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“Ella está en el horizonte -dice Fernando Birri-. Me acerco dos 

pasos, ella se aleja dos pasos. Camino diez pasos y el horizonte 

se corre diez pasos más allá. Por mucho que yo camine, nunca 

la alcanzaré. ¿Para qué sirve la utopía? Para eso sirve: para 

caminar.” 

“Utopia is on the horizon -says Fernando Birri-. I move two 

steps closer; it moves two steps further away. I walk ten steps 

and the horizon runs ten steps further away. No matter how 

far I go, I can never reach it. So what's the point of utopia? The 

point is this: to keep walking.” 

Las palabras andantes – Eduardo Galeano 
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1.1. BACKGROUND 

1.1.1. Environmental monitoring and sensor networks  

Some recent dramatic events have highlighted the important role of 
environmental monitoring. During the release of radioactive material at 
Fukushima in Japan in 2011, radiation measurement devices located not only in 
Japan (Chino et al., 2011) but also all around the world (Masson et al., 2011) 
helped to monitor the exposure of people, food, water and other environmental 
resources to radioactivity. Similarly, during the dispersion of the volcanic ash 
from the Eyjafjallajoekull volcano in Iceland in 2010, remote sensing, in-situ 
devices and dispersion models were used to monitor and forecast the 
geographical areas that would be affected by the volcanic plume (Flentje et al., 
2010). Moreover, during the oil spill in the Gulf of Mexico in 2010, satellites, 
aeroplanes, ships, underwater devices and scientists on the ground were 
deployed to track the spill and determine the magnitude of the environmental 
damage (GEO, 2010). 

Vulnerability to natural disasters and human pressure on natural resources 
increase the need for environmental monitoring (de Gruijter et al., 2006). Proper 
responses to emergencies and the rational management of natural resources 
largely rely on information gathered from environmental observations (de 
Gruijter et al., 2006). Of the vast variety of environmental observation 
techniques, remote sensing is one of the most widely used, usually for capturing 
low-resolution data in large-scale areas and with long scanning periods.  

However, when an immediate response is crucial, it may be necessary to 
rely on constant, real-time and high resolution monitoring of a region of interest 
(Hefeeda and Bagheri, 2008). For such applications, sensor networks, such as 
wireless sensor networks (WSNs) (Figure 1.1), are feasible systems for in-situ 
and real-time monitoring with spatial and temporal resolutions never captured 
before (Porter et al., 2009; Rundel et al., 2009). They are revolutionising the way 
environmental data are collected and analysed (Balazinska et al., 2007; Nittel, 
2009), their main advantage being the capacity to observe, process and transmit 
data in a collaborative manner, which produces more value than a single sensor 
(Liang et al., 2005; van Zyl et al., 2009).  

WSNs are made up of a large number of densely deployed sensors in an area 
very close to a phenomenon of interest. Sensors are autonomous, self-configured, 
mobile, small, lightweight and low-power devices (Akyildiz et al., 2002; Nittel, 
2009). They consist of a processor, memory, a power supply and a radio 
frequency used to disseminate observed data to users in real time. In addition, a 
variety of mechanical, thermal, biological, chemical, optical and magnetic sensing 
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devices can be used to observe environmental phenomena (Yick et al., 2008). 
Applications of WSNs are very diverse, ranging from military target tracking and 
surveillance (He et al., 2006) to industrial machine monitoring (Gungor and 
Hancke, 2009) and healthcare and assisted living applications (Wood et al., 
2008). In the environmental field, WSNs are successfully used to monitor fire 
risk (Hefeeda and Bagheri, 2008), earthquakes and volcanoes (Werner-Allen et 

al., 2006), pollution (Hull et al., 2006), water quality (Jiang et al., 2009), soil 
moisture (Terzis et al., 2010), animal tracking (Juang et al., 2002) and 
agricultural productivity (Wark et al., 2007).  

 
Figure 1.1. A sensor of a wireless sensor network. 

Compared with other observation techniques, WSNs have distinct 
limitations: a limited amount of energy – generally battery power – which 
restricts the lifetime of the sensor network; a short communication range, which 
may affect sensor connectivity, with the associated risk of sensor isolations and 
transition delays; and limited processing and storage capacity in each sensor. In 
addition, network configurations, especially their topology and connectivity, are 
highly dynamic because they are mobile and may be damaged (Akyildiz et al., 
2002; Yick et al., 2008). Some of these changes are due to internal factors, such 
as battery drain, sensor movement or a failure in communication. Others may be 
produced by external factors, such as extreme weather conditions. Additionally, 
owing to the dynamics of the phenomenon, deployed sensors may not provide 
proper coverage of the area to be monitored. One of the main challenges in WSN 
research is to create intelligent and autonomous systems that are aware of these 
limitations and can adapt themselves. 

1.1.2. Mobile sensor networks 

Sensor mobility is achieved by attaching sensors to mobile objects such as 
animals (Juang et al., 2002), people (Campbell et al., 2008), bikes (Eisenman et 

al., 2007), buses (Zoysa et al., 2007) and robots (Dantu et al., 2005). Sensor 
mobility can be controlled or uncontrolled. If controlled, the sensors can change 
their location and trajectories to achieve a certain goal (Jun et al., 2009). For 
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instance, controlled sensor mobility is especially useful to ensure real-time data 
dissemination by moving sensors where connectivity is broken or where there 
are isolated sensors (Ekici et al., 2006), to extend the WSN lifetime by moving 
sensors close to those with low energy levels (Basagni et al., 2008; Jain et al., 
2006; Wang et al., 2010), to extend spatial coverage by relocating sensors and 
avoiding coverage holes (Wang et al., 2009), and to improve monitoring by 
moving sensors close to events (Butler and Rus, 2003).  

In environmental monitoring applications, phenomenon dynamics may 
mean that deployed sensors no longer provide proper coverage of the 
phenomenon. In these cases adaptive sampling is needed and the use of mobile 
WSNs may present advantages. Some of these advantages are evident in 
examples of environmental emergencies, such as the cases of Fukushima, 
Eyjafjallajoekull and the Gulf of Mexico mentioned above. To monitor radioactive 
releases, autonomous mobile sensors in WSNs could be used to track the spread 
of high radiation levels. They could move very close to the release source and 
other affected areas to provide real-time observation without human 
intervention, avoiding exposing people to unhealthy radiation levels. In the case 
of volcanic ash dispersions, mobile WSNs could move close to critical 
infrastructure, such as airports. Just a small number of mobile sensors could help 
to deliver flexible sampling by relocating themselves to locations that will 
optimise mapping and forecasting of plume dispersions. In the case of oil spills, 
mobile underwater WSNs may be the only means of obtaining detailed 
underwater information about the evolution of the oil spill in space and time, 
especially in areas difficult to access with other types of observation techniques, 
such as remote sensing. Sampling locations do not need to be defined prior to 
sampling; in fact, mobile WSNs can determine in real time the best place to move 
a sensor in response to the evolution of the phenomenon. 

1.2. RESEARCH GAPS 

Hitherto, sensor network research has primarily focused on software, hardware 
and sensor configurations (Akyildiz et al., 2002; Nittel, 2009; Yick et al., 2008); 
monitoring of the environmental phenomenon of interest has received 
considerably less attention (Zerger et al., 2010). Likewise, most studies on 
mobile WSNs have focused on addressing the main limitations of WSNs, such as 
network topology, connectivity and energy conservation (Wang et al., 2010; 
Younis and Akkaya, 2008). Some work has been done to improve spatial 
coverage of a study area through sensor mobility (Wang et al., 2009), but this 
addressed geometric issues of coverage without accounting for the 
environmental phenomenon itself. The use of mobile sensors as a means to 
improve the monitoring of environmental phenomena therefore remains largely 
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unexplored. Addressing this requires the consideration of two main mobility 
aspects. 

First, WSNs are highly constrained, which restricts sensor movements. 
Sensor movements may be constrained by the current state of the sensor 
network and by the environment itself, for example by low remaining energy 
levels or because sensors are located in areas difficult to traverse, such as a very 
dense forest. Some attempts have been made to address mobility constraints 
(Krause et al., 2009; Verma et al., 2006; Walkowski, 2008; Zou and Chakrabarty, 
2007), but they addressed specific mobility constraints without the possibility of 
extending the approaches to address other constraints. What is missing is a 
general model for representing mobility constraints arising from both the 
current status of WSNs and the geographical space where sensors are deployed.  

The second fundamental issue to consider is how sampling should be 
adapted to gain the maximum phenomenon knowledge from each single sensor 
movement. In other words: where mobile sensors should be moved. Previous 
studies have addressed this issue by uniformly dispersing sensors across a study 
area (Howard et al., 2002; Walvoort et al., 2010) and increasing sensor density 
where events occur frequently (Butler and Rus, 2003) or where a higher 
monitoring accuracy is needed (Hefeeda and Bagheri, 2008), or moving sensors 
to minimise the mean kriging error variance (Brus and Heuvelink, 2007; 
Walkowski, 2008). However, in these studies spatial sampling was adapted to 
geometric criteria, but not in response to the characteristics of the monitored 
phenomenon itself. As a result, methods to adapt spatial sampling by mobile 
WSNs to the characteristics of the monitored phenomenon are still needed.  

1.3. OBJECTIVES 

This thesis explores approaches to sensor mobility within a wireless sensor 
network for use in environmental monitoring. To achieve this goal, four sub-
objectives were defined: 

1. Explore the use of metadata to describe the dynamic status of wireless 
sensor networks. 

2. Develop a mobility constraint model to infer mobile sensor behaviour. 
3. Develop a method to adapt spatial sampling using mobile, constrained 

sensors. 
4. Extend the developed adaptive sampling method to monitoring highly 

dynamic environmental phenomena.  
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1.4. OUTLINE OF THE DISSERTATION 

Chapter 2 explores the use of metadata to describe the dynamic status of 
wireless sensor networks, which leads to the definition of a context model for 
WSNs. The model consists of four types of contexts: sensor, networks, sensing 
and organisation contexts.  

Chapter 3 develops a model that describes mobility constraints for the different 
types of WSN contexts to infer appropriate mobile sensor behaviour. This 
behaviour is focused on achieving a suitable spatial coverage of the WSN when 
monitoring forest fire risk.  

Chapter 4 develops a spatial sampling strategy for use with mobile sensors. 
Sensor mobility seeks to maximise the information gained from new 
observations and minimise the cost-distance of sensor movement under mobility 
constraints. 

Chapter 5 extends the method developed in Chapter 4 for the case of highly 
dynamic phenomena. It develops an optimisation method for deciding when and 
where to sample a dynamic phenomenon using mobile sensors. The optimisation 
criterion is the maximisation of information gained from a new sensor 
deployment.  

Chapter 6 presents the synthesis and recommendations for future research. 
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2.1. INTRODUCTION 

Sensors and their networks are becoming essential sources of information for 
planning, risk management and other scientific applications. They are 
revolutionising the way geo-referenced data is collected and analysed (Nittel and 
Stefanidis, 2004). In this paper, the focus is on wireless sensor networks (WSNs). 
These sensor networks are composed of a large number of sensors, densely 
deployed within or very close to a phenomenon of interest (Akyildiz et al., 2002). 
They present an advantage over other sensor networks mainly because the 
sensors are small, lightweight, and they consume less energy. They are usually 
self-adaptive systems and can be deployed with a spatial distribution that best 
fits the communication protocol requirements and the gathering of geo-
referenced data (Werner-Allen et al., 2006). Data collected by the sensors are 
typically transmitted through the wireless network to a sink sensor using radio 
frequency, which supports the storage of the transmitted data and the 
communication with other devices and networks. 

Interoperability of sensors aims at the achievement of an integrated sensing 
system, in which sensors act in a collaborative and autonomous approach to 
produce more value than individual observations (Liang et al., 2005; van Zyl et 

al., 2009). The objective of the sensor standardisation initiatives, carried out by 
the Institute of Electrical and Electronics Engineers (IEEE) and the Open 
Geospatial Consortium (OGC), is to overcome the heterogeneity of devices, 
communication protocols, networks, data formats and structures. However, in 
order to support the interoperability of WSNs over time it is necessary to deal 
with dynamic changes in the network, components and functionalities (De Roure 

et al., 2005; Grace et al., 2008). In general, interoperability could be achieved by 
taking into account several levels, including technical, syntactic, semantic, 
pragmatic, and dynamic ones (Manso et al., 2009). For example: (a) the technical 
level of interoperability aims at the interconnection of WSNs using common 
communication protocols, hardware and software; (b) the syntactic level 
supports the exchange of information among WSNs using a common data 
structure, language, logic, records and files; (c) the semantic level supports the 
exchange of information using common vocabularies and it is related to 
standards and specifications that define schemas for such an exchange. In the 
case of the pragmatic interoperability level, it allows interconnected WSNs to be 
known to each other and explore interface applications and services to invoke 
methods and procedures in order to manage the data they need. Finally, the 
dynamic interoperability level allows the monitoring of operations of other 
WSNs and the response to changes.  

Currently the OGC Sensor Web Enablement specifications (e.g. SML, SOS, 
SAS, SPS) provide a set of standards, interfaces and encodings to achieve 
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interoperability of sensor and sensor systems (van Zyl et al., 2009). From our 
understanding, it is mainly designed to handle the following interoperability 
levels: technical (web technologies), syntactic (encodings) and pragmatic 
(standardised interfaces). Moreover, some initiatives are being carried out to 
deal with the semantic interoperability of sensors (Sheth et al., 2008; W3C, 
2009). However, the dynamic interoperability still remains to be addressed in 
order to monitor and manage changes of status of different WSNs over time. 
Some of these changes are due to internal factors, such as a battery runs down or 
a neighbour’s communication fails. Others may be produced by external factors 
such as sensor damage by weather conditions or changes of objectives, purpose, 
security and privacy constraints.  

Therefore, the main research challenge is mostly related to the 
heterogeneity and dynamic issues of how to maintain interoperability of WSNs 
over time. When changes of WSN status occur, the systems must respond by 
triggering self-adaptive processes. These are used to configure, protect, optimise 
and repair a WSN itself, without the intervention of humans. They monitor the 
changes, detect failures and performance degradation, begin diagnostic 
procedures, and conduct preventive, corrective and proactive actions (Ruiz et al., 
2004). However, in the case of maintaining dynamic interoperability, the 
monitoring of these self-adaptive processes is not a simple task. Mainly because 
the dynamic and unpredictable changes of WSN status cannot be represented 
using a plain cause-effect approach. For instance, usually if a sensor has a low 
energy level, the action could be to “sleep” this sensor. But if the sensor is 
interoperating in an emergency situation (e.g. natural disaster, terrorist attack), 
then it must continue sensing and transmitting data instead of sleeping. This 
reasoning process of monitoring and adaptation needs to be contextualised 
because it depends on the context inside which the sensing is carried out 
(Giunchiglia, 1993).  

Our research premise is the existence of different contexts, both at in-
network and data repository levels, which play an important role in the dynamic 
interoperability of WSNs. From a pragmatic point of view, the dynamic 
interoperability of WSNs at different periods of time can be maintained by using 
a set of metadata elements in order to provide the description of observations, 
processes and functionalities, as well as the current configuration (Di Marzo 
Serugendo et al., 2007; Dini, 2004; Indulska et al., 2006). Metadata are the 
common thread that can connect all the status and functionalities of WSNs as 
well as preserve the context of the sensing data (Dini, 2004; Zhang et al., 2006). 
This paper describes the development of a context model based on metadata 
elements for maintaining the dynamic interoperability of WSNs. The reasoning 
process to contextualise the dynamic interoperability of WSNs using metadata is 
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carried out by two types of reasoning rules. One of them, the contextualising 
rule, is introduced in the scope of our research to identify WSN status according 
to different contexts using metadata. The other type, called bridge rules, was 
previously introduced by Giunchiglia (1993), and it is used to represent the 
relationships between contexts and the dynamic interoperability. In this paper, 
however, we mainly focus on contextualising rules. It is important to point out 
that previous developed context models have mainly considered sensors as a 
mechanism to capture information about the context itself (Baldauf et al., 2007). 
In contrast, this paper proposes a model towards a contextualised decision 
making about how to maintain the sensor dynamic interoperability. 

The next section describes the concept of metadata and their principal 
requirements in the scope of WSNs. Section 2.3 describes the notion of context 
that has been envisaged. The developed context model and its relevant aspects 
are discussed in Section 2.4. Furthermore, Section 2.5 describes the reasoning 
mechanisms of inferring and connecting contexts by providing examples of 
contextualising rules. Section 2.6 discusses the impact of the context model in 
WSN interoperability by providing examples of bridge rules. Finally, the main 
conclusions are summarised in Section 2.7. 

2.2. THE NOTION OF METADATA 

The most widely used definition of metadata is ‘data about data’. They provide 
the description of the what, where, when, who and how about data (GSDI, 2009). 
A comprehensive metadata example is that of a photograph, in which metadata 
describe when and where the photograph was taken, who the photographer was, 
what is in the photograph, what the camera features are or what post-processes 
have been done. Metadata are generally used to describe and structure the 
principal aspects of data with the aim of sharing, reusing and understanding 
heterogeneous datasets and also allowing information searching and retrieval 
(Baca, 2008; GSDI, 2009). In the scope of WSNs, metadata have been defined as 
descriptive data used to depict the WSN, including the environment, the sensors 
and their status, sensing data, and the WSN as a whole system (Zhang et al., 
2006). The use of metadata in WSNs has been mainly related to the execution of 
routing protocols and in-network data aggregation processes (Heinzelman et al., 
1999; Intanagonwiwat et al., 2003; Obashi et al., 2007). 

Currently, metadata need to become an explicit part of WSNs in order to 
preserve the knowledge of the WSN status over time (Table 2.1). On the one 
hand, they must describe dynamically the changes of status and report them 
back to other components and systems. For example, if a sensor changes its 
location or gets damaged, the system must be able to broadcast a message 
containing metadata elements in order to inform other sensor networks and 
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users about these changes. On the other hand, metadata must be automatically 
generated and updated, since real-time sensor data require real-time metadata 
as well. For example, if a sensor fails, the network must automatically (i.e. 
without human intervention) reconfigure new routes to transmit data. In the 
same way if a sensor changes its location, the sensing data (and their metadata) 
must reflect the new location.  

Table 2.1 Examples of WSN metadata elements for a sensor measuring temperature. 

Data Metadata Elements (MD) Value (V) 
T = 10 Phenomenon Temperature 

Data unit Celsius degree 
Time result 2009/01/23 19:23:45 
Location  Lat 40°26'North; Long 3°42'West  
Feature of interest Technical University of Madrid  
Sensor type  mts420 crossbow 
Sensor device  Sensirion SHT11 
Other associated data  Humidity, Barometric Pressure, Ambient, 

Light Sensors, Dual-Axis Accelerometer, 
GPS location 

Sensor identifier 5 
Number of sensors in network 11 
Number of sensor neighbours 4 

2.3. THE NOTION OF CONTEXT 

Despite the large amount of research work in the field of Artificial Intelligence, 
there is no concise definition of a context (Benerecetti et al., 2000). This makes it 
difficult to select a logical structure of representation and reasoning when 
context-dependent information is involved, in particular the one generated by 
WSNs. In this paper, we have used the metaphor of a box as proposed by 
Giunchiglia and Bouquet (1997). In this case, a context is a box that can be 
divided into two parts (Figure 2.1):  

- inside the box: a collection of WSN status that describes the status of a 
WSN over time, 

- outside the box: a collection of metadata elements (MD) and their 
respective values (V). 

 
Figure 2.1. The box metaphor of a context. 

The assumption is that the content of what is inside the box (i.e. WSN 
status) is determined by the values of metadata elements associated with that 
box. In other words, the contexts of WSN status are inferred using metadata 
elements that describe the sensing system, the current network configuration, 



Metadata 

15 

 

and the environmental restrictions. To address the box metaphor into the 
dynamic interoperability of WSNs, two considerations must be made (Bouquet et 

al., 2004). First, the dynamic WSN status (and its required self-adaptation) is 
considered as a local model, in the sense that the WSN status is based on local 
information. This has to do with the relationship between metadata elements 
and their values, and the representation of a context inside the box. For example: 
How do metadata elements and their values affect the representation of a WSN 
status? In what sense a metadata element provides implicit information which 
can be used to infer a context? Second, the dynamic interoperability is 
considered as a global model in the sense that it happens across multiple and 
heterogeneous WSNs and with multiple and shareable context representations. 
The issue here has to do with the relationship among the boxes. For example: 
How do these relationships affect the contents of different boxes? Therefore, the 
connection between global and local models can only be achieved by the 
representation and reasoning on different contexts. Contextualising WSN 
interoperability can be achieved by using reasoning rules, between dynamic 
interoperability (global model) and the WSN status (local model).  

The contexts are local models (where local here implies not shared) that 
encode a party’s view of a domain (Bouquet et al., 2004). In the scope of our 
research, the parties are the WSNs that interoperate; the domain is the dynamic 
interoperability and the view of the domain is the current status that has 
influence over its dynamic interoperability. Thus, in our model contexts are local 
models that describe the current WSN status in the domain of dynamic 
interoperability (Figure 2.2). 

 
Figure 2.2. Contexts connecting WSN status with dynamic interoperability through 

reasoning rules. 

Bouquet (2004) also points out that the notion of context is best used in 
those applications where the core problem is the use and management of local 
and autonomous representations, which is the particular case of WSN 
applications. Moreover, contexts are easier to define and maintain. They could be 
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constructed with no consensus among different WSNs, or only with a limited 
consensus which make it possible to achieve the desired level of communication. 
On the weak side, since contexts are local to WSNs, communication can be 
achieved only by constructing explicit mapping among the metadata elements of 
the WSN contexts. In a contextualised WSN, the knowledge is kept locally, but it 
could be put in relation with the knowledge of other WSN contexts and the global 
model via explicit mapping. Moreover, the context of a WSN is not unique in the 
sense that multiple contexts could be inferred for the same WSN status. It could 
be described with different granularities based on different levels of 
approximation, perspectives or temporal considerations. 

Finally, we distinguish two types of reasoning rules that are involved in the 
contextualisation of WSN interoperability: (a) Contextualising rules, they are 
used to infer the contexts of WSN status when WSN metadata and their values 
are matched by the rules. Following the box metaphor, they allow the 
interpretation of what is happening inside the box; and (b) Bridge rules that 
allow the relationships among different boxes in order to connect different WSN 
status with the dynamic interoperability. They can modify what happens inside a 
box depending on the inferred contexts in other boxes. However, in this paper 
we focus on the first of them, contextualising rules, which are showed in more 
detail in Section 2.5. 

2.4. THE DEVELOPED CONTEXT MODEL 

The context model describes the current WSN status through describing the 
sensing functionalities, the sensors, the network and the organisation features. 
Inspired by the compose-and-conquer approach (Bouquet et al., 2003), we have 
defined our context model based on four types of contexts. They are: sensing, 
sensor, network, and organisation contexts. Furthermore, there are relationships 
among these types of contexts that enable the implementation of contextual 
reasoning to compose a more understandable and compressible view of WSNs 
and their dynamic interoperability. Table 2.2 includes some examples of the four 
types of contexts.  

Table 2.2 Examples of the four types of contexts of WSNs. 

Sensing Contexts  Sensor Contexts 
same/different phenomena  
mobile phenomena  
indoor/outdoor 

lack of resources 
immobile/mobile sensor  
sensor isolation 
sleep/wake up 

Network Contexts Organisation Contexts 
low/high sensor density  
big/small network size 
exceeded/insufficient coverage area 

high/medium/low security restrictions  
interoperability forbidden  
administrative area where sensors are 
deployed 
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2.4.1. Sensing Contexts 

They describe the situation in which data are being captured. They describe the 
sensing conditions, the sensing operations, the monitored phenomenon, and help 
to evaluate and understand the sensing data (Campbell et al., 2008). In order to 
infer these contexts some metadata elements are needed. These metadata 
elements could contain: (a) spatial information, such as sensors and data 
locations and spatial reference systems; (b) temporal information, such as 
instant time or interval of observations; and (c) thematic information, such as 
features of interests and phenomena (Sheth et al., 2008). Other descriptive 
metadata elements are related to the captured data, observation processes and 
data collection characteristics (periodic, continue, or reactive). The inferred 
contexts could be related to when the data are sensing (day, night, season), where 
(sea, mountain, forest), how (sensing process, sensors) and what (phenomena, 
feature of interest). For instance, consider a sensor that is attached to a bike and 
it must monitor only when the bike is moving. When it is inferred that the bike is 
moving from the GPS or accelerometer data, the monitoring system should be 
started. In our model, this WSN status in which movements could be inferred 
from sensing data is represented by a mobile phenomenon context.  

2.4.2. Sensor Contexts 

They describe individual sensors that compose the WSN. In a field deployment, 
interoperability happens at sensor level. The individual sensors could participate 
in collaborative tasks among different WSNs, such as data transmission and in-
network data aggregation. The related metadata elements describe the state of 
memory, communication devices, sensors, actuators, processors and 
functionalities for each individual sensor. The inferred contexts are in 
concordance with the sensor status at a specific time and its impact on the 
interoperability with other sensors. For example, in a mobile WSN in which 
sensors move freely, communication failure is common if a sensor does not have 
near sensor neighbours. When the sensor recovers its neighbours, the 
communication will be recovered too. Interoperability would be interrupted 
while the sensor is isolated, thus the sensor needs to know its own context and 
act based on it. In our model this is represented by an isolation context. 

