrate concentration [S] on pH-Stat degree of protein hydrolysis (DH)? of vitamin-free casein® using enzymes from

Atlantic cod pyloric caeca

Substrate Enzyme activity* Maximum Assay time  Titrant
concentration (U/uL) DHY (%) required required
(mg N/mL) Trypsin Chymotrypsin Observed Predicted (minutes) (mL)

1 0.46+0.01"™  3.7+0.01™ 23.6+0.2"™  23.0+0.2"™  463+9° 21.6+0.2°%
0.75 0.45£0.02  3.5x0.13 24.9+0.2 24.5+0.4 433+36% 17.240.2°
0.5 0.44+0.02 3.4+0.02 25.0+0.5 25.6+0.8 316+33™ 11.8+0.7°
0.25 0.47+0.01 3.240.01 23.4+0.1 23.910.2 282+1° 5.6+0.1°

#Mean + SE (n=2); values within the same column with different superscript letters are significantly different (P<0.05)
b Casein - Vitamin-free (International Feed Number 5-01-162, analyzed nitrogen content of 13.475% (as-fed basis)
“Measured enzyme activity of pyloric caeca-derived enzyme fractions

YDH = degree of protein hydrolysis

™ = no significant differences (P>0.05) within column
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Figure 3

Stability of protein and enzyme activity of enzymes extracted from Atlantic cod pyloric caeca held at two storage temperatures for 12 months
(mean = SE, n=3). Different superscript letters indicate a significant difference (P<0.05) between storage temperatures and an asterisk (*)

indicates a significant difference (P<0.05) within the same storage temperature at different storage times. pH-Stat degree of protein hydrolysis
(DH) of vitamin-free casein at Tg montns (23.511.8%) was statistically the same (P=0.839) as T 12 months at -80°C (23.3+0.5%).
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Figure 4

Effect of substrate concentration [S] on pH-Stat degree of protein hydrolysis (DH) of vitamin-free casein over 10 hours using enzymes
from Atlantic cod pyloric caeca.
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Figure 5
Effect of substrate concentration [S] on maximum in vitro degree of protein hydrolysis (DH) of vitamin-free casein using enzymes

from Atlantic cod pyloric caeca.
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Chapter 6

In vitro pH-Stat protein hydrolysis of feed ingredients for
Atlantic cod, Gadus morhua. 2. In vitro protein digestibility of

common and alternative feed ingredients.

This chapter has been published as:
Tibbetts, S.M., Verreth, J.A.J., Lall, S.P. (2011) In vitro pH-Stat protein hydrolysis of
feed ingredients for Atlantic cod, Gadus morhua. 2. In vitro protein digestibility of

common and alternative feed ingredients. Aquaculture 319, 407-416.
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Abstract

Using enzyme fractions isolated from the pyloric caeca of farmed Atlantic cod,
the in vitro degree of protein hydrolysis (DH) of numerous conventional and novel feed
ingredients were measured by a closed-system pH-Stat assay. Regression equations
describing the relationship between in vivo apparent protein digestibility (ADC) and in
vitro protein DH were used to predict in vitro protein ADC. The equations resulted in
good correlation (<4 percentage points difference) between ‘measured’ and ‘predicted’
protein ADC in the majority of cases (r = 0.90-0.99; R? = 0.88-0.99), while some
ingredients were either over- or under-estimated (6-7 percentage points) which appears
related to high ash or chitin content (r = 0.75; R*= 0.61) and may indicate the need for an
acid pre-hydrolysis phase and full account of non-protein nitrogen (NPN) content. The
‘predicted’ in vitro protein ADC were above 95% for wheat gluten meal, soy protein
concentrate, soy protein isolate and whole krill meal; relatively high (85-95%) for
soybean meal, white lupin meal, herring meal, anchovy meal, canola protein concentrate,
pea protein concentrate and poultry by-product meal; mid-range (75-85%) for crab meal,
shrimp meal and canola meal; and low (<75%) for hydrolyzed feather meal and flaxseed
meal. Further research is needed on the development of a two-stage hydrolysis assay for
gadoids involving an acid (gastric) pre-digestion step prior to this assay to further

increase agreement between in vivo protein ADC and in vitro protein DH.

Introduction

Fish, animal and plant by-products are widely available for use as major sources
of dietary protein in fish feeds (Hardy, 2010; Hardy and Barrows, 2002). These products
can vary considerably in their protein quality and nutrient profile depending upon the
freshness, origin, species/cultivar, season of harvest and other factors associated with the
raw material, particularly the drying process and temperatures used during processing
(Pike, 1991; Lemos and Tacon, 2011). After preliminary chemical analyses, the major
criterion for determining the nutritional value of a protein source is the measurement of
its apparent digestibility coefficient (ADC) (Cho et al., 1982). Conventional biological
methods for measuring protein ADC involve in vivo fish trials that are time-consuming,

require expensive facilities and use large numbers of animals. In addition, total
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collection of feces from fish is typically not possible, so indirect methods must be used
that involve the addition of inert markers to the diet (e.g. yttrium and chromic oxide) and
then quantification in the diet and the dried fecal samples, which are costly. As such, in
vitro methods such as the pH-Stat assay have been proposed to provide estimates of the
protein digestibility of feed ingredients. The assay involves proteolytic enzymatic
hydrolysis of peptide bonds in a test protein substrate and measurement of protein
breakdown. When peptide bonds are cleaved, free carboxyl (-COOH) residues are
liberated which allows for the exchange of hydrogen (H") protons (Wei et al., 2003).
This release of positively charged hydrogen ions causes the reaction mixture to become
more acidic. To counteract declining pH, the pH-Stat titration system accurately adds
titrant to maintain the target pH thereby eliminating the effects of changing pH on
proteolytic activity and also the effects of buffering caused by the newly released amino
groups (Wei and Zhimin, 2006). The pH-Stat system software accurately records the
total volume of titrant required to maintain the target pH until protein hydrolysis is
complete or the reaction is manually stopped. This titrant volume, combined with
various other data, is then used to calculate the degree of protein hydrolysis (DH), which
is a direct measurement of the number of peptide bonds that have been cleaved during
protein hydrolysis.

Under practical fish farming conditions, food intake and digestion are affected by
numerous biotic and abiotic factors (e.g. culture conditions, water quality, presence of
stressors, social interactions, changing feeding rhythms, nutritional and reproductive
status (Lall and Tibbetts, 2009)) that can vary temporally and among stocks of fish.
These factors, together with the documented effects of fish size/age, phenotype, dietary
protein level and seasonal variations on proteolytic capacity (Bassompierre et al.,
1998Db,c; Einarsson et al., 1997; Farde-Skjervik et al., 2006; Kofuji et al., 2005; Olsen
and Ringg, 1998) influence food digestion in fish in vivo, negatively affect the
reproducibility of both in vivo and in vitro results and ultimately complicate the
application of in vitro results for use by the feed industry. Knowledge gaps will likely
always exist; yet, it is recognized by human and animal nutritionists that it is possible to
make reasonable predictions in vitro for research and industrial use (Fuller, 1991). In

vitro methods can provide a complementary method to biochemical and in vivo biological
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methods as they are relatively inexpensive, require less animals and results can be
obtained rapidly (hours vs. weeks) using very small quantities of test sample. These
characteristics could make in vitro methods more suitable for initial rapid-screening of
protein quality and certainly more acceptable from the stand-point of animal welfare
(Alarcon et al., 2002 and Fernandez-Garcia et al., 2009).

A small number of in vitro predictive equations currently exist in the literature for
rainbow trout, Salmo gairdneri (Dimes and Haard, 1994) and white shrimp, Litopenaeus
vannamei (Ezquerra et al., 1997, 1998; Lemos et al., 2009) but are lacking for all other
farmed aquatic species. The objectives of this study were to: 1) measure the in vivo
apparent protein digestibility (protein ADC) of a large number of conventional and
alternative feed ingredients of fish, animal and plant-origin having a wide range of
proximate composition using two related gadoid fish, Atlantic cod and haddock; 2) use
our established protocol for enzyme extraction from Atlantic cod pyloric caeca and
closed-system pH-Stat hydrolysis to measure the in vitro degree of protein hydrolysis
(protein DH) of the same feed ingredients and 3) combine in vivo protein ADC and in
vitro protein DH results to generate gadoid-specific predictive equations.

Materials and methods

In vivo apparent protein digestibility (protein ADC)

The in vivo protein ADC studies were conducted according to Tibbetts et al.
(2004, 2006) with juvenile cod and haddock (90-94 g) that had been previously
maintained in the lab and fed twice daily (0900 and 1600 h) a commercial extruded
marine gadoid diet (EWOS™ 5.0 mm Marine Feed, EWOS Canada, Surrey, BC,
Canada). The composition (as-fed basis) of this diet was: crude protein 55%, crude fat
12%, ash 11% and gross energy 21 MJ/kg. During a 2 week acclimation period (and for
the duration of the study) the fish were fed experimental diets three times daily (0900,
1300 and 1600 h) that contained a 70:30 ratio (w/w basis) of basal diet (Table 1) and one
of seventeen conventional or novel test feed ingredients. The reference diet and all
experimental diets contained chromic oxide (Cr,03, 0.5%) as the inert digestion indicator
(Austreng, 1978) and the final proximate composition, gross energy content and in vivo

protein digestibility (ADC) of the reference diet and experimental diets is shown in Table
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2. The test ingredients were from a wide range of sources including fish meals,
zooplankton meals, crustacean by-product meals, animal by-product meals and meals,
concentrates and isolates of plant origin (including oilseeds, pulses and grains) and
represented a wide range in proximate composition (31-86% crude protein, 0.3-15%
lipid, 0.5-38% ash, 0-45% carbohydrate, 12-23 MJ/kg gross energy) and in vivo protein
ADC (50-100%) (Table 3). Survival was high (>96%) for fish fed all experimental diets
and feed intake exceeded 2% of body weight per day for all diets, with exception of the
one containing pea protein concentrate.

The fish were housed in tanks (120 L capacity) equipped with fecal collection
columns specifically designed to allow for daily collection of fecal samples from fish fed
the various experimental diets (Tibbetts et al., 2006). Filtered (<60 pum), de-gassed and
UV-treated seawater (salinity, 28-30 ppt) was supplied to each tank at flow rates of 2-3
L/min in a flow-through system and continuously aerated (>9 mg/L dissolved oxygen;
>90% gas saturation). The water temperature was maintained thermostatically (12°C)
and monitored daily. Each week-day, after the final feeding (1600 h), the tanks and fecal
collection columns were thoroughly cleaned with a brush to remove any residual
particulate matter (feces and uneaten feed). Fecal samples were collected each morning
(0830 h) into 250 mL plastic bottles, centrifuged (4000 rpm [2750 xg] for 20 min at 4 °C)
and the supernatant carefully decanted and discarded. Approximately 17-18 h elapsed
between the last feeding of the day and fecal collection the following morning. Wet fecal
material (minimum 40 g) was collected and pooled for 15-20 days for each experimental
diet. Frozen (-20°C) fecal samples were lyophilized, finely ground using mortar and

pestle and stored at -20°C until further analyses.

Analytical techniques and calculation of in vivo apparent protein
digestibility (ADC)

Test feed ingredients, experimental diets and lyophilized fecal samples were
analyzed using the same procedures. Moisture was determined by drying in an oven at
105°C for 18 h and ash by incineration in a muffle furnace at 550°C for 18 h (Woyewoda
et al., 1986). Crude protein (% nitrogen x 6.25) was measured by the Dumas method

(Ebeling, 1968) using a Leco nitrogen determinator (Model FP-528, Leco Corporation,
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St. Joseph, MI, USA). Total lipid was determined using a modified Bligh and Dyer
(1959) method. Organic matter was calculated by difference (100 — [moisture + ash])
and carbohydrate was calculated by difference (100 — [moisture + ash + protein + lipid]).
Gross energy was measured using an isoperibol oxygen bomb calorimeter (model 6200,
Parr Instrument Company, Moline, IL, USA) equipped with a Parr 6510 water handling
system for closed-loop operation. Chromic oxide content of experimental diets and fecal
samples was determined by flame atomic absorption spectrophotometry using an
AAnalyst 300 atomic absorption spectrophotometer (Perkin-Elmer, Norwalk, CT, USA)
following a microwave acid digestion procedure as described by Peach (2005, pp. 52-54)
using a Multiwave sample preparation platform system (Perkin-Elmer, Norwalk, CT,
USA). In vivo protein ADC of the reference diet and experimental diets were calculated
using the equation of Maynard et al. (1979 p. 41) and in vivo protein ADC for the single

test feed ingredients was calculated according to Forster (1999).

Production of protease enzyme fractions

Production of the enzyme fractions used in this study was described in detail in
the previous method development studies (Tibbetts et al., 2011). Briefly, the pyloric
caeca tissues were removed from farmed Atlantic cod, Gadus morhua L. (1.2£0.1 kg)
from a commercial marine fish farm (Cooke Aquaculture Ltd., St. George, NB) that had
been fed with a commercial marine fish diet (‘Europa 15° 4.0 mm Extruded Cod and
Haddock Feed, Skretting Canada, St. Andrews, NB) after a 46 hour fasting period. The
composition (as-fed basis) of this diet was: crude protein 55%, crude fat 15% and crude
fibre 1.5%. The pyloric caeca used were from healthy and uniform fish with 0.9-1.3 kg
body weight, no obvious sexual maturation and 1.2-1.4 conditional factor (k). The
enzyme extraction procedure was modeled after Dimes and Haard (1994) with
modifications and involved four steps: 1) crude enzyme extraction, 2) de-fatting, 3)
enzyme stabilization and 4) enzyme concentration. Procedural blank fractions were also
prepared by carrying out the same steps in the absence of pyloric caeca tissues.
Measurement of the trypsin and chymotrypsin enzyme activities was as previously
described (Tibbetts et al., 2011).
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In vitro degree of protein hydrolysis (protein DH)

The closed-system pH-Stat hydrolysis assay procedure was conducted as
previously described (Tibbetts et al., 2011). Prior to conducting a hydrolysis assay, a vial
of enzyme fraction (or blank fraction) was thawed at room temperature for 15-30
minutes. The amount of test feed ingredient (passed through an 850 pm screen) required
to produce 0.5 mg N per mL was placed directly into a 100 mL hydrolysis vessel with 50
mL of 0.02 M CaCl, with 0.01% NaN3; and a magnetic stir bar. The suspension was
gently stirred for 59 minutes to dissolve the soluble protein fraction and to stabilize the
pH. The initial pH was adjusted to 8.0 using either 0.2 N NaOH (pH 12.7) or 0.2 M HCI
(pH 1.9). Five mL of the thawed, vortexed enzyme fraction (or blank fraction) were
added to the hydrolysis vessel to initiate the pH-Stat assay. The enzyme (or blank)
fractions remaining in the tubes were subsequently analyzed for trypsin and
chymotrypsin enzyme activities as previously mentioned to confirm enzyme activity
uniformity across all pH-Stat assays. The volume of NaOH titrant required to maintain
the suspension at pH 8.0 over the hydrolysis assay was automatically logged in the
software at 5 minute intervals and was used to calculate the degree of protein hydrolysis
(DH). Each pH-stat assay was performed in duplicate on each test ingredient for both the

enzyme and blank fractions.

