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Abstract 17 

RNA sequencing is starting to compete with the use of DNA microarrays for transcription 18 

analysis in eukaryotes as well as in prokaryotes. Application of RNA sequencing in 19 

prokaryotes requires additional steps in the RNA preparation procedure to increase the 20 

relative abundance of mRNA and cannot employ the poly-T primed approach in cDNA 21 

synthesis. In this study, we aimed to validate the use of RNA sequencing (direct cDNA 22 

sequencing and 3’-UTR sequencing) using Lactobacillus plantarum WCFS1 as a model 23 

organism, employing its established microarray platform as a reference. Limited impact 24 

of mRNA enrichment on genome-wide transcript quantification was observed, and 25 

comparative transcriptome analyses were performed for L. plantarum WCFS1 grown in 26 

two different laboratory media. Microarray analyses and both RNA sequencing methods 27 

resulted in similar depth of analysis and generated similar fold-change ratio of 28 

differentially expressed genes. The highest overall correlation was found between 29 

microarray and direct cDNA sequencing derived transcriptomes, while the 3’-UTR 30 

sequencing derived transcriptome appeared to deviate most. Overall, a high similarity 31 

between patterns of transcript abundance and fold-change levels of differentially 32 

expressed genes was detected by all three methods, indicating that the biological 33 

conclusions drawn from the transcriptome-data were consistent between the three 34 

technologies. 35 
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Introduction 36 

Understanding the influence of environmental conditions on genome-wide gene 37 

expression levels requires accurate quantification of all expressed (m)RNAs. Microarrays 38 

provide an effective method for analysis of thousands of transcripts in a parallel manner, 39 

and allow measurement of the genome wide transcriptome of an organism in a single 40 

experiment (12, 51). It is especially suited for the transcriptome comparison of two 41 

biological conditions (34). However, background and saturation problems (42), and low 42 

reproducibility of results between laboratories (16) during microarray analyses could 43 

limit the usage of microarray for transcriptome interpretation. 44 

The rapid development of next generation sequencing (NGS) technology for 45 

transcriptome analysis, which is known as RNA sequencing, is promoting the use of this 46 

method as a replacement for DNA microarrays. RNA sequencing using NGS technology 47 

has the advantage of low per-base costs through massive parallel de novo sequencing. 48 

This is starting to make RNA sequencing a cost effective alternative for transcriptome 49 

analysis, which is especially suited for samples from biological material with an unknown 50 

genetic content. RNA sequencing enables the direct determination of the identity and 51 

abundance of a transcript, which facilitates the identification of novel transcripts (4, 24) 52 

and allows the detection of rare transcripts at considerable sequencing depth (43). The 53 

RNA sequencing approach was initially described for eukaryotic cells, such as yeast (26), 54 

mouse embryonic stem cells and embryoid bodies (6), human cell lines (36), and plants 55 

(11, 42). The main principle of RNA sequencing in eukaryote cells includes the selective 56 

conversion of mRNA into double stranded (ds) cDNA fragments by poly-T (or random) 57 

primed reverse transcription and strand duplication, followed by direct sequencing of the 58 

ds cDNA and quantitative mapping of the identified reads to the genome to estimate the 59 



4 
 

level of gene expression (21, 46). To assess the robustness of the RNA sequencing 60 

methodology compared to microarrays, several studies were conducted using RNA of 61 

eukaryote cells, such as human liver and kidney (22), and mouse hippocampi (37). These 62 

comparative studies revealed a good correlation between the level of transcripts measured 63 

by microarrays and RNA sequencing. Moreover, these studies favored RNA-sequencing 64 

in terms of its higher reproducibility, and higher accuracy of detection of the fold-change 65 

in expression level (22, 37). However, these conclusions were contradicted by a well-66 

defined study that used synthetic RNA samples and demonstrated that microarray 67 

quantification correlated better with actual transcript levels and was more sensitive as 68 

compared to RNA sequencing, while both methods performed equally well with respect 69 

to reproducibility and relative transcript ratio determination (47). In addition to the 70 

expressed sequence tag (EST) sequencing, an alternative sequencing based transcriptome 71 

approach was described by Eveland et al (11), in which the 3’-untranslated region (3’-72 

UTR) of mRNAs in Zea mays was sequenced. This 3’-UTR sequencing method offers the 73 

possibility to determine differential expression between closely related genes. To date, no 74 

studies have been reported that assess the robustness of 3’-UTR sequencing for 75 

transcriptome analysis or its comparison to alternative transcriptome analysis methods.  76 