2.4.3. Network Contexts 

They describe functionalities, collaborations and interrelations among sensors. 
They describe sensor collaboration tasks in communication and processing 
functionalities to configure the WSN and its interoperability. The metadata 
elements used in these contexts are dynamics and some of them could be derived 
from the sensor contexts as emergent properties of the network. Some context 
examples are the network composition (homogeneous, heterogeneous), 
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organisation (hierarchical, flat), density (balanced, densely spaced), distribution 
(regular, irregular), size (small, medium, large), residual network energy and 
memory (low, high), and spatial coverage area (insufficient, exceeded). In the 
mobile WSN example, a predetermined study area could be exceeded or 
insufficiently covered by the mobile sensors. This needs to be known in order to 
trigger adaptive processes to cover in an efficient way the assigned area. In our 
model these network status are represented by an exceeded coverage area 
context and an insufficient coverage area context. 

2.4.4. Organisation Contexts 

They describe objectives, and legal, security and privacy restrictions. They show 
policies behind the WSN performance and how it could interoperate with other 
WSNs or devices. For instance, the interoperability of a WSN may be forbidden 
for security reasons; or certain sensors could have limitations to interoperate 
because of restrictions imposed to conserve their energy. Thus if a WSN accesses 
to an area with a different security code, it must act restricting its 
interoperability in concordance with the new security level. In our model these 
organisation status are represented by high, medium and low security level 
contexts. 

2.4.5. Relevant aspects of the Context Model 

After analysing the proposed contexts model, we are able to include some of its 
relevant aspects. They are described as one of the following: 

The contexts have different dynamics. The dynamics of changes in the four 
types of contexts are not the same. The sensor, sensing and network contexts 
present more dynamic status and these usually are unpredictable. Meanwhile, 
the organisation contexts are more static, in the sense that their changes are less 
usual, and they are mainly carried out by a human intervention. The sensing, 
sensor and network contexts are associated with the network and the 
environment itself, while the organisation context is associated with non-
physical aspects of the WSN.  

The contexts depend on the metadata values. The metadata elements 
characterise the WSN status, or in other words, the WSN status are obtained 
using metadata. These metadata, however, are not previously assigned to the 
contexts. Thus, the contexts could change depending on the metadata values. An 
example is related with the Sensor_Neighbours metadata element (Table 2.3). If 
the Sensor_Neighbours=12, then the network context is high density of sensors. 
In this context a sensor could select the best communication path to transmit the 
sensing data to the sink sensor. Meanwhile, if the Sensor_Neighbours=2, the 
network context is low density of sensors. Finally if the Sensor_Neighbours=0, 
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the context is isolation and the interoperability could be interrupted. The sensor 
needs to adapt itself in order to overcome this status and avoid losing sensing 
data. 

Table 2.3 Example of contexts depending on metadata values. 

Metadata Element Values Contexts 

Sensor_Neighbours 
12 high density 
2 low density 
0 isolation 

 

The contexts depend on the level of approximation. As an example, we use an 
essential context component: the location or where. The meaning of where could 
change according to the level of approximation (Table 2.4). If a sensor has a GPS 
device, it is possible to attach the spatial coordinates to sensor measures such as 
temperature, light or humidity. This spatial location belongs to the sensing 
contexts. On the other hand, if the GPS device tracks the sensor trajectory, the 
observed location becomes part of the sensor contexts. Based on the individual 
sensor locations, it could be possible to define the network coverage area, the 
extension, density, sensor neighbours, sensor encounters, and detention areas 
which belong to the network contexts.  

Table 2.4 Example of contexts according to different levels of approximation. 

Metadata Element Level of Approximation Contexts 

Location 
Lat 40°26'North 
Long 3°42'West  

Data location Sensing Context 
Sensor location Sensor Context 
Network coverage area Network Context 
Administrative area Organisation Context 

 
The contexts have relationships among them. Context relationships are based 

on bridge rules. They link different contexts when the inference in one context 
has an influence in another context (Giunchiglia, 1993). The bridge rules allow 
the mapping of multiple WSN contexts (Bouquet et al., 2003). For instance, to 
compute the network coverage area (network context) is necessary to know the 
location of sensors (sensor context). On the other hand, for security reasons only 
authorised systems (organisation context) are allowed to use certain sensing 
functionalities (sensing context). The immobile/mobile contexts (sensor context) 
could be inferred from the GPS or accelerometer data (sensing context). 
Furthermore, sensor interactions must be validated by security and privacy 
restrictions (organisation context).  

Run-time and historic contexts. From a temporal consideration, we could 
distinguish two types of contexts, the run-time and the historic contexts. The 
run-time context is the context of the current WSN status, and it is used in real 
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time. Meanwhile, the historic context is the memory of previous status. As an 
example, in an isolation context the system triggers in-sensor storage processes 
to avoid losing the sensing data while the sensor remains in this isolation 
context. When the neighbour communication is restored, a new context is 
inferred: in-network sensor. However, the sensor needs to have memory to know 
what data were stored within the sensor during the previous context (isolation 
context) to could transmit them to the sink sensor. Additionally, the sensing 
contexts use the historic context to preserve the contents of the sensing data. 

2.5. REASONING ABOUT WSN CONTEXTS: THE IMPLEMENTATION OF 
CONTEXTUALISING RULES 

Different forms of contextual reasoning are involved to carry out the reasoning 
mechanisms of inferring and connecting contexts. Benerecetti et al. (2000), in 
their work about the foundation of a contextual reasoning theory, identify three 
fundamental dimensions of contexts (partiality, approximation and perspective) 
and their relations with three forms of contextual reasoning (localised, push and 
pop and shifting reasoning). Thus depending on the context dimension different 
mechanisms of context reasoning are used. 

If the focus is on the partiality context dimension, the reasoning mechanism 
is localised reasoning. The partiality is the portion of a domain that is 
represented, and then the localised reasoning does not consider all that is known 
about a domain, but rather a subset (Benerecetti et al., 2000; Giunchiglia, 1993). 
In this approach, the reasoning is kept locally based on the local WSN status, and 
it is linked with other WSN status and with the dynamic interoperability (global 
model) using the bridge rules. For instance, if the local context of a sensor is a 
low energy level, the consequence could be to sleep the sensor. But if this context 
is connected with an emergency context, then the sensor must continue sensing 
instead of sleeping. This example shows how the inference process in the 
dynamic interoperability domain could lead to different decisions depending on 
the local and global models.  

Moreover, when the contexts depend on the level of approximation it is 
possible to change the contexts granularity by adding (pushing) or extracting 
(popping) some metadata elements into the context box. For instance the where 
context could change according if the approximation is at sensing, sensor, 
network, or organisation contexts. Then, adding sensor location contexts 
(individual sensor locations) will determine the network location context 
(network coverage area). Thus, if the focus is on the degree of approximation, the 
reasoning about WSN contexts will be push and pop reasoning.  
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Finally, if the focus is on changing metadata values (perspective dimension) 
the reasoning about WSN contexts will be a shifting reasoning. This form of 
reasoning is called shifting because the changes of metadata values shift the WSN 
contexts. For instance, when the Sensor_Neighbours metadata changes its value 
from 12 neighbours to 0 neighbours, the perspective from which the WSN is 
observed also changes from a high density context to an isolation context.  

In our approach the WSN contexts are inferred from the WSN status using 
metadata elements. Therefore, we introduce contextualising rules to reason over 
WSN status using data and metadata that describe the sensing system, the 
current network configuration, and the environment restrictions. The 
contextualising rules are deductive rules (if-then-else) and are fed by the current 
WSN metadata. Some of these metadata are static and established by default (e.g. 
access restrictions, security levels, and owners). Meanwhile, others are dynamic 
and automatically extracted from the WSN (e.g. energy level, sensor location). 
The dynamics of a WSN status should be automatically captured and self-
described through metadata and some of them can be derived by the data itself 
(e.g. the accelerometer data help to infer if the node is moving or fixing).  

The implementation of the contextualising rules has been done with Jess 
rule engine. Jess is a rule-based system that uses rules to derive conclusions from 
premises. The premises are the if first part of rules, meanwhile the conclusions 
are the then second part of rules. The Jess architecture consists of (a) the rule 
base that contains all the defined rules; (b) the working memory that is the WSN 
metadata elements and their values (also called facts) that the rule engine 
operates on; and (c) the inference engine that controls the process of firing the 
rules and matching them with the working memory. We have used the Jess rule 
engine integrated into the Protégé knowledge-engineering framework, through 
the JessTab plug-in (Eriksson, 2003; Friedman-Hill, 2003). This has allowed us to 
develop the mapping between the Protégé knowledge bases (context classes) 
and Jess facts (metadata elements and their values). In our implementation, 
when a new set of metadata instances is uploaded in Protégé, the contextualising 
rules are executed and, as a result, the current contexts are inferred according to 
the current metadata values. 

In the next section, we show some examples of contextualising rules 
expressed in Jess language. In these examples contexts are inferred and the 
interoperability entails to be adapted in order to continue interoperating. 
Although they are simple rules constructions, they are useful to illustrate how 
contexts could be inferred from: the automated extracted metadata (Example 1), 
the sensing data (Example 2) and the metadata extracted using the GPS device 
(Example 3).  
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2.5.1. Example 1 

This rule uses the battery level to infer whether the sensor is sensing in a low 
battery context. It is a useful context in WSNs to adapt resource consumption 
depending on, for example, if the sensor must sleep, or on the other hand, it must 
continue sensing because the context of interoperability is an emergency 
situation. The Jess rule engine evaluates the metadata loaded into its working 
memory. When they match the premise “if the battery level is less or equal than a 
defined threshold (<= ?battery threshold)”, the sensor is classified into the low 
battery context. 

(defrule sensor_context::low_battery 
(object (is-a metadata) (sensorid ?sensorid) (result_time ?result_time) 

(battery ?battery&:(<= ?battery threshold))) 
=> (make-instance of low_battery (sensorid ? sensorid) (result_time 

?result_time))) 

(2.1)  

2.5.2. Example 2 

In this example, contextualising rules are developed to infer whether the context 
of a sensor is immobile or mobile. In this case, the immobile and mobile contexts 
are defined using the accelerometer sensing data. When the accelx and accely 
data match a defined threshold value, the rules classify the sensor into immobile 
or mobile contexts. Additionally, an extra rule is fired to validate that there are 
not duplicated instances. 

(defrule sensor_context::immobile 
(object (is-a sensing_data) (sensorid ? sensorid) (result_time ?result_time) 

 (accely ?accely&:(and (>= ?accely threshold) (<= ?accely threshold))) 
 (accelx ?accelx&:(and (>= ?accelx threshold) (<= ?accelx threshold)))) 

=> (make-instance of immobile_context (sensorid ? sensorid) (result_time 
?result_time) 

(accely ?accely) (accelx ?accelx))) 
 

(2.2)  

(defrule sensor_context::mobile 
(or (and (object (is-a sensing_data) (sensorid ? sensorid) (result_time 

?result_time)  
(accely ?accely&:(or (< ?accely threshold) (> ?accely threshold))) (accelx 

?accelx)))  
(and (object (is-a sensing_data) (sensorid ? sensorid) (result_time ?result_time) 

(accely ?accely) (accelx ?accelx&:(or (< ?accelx threshold) (> ?accelx 
threshold))))))  

=> (make-instance of mobile_context (sensorid ? sensorid) (result_time 
?result_time)  

(accely ?accely) (accelx ?accelx))) 
 

(2.3)  
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(mapclass mobile_context) 
 (defrule remove_if_duplicate_instances_mobile_contex 

(object (is-a mobile_context) (sensorid ? sensorid) (result_time ?result_time) 
 (object ?instance))(object (is-a mobile_context) (sensorid ? sensorid)(result_time 

?result_time) (object ~?instance)) => (unmake-instance ?instance)) 

(2.4)  

2.5.3. Example 3 

In order to infer if a sensor is sensing in a high or low security geographical area, 
we used sensors with GPS devices. When the sensors access into an area with a 
different security level, they must act restricting its interoperability according to 
the new security level. In practice, GPS sensing data were converted into a spatial 
database using the PostGIS spatial extension of the PostgreSQL object-relational 
database. PostGIS allows GIS (Geographic Information Systems) objects to be 
stored in the database and includes functions for the analysis and processing of 
spatial objects, such us proximity, adjacency or containment (PostGIS, 2007). 
Thus, the metadata provide information about where the sensors are located, 
and whether they are contained in high or low security areas. When these spatial 
metadata have been calculated, the rule engine is fired and the high security and 
low security contexts are inferred. 

defrule organisation_context::high_security_area 
(object (is-a metadata) (sensorid ? sensorid) (result_time ?result_time) 

(high_security_area TRUE))=> (make-instance of high_security_context (sensorid 
? sensorid) (result_time ?result_time))) 

 

(2.5) 

(defrule organisation_context::low_security_area 
(object (is-a metadata) (sensorid ? sensorid) (result_time ?result_time) 

(low_security_area TRUE))=> (make-instance of low_security_context (sensorid ? 
sensorid) (result_time ?result_time))) 

(2.6) 

2.6. THE IMPACT OF THE CONTEXT MODEL IN WSN INTEROPERABILITY 

In this paper we have mainly focused on the definition of a local context model 
based on metadata elements. It is still necessary, however, to address the 
development of a global model for achieving the dynamic interoperability of 
WSNs. Our proposed local model addresses issues such as sensor mobility, 
energy levels, sensor isolation, network configurations, the entrance and exit of 
sensors within security areas and privacy and security constrains. We argue that 
based on the WSN inferred contexts it is possible to maintain the dynamic 
interoperability when unpredictable changes of status occur. In other words, the 
WSNs could be monitored themselves and when a certain status is detected, the 
current contexts and their responses are inferred at the local model as well as at 
the global model. This is carried out based on the description of WSN contexts 
over time that allows making more intelligent decisions based not only on the 
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location and technical specifications of sensors, but also on the purpose of 
interoperability, security and privacy constraints, the environment in which the 
sensing and interoperability take place and the current status of network.  

In fact, the contexts describe what happens in the WSN and in its 
surroundings; meanwhile, the bridge rules provide the reasoning mechanism 
that relates the contexts of different WSNs. At the global model, decision making 
could take place in order to decide what should be done to continue 
interoperating in despite of the dynamic changes. Once the local contexts are 
inferred, they could be linked using bridge rules. For example, the 
interoperability is established in a geographic area of interest for solar 
luminosity monitoring. Then, when a mobile sensor with a light measuring 
device enters in this area, it begins to sense and transmit measurements (Figure 
2.3a). However, if the sensor density is low, the sensing data could not be 
transmitted in real time due the insufficient number of sensors. Thus, it is 
needed to interoperate with other sensors and use them as intermediate sensors 
to transmit the sensing data in real time, evaluating previously if their battery 
levels are high (Figure 2.3b).  

 
Figure 2.3. (a) Bridge rules evaluating local contexts. (b) Bridge rules linking and 

evaluating multiple contexts. 

The use of contexts in sensor interoperability tends towards an adaptive 
interoperability. For example, a sensor begins to interoperate with other sensors 
and its energy context is high. Later it becomes low and the interoperability 
could be interrupted. However, if the purpose of interoperability is an 
emergency situation (i.e. hurricane, flood, fire) the sensor could continue 
sensing. Other example with different interoperability purpose is a WSN 
transported by people in which the sensors interoperate to exchange some 
parameters whether people interact. The criteria of these reasoning processes 



Metadata 

25 

 

based on multiples local contexts and global interoperability purpose need to be 
defined in future research.  

2.7. CONCLUSIONS 

In order to handle changes of WSN status and to support dynamic 
interoperability, the relationships between local and global interoperability 
models entails to be addressed. Towards this challenge, we have introduced the 
notion of contexts as an explicit representation of WSNs status inferred from 
metadata elements. Moreover, a context model is proposed to describe the WSNs 
status based on four types of contexts: sensing, sensor, network and organisation 
contexts. The focus has been on describing and reasoning over different contexts, 
using two types of reasoning rules: contextualising rules and bridge rules. In this 
paper we have mainly focused on the development of contextualising rules as a 
mechanism to infer different WSN contexts using metadata elements. As a proof 
of concept, we have shown examples of contextualising rules based on the 
localised reasoning in the sensor and organisation contexts, as well as the 
shifting reasoning in which the contexts depend on the metadata values.  

We have shown the important role of metadata elements to contextualise 
the dynamic interoperability of WSNs. The metadata act as parameters in order 
to interpret what is happening inside the different contexts. Depending on their 
value and the level of approximation, the interpretation of contexts could be 
different. Some people may argue that metadata are low level information about 
WSNs, but managing them in a properly form (contextualising rules), they allow 
the inference of high level of knowledge about the WSN contexts in which the 
sensing is carried out. The use of spatial metadata, such as location, coverage 
area or security area, adds the spatial dimension into the reasoning process 
allowing the inference of spatially related contexts. 

Furthermore from a sensing data collection view point, sensor networks are 
capturing a massive amount of data and with their interoperability such an 
amount increases even more. Currently, all these data are provided in isolation 
without any context (van Zyl et al., 2009). Thus, contextualising the 
interoperability would allow a more intelligent recovery of the sensing data and 
available resources based not only in queries about where (geographic 
coordinates), when (date and time), how (sensor specification) or what 
(phenomenon type), but also related with more rich contextual information such 
as: sensors that are sensing in a high security areas or near the sea; sensors that 
are sensing within the same context but not necessary in the same geographical 
area, the context in which sensors had been interacted, or all the sensors that are 
allowed to interoperate and that also are attached to public transport. The 
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context-based information retrieval could be pointed out as an important issue 
of Sensor Web.  

This paper describes our first step towards the maintenance of WSN 
interoperability. In order to contextualise the WSN interoperability further 
analysis on the relationships among contexts is needed to develop a 
representation and bridge rules of the global model (dynamic interoperability). 
Therefore, further research should be done to implement bridge rules as part of 
a decision-making process that can allow the reasoning among different contexts 
and the dynamic interoperability, which in turn could allow decisions about 
what should be done to maintain the dynamic interoperability in despite of the 
changes of WSN status. We are planning to explore more in detail the localised, 
push and pop and shifting reasoning tasks and their relation with the bridge 
rules. Finally, we will implement a concrete case of study for the evaluation of 
our context model as an approach to address the dynamic interoperability of 
WSNs. 
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3.1. INTRODUCTION 

Forest fire risk monitoring is a critical fire prevention activity to minimise 
environmental as well as human damage. It characterises when and where a 
forest fire is more prone to occur (Chuvieco et al., 2010; Dlamini, 2010). Remote 
sensing techniques are broadly used to capture low resolution data in large-scale 
areas and with long scanning periods. However, if an immediate response is 
crucial, it becomes necessary to provide constant, real-time monitoring of a 
region of interest (Hefeeda and Bagheri, 2008). Within this scope wireless sensor 
networks (WSNs) have been proved to be feasible systems to enable real-time 
monitoring of areas never overseen before, with spatial and temporal 
resolutions never captured before (Porter et al., 2009). Therefore, WSNs have 
been successfully used not only to monitor fire risk for early detection (Hefeeda 
and Bagheri, 2008; Son et al., 2006), but also to detect already started fires 
(Doolin and Sitar, 2005; Yu et al., 2005), and to monitor their behaviour 
(Antoine-Santoni et al., 2009; Hartung et al., 2006).  

WSNs are made up of a large number of geographically and densely 
deployed sensors very close to a phenomenon of interest. The sensors are self-
configured, mobile, small and lightweight. They disseminate sensing data to 
users in real time using a radio frequency (Akyildiz et al., 2002; Nittel, 2009). 
Mobility is achieved by attaching the sensors to mobile objects such as animals 
(Juang et al., 2002), people (Campbell et al., 2008), bikes (Eisenman et al., 2007), 
vehicles (Zoysa et al., 2007) and robots (Dantu et al., 2005). Furthermore, sensor 
mobility can be controlled or uncontrolled. If controlled, the sensors by 
themselves can change their location and trajectories to achieve a certain goal 
(Jun et al., 2009). For instance, the controlled sensor mobility has been especially 
useful to maintain the connectivity among sensors assuring real-time data 
dissemination (Ekici et al., 2006), to extend the WSN lifetime by replacing 
sensors with low energy (Basagni et al., 2008; Jain et al., 2006), to improve WSN 
spatial coverage avoiding holes (Wang et al., 2009), and to improve monitoring 
by moving sensors closer to events (Butler and Rus, 2003).  

Although a large amount of studies have been carried out about WSNs and 
forest fire risk monitoring, none of them has taken advantage of the controlled 
sensor mobility. In this regard, controlled mobility can play an important role 
when, due to the fire risk variability, sensors may end up covering the dynamic 
phenomenon wrongly. How well the sensors cover a phenomenon within a 
region of interest is known as WSN spatial coverage (Liu et al., 2005). Enhancing 
WSN spatial coverage entails considering sensor behaviour such as sleeping and 
moving, that are constrained by both the phenomenon and the WSN. For 
instance, different fire risk intensities require the configuration of different WSN 
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coverage densities. This can be achieved by moving sensors towards hotspots 
needing a higher coverage density. Additionally, the low energy of sensors can 
constrain the moving behaviour in order to save energy. However, if there is a 
concurrent emergency situation with high fire risk, the energy factor should not 
constrain the behaviour any longer. In this context, it becomes critical to monitor 
the fire risk properly rather than to save energy. Therefore, our research 
challenge focuses on the inference of mobile sensor behaviour, bearing in mind 
mobility constraints on the phenomenon as well as the sensing system itself. 
Particularly, our concern is about whether sensor behaviour should change to 
achieve suitable spatial coverage of a dynamic phenomenon such as forest fire 
risk.  

This paper presents a model to make explicit mobility constraints of 
sensors. The mobility constraint model aims to probabilistically infer behaviour 
of mobile sensors in the scope of forest fire risk monitoring. The model follows a 
Bayesian network, centralised approach. It consists of three components: (1) a 
context typology using metadata to describe different contexts in which a WSN 
monitors a dynamic phenomenon; (2) a context graph encoding probabilistic 
dependencies among variables about mobility constraints within the different 
contexts; and (3) contextual rules encoding expert knowledge and application 
requirements needed for the inference of sensor behaviour. The Bayesian 
network approach has been chosen to provide a useful way of dealing with 
complex dependencies among variables. This is done by combining robust 
probabilistic methods with the clarity of graphs (Jordan, 1998). The probabilistic 
dependencies among variables can be obtained from data as well as from expert 
domains. This is crucial whenever data are not available due to high cost or just 
impossible to observe (Wiegerinck et al., 2010). Moreover, Bayesian networks 
can update and propagate probabilities to obtain the current state of the mobility 
constraints, which is essential in a highly dynamic environment. We have 
simulated the deployment of a mobile WSN. The monitoring has used the Fuel 
Fine Moisture Code (FFMC) of the Canadian Fire Weather Index, as an indicator 
of the relative ease of ignition (Lawson and Armitage, 2008). Two scenarios have 
illustrated the inference of mobile sensor behaviour to enhance the spatial 
coverage. One with low fire risk to exemplify the inference of sleeping sensor 
behaviour; and the other with a higher fire risk level to mainly infer moving 
sensor behaviour. 

This paper starts describing related studies about forest fire applications, 
WSNs and Bayesian networks. Then the mobility constraint model is presented 
through an incremental explanation of its three components (context typology, 
context graph, and contextual rules), and how they are employed in fire risk 
monitoring. Section 3.4 provides the inference of sensor behaviour within the 
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mobility constraint model. Section 3.5 reports the results based on low and high 
fire risk scenarios. Finally, a discussion and conclusions are presented, as well as 
our anticipated future research.  

3.2. RELATED STUDIES 

Several studies have been carried out using WSNs in forest fire applications. 
They have efficiently detected forest fires based on weather data captured using 
immobile WSNs (Doolin and Sitar, 2005); they have monitored fire behaviour 
combining weather data and visual images provided by cameras (Hartung et al., 
2006); and they have also monitored the kinematics of spreading fire to support 
fire fighting strategies (Antoine-Santoni et al., 2009). Nevertheless, these studies 
have employed immobile WSNs for the detection of already started fires. By 
contrast, our focus is on mobile WSNs for monitoring forest fire risk. 

Hefeeda and Bagheri (2008) have developed an early detection procedure 
for forest fires. The authors have monitored fire risk using WSNs and the 
Canadian Fire Weather Index (Lawson and Armitage, 2008). The forest fire risk 
issue has been modelled as a coverage problem employing an overpopulated 
immobile WSN. The sensors could go to sleep and wake up creating a balance in 
the energy consumption in order to stretch out WSN lifetime. These sleeping and 
waking up mechanisms have also provided various coverage densities to obtain 
higher accuracies in specific areas. The relevance of this study is the 
consideration of coverage density variations in forest fire risk monitoring. 

Regarding mobile sensors, two studies are worth being mentioned. Sahin 
(2007) has detected fires with mobile sensors attached to animals using two 
methods: one based on thermal detection, and another one based on animal 
behaviour classification, e.g. panic behaviour could be a fire indicator. In this 
study, the mobility was uncontrolled, and for that reason it was not possible to 
change the behaviour of the mobile sensor. Moreover, Erman et al. (2009) have 
used mobile WSNs cooperating with unmanned aerial vehicles (UAVs) for 
mission critical management involving fire detection. The main focus was on the 
data delivery with energy cost analysis and reliability of the routing protocol 
rather than on the expected behaviour of the mobile sensors in relation to the 
fire detection itself. 