Calculation of degree of protein hydrolysis (DH)

The titrant used in this procedure was sodium hydroxide (NaOH) and the exact
normality of every fresh batch of ~0.02 N NaOH was standardized in triplicate against a
known concentration of hydrochloric acid (HCI). The degree of protein hydrolysis (DH)
was calculated according to Adler-Nissen, et al. (1983), Adler-Nissen, (1986) and Lemos,
et al. (2009) as follows:

%DH = (B % Np x 1/a. x 1/M, X1/hye) x 100

where:

B = consumption of NaOH for hydrolysis (mL) — consumption of NaOH for blank (mL)
Ny = normality of NaOH titrant (meqv/mL)

o = average degree of dissociation of the o — NH groups
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1/0=1.5 at 25°C and pH 8.0 (Adler-Nissen et al., 1983)
M, = total mass of protein (g) in the reaction mixture
(e.g. protein contributed from test ingredient and added enzyme)
hwt = total number of peptide bonds in the test protein substrate (meqv/g protein)
where h: Wwas 7.8 (soy proteins), 8.3 (wheat gluten proteins) and 8.35 (other
proteins) (Adler-Nissen, 1986)

The hydrolysis equivalent (hy:) is dependent upon the amino acid composition of the
specific protein being tested and when this is unknown, as in the majority of the cases in
this study, an average value of 8.0 meqv/g protein for hy can be assumed (Adler-Nissen
et al., 1983). As such, other authors working with shrimps, salmonids and marine fish
have used similar values in the range of 7.8-8.6 meqv/g protein. We chose to use 8.35
meqv/g protein for all unknown ingredients because it is the average value (excluding

gelatin) of various food proteins recommended by Adler-Nissen (1986, Table 1, page 17).

Statistical procedures

Statistical analyses were performed according to Steel and Torrie (1960) using
one-way analysis of variance (ANOVA) and treatment means were differentiated using
the pairwise multiple comparison procedures (Tukey multiple range test) using
SigmaStat® v.3.5 software. Predictive regression equations were generated by regressing
in vivo measured protein ADC against the corresponding in vitro protein DH using linear,
log, power and exponential models using SigmaStat® v.3.5. Statistical significance of the
correlations that best described the relationships were confirmed using Pearson
correlation analysis (r) and the coefficient of determination (R?) for each model. A 5%
level of probability (P<0.05) was selected in advance to sufficiently demonstrate a
statistically significant difference. All raw data was confirmed to have a normal
distribution and constant variance using the Kolmogorov-Smirnov test (SigmaStat® v.
3.5).

Results and discussion

Composition of the test feed ingredients
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The proximate composition and gross energy content of the test feed ingredients
are reported in Table 3 and have been previously discussed (Tibbetts et al., 2004, 2006).
The proximate composition rarely correlates well with ultimate nutrient availability
(Hardy and Masumoto, 1991), thus it is generally accepted that the first step in assessing
the nutritional value of fish feed ingredients is to measure their digestibility (Cho et al.,
1982). Indeed, the proximate composition of the test ingredients was poorly correlated
with in vivo protein ADC and in vitro DH with correlation coefficients (r) of -0.15 to 0.43
(in vivo protein ADC) and 0 to 0.45 (in vitro protein DH) for crude protein, lipid, ash,
carbohydrate and gross energy, respectively. These results are in agreement with those
for salmonids (Bassompierre, 1997), with corresponding r values of -0.06 to 0.47 (in vivo
protein ADC) and -0.24 to 0.3 (in vitro protein DH).

DH of animal-origin feed ingredients

In vitro DH of the animal-origin feed ingredients is presented in Table 5. DH
values were highest (11-12%) for poultry by-product meal, herring meal and anchovy
meal, mid-range (7%) for whole krill meal; and lowest (3-4%) for crab meal, shrimp meal
and hydrolyzed feather meal. The in vitro DH results for fish meals and poultry meals
are in good agreement with conventional in vivo protein ADC results that also show
relatively high protein digestibility for herring, anchovy and poultry by-product meals
and low protein digestibility for hydrolyzed feather meal. The in vitro DH results for fish
meals (12%) are in close agreement with Dimes et al. (1994a) and Kristinsson and Rasco
(2000) who reported DH values of 10-14% for the hydrolysis of salmon muscle protein,
ocean perch muscle protein and herring meal using rainbow trout and Atlantic salmon
pyloric caeca enzymes.

The in vitro DH results for zooplankton and crustacean meals indicated lower
digestibility than those using in vivo protein ADC methods and there are a couple of
possible explanations. Firstly, the amount of each of these ingredient used in each DH
assay was calculated based upon its total protein content using a nitrogen (N) analyzer
and a general protein conversion factor of N x 6.25, since no specific conversion factor is
available for these ingredients. This 6.25 conversion factor is the most widely used value
for feed protein sources of plant and animal origin (Tacon et al., 2009) and were applied
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in the original in vivo protein ADC studies to ingredients and complete diets. However,
use of this conversion factor is based on the assumptions that the protein source contains
16% nitrogen, which is not always the case, and that the content of non-protein nitrogen
(NPN) such as free amino acids, nucleic acids, ammonia and nitrogenous glycosides, etc.
is negligible. When these assumptions are not met, an over-estimation of true protein
content results (Fujihara et al., 2008). For the zooplankton and crustacean meals, the
total amount of intact protein was likely over-estimated because of a relatively higher
proportion of N in the form of NPN. Zooplankton and crustacean feed ingredients may
contain significant levels of chitin (10-20%) and free amino acids (>2%) (Hertrampf and
Piedad-Pascual 2000; Heu et al. 2003). In addition, it is possible that the krill and
crustacean products used in this study may have retained some endogenous enzyme
activity that may be rapidly triggered causing partial post-mortem protein hydrolysis after
capture at sea (within 6-8 hours) prior to final processing (Kolakowski 1986) resulting in
elevated levels of NPN (e.g. volatile bases, trimethylamine, free amino acids, peptides,
ammonia). Various authors have reported that freshly harvested krill and crustaceans
with NPN levels of less than 10 g N/100 g can exceed 50 g N/100 g within 24 hours
(Kolakowski 1986; Fagbenro and Bello-Olusoji 1997; Heu et al. 2003). If this were the
case, these ingredients would have a comparatively high content of NPN that may not
affect apparent in vivo protein ADC (since it is based on N ratios between diet and
faeces) but could influence in vitro protein DH if the specific enzyme cleavage sites
along those polypeptides (during in vitro protein hydrolysis) have previously been
cleaved (Coérdova-Murueta and Garcia-Carreno, 2002). A similar situation was
documented by Ezquerra et al. (1997) while measuring the in vitro DH of langostilla crab
meal using shrimp hepatopancreas-derived enzymes. The implication of these scenarios
is an altered ratio of enzyme to intact protein substrate and this may have artificially
resulted in lower in vitro DH than anticipated. Secondly, and likely the major cause for
the lower in vitro DH results, involves the method used in this study that used enzymes
extracted from the pyloric caeca of gadoid fish which function at a pH of 7 or higher
(Danulat and Kausch, 1984). Unlike other animal and plant protein sources, the major
by-product of zooplankton and crustacean processing is the carapace or shell which may

contain 50-80% chitin (poly-p-(1—4)-N-acetyl-glucosamine) and relatively high levels
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of ash (>15%) which have both shown high digestibility in gadoids measured in vivo
(Danulat, 1987; Danulat and Kausch, 1984; Toppe et al., 2006). The problem is that
under the in vivo conditions, these ingredients are exposed to an environment of acidic
pH (3.8-6.5) and endogenous chitinase enzymes in the stomach ‘prior to’ entry into the
alkaline (>pH 7) pyloric caeca (Danulat and Kausch 1984; Grabner 1985; Jeuniaux
1966). This in vivo ‘preparatory’ gastric phase is unavailable in a pH-Stat assay using
digestive enzyme from the pyloric caeca only. In fact, Danulat and Kausch (1984)
demonstrated that the activity of chitinase enzyme in the gadoid pyloric caeca is lower
than that of the stomach and what little chitinolytic activity does exist in the pyloric caeca
is not optimized at pH levels above 6.5. This is in agreement with other monogastric
animals like poultry that showed that the acid (gastric) phase was critical for chitin and
chitosan digestion because it provides a preparatory phase whereby acidic gastric juices
dissolve and swell the molecules, thus permitting higher substrate availability for
chitinase enzyme activity (Hirano et al., 1990) and subsequent alkaline protease activity.
Since the enzyme fractions used in these in vitro studies were extracted only from the
pyloric caeca at pH 7, these particular test ingredients lacked the benefit of a preparatory
low gastric pH and chitinase pre-exposure phase that they would have had during in vivo
digestion and not as important for the other low-chitin, low-ash feed ingredients. Thus, it
IS not surprising that the ash and chitin-rich crustacean meals could be less digested under
these specific in vitro conditions and especially for the particular sample of shrimp meal
used in these studies which contained an unusually high level of ash (38%).
Bassompierre et al. (1998a) found improved agreement between in vivo protein
utilization (measured in rats) and in vitro protein DH (measured in rainbow trout) when
an in vitro acidic (pH 3.8) gastric phase was implemented prior to the in vitro alkaline
(pH 7.8) intestinal digestion phase. Similar increases in in vitro DH following an acid
pre-step have been demonstrated using rainbow trout pyloric caeca enzymes (Grabner
and Hofer, 1985) and purified mammalian enzymes (Rothenbuhler and Kinsella, 1985).
However, many authors concluded that the improvement was only marginal and resulted
in a more complex and time-consuming assay, which may not be practical for use by the
feed industry. Alarcon et al. (2002) also found higher DH values with seabream after an

acid pre-digestion, although the improvement was only observed for some ingredients
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(corn gluten meal, meat and bone meal, fish meal, soybean meal and blood meal) but not
others (squid meal, lupin meal and green pea meal). Similarly, Rothenbuhler and
Kinsella (1985) observed that an acid pre-treatment greatly enhanced the in vitro DH of
soy protein and casein but reduced it for bovine serum albumin. Recent work with other
fish species on the development of a gastrointestinal model (GIM) that incorporates both
the gastric acidic and intestinal alkaline phase, the use of bile salts and also a pH
‘transition’ phase (Hamdan et al., 2009; Morales and Moyano, 2010) may also be useful
for gadoid species. The low nutritional value of hydrolyzed feather meal found both in
vivo and in vitro was not unexpected as it is consistently reported to be low when fed to
most fish species and other terrestrial animals. The low nutritional value may be due to
high levels of poorly digestible keratin protein (Dong et al., 1993; Hardy and Barrows,
2002; Yu et al., 2004), an inferior essential amino acid profile with low levels of
methionine, lysine, histidine and tryptophan, the presence of disulfide bonding (Moran et
al., 1966) and the presence of indigestible amino acid processing products, namely
lysinoalanine and lanthionine (Williams et al., 1991; Wang and Parsons, 1997). This
limits the use of high proportions of feather meal in gadoids feeds. Cost-effective
processes that can further increase the protein digestibility of feather meals could greatly
increase their feeding value and provide an excellent high protein alternative ingredient

for marine fish and other animal feeds (Bertsch and Coello, 2005).

DH of plant-origin feed ingredients

In vitro DH of the plant-origin feed ingredients is presented in Table 6. DH
values were highest (17-21%) for wheat gluten meal, soy protein isolate, soy protein
concentrate and canola protein concentrate; high (10-13%) for soybean meal, white lupin
meal and canola meal and mid-range (6-9%) for pea protein concentrate and flaxseed
meal. No results could be determined for corn gluten meal because, unlike other
ingredients, the hydrolysis curve remained linear over the entire 10 hour assay. This
result was initially confirmed after repeating the assays 4 additional times. For further
confirmation of this result, the corn gluten meal assays were repeated again in duplicate
over a 20-hour assay duration and linearity remained, therefore making it impossible to

determine a maximum DH. The cause for this situation remains unknown but may be
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related to the fact that glutelin proteins, which account for a large proportion of CGM
protein, are relatively insoluble in water (de Rodrigafiez et al. 2011). Kili¢ Apar and
Ozbek (2010) successfully hydrolyzed the protein in corn gluten meal in a pH-Stat assay
however, they used much higher assay temperatures (40-60°C) and a high-activity
purified commercial bacterial endopeptidase enzyme. Lemos et al. (2009) determined
DH values for corn gluten meal (2-4%) using an enzyme cocktail from Pacific white
shrimp hepatopancreas and found poor agreement between in vitro DH and in vivo
protein ADC.