Although RNA sequencing technologies have been implemented and validated in 77 

eukaryotes, it is still quite challenging to employ these methods for prokaryote 78 

transcription analysis. This is not surprising since the prokaryote RNA pool contains a 79 

high amount of rRNA and tRNA, which may constitute more than 95% of the total RNA 80 

(31), while selective reverse transcription of mRNA by poly-T priming is not possible (9, 81 

42). Moreover, prokaryote transcriptional profiles are considered to be much more 82 

dynamically regulated and less stable as compared to those of eukaryotes. To increase the 83 
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relative abundance of mRNA in total prokaryote RNA material, several methods have 84 

been developed, including rRNA capture, selective degradation of processed RNA, 85 

selective poly-adenylation of mRNA, and antibody capture of subsets of mRNAs that 86 

interact with Hfq proteins (32). Due to the lack of a poly-A tail in prokaryote mRNA, 87 

alternative priming approaches during reverse transcription (RT) are commonly based on 88 

random oligonucleotide priming (hexamers or longer), and sometimes employ 89 

multiplexed gene specific oligonucleotides (28, 50), or a combination with gene specific 90 

priming of the 5’-end RNA-seq (48). Alternatively, oligo-dT priming can be employed 91 

following artificial poly-adenylation of mRNAs (13). The development of mRNA 92 

enrichment and priming methods allowed the successful use of RNA sequencing 93 

approaches for the investigation of transcriptome changes under different growth 94 

conditions of Burkholderia cenocepacia (50) and Bacillus anthracis (28).  95 

In this study, we aimed to validate the use of different RNA sequencing techniques using 96 

a model prokaryote organism, while employing an established microarray platform as a 97 

reference. The transcriptomes of Lactobacillus plantarum WCFS1 (grown in two 98 

different laboratory media) were compared using custom-made oligonucleotide 99 

microarrays and RNA sequencing approaches. The microarray was also employed to 100 

evaluate the impact on the transcriptome of mRNA enrichment by RNA capture methods. 101 

This study includes the comparison of two RNA sequencing approaches, direct cDNA- 102 

and 3’-UTR cDNA- sequencing to evaluate their applicability in prokaryote 103 

transcriptome analyses. Our analyses show that the depth of analysis for both RNA 104 

sequencing methodologies was similar to that observed for the microarray, leading to a 105 

coverage of >95% of all genes encoded in the L. plantarum WCFS1 genome. The best 106 

transcriptome correlation was found between microarray and direct cDNA sequencing 107 
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analyses, while the 3’-UTR sequencing method appeared to deviate most. Overall, 108 

patterns of transcript abundance and fold-change levels of differentially expressed genes 109 

were similar for all three methods.  110 
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Materials and Methods 111 

Bacterial Strain and Growth Conditions 112 

L. plantarum WCFS1 (19) was grown in chemically defined medium (CDM) (39) and de 113 

Man Rogosa Sharpe (MRS) medium (8) at 37°C without agitation. Cells were harvested 114 

by centrifugation for 10 minutes at 4570×g and 4°C using a Heraeus Multifuge 3 S-R 115 

Centrifuge (DJB Labcare Ltd., England), at an optical density (OD600) of approximately 116 

1.0, which corresponds to the mid-logarithmic phase of growth for both media.  117 

 118 

Total RNA isolation and mRNA enrichment 119 

Total RNA was extracted from the cell pellets according to the Macaloid based RNA 120 

isolation protocol (52). Extraction was followed by RNA purification using the RNAeasy 121 

mini kit (Qiagen, USA), including an on-column DNAseI (Roche, Germany) treatment as 122 

described previously (52). Enrichment of mRNA was performed by the selective removal 123 

of 16S and 23S rRNA using oligonucleotide-probes attached to magnetic beads according 124 

to the manufacturer’s protocol (MICROBExpressTM, Ambion, Applied Biosystem, 125 

Niewerkerk a/d Ijssel, The Netherlands) (44). Total RNA and enriched mRNA yields 126 

were quantified spectrophotometrically (NanoDrop 1000; Nanodrop Technologies, 127 

Wilmington, USA) and total RNA quality was assessed by microfluidics-based 128 

electrophoresis system (Experion RNA Stdsens, Biorad Laboratories Inc., USA). 129 