Furthermore, Dlamini (2010) has used Bayesian networks to determine 
biotic, abiotic and human factors that most influence the occurrence of fire in 
Swaziland. This study has shown how domain knowledge and limited empirical 
and GIS data can be combined within a Bayesian network. However, the study 
has been based on historical fire data without any integration with real-time 
data. 
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Despite the large amount of studies carried out about forest fires and WSNs, 
none so far had taken advantage of controlled sensor mobility. Therefore, this 
paper contributes to fill this gap by proposing a mobility constraint model to 
probabilistically infer the behaviour of mobile sensors. 

3.3. MOBILITY CONSTRAINT MODEL 

We propose a model for mobility constraints on the phenomenon and the WSN 
itself to be made explicit. It makes use of a Bayesian network approach and 
allows the probabilistic inference of the most suitable sensor behaviour. The 
following sections present the model components, starting with the description 
of the context typology, continuing with a theoretical description of the context 
graph and the selected variables about mobility constraints in fire risk 
monitoring and finishing with the use of contextual rules. 

3.3.1. The context typology 

The objective of the context typology is to describe the situation in which a WSN 
is monitoring a dynamic phenomenon from different perspectives. It consists of 
four types of contexts: sensor, network, sensing, and organisation (Ballari et al., 
2009). The sensor context describes each individual sensor in terms of location, 
energy and type of mobility. The network context, which in turn contains the 
sensor context, describes the WSN as a whole. It describes the interrelation and 
cooperation among sensors such as spatial coverage extension, spatial coverage 
density, and neighbours. The sensing context describes the monitored 
phenomenon and its current spatial distribution and intensity. Moreover, the 
sensing context can be described for each individual sensor as well as for the 
whole WSN. Finally, the organisation context describes application requirements 
and objectives of the monitoring. The latter is the most general context; it 
contains all the other types. Figure 3.1 shows a diagram of the contexts. 

 
Figure 3.1. Diagram of the four types of contexts. 

The four types of contexts are not isolated from each other. Dependencies 
exist among them in the sense that what happens within one context could affect 
what happens within the others (Giunchiglia, 1993). For instance, the sensor 
location (sensor context) can change due to mobility affecting the spatial 
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coverage extension and density (network context). Furthermore, these 
dependencies can also exist within the same context. For instance, an increase of 
the value of the Fine Fuel Moisture Code – FFMC (sensing context) can also 
produce the increase of the fire risk level (sensing context). 

The description of the contexts is made using metadata, and the 
relationships between metadata represent dependencies within a context and 
among different contexts. Metadata have been widely defined as descriptive data 
about data. This definition has also been extended to describe processes, 
functionalities, systems, and even situations. Although in practice the distinction 
between data and metadata is not always clear, we make the following 
consideration. Data are exclusively sensing data captured by the WSN (e.g. 
temperature, GPS location), whereas metadata are descriptive data about the 
WSN (e.g. energy level, type of mobility), and further computed data based on 
the sensing data (e.g. FFMC, spatial coverage). The reason for this distinction is 
to make use of metadata as descriptors of what is happening in the different 
contexts, regardless of whether some metadata could also be considered as data 
in other applications outside our model. 

3.3.2. The context graph 

A context graph is a Bayesian network, which in turn is a directed acyclic graph 
that encodes probabilistic dependencies among random variables of interest 
(Charniak, 1991; Jensen and Nielsen, 2007; Pearl and Russell, 2001). The 
structure of this context graph consists of nodes representing the variables, each 
variable having a finite set of mutually exclusive states and edges representing 
dependencies or relationships among these variables. According to the 
directionality of the edges, a set of parent and child variables can be defined. 
Moreover, the strength of the dependencies between variables is encoded by 
conditional probabilities. To each variable B with parents pa(B), a conditional 
probability table P(B|pa(B)) is attached. This table shows the conditional 
probability of the variable B having a certain state, given the occurrence of some 
state of its parents. Figure 3.2 shows an example of a Bayesian network. 

 
Figure 3.2. An example of a Bayesian network with variables A–D; true and false states 
and conditional probability tables for the variables are shown. For instance, P(B|A) can be 
read as the conditional probability of B given the probability of its parent A. 
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In our approach, metadata describing the four types of contexts are used as 
variables on mobility constraints. The edges between the variables represent 
dependencies among the contexts as well as within the same context. We 
distinguish different types of variables: (1) observed variables fed with metadata 
captured by the WSN as well as predefined metadata about the WSN 
configuration and requirements. Examples are the sensor id, the energy level and 
the extension of the region of interest the WSN should monitor; (2) computed 
variables fed with computed metadata based on sensing data and other 
metadata. For instance, temperature and humidity can be used to compute a 
more complex phenomenon such as forest fire risk; and (3) inferred variables 
based on other variables, since there are neither observed nor computed 
metadata about them. 

Whether related variables are observed or computed, the conditional 
probability tables can be learned from metadata values. The goal of the learning 
is to find the values for each conditional probability table which maximises the 
likelihood of the metadata values (Binder et al., 1997; Heckerman, 2008). In our 
model we use the Expectation–Maximisation-EM learning algorithm (Dempster 

et al., 1977). It handles incomplete datasets which are common in WSNs due to 
loss of connectivity among sensors. These conditional probability tables are 
updated every time new metadata values feed the context graph. 

By contrast, in the case of inferred variables, there are no metadata values 
that can be used to learn conditional probabilities. Thus contextual rules enable 
us to define the expected strength of the dependencies between variables. A 
further explanation about contextual rules is provided in Section 3.3.3. 

Furthermore, the context graph allows probabilistic inference by 
probability propagation. It concerns the problem of computing the conditional 
probability distribution of a subset of variables given another subset of variables. 
It propagates the probabilities throughout the graph to deduce the inferred 
variables based on the observed and computed ones. In other words, the 
probability propagation is the action of updating the probabilities in each 
variable in the graph when metadata are given (Jordan, 1998). Conceptually, the 
posterior probability P(B|A) is calculated using the Bayes rule P(B|A) = 
P(A|B)P(B)/P(A). However, computationally, this calculation is hard and 
inefficient. Methods, such as junction trees, exploit the structure of the context 
graph in order to derive an efficient exact inference algorithm (Needham et al., 
2007). A detailed explanation can be found in (Huang and Darwiche, 1996). 

Variables about mobility constraints in forest fire risk monitoring  

In this section, we present the variables for the mobility constraints in forest fire 
risk monitoring. The mobility constraints belong to the different types of 
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contexts. Some variables are application-independent, others are not. The next 
paragraphs, with the help of Figure 3.3 and Table 3.1, explain the variables in 
detail. In Figure 3.3 the variables are grouped in seven different sections (a–g) to 
provide a sound explanation. 

 
Figure 3.3. Metadata as variables for the mobility constraints within the four types of 
contexts. As background the diagram of the contexts is provided. Sections a-g represent 
grouped variables according to the explanation provided in the text. The solid edges 
represent dependencies between the variables, while the dotted edges relate the sensor 
behaviour to the variables that actually constrain such a variable. For further details 
about the variables see Table 3.1. 

Within the sensor context (Figure 3.3, section-a), there are three 
application-independent variables. The sensor id with the deployed sensors in 
the WSN; the energy level, containing the remaining energy of each sensor; and 
the type of mobility, indicating whether sensor mobility is controlled or 
uncontrolled. 

Within the network context (Figure 3.3, section-b), there are three 
application-independent variables. They are children of the sensor id and are 
computed using the GPS geographical location of the sensors. The neighbours are 
sensors located in a geographical range of, for instance, 20 m. The spatial 

coverage density is the number of neighbours a sensor has within the 20 m of 
range. Finally, the spatial coverage extension is the spatial aggregation of the 
individual spatial coverages of the sensors at an instant of time. It depends on 
the number of deployed sensors, their location, and their individual spatial 
coverages. The individual spatial coverage is a buffer centred on the sensor 



Chapter 3 

36 

 

location usually having a radius of 10 m (Hossain et al., 2008; Huang and Tseng, 
2005).  

Within the sensing context (Figure 3.3, section-c), there are application-
dependent variables about forest fire risk monitoring. The FFMC value is the Fuel 
Fine Moisture Code (FFMC) of the Canadian Fire Weather Index. It expresses the 
moisture content of litter and other small forest fuels (surface litter, leaves, 
needles and small twigs). It is an indicator of the relative ease of ignition and 
flammability of fine fuels (Lawson and Armitage, 2008). The FFMC value near 
each sensor is computed with empirical equations (Van Wagner and Pickett, 
1985). They use the temperature and humidity retrieved by the sensors, and the 
wind speed and rainfall retrieved by the nearest weather station. The FFMC 
value can also be classified into low or high values. Based on Hefeeda and 
Bagheri (2008), in our model the threshold between low and high values is 85. 
Moreover, the neighbours’ FFMC values are also computed. The similar FFMC 
shows whether the FFMC values of a sensor and its neighbours are similar so as 
to estimate a confidence level on them. The presence or absence of a hotspot is 
inferred near the location of a sensor. Finally, the level of the fire risk is inferred 
considering the hotspot and the type of land use where the sensor is located. 

Section-d of Figure 3.3 shows the needed spatial coverage density according 
to fire risk. The density comparison shows whether the current spatial coverage 
density is or is not enough to provide a needed density. A similar approach is 
used for the spatial coverage extension (Figure 3.3, section-e). The extension 

comparison highlights whether the current spatial coverage extension is or is not 
enough to cover a predefined region of interest. 

The organisation context (Figure 3.3, section-f) contains the target 

application as an application-dependent variable. It shows whether the fire risk 
evolves from a normal into an emergency situation due to high fire risk. Other 
variables in this context are the land use, the needed spatial coverage density, and 
the region of interest. 

Finally, in section-g of Figure 3.3, the sensor behaviour is inferred to 
achieve a suitable spatial coverage of the forest fire risk. It is related to whether 
sensors should move, sleep or the deployment of more sensors is required. 
Different mobility constraints have been considered within the different types of 
contexts. In the sensor context, the sensor energy and the type of mobility 
constrain the sensor behaviour. The mobility of sensors with a low energy 
should be avoided. Moreover, the uncontrolled mobility prevents changing 
sensor location. In the sensing and network contexts, different fire risk levels 
entail the configuration of different WSN coverage densities. Then the sensors 
should move towards hotspots with high fire risk to achieve the needed density. 
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Also in the sensing and network contexts, the extension of the spatial coverage 
often changes due to mobility and sleeping sensors, and the region of interest 
might be insufficiently covered. Therefore, the sensors should move or wake up 
to appropriately cover the region of interest as much as possible. Finally, in the 
organisation context, if the target application is an emergency with high fire risk, 
the behaviour should be different than in a normal situation, e.g. the energy will 
not constrain the sensor behaviour any longer. 

Table 3.1 Outline of the metadata as variables in the context graph. 

Type of 
contexts 

Variables (metadata) 
Types of 
variables 

Application 
dependent 

Conditional 
probability 
tables 

Sensor 
Sensor id Observed No Learned 
Energy level Observed No Learned 
Type of mobility Observed No Learned 

Network 

Neighbours Computed No Learned 
Spatial coverage 

density 
Computed No Learned 

Spatial coverage 
extension 

Computed No Learned 

Sensing  

FFMC value Computed Yes Learned 
Similar FFMC Inferred Yes Contextual rule  
Hotspot Inferred Yes Contextual rule  
Fire risk Inferred Yes Contextual rule  
Neighbours’ FFMC 

values 
Computed Yes Learned 

Density comparison Inferred No Contextual rule  
Extension comparison Computed No Learned 

Organisa-
tion 

Land use Computed Yes Learned 
Target application Inferred Yes Contextual rule  
Needed spatial 

coverage density 
Inferred Yes Contextual rule  

Region of interest Observed No Learned 

 Sensor behaviour Inferred Yes Contextual rule  

3.3.3. The contextual rules 

In the case of observed and computed variables, metadata values are used to 
learn the conditional probabilities. In the case of inferred variables, however, 
this is not feasible because metadata can be very costly or impossible to obtain. 
Then the use of contextual rules allows encoding the expected strength of the 
dependencies among the variables. Contextual rules are obtained from prior 
studies, expert domain and application requirements (Wiegerinck et al., 2010). 
Assessing these rules can be hard, so that methods for knowledge elicitation 
from domain experts are useful (Pollino et al., 2007; Woodberry et al., 2005). By 
contrast to the learning case, conditional probabilities from the contextual rules 
are static over time unless the expert knowledge and requirements have 
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changed. In such a particular case, the contextual rules may require to be 
updated. 

The contextual rules play the role of dependencies and constraints. In the 
first case, they encode the dependencies of inferred variables. They can be in the 
same context (hotspot and fire risk) or between different contexts (similar FFMC 
values, needed spatial coverage density, density comparison and target 
application). In the second case, the contextual rules play the role of constraints. 
They encode how the mobility constraints are expected to constrain the sensor 
behaviour. They bring the mobility constraints together following a centralised 
approach, although they belong to different contexts. Figure 3.4 shows an 
example of a contextual rule expressing the dependency between the fire risk 
and the target application.  

 
Figure 3.4. An example of a contextual rule: (a) context graph with two inferred variables 
in different contexts. They are the fire risk with three states (low, high and no risk) and 
the target application with two states (normal situation and emergency situation); (b) the 
contextual rule for expressing how the fire risk conditions the target application. The 
syntax of the contextual rule is concordant with the equations in Netica software; and (c) 
the contextual rule translated into a conditional probability table. 

3.4. INFERENCE OF SENSOR BEHAVIOUR 

By definition, inference is the process of deriving conclusions from premises. 
Whenever these conclusions are drawn following the laws of probability, the 
inference is probabilistic. In our case it consists of outlining the chance of 
sensors changing their behaviour given mobility constraints. This inference is as 
follows: first, metadata values feed the context graph to learn the conditional 
probabilities of all the observed and computed variables. Then these 
probabilities are propagated throughout the context graph in agreement to the 
contextual rules. This also carries out the deduction of the inferred variables 
consisting of: (1) the presence or absence of a hotspot near the location of a 
sensor; (2) the fire risk level in a hotspot; (3) the need to increase the coverage 
density by adding neighbours, or on the contrary, the need to decrease it by 
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reducing neighbours; (4) the target application; and finally, (5) the most suitable 
sensor behaviour about whether sensors should move, sleep or the deployment 
of more sensors is required. The contextual rules for the inferred variables in 
Figure 3.3 are explained in detail in Appendix A. 

3.5. SCENARIOS 

Two scenarios are presented to illustrate the inference of sensor behaviour. One 
of them simulated low fire risk level to exemplify the inference of the sleeping 
behaviour. The other one simulated a higher fire risk level to mainly address the 
inference of moving behaviour. Both scenarios were based on the same spatial 
distribution of sensors, whereas different computed FFMC values illustrated the 
variation in spatial distribution and intensity of the forest fire risk (Figure 3.5). 

 
Figure 3.5. Deployment of a WSN in scenarios 1 and 2. The region of interest is 
represented by the dotted line square. Points represent the location of sensors, and lines 
between them their neighbourhood relations. The white points are low FFMC values, 
whereas the black points are high FFMC values. Buffers around the sensors are their 
individual coverages, which, when aggregated, define the spatial coverage extension of 
the WSN. The land uses, with urban areas filled with ‘U’ lettering, forest filled with ‘F’ 
lettering and camping filled with ‘C’ lettering, are provided as background. 
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3.5.1. WSN deployment and metadata computation 

We simulated the deployment of a WSN with 24 sensors attached to robots, in an 
area of interest of 6467 m2 (Figure 3.5). The sensors were equipped with the 
environmental MTS420 sensor board of MEMSIC, ex-Crossbow (MEMSIC, 2010). 
They captured and disseminated the temperature, humidity and GPS sensor 
location every 10 min (i.e. sampling rate). All the sensors had a controlled type of 
mobility. They could move, although they were kept fixed until changes in 
behaviour were induced. 

Sensing data and metadata, which are used to learn conditional 
probabilities, were gathered from the WSN according to the sampling rate. They 
were processed in a PostgreSQL–PostGIS database (PostGIS, 2007). Table 3.2 
describes the requirements for input data, and the respective outputs for the 
computed variables. Table 3.3 provides examples of the observed and computed 
metadata values. 

Table 3.2 Requirements for input data and outputs for the computed variables 
(metadata). 

Types of 
contexts 

Variables 
(metadata) 

Inputs Outputs  

Network 

Neighbours GPS sensor location 
Sensors located within 
the range of 20m 

Spatial 
coverage 
density 

Neighbours 
Number of sensor 
neighbours  

Spatial 
coverage 
extension 

GPS sensor location; 
individual coverage (10m) 

Spatial polygon 
aggregating all the 
individual coverages at 
an instant of time 

Sensing 

FFMC value 

Temperature and humidity 
capture by the sensors, and 
rainfall and wind speed 
capture by a weather station 

FFMC value per sensor 
classified in low and high 
values. 

Neighbours’ 
FFMC 
values 

Neighbours, temperature and 
humidity captured by the 
sensors, and rainfall and 
wind speed captured by a 
weather station 

FFMC value per sensor 
neighbour classified as 
low and high values 

Extension 
comparison 

Spatial coverage extension; 
region of interest 

Spatial comparison 
between both polygons. 
It is classified as enough 
(more than 80%) and 
insufficient (less than 
80%) 

Organisa-
tion 

Land use 
Land use map; GPS sensor 
location 

Land use nearby the 
location of each sensor 
(forest, urban, camping) 



Mobility constraints 

41 

 

The context graph of Figure 3.3 was implemented as a Bayesian network in 
Netica (2009), with the contextual rules encoded as equations in each inferred 
variable. Learning was performed with the Expectation–Maximisation-EM 
algorithm implemented in Netica (Dempster et al., 1977). This was carried out in 
an offline fashion using the available computed metadata values at the time of 
learning. This provided the current state of mobility constraints, i.e. previous 
constraints were not taken into account. For probability propagation and 
inference of sensor behaviour, the junction tree algorithm, also implemented in 
Netica, was used (Huang and Darwiche, 1996). 

Table 3.3 Examples of observed and computed metadata values. 

Sensor 
id 

FFMC 
value 

Energy 
level 

Type of 
mobility 

Neigh 
-bours 

Spatial 
coverage 
density 

Extension 
comparison 

Land 
 use 

1 low value high controlled (2,3) 2 enough_85 forest 

2 low value high controlled (1,3,20) 3 enough_85 forest 

3 low value high controlled (1,2,23) 3 enough_85 forest 

4 low value high controlled (12,5) 2 enough_85 urban 

5 low value high controlled (4,12) 2 enough_85 urban 

3.5.2. Scenario 1: low fire risk 

In this scenario only four sensors (16.7%) were located near high FFMC values 
(Figure 3.6a). There was a low fire risk with 16.5% probability, and no fire risk 
with 83.2% probability (Figure 3.6b). As a result, two different types of sensor 
behaviour were inferred (Figure 3.6c). First, with a 13.1% probability, sensors 
should not have changed their behaviour since they provided an appropriate 
coverage density (that was the case for sensors 8, 13, 15, and 17); and second, 
with an 86.9% probability, sensors should have been sent to sleep to reduce the 
coverage density (all the other sensors). 

The only mobility constraint which actually had an influence on the 
behaviour was the coverage density, with the need of reducing the number of 
neighbours (density comparison variable). In terms of coverage extension, the 
sensors covered 85% of the region of interest, so that this was enough without 
constraining their behaviour (extension comparison variable). In addition, the 
energy level (i.e. mainly high), the type of mobility (i.e. controlled), and the target 
application (i.e. normal situation) did not constrain the behaviour in this 
scenario. 
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Figure 3.6. Context graph of scenario 1: (a) probability distribution of the Fine Fuel 
Moisture Code (FFMC value); (b) probability distribution of the fire risk; and (c) 
probability distribution of the inferred sensor behaviour (send to sleep sensors and do-
not-change behaviour). 

Although the main aim is to infer sensor behaviour, the same context graph 
can also be used to determine the most suitable sensors to be sent to sleep. 
Different variables can propagate their probabilities to update the sensor id 
variable, showing higher probabilities for the most suitable sensors to put to 
sleep. We considered they were: (1) sensors (and their neighbours) whose 
inferred behaviour was not do-not-change behaviour; (2) sensors with low 
energy to be sent to sleep in order to save energy; (3) sensors located near a no 
fire risk zone; and (4) sensors with a high spatial coverage density due to the fact 
that the impact of putting a sensor to sleep with 4 neighbours will be higher than 
a sensor with only 2 neighbours. Figure 3.7 shows how the sensor id was 
updated after the probability propagation mentioned above. As a result, the most 
suitable sensors to send to sleep were sensors 22, 23, and 24. Sensors should 
only be sent to sleep while the coverage extension is enough (more than 80% of 
the region of interest). Thus they were put to sleep one by one until the 
threshold of 80% was reached (Figure 3.7e). As a result of putting sensors 22, 23 
and 24 to sleep, the probability of the sleeping behaviour was reduced from 
86.9% to 71%, while the probability of maintaining the same behaviour was 
increased from 13.1% to 29%. Although the WSN was still providing more 
density than needed, further sensors could not be sent to sleep to avoid a 
coverage extension below the 80% threshold. Therefore, the inferred behaviour 
was do-not-change behaviour with 100% probability. 
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Figure 3.7. Probability propagation and updating to find the most suitable sensors to send 
to sleep in scenario 1: (a) sensors (and their neighbours) whose inferred behaviour was 
not do-not-change behaviour; (b) sensors with low energy; (c) sensors located near a no 
fire risk zone; (d) sensors with a coverage density of 4 neighbours; and (e) impact on the 
coverage extension when sensors 22, 23 and 24 are put to sleep. 

3.5.3. Scenario 2: high fire risk 

In the second scenario, the spatial distribution of the sensors was the same as in 
scenario 1, however the computed FFMC values were not (Figure 3.5, scenario 
2). Figure 3.8a shows a higher number of sensors located near high FFMC values 
(41.7%). The fire risk was high with 7.86% probability, low with 32.2% 
probability, and there was no fire risk with 59.9% probability (Figure 3.8b). As a 
result, three different sensor behaviours were inferred (Figure 3.8c). First, with 
9.99% probability sensors should have moved to increase the coverage density 
of sensors 4, 5 and 13; second, with 14.3% probability sensors should not have 
changed their behaviour since they provided an adequate coverage density 
(sensors 8, 13, 15, and 17); and third, with 75.7% probability sensors should 
have been sent to sleep to reduce the coverage density (all the other sensors). 
Although in this scenario the probability of high fire risk was still low (7.86%), 
the aim was to show how a higher level of fire risk addressed the inference of 
different sensor behaviour. 

It should be emphasised that for sensor 13 two types of behaviour with 
different probabilities were inferred. Do-not-change behaviour with 30% 
probability and sensor mobility for density with 70% probability. The reason for 
this is that sensor 13 was located near a high FFMC value, and its neighbour 
(sensor 16) near a low FFMC value. Then this was propagated to the no fire risk 
(30% probability) and the low fire risk (70% probability), giving as a result two 
inferred behaviours for the same sensor.  
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Figure 3.8. Context graph of scenario 2: (a) probability distribution of the Fine Fuel 
Moisture Code (FFMC values); (b) probability distribution of the fire risk; and (c) 
probability distribution of the inferred sensor behaviour (sensor mobility for density, 
send to sleep sensors and do-not-change behaviour). 

The mobility constraints were the coverage density, with the need to 
increase density in some sensors and to reduce it in others; the type of mobility, 
since the moving behaviour was possible given the controlled mobility; and the 
high energy level which also allowed the moving behaviour. The target 
application did not constrain the sensor behaviour in view of the high energy 
level. In terms of coverage extension, it was sufficient because the sensors 
covered 85% of the region of interest. 

The context graph allows us knowing the most likely sensors to move. They 
were: (1) sensors (and their neighbours) whose inferred behaviour was neither 
sensor mobility for density nor do-not-change behaviour; (2) sensors with high 
energy level; (3) sensors located near a no fire risk zone; and (4) close sensors to 
those requiring a density increment (sensors 4, 5 and 13). As a result, sensor 6 
was moved near sensors 4 and 5, and sensor 11 was moved near sensor 13. 

After moving the sensors, the metadata values were re-computed and the 
context graph inferred the behaviour of sleeping sensors (76.8% probability) 
and do-not-change behaviour (23.2% probability). The most likely sensors to go 
to sleep were found as in scenario 1. As a result, sensors 23 and 24 went to sleep. 
Figure 3.9 shows the resulting spatial distribution of sensors and the updated 
context graph. The WSN was still providing more coverage density than needed 
(63.5% of reduce neighbours in the density comparison variable). However, 
sensors could not be sent to sleep to avoid a coverage extension below the 80% 
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threshold. Thus, the inferred behaviour was do-not-change behaviour with 
100% probability. 

 
Figure 3.9. Context graph and spatial distribution of sensors in scenario 2 after moving 
sensors 6 and 11, and sleeping sensors 23 and 24. 