The results for wheat gluten meal, all soy-based products and white lupin meal are
in agreement with conventional in vivo protein ADC results that also show high to very
high protein digestibility for these ingredients (90-100%). In contrast, it appears that in
vitro DH may over-estimate the relative protein quality for canola protein concentrate,
canola meal and flaxseed meal, as their in vivo protein ADC were high (89%), mid-range
(76-83%) and low (53%), respectively while their in vitro DH were very high (17%),
high (12%) and mid-range (9%), respectively. The relatively high DH found for these
ingredients is consistent with results for canola protein concentrate found during earlier in
vitro digestion studies with rainbow trout and rats, where relatively higher DH was also
observed (Dimes and Haard, 1994; Gauthier et al., 1982; Henry and Ford, 1965). Under
in vivo conditions, inclusion of dietary ingredients containing high fibre typically results
in lowered protein digestibility (reduced protein ADC) in fish feeds and this is attributed
to decreased proteolytic enzyme activity (Falge et al., 1978) and shortened gut-transit
time (Jobling, 1981; Steffens, 1989). By contrast, the high indigestible fibre content of
these ingredients tends to elevate digestibility estimations (increased protein DH) under
in vitro situations. It has been shown that the fibre component of some plant-based feed
ingredients have especially high buffering capacity in the presence of proteolytic
enzymes and this high fibre content and subsequent high buffering capacity requires
excessive use of NaOH titrant causing over-estimates of protein digestibility via in vitro
methods (O’Hare et al., 1984). The in vitro pH-Stat assays used a procedural blank to
account for this high buffering capacity and other sources of non-enzymatic hydrolysis,
whereas previous studies with salmonids and other marine fish and shellfish have either

used a distilled water blank or no blank at all. Although processing conditions play a
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large role in protein quality of feed ingredients of both plant and animal-origin, it has
been suggested that when higher in vitro protein DH values are observed for plant-origin
ingredients, the primary causes may also be due to higher protein solubility, higher
percentage of amino acids that are susceptible to alkaline protease cleavage and
differences in peptide bond flexibility (Alarcon et al., 2002).

It has been shown in other species of fish and shellfish that potential
inconsistencies between in vitro protein DH and in vivo protein ADC based on
quantification of fecal nitrogen may involve the effects of ingredient composition, dietary
inclusion level and poor palatability (Lemos et al., 2009). It is likely that the use of 30%
plant protein substitution in the initial in vivo protein ADC trials may have been too high
given the low palatability of some plant protein ingredients. It has been demonstrated for
gadoids that inclusion levels of 10-50% fish meal and 10-40% soybean meal had no
significant effect on in vivo protein ADC (Kim et al., 2006, 2007), however, it remains
unclear what the effect would be with other less digestible, less palatable ingredients. It
is highly likely that some of the ingredients used in this study may not be used at the 30%
replacement level under practical, commercial aquafeed conditions due to undesirable
proximate composition, inferior amino acid profile, palatability problems,
pelletability/extrudability problems, anti-nutritional factors and cost. The robustness of
the correlations between in vivo protein ADC and in vitro protein DH could be greatly
strengthened with further determination of in vivo protein ADC data conducted at more
practical ingredient inclusion levels (Lemos et al., 2009; Tacon and Akiyama, 1997).

The in vitro pH-Stat assay used in this study appears suitable as a tool for
assessing the effect of processing on particular plant protein ingredients, which is in
agreement with studies with terrestrial animals (Rothenbuhler and Kinsella, 1985) and
shrimp (Garcia-Carrefio et al., 1997; Lemos and Tacon 2011). The in vitro DH results
for the variously processed canola and soy products (e.g. meal, concentrate and isolate)
mirrored the in vivo protein ADC results with correlation coefficients (r) of 0.90 and
0.99, respectively. It is well documented that the various processing stages from intact
beans or seeds to de-hulled meals and ultimately the production of protein concentrates
and isolates can significantly reduce the levels of poorly digestible non-protein

components such as fibre, oligosaccharides, non-starch polysaccharides and phytic acid
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(Storebakken et al., 1998, 2000) and also inactivate protease inhibitors (Anderson and
Wolf, 1995), all of which can negatively affect nutrient digestion in fish. As such,
through an appropriate combination of physical, chemical and thermal processing, these
anti-nutritional components are reduced, inactivated and/or the protein structures altered
through thermal processing permitting higher protease activity on peptide bonds (Garcia-
Carrefio et al., 1997; Hsu et al., 1977) and improved accessibility of protein to enzymatic
hydrolysis. The mode of action of plant-based anti-nutritional factors in monogastric
animals has been well studied and is through nutrient binding with bile salts and other
anti-nutritional components (e.g., phytic acid, metal ions), obstruction of protease activity
(proteolytic enzyme inhibition), accelerated movement of digesta through the intestinal
tract and increased viscosity of digesta (Storebakken et al., 1998, 2000; Refstie et al.,
1999; Francis et al., 2001; Dendougui and Schwedt, 2004; Leenhouwers et al., 2006;
Krogdahl et al., 2010). As discussed earlier, the relationship between the level of
processing of canola products (meal to concentrate) and soy products (meal to
concentrate to isolate) used in this study with the in vitro protein DH was proportional.
This result is in agreement with Dimes et al. (1994) who reported significantly reduced in
vitro DH of casein when rainbow trout pyloric caeca enzymes were incubated with
graded levels of soybean trypsin inhibitor (SBTI, 0-16 uM) representing those found in
un-processed soy products. The results also agree with Garcia-Carrefio et al. (1997) who
demonstrated increased in vitro DH of legume seed meals using shrimp hepatopancreas
enzymes after thermal processing. Similar results have been reported on the beneficial
effects of de-hulling and reduction of anti-nutritional factors in plant protein supplements
when fed to rainbow trout during in vivo protein digestibility studies (Glencross et al.,
2007, 2010).

In vitro prediction of protein quality

Most of the in vitro protein digestion studies with fish and crustaceans have
subjected ‘individual’ test ingredients to the various enzyme cocktails and in vivo protein
ADC studies typically determine digestion coefficients for ‘single’ test ingredients.
Thus, the combination of these two methods may complicate the application of results to

the feed industry for the following reasons: a) these in vitro enzyme studies do not take
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into account the effect of other dietary nutrients and binders which can inhibit proteolytic
enzyme activity in vivo (Yamamoto and Akiyama, 1995) and b) in vivo studies assume
that the single ingredient digestion coefficients are always additive in the combined diet
(Cho et al., 1982); which is valid in many cases but may not be for ingredients having
very high or very low digestibility (Tibbetts et al., 2006). Due to these concerns and the
complexity of in vivo food digestion, the complete reproduction of in vivo results through
in vitro methods may be difficult (Bassompierre, 1997; Savoie, 1994).

The ultimate goal of determining the in vitro protein DH of feed ingredients is to
utilize the data in conjunction with in vivo protein ADC values by generating a predictive
equation(s). However, the generation of an ‘all-inclusive’ predictive regression equation
may not be possible. It is likely that several predictive equations for each species are
required according to the origin of feed ingredient, level of processing and relative
digestibility as discussed by several authors (Pedersen and Eggum, 1983; Jaguelin et al.,
1994; Shipton and Britz, 2002; Lemos et al., 2009). Specifically, Haard (1993) pointed
out that in vitro pH-Stat assays may over-estimate protein quality of plant-origin
ingredients relative to those of animal-origin for salmonids. This has also been
documented for shrimp (Ferndndez Gimenez et al., 2009), seabream (Alarcon et al.,
2002) and mammals (Marletta et al., 1992). This is consistent with the findings of the
present study where the DH of plant-origin ingredients were higher than those of animal-
origin ingredients and this highlights the necessity for separate predictive equations for
plant-origin and animal-origin feedstuffs (Table 4).

Measurement of in vitro DH by pH-Stat using enzymes from the pyloric caeca of
farmed Atlantic cod provided results that were in general agreement with in vivo protein
digestibility of many conventional and novel feed ingredients including of fish and
poultry meals, soy-based products, wheat gluten and lupin meals, while ingredients
containing high levels of chitin, ash and/or fibre were not as successful. In order to make
in vitro DH data useful for research or industrial use it is necessary to combine these data
with known in vivo protein quality data through the generation of predictive regression
equations. For finfish, only one of these equations currently exists for rainbow trout
(Dimes and Haard, 1994) while there are several equations for white shrimp (Ezquerra et
al., 1997, 1998; Lemos et al., 2009). With the exception of Lemos et al. (2009), these
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few published predictive equations are based on a small number of test feed ingredients
(<10) providing data from a relatively static set of environmental conditions and have
generated only a few small data sets and predominantly linear models. This is highly
unlikely if the studies were conducted under natural environmental conditions of fish
farms (e.g. culture conditions and nutritional history of donor animals) and a higher
number and composition/quality range of test ingredients had been assayed (Bender
1982; Jargensen, 1995). Indeed, this was the case reported by Lemos et al. (2009) who
conducted extensive DH assays with shrimp hepatopancreas enzymes from various
different culture conditions, enzyme batches and activities and using a large number (26)
of test ingredients with a wide range of composition (28-99% crude protein, 0-20% fat, O-
47% carbohydrate, 0-49% ash) and in vivo protein digestibility (59-100% protein ADC).
These authors found that non-linear models were required to describe the relationships
between in vivo protein ADC and in vitro protein DH as was the case in this study (Table
4). To accurately ‘model’ this relationship and generate truly robust predictive equations
for a particular species, data sets from numerous feed ingredients from a large number of
processing conditions must be included in order to be adopted by the feed industry and
researchers. At this stage, it would be wise for the aquaculture feed industry to learn
from past mistakes associated with the human food and farm animal feed sectors. For
example, many correlations between rapid-screening in vitro assays and in vivo
performance have been made over the past century, only to be discredited once a wider
range of samples were tested (Bender, 1982). Although the data generated in this study
should provide the basis for further work, the current body of knowledge on gadoid
nutrition needs additional research to develop more robust equations. As concluded for
the salmonid work in the early 1990°s (Dimes et al., 1994) upon which these studies were
based, seabream by Alarcon et al. (2002) and shrimp in the mid- to late 1990’s (Ezquerra
et al., 1997; Lan and Pan, 1993), additional in vivo data are needed to establish a clear

relationship between in vitro and in vivo assays for fish, including gadoids.

Conclusions

Initial in vivo digestibility studies with juvenile gadoids indicated that the

‘measured’ in vivo protein digestibility coefficients (protein ADC) were very high
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(>95%) for wheat gluten meal, soy protein concentrate, soy protein isolate and whole
krill meal; high (85-95%) for herring meal, soybean meal, anchovy meal, pea protein
concentrate, white lupin meal, crab meal, canola protein concentrate and corn gluten
meal; mid-range (75-85%) for poultry by-product meal and canola meal; and low (<75%)
for high ash shrimp meal, hydrolyzed feather meal and flaxseed meal. Using an enzyme
fraction extracted from the pyloric caeca of farmed Atlantic cod, the in vitro degree of
protein hydrolysis (protein DH) of these same feed ingredients was measured.
Regression equations describing the relationship between in vivo protein ADC and in
vitro protein DH provided good correlation (<4 percentage points difference) of protein
ADC in most of the cases (r = 0.90-0.99; R? = 0.88-0.99), while some ingredients were
either over- or under-estimated (6-7 percentage points) and appears to be related to high
ash or chitin content (r = 0.75; R? = 0.61) and may indicate the need for an acid pre-
hydrolysis stage and full account of non-protein nitrogen (NPN) content. The ‘predicted’
in vitro protein ADC were above 95% for wheat gluten meal, soy protein concentrate, soy
protein isolate and whole krill meal; relatively high (85-95%) for soybean meal, white
lupin meal, herring meal, anchovy meal, canola protein concentrate, pea protein
concentrate and poultry by-product meal; mid-range (75-85%) for crab meal, shrimp
meal and canola meal; and low (<75%) for hydrolyzed feather meal and flaxseed meal.
Further research on development of a two-stage hydrolysis assay involving an acid
(gastric) pre-digestion step prior to the assay presented may provide better agreement
between in vivo protein ADC and in vitro protein DH and more robust predictive

equations, specifically for farmed gadoids.
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Table 1
Formulation and proximate composition of the basal diet (as-fed basis) used to measure

in vivo apparent protein digestibility (ADC) of common and alternative feed ingredients.

Ingredient (%)
Herring meal* 46-48
Wheat gluten meal? 5
CPSP-G* 5
Wheat middlings* 16.8-18.7
Whey powder® 7
Krill hydrolysate® 0-2n
Corn starch (pre-gel)’ 5.6-6.1
Vitamin mixture® 1.95
Mineral mixture® 1.95
Choline chloride® 0.3
Herring oil*° 6.4-8.0

Proximate composition

Moisture (%) 10.1+0.1
Crude protein (%) 47.9%£2.5
Lipid (%) 13.0£1.3
Ash (%) 7.2£1.6

Carbohydrate (%) 22.740.2
Gross energy (MJ/kg) 20.6x0.1

ISt. Laurent Gulf Products Limited (Caraquet, NB, Canada)

Roquette UK Limited (Northants, UK)

®Concentre proteique soluble de poisson (soluble fish protein concentrate) (Sopropéche, France)
*Dover Mills Limited (Halifax, NS, Canada)

*Farmers Co-operative Dairy (Truro, NS, Canada)

®SD-KH2, MaraVision Marine Products (Vancouver, BC, Canada)

"National Starch and Chemical Company (Bridgewater, NJ, USA)

8Vitamin and mineral premixes according to Tibbetts et al. (2004)

*USB Corporation (Cleveland, OH, USA)

Corey Feed Mills Limited (Fredericton, NB, Canada)

Calculated as 100 — (moisture + crude protein + lipid + ash)
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Table 2

Proximate composition, gross energy content (as-fed basis) and in vivo apparent protein digestibility (ADC) of the reference and

experimental diets used to determine in vivo apparent protein digestibility (ADC) of the conventional and alternative feed ingredients.