 130 

DNA Microarray based transcriptome analysis 131 

The microarray used was a custom designed L. plantarum WCFS1, 8×15-K Agilent 132 

oligonucleotide microarray (GPL13984), containing (maximally) three different probes 133 

per annotated gene that were spotted in duplicate (30). Both total RNA and enriched 134 
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mRNA were subjected to cDNA synthesis using a random nonamer primed approach as 135 

has been described before (33). Cy3- and Cy5-labeled cDNAs were prepared using a 136 

Cyscribe postlabeling kit (Amersham Biosciences, United Kingdom) according to the 137 

manufacturer’s protocol. Cy5/Cy3 dye swaps were performed for the cDNA samples 138 

according to the scheme in Figure 1. Labeled cDNA mixtures were subsequently 139 

concentrated in a Hetovac VR-1 (Heto Lab Equipment A/S, Birkerod, Denmark) to a 140 

final volume of 25μl (if needed), incubated at 98°C for 3 minutes, and cooled at room 141 

temperature for 5 minutes. After addition of 25μl 2×GEX HI-RPM hybridization buffer 142 

(Agilent technologies, Palo Alto, Ca, USA), 40μl of each mixture was applied on an 143 

Agilent 8×15K array (Agilent technologies, Palo Alto, Ca, USA). Hybridization and 144 

scanning of the microarray slides were performed as described previously (23). Slides 145 

were scanned with a ScanArray Express 4000 scanner (Perkin Elmer, Wellesley, MA), 146 

and the image was analyzed and processed using the ImaGene Version 7.5 software 147 

(BioDiscovery Inc., Marina Del Rey, CA, USA). Both total RNA and mRNA enriched 148 

datasets were normalized and corrected by local fitting of an M-A plot applying the 149 

Lowess algorithm (49) and interslide scaling, as available in MicroPrep (41) and different 150 

transcriptomes were compared using CyberT (3), taking into account the dye swaps of 151 

each of the conditions as described previously (23). The microarray data have been 152 

deposited in NCBI's Gene Expression Omnibus (10) and are accessible through GEO 153 

series accession number GSE35754. 154 

 155 

RNA sequencing based transcriptome analysis 156 

Double stranded cDNA was synthesized using enriched mRNA of CDM or MRS grown 157 

L. plantarum WCFS1 using the SuperScriptTM Double Stranded cDNA Synthesis kit 158 
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(Invitrogen, 11917-010), with the addition of SuperScriptTM III Reverse Transcriptase 159 

(Invitrogen, 18080-044) and random primers (Invitrogen, 48190-011) as described 160 

previously (50). This was followed by RNAse A (Roche, Germany) treatment, phenol-161 

chloroform extraction, and ethanol precipitation. Double stranded cDNA was quantified 162 

using the NanoDrop 1000 spectrophotometer (Nanodrop Technologies, Wilmington, 163 

USA), and the quantity and purity were verified by GATC Biotech using an Agilent 2100 164 

Bioanalyzer (Agilent technologies Inc., Waldbronn, Germany). Sequencing libraries were 165 

constructed from double stranded cDNA samples according to the Illumina Genome 166 

Analyzer II protocol (46), followed by direct cDNA sequencing (GATC Biotech, 167 

Konstanz, Germany). In addition, enriched mRNA samples of L. plantarum WCFS1 of 168 

both CDM and in MRS were used for 3’-UTR library preparation. To this end the 169 

enriched mRNA samples were poly(A)-tailed using poly(A) polymerase, treated with 170 

tobacco acid pyrophosphatase (TAP), and ligated at the 5’-end to an RNA adaptor 171 

(GATC Biotech, Konstanz, Germany). First-strand cDNA synthesis was performed using 172 

an oligo(dT)-adapter primer and M-MLV H-reverse transcriptase. The resulting cDNAs 173 

were PCR-amplified to 20-30 ng/μl in 18 cycles using a high fidelity DNA polymerase. 174 

PCR products were purified using the NucleoSpin Extract II kit (MACHEREY-NAGEL 175 

GmbH & Co. KG., Germany) and were examined using Shimadzu MultiNA microchip 176 

electrophoresis system (Shimadzu Corporation, Japan). Both direct cDNA and 3’-UTR 177 

sequencing were performed simultaneously using a single flow cell of the Illumina 178 