3.6. DISCUSSION AND CONCLUSIONS 

This paper focuses on the inference of mobile sensor behaviour in the scope of 
fire risk monitoring following a Bayesian network approach. The purpose of the 
behaviour is to achieve a WSN spatial coverage in agreement with the dynamics 
of the fire risk. This enables a more detailed monitoring wherever fire is more 
prone to occur while efficiently using the available WSN resources. Our main 
contribution is a mobility constraint model in which a context graph, modelled as 
a Bayesian network, makes different mobility constraints explicit within four 
context types: sensor, network, sensing, and organisation. Metadata values about 
the phenomenon and the WSN are used to feed the context graph, and the 
probabilities are propagated following the graph structure and the defined 
contextual rules. It is shown, based on low and high fire risk scenarios, that the 
implemented model can successfully infer the most suitable sensor behaviour by 
handling, through conditional probabilities, the different mobility constraints. As 
a result, the behaviour was inferred about whether it was more suitable to send 
sensors to sleep, to move them to enhance coverage density and extension, to 
deploy more sensors, or on the contrary, to maintain current behaviour. 



Chapter 3 

46 

 

The main advantage of having the mobility constraint model designed as a 
Bayesian network is the probability propagation. Any learned change in the 
spatial distribution and intensity of the fire risk as well as in the WSN itself (e.g. 
energy, location, etc.), is propagated throughout the context graph with the 
inference of the most suitable behaviour. Although the main outcome is the 
inference of behaviour, the same model can also be used to obtain useful 
information about the most suitable sensors on which to implement the sleeping 
and moving behaviour. In addition, the mobility constraint model also allows 
representation of the four types of contexts at the same time and within the 
same context graph. This is important for maintaining links between the 
behaviour of sensors and the impact they can have on the different contexts, e.g. 
when the inferred behaviour is to make a sensor sleep, but this is not possible 
because of an insufficient coverage extension at the network context.  

A weakness of the model is that the variables about mobility constraints 
need to be explicitly defined and related in the context graph. The contextual 
rules are useful to encode the expert knowledge about the variables when they 
cannot be directly learned from metadata values. Evaluation of these rules can be 
made by using methods developed in the field of knowledge engineering (Pollino 

et al., 2007; Woodberry et al., 2005). The pitfall, however, is that contextual rules 
may involve a high number of variables with several states. That increases the 
complexity, making implementation more difficult. Table A7 in Appendix A is an 
example of this. Moreover, the contextual rules can drive the inference of more 
than one type of behaviour, as it was shown for sensor 13 in scenario 2. In order 
to discern which behaviour should be really carried out, the criterion of the 
highest probability could not always be the most advisable. By contrast, it would 
be necessary to consider the behaviour with the lowest probability, but with a 
crucial implication for the application. Therefore, further analysis is still needed 
in order to shed light on how pronouncements about different types of 
behaviour can be encoded within the mobility constraint model. 

Learning conditional probabilities was performed in such a way that only 
the current mobility constraints were considered, i.e. previous constraints were 
not taken into account. However, for some variables, especially those belonging 
to the sensing context, it could be useful to study the impact to learn them 
incrementally (i.e. using online instead of offline learning). 

The mobility constraint model followed a centralised approach by gathering 
together mobility constraints from different contexts. The counterpart is 
twofold; first, more sensor energy is consumed to centralise metadata; and 
second, sensors may become isolated without being able to infer behaviour by 
themselves (Coles et al., 2009; Duckham and Reitsma, 2009). Nevertheless, the 
centralised approach allows the inference of more complex behaviour involving 
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cooperation of sensors. This is the case when moving a sensor to increase the 
coverage density of another sensor. Hence, it would be worthwhile making a 
compromise between decentralised and centralised approaches to infer the 
behaviour with as much local knowledge as possible but still being able to depict 
the global picture. 

Spatial knowledge in our model is represented through different variables 
such as neighbours, coverage density and extension. However, at this moment, 
spatial knowledge is only involved as premises in the inference. Deductions 
about spatial relations are still missing. This is essential, for instance, to know 
whether sensors are located at the same hotspot and to handle scenarios with 
multiple and disparate hotspots. In view of the significance of the spatial 
knowledge in our model, it is necessary to explore further approaches to carry 
out deductions based on spatial analysis and support the situations mentioned 
above. In our implementation, and for the sake of simplicity, we have defined the 
initial spatial density of sensors in an ad hoc manner. This could be improved by 
extending our model with the approach of Hefeeda and Bagheri (2008), in which 
a required spatial density was computed with the aim of achieving a given 
accuracy level in forest fire risk estimation. Moreover, the mobility constraint 
model is not meant to infer the exact new location and trajectory of the sensors. 
In order to do that, other supplementary techniques, such as geostatistics, will be 
needed to precisely determine the future sensor location (Heuvelink et al., 2010). 
We have not considered mobility constraints associated with the geographical 
space itself, such as buildings, rivers, lakes and trees. 

Our model can also be useful in a fire detection application, although the 
sensors behave differently than in fire risk monitoring. For instance, they should 
also move to detect boundaries of a burning zone. Our model can also be used for 
monitoring other environmental phenomena such as air pollution, noise and soil 
moisture. In those cases, application-dependent variables (see Table 3.1) should 
be adapted in accordance with the phenomenon of interest. Contextual rules 
should also be reviewed in order to properly encode application requirements 
and expert knowledge from the domain of interest. Our study is restricted to 
outdoor environments since the spatial computation is based on GPS location 
data. For indoor environments and WSN without GPS, it should be necessary to 
consider other location techniques such as beacon sensors and proximity- based 
location (Yick et al., 2008). 

Regarding a real implementation, it would be necessary to consider 
communication issues such as connectivity and flow of information between the 
model and the WSN. The computation of the Fine Fuel Moisture Code relies on 
observations retrieved by the sensors and the nearest weather station. When the 
weather data of one station result in too coarse information, it might be 
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necessary to deploy an additional weather station in the area of interest. In 
addition, some research is still needed to address how adjustments provided by 
sensor behaviour improve the efficiency of the monitoring. The study of Hefeeda 
and Bagheri (2008) could be a good starting point to address this issue in the 
sense that it analysed how spatial coverage density can be used to improve the 
efficiency of forest fire risk monitoring. 

The knowledge of how mobile sensors should behave in the presence of 
mobility constraints is an important step towards mobile sensing. Although this 
paper is based on simulated scenarios, it provides a useful demonstration of how 
the mobility constraint model can successfully handle low level information such 
as metadata in order to infer sensor behaviour. Our future research will focus on 
expanding the mobility constraint model to be able to tell apart different types of 
behaviour. It will also explore further approaches to carry out inferences based 
on spatial analysis. Finally, it would be useful to evaluate the model in a more 
realistic scenario, taking also into account spatiotemporal dynamics of the fire 
risk. That would allow us understanding sensor behaviour from a 
spatiotemporal dimension. 
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Appendix A. Contextual rules for the inferred variables 

A.1. Hotspot 

It consists of the inference of the presence or absence of a hotspot near the 
location of a sensor. In order to achieve that, it is necessary to know if the 
computed FFMC values for this particular sensor and its neighbours are similar 
and, at the same time having values higher than the threshold of 85. Therefore, 
two contextual rules have been defined. The first one describes the dependency 
between the similar FFMC values and two premises: the FFMC value of each 
sensor and the neighbours’ FFMC values. The second one relates the similar 
FFMC values and the hotspot. Tables A1 and A2 provide the contextual rules and 
the conditional probability tables for the inferred variables. 

Table A1 Contextual rule (dependency) and conditional probability table for the inference 
of the similar FFMC values (Fine Fuel Moisture Code). 

P (Similar_FFMC | FFMC_value, Neighbours_FFMC_values) =  

FFMC_value==low_value && Neighbours_FFMC_values==low_values ? 

Similar_FFMC==similar_values ? 1.0 : 0.0: 

FFMC_value==low_value && Neighbours_FFMC_values==high_values ? 

Similar_FFMC==different_values ? 1.0 : 0.0: 

FFMC_value==high_value && Neighbours_FFMC_values==low_values? 

Similar_FFMC == different_values ? 1.0 : 0.0: 

FFMC_value==high_value && Neighbours_FFMC_values==high_values? 

Similar_FFMC==similar_values ? 1.0 : 0.0:0 

FFMC value Neighbours’ 
FFMC values  

 P(Similar FFMC | FFMC value, Neighbours’ 
FFMC values) 

similar values different values 
low value low values 1 0 
high value low values 0 1 
low value high values 0 1 
high value high values 1 0 

 

Table A2 Contextual rule (dependency) and conditional probability table for the inference 
of the hotspot. 

P(Hotspot | FFMC_value, Similar_FFMC) =  

FFMC_value==low_value && Similar_FFMC==similar_values? 

Hotspot==absence? 1.0 : 0.0 : 

FFMC_value==low_value && Similar_FFMC==different_values? 

Hotspot==presence ? 0.3 : Hotspots == absence? 0.7 : 0.0: 

FFMC_value==high_value && Similar_FFMC==similar_values? 

Hotspot==presence? 1.0 : 0.0) : 

FFMC_value==high_value && Similar_FFMC==different_values? 

Hotspot==absence? 0.3 : Hotspots == presence ? 0.7 : 0.0:0 

FFMC value Similar FFMC 
values 

P(Hotspot | FFMC value, Similar FFMC) 

presence absence 
low value similar values 0 1 
high value similar values 1 0 
low value different values 0.3 0.7 
high value different values 0.7 0.3 
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A.2. Fire risk 

It consists of the inference of whether the forest fire risk at a hotspot is low or 
high, considering the type of land use near a sensor location. The premises are 
the inferred hotspot and the land use. The contextual rule considers that the 
presence of humans can increase the damages a fire could produce. Thus the risk 
should be higher at a hotspot located in an urban area than in a forest or 
camping area (Table A3). 

Table A3 Contextual rule (dependency) and conditional probability table for the inference 
of the fire risk. 

P (Fire_risk | Hotspot, Land_use) =  

Hotspot==absence ? Fire_risk==no_risk? 1.0 : 0.0: 

Hotspot==presence && Land_use == urban? Fire_risk==high? 1.0 : 0.0: 

Hotspot==presence && Land_use == forest? Fire_risk==low? 1.0 : 0.0: 

Hotspot==presence && Land_use == camping? Fire_risk==low? 1 :0.0:0 
Hotspot Land use P(Fire risk | Hotspot, Land use)  

no risk low high 
presence  urban 0 0 1 
absence urban 1 0 0 
presence  forest 0 1 0 
absence forest 1 0 0 
presence  camping 0 1 0 
absence camping 1 0 0 

A.3. Spatial coverage density comparison 

It consists of the inference of whether an increase in the coverage density is 
needed because a hotspot may have been covered by an insufficient coverage 
density. Two contextual rules have been defined. One expresses the dependency 
between the fire risk and the needed spatial coverage density. It makes the 
following consideration: for high risk, the coverage density needs to be of at least 
3 neighbours; for low risk, coverage density of at least 2 neighbours; and where 
there is no fire risk at all, density of at least 1 neighbour (Table A4). The second 
contextual rule relates the density comparison and two premises, the spatial 
coverage density and the needed spatial coverage density. It expresses the need 
of adding neighbours if a sensor near a high risk zone has less than 3 neighbours, 
near a low risk zone less than 2 neighbours, and near a no fire risk zone, less 
than 1 neighbour. Moreover, reducing neighbours might also be needed if a 
sensor near a high risk zone has more than 3 neighbours, near a low risk zone, 
more than 2 neighbours, or near a no fire risk zone, more than 1 neighbour 
(Table A5). 

Table A4 Contextual rule (dependency) and conditional probability table for the inference 
of the needed spatial coverage density. 

P (Needed_spatial_coverage_density | Fire_risk) =  

Fire_risk==high? Needs_spatial_coverage_density==3? 1.0:00: 
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Fire_risk==low? Needs_spatial_coverage_density==2? 1.0:00: 

Fire_risk==no_risk? Needs_spatial_coverage_density==1? 1.0:00:0 
Fire risk  P (Needed spatial coverage density | Fire risk) 

3 neighbours 2 neighbours 1 neighbour 
no risk 0 0 1 

low 0 1 0 
high 1 0 0 

 

Table A5 Contextual rule (dependency) and conditional probability table for the inference 
of the density comparison. 

P(Density_comparison | Spatial_coverage_density,Needed_spatial_coverage_density)= 

Spatial_coverage_density==0 ? density_comparison==add_neighbours ? 1.0 : 00: 

Spatial_coverage_density==1 && Needed_spatial_coverage_densit==1? 

Density_comparison==none? 1.0 : 00: 

Spatial_coverage_density==1 &&Needed_spatial_coverage_density==2? 

Density_comparison==add_neighbours? 1.0 : 00: 

Spatial_coverage_density==1 && Needed_spatial_coverage_density==3 ? 

Density_comparison==add_neighbours? 1.0 : 00: 

Spatial_coverage_density==2 && Needed_spatial_coverage_densit==2?   

        Density_comparison== none? 1.0 : 00: 

Spatial_coverage_density==2 && Needed_spatial_coverage_density==3? 

Density_comparison==add_neighbours? 1.0 : 00: 

Spatial_coverage_density==2 && Needed_spatial_coverage_density==1? 

Density_comparison==reduce_neighbours? 1.0 : 00: 

Spatial_coverage_density==3 && Needed_spatial_coverage_density==1? 

Density_comparison==reduce_neighbours? 1.0 : 00: 

Spatial_coverage_density==3 && Needed_spatial_coverage_density==2? 

Density_comparison==reduce_neighbours? 1.0 : 00: 

Spatial_coverage_density==3 && Needed_spatial_coverage_density==3? 

Density_comparison==none? 1.0 : 00: 

Spatial_coverage_density==+3 ? Density_comparison==reduce_neighbours? 1.0 : 00:0 

(current) Spatial 
coverage density  

Needed spatial 
coverage density  

P(Density comparison | Spatial coverage 
density, Needed spatial coverage density) 
add 

neighbours 
reduce 

neighbours 
none 

0 neighbour 1 neighbour 1 0 0 
0 neighbour 2 neighbours 1 0 0 
0 neighbour 3 neighbours 1 0 0 
1 neighbour 1 neighbour 0 0 1 
1 neighbour 2 neighbours 1 0 0 
1 neighbour 3 neighbours 1 0 0 
2 neighbours 1 neighbour 0 1 0 
2 neighbours 2 neighbours 0 0 1 
2 neighbours 3 neighbours 1 0 0 
3 neighbours 1 neighbour 0 1 0 
3 neighbours 2 neighbours 0 1 0 
3 neighbours 3 neighbours 0 0 1 

+3 neighbours 1 neighbour 0 1 0 
+3 neighbours 2 neighbours 0 1 0 
+3 neighbours 3 neighbours 0 1 0 

A.4. Target application 

It consists of the inference of whether, considering the fire risk, a sensor carries 
out the monitoring in a normal or in an emergency situation (Table A6). 
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Table A6 Contextual rule (dependency) and conditional probability table for the inference 
of the target application. 

P (Target_application | Fire_risk) =  

Fire_risk==high? Target_application==emergency situation? 1.0:00: 

Fire_risk==low? Target_application==normal_situation? 1.0:00: 

Fire_risk==no_risk? Target_application==normal_ situation? 1.0:00:0 
Fire risk  P (Target application | Fire risk)  

 normal situation emergency situation 
no risk 1 0 

low 1 0 
high 0 1 

A.5. Sensor behaviour 

It consists of the deduction of the behaviour given the mobility constraints 
(energy level, type of mobility, density comparison, extension comparison, and 
target application). The contextual rules and conditional probability are 
provided in Table A7. The following types of sensor behaviour are inferred:  

Do-not-change sensor behaviour whether (1) the coverage density is in 
agreement with the fire risk, and the coverage extension sufficiently covers at 
least 80% of the region of interest; (2) or the coverage density needs to be 
reduced and sensors cannot be sent to sleep since the coverage extension does 
not cover more than 80% of the region of interest. 

Deploy more sensors whether (1) the coverage extension is insufficient 
and/or the coverage density needs to add neighbours, and (2a) the type of 
mobility is uncontrolled, or (2b) although the type of mobility is controlled, the 
target application is a normal situation with a low energy level.  

Move sensors to enhance coverage extension whether (1) the coverage 
extension is insufficient, the type of mobility is controlled, and (2a) the target 
application is a normal situation with a high energy level; or (2b) the target 
application is an emergency situation without considering the remaining energy. 

Move sensors to enhance coverage density whether (1) the coverage 
density needs to add neighbours, the type of mobility is controlled, and (2a) the 
target application is a normal situation with a high energy level; or (2b) the 
target application is an emergency situation without considering the remaining 
energy. 

Send to sleep sensors to enhance density whether (1) the coverage density 
needs to reduce neighbours, and (2) the coverage extension sufficiently covers 
more than 80% of the region of interest. 
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Table A7 Contextual rule (constraint) and conditional probability table for the inference 
of sensor behaviour. 

P (Sensor_behaviour| Target_application, Energy_level, Type_of_mobility, Density_comparison, 

Extension_comparison) =  

Density_comparison==none && Extension_comparison !=insufficient ? 

Sensor_behaviour==Do_not_change_behaviour?1.0:00: 

Density_comparison==reduce_neighbours && Extension_comparison==enough_80? 

Sensor_behaviour==Do_not_change_behaviour?1.0:00: 

 

Density_comparison==reduce_neighbours && Extension_comparison==enough_100? 

Sensor_behaviour==Sleep_sensor_x_density?1.0:00: 

Density_comparison==reduce_neighbours && Extension_comparison==enough_95? 

Sensor_behaviour==Sleep_sensor_x_density?1.0:00: 

Density_comparison==reduce_neighbours && Extension_comparison==enough_90? 

Sensor_behaviour==Sleep_sensor_x_density?1.0:00: 

Density_comparison==reduce_neighbours && Extension_comparison==enough_85? 

Sensor_behaviour==Sleep_sensor_x_density?1.0:00: 

 

Density_comparison==add_neighbours && Extension_comparison==insufficient && 

Type_of_mobility==uncontrolled? Sensor_behaviour==Deploy_more_sensors? 1.0:00: 

Density_comparison !=add_neighbours && Extension_comparison==insufficient 

&&Type_of_mobility==uncontrolled? Sensor_behaviour==Deploy_more_sensors? 1.0:00: 

Density_comparison==add_neighbours && Extension_comparison !=insufficient && Type_of_mobility==uncontrolled 

? Sensor_behaviour==Deploy_more_sensors? 1.0:00: 

Density_comparison==add_neighbours && Extension_comparison==enough_80 && 

Type_of_mobility==uncontrolled? Sensor_behaviour==Deploy_more_sensors? 1.0:00: 

Density_comparison !=add_neighbours && Extension_comparison==enough_80 &&Type_of_mobility==uncontrolled? 

Sensor_behaviour==Deploy_more_sensors? 1.0:00: 

Density_comparison==add_neighbours && Extension_comparison !=enough_80 && Type_of_mobility==uncontrolled 

? Sensor_behaviour==Deploy_more_sensors? 1.0:00: 

 

Density_comparison==add_neighbours && Extension_comparison !=insufficient && Type_of_mobility==controlled 

&& Energy_level==high ? Sensor_behaviour==Sensor_mobility_x_density? 1.0:00: 

Density_comparison==add_neighbours && Extension_comparison !=insufficient &&Type_of_mobility==controlled 

&& Energy_level==low && Target_application==emergency_situation ? 

Sensor_behaviour==Sensor_mobility_x_density? 1.0:00: 

 

Density_comparison==add_neighbours && Extension_comparison !=insufficient && Type_of_mobility==controlled 

&& Energy_level==low && Target_application==normal_situation? Sensor_behaviour==Deploy_more_sensors? 

1.0:00: 

 

Density_comparison !=add_neighbours && Extension_comparison==insufficient &&Type_of_mobility==controlled 

&& Energy_level==high ? Sensor_behaviour==Sensor_mobility_x_extension? 1.0:00: 

Density_comparison !=add_neighbours && Extension_comparison==insufficient &&Type_of_mobility==controlled 

&& Energy_level==low && Target_application==emergency_situation? 

Sensor_behaviour==Sensor_mobility_x_extension? 1.0:00: 

 

Density_comparison !=add_neighbours && Extension_comparison==insufficient &&Type_of_mobility==controlled 

&& Energy_level==low && Target_application==normal_situation? Sensor_behaviour==Deploy_more_sensors? 

1.0:00: 

Density_comparison==add_neighbours && Extension_comparison==insufficient && Type_of_mobility==controlled 

&& Energy_level==low && Target_application==normal_situation? Sensor_behaviour==Deploy_more_sensors? 

1.0:00: 

 

Density_comparison==add_neighbours && Extension_comparison==insufficient && Type_of_mobility==controlled 

&& Energy_level==high ? Sensor_behaviour==Sensor_mobility_x_extension? 0.5: 

Sensor_behaviour==Sensor_mobility_x_density? 0.5:0: 

Density_comparison==add_neighbours && Extension_comparison==insufficient && Type_of_mobility==controlled 

&& Energy_level==low && Target_application==emergency_situation?  

Sensor_behaviour==Sensor_mobility_x_extension? 0.5: Sensor_behaviour==Sensor_mobility_x_density? 0.5:0: 

Density_comparison==add_neighbours && Extension_comparison==insufficient && Type_of_mobility==controlled 

&& Energy_level==low && Target_application==emergency_situation ? 

Sensor_behaviour==Sensor_mobility_x_extension? 0.5: Sensor_behaviour==Sensor_mobility_x_density? 0.5:0: 

 

Density_comparison==add_neighbours && Extension_comparison==insufficient && Type_of_mobility==controlled 
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&& Energy_level==low && Target_application==emergency_situation ? 

Sensor_behaviour==Sensor_mobility_x_extension? 0.5: Sensor_behaviour==Sensor_mobility_x_density? 0.5:0:0 
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4.1. INTRODUCTION 

The importance of environmental monitoring has been widely recognised for 
applications such as mapping of contaminants (Horsburgh et al., 2010; Milton 
and Steed, 2007), levels of exposure to hazardous substances (Dubois et al., 
2011; Melles et al., 2011) and species distribution (Zerger et al., 2010). Rational 
decisions about natural resource management and emergency responses rely on 
information gathered by sensors. How these sensors are distributed affects 
sampling design (de Gruijter et al., 2006) and, as a consequence, decision 
making. For instance, Heuvelink et al. (2010) illustrated the effect of sensor 
placement on dose predictions and decision making in a nuclear emergency 
situation. Erroneous predictions of an absence of radioactivity (false negatives) 
will lead to warnings not being triggered, whereas wrong predictions of the 
presence of radioactivity (false positives) will trigger unnecessary actions, such 
as the evacuation of residents and the deployment of rescue teams. The costs of 
prediction errors can be minimised by adapting spatial sampling to local 
variability.  

Wireless sensor networks (WSNs) are increasingly used in environmental 
monitoring. They enable real-time monitoring with spatial and temporal 
resolutions never captured before (Nittel, 2009; Porter et al., 2009; Rundel et al., 
2009; Zerger et al., 2010). WSNs are composed of autonomous and wirelessly 
networked sensors spatially distributed in a study area (Akyildiz et al., 2002). 
When using stationary WSNs, spatial sampling can be adapted to local variability 
by using sleeping and waking up mechanisms (Hefeeda and Bagheri, 2008; 
Willett et al., 2004). This requires a high sensor density. However, mobile WSNs 
offer new opportunities to adapt spatial sampling using a reduced number of 
mobile sensors (Liu et al., 2005; Rundel et al., 2009; Singh et al., 2006). Mobility 
is achieved by attaching sensors to mobile objects, such as robots (Dantu et al., 
2005), people (Campbell et al., 2008), bicycles (Eisenman et al., 2007), vehicles 
(Zoysa et al., 2007) and animals (Juang et al., 2002; Sahin, 2007). If mobility is 
controlled, the locations of sensors can be changed to achieve specific goals (Jun 

et al., 2009), such as adapting sampling to local variability. In the paper, we 
consider the situation where the monitored phenomenon has a slower temporal 
rate as compared to the speed at which the sampling is done. More particularly, 
we assume that reality does not change during sampling. While this may seem a 
serious restriction, it is quite a common situation for example when assessing 
soil contamination (Rodriguez-Lado et al., 2008; Romic et al., 2007), natural 
radioactivity (Heuvelink and Griffith, 2010); and biodiversity (Zerger et al., 
2010). 
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When sampling with mobile sensors, two decisions have to be made: where 
the observation should be made, and which sensor should be moved to the 
location to make the observation. The first decision is to identify a sampling 
location to optimise a certain objective. The second decision is to choose a sensor 
to move to the identified location such that sensor mobility is efficiently 
managed.  

Different approaches for deciding where to make the observation have been 
studied. Coverage-oriented approaches select locations according to geometric 
criteria, such as Voronoi diagrams and virtual forces (Wang et al., 2009). 
Information-theoretic approaches (e.g. entropy and mutual information) seek to 
reduce uncertainty resulting from sensor mobility (Krause et al., 2008). These 
approaches, however, have limitations. For example, they do not consider the 
phenomenon under investigation (Krause et al., 2008; Walkowski, 2008), they do 
not identify misclassification types (false positives and false negatives) and they 
do not assess locations for their potential to minimise misclassifications 
(Donaldson-Matasci et al., 2010). 

An alternative approach is to use the expected value of information (EVoI). 
This method evaluates the expected relevance of observations made at certain 
locations, prior to making the observation (Bhattacharjya et al., 2010; de Bruin et 

al., 2001; Kangas, 2010). It compares the expected cost of making predictions 
using the available observations with the cost when an additional observation 
has been made in a new location. The EVoI is the reduction in the expected cost 
of prediction errors achieved by making the additional observation. The location 
of this additional observation can be selected by choosing the location that gives 
the highest EVoI. EVoI considers the phenomenon state and it allows decisions to 
be made based on the relevance of locations and different misclassification types. 
We therefore propose an EVoI maximisation criterion. 