Crude Gross In vivo protein

Moisture protein Ash energy ADC (diet)

(%) (%) (%) (MJ/kg) (%)
Reference 10.0-10.3 44.2-49.4 7.0-9.1 20.4-20.6 91.2-93.6
Herring meal 9.2-95 51.1-57.1 8.0-10.5 20.5-20.9 92.0-93.8
Anchovy meal 94 56.7 9.5 19.8 91.6
Whole krill meal 8.9 56.1 9.8 20.0 93.2
Crab meal 8.3-9.5 46.5-50.8 10.9-13.3 19.2-19.9 90.1-90.6
Shrimp meal 7.7-8.5 42.4-46.3 15.4-16.3 18.2-19.0 85.2-86.3
Poultry by-product meal 8.2 54.8 8.3 20.8 87.8
Hydrolyzed feather meal 8.3 59.9 6.0 21.1 78.2
Soybean meal 9.3-10.0 43.7-48.4 6.8-8.2 19.6-20.8 90.1-91.5
Soy protein concentrate 9.1 56.0 6.5 20.0 94.0
Soy protein isolate 94 61.1 6.4 20.6 92.8
Canola meal 8.8-9.0 41.0-46.9 7.1-8.2 19.8-20.5 87.3-90.4
Canola protein concentrate 8.3 54.2 8.1 20.0 89.9
Flaxseed meal 10.3 43.9 6.3 19.9 81.6
Pea protein concentrate 8.8 49.5 6.6 19.9 90.3
White lupin meal 9.0 45.6 6.0 20.0 90.8
Corn gluten meal 8.8-10.0 49.6-53.6 5.3-6.6 20.5-21.7 89.5-92.5
Wheat gluten meal 9.1 59.5 5.0 21.1 94.8
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Table 3 Proximate composition, gross energy content (as-fed basis) and in vivo apparent protein digestibility (ADC) of the
conventional and alternative feed ingredients used to measure in vitro degree of protein hydrolysis (DH) using enzymes from pyloric
caeca of Atlantic cod (Gadus morhua).

Crude Gross In vivo protein
International Moisture protein Lipid  Ash Carbohydrate®  energy ADC (ingredient)
feed number (%) (%) (%) (%) (%) (MJ/kg) (%)
Fish meals
Herring meal® 5-02-000 7.1 745 101 104 0.0 20.8 93.3
Herring meal® 5-02-000 8.5 69.7 10.2 14.4 0.0 19.8 95.9
Anchovy meal® 5-01-985 7.8 68.3 9.6 158 0.0 19.1 92.2
Zooplankton and crustacean by-product meals
Whole krill meal® 5-16-423 4.8 724 53 175 00 18.8 96.3
Crab meal® 5-01-663 9.1 540 57 227 84 15.8 89.4
Crab meal® 5-01-663 8.5 503 7.1 267 74 15.0 82.0
Shrimp meal’ 5-04-226 6.2 37.2 3.5 38.4 147 124 66.7
Shrimp meal’ 5-04-226 5.8 40.6 45 37.7 114 125 73.5
Animal by-product meals
Poultry by-product meal® 5-03-798 5.0 66.3 14.6 10.8 3.3 22.0 80.2
Hydrolyzed feather meal® 5-03-795 5.8 83.5 7.9 3.8 0.0 22.7 62.4
Oilseed meals
Soybean meal" 5-04-612 114 47.3 2.0 6.0 33.3 17.4 92.3
Soybean meal" _ 5-04-612 6.6 46.3 55 5.7 35.9 195 92.2
Soy protein concentrate' 5-08-038 7.9 68.7 0.3 5.1 18.0 19.0 98.6
Soy protein isolate' - 7.6 85.6 4.4 4.5 0.0 21.2 97.4
Canola meal’ 5-06-145 6.3 389 26 7.1 45.0 18.2 76.0
Canola meal 5-06-145 11.4 383 338 6.9 39.6 18.2 83.0
Canola protein concentrate’ - 4.7 61.4 2.7 10.3 20.7 194 88.8
Flaxseed meal* - 12.0 31.0 9.5 4.6 42.8 18.8 52.6
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Table 3 (Continued) Proximate composition, gross energy content (as-fed basis) and in vivo apparent protein digestibility (ADC) of
the conventional and alternative feed ingredients used to measure in vitro degree of protein hydrolysis (DH) using enzymes from

pyloric caeca of Atlantic cod (Gadus morhua).

Crude Gross In vivo protein
International Moisture protein Lipid  Ash Carbohydrate®  energy ADC (ingredient)
feed number (%) (%) (%) (%) (%) (MJ/kg) (%)
Pulse meals
Pea protein concentrate' — 7.2 49.0 4.1 4.9 34.8 18.5 89.8
White lupin meal™ - 7.4 385 6.2 3.4 44.4 18.9 89.7
Cereal grain meals
Corn gluten meal” 5-28-242 11.0 61.6 4.3 1.0 22.1 20.9 86.3
Corn gluten meal" 5-28-242 7.5 65.8 1.8 1.4 235 22.1 92.3
Wheat gluten meal" 5-05-220 7.4 79.3 1.9 0.5 10.9 22.6 99.9

& Calculated as 1000 — (moisture + crude protein + lipid + ash)
> Scotia Garden Seafood Incorporated (Yarmouth, NS, Canada)
¢ Sindicato SA, Grupo Sipesa (Lima, Peru)

¢ Agion (Colorado Springs, CO, USA)

® St. Laurent Gulf Products Limited (Caraquet, NB, Canada)

" Island Fisherman's Co-Op (Lemeque, NB, Canada)

9 Rothsay (Dundas, ON, Canada)

" Bunge Canada (Oakville, ON, Canada)

' Soycomil® and Pro-Fam®, respectively; Archer Daniels Midland (Decatur, IL, USA)
I'MCN BioProducts Incorporated (Saskatoon, SK, Canada), Canbra Foods (Lethbridge, AB, Canada)

¥ Bioriginal Food and Science Corporation (Saskatoon, SK, Canada)
' Parrheim Foods (Portage La Prairie, MB, Canada)

™ Alberta Department of Agriculture (AB, Canada)

" Roquette UK Limited (Northants, UK)
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Table 4 Correlation coefficients (r) of the relationship between in vivo apparent protein digestibility (ADC) and in vitro degree of

protein hydrolysis (DH) and coefficients of determination (R?) of various predictive models of feed ingredients fed to juvenile

gadoids.
RZ
Ingredients used in model r Linear Log Power Exponential
All (n=21) 0.58 0.33 0.32 0.28 0.29
Animal-origin (n=10) 0.66 0.43 0.47 0.46 0.42
Fish and poultry (n=5) 0.94 0.89 0.86 0.89 092~
Zooplankton and crustacean (n=5) 0.75 0.57 061" 0.57 0.53
Plant-origin (n=11) 0.58 0.34 0.26 0.23 0.29
Oilseed (n=8) 0.80 0.64 0.74 0.70 0.59
Soy (n=4) 0.99 0.99 0.99 0.99 0.99 "
Canola and flax (n=4) 0.90 0.80 088" 0.85 0.77
Pulse and grain (n=3) 0.96 092" 0.80 0.80 0.92
" Predictive regression equations
Fish and poultry (Exponential) Predicted in vivo protein ADC = 51.995 (©-046linvitro DH)) R?=0.92
Zooplankton and crustacean (Log)  Predicted in vivo protein ADC = 28.772Ln(in vitro DH) + 40.626 R?=0.61
Soy (Exponential) Predicted in vivo protein ADC = 83,071 (©-008linvitro DH)) R?=0.99
Canola and flax (Log) Predicted in vivo protein ADC = 54.963Ln(in vitro DH) — 63.321 R?=0.88
Pulse and grain (Linear) Predicted in vivo protein ADC = 0.723(in vitro DH) + 84.377 R?=0.92
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Table 5

In vitro degree of protein hydrolysis (DH), in vivo apparent protein digestibility (measured vs. predicted) and prediction residuals

(predicted protein ADC — measured protein ADC) of animal-origin feed ingredients® fed to juvenile gadoid fish.

Enzyme activity”

(U/uL) In vitro Protein ADC
Trypsin Chymotrypsin ~ DH (%) Measured Predicted
In vivo In vitro Residual
Fish meals
Herring meal (70-74%)° 0.46+0.01" 2.8+0.08™ 12.2+0.3° 94.6 91.2 -3.4
Anchovy meal (68%) 0.46+0.00 2.8+0.00 12.3+0.1° 92.2 91.5 -0.7
Zooplankton and crustacean by-product meals
Whole krill meal (72%) 0.45+0.01 2.940.03 7.3+0.3° 96.3 98.0 +1.7
Crab meal (50-54%) 0.46+0.00 2.910.04 3.8+0.6° 85.7 78.8 -6.6
Shrimp meal (37-41%) 0.47+0.03 2.9+0.01 3.4+0.5° 70.1 76.1 +6.0
Animal by-product meals
Poultry by-product meal (66%) 0.48+0.00 2.9+0.01 11.3+0.7° 80.2 87.3 +7.1
Hydrolyzed feather meal (83%)  0.48+0.00 2.7+0.07 3.7+0.1° 62.4 61.8 -0.6

#Mean + SE (n=3); values within the same column with different superscript letters are significantly different (P<0.05)
b Measured enzyme activity of pyloric caeca-derived enzymes fractions

“Values in brackets indicate the crude protein content (% as fed basis) of the test ingredients

™ no significant differences (P>0.05) within column
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Table 6
In vitro degree of protein hydrolysis (DH), in vivo apparent protein digestibility (measured vs. predicted) and prediction residuals

(predicted protein ADC — measured protein ADC) of plant-origin feed ingredients® fed to juvenile gadoid fish.

Enzyme activity”

(U/uL) In vitro Protein ADC
Trypsin Chymotrypsin ~ DH (%) Measured Predicted
In vivo In vitro Residual
Oilseed meals
Soybean meal (46-47%)° 0.48+0.02" 2.7+0.08™ 13.3+0.3" 92.3 924 +0.1
Soy protein concentrate (69%) 0.45+0.00 3.0£0.09 21.5+2.4¢ 98.6 98.7 +0.1
Soy protein isolate (86%) 0.45+0.00 2.910.10 20.7+0.1° 97.4 98.0 +0.6
Canola meal (38-39%) 0.45+0.01 2.840.16 12.5+0.7™ 79.5 75.4 -4.1
Canola protein concentrate (61%) 0.46+0.00 2.9+0.05 17.2+0.4% 88.8 93.0 +4.2
Flaxseed meal (31%) 0.46+0.01 3.0£0.02 8.9+0.2%° 52.6 56.5 +3.9
Pulse meals
Pea protein concentrate (49%) 0.46+0.00 3.0+0.02 5.6+0.5% 89.8 88.5 -1.3
White lupin meal (38%) 0.46+0.01 2.9+0.01 10.0+0.7%® 89.7 91.6 +1.9
Cereal grain meals
Corn gluten meal (62-66%) 0.47+0.00 2.9+£0.01 nd 89.3 - -
Wheat gluten meal (79%) 0.46+0.00 3.04£0.07 20.7+2.2° 99.9 99.4 -0.5

#Mean + SE (n=3); values within the same column with different superscript letters are significantly different (P<0.05)
> Measured enzyme activity of pyloric caeca-derived enzymes fractions

“Values in brackets indicate the crude protein content (% as fed basis) of the test ingredients

™ no significant differences (P>0.05) within column
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Chapter 7

General Discussion
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Dietary protein and energy sources

One of the primary research goals of this thesis was to examine the digestive
capacity of farmed juvenile gadoids when fed conventional or alternative (novel) feed
ingredients, using a combination of in vivo methods (Chapters 2 and 3) and in vitro
methods (Chapters 5 and 6). After determination of the macronutrient composition of
feed ingredients, these methods are typically the next step to understand dietary protein
and energy utilization by fish. Considering both in vivo measured protein and energy
apparent digestibility (ADC) and in vitro predicted protein ADC data, it was clear that
gadoids have a high capacity to utilize a wide variety of dietary feed ingredients such as
fish meals (herring meal and anchovy meal), zooplankton meal (whole freeze-dried krill),
soy products (protein meal, concentrate and isolate) and wheat gluten meal with very
high protein and energy ADC values of 90-100% and 86-96%, respectively. Other feed
ingredients that may have considerable potential for use in gadoid feeds include pulse
meals (pea protein concentrate and white lupin meal), corn gluten meal and canola
protein concentrate with relatively high protein and energy ADC values of 84-93% and
75-83%, respectively. Due to high levels of poorly digestible components (e.g. chitin,
ash, fiber, carbohydrates and keratin protein), poultry meals (poultry by-product meal and
hydrolyzed feather meal), crustacean meals (crab and high-ash shrimp meal), canola meal
and flaxseed meal may have limited value as feed ingredients in gadoid diets with poor
protein ADC values of 53-89% and energy ADC values of 29-83%. It should be noted
that there is some discrepancy with regard to the nutrient utilization from crustacean
meals between gadoids in these studies and other marine species reported in the literature.
The discrepancy is certainly due to the unusually high ash content (>38%) of the shrimp
meal sample used in these studies relative to other studies at 18-27% (Hardy 1996; NRC
2011). In addition, the present studies showed a relatively high nutrient utilization of
crab meal in vivo but this was not reflected in vitro and will be discussed further. As a
result, the nutritional value of crustacean meals by gadoids should be re-examined with
additional sources of crab and shrimp meals.

Digestibility of dietary macronutrients by farmed gadoids fed formulated feeds
has received some attention recently (Hemre et al. 1989, 2003; Farde-Skjervik et al.
2006; Kim et al. 2006, 2007; Refstie et al. 2006). However, with the exception of Kim et
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al. (2006, 2007) that only examined two common feed ingredients (herring and soybean
meal), all of these previous studies have been limited to work on ‘complete feeds’ and
have exclusively used manual stripping or dissection to obtain fecal samples. The in vivo
digestibility data presented in this thesis (Chapters 2 and 3) is unique because it is the
only body of work with farmed gadoids that has examined the macronutrient digestibility
of ‘individual feed ingredients’. This provides essential data that is required for least-cost
ration formulations and the effective substitution of dietary feed ingredients. In addition,
these studies used sedimentation columns for fecal collection, which is generally
considered to be more appropriate and accurate than other methods (Cho et al. 1982).
Manual stripping and dissection to obtain fecal samples from fish have been criticized
because they underestimate nutrient digestibility (Hajen et al. 1993; Kabir et al. 1998;
Storebakken et al. 1998; Vandenberg and de la Notie 2001) due to incomplete digestion
and fecal contamination with non-dietary components of endogenous origin (blood, urine,
semen, sloughed intestinal cells). In addition, these methods subject the fish to
considerable handling stress and potential physical damage (manual stripping) and death
(dissection). Specifically, the internal anatomy of gadoids have a fold in the mid-section
of the abdomen, unlike salmonids, that make manually stripping difficult, requiring
additional pressure on the abdomen that can result in significant stress, injuries and
contaminated fecal samples (Farde-Skjeervik et al. 2006; Roy et al. 2004). In contrast,
fecal samples collected from properly designed settling columns, such as those designed
for these studies (Chapters 2 and 3), allow for collection of uncontaminated samples
from actively feeding, free-swimming fish that are naturally voided from the animal

without stressful fish handling.