Genome Analyzer II (GATC Biotech, Konstanz, Germany) at 8 pM concentration. 179 

Sequence data were cleaned for the poly-A (for 3’-UTR sequencing only) and low 180 

complexity regions using seqclean (http://compbio.dfci.harvard.edu/tgi/software/), with a 181 

length threshold of 20. Mapping and quantification of the cleaned sequences to an in 182 
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silico transcriptome reference was performed by GATC Biotech. The cDNA reference 183 

was created using the annotation of L. plantarum WCFS1 genome obtained from UCSC 184 

Genome Bioinformatics (http://genome.ucsc.edu/). To map the 3’-UTR derived 185 

sequences to the appropriate gene specific transcripts, additional mappings of 100 bps, 186 

200 bps and 300 bps 3’-extended transcriptional unit predictions were employed (45). 187 

These multiple mappings were performed to increase the frequency of read assignments 188 

to genes, because the position of a 3’-UTR at the end of a transcript in L. plantarum 189 

WCFS1 is unknown. Visualization of the mapped transcript was performed using the 190 

UCSC Genome Browser (http://microbes.ucsc.edu/).  191 

 192 

Comparative data analyses of direct cDNA sequencing versus 3’-UTR sequencing and 193 

microarray versus both RNA sequencings 194 

The signal intensity data obtained by microarrays and the number of read counts of direct 195 

cDNA and 3’-UTR sequencings were quantile normalized (5) using the CLC-Bio 196 

Genomic Workbench software (http://www.clcbio.com/) to adjust the data range. 197 

Normalized read counts of direct cDNA sequencing were plotted against those of the 3’-198 

UTR sequencing using a scatter plot to investigate the reads distribution between the two 199 

datasets. Rank based analysis using Spearman correlation coefficient was applied to 200 

investigate the correlation between two sequencing techniques for CDM and MRS culture 201 

derived RNA samples. For the comparison with the microarray, which was utilized as the 202 

benchmark technology, normalized microarray signal intensities were used for the 203 

comparison of the normalized read counts from both RNA sequencing techniques using 204 

Spearman correlation analysis. Analysis of the differentially expressed genes (DEG) 205 

based on log2 fold change ratio of CDM/MRS between microarray and both RNA 206 
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sequencing techniques was performed using a parametric method, Pearson correlation; 207 

assuming that the relative expression of the DEG should be conserved within all 208 

techniques irrespective of the difference in absolute gene expression values or the varying 209 

dynamic range of the different techniques. Only those genes that showed >2-fold absolute 210 

fold change ratio for all techniques and displayed significant (FDR-adjusted P-values < 211 

0.05) differential expression according to the microarray analysis were used. Spearman 212 

and Pearson correlation analyses were performed using the PASW Satistic 17.0 software 213 

suite (SPSS Inc., Chicago, USA).  214 
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Results and Discussion 215 

Microarray transcript profiles for total RNA and mRNA samples 216 

In this study, L. plantarum WCFS1 were grown in two laboratory media (CDM or MRS) 217 

to represent different environmental conditions. Microarray analysis was performed using 218 

both total RNA and enriched mRNA samples. The effect of mRNA enrichment on the 219 

transcriptome profile was evaluated by comparing normalized signal intensities per gene 220 

in the total RNA versus mRNA enriched transcriptome datasets by Spearman correlation 221 

analysis. A highly similar ranking of gene expression values in total RNA versus mRNA 222 

enriched samples was detected, as illustrated by the high Spearman correlation 223 

coefficients of 0.957 (p<0.01) and 0.953 (p<0.01) for the RNA samples derived from 224 

CDM and MRS grown cultures, respectively. Only 81 genes were differentially 225 

quantified with FDR-adjusted p-values <0.05 when comparing total RNA versus enriched 226 

mRNA samples for both growth conditions (Figure 2), indicating that mRNA enrichment 227 

has only a limited impact on overall transcript quantification. Notably, of these 81 genes, 228 

60 were differentially quantified in the RNA samples from both growth conditions and 229 

were consistently observed at a higher level in the mRNA enriched sample, suggesting 230 

that the enrichment procedure selectively and consistently enriches a small but specific 231 