When deciding on which sensor to move to the new sample location, 
intuitively the best sensor would appear to be the closest one. However, 
constraints on the mobility of a sensor may make moving it costly or even 
impossible (Ballari et al., 2012; Walkowski, 2008; Younis and Akkaya, 2008). 
These constraints may be hard or soft constraints. Hard mobility constraints 
make it impossible for the sensor to be moved: it may itself be immobile or 
movement may be obstructed by barriers between the current sensor location 
and that to be sampled. Soft mobility constraints include energy, terrain slope, 
speed, and sensor connectivity for data transmission. For example, moving up a 
slope is more costly than travelling downhill. In a previous study, sensors were 
selected using a weighted-distance approach (Verma et al., 2006). Walkowski 
(2008) proposed the concepts of time geography to analyse constraints and 
select sensors within potential activity areas. Zou and Chakrabarty (2007) 
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employed cost evaluation techniques to trade off target tracking improvements 
against mobility constraints. 

Although these studies have integrated and prioritised mobility constraints, 
none of them have addressed their potential dependent influences. The 
influences of mobility constraints should not be considered independently of 
each other and may be dependent on the presence of other constraints. For 
instance, if sensors are carried by robots, battery status may affect both mobility 
and sensing capabilities, but if sensors are carried by people, battery status does 
not constrain mobility. The influence of sensor energy therefore depends on the 
type of mobile object. These dependencies should be taken into account because 
they can make influences of mobility constraints stronger, weaker or even 
inapplicable.  

For deciding which sensor to move, we propose a cost-distance 
minimisation criterion that integrates mobility constraints with dependent 
influences. The cost-distance to move a sensor under mobility constraints is 
estimated using influence diagrams (IDs), a useful way to represent and make 
decisions (Howard and Matheson, 2005; Jensen and Nielsen, 2007; Kjaerulff and 
Madsen, 2007) Like decision trees, IDs link together the variables of a decision 
(i.e. factors, costs and decisions). The advantage of IDs over decision trees is that 
they provide a more compact representation of dependencies and more efficient 
computation when a high number of constraints are integrated (Varis, 1997).  

This paper and the accompanying R script (R Development Core Team, 
2010) illustrate a spatial sampling approach for use with mobile sensors that 
aims to maximise EVoI from new observations and minimise the cost-distance of 
sensor movement under mobility constraints. In the present study these two 
objectives are considered in separate steps. 

First, we introduce EVoI, the calculation of misclassification costs, and the 
use of an aggregated EVoI. Then we describe the calculation of the cost-distance 
for moving a sensor under mobility constraints. A synthetic study case is 
described in section 4.4. Section 4.5 contains the results and discussions. Finally, 
conclusions are presented. 

4.2. RELATED WORK 

There is a substantial body of literature on mobile sensors and location selection. 
Surveys can be found in Wang et al. (2009), Wang et al. (2012), and Younis and 
Akkaya (2008). Several studies aim to select sensor locations to optimise 
network configuration, in terms of data transmission and connectivity (Ekici et 

al., 2006) or energy conservation (Basagni et al., 2008; Jain et al., 2006; Wang et 

al., 2010). 
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On the other hand, coverage-oriented approaches aim to select sensor 
locations in order to optimise spatial coverage of the study area. The coverage 
optimisation may be achieved by locating sensors at the centroids of k-means 
clusters (Walvoort et al., 2010) or by using virtual forces which repel sensors 
from each other and from obstacles (Howard et al., 2002) or Voronoi diagrams 
and Delaunay triangulation (Argany et al., 2011). Similarly, in geostatistics the 
aim of sampling often is to minimise the (mean) kriging error variance (Brus and 
Heuvelink, 2007; Walkowski, 2008). The drawback of the above methods is that 
spatial sampling is adapted according to geometric criteria while it is not 
affected by characteristics of the monitored phenomenon. 

Other approaches rely on ancillary data or covariates, such as digital 
elevation models, aerial or satellite imagery, and climate information, which are 
assumed to be correlated with the phenomenon of interest. For example, 
Minasny et al. (2007) used a quadtree method with secondary data to sparsely 
sampling in relatively uniform areas and more intensively where covariate 
variation is large. Minasny and McBratney (2006) used a Latin hypercube 
method to select locations that provide a full coverage of the range of each 
secondary variable. Brus and Heuvelink (2007) minimised the spatial average of 
the universal kriging variance to obtain the right balance between dispersing 
sensors in geographic and feature spaces. The applicability of these approaches, 
however, is restricted to the availability of ancillary data. For instance, they 
might not be available for the whole study area or with the required resolution, 
or they might be expensive to acquire. 

Information-theoretic approaches employ entropy and mutual information 
to improve information quality by reducing uncertainty about the true state of 
the phenomenon (Krause et al., 2008). These measures, however, do not depend 
on how data about the state of the phenomenon is used in decision making 
(Donaldson-Matasci et al., 2010). They are measures of information quality, but 
they do not reflect the quality of the decision that will be made with sensor 
observations. In contrast, based on decision theory, our method considers both 
the network configuration and the information obtained from sensor 
observations. Decision-theory is concerned with (lack of) knowledge about the 
true state of a phenomenon and using this in rational decision making 
(Donaldson-Matasci et al., 2010). For example, Heuvelink et al. (2010) and Melles 
et al. (2011) optimised the locations of mobile devices such that wrong decisions 
caused by false classifications were minimised. Our approach bears some 
similarity to this work, but it directly employs the concept of expected value of 
information (Bhattacharjya et al., 2010; de Bruin et al., 2001; Kangas, 2010) 
while it also considers sensor mobility constraints to minimise unwanted effects 
of sensor mobility on the WSN configuration itself, such as energy depletion. We 
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did not come across other studies exploring the expected value of information 
for selecting mobile sensor locations. 

4.3. METHODS 

4.3.1. Value of information  

The expected value of information (EVoI) is the difference between the prior and 
posterior costs of wrong predictions (Equation 4.1).  

( ) ( )posteriorprior CECEEVoI −=                                                    (4.1) 

Consider a WSN with mobile sensors deployed in a study area. Sensors 
monitor at locations l a certain phenomenon (F) which, for simplicity, has either 
of two states (T): presence or absence. Prior information about the phenomenon 
is given by a set of discrete observations made by the sensors. These 
observations are interpolated to predict, at unobserved locations, the probability 
of the phenomenon being present P(f=present). This is called the prior 
probability map.  

Using the prior probability map, unobserved locations are labelled as 
phenomenon present or phenomenon absent. To minimise misclassification costs, 
Bayes decision principle chooses the state with the minimum expected cost 
(Equation 4.2) (Berger, 1985). Let C(T,F) be the misclassification costs: Cwrong-p 
for wrong predictions of phenomenon present, and Cwrong-a for wrong predictions 
of phenomenon absent. There are no costs for correct predictions. The expected 
cost is based on available observations, thus it is called the prior expected cost of 
wrong predictions. Figure 4.1a illustrates this decision as a decision tree.  

( ) ( ) ( )






 ∗= lprior FPFTCCE ,min                                                   (4.2) 

As the EVoI is evaluated before moving a sensor, Bayes theorem is used to 
update the prior probability P(F) into a posterior probability P(F|X), where X 
represents the new data. Because X has not been observed yet, the posterior 
probability P(F|X) is calculated from all possible outcomes of X (signals of 
presence and absence) and for all possible locations in the study area. In 
Equation 4.3, P(F) is the prior probability obtained using available observations 
at a considered location. P(X|F) is the likelihood of getting a presence signal if the 
phenomenon is actually present. Information about P(X|F) can be obtained from 
sensor sensitivity and specificity data in the sensor specifications. P(X) is the 
probability of getting a presence signal at the considered location. It is obtained 
by marginalising out the likelihood P(X|F) over the possible states of F. 

( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∗=∗=
F

llllll FPFXPXPXPFPFXPXFP ;                          (4.3) 
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The posterior expected cost is calculated as in Equation 4.2, but using the 
posterior probability P(F|X) for all the possible outcomes of X (Equation 4.4). 
Following Bayes decision principle, the minimum expected costs of each 
outcome is weighted with P(X). This cost is calculated after updating the prior 
probability into a posterior one, thus it is called the posterior cost of wrong 
predictions. Figure 4.1b illustrates this decision as a decision tree. Figure 4.2 is 
an influence diagram for the decision tree shown in Figure 4.1. 

( ) ( ) ( ) ( )






 ∗∗=∑ ll

X

lposterior XFPFTCXPCE ,min                                     (4.4) 

Finally, EVoI is calculated for each unobserved location using Equation 4.1. 
If E(Cposterior) is smaller than E(Cprior), information has been gained and the 
misclassification cost reduced.  

 
Figure 4.1. Decision tree for sampling a location: a) prior expected cost of wrong 
predictions; b) posterior expected cost of wrong predictions. Squares are decision nodes; 
circles are chance nodes. The grey column shows the misclassification costs assigned to 
each leaf of the decision tree. 

 
Figure 4.2. Influence diagram representing the decision tree in Figure 4.1. 

 



Spatial sampling 

67 

 

Aggregated EVoI 

The EVoI calculated as described above is called the local EVoI. However, spatial 
correlation between observations means that an observation carries information 
not only about its own location, but also about its vicinity. The expected 
reduction in misclassification costs aggregated over the whole study area is the 
aggregated EVoI. Maximising aggregated EVoI is equivalent to minimising 
misclassification costs over the whole study area. 

Aggregated EVoI is calculated as the difference between the prior and 
posterior costs which have been aggregated over the whole map. A posterior 
probability map is predicted (interpolated) for each possible outcome of X and 
for each unobserved location. Then, for each posterior probability map, the 
posterior expected cost is calculated using Equation 4.4, and aggregated over the 
whole map. The location with the maximum aggregated EVoI is selected to be 
sampled.  

4.3.2. Mobility constraints 

The next step is to decide which sensor to move to the new location by 
calculating the cost-distances of moving each sensor. The sensor with the lowest 
cost-distance is selected. 

We use influence diagrams (IDs) to integrate the mobility constraints into 
the calculation of cost-distances. An ID graphically represents the decision 
problem including the decision, factors and costs (Howard and Matheson, 2005; 
Jensen and Nielsen, 2007; Kjaerulff and Madsen, 2007).  

The decision is whether to move a sensor or not. Factors are mobility 
constraints (MC) represented by sensor properties (i.e. energy, type of mobility, 
mobile object, speed, connectivity, etc.), a selected sensor trajectory and 
properties of the geographical space (i.e. barriers, slope, type of land use, etc.). 
Distance is also considered as a factor and depends on the selected sensor 
trajectory. Costs are the decision maker’s preferences for each decision 
alternative, given the possible states of mobility constraints. Figure 4.3 shows 
the influence diagram with the decision as a square, factors as grey rounded 
squares, and the cost node as a diamond. The arrows pointing to the decision 
node are informational and represent the known information at the time of 
making the decision. The arrows pointing to the cost node are functional and 
represent the link between cost values and the underlying mobility constraints 
and the decision.  
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Figure 4.3. General influence diagram for deciding which sensor to move.  

The cost-distance of moving a sensor (s) under mobility constraints is 
calculated using Equation 4.5, in which (d=move) is the decision to move the 
sensor. The cost values (C(d=move,MC)) are multiplied by the probability of 
mobility constraints being present (P(MC)) and the distance to travel (dist). 

( ) ( )






 ==− ssss MCPMCmovedCdistdistanceCost *,*                               (4.5) 

As it may be difficult to assess cost values in an integrated way when 
several mobility constraints are considered, costs are broken down by mobility 
constraints. However, the cost values of constraints with dependent influences 
need to be assessed together. This is shown on an ID where a cost node is shared 
by several constraints. The cost values for mobility constraints with independent 
influences are assessed individually. In an ID, this is shown where a cost node is 
linked to only one constraint. The joint cost is calculated by summing up the 
disaggregated costs multiplied by the Cartesian product of dependent mobility 
constraints (Bielza et al., 2010). Equation 4.6 updates Equation 4.5 for the case of 
disaggregated costs. Finally, the sensor with the minimum cost-distance is 
selected as the one to move. 
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

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ssss MCP*MCmove,dC*distdistanceCost                          (4.6) 

4.3.3. Comparison 

To assess the performance of our proposed approach, its results were compared 
with those of a simple random approach in which sensors were selected on the 
basis of minimum Euclidian distance criterion. The sampling was repeated 100 
times, with each repetition adding the same number of extra observations as in 
our approach. Moreover, both approaches started with the same sensor 
deployment. The resulting aggregated misclassification cost, accumulated 
travelled distance and accumulated cost-distance were compared with those 
obtained by our approach.  

4.4. IMPLEMENTATION OF A SYNTHETIC CASE STUDY 

A typical monitoring scenario with heterogeneous mobile sensors was illustrated 
using a synthetic dataset. EVoI and mobility constraints were simulated in R (R 
Development Core Team, 2010). We chose R because our method strongly 
depends on spatial interpolation such as implemented in the Gstat package 
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(Pebesma and Wesseling, 1998). The package sp was used for spatial data 
handling and visualisation (Pebesma and Bivand, 2005), and Gstat was used for 
geostatistical modelling, prediction and simulation. In addition, gRain was used 
to compute conditional probabilities used in influence diagrams (Højsgaard, 
2009). 

A synthetic dataset was constructed applying a threshold of 20 to a 
unconditional Gaussian random field of 120 x 120 grid cells, with a mean of 20, a 
nugget of 1 and a spherical structural spatial correlation component with a range 
of 40 and partial sill (semivariance) of 16. Presence was recorded for all cells 
whose realised value was above the threshold; otherwise absence was recorded 
(Figure 4.4a). Relative misclassification costs were set higher for false negatives 
than for false positives (cost values 3 and 2, respectively). 

Initially, a WSN with 16 sensors was evenly deployed in the study area of 
120 x 120 grid cells. Some sensors were assumed to be immobile; others were 
assumed to be mobile and carried by people, robots or bicycles. Table 4.1 shows 
the sensor metadata. For simplicity, metadata were assumed to be static during 
the simulation. The choice of this sensor network size was made to facilitate 
presentation and interpretation of results. Note that the examples given in the 
introduction require specialised (and thus expensive) sensors so that a WSN 
consisting of 16 sensors may be considered as realistic. 

 
Figure 4.4. Implemented monitoring scenario with mobile sensors: a) simulated 
phenomenon; b) spatial interpolation and Bayes decision of initial sensor observations; c) 
local EVoI for initial observations. The numbers indicate the initial deployed sensors. 

Table 4.1 Metadata of mobile sensors. 

Sensor id Mobile object Type of mobility Energy status 

1 Pedestrian Controlled Low 
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2 Immobile Immobile High 

3 Robot Controlled High 

4 Robot Controlled High 

5 Robot Controlled Low 

6 Robot Controlled Low 

7 Bicycle Controlled Low 

8 Pedestrian Controlled High 

9 Pedestrian Controlled Low 

10 Immobile Immobile High 

11 Immobile Immobile Low 

12 Bicycle Controlled High 

13 Robot Controlled High 

14 Immobile Immobile High 

15 Robot Controlled High 

16 Pedestrian Controlled Low 

4.4.1. Value of information 

The sensors acquired initial observations at the locations by sampling the 
synthetic data. These observations were interpolated by indicator kriging using a 
spherical variogram with range=30 and sill=0.25. These parameter values should 
be interpreted as expert guesses, since initially there were too few data to 
estimate the variogram, while the true parameters of the generating process 
were unknown to the surveyor. Using the prior probability map, the 
phenomenon at each location was classified as either present or absent (Figure 
4.4b). Note that the prior probability map was updated after each added 
observation. 

Candidate locations were unobserved locations in the study area that can be 
occupied by a sensor. Obstacles, such as a river, cannot be occupied by a sensor, 
and were therefore excluded from the population of candidates. To speed up the 
simulation, exhaustive searching of candidates was restricted to locations having 
a local EVoI in the fourth quartile of the global distribution of EVoI (Figure 4.4c).  

4.4.2. Mobility constraints 

The influence diagram contained mobility constraints about sensor properties 
such as energy, mobile object, speed and type of mobility, as well as about the 
geographical space, such as barrier, terrain slope and land use type (Figure 4.5 
and Table 4.2). For simplicity, the sensor trajectories were assumed to be 
straight. Individual cost nodes were created for the mobility constraints with 
independent influences (speed, land use and slope), and common cost nodes for 
those with dependent influences (energy and mobile object, type of mobility and 
barrier). 
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Figure 4.5. Influence diagram for deciding which sensor to move. 

Table 4.2 Details about mobility constraints for deciding which sensor to move using the 
influence diagram shown in Figure 4.5. 

Mobility 
constraints 
(Factor 
nodes) 

Description States 
Deterministic 
or chance node 

Data source 

Distance 

Topographic 
distance between a 
sensor and the 
selected location 

no states Deterministic 

Coordinates of 
sensor location 
and selected 
location. 
Elevation map  

Energy 
Remaining sensor 
energy 

low, high Deterministic Sensor metadata 

Mobile 
object 

Type of mobile object 
a sensor is attached to

pedestrian, robot, 
bicycle, car, robot, 
animal, immobile 

Deterministic Sensor metadata 

Speed 

Estimation of sensor 
speed depending on 
the type of mobile 
object 

slow, medium, 
high, no speed 

Chance 
Sensor metadata 
(mobile object) 

Type of 
mobility 

Whether a sensor has 
controlled or 
uncontrolled mobility, 
or if it is immobile 

controlled, 
uncontrolled,  
immobile 

Deterministic Sensor metadata 

Barrier 

Obstacles in the 
geographic space 
preventing sensor 
mobility (on sensor 
trajectory) 

yes, no Chance Land use map 

Land use 
type 

Types of land uses on 
the sensor trajectory 

forest, agriculture, 
residential, river 

Chance Land use map 

Slope 
Slope on the sensor 
trajectory 

flat up, flat down, 
moderate up, 
moderate down, 
steep up, steep 
down, very steep 
up, very steep 
down  

Chance Elevation map 
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Probabilities of mobility constraints were computed using the sensor 
metadata in Table 4.1, and elevation and land use maps (Figure 4.6). The 
conditional probability of speed was determined according to the type of mobile 
object the sensor is attached to (Table 4.3). The probabilities were updated every 
time a new location to observe was selected. 

 
Figure 4.6. Study area: a) elevation; (b) land use. 

Table 4.3 Conditional probability of speed per mobile object. 

Mobile object 
P(Speed | Mobile object) 

Slow Medium High No speed 
Pedestrian 1 0 0 0 
Robot 0.5 0.5 0 0 
Bicycle 0.3 0.7 0 0 
Car 0 0.1 0.9 0 
Animal 0.4 0.3 0.3 0 
Immobile 0 0 0 1 

Two design choices were used to populate cost nodes. One design choice 
aimed to extend the WSN lifetime as much as possible by prioritising energy 
conservation. This represented monitoring in normal situations, i.e. without the 
occurrence of an emergency. The other design choice aimed to move a sensor as 
quickly as possible to a selected location by prioritising speed, regardless of 
energy consumption. This mimicked an emergency scenario. The cost values for 
soft constraints (energy, mobile object, speed, land use and slope) were assigned 
using a scale of 0 to 1, with 0 representing the least costly and 1 the most costly 
state. The scale was extended to 100 for recording values for hard constraints, 
such as barriers. This meant that excessively high costs were assigned to sensors 
with hard constraints to ensure they could not be selected. Tables with the cost 
values for both design choices are included in the Appendix B. 

4.5. RESULTS AND DISCUSSION 

4.5.1. Reducing the cost of making wrong predictions 

The application results are presented in Figure 4.7. Figure 4.7a shows the 
selected location (i.e. the location with the maximum aggregated EVoI) for the 



Spatial sampling 

73 

 

first additional observation, using the initial set of observations. The selected 
sensor moved to this location and acquired an additional observation. Figure 
4.7b shows the updated phenomenon map after this additional observation. 
Figure 4.7c shows the updated local EVoI. If there is no prior information, the 
mobile sensors can be used to make an initial sampling before starting the EVoI 
analysis.  

 

Figure 4.7. Application results of the EVoI analysis. First additional observation: a) 
selected location, background image shows local EVoI; b) updated phenomenon map; c) 
updated local EVoI. Fiftieth additional observation: d) selected location; e) updated 
phenomenon map; f) updated local EVoI. 

The procedure was run to add 50 extra observations, one at a time. 
Observation of selected locations reduced misclassification costs while it 
improved the delineation of the phenomenon. Figures 4.7d to 4.7f show the 
selected location, the updated phenomenon map and the local EVoI for the 
fiftieth added observation. Note that the map in Figure 4.7f is much brighter than 
in Figure 4.7a. This indicates the achieved reduction in misclassification costs. 
The selected locations were usually located on the border between phenomenon 
states, which helped not only to reduce the cost of making wrong predictions, 
but also to better delineate the phenomenon. 
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Figure 4.8 shows the misclassification cost per additional observation as a 
percentage. By the fiftieth observation, the misclassification cost was reduced to 
44.21%. Although the general trend was a reduction of the misclassification cost, 
certain locations turned out to be less valuable than expected. This was observed 
when the real cost (solid line) increased instead of falling. An example is the first 
additional observation. Although a cost reduction was expected, the result was 
an increase of 1.14%. Obviously, expected costs and realised costs may differ, but 
consistent divergence between the expected and actual values of information 
may be indicative of a misspecification of the geostatistical model. Once the 
sample is large enough (say, 100 observations) the indicator variogram can be 
estimated from the acquired data. 

 
Figure 4.8. Misclassification cost per additional observation as a percentage. 

We compared our results with those of a simple random selection approach. 
Figure 4.9 shows misclassification costs as percentages, in solid line for the 100 
repetitions of the random selection, and in dashed line for the maximum 
aggregated EVoI criterion. Each of the 100 repetition added 50 extra 
observations and started with the same simulated phenomenon and sensor 
deployment as in the EVoI criterion. Each of the 100 repetitions of the random 
location selection produced larger misclassification costs than the aggregated 
EVoI criterion. The averaged misclassification cost for the random selection after 
the 100 repetitions was of 67.87% (standard deviation of 4.7%). Accordingly, 
our method performed significantly better than the selection of random 
locations (misclassification cost of 44.21% against 67.87%).  
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Figure 4.9. Comparison of maximum aggregated EVoI with a random selection approach. 
Aggregated misclassification cost per repetition is expressed as a percentage. 

Note that in the current work we used exhaustive search over grid nodes to 
find the optimal next sensor location. This makes the procedure rather time 
demanding, but ensures that optima are found. For operational applications an 
optimiser should be considered. In addition, we accounted for the optimisation 
of single sensor movements at a time. Extending this to multiple sensor 
movements may require simultaneously evaluating several locations (Heuvelink 

et al., 2010). Similarly, to support the observation of multiple locations on a 
sensor trajectory, such a trajectory should be optimised. This requires evaluating 
EVoI of intermediate locations as well as accounting for cost surfaces that may 
impede sensors to follow a specific trajectory or visit specific locations. 

4.5.2. Sensor selection 

Figure 4.10 shows the sensor selection for the first additional observation using 
the energy conserving design choice. Figure 4.10a shows the spatial distribution 
of sensors. The sensor with the minimum cost-distance (see grey bars in Figure 
4.10b) was sensor 9 which was attached to a pedestrian and located at a distance 
of 44.76 m. This was the sensor selected to move.  

Accounting for cost-distances thus prevents the selection of sensors with 
high movement costs even if they are located close to the new sampled location. 
Note that, in the example, the closest sensor was sensor 14 (see white bars in 
Figure 4.10b). However, this sensor was immobile, which imposed a hard 
mobility constraint. This can be seen in Figure 4.10c, which shows the influences 
broken down per mobility constraint. Other sensors were also impeded by hard 
mobility constraints; sensors 10 and 11 were immobile and sensors 1 to 7 had 
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the river as a barrier. Sensors 13 and 15 were closer to the selected location than 
sensor 9, but their cost-distances were larger because they were attached to 
robots with a low energy reserve. This made their mobility costly. Energy was of 
no consequence for sensor 9 because it was attached to a pedestrian. The 
influences of slope and land use were similar for all sensors. Speed was 
unimportant given the design choice.  

 
Figure 4.10. Sensor selection for the first additional observation in the energy conserving 
design choice: a) spatial distribution of sensors; b) distance and cost-distance per sensor; 
c) disaggregated influences of mobility constraints. 

Different decision maker preferences can be encoded in the influence 
diagram through assigning different costs values to mobility constrains being 
present. This leads to different sensor selection which may be relevant for multi-
purpose WSNs. For instance, Figure 4.11 shows the sensor selection in the 
emergency scenario. The selected sensor turned out to be sensor 13 instead of 
sensor 9. The reason for this is that speed imposed a larger cost on sensor 9 than 
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sensor 13 since it was assumed that a robot could move faster than a pedestrian. 
Energy conservation was not considered in this scenario.  

 
Figure 4.11. Sensor selection for the first additional observation in the design choice of 
observing the selected location as soon as possible. 