Digestible protein/digestible energy ratio

Protein bioavailability through in vivo and in vitro methods is a critical step to
assess the protein quality of feed ingredients and complete feeds for fish. However, the
ultimate assessment of protein quality is through biological evaluation with the target
species involving growth and nutrient metabolism studies (Bender 1982). This thesis
addressed this area by documenting the growth potential and nutrient utilization
efficiency of gadoid fish at the juvenile grower phase using varying levels of dietary
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macronutrients (Chapter 4) which could not have been accurately done without an initial
in vivo digestibility study (Chapter 2). The range of digestible protein/digestible energy
(DP/DE) ratios examined in these studies was within the range (22-33 g DP/MJ DE)
reported to promote high protein gains in other juvenile fish species such as rainbow
trout, Atlantic halibut, Atlantic cod and gilthead seabream (Lie et al. 1988; Cowey 1992;
Aksnes et al. 1996; Lupatsch et al. 2001). After 63 days of feeding, fish receiving all
experimental diets achieved over 400% growth and over 98% survival indicating that
juvenile gadoids have excellent potential for rapid growth on formulated diets. In
particular, these studies demonstrated that a dietary DP/DE ratio of no less than 28.5 g
DP/MJ DE promotes the highest growth rates (>2.4%/day) of juvenile (<100 g) gadoids.
This level of growth performance is similar to those reported for other marine fish such
as juvenile European sea bass (2.3%/day) of similar size (Peres and Oliva-Teles 1999).
The macronutrient utilization data presented in Chapter 4 also revealed that the weight
gain observed in the fish was regulated solely by increasing levels of dietary protein in a
linear manner and was independent of dietary lipid level or DP/DE ratio. Likewise, the
feed conversion ratios (FCR) of the fish were solely affected by dietary protein content
rather than dietary lipid level or DP/DE ratio.

Since protein efficiency ratio (PER) is generally regulated by the non-protein
energy input of the diet, PER is a good measure of the ‘protein-sparing effect’ of dietary
lipid and/or carbohydrate (Lie et al. 1988). In these studies, there were no significant
differences in PER between the experimental diets with the exception of the lowest
DP/DE ratio (24.7 g DP/MJ DE) which was significantly higher than all other diets. All
of these results indicate that when dietary protein is adequate, haddock preferentially use
protein as the prime dietary energy source. This result from Chapter 4 using haddock
confirms this situation for commercially important gadoids as it is also consistent with
previous results with Atlantic cod (Lie et al. 1988; Morais et al. 2001). These results
provide further evidence for the case that the opportunity for protein sparing in gadoids
diets is very limited and that only when dietary protein is limited (e.g. below
requirement), does dietary lipid have some ability to spare dietary protein, possibly at the
expense of growth rate. This nutritional constraint has also been reported for European
sea bass (Dias et al. 1998).
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Juvenile gadoids, like other marine fish, efficiently utilize single feed ingredients
and ‘complete’ feeds formulated with multiple feed ingredients. High protein and energy
digestibilities (>90% and >80%, respectively) are achievable in juvenile gadoids when
the fish are provided with nutritionally complete feeds formulated with high quality feed
ingredients (Chapters 2, 3 and 4). These studies demonstrated that dietary carbohydrate
content has little effect on protein digestibility which is in agreement with other farmed
marine species such as Atlantic halibut (Grisdale-Helland and Helland 1998), salmonids
(Aksnes 1995; Hemre et al. 1995; Grisdale-Helland and Helland 1997) and European sea
bass (Peres and Oliva-Teles 1999). Alternatively, significant differences were observed
with respect to energy digestibility given different feed formulations. Since the energy
content of a diet is supplied by the catabolism of protein, lipid and carbohydrate and
differences in protein digestibility measured in Chapter 4 were negligible, the significant
differences in energy digestibility observed must be attributed to either lipid or
carbohydrate content, or a combination of both. In the experimental diets used in
Chapter 4, with a decrease in protein from 55 to 45% and lipid from 16 to 11%, the
dietary carbohydrate content increased from 12 to 28%. The decreasing energy
digestibility observed was significantly correlated to increasing dietary carbohydrate
content but lipid content had no effect. Lie et al. (1988) suggested that dietary
carbohydrate should not exceed 17% for juvenile Atlantic cod and data presented in
Chapter 4 now confirms this as well for juvenile haddock where energy digestibility was
significantly reduced in all diets containing carbohydrate levels in excess of 17%.

Unlike salmonids, gadoids accumulate excess dietary lipid in the liver, resulting
in enlarged livers and a high hepatosomatic index (HSI). This has been well
demonstrated for both Atlantic cod and haddock (Lie et al. 1986, Dos Santos et al. 1993,
Nanton et al. 2001). Further studies have shown that the primary causes of this condition
in gadoids are a low capacity for lipoprotein transport from the liver to the muscle cells
and limited catabolic activity (R-oxidation) of lipid in the liver (Nanton et al. 2003).
Although liver function may not be impaired by this condition (Morais et al. 2001,
Nanton 2002), it is considered undesirable from a fish metabolism perspective. Fish with
enlarged livers inefficiently utilize dietary energy resulting in lower somatic tissue

growth as a percentage of whole-body weight gain than fish with smaller livers and this
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condition can also be stressful to the fish. Thus, minimizing the HSI or ‘fatty liver’
condition in cultured gadoids is of economic importance. Earlier reports suggest that it is
excessive dietary lipid levels that promote this enlarged liver condition. However, the
results presented in Chapter 4 demonstrate that it was both dietary protein and lipid
levels that had significant effects on liver growth in haddock, as HSI values increased in
step with increasing protein and lipid levels. This result for haddock is in agreement with
reports on Atlantic cod (Jobling et al. 1991) suggesting that the accumulation of liver
lipid is not only dependent upon total dietary lipid content but its interaction with other
nutrients causing an aberration in lipid metabolism. Clearly, the dietary carbohydrate
also plays a role in the results observed in the literature for cod and in Chapter 4 for
haddock since excess dietary energy is not only stored as lipid but also as liver glycogen.
In fact, the combination of the energy-yielding nutrients (defined by the DP/DE ratio)
when fed to haddock was the most strongly correlated variable with HSI values measured
in the studies presented in Chapter 4 (e.g. as DP/DE ratio decreases, HSI
correspondingly increases). This strong inverse relationship has also been documented in
sharpsnout seabream, Diplodus puntazzo (Herndndez et al. 2001). These studies
demonstrated that a minimum DP/DE ratio of 29.3 g DP/MJ DE is required to ensure
juvenile haddock have a liver HSI under 9%, which corresponds to a diet containing
minimum 50% protein and 11% lipid. This result is consistent with preliminary studies
using isocaloric diets (Kim and Lall 2001; Kim et al. 2001; Nanton et al. 2001) which
demonstrated that high growth rates and minimal HSI can be achieved in juvenile fish fed
50-55% protein and <12% lipid, but also suggests a maximum carbohydrate inclusion of
17%.

The various levels of dietary protein (45-55%) and lipid (11-16%) used in
Chapter 4 had highly significant effects on final whole-body (WB) energy retention.
That is, within each dietary lipid level, increasing dietary protein from 45 to 55%, led to
significant increases in WB energy gain and within each dietary protein level, increasing
dietary lipid from 11 to 16% also led to significantly higher WB energy gains. The end
result was that the diet containing the highest levels of both dietary protein and lipid (28.5
g DP/MJ DE) resulted in juveniles with the highest WB energy gain, which is also

documented for juvenile European sea bass (Lanari et al. 1999). This high energy
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retention efficiency (>45%) is higher than that reported previously for juvenile haddock
(43%) (Kim and Lall 2001) using isocaloric diets so it is likely the result of a more
appropriate DP/DE ratio. However, it cannot be concluded that this particular DP/DE
ratio is optimum because one of the goals of farming fish is to produce marketable fish
products containing high levels of protein, which is in the form of the fillet flesh and not
other components like viscera and liver. As discussed, all diets containing less than 29.3
g DP/MJ DE (e.g. 16% lipid) produced juveniles with enlarged livers (>11% HSI).
These enlarged livers, being high in lipid, contributed considerable amounts of energy to
the WB energy content, so it is an undesirable portion of the WB energy gain as it
currently has no commercial value and will ultimately be discarded during processing.
The highest nitrogen gains (>1.2 g/fish) were achieved when the DP/DE ratio was 28.5
and 30.2 g DP/MJ DE as a result of high nitrogen retention efficiency (>40%) of fish
being fed these diets. To discriminate between these two potential optimum DP/DE
ratios, studies in Chapter 4 determined the ‘composition’ of the energy gain according to
Rodehutscord and Pfeffer (1999). The results showed that in juveniles fed the 28.5 g
DP/MJ DE diet, the gains were predominantly due to a build-up of energy in the form of
lipid (>100 kJ/fish), particularly liver lipid. In contrast, juveniles fed the 30.2 g DP/MJ
DE diet had significantly lower and more acceptable levels of energy retained as lipid
(<85 kJ/fish), relative to that retained as the more desirable protein energy (>180 kJ/fish).
The energy retained in the form of protein was highly regulated by the dietary protein
content whereas energy retained as lipid was highly regulated by both dietary lipid and
digestible energy levels. The overall conclusions from the data presented in Chapter 4
were that in order to ensure not only maximum growth rate (>2.4%/day) but also highest
digestibility of organic matter (>80%), protein (>93%) and energy (>85%), maximum
nitrogen and energy retention efficiency (>40 and >45%, respectively), low energy
retention in the form of liver lipid (<100 kJ/fish) and mimimal excessive liver growth and
reasonable HSI (<10%), a diet for farmed gadoids during the juvenile grower phase must
contain 30.2 g DP/MJ DE. Practically, this requirement can be met in a commercial feed
formulation containing 55% crude protein, 11% fat and 16% carbohydrate. The studies
presented in Chapter 4 were conducted with juvenile haddock based on real measured

nutrient ADC values of feed ingredients measured in Chapter 2. The goal was to
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improve the understanding of juvenile haddock nutrition and also to confirm the
suspected similarities between both gadoid species. The recommended juvenile diet
formulation for haddock discussed above closely agrees with previous recommendations
for Atlantic cod (54% protein and >17% carbohydrate) and initial studies with haddock
(50-54% protein and >12% lipid).

Dietary protein quality — In vitro evaluation

Method development

A major goal of this thesis was to develop and assess the potential of an in vitro
pH-Stat method for rapid screening of the protein quality of feed ingredients, specifically
for farmed gadoids (Chapters 5 and 6). Current methods for finfish are highly variable,
have poor repeatability and use pyloric caeca-derived digestive enzymes from sources
other than the target species, and therefore required a novel approach to study ‘gadoid-
specific’ nutritional development (Chapter 5). The pyloric caeca in gadoids is relatively
small in size compared to other fish species, representing only about 5% of the total
digestive tract length and 1.5% of the fish body weight. The pylorosomatic index (PSI)
reported for the farm-raised Atlantic cod used in these studies (1.4%) is much lower than
that of rainbow trout which is 2.8-3.8% (Bassompierre et al. 1998b). However, due to
the very large number of blind diverticula or caecal ‘fingers’ present in gadoids (222)
relative to the less than 60 for most other species including rainbow trout, the multiple
foldings contained within the pyloric caeca in gadoids increases the gut surface area to
such an extent that it makes it a larger site of digestion than all of the remaining regions
of the alimentary tract combined (Buddington et al. 1986; 1987). As such, the pyloric
caeca of gadoids likely accounts for more than 70% of total enzymatic digestion, making
it the most suitable digestive tissue for in vitro protein hydrolysis studies.

In the first part of Chapter 5, the two major alkaline protease enzymes were
successfully concentrated though various extraction and partial purification steps. Each
step was performed to enrich the total concentration of the target enzymes being followed
in the enzyme fraction (e.g. trypsin and chymotrypsin) which have similar molecular
weights of 24.2 and 26.2 kDa, respectively (Asgeirsson et al. 1989; Asgeirsson and

Bjarnason 1991; Raae and Walther 1989). These target enzymes were selected as
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‘marker’ enzymes because they have been clearly shown to constitute the major enzymes
produced by the pancreatic cells for proteolytic function in the pyloric caeca of gadoids
and other coldwater marine species. Large increases in enzyme activities (trypsin, 408%,
chymotrypsin, 1270%) were measured throughout the extraction steps indicating that the
extraction procedure was successful in concentrating these enzymes. The trypsin and
chymotrypsin activity levels in the final extracts were 0.50£0.01 and 3.05+0.15 U/ug
protein, respectively while the final blank fractions were confirmed to have no proteolytic
activity. When reviewing the literature with respect to digestive enzyme activities of
fish, the only consistency is the overwhelming lack of consistency; making comparisons
very difficult. Reported values for fish pyloric caeca enzyme extracts processed at
similar levels are highly variable due to species differences, nutritional history, culture
conditions of donor fish, extraction/purification techniques and different activity assay
conditions (e.g. different substrates, incubation temperature and/or pH, method of
calculation, reporting units, etc.) (Alarcén et al. 1995 ; Hidalgo et al. 1999; Pérez-
Jiménez et al. 2009).