RNA subset. Their fold change ratio generally varied from 2- to 10-fold and in the few 232 

cases where the fold-change exceeded a factor of 10 the genes were among the very 233 

lowly expressed within the dataset. The majority of these differentially quantified genes 234 

were related to hypothetical protein functions (Figure 3). In addition, the limitation of the 235 

mRNA enrichment method used (MICROBExpressTM, Ambion), which does not target 236 

tRNA removal, resulted in differential quantification of some tRNAs in the mRNA 237 

enriched fraction (17). 238 
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Variation in gene expression level caused by the different growth conditions (CDM 239 

versus MRS) was observed for a total of 207 genes (FDR-adjusted p-values <0.05) from 240 

both total RNA and mRNA enriched analyses. Of these 207 genes, 180 genes were shared 241 

between the differential genes identified in the total RNA and mRNA enriched samples, 242 

of which 178 showed conserved up- or down-regulation as a consequence of the 243 

difference in growth medium (Figure 2). Average linkage hierarchical clustering with 244 

Pearson correlation distance (35) confirmed a more pronounced separation of CDM and 245 

MRS profiles relative to the separation seen for total RNA versus mRNA enrichment 246 

profiles (Figure 3).  247 

This finding shows that the transcriptome variation caused by different growth conditions 248 

exceeds the variation caused by enrichment procedure, indicating that mRNA enrichment 249 

will only have a limited impact on the biological interpretation of transcriptome data, 250 

which is validated for a well-defined culture under well-defined conditions, with the 251 

anticipation towards similar performance in the complex ecosystems. The genes 252 

displaying significant differential expression in cultures grown on CDM compared to 253 

MRS predominantly belonged to specific functional categories that appear to reflect the 254 

different medium composition, such as transport and binding proteins (in particular for 255 

amino acid, peptides and amines), amino acid biosynthesis (in particular for histidine and 256 

aspartate), energy metabolism, and synthesis of purines, pyrimidines, nucleosides and 257 

nucleotides (Figure 3; Figure S1). The limited amount of nucleotides (18) and specific 258 

amino acids available in CDM relative to MRS apparently requires an alternative pallet of 259 

transport functions to import those components, which could consistently be concluded 260 

from the arrays irrespective of the RNA source (enriched mRNA versus total RNA) used.  261 

 262 
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RNA Sequencing based Transcriptome Analysis: direct cDNA sequencing versus 3’-263 

UTR sequencing 264 

Direct cDNA sequencing and 3’-UTR sequencing were performed using mRNA enriched 265 

samples of L. plantarum WCFS1 grown in CDM or MRS. The number of sequence reads 266 

recovered varied between 17.5 to 28.1 million per sample (Table S1) with an average 267 

trimmed length of 36bp. Of all sequence reads obtained, 93 to 98% could be assigned to 268 

the L. plantarum WCFS1 genome. Sequence reads that could be mapped to the genome 269 

were subsequently aligned to the coding sequences (CDS) based on the current annotation 270 

of protein encoding genes of L. plantarum WCFS1 (19). The majority of the direct cDNA 271 

sequencing reads that mapped to the genome could be aligned to the CDS (14.6 to 18.5 272 

million). In contrast, the sequences obtained by 3’-UTR sequencing mapped with much 273 

lower frequency to the CDS (<20%) (Table S1). A possible explanation for the strongly 274 

reduced CDS-mapping of the short reads (~36bp) obtained by 3’-UTR sequencing is most 275 

probably due to the preferential sequencing of the genetic regions downstream of the 276 

protein coding region that is intrinsic to this method. Unfortunately, there is no accurate 277 

prediction of the 3’-end of the transcript sequences for the L. plantarum genome. To 278 

overcome the low CDS mapping, an in silico approach was chosen that included a step-279 

wise 3’-extension of the CDS with 100bp, 200bp and 300bp. In silico predictions 280 

indicated that approximately 75% of the predicted terminator sequences in the L. 281 

plantarum WCFS1 genome were encompassed within the 100bp extension (7), while an 282 

additional 12% and 6% of the predicted terminators were encountered within the 200bp 283 

and 300bp extended 3’-UTRs, respectively (Figure S2). Analogously, in silico 3’-284 

extension of the CDS of the L. plantarum WCFS1 genome by 100bp enabled an 80% and 285 

130% increase in the gene-specific mapping of the CDM and MRS 3’-UTR transcript 286 
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sequence datasets, respectively. Notably, larger 3’-extension of the gene sequences with 287 

200bp and 300bp led to significantly smaller increases of CDS-specific transcript 288 

mapping (~25% and ~30%, respectively), supporting the prediction that 75% of the 289 

terminators within the first 100 bases downstream of the CDS (Figure S2A). Moreover, 290 