We compared our results with those of selecting sensors with minimum 
Euclidian distance (Figure 4.12). Figure 4.12a shows the accumulated distance, 
in solid line for the minimum Euclidian distance criterion and in dashed line for 
the minimum cost-distance criterion. As expected, the accumulated distance was 
smaller for the Euclidian distance criterion than for the cost-distance criterion 
(an average of 663.08 m against 934.04 m). Figure 4.12b shows the accumulated 
cost-distance. It can be observed that the accumulated cost-distance was larger 
for the minimum Euclidian distance than for the minimum cost-distance (an 
average of 20698.39 against 1229.70). Although in our approach sensors 
traversed longer distances (41% more than the minimum Euclidian distance), 
they achieved a significantly lower cost-distance (94% less than the minimum 
Euclidian distance). Accordingly, our method performed significantly better than 
selecting sensors on the basis of minimum Euclidian distance. This result could 
be improved even more if accounting for least cost paths in the sensor selection 
procedure. 
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Figure 4.12. Comparison of cost-distance with minimum Euclidian distance: a) 
accumulated distance per repetition of the random approach in which sensors were 
selected on the basis of minimum Euclidian distance; b) accumulated cost-distance. 

4.6. CONCLUSIONS 

This paper presents an adaptive spatial sampling approach for use with mobile 
sensor networks. Two decisions were addressed: where should the additional 
sample be made and which sensor should be moved to the new sampling 
location? To select the sample location, we calculated the aggregated expected 
value of information (EVoI). To select the sensor to be moved, we used the cost-
distances of sensors under hard and soft mobility constraints. The approach was 
demonstrated using a synthetic dataset and compared with a random location 
selection in which sensors were selected using a minimum Euclidian distance 
criterion. It demonstrated that sound locations were selected and their 
observations significantly reduced misclassification costs in comparison to the 
random approach while improving phenomenon delineation. Moreover, 
accounting for cost-distances significantly avoided costly sensor movements. 

The advantage of using EVoI is that it takes into account the state of the 
phenomenon in the selected set of locations. In other words, the method is data 
dependent, which makes sense in many real-life situations, such as exposure to 
contaminants (Milton and Steed, 2007) and radioactivity (Melles et al., 2011) or 
biodiversity assessment (Zerger et al., 2010). Moreover, it distinguishes between 
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costs associated with false positives and false negatives. This is especially useful 
in applications such as radioactivity, contaminants and fire risk, in which false 
negative costs are usually higher than false positives (Heuvelink et al., 2010).  

The method as presented in this paper applies to phenomena that change 
much slower than the speed of sampling, which is a common situation in 
phenomena such as soil contamination (Rodriguez-Lado et al., 2008; Romic et al., 
2007), natural radioactivity (Heuvelink and Griffith, 2010); and biodiversity 
(Zerger et al., 2010). Extending the method to highly dynamic phenomena 
requires considering the temporal behaviour of the phenomenon studied within 
the sampling procedure (Kho et al., 2009), which is topic of further research. 
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Appendix B. Cost values for the implemented influence 
diagram 

Table B1 Cost values for energy-mobile object (dependent and soft mobility constraints). 

Energy Mobile Object 
C (d=move, Energy, Mobile object) 

Design choice: prolong 
WSN lifetime 

Design choice: observe the 
location as soon as possible 

Low Pedestrian 0 0 
Low Robot 1 0 
Low Bicycle 0 0 
Low Car 0 0 
Low Animal 0 0 
Low Immobile 0 0 
High Pedestrian 0 0 
High Robot 0 0 
High Bicycle 0 0 
High Car 0 0 
High Animal 0 0 
High Immobile 0 0 

 

Table B2 Cost values for speed (independent and soft mobility constraint). 

Speed 

C (d=move, Speed) 

Design choice: prolong WSN 
lifetime 

Design choice: observe the 
location as soon as possible 

Low 0 1 
Medium 0 0.5 

High 0 0 
No speed 0 0 

 

Table B3 Cost values for type of mobility and barrier (dependent and hard mobility 
constraints). 

Type of mobility Barrier 
C (d=move, Type of mobility, Barrier) 

Design choice: prolong WSN lifetime = Design 
choice: observe the location as soon as possible 

Controlled yes 100 
Controlled no 0 

Uncontrolled yes 100 
Uncontrolled no 100 

Static yes 100 
Static no 100 
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Table B4 Cost values for land use type (independent and soft mobility constraint). 

Land use type 
C(d=move, Land use type) 

Design choice: prolong WSN lifetime = Design choice: 
observe the location as soon as possible 

Residential 0.2 
Agriculture 0.5 

Forest 0.8 
River 1 

 

Table B5 Cost values for slope (independent and soft mobility constraint). 

Slope 
C (d=move, Slope, Direction) 

Design choice: prolong WSN lifetime = Design 
choice: observe the location as soon as possible 

Flat up slope 0.2 
Flat down slope 0.1 

Moderate up slope 0.5 
Moderate down slope 0.2 

Steep up slope 0.8 
Steep down slope 0.3 

Very steep up slope 1 
Very steep down slope 0.4 
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5.1. INTRODUCTION 

Many environmental phenomena are dynamic in space and time (Heuvelink and 
Griffith, 2010). For example, owing to atmospheric conditions and the nature of 
the phenomena, polluted air, radioactivity, volcanic ash, chemical and smoke 
plumes vary in space as well as over time. Models accounting for such dynamics 
are essential to support decision making in the case of hazards and emergencies 
(Brenning and Dubois, 2008). Consider, for example, a scenario in which a fire 
releases polluted smoke into the open air. The smoke forms a plume that moves 
through space under the influence of wind speed and direction. Close to the fire 
source, there may be cropped fields. Knowing whether those fields are actually 
affected by the plume is critical. Pollutant concentrations can be predicted 
reasonably well by physical dispersion models. However, uncertainties in 
meteorological conditions and errors in the models themselves are propagated 
to the outputs. As result, model predictions will differ from reality (Heuvelink et 

al., 2010). False negative predictions about pollutant concentrations exceeding a 
threshold may result in contaminated food entering the market, while false 
positive predictions may lead to the elimination of crops that are actually safe for 
consumption. The costs of these misclassifications can be minimised by using 
ground sensor observations to adjust the model predictions. 

Wireless sensor networks (WSNs) are increasingly used to provide ground 
observations. They monitor the environment in real time with spatial and 
temporal resolutions never captured before (Nittel, 2009; Porter et al., 2009; 
Rundel et al., 2009; Zerger et al., 2010). WSNs are composed of autonomous and 
wirelessly networked sensors that are spatially distributed throughout a study 
area (Akyildiz et al., 2002). The main challenges of WSNs are related to 
overcoming their unique constraints, such as the limited life of low-power 
batteries, the short range of radio-based communication, and their limited 
storage capacity (Nittel, 2009). Sensors become mobile when they are attached 
to mobile objects, such as robots (Dantu et al., 2005), people (Campbell et al., 
2008), bicycles (Eisenman et al., 2007) and buses (Zoysa et al., 2007). Mobility 
offers the opportunity to make ground observations at new locations by moving 
sensors (Liu et al., 2005; Rundel et al., 2009; Singh et al., 2006). This is especially 
useful when the monitored phenomenon varies in space and time.  

To obtain the maximum benefit from ground observations, sensor mobility 
needs to be optimised. Optimisation consists of deciding the best location to be 
observed by a mobile sensor at a certain point in time. Different approaches have 
been developed.  

Coverage-oriented approaches select locations according to geometric 
criteria. Examples are Voronoi diagram and Delaunay triangulation, which 
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identify sensing holes and create an optimal sensor deployment that minimises 
the sizes of the holes (Argany et al., 2011), virtual forces which repel sensors 
from each other and from obstacles such that the deployed sensors spread out to 
maximise the covered area (Howard et al., 2002), and calculating k-means 
clusters and deploying the sensors at the centroids of these clusters (Walvoort et 

al., 2010). Similarly, geostatistical approaches may aim to minimise the mean 
kriging error variance (Brus and Heuvelink, 2007; Walkowski, 2008). These 
approaches select the locations to be observed according to geometric criteria 
without taking account of the characteristics of the monitored phenomenon. 

Information-theoretic approaches employ entropy, mutual information and 
the Fisher information matrix to reduce uncertainty about the true state of the 
phenomenon (Krause et al., 2008; Xu and Choi, 2011). These are measures of 
information quality, but they do not take any account of the quality of the 
decision to be made using sensor observations. In other words, they do not 
depend on how data about the state of the phenomenon is used in the decision-
making process (Donaldson-Matasci et al., 2010). 

Other approaches use correlated data as prior information, such as digital 
elevation models, aerial or satellite imagery, climate information and dispersion 
models. For example, Minasny et al. (2007) used a quadtree method with 
secondary data to sparsely sample in relatively uniform areas and sample more 
intensively where covariate variation is large. Minasny and McBratney (2006) 
used a Latin hypercube method to select locations that provide a full coverage of 
the range of each secondary variable. Brus and Heuvelink (2007) minimised the 
spatial average of the universal kriging variance to obtain the right balance 
between dispersing sensors in geographical and feature spaces. These have the 
advantage of spreading observations not only in the geographical space, but also 
in the feature space. However, like information-theoretic approaches, these 
approaches do not depend on how data about the state of the phenomenon are 
used in decision making. 

An alternative approach which overcomes these limitations is to use the 
expected value of information (EVoI). This is a decision-theory measure that 
concerns about the knowledge about the true state of a phenomenon (or the lack 
of it) and using this in rational decision making (Donaldson-Matasci et al., 2010). 
Prior to making the observation, it evaluates the expected relevance of observing 
a certain location in time (Bhattacharjya et al., 2010; de Bruin et al., 2001; de 
Bruin and Hunter, 2003; Kangas, 2010). The EVoI compares the expected 
misclassification costs from a previous sensor deployment with that obtained 
from a new deployment in which one or more sensors are moved to a new 
location. The EVoI is the reduction in the expected misclassification cost 
achieved by the new deployment.  
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The objective of this paper is to contribute to the development of a 
methodology for deciding where to make ground observations over time to 
monitor a dynamic phenomenon using mobile sensors. First, the state of the 
phenomenon at each time step is modelled using regression kriging, which 
comprises logistic regression to handle prior information from a deterministic 
model and spatiotemporal kriging to handle stochastic residuals. Then an 
optimisation criterion is proposed which maximises the EVoI from a new sensor 
deployment at each time step. A two-stage approach is used. First, each sensor is 
set to its mobile mode (if possible) and the location with the maximum EVoI is 
computed for that sensor; in other words, a sensor-location association is made. 
Second, from all the individual sensor-location associations, the location with the 
greatest maximum value of information is chosen to be sampled by its associated 
sensor. 

5.2. METHOD 

The method is described by first introducing the calculation of the probability 
that a dynamic phenomenon exceeds a threshold. Second, the EVoI as 
optimisation criterion is presented. Figure 5.1 illustrates the main steps of the 
method. 

 
Figure 5.1. Main steps of the method. 

5.2.1. Probability of exceeding a threshold 

The probability of a pollutant Z at a location in space x and time t to be above an 
intervention level is modelled as the sum of a trend m and an error residual ε 
(Equation 5.1) (Heuvelink and Griffith, 2010; Heuvelink et al., 2010; Kyriakidis 
and Journel, 1999). The probability is computed using regression indicator 
kriging which consists of logistic regression and spatiotemporal kriging (Hengl, 
2009; Lin et al., 2011). Figure 5.2 is a schematic representation of the steps 
described below. 

txtxtx mthresholdzP ,,, )( ε+=>                                                   (5.1) 
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Figure 5.2. Elements for the calculation of the phenomenon probability of exceeding a 
threshold. Numbers correspond with the main steps in Figure 5.1.  

The trend mx,t is obtained by logistic regression using the output of a 
deterministic model which could proceed from, for instance, remote sensing or 
pollutant dispersion models. Logistic regression records concentration values of 
the deterministic model (explanatory variable) as proportional values between 0 
and 1 (response variable) (Hosmer and Lemeshow, 2000). The relationship 
between the explanatory and the response variables is expressed in Equation 
5.2, with mx,t as the probability that the deterministic model output exceeds the 
threshold, B0 and B1 as the estimated coefficients for the logistic model, and cx,t as 
the concentration value at a location in space and time. The coefficients are fitted 
by using ground sensor observations expressed as a binomial variable. 

( ))logit(m
tx,
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tx,e11m
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−+=
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                                       (5.2) 

The stochastic residuals εx,t result from uncertainties in trend inputs and 
errors in models themselves that make model predictions differ from reality 
(Heuvelink et al., 2010). They can be modelled by a spatiotemporally correlated 
field that is characterised by a spatiotemporal variogram. This may be modelled 
as a sum-metric spatiotemporal variogram, which is composed of a spatial 
variogram, a temporal variogram and a spatiotemporal variogram (Heuvelink 
and Griffith, 2010; Myers, 2004). 

Although no residual data are directly available, ground sensor 
observations help to calculate them. Sensors observe the true state of the 
phenomenon, which is expressed as a binomial variable: above threshold or 
below threshold. Residuals at observed locations are the difference between the 
binomial observations and the probabilities obtained from the regression model. 
These differences are interpolated, using indicator kriging with zero mean and 
the spatiotemporal variogram, to predict residuals over the study area. 
Interpolated residuals are added to the regression output to obtain an adjusted 
trend map with the probability that a threshold is exceeded. This adjusted map 
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shows a closer representation of reality than the original deterministic model, 
which does not comprise residuals. 

5.2.2. Expected value of information 

At each time step that the output of the deterministic model is updated, ground 
observations need to be made in order calculate residuals and adjust the trend. 
Before making such observations, however, it is necessary to determine the best 
locations to be observed. The optimisation criterion to make such decisions is 
the maximisation of the EVoI at each time step, which is the difference between 
the expected misclassification costs from the previous sensor deployment and 
that from a new deployment in which one or more sensors have moved to new 
locations (Equation 5.3).  

)()( deploymentnewdeploymentprevious CECEEVoI −=                                      (5.3) 

First, each mobile sensor is associated with the location with maximum 
EVoI. Then the sensor-location association with maximum EVoI is chosen. 
Calculation details are provided in the following section. Note that in this study 
we consider a single sensor movement per time step. 

Expected misclassification costs 

The adjusted trend map using ground observations (i.e. time step = t) is used to 
label unobserved locations as above threshold or below threshold. To minimise 
misclassification costs, Bayes decision principle chooses the state with the 
minimum expected cost (Berger, 1985). Let P(zx,t > threshold) be the probability 
of a pollutant Z at a location in space x and time t to be above an intervention 
level. In addition, let C be the misclassification costs: Cfalse-positive for wrong 
predictions of the pollutant exceeding the threshold, and Cfalse-negative for wrong 
predictions of the pollutant not exceeding the threshold. There are no costs for 
correct predictions. The expected misclassification cost at location x in time t, 
given a sensor deployment, is calculated by Equation 5.4. Figure 5.3 illustrates 
this decision as a decision tree.  

[ ])(min)( ,, thresholdzPCCE txtx >×=                                              (5.4) 

 
Figure 5.3. Decision tree to label the adjusted trend map as above threshold or below 
threshold. 
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When the output of the deterministic model is updated at a new time step 
(i.e. time step = t+1), misclassification costs cannot be calculated in a 
straightforward way as explained above. The reason is that observations cannot 
be made until a new sensor deployment has been decided. In such cases, the 
expected misclassification costs are computed as follows. 

The expected misclassification cost from the previous sensor deployment 
E(Cprevious deployment) relies on residuals of the previous time step, for which 
observations have been made. Spatiotemporal kriging interpolation, with zero 
mean, predicts residuals at the new time step using those of the previous time 
step and the sum-metric spatiotemporal variogram. With the predicted 
residuals, the current trend is adjusted and the misclassification cost is 
calculated using Equation 5.4.  

However, the expected misclassification cost of a new sensor deployment 
E(Cnew deployment) relies on the simulation that a sensor moves to a new location 
while other sensors remain immobile. Because observations have not been made 
yet, many realities are possible and so the possible combinations of sensor 
outcomes for the mobile and immobile sensors are simulated. Sensor outcomes 
are assumed to be spatially dependent, thus their joint conditional probability 
P(s1,…,sn) is calculated by recursively adding one new sensor outcome at a time 
(Equation 5.5). In Equation 5.5, s1,…,sn-1 are the outcomes for the deployed 
sensors that remain immobile and sn is the outcome for the sensor set to its 
mobile mode. The average cost of possible realities approximates the expected 
cost of the new deployment. The expected cost of the new deployment is 
obtained for each location in the study area and for each mobile sensor. 

),...,(),...,(),...,( 11111 −− ×= nnnn sssPssPssP                                          (5.5) 

The expected costs of the previous and new sensor deployments are 
aggregated over the study area (Equation 5.6). This accounts for local spatial 
variability, showing the value of the observation at a location not only for the 
observed location but also for its vicinity. It also shows the loss of information of 
no longer observing the location where the sensor is currently located. 

∑=
x

tx, )E(CE(C)Aggregated                                                   (5.6) 

Finally, EVoI is obtained by subtracting both aggregated expected costs 
from the previous sensor deployment and from the new deployment. The 
location with the maximum aggregated EVoI is selected for sampling by its 
associated mobile sensor. Maximising aggregated EVoI is equivalent to 
minimising misclassification costs over the whole study area. 
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5.3. IMPLEMENTATION OF A SYNTHETIC CASE STUDY 

A synthetic dataset was used to illustrate a scenario in which a chemical factory 
burns and polluted smoke is released into the open air. The scenario was 
simulated in R (R Development Core Team, 2010). The package sp was used for 
spatial data handling and visualisation (Pebesma and Bivand, 2005), and Gstat 
was used for geostatistical modelling, prediction and simulation (Pebesma and 
Wesseling, 1998). In addition, lattice was used to visualise spatiotemporal data 
(Sarkar, 2008) and sampling as a support package for the simulation of sensor 
outcomes (Tillé and Matei, 2011). 

A Gaussian plume model was used to calculate ground pollutant 
concentrations over a study area of 60 x 60 grid cells (Sutton, 1932). This 
deterministic plume was computed for 9 time steps. The plume varied in space 
and over time because of variations in wind speed and direction. Table 5.1 shows 
the input values for the Gaussian plume model at each time step. Figure 5.4a 
shows plume concentrations as outputs in micro-milligrams per cubic metre 
(µm/m3) and illustrates how the plume spreads downwind. In time steps 1 to 6, 
the strong wind caused greater instability and bending of the plume. As a result, 
high ground concentrations were located close to the source. In time steps 7 to 9, 
however, the wind was slow, resulting in high ground concentrations further 
from the source. 

Table 5.1 Inputs of Gaussian plume model for 9 time steps. 

Time 
steps 

Wind 
direction 
(azimuth) 

Wind 
speed 
(m/s) 

Other inputs 

1 80 30 

Coordinates of source of emission: (0,0)  
Ambient Temperature: 22 °C 
Atmospheric condition: moderate unstable 
Height of source of emission : 0 m 
Diameter of emission: 1 m 
Emission rate: 10 g/s 
Gas exit velocity: 5 m/s 
Gas exit temperature: 200 °C 

2 60 25 

3 50 20 
4 20 20 

5 10 10 

6 20 22 

7 35 9 

8 30 7 

9 25 4 

Stochastic residuals with zero mean were constructed on a three-
dimensional, unconditional Gaussian random field of 60 grid cells in x, 60 in y, 
and 9 in t. The third dimension t represented time. A sum-metric spatiotemporal 
variogram was used. The Gstat code for the spatiotemporal variogram is given in 
Equation 5.7. A maximum sill was set in order to explain the 20% of the variation 
of the deterministic plume: [0.2*mean(plume concentrations)]2. The resulting 
stochastic residuals (Figure 5.4b) were added to the deterministic plume to 
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obtain the true phenomenon concentration (Figure 5.4c). Finally, an arbitrary 
threshold of 30 µm/m3 was applied. Cells in which real pollution concentrations 
exceeded the threshold were recorded as above threshold; cells where real 
concentrations were below the threshold were recorded as below threshold 
(Figure 5.4d). This was the reality to be observed by sensors. 
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Figure 5.4. Illustration of a synthetic dynamic smoke plume over time: a) deterministic 
plume (ground concentrations); b) stochastic residual; c) reality = plume + residual; d) 
real concentrations exceeding the threshold. Figures a, b and c represent concentration 
values expressed in µm/m3. 

Initially, a WSN with 9 sensors was evenly deployed in the study area of 60 
x 60 grid cells (Figure 5.5). Some sensors were immobile; others were mobile 
and carried by people, robots or bikes. Table 5.2 shows the sensor metadata.  

 



Spatiotemporal sampling of dynamic phenomena 

93 

 

Table 5.2 Metadata of mobile sensors. 

Sensor 
id 

Mobile 
object 

Type of 
mobility 

1 Immobile Immobile 

2 Immobile Immobile 

3 Robot Controlled 

4 Robot Controlled 

5 Robot Controlled 

6 Immobile Immobile 

7 Immobile Immobile 

8 Bike Controlled 

9 Pedestrian Controlled 

 

 

Figure 5.5. Initial sensor deployment at the first time step with the observable reality as 
background. 

5.3.1. Expected value of information 

At the first time step (i.e. t=1), sensors acquired initial observations by sampling 
synthetic data. Observations with value 1 indicated that the threshold was 
exceeded, while value 0 indicated that the threshold was not exceeded. 
Regression kriging was used to obtain probabilities that the threshold was 
exceeded. Coefficients B0 and B1 of logistic regression (Equation 5.2) were fitted, 
making use of the ground observations and the glm and predict functions of the R 
Stats package (Manning, 2007). Residuals were calculated by subtracting the 
logistic regression output from observations and interpolated using indicator 
kriging with a sum-metric spatiotemporal variogram (Equation 5.8). The 
parameters of the spatiotemporal variogram should be interpreted as expert 
guesses, since initially there were too few data to estimate the variogram, while 
the true parameters of the generating process were unknown to the surveyor or 
investigator.  
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The plume was adjusted using the interpolated residual map. The pollutant 
concentration at each location was classified as either above the threshold or 
below it. Misclassification costs were calculated, with the cost of a false negative 
set higher than the cost of a false positive (cost values 3 and 2). To speed up the 
simulation, exhaustive searching of candidate locations was restricted to 
locations having expected misclassification costs from the previous deployment 
in the fourth quartile of the global cost distribution. Locations closer than 3 cells 
to sensors were omitted to avoid moving sensors very close to other sensors. 
Finally, to calculate the average costs of possible realities, the most probable 
outcomes with a sum of probabilities approaching 0.75 were used. 

5.3.2. Comparison 

To assess our approach, the results were compared with results obtained using a 
simple random approach and results obtained from the previous deployment 
without performing any sensor movement. In the simple random approach, the 
locations and sensors were both randomly chosen. Candidate locations were 
restricted as explained above. When ground observations did not provide 
additional information (i.e. the aggregated absolute value of detected residuals at 
the observed locations were smaller than 0.2), such new deployments were not 
considered, because they could produce only very low misclassification costs. 
This, however, could not be considered as realistic, because no additional 
information was gained and thus the calculation of misclassification costs relied 
entirely on the deterministic plume. The sampling was repeated 100 times at 
each time step. The resulting misclassification costs at each time step were 
compared with those obtained by our approach. 

5.4. RESULTS AND DISCUSSION 

The overall results demonstrate that the proposed method helped to reduce risk 
caused by poor model predictions. This was achieved by optimising sensor 
mobility such that residuals were detected and misclassification cost reduced. 
The ‘A’ maps in Figure 5.6 are the adjusted plume maps with the detected 
residuals; the ‘B’ maps are the final classified maps showing the areas where 
pollutant concentrations exceed the threshold.  
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Figure 5.6. Resulting adjusted trend maps (A) and final classified maps (B) for each time 
step. 

The adjusted maps (Figure 5.6 ‘A’ maps) show the probability that the 
threshold was exceeded at each time step. The deterministic plume had a high 
probability of exceeding the threshold, and is shown in darker colours than the 
rest of the map. Detected residuals could increase the probability of exceeding 
the threshold (false negatives outside the plume), or reduce it (false positives 
inside the plume). Although the deterministic model explained much of the 
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phenomenon behaviour, detected residuals were also important sources of 
information to improve predictions.  

The final maps (Figure 5.6 ‘B’ maps) show the classification of unobserved 
locations as either above or below the threshold. These maps delineate areas 
where pollution concentration exceeded the threshold at the different time steps. 
The classification relied on the original plume and on the detected false 
negatives and false positives. False positives proved to have less of an influence 
on the phenomenon delineation than false negatives. The reason for this is that 
the deterministic model explained much of the phenomenon behaviour where 
there was a high probability of exceeding the threshold (i.e. probability close to 
1). The differences between the original plume and the ground observations 
therefore gave small false positive residuals, which in some cases were too small 
to effect any changes in the map. We added as many observations per time step 
as the number of deployed sensors. To obtain a more detailed map of the 
phenomenon, more observations per time step could be added by sequentially 
optimising sensor movements and considering that the deterministic plume 
remains static. 