The method development studies reported in Chapter 5 also involved running a
‘procedural blank’ to account for background protein hydrolysis that occurs for non-
enzymatic reasons (eg. stirring motion, hydration, atmospheric gases, pH-probe
fluctuations, etc.). During early in vitro studies, Pedersen and Eggum (1983) assumed
that measuring non-enzymatic hydrolysis was not necessary and would not increase the
agreement between in vitro and in vivo results, while Alarcén et al. (2002) proved that
this assumption was incorrect by demonstrating that non-enzymatic hydrolysis can be
highly variable between samples and may account for a significant amount of total
protein hydrolysis (>35%). Pedersen and Eggum (1983) pointed out that in vivo
digestion is a combination of both enzymatic hydrolysis and non-enzymatic hydrolysis;
however, several authors have demonstrated better agreement between in vivo and in
vitro results when non-enzymatic hydrolysis was accounted for. The research presented
in Chapters 5 and 6 is the first time a procedural blank has been used to account for non-
enzymatic hydrolysis, whereas previous studies with salmonids, other marine fish and

shellfish have either used distilled water or no blank at all.
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A major objective of Chapter 5 was to determine the most appropriate protein
substrate concentration [S] to use during pH-Stat assays. This was an important step
because the [S] used in various studies in the literature with aquatic animals is quite
variable (1-2 mg of N per mL of solution) and the reason for this range was not entirely
clear. This was troubling from the stand-point of method development because the [S]
should surely affect the degree of hydrolysis (DH) under the variable assay durations
used in the literature, even for the same test ingredient. An interesting finding of Wei and
Zhimin (2006) demonstrated its significant effects on protein hydrolysis rate and final
DH by varying the [S] (0.3-2.4 mg/mL) using purified trypsin as the enzyme and bovine
serum albumin (BSA) as the protein substrate. It would appear that the use of a 1-2 mg
N/mL [S] may have originated from the work of Hsu et al. (1977) and Maga et al. (1973)
using an in vitro pH-Shift method with laboratory rats. In these studies, a high
correlation between in vitro DH and in vivo protein digestibility was achieved within 3-
10 minutes using 1-2 mg N/mL solution. Subsequent studies with aquatic animals appear
to have adopted these [S] as the standard. Researchers working with salmonids, sparids,
tuna, shrimps and abalone have used [S] in the range of 0.7 to 1.6 mg N/mL given
differences in protein content and proteolytic activity of their enzyme fractions (Alarcon
et al. 1998; Carter et al. 1999; Cordova-Murueta and Garcia-Carrefio 2002; Dimes and
Haard 1994; Dimes et al. 1994a; Ezquerra et al. 1997, 1998; Garcia-Carrefio et al. 1997;
Lan and Pan 1993; Shipton and Britz, 2002). However, these studies did not attempt to
optimize the [S] for the assay. Only Alarcon et al. (1998, 2002) working with seabream
assessed the effects of varying [S] on DH. Direct adoption of the procedures of Hsu et al.
(1977) and Maga et al. (1973) is not appropriate for aquatic animal studies since rats are
warm-blooded endothermic animals and, as such, these studies were conducted at higher
temperatures (37°C) than have been used in the literature for ectothermic shellfish (25-
30°C) and finfish (15-25°C). In particular, digestive enzymes from gadoids, used in
Chapters 5 and 6, have been shown to be highly efficient at lower temperatures and
different pH levels compared to endothermic animals (Gudmundsdottir and Palsdottir
2005; Haard 1992; Hazel and Prosser 1974; Jéhannsdottir 2009; Shahidi and Kamil 2001;
Simpson et al. 1990; Simpson and Haard 1984, 1987; Squires et al. 1986). In addition,
Hsu et al. (1977) and Maga et al. (1973) did not use a prepared enzyme extract fraction
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from the digestive tract of rats; rather they used a mixture of commercially available,
high-activity purified enzymes (trypsin, chymotrypsin, peptidase).

The work presented in Chapter 5 was largely based on pioneering method
development studies for salmonids that used vitamin-free casein as the test protein source
(Dimes and Haard 1994). The results using Atlantic cod enzymes were in agreement
with the relevant literature for salmonids. Casein DH achieved in Chapter 5 (23-26%)
was similar to the range reported for salmonids (23-27%; Dimes and Haard 1994; Dimes
et al. 1994a) upon which this work was based. The data presented in Chapter 5
demonstrated that the same DH can be achieved in a shorter period of time using an
optimized [S]. Plots of [S] versus assay duration (minutes) and titrant volume required
(mL) showed significant linear relationships (R?=0.85-0.99), demonstrating the high
proportionality between [S] and both assay duration and titrant consumption. As a result
of these findings, a [S] of 0.5 mg N/mL was recommended for subsequent DH studies
(Chapter 6) based on the curve progression over 10 hours having a rapid increase
initially and then leveling off at maximum DH (26%) in a moderate assay duration (~6
hours) with minimal use of titrant (<12 mL). This was also supported by comparing
slopes of the linear portion (R*>0.99) of each hydrolysis curve over the first 90 minutes.
The most rapid proteolysis occurred at a [S] of 0.5 mg N/mL (>0.18), whereas the
activity rates fell to <0.12 at [S] of 0.75 and 1 mg N/mL. This result supports that of
Rothenbuhler and Kinsella (1985) working at 37°C with purified enzymes and various
protein substrates (sodium caseinate, bovine serum albumin and defatted soy protein).
They found the optimum [S] to be 3 mg protein/mL, when expressed in terms of nitrogen
(N/P conversion factors of 6.38 for sodium caseinate and 6.25 for bovine serum albumin
and defatted soy protein) equals 0.47 and 0.48 mg N/mL, respectively.

A secondary goal of studies in Chapter 5 was to assess the stability, in terms of
protein concentration and proteolytic activity, of the enzyme fractions stored at -20 and -
80°C over a period of 12 months. The results provided important quality-control
information for these studies and also for future studies with respect to the thermal
stability or usable “shelf-life” of enzyme fractions produced in the manner described in
Chapter 5. The enzyme fractions produced were extracted and stored in Tris/NaCl and

sodium phosphate solutions in polypropylene cryogenic vials without an anti-microbial
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additive and were only thawed once. Results from this part of the study (Chapter 5)
have demonstrated that under these conditions, the enzymes were very stable with the
protein content remaining relatively constant over 12 months at storage temperatures of -
20 and -80°C and the trypsin activity showing no significant change over 10 months,
having retained over 94% of initial activity. Although there was a significant loss by 12
months (83% of initial activity) when stored at -80°C, there was no significant difference
relative to those stored at -20°C over the same period of time. At -80°C, the
chymotrypsin after 12 months storage showed no significant loss of activity and retained
88% of initial activity. However, when stored at -20°C, chymotrypsin showed a
significant loss of activity after 8 months (70% of initial activity). As a final quality
control check, the results of DH of vitamin-free casein was compared using fresh enzyme
fractions (To months) Versus ones stored for 12 months at -80°C (T12 months). The DH was
statistically the same (P=0.839) at 23.5+1.8% and 23.3+0.5%, respectively. Based on
these results, it was recommended that enzyme fractions produced by the methods
detailed in Chapter 5 be stored at -80°C and used within 8-10 months.

Application to common and alternative ingredients

Using enzyme fractions isolated from the pyloric caeca of Atlantic cod according
to the methods in Chapter 5, the in vitro degree of protein hydrolysis (DH) of the same
feed ingredients used during in vivo protein ADC studies (Chapter 2 and 3) were
measured by an in vitro closed-system pH-Stat assay (Chapter 6). The ingredients
represented a wide range of available feed ingredients either in use or being considered
for use in gadoid diets in Canada with highly variable compositions (31-86% crude
protein, 0.3-15% lipid, 0.5-38% ash, 0-45% carbohydrate, 12-23 MJ/kg gross energy)
providing a large variation in in vivo measured protein ADC of 50-100% (Chapter 2 and
3). The work presented in Chapter 6 is the first time that these in vitro protein
hydrolysis methods have been applied to gadoid species. Because of the technical
difficulties inherent with the pH-Stat procedure, successful use of the methods with
aquatic animals is rare and to date have only been adequately demonstrated a few times
with non-gadoid finfish and shrimps (Dimes and Harrd 1994; Ezquerra et al. 1997, 1998;
Alarcon et al. 2002; Lemos et al. 2009). The work presented in Chapter 6 should add to
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the much-needed body of knowledge on the application of the in vitro pH-Stat assay as a
tool for nutritional development for aquatic animals, in particular the rapid-screening of
potential feed ingredients.

For animal-origin feed ingredients, the in vitro DH values were highest (11-12%)
for poultry by-product meal, herring meal and anchovy meal, mid-range (7%) for whole
krill meal; and lowest (3-4%) for crab meal, shrimp meal and hydrolyzed feather meal.
These in vitro DH results were in good agreement with in vivo protein ADC data for fish
meals and poultry meals (Chapters 2 and 3) that also showed relatively high protein
ADC for herring, anchovy and poultry by-product meals and low protein ADC for
hydrolyzed feather meal. The in vitro DH results for zooplankton and crustacean meals,
however, indicated lower digestibility than those using in vivo protein ADC methods
(Chapters 2 and 3). For the zooplankton and crustacean meals, the total amount of
intact protein was likely over-estimated because of a relatively higher proportion of N in
the form of NPN. Zooplankton and crustacean feed ingredients may contain significant
levels of chitin (10-20%) and free amino acids (>2%) (Hertrampf and Piedad-Pascual
2000; Heu et al. 2003). In addition, it is possible that the krill and crustacean products
used in this study may have retained some endogenous enzyme activity that may be
rapidly triggered causing partial post-mortem protein hydrolysis after capture at sea
(within 6-8 hours) prior to final processing (Kolakowski 1986) resulting in elevated
levels of NPN (e.g. volatile bases, trimethylamine, free amino acids, peptides, ammonia).
Various authors have reported that freshly harvested krill and crustaceans with NPN
levels of less than 10 g N/100 g can exceed 50 g N/100 g within 24 hours (Kolakowski
1986; Fagbenro and Bello-Olusoji 1997; Heu et al. 2003). If this were the case, these
products would have a comparatively high content of NPN that may not affect apparent
in vivo protein ADC (since it is based on N ratios between diet and faeces) (Chapters 2
and 3) but could influence in vitro protein DH (Chapter 6) if the specific enzyme
cleavage sites along those polypeptides (during in vitro protein hydrolysis) have
previously been cleaved (Cérdova-Murueta and Garcia-Carreno, 2002). The implication
of these scenarios is an altered ratio of enzyme to intact protein substrate and this may
have artificially resulted in lower in vitro DH than anticipated. Secondly, and likely the

major cause for the lower in vitro DH results, involves the method used in these studies
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that used enzymes isolated from the pyloric caeca of Atlantic cod which function at a pH
of 7 or higher (Danulat and Kausch, 1984). Unlike other animal and plant protein
sources, the major by-product of zooplankton and crustacean processing is the carapace
or shell which may contain 50-80% chitin (poly-B-(1—4)-N-acetyl-glucosamine) and
relatively high levels of ash (>15%) which have both shown high in vivo digestibility in
gadoids (Danulat, 1987; Danulat and Kausch, 1984; Toppe et al., 2006). The problem is
that under the in vivo conditions such as those used in Chapters 2 and 3, these
ingredients are exposed to an environment of acidic pH (3.8-6.5) and endogenous
chitinase enzymes in the stomach ‘prior to’ entry into the alkaline (>pH 7) pyloric caeca
(Danulat and Kausch 1984; Grabner 1985; Jeuniaux 1966). This in vivo ‘preparatory’
gastric phase is unavailable in an in vitro pH-Stat assay using digestive enzymes from the
pyloric caeca only, like that of Chapter 6. In fact, Danulat and Kausch (1984)
demonstrated that the activity of chitinase enzyme in the gadoid pyloric caeca is lower
than that of the stomach and what little chitinolytic activity does exist in the pyloric caeca
IS not optimized at pH levels above 6.5. This is in agreement with other monogastric
animals like poultry that showed that the acid (gastric) phase was critical for chitin and
chitosan digestion because it provides a preparatory phase whereby acidic gastric juices
dissolve and swell the molecules, thus permitting a higher substrate availability for
chitinase enzyme activity (Hirano et al., 1990) and subsequent alkaline protease activity.
Since the enzyme fractions used in Chapter 6 were extracted only from the pyloric caeca
at pH 7, these particular test ingredients lacked the benefit of a preparatory low gastric
pH and chitinase pre-exposure phase that they would have had during in vivo digestion
and not as important for the other low-chitin, low-ash feed ingredients. Thus, it is not
surprising that the ash and chitin-rich crustacean meals could be less digested under these
specific in vitro conditions and especially for the particular sample of shrimp meal used
in these studies which contained an unusually high level of ash (38%). In fact, consistent
lower than expected in vivo protein ADC and in vitro protein DH was observed for this
ingredient in Chapters 2, 3 and 6. Bassompierre et al. (1998a) found improved
agreement between in vivo protein utilization (measured in rats) and in vitro protein DH
(measured in rainbow trout) when an in vitro acidic (pH 3.8) gastric phase was

implemented prior to the in vitro alkaline (pH 7.8) intestinal digestion phase. Similar
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increases in in vitro DH following an acid pre-step have been demonstrated using
rainbow trout pyloric caeca enzymes (Grabner and Hofer, 1985) and purified mammalian
enzymes (Rothenbuhler and Kinsella, 1985). However, many authors concluded that the
improvement was only marginal and resulted in a more complex and time-consuming
assay, which may not be practical for use by the feed industry. Alarcon et al. (2002) also
found higher DH values with seabream after an acid pre-digestion, although the
improvement was only observed for some ingredients (corn gluten meal, meat and bone
meal, fish meal, soybean meal and blood meal) but not others (squid meal, lupin meal and
green pea meal). Similarly, Rothenbuhler and Kinsella (1985) observed that an acid pre-
treatment greatly enhanced the in vitro DH of soy protein and casein but reduced it for
bovine serum albumin. Recent work with other fish species on the development of a
gastrointestinal model (GIM) that incorporates both the gastric acidic and intestinal
alkaline phase, the use of bile salts and also a pH ‘transition’ phase (Hamdan et al., 2009;
Morales and Moyano, 2010) may also be useful for gadoid species.