200bp and 300bp 3’-extension of gene sequences included a significantly higher fraction 291 

of the transcript sequences that were erroneously mapped to downstream genes, which is 292 

a consequence of the overlap of these extensions with downstream genes (Figure S2B). 293 

Based on these analyses, 100bp 3’-extensions were incorporated in the gene specific 294 

mapping of 3’-UTR transcript sequence mapping to the L. plantarum WCFS1 genome, 295 

which improved the number of reads mapped to the CDS from below 20% to 296 

approximately 35%.  297 

As anticipated, the distribution of the mapped sequences to the protein encoding CDS 298 

was markedly different between direct cDNA sequencing and 3’-UTR sequencing. While 299 

the reads obtained from 3’-UTR sequencing predominantly mapped at the 3’-end of the 300 

(extended) genes (Table S2), the reads obtained from direct cDNA sequencing appeared 301 

to distribute relatively equally over the entire CDS. Many prokaryotic genes are 302 

transcribed in operons that generate polycistronic transcripts that cover several genes, 303 

which are commonly functionally related (20, 45). Analogously, most of the 3’-UTR 304 

sequence datasets (~70%) consistently mapped to the last gene of such polycistronic 305 

transcripts (Figure 4). This indicates that accurate functional interpretation of 3’-UTR 306 

sequence datasets requires the correct prediction of transcriptional units (including 307 

operons) to precisely encompass all functions expressed.   308 

Both sequencing techniques showed comparable transcript coverage, where > 95% of all 309 

annotated genes (3135 genes) of the L. plantarum WCFS1 genome were at least covered 310 
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by a single sequence read. Similar read distribution was observed for direct cDNA 311 

sequencing and 3’-UTR sequencing (similar proportion between the area above and 312 

below the continuous line; figure 5), which indicates similar gene expression patterns. 313 

Notably, several genes were apparently overestimated by 3’-UTR sequencing, (upper left 314 

area of figure 5), which may be due to either a technical artefact by the application of 315 

poly-A tail, an artefact in the data interpretation by 100bp extension of the mapping, or 316 

the existence of some internal promoters (7).  317 

 318 

RNA sequencing validation by comparative analysis with the Microarray-derived 319 

transcriptomes  320 

 Since microarrays can be considered as an ‘established’ transcriptome methodology, the 321 

data obtained from the microarrays were employed as a reference to evaluate the overall 322 

validity of direct cDNA and 3’-UTR sequencing. Only the genes that gave a value for all 323 

methods (2962 genes) were used for comparison of the transcriptomes obtained by 324 

microarray and direct cDNA or 3’-UTR sequencing. Normalized signal intensity values 325 

per gene obtained by microarray analysis were plotted against normalized CDS-read 326 

assignment frequencies derived from both RNA sequencing methods.   327 

Both microarray and RNA sequencing transcriptome datasets were normalized using 328 

quantile normalization, as a quick and simple method to create and even distribution of 329 

microarray probe intensities and RNA sequencing read counts (5). Additional 330 

normalization approaches, such as RPKM (reads per kilobase of exon model per million 331 

mapped reads) (25) or FPKM (fragments per kilobase of transcript per million fragments 332 

mapped) (40) approach, which take into consideration the influence of transcript length 333 

towards the gene expression quantification of RNA sequencing reads, could give more 334 
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accurate gene expression quantification, especially of direct cDNA sequencing. Although 335 

overall transcriptome comparisons was done without considering the transcript length, 336 

high comparability was shown between microarray and direct cDNA sequencing as well 337 

as between microarray and 3’-UTR sequencing (Figure 6).  338 

Direct cDNA sequencing displayed a higher correlation to the microarray as compared to 339 

the 3’-UTR (Figure 6). This was especially apparent in transcripts with relatively high 3’-340 

UTR sequencing assignments compared to the array signal intensity (upper left area of 341 

figures 6C and 6D). These results indicate that direct cDNA sequencing generates 342 

transcriptome results that resemble those obtained by microarray transcriptome profiling, 343 

and that 3’-UTR appears to estimated expression levels are higher for subsets of genes as 344 

compared to the other two methods. These conclusions were also supported by rank based 345 

Spearman correlation analysis, showing higher correlation values between microarray and 346 

direct cDNA sequencing datasets (CDM: 0.835 [p<0.01] and 0.762 [p<0.01]; MRS: 0.881 347 