The moved sensors successfully detected residuals at every time step, 
except time step 5 (Figure 5.7). The movement in time step 5 proved to be less 
successful than expected. This could be attributed to misspecifications of the 
geostatistical and regression model, and to an insufficient number of selected 
outcomes to calculate the average costs of possible realities. The geostatistical 
model could be improved if estimated and adapted while new information is 
gathered using learning algorithms (Xu and Choi, 2011). According to Hengl 
(2009), the regression model could be improved by using a larger number of 
observations to fit the regression coefficients and ensuring that they efficiently 
represent the feature space. This, however, may require a dual optimisation of 
sensor mobility, because of the use of ground observations to fit the regression 
model and to calculate the residuals. Finally, consideration could be given to 
using a larger number of selected outcomes to calculate the average costs of 
possible realities. However, this would increase processing time because we 
used exhaustive search over grid nodes to find the optimal sensor location. 
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Figure 5.7. Detected residuals for each sensor and time step. The highlighted sensors are 
the ones moved. Positive values represent false negative residuals; negative values 
represent false positive residuals. 

The achieved misclassification cost reduction from the aggregated EVoI 
criterion was compared with random sensor movements and with the previous 
deployment (i.e. without sensor movements). Table 5.3 and Figure 5.8 contain 
the results of the comparison with the random approach; Table 5.4 and Figure 
5.9 contain the results of the comparison with the previous deployment. Note 
that misclassification cost reduction at different time steps cannot be compared 
because reality has changed from one time step to another. Instead, the 
misclassification cost reduction has to be compared within the same time step 
and between the different approaches (i.e. read table rows).  

Table 5.3 compares the numerical results of the EVoI criterion and the 
random selection. It shows the achieved misclassifications costs at the different 
time steps, their difference as percentages, and the accumulated misclassification 
cost over time steps. The EVoI criterion produced smaller misclassification cost 
than the random approach at each time step, except in time steps 2 and 6 (Figure 
5.8). On average, the EVoI criterion per time step performed 18% better than the 
random approach. The accumulated misclassification cost over the 9 time steps 
from the EVoI criterion was 14% smaller than that from the random approach 
(8393.63 and 9575.29 respectively). Accordingly, our method performed 
significantly better than the random approach (an averaged misclassification 
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cost reduction per time step of 18% and an accumulated misclassification cost 
reduction of 14%). 

Sensor movements that proved to be less informative than expected (i.e. in 
time steps 2 and 6) could be attributed, as discussed above, to misspecification of 
the geostatistical and regression model, and to an insufficient number of selected 
outcomes for the simulation of possible realities. 

Table 5.3 Numerical results of misclassification costs from the EVoI criterion and the 
random criterion. Positives values mean that the EVoI criterion performed better than the 
random selection. 

Time 
steps 

Misclassi-
fication 

costs from 
EVoI 

criterion 

Misclassi-
fication 

costs from 
random 
criterion 

Difference 
in % 

Accumulated 
misclassification 
costs from EVoI 

criterion 

Accumulated 
misclassification 

costs from 
random criterion 

1 917.30 917.30 0.00 917.30 917.30 
2 1307.90 1227.28 -6.16 2225.20 2144.58 
3 938.07 1134.20 +20.91 3163.27 3278.78 
4 1033.02 1137.04 +10.07 4196.29 4415.82 
5 1087.40 1427.46 +31.27 5283.69 5843.28 
6 929.39 849.67 -8.58 6213.08 6692.95 
7 621.45 845.22 +36.01 6834.52 7538.17 
8 512.78 802.37 +56.47 7347.31 8340.53 
9 1046.32 1234.76 +18.01 8393.63 9575.29 

  
Average +17.56~+18% 

 
 

 

Figure 5.8. Comparison of misclassification costs from the EVoI criterion and random 
sensor movements. 
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Table 5.4 compares the numerical results obtained from the EVoI criterion 
and the previous deployment. The EVoI criterion produced smaller 
misclassification cost than the previous deployment at each time step, except in 
time steps 4 and 6 (Figure 5.9). On average, the EVoI criterion per time step 
performed 6% better than the previous deployment. The accumulated 
misclassification cost over the 9 time steps from the EVoI criterion was 3% 
smaller than that from the previous deployment (8393.63 and 8623.22 
respectively). Accordingly, our method performed better than the previous 
deployment (an averaged misclassification cost reduction per time step of 6% 
and an accumulated misclassification cost reduction of 3%). 

In time step 4 the misclassification cost from the previous deployment was 
very low (25.28). The misclassification cost relied entirely on the deterministic 
plume because sensors did not provide any additional information (i.e. detected 
residuals were very small). This resulted in very low misclassification cost, 
which could not be considered as realistic because no additional information was 
gained from ground observations.  

Table 5.4 Numerical results of misclassification costs from the EVoI criterion and the 
previous deployment without any sensor movement. Positives values mean that the EVoI 
criterion performed better than the previous deployment. 

Time 
steps 

Misclassi-
fication 

costs from 
EVoI 

criterion 

Misclassi-
fication costs 
from previous 

deployment 

Difference 
in % 

Accumulated 
misclassification 
costs from EVoI 

criterion 

Accumulated 
misclassification 

costs from 
previous 

deployment 
1 917.30 917.30 0.00 917.30 917.30 
2 1307.90 1335.36 +2.10 2225.20 2252.65 
3 938.07 1225.26 +30.62 3163.27 3477.91 
4 1033.02 25.28 -97.55 4196.29 3503.19 
5 1087.40 1498.42 +37.80 5283.69 5001.61 
6 929.39 917.54 -1.28 6213.08 5919.15 
7 621.45 819.70 +31.90 6834.52 6738.85 
8 512.78 676.58 +31.94 7347.31 7415.43 
9 1046.32 1207.79 +15.43 8393.63 8623.22 

  
Average +5.66~+6 

 
 

Although our approach provided sound locations to reduce 
misclassification costs, the resulting spatial distribution of sensors could be 
criticised. Some sensors were moved long distances to be located close to other 
mobile sensors. The drawback of this is that long movements may consume a 
considerable amount of battery power and observation may be delayed. 
Therefore, mobility constraints such as sensor battery, terrain slope and distance 
to move could be used to select a suitable sensor to be moved to the selected 
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location (Ballari et al., 2012). A three-step approach could be considered: first, 
each sensor is set to its mobile mode and the location with maximum EVoI is 
computed for that sensor; second, the sensor-location association having the 
maximum EVoI is chosen; third, the sensor to be moved is reconsidered by 
accounting for mobility constraints. After observing its current location, the new 
selected sensor could be moved to the selected location. Further research is 
needed on such an approach.  

Similar approaches to our work have been carried out by Heuvelink et al. 
(2010) and Melles et al. (2011). They optimised the locations of fixed and mobile 
devices such that wrong decisions caused by false classifications were 
minimised. Although our approach bears some similarity to their work, we 
directly employed the concept of expected value of information (Bhattacharjya et 

al., 2010; de Bruin et al., 2001; de Bruin and Hunter, 2003; Kangas, 2010). This 
allowed us to select locations to be sampled according to their relevance for 
improving the quality of the decisions to be made using the sensor observations. 

 
Figure 5.9. Comparison of misclassification costs from the EVoI criterion and previous 
sensor deployment without any sensor movement. 

5.5. CONCLUSIONS 

This paper presents a method for deciding where to make ground observations 
over time using mobile sensors, with the purpose of improving dynamic 
phenomenon prediction. This was done by optimising sensor mobility such that 
ground sensor observations reduced the risk caused by poor model predictions. 
The optimisation criterion used was maximisation of the expected value of 
information from a new sensor deployment at each time step. The approach was 
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demonstrated using a synthetic dataset and compared with a random sensor and 
location selection approach and with the observation of the previous 
deployment without performing sensor movements. The results demonstrated 
that EVoI criterion selected sound locations where the observations made 
significantly reduced misclassification costs in comparison with the random 
approach and the previous deployment. 

Our method requires prior information about the spatiotemporal trend of 
the dynamic phenomenon and the variogram of residuals. The former may be 
available from remote sensing images, physical dispersion models and national 
weather or radioactivity sensor networks. If no information is available for the 
variogram of residuals, the mobile sensors could collect information in an initial 
sampling phase or reconnaissance survey (Brus and Heuvelink, 2007). 
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6.1. INTRODUCTION 

Mobile sensor networks represent a new paradigm for environmental 
monitoring. But while they promise flexible and adaptable spatial sampling of 
the monitored phenomenon, limitations of sensor networks in terms of 
connectivity and energy depletion also limit the sensor mobility needed for this 
flexible and adaptable sampling. Within this context, the main goal of this thesis 
was to explore approaches for managing sensor mobility within a wireless 
sensor network (WSN) for use in environmental monitoring. To achieve this 
overall goal, four sub-objectives were defined: 

1. Explore the use of metadata to describe the dynamic status of wireless 
sensor networks. 

2. Develop a mobility constraint model to infer mobile sensor behaviour. 
3. Develop a method to adapt spatial sampling using mobile, constrained 

sensors. 
4. Extend the developed adaptive sampling method to monitoring highly 

dynamic environmental phenomena. 

These objectives are revisited below in a discussion of the main findings 
and limitations, followed by a reflection on the results and suggestions for future 
research. 

6.2. MAIN FINDINGS 

6.2.1. Metadata  

Wireless sensor networks are highly dynamic and changes in their status are 
therefore frequent. This thesis has shown that metadata are suitable for 
describing the status of and changes in WSNs, and reporting this information 
back to other components, systems or users (Ballari et al., 2009). Metadata are 
descriptors of observed data, WSN configurations and functionalities, and even 
the situations in which monitoring is done. Some metadata, such as 
specifications of attached sensing devices, owners, security levels or access 
restrictions, are static and defined by sensor configurations. Other metadata, 
such as battery levels, sensor location, or sensor neighbours, are dynamic and 
should be automatically generated and updated to obtain a current status 
description of the WSN. 

A context model was proposed to describe WSN status that is based on four 
types of contexts: sensor, network, sensing and organisation. In this model, 
metadata are used as parameters that describe what is happening in the 
different contexts. The advantage of this model is the possibility of performing 
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contextualised decisions based on the current WSN status and the situation in 
which the monitoring is carried out.  

6.2.2. Mobility constraints 

Knowing how mobile sensors should behave in the presence of mobility 
constraints is an important step towards mobile monitoring. A model was 
developed to describe mobility constraints within the different types of WSN 
contexts: sensor, network, sensing and organisation (Ballari et al., 2012). It 
consists of a context graph, modelled as a Bayesian network, which is fed with 
metadata values about the monitored phenomenon and sensor properties. 
Changes of status shown by metadata are propagated through the context graph 
and contextual rules used to infer the most suitable sensor behaviour. Such 
behaviour focused on achieving a suitable spatial coverage of the WSN when 
monitoring forest fire risk by sending sensors to sleep, moving them to enhance 
coverage density and extension, or deploying more sensors. 

The model also describes, from sensor observations, the phenomenon state 
within the monitored area. It infers whether sensors should move, but it does not 
determine the precise locations where they should go. Similarly, the method 
does not address how adjustments provided by sensor behaviour could 
ultimately improve the phenomenon monitoring. Furthermore, the definition of 
mobility constraints in the context graph may be complex if a high number of 
constraints are involved and metadata values are not available due to cost or the 
impossibility of obtaining them. In this case, experts, with the help of knowledge 
elicitation methods, are needed to define contextual rules encoding the strengths 
of dependencies between mobility constraints (i.e. conditional probabilities). 
Although this model was developed for use in monitoring fire risk, it could also 
be used to describe mobility constraints and infer sensor behaviour for 
monitoring other environmental phenomena, such as air pollution, noise or soil 
moisture.  

6.2.3. Spatial sampling  

Two aspects of spatial sampling were addressed: which location should be 
sampled and which mobile sensor should move to that location? A form of 
adaptive sampling by mobile sensors was proposed according to the expected 
value of information (EVoI) and mobility constraints (Ballari et al., under 
review). EVoI allows decisions to be made about the location to be observed. A 
spatially aggregated EVoI criterion is used to minimise the expected costs of 
wrong predictions about a phenomenon. Mobility constraints allow decisions to 
be made about which sensor to move. A cost-distance criterion is used to 
minimise unwanted effects of sensor mobility on the WSN itself, such as energy 
depletion. 



Synthesis 

107 

 

The method was assessed by comparing it with a random selection of 
sample locations and sensor selection based on a minimum Euclidian distance 
criterion. This demonstrated that the EVoI approach selects sound locations 
which deliver observations that significantly reduce prediction errors in 
comparison with the random approach. Such observations also improve 
phenomenon delineation. Moreover, accounting for cost-distances significantly 
avoided costly sensor movements, although sensors may move longer distances 
than in the minimum Euclidian distance criterion. 

This method also has some limitations. It can only be used to monitor 
phenomena that change at a much slower rate than the speed of sampling. 
Suitable phenomena therefore have slow temporal dynamics, such as soil 
contamination, natural radioactivity and biodiversity. Moreover, the method 
optimises a single sensor movement at a time, and a single observation per 
sensor movement.  

6.2.4. Spatiotemporal sampling of dynamic phenomena 

A dynamic environmental phenomenon was considered in a scenario in which a 
fire in a chemical factory released polluted smoke into the open air. The plume 
varied in space and time because of variations in atmospheric conditions and 
could only be partially predicted by a deterministic dispersion model. The 
scenario explored the use of in-situ observations acquired by mobile sensors to 
improve predictions.  

A method was developed for deciding when and where to sample the 
dynamic phenomenon using mobile sensors (Ballari et al., in preparation). The 
method first accounts for the state of the phenomenon at a time step and then 
optimises an objective function. The probability of the phenomenon (i.e. polluted 
smoke) exceeding a threshold at a time step is modelled using regression 
indicator kriging. Logistic regression is used to handle the deterministic 
dispersion model component and spatiotemporal kriging is used to handle 
stochastic residuals. The optimisation criterion is the maximisation of the EVoI 
from a new sensor deployment at each time step.  

The method was assessed by comparing it with a random sensor and 
location selection approach and with the observation of the previous 
deployment without performing any sensor movement. The results 
demonstrated that the EVoI criterion selected sound locations where the 
observations helped to detect residuals and successfully reduce risk caused by 
poor model predictions. The EVoI criterion significantly reduced 
misclassification costs in comparison with the random approach and the 
previous deployment.  



Chapter 6 

108 

 

However, this method also has some limitations. The resulting spatial 
distribution of sensors could be criticised. Some sensors moved long distances to 
be located close to other mobile sensors. This consumed a considerable amount 
of battery power while observation was delayed. Therefore, mobility constraints 
could be useful for selecting suitable sensors to be moved once the sampled 
locations have been selected. In-situ observations have a double use: to fit the 
regression model and to calculate residuals. This could create a conflict between 
suitable locations for the detection of residuals and the efficient representation 
of feature space. A dual optimisation may be needed. The method requires prior 
knowledge about the spatiotemporal trend of the dynamic phenomenon and 
about the residual variogram. If information about the residual variogram is not 
available, mobile sensors could collect information in an initial sampling phase.  

6.3. REFLECTIONS 

This section contains general reflections on the societal relevance of the results, 
the methods and design choices used to carry out the research, and the 
integration of the two research challenges addressed in this thesis: sampling and 
mobility constraints. The use of sensor networks in environmental and geo-
information sciences is also considered and future research is suggested. In these 
reflections, a literary analogy may be drawn with the robotic laws of the science 
fiction author Isaac Asimov (Asimov, 1942): 

1.  A robot may not injure a human being or, through inaction, allow a 

human being to come to harm. 

2. A robot must obey the orders given to it by human beings, except where 

such orders would conflict with the First Law. 

3. A robot must protect its own existence as long as such protection does not 

conflict with the First or Second Laws.  

6.3.1. Societal relevance 

The recent environmental emergencies caused by the radioactive leaks at the 
Fukushima nuclear power plant in Japan in 2011 (Masson et al., 2011), the 
eruption of the Eyjafjallajoekull volcano in Iceland in 2010 (Flentje et al., 2010) 
and the oil spill in the Gulf of Mexico in 2010 (GEO, 2010) remind us that human 
beings and natural resources are vulnerable. Proper decisions based on real-time 
information gathered from environmental monitoring are critical for saving 
human lives and protecting natural resources from contamination and 
exhaustion.  

This thesis contributes to meeting this challenge by developing strategies 
for autonomous sampling of the environment in real time and with high 
spatiotemporal resolutions. Specifically, it proposes spatial and spatiotemporal 
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sampling strategies for use with mobile sensor networks in environmental 
monitoring (Chapters 4 and 5). The developed sampling strategies select 
informative sampling locations to improve the quality of decisions to be made 
using the sensor observations. Such decisions may be critical decisions in 
emergency situations, such as whether to evacuate inhabitants from a study area 
following a radioactive release, or whether to remove from the market food that 
might be contaminated by a chemical smoke plume. The strategies proved to be 
suitable for sampling phenomena with relative slow dynamics, which are usual 
in natural resources, such soil pollution, as well as phenomena with high 
dynamics, such as radioactive plumes and oil spills. 

Additionally, this thesis considers mobility constraints with a view to 
appropriately managing sensor mobility within sampling strategies and 
accounting for different contexts (Chapters 2, 3 and 4). For instance, when 
monitoring highly dynamic phenomena such as radioactive releases, the most 
informative locations should be observed as soon as possible. The sensors to be 
moved to those locations can be selected by analysing mobility constraints such 
as distance to move, sensor speed, terrain slope and geographical barriers to 
identify the fastest sensor trajectory. Conversely, when monitoring slow 
phenomena, such as soil pollution monitoring, a relevant consideration is 
maximising the lifetime of the sensor network. In this case, the sensor to be 
moved can be selected by analysing mobility constraints to identify cost-reduced 
trajectories. 

A literary analogy could be made with Asimov´s first law in the sense that 
mobile sensors must act to prevent harm to human beings and natural resources. 

6.3.2. Methods and design choices 

This thesis explored various methods and made design choices to support 
decisions on where sensors should be moved to improve phenomenon 
monitoring and how mobile sensors should behave under mobility constraints. 
This section motivates the chosen methods and summaries the design choices, 
and puts forward some starting points that could be useful for relaxing these 
design choices in future research. 

Regarding mobility constraints, expert systems were explored for their 
potential to facilitate the integration of two sources of information needed to 
appropriately manage sensor mobility: real-time metadata about the current 
sensor network status and expert knowledge about how mobile sensors should 
behave. Three types of expert systems were examined: rule-based systems 
(Friedman-Hill, 2003), Bayesian networks (Charniak, 1991; Jensen and Nielsen, 
2007; Pearl and Russell, 2001) and influence diagrams (Howard and Matheson, 
2005; Jensen and Nielsen, 2007; Kjaerulff and Madsen, 2007). Rule-based 
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systems handle deterministic if-then rules to describe the contexts of mobile 
sensor networks (Chapter 2). Bayesian networks provide a graph representation 
of mobility constraints, as well as probabilities propagation and inference of 
mobile sensor behaviour (Chapter 3). Influence diagrams link mobility 
constraints with decision theory, enabling decisions to be made, for instance, 
about the most suitable sensor to move under certain mobility constraints 
(Chapter 4). Surveyors and environmental scientists can encode their 
preferences by designing contextual rules (Chapter 2 and 3) and assigning cost 
values (Chapter 4). 

Regarding sampling with mobile sensors, geostatistical methods, such as 
indicator kriging and regression kriging (Brus and Heuvelink, 2007; Hengl, 2009; 
Lin et al., 2011), were used to identify the best locations to which sensors should 
be moved. As not every location in a study area can be observed, geostatistics 
and, in particular, kriging can help to predict phenomenon characteristics at 
unobserved locations (Chapter 4). Regression kriging is an option when 
correlated data are available, such as data from a physical dispersion model 
(Chapter 5). In addition, geostatistical methods have been combined with a 
decision theory measure: the expected value of information (Bhattacharjya et al., 
2010; de Bruin et al., 2001; Kangas, 2010). This enables sampling locations to be 
selected according to their relevance for improving the quality of decisions that 
will be made using the sensor observations. Surveyors and environmental 
scientists can encode their preferences, for instance by assigning higher cost 
values to false negative than to false positive prediction errors. 

The design choices are summarised below, including some starting points 
that could be useful for relaxing them in future research: 

• Binary decisions were carried out to determine the presence or absence 
of a phenomenon or whether a sensor should move or not. However, the 
developed methods could also be used to make decisions concerning 
multiples states, and even several concatenated decisions. 

• Sensor location was assumed to be known from GPS devices. However, 
other sensor location methods could be explored if GPS is not available 
and for indoor applications (Sahoo and Hwang, 2011; Yick et al., 2008). 

• A single sensor movement was performed at a time. However, the 
developed methods could be extended to support multiple movements, 
which could further improve the monitoring at each time step 
(Heuvelink et al., 2010; Krause et al., 2009). 

• A single location was observed per sensor movement. However, a 
sequential optimisation could be done to also select informative 
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intermediate locations and gain more information with each sensor 
movement (Singh et al., 2007). 

• Sensors were moved along straight trajectories. However, cost-reduced 
trajectories could be selected based on cost surfaces calculated from 
mobility constraints. 

• A centralised approach was used. However, a decentralised approach 
would be more efficient in terms of energy conservation and 
connectivity (Coles et al., 2009; Duckham and Reitsma, 2009). 

• Mobility constraints concerned mainly energy depletion and properties 
of the geographical space. However, for operational use, mobility 
constraints related to connectivity and data transmission also have to be 
considered. 

A literary analogy could be made with Asimov´s second law in the sense 
that mobile sensors must obey ‘orders’ concerning where and how to move to 
improve phenomenon monitoring. These ‘orders’ are based on different methods 
and design choices. They are valid if they prevent human beings and natural 
resources coming to harm. 

6.3.3. Integration of sampling strategies and mobility constraints; should 
mobility constraints also constrain the sampling strategies? 

This thesis identifies and addresses two main research challenges concerning 
sampling strategies and mobility constraints within the scope of environmental 
monitoring. They have mainly been addressed separately. When considering the 
integration of sampling strategies and mobility constraints, the following 
question arises: Should mobility constraints also constrain the sampling 
strategy? In other words, should mobility constraints limit where sensors move 
in order to minimise resource consumption and the overall sensor network 
degradation? 

Hitherto, mobile sensor network research has been primarily carried out 
within the computer sciences and has thus focused on using sensor mobility to 
reduce the main WSN limitations, such as network topology, connectivity and 
energy use (Wang et al., 2010; Younis and Akkaya, 2008). Mobility constraints 
were primarily taken into account to protect and prolong the existence of the 
sensor network. For instance, Krause et al. (2009) placed and scheduled sensors 
by making use of a power-sensing quality trade-off to reduce energy 
consumption, and Zou and Chakrabarty (2007) used a trade-off criterion 
accounting for positive effects of mobility on tracking quality and negative 
effects on coverage, connectivity and energy conservation. In these approaches, 
mobility constraints limit where sensors are placed, which in turn also limits 
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what sensors observe. Moreover, they usually lead to sensor self-protection 
rather than to the protection of human beings and natural resources. 

In environmental monitoring, however, a prime purpose of mobile sensors 
is to improve monitoring to protect human beings and natural resources. 
Sensors are moved to essential locations, even though this may produce negative 
effects on coverage, connectivity or energy conservation. Thus, mobility 
constraints are useful for reducing such negative effects, but without 
constraining the sampling strategy. A literary analogy with Asimov´s second and 
third laws is useful to illustrate this situation. Consider a mobile sensor that 
receives an ‘order’ to move to an essential but risky location, in the sense that it 
could break network connectivity or even damage the sensor. In the computer 
science perspective, the mobile sensor would reject such an ‘order’ in the 
interests of protecting the sensor network and its own existence. However, in the 
environmental monitoring perspective, the mobile sensors must move to the 
essential location, and if necessary connectivity can be improved by relocating 
other sensors, while any damage to the sensor can be repaired or the sensor 
replaced. In other words, mobile sensors for environmental monitoring must 
protect their own existence as long as human beings and natural resources come 
to no harm. 

6.3.4. Sensor networks in environmental and geo-information sciences 

Over more than a decade of sensor network development, research was 
performed almost exclusively in the computer science arena. Research focused 
on the development of self-adaptive software, miniaturised hardware and 
decentralised configurations (Akyildiz et al., 2002; Nittel, 2009; Yick et al., 2008). 
The downside is that little attention was paid to the environmental phenomenon 
of interest (Zerger et al., 2010). This reveals that research on sensor networks in 
computer science was not properly accompanied by research in the 
environmental and geo-information sciences. As a result, sensor networks are 
now a mature technology, but they are not yet widely used by surveyors and 
environmental scientists. This thesis represents an effort to bring together 
knowledge developed in the computer sciences and in the environmental and 
geo-information sciences, backed by realistic examples of the use of sensor 
networks in environmental applications, such as monitoring fire risk (Chapter 3) 
and monitoring a polluted smoke plume released when a chemical factory 
burned (Chapter 5).  

I expect that sensor networks will become as widely used among surveyors 
and environmental scientists as an observation technique as remote sensing is 
today. However, further action will be needed to stimulate the operational use of 
sensor networks. First, a cost-benefit analysis should be carried out to compare 
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sensor networks with traditional on the ground surveys and remote sensing 
techniques. This could reveal important advantages (and disadvantages) of 
sensor networks. Second, monitoring with sensor networks should be included 
in the curricula of environmental and geo-information studies. This would help 
future surveyors and environmentalist to gain familiarity with sensor networks 
concepts and their operational use.  

This thesis examines a specific type of mobile sensor network: wireless 
sensor networks. However, other types of informal sensor networks could be 
also relevant for environmental monitoring, such as smart phones, volunteer 
citizens (i.e. volunteer geo-information) and sensor web (i.e. web-enablement 
sensor interoperability) (Bröring et al., 2011; Craglia et al., 2008). They bring to 
the geo-information science arena new and interesting challenges, such as 
sampling strategies using a vast variety of heterogeneous sensors of different 
quality or with non-controlled sensor mobility.  