The low nutritional value of hydrolyzed feather meal for gadoid feeds was
confirmed by both in vivo protein ADC (Chapter 3) and in vitro protein DH methods
(Chapter 6) and was not unexpected. Similar findings have been reported for other
farmed fish species and also other farmed terrestrial animals. The low nutritional value
may be due to high levels of poorly digestible keratin protein (Dong et al. 1993; Hardy
and Barrows 2002; Yu et al. 2004), an inferior essential amino acid profile with low
levels of methionine, lysine, histidine and tryptophan, the presence of disulfide bonding
(Moran et al. 1966) and the presence of indigestible amino acid processing products,
namely lysinoalanine and lanthionine (Williams et al., 1991; Wang and Parsons 1997).
This limits the use of high proportions of feather meal in gadoid feeds. It appears that
global poultry production will continue to rise and availability of poultry feathers from
the processing industry is enormous (4,500 million tonnes annually) and they routinely
contain high (>80%) levels of total protein (Hertrampf and Piedad-Pascual 2000; Bertsch
and Coello 2005). Cost-effective processes that can further increase the protein quality of
feather meals would greatly increase their feeding value and provide an excellent high
protein alternative ingredient for marine fish and other animal feeds (Bertsch and Coello
2005).
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For plant-origin feed ingredients, the in vitro DH values obtained in Chapter 6
were highest (17-21%) for wheat gluten meal, soy protein isolate, soy protein concentrate
and canola protein concentrate; high (10-13%) for soybean meal, white lupin meal and
canola meal and mid-range (6-9%) for pea protein concentrate and flaxseed meal. The
results for wheat gluten meal, all soy-based products and white lupin meal are in
agreement with conventional in vivo protein ADC results (Chapters 2 and 3) that also
showed high to very high protein digestibility for these ingredients (90-100%). In
contrast, it appears that in vitro DH may overestimate the relative protein quality for
canola protein concentrate, canola meal and flaxseed meal, as their in vivo protein ADC
(Chapter 3) were found to be high (89%), mid-range (76-83%) and low (53%),
respectively while their in vitro DH (Chapter 6) were found to be very high (17%), high
(12%) and mid-range (9%), respectively. The relatively high DH found for these
ingredients is consistent with results for canola protein concentrate found during earlier in
vitro digestion studies with rainbow trout and rats, where relatively higher DH was also
observed (Dimes and Haard 1994; Gauthier et al. 1982; Henry and Ford 1965). Under in
vivo conditions, inclusion of dietary ingredients containing high fibre typically results in
lowered protein quality (reduced protein ADC) in fish feeds and this is attributed to
decreased proteolytic enzyme activity (Falge et al. 1978) and shortened gut-transit time
(Jobling 1981; Steffens 1989). This was observed in particular for canola meal and
flaxseed meal used in Chapters 2 and 3 where protein ADC was low (50-83%) and fecal
output was very high from fish fed these high-fibre test ingredients. By contrast, the high
indigestible fibre content of these ingredients tends to elevate digestibility estimations
(increased protein DH) under in vitro situations. It has been shown that the fibre
component of some plant-based feed ingredients have especially high buffering capacity
in the presence of proteolytic enzymes and this high fibre content and subsequent high
buffering capacity requires excessive use of NaOH titrant causing over-estimates of
protein digestibility via in vitro methods (O’Hare et al. 1984). The in vitro pH-Stat
assays used in Chapter 6 used a procedural blank to account for this high buffering
capacity and other sources of non-enzymatic hydrolysis, whereas previous studies with
salmonids and other marine fish and shellfish have either used distilled water or no blank

at all. Although processing conditions play a large role in protein quality of feed
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ingredients of both plant and animal-origin, it has been suggested that when higher in
vitro protein DH values are observed for plant-origin ingredients, the primary causes may
also be due to higher protein solubility, higher percentage of amino acids that are
susceptible to alkaline protease cleavage and differences in peptide bond flexibility
(Alarcon et al. 2002).

It has been shown in other fish and shellfish species that potential inconsistencies
between in vitro protein DH and in vivo protein ADC based on quantification of fecal
nitrogen may involve the effects of ingredient composition, dietary inclusion level and
poor palatability (Lemos et al. 2009). It is likely that the use of 30% plant protein
substitution in the initial in vivo protein ADC trials may have been too high given the low
palatability of some plant protein ingredients. It has been demonstrated for gadoids that
inclusion levels of 10-50% fish meal and 10-40% soybean meal had no significant effect
on in vivo protein ADC (Kim et al., 2006, 2007), however, it remains unclear what the
effect would be with other less digestible, less palatable ingredients. It is highly likely
that some of the ingredients used in these studies may not be used at the 30% replacement
level under practical, commercial aquafeed conditions due to undesirable proximate
composition, inferior amino acid profile, palatability problems, feed processing
(pelleting/extrusion) problems, anti-nutritional factors and cost. The robustness of the
correlations between in vivo protein ADC and in vitro protein DH could be strengthened
with further determination of in vivo protein ADC data conducted at more practical
ingredient inclusion levels (Lemos et al. 2009; Tacon and Akiyama 1997).

The results presented in Chapter 6 demonstrated that the in vitro DH assay used
may be a suitable tool for assessing the effect of processing on particular plant protein
ingredients for gadoids, which is in agreement with studies with terrestrial animals
(Rothenbuhler and Kinsella 1985) and shrimp (Garcia-Carrefio et al. 1997; Lemos and
Tacon 2011). The in vitro DH results (Chapter 6) for the variously processed canola and
soy products (e.g. meal, concentrate and isolate) mirrored (r = 0.90 and 0.99,
respectively) the in vivo protein ADC results of Chapter 3. It is well documented that
the various processing stages from intact beans or seeds to de-hulled meals and ultimately
the production of protein concentrates and isolates can significantly reduce the levels of

poorly digestible non-protein components such as fibre, oligosaccharides, non-starch
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polysaccharides and phytic acid (Storebakken et al. 1998, 2000) and also inactivate
protease inhibitors (Anderson and Wolf 1995), which can negatively affect protein
quality and nutrient digestion in fish. As such, through an appropriate combination of
physical, chemical and thermal processing, these antinutritional components are reduced,
inactivated and/or the protein structures altered through thermal processing permitting
higher protease activity on peptide bonds (Garcia-Carrefio et al. 1997; Hsu et al. 1977)
and improved accessibility of protein to enzymatic hydrolysis. The mode of action of
plant-based anti-nutritional factors in monogastric animals has been well studied and is
through nutrient binding with bile salts and other anti-nutritional components (e.g., phytic
acid, metal ions), obstruction of protease activity (proteolytic enzyme inhibition),
accelerated movement of digesta through the intestinal tract and increased viscosity of
digesta (Storebakken et al., 1998, 2000; Francis et al., 2001; Dendougui and Schwedt,
2004; Leenhouwers et al., 2006; Krogdahl et al., 2010). As discussed, the relationship
between the level of processing of canola products (meal to concentrate) and soy
products (meal to concentrate to isolate) used in Chapter 6 was similar. This was also
reflected in vivo in Chapter 3 where protein ADC for canola and soybean was improved
with processing (e.g. isolate > concentrate > meal).

The ultimate goal of determining the in vitro protein DH of feed ingredients is to
utilize this data in conjunction with in vivo protein ADC values by generating a predictive
equation(s). However, the generation of an ‘all-inclusive’ predictive regression equation
may not be possible. It is more likely that several predictive equations for each species
are required according to the origin of feed ingredient, level of processing and relative
digestibility as discussed by several authors (Pedersen and Eggum 1983; Jaguelin et al.
1994; Shipton and Britz 2002; Lemos et al. 2009). Specifically, Haard (1993) pointed
out that in vitro pH-Stat assays may overestimate protein quality of plant-origin sources
relative to those of animal-origin for salmonids. This has also been documented for
shrimp (Fernandez Gimenez et al. 2009), seabream (Alarcén et al. 2002) and mammals
(Marletta et al. 1992). This was consistent with the findings of Chapter 6 where the DH
of plant-origin ingredients were higher than those of animal-origin ingredients and this
highlights the necessity for separate equations for plant-origin and animal-origin
feedstuffs.
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Measurement of the in vitro DH by pH-Stat using enzymes from the pyloric caeca
of farmed Atlantic cod (Chapter 6) provided results that were in general agreement with
in vivo protein digestibility of many conventional and novel feed ingredients including of
fish and poultry meals, soy-based products, wheat gluten and lupin meals, while
ingredients containing high levels of chitin, ash and/or fibre were not as successful
relative to the results measured in vivo (Chapters 2 and 3). As discussed, in order to
make in vitro DH data useful for research or industrial use, it is necessary to combine
these data with known protein quality data measured in vivo through the generation of
predictive regression equations. For finfish, only one of these equations currently exists
for rainbow trout (Dimes and Haard 1994) while there are several equations for white
shrimp (Ezquerra et al. 1997, 1998; Lemos et al. 2009). With the exception Lemos et al.
(2009), these few published predictive equations are based on a small number of test feed
ingredients (<10) providing data from a relatively static set of environmental conditions
and have generated only a few small data sets and predominantly linear models. This is
highly unlikely if the studies were conducted under natural environmental conditions of
fish farming (e.g. culture conditions and nutritional history of donor animals) and a
higher number and composition/quality range of test ingredients had been assayed
(Bender 1982; Jgrgensen 1995). Indeed, this was the case reported by Lemos et al.
(2009) who conducted extensive DH assays with shrimp hepatopancreas enzymes from
various different culture conditions, enzyme batches and activities and using a large
number (26) of test ingredients with a wide range of composition (28-99% protein, O-
20% fat, 0-47% carbohydrate, 0-49% ash) and in vivo protein digestibility (59-100%).
These authors found that non-linear models were required to describe the relationships
between in vivo protein ADC and in vitro protein DH as was the case for gadoids in
Chapter 6 of this thesis.

To accurately ‘model’ this relationship and generate truly robust predictive
equations for a particular species, data sets from numerous feed ingredients from a large
number of processing conditions must be included in order to be adopted by the feed
industry and researchers. At this stage, it would be wise for the aquaculture feed industry
to learn from past mistakes associated with the human food and farm animal feed sectors.

For example, many correlations between rapid-screening in vitro assays and in vivo
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performance have been made over the past century, only to be discredited once a wider
range of samples were tested (Bender 1982). Although the gadoid in vitro data generated
in Chapters 5 and 6 and the comparisons with in vivo data from Chapters 2 and 3
should provide the basis for further work, the current body of knowledge on gadoid
nutrition needs additional research to develop more robust equations. As concluded for
the salmonid work in the early 1990s (Dimes et al. 1994a) upon which these studies were
based, seabream by Alarcon et al. (2002) and shrimp in the mid- to late 1990s (Ezquerra
et al. 1997; Lan and Pan 1993), additional data are needed to establish a clear relationship

between in vitro and in vivo assays for fish, including gadoids.
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Summary

There is growing interest in gadoid farming as a means to meet the demand for
Atlantic cod and haddock and to ease the strain on wild populations that would have
otherwise been fished into extinction. Although the majority of farmed gadoid
production will be accomplished through infrastructure that currently exists for marine
salmonid farming, these feeds may not be suitable for gadoids due to differences in
dietary protein digestion, absorption and metabolism as well as energy utilization. The
primary research goals of this thesis were to: 1) examine the in vivo digestion and
absorption of macronutrients from conventional or alternative (novel) feed ingredients
incorporated into practical diets fed to juvenile gadoids (Chapters 2 and 3), 2) document
the growth potential of gadoid fish at the juvenile grower phase given varying levels of
dietary protein and energy (Chapter 4) and 3) to assess the potential of an in vitro pH-
Stat method for rapid screening the protein quality of feed ingredients, specifically for
gadoids (Chapters 5 and 6). All of these primary research questions were linked to, and
built upon, one another with the ultimate goal of gaining a better understanding of protein
and energy utilization of gadoids during the juvenile grower phase.

The studies presented in Chapters 2 and 3 demonstrated that cod and haddock
have a high capacity to utilize a wide range of dietary feed ingredients. High in vivo
apparent protein digestibility (APD) was found for fish meals such as herring meal (93-
96%) and anchovy meal (92%), whole freeze-dried krill meal (96%), soybean products
such as soybean meal (92%), soy protein concentrate (99%) and soy protein isolate (97%)
and wheat gluten meal (100%). Other feed ingredients having relatively high APD
included corn gluten meal (86-92%), pea protein concentrate (90%), white lupin meal
(90%), canola protein concentrate (89%) and crab meal (82-89%). High in vivo apparent
energy digestibility (AED) was found for fish meals such as herring meal (92-93%) and
anchovy meal (86%), whole freeze-dried krill meal (96%), soybean products such as
soybean meal (88-92%), soy protein concentrate (95%) and soy protein isolate (92%) and
wheat gluten meal (95%). Other feed ingredients having relatively high AED included
crab meal (82-83%), corn gluten meal (81-83%) and canola protein concentrate (83%).

The digestibility data presented in this thesis is currently the only research that has
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examined both the in vivo (Chapters 2 and 3) and in vitro (Chapter 6) macronutrient
digestibility of a large number and wide range of individual feed ingredients, specifically
for gadoids. This data is essential to gain new knowledge on protein and energy
utilization as well as for least-cost ration formulations and effective substitution of
ingredients into new feed formulations.

Using species-specific in vivo protein and energy digestibility data from Chapter
2 it was possible to precisely formulate several experimental diets for use in Chapter 4 to
further examine dietary protein and energy utilization of juvenile haddock with respect to
growth rate, efficiency of protein and energy utilization and nutrient retention and
deposition. The data presented in Chapter 4 demonstrated that a dietary digestible
protein/digestible energy (DP/DE) ratio of 30 g DP/MJ DE was required for haddock
during the juvenile grower phase (<100 g). This DP/DE ratio was achieved in an
experimental diet containing 54.8% crude protein, 11.4% lipid and 16.4% carbohydrate
which agrees well with that of juvenile Atlantic cod. Fish fed this practical diet
formulation had the highest daily growth rate (2.4%), lowest feed conversion ratio (0.7 g
feed/g gain), highest protein and energy digestibility (94 and 86%, respectively), highest
nitrogen gain (1.2 g/fish) and highest energy retention efficiency (46%). In addition, fish
fed this diet had the lowest hepatosomatic index (9%) indicating that it prevented
excessive liver lipid accumulation which has been problematic for farming of gadoids.
This findings of this thesis have brought various preliminary nutrient requirement studies
together for both cod and haddock and, through an applied nutritional approach using in
vivo digestibility studies (Chapters 2, 3 and 4) and growth performance and nutrient
utilization studies (Chapter 4), has identified that commercial feeds for juvenile gadoids
(fingerling to 100 g) farmed in the Western North Atlantic should be formulated to
contain 50-55% crude protein, <12% fat and <17% carbohydrate.