[p<0.01] and 0.707 [p<0.01], for direct cDNA sequencing and 3’-UTR sequencing, 348 

respectively).  349 

The application of 3’-UTR sequencing as a method for prokaryote transcriptome analysis 350 

has not yet been well established and may require additional normalization or processing 351 

steps to obtain an appropriate quantitative representation of the transcript levels that can 352 

be compared with microarray derived transcriptome datasets. To evaluate whether the 353 

lower correlation between 3’-UTR sequencing and array-based transcript datasets was 354 

caused by a biased positioning of the sequence reads within an operon, the expression 355 

values of the last genes in operons was also assigned to each upstream encoded gene 356 

within the same predicted operon. However, this data transformation step to 357 

accommodate polycistronic operon transcript in the 3’-UTR data did not improve the 358 



18 
 

correlation with the array derived datasets (data not shown). This may suggest that the 359 

lower correlation of these datasets may arise from a bias in the 3’-UTR extension or 360 

sequencing technology employed.  361 

The most relevant comparative analysis of the three methods employed here undoubtedly 362 

relates to the comparisons of the biological conclusions they may generate. To this end, 363 

the ability of the three technologies to consistently identify the same genes (1, 22) that are 364 

differentially expressed (DEG) when comparing growth on CDM and MRS. The 365 

sequence-based transcriptome quantification was determined by the ratio of sequence 366 

reads assigned to a gene in CDM and MRS obtained datasets, while the differential 367 

expression per gene in the microarray dataset was calculated using CyberT (3). In total, 368 

538 DEG with an expression fold-change >2 were detected within the DNA microarray; 369 

while 442 and 466 DEG with an expression fold-change >2 were detected by direct 370 

cDNA sequencing and 3’-UTR sequencing, respectively. Among the latter groups of 371 

genes, 233 and 204 DEG were shared between the microarray-based analysis and direct 372 

cDNA sequencing and 3’-UTR sequencing, respectively. Moreover, 172 genes were 373 

identified to have absolute fold change >2 for all techniques with the same up- or down-374 

regulation pattern; among which 152 genes were considered to be significantly 375 

differentially expressed according to the DNA microarray technology (FDR < 0.05) that 376 

was used as the reference technology. Thereby, this comparative analysis of differentially 377 

expressed genes establishes a good consistency of the biological outcomes generated by 378 

the three transcriptome technologies, characterized by similar fold-change of expression 379 

for most shared DEG. Heat map analysis of the differential expression data confirmed 380 

that 3’-UTR sequencing deviates slightly more from the microarray than direct cDNA 381 

sequencing (Figure 7). This is also reflected by the somewhat lower Pearson correlation 382 
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when comparing the microarray with 3’-UTR-sequencing (0.852; p<0.01) relative to the 383 

comparison of the microarray with the direct cDNA sequencing (0.897; p<0.01). Notably, 384 

the highest Pearson correlation was obtained of the two sequencing based technologies 385 

(0.951; p<0.01), which might be due to the saturated hybridization-signals in the array 386 

datasets (Figure S3) (14). 387 

Since this analysis of DEG was performed taking microarray data as a reference, DEG 388 

that display differential expression only according to the transcriptome sequencing 389 

analyses may have been missed. DEG analysis of the direct cDNA and 3’-UTR 390 

sequencing datasets revealed 50 additional genes with a differential expression value > 2 391 

in both sequencing based datasets. Of these genes, 40 appeared not to reach significance 392 

of regulation in the array dataset (FDR >0.05), but displayed conserved direction of 393 

differential expression according the array analyses, albeit it with < 2 absolute fold 394 

change ratio. Moreover, many of the probes associated with 36 of these 40 genes revealed 395 

saturated hybridization-signals in the array datasets (Figure S3), suggesting that they were 396 

inaccurately measured by the array due to falling outside the dynamic range of the array 397 

technology (14). This observation implies that RNA sequencing may exceed the depth of 398 

analysis in comparison to the ‘traditional’ array technologies, especially for genes that are 399 

expressed at a high level.  400 

Unlike microarray data, RNA sequencing count data is generally not well represented as 401 

continues distribution (27). Therefore, normalization procedure which are successfully 402 

applied for microarray data, might not be optimal for RNA sequencing dataset. Data 403 

normalization based on parametric approaches was implemented in several analyses 404 