6.3.5. Future research  

The following recommendations are given for further research: 

• Extend the sampling strategy to dynamic phenomena to account for 
mobility constraints. Although the current strategy has been shown to 
provide sound locations to reduce misclassification costs, the 
management of sensor mobility is not yet satisfactory. Some sensors 
moved long distances to be located close to other mobile sensors. This 
consumed a considerable amount of battery power while observation 
was delayed. Therefore, mobility constraints could be useful for 
optimising other mobility aspects, for example by selecting suitable 
sensors to be moved once the sampling locations have been selected. 

• Develop sampling strategies for use with mobile, constrained sensors in 
a decentralised approach. In this thesis, the developed mobility 
constraints model and sampling strategies took a centralised approach 
by gathering sensor observations from different sensors and mobility 
constraints from different contexts. This has two disadvantages: first, 
more sensor energy is consumed to centralise data and metadata; 
second, sensors may become isolated without being able to transmit 
data in real time (Coles et al., 2009; Duckham and Reitsma, 2009). 
Therefore, a decentralised approach should be explored under the 
premise of using as much local information as possible, but still being 
able to depict the global picture. 

• Focus on mobility constraints related to connectivity and data 
transmission. Although this thesis analysed several mobility constraints 
related to the properties of sensors, the geographical space and the 
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monitored phenomenon, it did not address those related to connectivity 
and data transition. This is relevant for operational implementations in 
which loss of connectivity will prevent data being delivered in real time. 

• Elicit expert knowledge to reveal how experts expect mobile sensors to 
behave under mobility constraints. This thesis provides general 
approaches to account for mobility constraints; however, further 
research is needed to identify preferences for sensor mobility 
management in different types of environmental applications. 

• Validate the proposed strategies in an operational implementation. 
Although the application results using a synthetic dataset were 
successful, the proposed strategies need to be operationally tested 
before using them in real-life situations. 
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SUMMARY 

Vulnerability to natural disasters and the human pressure on natural resources 
have increased the need for environmental monitoring. Proper decisions, based 
on real-time information gathered from the environment, are critical to 
protecting human lives and natural resources. To this end, mobile sensor 
networks, such as wireless sensor networks, are promising sensing systems for 
flexible and autonomous gathering of such information. Mobile sensor networks 
consist of geographically deployed sensors very close to a phenomenon of 
interest. The sensors are autonomous, self-configured, small, lightweight and low 
powered, and they become mobile when they are attached to mobile objects such 
as robots, people or bikes.  

Research on mobile sensor networks has focused primarily on using sensor 
mobility to reduce the main sensor network limitations in terms of network 
topology, connectivity and energy conservation. However, how sensor mobility 
could improve environmental monitoring still remains largely unexplored. 
Addressing this requires the consideration of two main mobility aspects: 
sampling and mobility constraints. Sampling is about where mobile sensors 
should be moved, while mobility constraints are about how such movements 
should be handled, considering the context in which the monitoring is carried 
out. This thesis explores approaches for sensor mobility within a wireless sensor 
network for use in environmental monitoring. To achieve this goal, four sub-
objectives were defined: 

1. Explore the use of metadata to describe the dynamic status of sensor 
networks. 

2. Develop a mobility constraint model to infer mobile sensor behaviour. 
3. Develop a method to adapt spatial sampling using mobile, constrained 

sensors. 
4. Extend the developed adaptive sampling method to monitoring highly 

dynamic environmental phenomena.  

Chapter 2 explores the use of metadata to describe the dynamic status of 
sensor networks. A context model was proposed to describe the general 
situation in which a sensor network is monitoring. The model consists of four 
types of contexts: sensor, network, sensing and organisation, where each of the 
contexts describes the sensor network from a different perspective. Metadata, 
which are descriptors of observed data, sensor configurations and 
functionalities, are used as parameters to describe what is happening in the 
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different contexts. The results reveal that metadata are suitable for describing 
sensor network status within different contexts and reporting the status back to 
other components, systems or users.  

Chapter 3 develops a model which describes mobility constraints for 
inferring mobile sensor behaviour. The proposed mobility constraint model 
consists of three components: first, the context typology proposed in Chapter 2 
to describe mobility constraints within the different contexts; second, a context 
graph, modelled as a Bayesian network, to encode dependencies of mobility 
constraints within the same or different contexts, as well as among mobility 
constraints and sensor behaviour; and third, contextual rules to encode how 
dependent mobility constraints are expected to constrain sensor behaviour. 
Metadata values for the monitored phenomenon and sensor properties are used 
to feed the context graph. They are propagated through the graph structure, and 
the contextual rules are used to infer the most suitable behaviour. The model 
was used to simulate the behaviour of a mobile sensor network to obtain a 
suitable spatial coverage in low and high fire risk scenarios. It was shown that 
the mobility constraint model successfully inferred behaviour, such as sleeping 
sensors, moving sensors and deploying more sensors to enhance spatial 
coverage.  

Chapter 4 develops a spatial sampling strategy for use with mobile, 
constrained sensors according to the expected value of information (EVoI) and 
mobility constraints. EVoI allows decisions to be made about the location to 
observe. It minimises the expected costs of wrong predictions about a 
phenomenon using a spatially aggregated EVoI criterion. Mobility constraints 
allow decisions to be made about which sensor to move. A cost-distance criterion 
is used to minimise unwanted effects of sensor mobility on the sensor network 
itself, such as energy depletion. The method was assessed by comparing it with a 
random selection of sample locations combined with sensor selection based on a 
minimum Euclidian distance criterion. The results demonstrate that EVoI 
enables selection of the most informative locations, while mobility constraints 
provide the needed context for sensor selection.  

Chapter 5 extends the method developed in Chapter 4 for the case of highly 
dynamic phenomena. It develops a method for deciding when and where to 
sample a dynamic phenomenon using mobile sensors. The optimisation criterion 
is to maximise the EVoI from a new sensor deployment at each time step. The 
method was demonstrated in a scenario in which a simulated fire in a chemical 
factory released polluted smoke into the open air. The plume varied in space and 
time because of variations in atmospheric conditions and could be only partially 
predicted by a deterministic dispersion model. In-situ observations acquired by 
mobile sensors were considered to improve predictions. A comparison with 
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random sensor movements and the previous sensor deployment without 
performing sensor movements shows that the optimised sensor mobility 
successfully reduced risk caused by poor model predictions.  

Chapter 6 synthesises the main findings and presents my reflections on the 
implications of such findings. Mobile sensors for environmental monitoring are 
relevant to improving monitoring by selecting sampling locations that deliver the 
information that most improves the quality of decisions for protecting human 
lives and natural resources. Mobility constraints are relevant to managing sensor 
mobility within sampling strategies. The traditional consideration of mobility 
constraints within the field of computer sciences mainly leads to sensor self-
protection rather than to the protection of human beings and natural resources. 
By contrast, when used for environmental monitoring, mobile sensors should 
above all improve monitoring performance, even thought this might produce 
negative effects on coverage, connectivity or energy consumption. Thus, mobility 
constraints are useful for reducing such negative effects without constraining the 
sampling strategy. Although sensor networks are now a mature technology, they 
are not yet widely used by surveyors and environmental scientists. The 
operational use of sensor networks in geo-information and environmental 
sciences therefore needs to be further stimulated. Although this thesis focuses on 
wireless sensor network, other types of informal sensor networks could be also 
relevant for environmental monitoring, such as smart phones, volunteer citizens 
and sensor web. Finally, the following recommendations are given for further 
research: extend the sampling strategy for dynamic phenomena to take account 
of mobility constraints; develop sampling strategies that take a decentralised 
approach; focus on mobility constraints related to connectivity and data 
transmission; elicit expert knowledge to reveal preferences for sensor mobility 
under mobility constraints within different types of environmental applications; 
and validate the proposed strategies in operational implementations.  
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SAMENVATTING 

Natuurlijke hulpbronnen in wereld staan onder druk door het toegenomen 
gebruik hiervan door de mensheid. Om verstandig met deze hulpbronnen om te 
gaan is monitoring van de status en de ontwikkelingen in deze hulpbronnen 
belangrijk. Hiervoor worden in toenemende mate sensornetwerken ingezet. Een 
speciale vorm van sensornetwerken zijn de zogenaamde mobiele 
sensornetwerken. Deze mobiele sensornetwerken kunnen zeer flexibel en 
autonoom informatie verzamelen over het te monitoren verschijnsel. De 
sensoren binnen een mobiel sensornetwerk zijn vaak zelf configurerend, klein, 
lichtgewicht en energiezuinig. Ze worden mobiel door ze verbinden aan 
bijvoorbeeld robots of mensen. 

Onderzoek op het vlak van mobiele sensor netwerken heeft zich tot nu toe 
vooral gericht op het opheffen van beperkingen op het vlak van netwerk 
topologie, verbondenheid en energie besparing. Onderzoek naar het gebruik van 
mobiele sensoren voor het monitoren van allerlei ruimtelijke verschijnselen 
heeft veel minder aandacht gekregen. Dit onderzoek richt zich vooral op dit 
laatste onderdeel, met speciale aandacht voor de aspecten bemonstering en 
mobiliteitsbeperking . Bemonstering richt zich op de locaties waar de mobiele 
sensor zich naartoe zou moeten bewegen, terwijl mobiliteitsbeperking zich richt 
op factoren die de beweging van de sensoren beperken. Deze thesis richt zich op 
het onderzoeken van methoden voor sensor mobiliteit binnen draadloze 
sensornetwerken voor monitoren van de omgeving. Om dit algemene doel te 
bereiken zijn de volgende doelen geformuleerd: 

1. Verkennen van de mogelijkheden van metadata voor het beschrijven 
van de dynamische toestand van sensor netwerken; 

2. Ontwikkeling van een model van mobiliteitsbeperking waarmee het 
gedrag van mobiele sensoren beschreven wordt; 

3. Ontwikkeling van een methode voor ruimtelijke bemonstering door 
mobile sensoren onder mobiliteitsbeperkende omstandigheden; 

4. Uitbreiding van de ontwikkelde bemonsteringsmethode naar het 
monitoren van sterk dynamische ruimtelijke verschijnselen.  

In hoofdstuk 2 worden de mogelijkheden verkend voor het gebruik van 
metadata voor het beschrijven van dynamische toestand van sensor netwerken. 
Een contextmodel wordt voorgesteld om de toestand van een sensor netwerk te 
beschrijven. Daarbij zijn vier verschillende contexten te onderscheiden: sensor, 
netwerk, waarnemen en organisatie. Iedere context beschrijft een ander 
gezichtspunt op het sensor netwerk. Metadata worden gebruikt om de 
sensorconfiguratie en de functionaliteit binnen de verschillende contexten te 
beschrijven. De resultaten laten zien dat metadata erg geschikt zijn voor het 



Summaries  

130 

 

beschrijven van de status van het sensornetwerk en communicatie hierover naar 
andere componenten, systemen en gebruikers. 

Hoofdstuk 3 behandelt de ontwikkeling van een model van 
mobiliteitsbeperking voor het beschrijven van het gedrag van mobiele sensoren. 
Het model bestaat uit drie componenten. De eerste component is de context 
topologie zoals beschreven in hoofdstuk 2. De tweede component is de “context 
graph”, gemodelleerd als Bayesiaans netwerk, voor het beschrijven van de 
afhankelijkheden tussen mobiliteitsbeperkende omstandigheden, de 
verschillende contexten en het gedrag van sensoren. De derde component zijn de 
“contextual rules”, die de relatie beschrijven tussen de mobiliteitsbeperkende 
omstandigheden en het gedrag van de sensoren. Het ontwikkelde 
mobiliteitsbeperkingsmodel is vervolgens toegepast in een gesimuleerde case 
studie, waarbij het doel was om adequate ruimtelijke sensor dekking te krijgen 
voor het monitoren van bosbrandgevaar. Zowel een laag als en hoog 
bosbrandgevaar scenario zijn gesimuleerd. Het bleek dat ontwikkelde model 
succesvol kon worden ingezet om gedrag van sensoren te sturen, zoals het 
“slapen” of bewegen van sensoren. 

In hoofdstuk 4 wordt een ruimtelijke bemonsteringsmethode voorgesteld 
voor mobiele sensoren. De methode maakt gebruik van het concept “verwachte 
waarde van informatie” of “expected value of information (EVoI)”. Op basis van 
de EVoI is het mogelijk om een onderbouwd besluit te nemen over de meest 
geschikt locatie voor het doen van een sensor waarneming. De methode 
minimaliseert de verwachte kosten van een verkeerde voorspelling over een 
ruimtelijke verschijnsel. Gecombineerd met informatie over 
mobiliteitsbeperkende omstandigheden leidt dit tot een besluit over de meest 
geëigende sensor om zich naar de geselecteerde locatie te bewegen voor het 
uitvoeren van een waarneming. De ontwikkelde methode is vergeleken met een 
procedure waarbij de waar te nemen locaties aselect zijn gekozen in combinatie 
met selectie voor een te verplaatsen sensor op basis van een Euclidisch 
afstandscriterium. De ontwikkelde methode op basis van “de verwachte waarde 
van informatie” leverde meer informatie tegen lagere kosten.  

In hoofdstuk 5 wordt de ontwikkelde methode (hoofdstuk 4) uitgebreid 
naar het waarnemen door mobiele sensoren van sterk dynamische ruimtelijke 
verschijnselen. In deze uitgebreide methode wordt het criterium “verwachte 
waarde van informatie” na iedere tijdstap geëvalueerd op basis van de 
waarnemingen en gemodelleerd dynamische gedrag van een ruimtelijk 
verschijnsel. De voorgestelde methode is toegepast in een gesimuleerde case 
studie waarbij brand in een chemische fabriek leidde tot het vrijkomen van een 
verontreinigende rookwolk. De rookwolk verplaatste zich in de ruimte 
gedurende een bepaalde periode, de beweging ervan werd beïnvloed door 
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atmosferische omstandigheden. Het ruimtelijk-temporele gedrag van de 
rookwolk kon maar gedeeltelijk verklaard worden door een deterministisch 
dispersiemodel. De ontwikkelende methode is vervolgens gebruikt voor het 
verrichten van in-situ waarnemen door mobiele sensoren voor het verbeteren 
van de voorspellingen over de locatie van de rookwolk. De resultaten zijn 
vergeleken met een situatie waarbij de sensoren zich op een aselecte wijze 
verplaatsten en met een vast sensor netwerk. Het bleek dat de voorgestelde 
methode op basis van de EVoI betere voorspellingen van locatie van de rookwolk 
tot gevolg had.  

Hoofdstuk 6 reflecteert op de resultaten van het onderzoek en gaat in op 
mogelijke implicaties. Mobiele sensoren stellen de mensheid in staat om van zeer 
uiteenlopende ruimtelijke verschijnselen informatie te verzamelen en deze 
informatie te gebruiken voor verstandige beslissingen over bijvoorbeeld het 
gebruik van onze natuurlijke hulpbronnen. Hoewel we op sensorvlak kunnen 
spreken van een volwassen technologie zien we dat het operationele gebruik van 
mobiele sensoren in bijvoorbeeld in de geo-informatie en de 
omgevingswetenschappen tot nu tot beperkt is. Voor een deel heeft dit te maken 
met het ontbreken van goede waarnemingsmethoden en het kunnen omgaan 
mobiliteitsbeperkende omstandigheden. Op beide terreinen zijn in dit onderzoek 
methoden ontwikkeld en geëvalueerd. Onderzoek naar mobibliteitsbeperkende 
omstandigheden heeft zich zowel gericht op beperkingen van de sensor als 
belemmeringen in de omgeving. Gecombineerde evaluatie hiervan is belangrijk 
voor effectief en efficiënt inzetten van mobiele sensoren voor het monitoren van 
de omgeving. Mobiliteitsbeperkend onderzoek in de computer wetenschappen 
heeft zich tot nu vooral gericht op het opheffen van beperkingen van de sensor.  

De verwachting is dat o.a. door de opkomst van aan “smart phones” 
gekoppelde sensoren het gebruik van draadloze sensor netwerken de komende 
jaren sterk zal toenemen. Voordat het zover is zijn er echter nog veel 
vraagstukken die om nader onderzoek vragen, zoals de uitbreiding van de 
waarnemingsstrategie voor dynamische verschijnselen met inachtneming van 
mobiliteitsbeperkende omstandigheden, verbondenheid en data uitwisseling 
tussen sensoren, operationele toepassing van de ontwikkelende methoden in 
concrete omgevingstoepassingen en validatie van de ontwikkelde methoden. 
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RESUMEN 

La creciente vulnerabilidad a los desastres naturales y la presión humana sobre 
los recursos naturales han incrementado la necesidad de observar y monitorizar 
el medio ambiente. La disponibilidad de información en tiempo real para una 
apropiada toma de decisiones es fundamental para proteger vidas humanas y 
recursos naturales. En este ámbito, las redes móviles de sensores, como por 
ejemplo las redes inalámbricas de sensores, prometen ser sistemas de 
observación capaces de obtener dicha información de una forma flexible y 
autónoma. Las redes móviles de sensores se componen de sensores 
geográficamente esparcidos muy cerca del fenómeno de interés. Estos sensores 
son autónomos, auto-configurables, pequeños, ligeros, con energía limitada y se 
transforman en sensores móviles cuando son acoplados a objetos móviles tales 
como robots, personas y bicicletas. 

La investigación sobre redes de sensores móviles se ha centrado 
principalmente en la utilización de la movilidad de sensores para mejorar las 
principales limitaciones de una red de sensores como son la topología de la red, 
la conectividad y la conservación de la energía. Sin embargo, la utilización de esta 
movilidad para mejorar la monitorización del medio ambiente sigue siendo en 
gran parte inexplorada. Para abordar este reto es necesario considerar dos 
aspectos principales de la movilidad: el muestreo móvil y las restricciones a la 
movilidad. El muestreo móvil se refiere a dónde los sensores móviles se deben 
mover, mientras que las restricciones a la movilidad se refieren a cómo este 
movimiento debe ser manejado teniendo en cuenta el contexto en el que se 
realiza la monitorización. Esta tesis explora métodos de movilidad de sensores 
dentro de una red inalámbrica de sensores para ser utilizada en la 
monitorización medio ambiental. Para lograr este objetivo, cuatro sub-objetivos 
han sido definidos: 

1- Explorar el uso de metadatos para describir los estados dinámico de 
las redes de sensores; 

2- Desarrollar un modelo de restricciones a la movilidad para inferir 
comportamientos de los sensores móviles; 

3- Desarrollar un método para adaptar el muestreo espacial utilizando 
sensores móviles restringidos; 

4- Extender el método de muestreo desarrollado en el objetivo 3 para 
monitorizar fenómenos medio ambientales que son altamente 
dinámicos. 

El Capítulo 2 explora el uso de metadatos para describir los estados 
dinámicos de las redes de sensores. Un modelo de contexto es propuesto para 
describir la situación general en la que una red de sensores está monitorizando. 
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El modelo se compone de cuatro tipos de contextos: del sensor, de la red, de la 
monitorización y de la organización. Cada uno de los contextos describe a la red 
de sensores desde una perspectiva diferente. Los metadatos, definidos como 
descriptores de los datos observados, configuraciones de sensores y 
funcionalidades, se utilizan como parámetros para describir lo que sucede en los 
diferentes contextos. Los resultados revelaron que la utilización de los 
metadatos es apropiada para describir el estado de una red de sensores 
considerando los diferentes contextos, y para informar sobre este estado a otros 
componentes, sistemas o usuarios. 

El Capítulo 3 desarrolla un modelo que describe restricciones a la movilidad 
para ser utilizadas en la inferencia del comportamiento de sensores móviles. El 
modelo propuesto consta de tres componentes: primero, la tipología de contexto 
presentada en el Capítulo 2 es usada para describir las restricciones a la 
movilidad en los diferentes contextos; segundo, un grafo contextual, modelado 
como una red bayesiana, es usado para codificar dependencias entre las 
restricciones a la movilidad tanto dentro del mismo contexto, como entre 
contextos diferentes, así como también entre las restricciones y los posibles 
comportamientos; y tercero, reglas contextuales son usadas para codificar cómo 
se espera que las restricciones a la movilidad restrinjan el comportamiento de 
los sensores. Los metadatos que describen el fenómeno monitorizado y las 
propiedades de los sensores son utilizados para alimentar al grafo contextual, los 
cuales se propagan siguiendo la estructura del grafo, mientras que las reglas 
contextuales infieren el comportamiento más adecuado. El modelo fue utilizado 
para simular el comportamiento de una red de sensores móviles con el fin de 
obtener una cobertura espacial adecuada en situaciones de bajo y alto riesgo de 
incendio forestal. Se demostró que el modelo de restricciones a la movilidad 
exitosamente infiere comportamientos tales como dormir sensores, mover 
sensores, o desplegar más sensores para mejorar la cobertura espacial. 

El Capítulo 4 desarrolla un método de muestreo espacial para ser usado con 
sensores móviles restringidos, el cual se basa en el valor esperado de la 
información (VEI) y las restricciones a la movilidad. El VEI permite tomar 
decisiones sobre la localización a observar de tal forma que se minimice el costo 
esperado de realizar predicciones erróneas acerca del fenómeno. Un criterio 
basado en la agregación espacial del VEI es propuesto. Las restricciones a la 
movilidad permiten tomar decisiones sobre qué sensor debe moverse. Un 
criterio de costo ponderado con la distancia a recorrer es propuesto para 
minimizar los efectos no deseados que la movilidad del sensor puede provocar 
en la red de sensores, como por ejemplo el agotamiento de la energía. Como 
forma de evaluación, el método fue comparado con una selección aleatoria de 
localizaciones de muestreo combinada con la selección del sensor a mover en 
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base a un criterio de mínima distancia Euclidiana. Los resultados demostraron 
que el VEI permite seleccionar los lugares que son más informativos, mientras 
que las restricciones a movilidad proporcionan el contexto necesario para 
seleccionar el sensor que se moverá. 

El Capítulo 5 extiende el método desarrollado en el Capítulo 4 para el caso 
de fenómenos muy dinámicos. El método decide cuándo y dónde tomar muestras 
de un fenómeno dinámico con sensores móviles. El criterio de optimización es la 
maximización del valor esperado de la información (VEI) de una nueva 
distribución espacial de sensores en un momento dado. El método fue 
demostrado con un ejemplo simulado en el que el incendio de una fábrica de 
productos químicos libera humo contaminado a la atmosfera. El penacho de 
humo varía en el espacio y en el tiempo debido a variaciones en las condiciones 
atmosféricas y podría ser sólo parcialmente estimado por un modelo 
determinista de dispersión. En este ámbito, las observaciones in-situ adquiridas 
por los sensores móviles se utilizan para mejorar las predicciones del modelo 
determinista. Como forma de evaluación, el método fue comparado con 
movimientos aleatorios de sensores y con la distribución espacial previa de los 
sensores, es decir sin realizar ningún movimiento. Los resultados pusieron de 
manifiesto que la utilización de VEI para optimizar la movilidad de sensores 
reduce exitosamente el riesgo causado por las predicciones parciales del modelo 
determinista. 

El Capítulo 6 sintetiza los principales hallazgos y mis reflexiones sobre las 
implicaciones de estos hallazgos. El muestreo medio ambiental con sensores 
móviles es importante para seleccionar y observar las localizaciones que más 
contribuyen con la mejora de la calidad de las decisiones orientadas a la 
protección de vidas humanas y recursos naturales. Las restricciones a la 
movilidad son relevantes para gestionar la movilidad de los sensores una vez 
que la localización a observar ha sido decidida por el método de muestreo. La 
perspectiva tradicional en ciencias de la computación sobre las restricciones a la 
movilidad busca principalmente la auto-protección del sensor, en lugar de la 
protección de los seres humanos y los recursos naturales. En cambio, en el 
ámbito de la observación medio ambiental, los sensores móviles 
primordialmente deben mejorar la monitorización, incluso cuando dicha 
movilidad podría producir efectos negativos sobre la cobertura espacial, la 
conectividad o el consumo de energía. Por ello, las restricciones a la movilidad 
son útiles para reducir esos efectos negativos pero sin llegar a restringir el 
método de muestreo en sí mismo. Aunque las redes de sensores son actualmente 
una tecnología madura, su uso aún no está generalizado entre los expertos en 
geo-información y medio ambiente. El uso operativo de estas redes de sensores 
en las ciencias de la geo-información y del medio ambiente necesita, por lo tanto, 
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ser promovido. Esta tesis se centra en las redes inalámbricas de sensores, no 
obstante otros tipos de redes de sensores informales también podrían ser 
relevantes para la monitorización medio ambiental, tales como teléfonos 
inteligentes, ciudadanía voluntaria y web de sensores. Por último, las siguientes 
recomendaciones son dadas para futuras investigaciones: extender el método de 
muestreo de fenómenos dinámicos para contemplar las restricciones a la 
movilidad; desarrollar métodos de muestreo siguiendo un enfoque 
descentralizado; focalizar en las restricciones a la movilidad relacionadas con la 
transmisión de datos y conectividad; llevar a cabo estudios para revelar 
preferencias sobre la movilidad restringida de sensores en diferentes tipos de 
aplicaciones medio ambientales; y validar los enfoques propuestos en 
aplicaciones operativas. 
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