The studies presented in Chapters 5 and 6 of this thesis are the first reports
towards the development and application of an in vitro closed-system pH-Stat assay for
rapid screening the protein quality of test feed ingredients that is ‘species-specific’ to
gadoids. The method development studies (Chapter 5) demonstrated that by using a
combination of techniques used previously with fish and shellfish, a species-specific

protease enzyme cocktail rich in trypsin and chymotrypsin proteolytic activity (0.5 and
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3.0 U/ug protein, respectively) could be produced relatively easily in the lab and had
better frozen storage capacity. The studies demonstrated that the enzyme fractions had
stable activity when stored at -80°C for up to 10 months while stability when stored at -
20°C was lost after 8 months. These results provide very important quality-control
information for subsequent studies presented in Chapter 5 (optimum substrate
concentration), studies presented in Chapter 6 (in vitro pH-Stat degree of protein
hydrolysis (DH) of feed ingredients) and also for future studies with respect to the
thermal stability or usable “shelf-life” of enzyme fractions produced in the manner
described in Chapter 5 of this thesis. A major objective of Chapter 5 was to determine
the most appropriate protein substrate concentration [S] to use during pH-Stat assays. A
[S] of 0.5 mg N/mL was found to be the most suitable based on the degree of protein
hydrolysis (DH) curve progression having a rapid increase initially and then leveling off
at maximum DH (26%) in a moderate assay duration (~6 hours) with minimal use of
NaOH titrant (<12 mL) and this conclusion was also confirmed through slope modeling.
The final chapter of this thesis (Chapter 6) involved the application of the
enzyme extraction methods and pH-Stat assay conditions from Chapter 5 to measure the
in vitro degree of protein hydrolysis (protein DH) of several conventional and novel feed
ingredients by closed-system pH-Stat assay. The protein DH data were combined with in
vivo apparent protein digestibility data (protein ADC) from Chapter 3 to generate
‘species-specific’ equations to predict protein ADC. The equations resulted in good
correlation (<4 percentage points difference) between ‘measured’ and ‘predicted’ protein
ADC in the majority of cases (r = 0.90-0.99; R® = 0.88-0.99), while some ingredients
were either over- or under-estimated (6-7 percentage points) which appears related to
high ash or chitin content (r = 0.75; R*= 0.61) and may indicate the need for an acid pre-
hydrolysis phase and full account of non-protein nitrogen (NPN) content. The
‘predicted’ in vitro protein ADC were high for wheat gluten meal (99%), soy protein
concentrate (99%), soy protein isolate (98%) and whole krill meal (98%); relatively high
for soybean meal (92%), white lupin meal (92%), herring meal (91%), anchovy meal
(91%), canola protein concentrate (93%), pea protein concentrate (88%) and poultry by-
product meal (87%); mid-range for crab meal (79%), shrimp meal (76%) and canola meal
(75%); and low for hydrolyzed feather meal (62%) and flaxseed meal (56%). It was
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concluded that the in vitro results (Chapter 6) generally reflected the results obtained
through conventional in vivo protein digestibility methods (Chapters 2 and 3) and results
were more rapidly obtained using less animals. The studies presented in Chapters 5 and
6 have resulted in the first generation of a ‘gadoid-specific’ enzyme extraction method
and in vitro closed-system pH-Stat assay, which will be useful to further investigate
protein digestion, absorption and metabolism of gadoids and development of their feeds.
The results of this thesis suggest good potential to reduce the use of high-cost fish meals
in gadoid diets by replacement with other more economically cost-effective and more

environmentally sustainable feed ingredients.
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Samenvatting

Er is groeiende belangstelling voor gadoid landbouw al seen middle om de vraag
naar Atlantische kabeljauw en schelvis te ontmoeten en om de druk op wilde populaties
die anders zou zijn geweest gevist in uitsterven te verlichten. Hoewel de meerderheid
van gekweekte gadoid productie zal worden bereikt door de infrastructuur die momenteel
bestaat voor de scheepvaart zalmachtigen landbouw, kunnen deze feeds niet geschikt
voor gadoids te wijten aan verschillen in de eiwitbehoefte vertering, absorptie en
metabolisme en energie gebruik. De voornaamste onderzoeksdoelstellingen van dit
proefschrift waren: 1) onderzoekt de in vivo vertering en absorptie van macronutriénten
van conventionele of alternatieve (nieuwe) diervoederingrediénten opgenomen in
praktische diéten gevoerd aan jeugdige gadoids (hoofdstukken 2 en 3), 2) het document
van de groei van potentieel van gadoid vis op de juveniele fase teler krijgt verschillende
niveaus van eiwitten en energie (hoofdstuk 4) en 3) de mogelijkheden van een in vitro
pH-Stat methode voor snelle screening van het eiwit kwaliteit van de voedermiddelen te
beoordelen, specifiek voor gadoids (hoofdstuk 5 en 6). Al deze primaire
onderzoeksvragen zijn gekoppeld aan, en gebouwd op, een andere met het uiteindelijke
doel van het verkrijgen van een beter begrip van eiwit-en energie-benutting van gadoids
tijdens de jonge kweker fase.

De studies gepresenteerd in de hoofdstukken 2 en 3 laten zien dat kabeljauw en
schelvis een hoge capaciteit om een breed scala van dieet voedermiddelen te gebruiken
zijn. Hoog in vivo zichtbaar eiwitverteerbaarheid (APD) werd gevonden voor vis eten,
zoals haring eten (93 tot 96%) en ansjovis maaltijd (92%), hele gevriesdroogd krill meel
(96%), soja-producten, zoals sojameel (92%), soja-eiwit concentraat (99%) en soja-eiwit
isolaat (97%) en tarwegluten maaltijd (100%). Andere voedermiddelen met relatief hoge
APD opgenomen maisglutenmeel (86-92%), erwten-eiwit concentraat (90%), witte lupine
maaltijd (90%), canola-eiwit concentraat (89%) en krab maaltijd (82-89%). Hoog in vivo
schijnbare energie verteerbaarheid (AED) werd gevonden voor vis eten, zoals haring eten
(92 tot 93%) en ansjovis maaltijd (86%), hele gevriesdroogd krill meel (96%), soja-
producten, zoals sojameel (88-92%), soja-eiwit concentraat (95%) en soja-eiwit isolaat

(92%) en tarwegluten maaltijd (95%). Andere voedermiddelen met relatief hoge AED
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inbegrepen krab maaltijd (82-83%), maisglutenmeel (81-83%) en canola-eiwit
concentraat (83%). De verteerbaarheid data gepresenteerd in dit proefschrift is
momenteel het enige onderzoek dat heeft onderzocht zowel de in vivo (hoofdstukken 2
en 3) en in vitro (hoofdstuk 6) macronutriénten verteerbaarheid van een groot aantal en
een breed scala aan individuele diervoederingrediénten, specifiek voor gadoids. Deze
data is essentieel om nieuwe kennis over eiwit-en energie-gebruik en voor least-cost
rantsoen formuleringen en effectieve vervanging van de ingrediénten te krijgen in nieuwe
feed formuleringen.

Met behulp van soortspecifieke in vivo eiwit-en energie verteerbaarheid van
gegevens uit hoofdstuk 2 was het mogelijk om precies te formuleren een aantal
experimentele diéten voor gebruik in hoofdstuk 4 tot en met eiwitten en energie het
gebruik van jonge schelvis verder te onderzoeken met betrekking tot de groei, efficiéntie
van de eiwit-en energie- gebruik en voedingsstoffen vasthouden en depositie. De
gegevens gepresenteerd in hoofdstuk 4 aangetoond dat een voeding verteerbare eiwitten
/ verteerbare energie (DP/DE) verhouding van 30 g DP/MJ DE nodig was voor schelvis
in de juveniele teler fase (<100 g). Deze DP/DE verhouding werd bereikt in een
experimentele dieet met 54.8% ruw eiwit, 11.4% vet en 16.4% koolhydraten die goed
overeenstemmen met die van jonge kabeljauw. Vissen gevoed deze praktische dieet
formulering had de hoogste dagelijkse groei (2.4%), laagste voederconversie ratio (0.7 ¢
voeder/g gain), de hoogste eiwit en energie verteerbaarheid (94 en 86%, respectievelijk),
hoogste stikstof te krijgen (1.2 g/vis) en de hoogste energie-efficiéntie retentie (46%).
Daarnaast, vissen gevoed dit dieet had de laagste hepatosomatic index (9%) die aangeeft
dat het overdreven lever vet ophoping die problematisch waren voor de landbouw van
gadoids voorkomen. Deze bevindingen van dit proefschrift hebben geleid tot diverse
voorbereidende voedingsstoffen vereiste studies samen voor zowel de kabeljauw en
schelvis en, door middel van een toegepaste voedings-benadering met behulp van in vivo
verteerbaarheid studies (hoofdstukken 2, 3 en 4) en de groei prestaties en
nutriéntenbenutting studies (hoofdstuk 4), heeft vastgesteld dat de commerciéle feeds
voor jeugdige gadoids (fingerling tot 100 g), gekweekt in de West-Noord-Atlantische
Oceaan moet worden geformuleerd om 50-55% ruw eiwit, <12% vet en <17%

koolhydraten bevatten.
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De studies gepresenteerd in hoofdstuk 5 en 6 van dit proefschrift zijn de eerste
berichten naar de ontwikkeling en toepassing van een in vitro gesloten systeem pH-Stat
test voor een snelle screening van het eiwit kwaliteit van test diervoederingrediénten dat
is 'soorteigen' om gadoids. De methode ontwikkeling studies (hoofdstuk 5) toonde aan
dat met behulp van een combinatie van technieken eerder gebruikte met vis en
schaaldieren, een soort-specifiek protease-enzym cocktail rijk aan trypsine en
chymotrypsine proteolytische activiteit (0.5 en 3.0 U/ug eiwit, respectievelijk) kan
worden relatief gemakkelijk geproduceerd in het lab en maar beter bevroren
opslagcapaciteit. De studies hebben aangetoond dat het enzym fracties stabiele activiteit
was indien bewaard bij -80°C tot 10 maanden, terwijl de stabiliteit indien bewaard bij -
20°C werd verloren na 8 maanden. Deze resultaten leveren een zeer belangrijke
kwaliteitscontrole van informatie voor latere studies gepresenteerd in hoofdstuk 5
(optimale substraat concentratie), studies gepresenteerd in hoofdstuk 6 (in vitro pH-Stat
mate van eiwithydrolyse (DH) van diervoederingrediénten) en ook voor toekomstige
studies met betrekking tot de thermische stabiliteit of bruikbare "shelf-life" van enzym
fracties geproduceerd op de wijze zoals beschreven in hoofdstuk 5 van dit proefschrift.
Een belangrijke doelstelling van hoofdstuk 5 was om de meest geschikte eiwit substraat
concentratie [S] te gebruiken tijdens de pH-Stat testen te bepalen. A [S] van 0.5 mg
N/mL was gevonden om de meest geschikte gebaseerd op de mate van eiwithydrolyse
(DH) curve progressie met een snelle stijging in eerste instantie en daarna afvlakt bij
maximale DH (26%) in een matige test duur worden (~ 6 uur) met minimaal gebruik van
NaOH titrant (<12 ml) en deze conclusie werd ook bevestigd door de helling
modellering.

Het laatste hoofdstuk van dit proefschrift (hoofdstuk 6) die betrokken zijn op de
toepassing van het enzym extractiemethoden en pH-Stat assay voorwaarden uit
hoofdstuk 5 van de in vitro mate van eiwithydrolyse (eiwit DH) van diverse
conventionele en nieuwe diervoederingrediénten te meten door closed-systeem pH-Stat
assay. Het eiwit DH gegevens werden gecombineerd met in vivo schijnbaar
eiwitverteerbaarheid data (eiwit ADC) van hoofdstuk 3 tot en met 'soortspecifieke'
vergelijkingen te genereren van eiwit ADC voorspellen. De vergelijkingen resulteerde in

een goede correlatie (<4 procentpunten verschil) tussen 'gemeten’ en ‘voorspelde' eiwit
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ADC in de meeste gevallen (r = 0.90-0.99; R®> = 0.88 tot 0.99), terwijl sommige
ingrediénten waren ofwel over-of onder-schatting (6-7 procentpunten) die is opgenomen
met betrekking tot hoge as of chitine inhoud (r = 0.75; R* = 0.61) en kan de noodzaak
van een zure hydrolyse pre-fase en volle rekening gehouden met niet-eiwit stikstof (NPN
geven) content. De ‘voorspelde' in vitro proteine ADC waren hoog voor tarwe gluten
eten (99%), soja-eiwit concentraat (99%), soja-eiwit isolaat (98%) en hele krill meel
(98%), relatief hoog voor sojameel (92 %), witte lupine maaltijd (92%), haring eten
(91%), ansjovis maaltijd (91%), canola-eiwit concentraat (93%), erwten-eiwit
concentraat (88%) en pluimvee bijproduct maaltijd (87%), mid-range voor de krab
maaltijd (79%), garnalen maaltijd (76%) en canola maaltijd (75%) en laag voor
gehydrolyseerd verenmeel (62%) en lijnzaad maaltijd (56%). Er werd geconcludeerd dat
de in vitro resultaten (hoofdstuk 6) in het algemeen de resultaten verkregen door middel
van conventionele in vivo eiwitverteerbaarheid methodes (de hoofdstukken 2 en 3) en de
resultaten waren sneller verkregen met behulp van minder dieren weerspiegeld. De
studies gepresenteerd in hoofdstuk 5 en 6 hebben geleid tot de eerste generatie van een
‘gadoid-specifieke' enzym extractie methode en in vitro gesloten systeem pH-Stat test, die
nuttig zal zijn om verder te onderzoeken eiwit vertering, absorptie en metabolisme van
gadoids en de ontwikkeling van hun feeds. De resultaten van dit proefschrift suggereren
goede mogelijkheden voor het gebruik van hoge kosten vis gerechten te verminderen
gadoid diéten door vervanging door andere, meer economisch rendabel en ecologisch

duurzame voedingsingrediénten.
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