platforms, such as edgeR (29), baySeq (15), and DESeq (2), which allow lowering of  405 

both biological and technical variability of replicated count data. Moreover, non-406 
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parametric approaches, like the noise modeling employed in NOISeq, allow the 407 

evaluation of low expression counts without any needs of replicates (38). Overall, it is 408 

very encouraging that the data presented establish that the three transcriptome methods 409 

generate a very similar biological view of the transcriptional behavior of a well-defined 410 

culture under well-defined conditions.  411 

 412 

Concluding remarks and outlook towards undefined ecosystem metatrancriptome 413 

sequencing 414 

The present study provides a validation of RNA sequencing techniques in prokaryotes, 415 

using a well-studied bacterium under well-defined conditions and employing DNA 416 

microarray technology as the reference transcriptome-methodology. Such validation of 417 

sequence based transcriptomics methodology is required to confidently apply sequence 418 

based transcriptome methods in samples derived from complex microbial communities 419 

with unknown composition and that live in poorly defined growth conditions. Such 420 

ecosystem meta-transcriptomic analyses cannot be performed using DNA microarrays 421 

due to sequence variations among the coding capacities among (close) relatives of similar 422 

phylogenetic origin, which makes quantification of transcripts on basis of hybridization 423 

signals highly unreliable. This study also demonstrates that 3’-UTR sequencing is 424 

complicated by the processing of the sequence data that do not map to coding regions of 425 

genes, and therefore can be anticipated to present considerable uncertainties during 426 

biological (genes and functions) interpretation of 3’-UTR RNA sequencing datasets 427 

obtained from complex microbial communities with an unknown genetic content. Taken 428 

together the results presented in this study indicate that direct cDNA sequencing 429 

technology is a promising approach for the generation of meta-transcriptome datasets of 430 
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an unknown microbial community that offers good possibilities for biological 431 

interpretation taking a set of representative microbial genomes as a mapping platform. 432 
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List of Figures 605 

 606 

FIG 1 Hybridization scheme of total RNA and enriched mRNA of L. plantarum WCFS1 607 

grown in CDM and MRS. Each arrow represents a single hybridization. Samples at the 608 

base of the arrow were labeled with Cy3 label and samples at the arrowhead with Cy5. 609 

 610 

FIG 2 Venn diagram showing the number of up-regulated/down-regulated/oppositely 611 

regulated genes in the enriched mRNA sample obtained from CDM and MRS grown 612 

bacterial cells (panel A) or in the RNA obtained from CDM growing cells, either total 613 

RNA or after mRNA enrichment (panel B). 614 

 615 

FIG 3 Cluster analysis of 240 genes; 60 of total RNA vs. mRNA enrichment and 180 of 616 

CDM vs. MRS; with >2-fold change and FDR-adjusted P-values < 0.05) of L. plantarum 617 

WCFS1. Functional categories enriched with the gene datasets in different growth 618 

conditions are indicated with continuous lines, while dotted lines indicate clusters of 619 

genes that displayed differential quantification due to the mRNA enrichment procedure. 620 

A very similar clustering results were also obtained when the complete transcriptome 621 

datasets were used (data not shown). 622 

 623 

FIG 4 Mapping of L. plantarum WCFS1 transcripts from direct cDNA sequencing and 624 

3’-UTR sequencing of MRS and CDM grown cultures based on a predicted 625 

transcriptional unit (38). Scaling differences of the Y-axis range are indicative for the up-626 

regulated transcription level observed in cells obtained from CDM grown cultures. 627 

 628 
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FIG 5 Comparison of normalized signal intensity between direct cDNA sequencing and 629 

3’-UTR sequencing, for bacteria grown in CDM (Spearman: 0.686; p<0.01) and MRS 630 

(Spearman: 0.678; p<0.01) growth. 631 

 632 

FIG 6 Comparison between normalized signal intensity level of microarray and 633 

normalized read counts of direct cDNA sequencing (A and B) and 3’-UTR sequencing (C 634 

and D) in transcriptome datasets from bacteria grown in CDM and MRS. 635 

 636 

FIG 7 Comparison of 152 transcript levels (40 down-regulated in CDM and 112 up-637 

regulated in CDM) that consistently were classified among the DEG gene sets, 638 

determined by microarray transcriptomes, or direct cDNA and 3’-UTR transcriptome 639 

sequencing. Data are sorted according to their fold-change within the reference datasets 640 

(DNA microarray technology). 641 
















