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Summary 
 Better market positioning of North Sea whitefish is required in order to secure a healthy sector in the 

future. Sustainability can be an important topic here, emphasising the qualities of North Sea fish in 

terms of people, planet and profit. The objective of this study is to examine various aspects of the 

environmental impact of wild-caught North Sea whitefish in comparison to imported aquaculture fish 

and meat. The core of this study is the life cycle assessment (LCA). The main findings from the LCA 

are that the environmental impact of wild-caught North Sea plaice and cod is comparable with that of 

salmon, tilapia and pangasius from aquaculture, the most important import fish. Although plaice and 

cod catching requires more energy than meat production, the global warming potential (GWP) is 

comparable due to lower non-CO2 greenhouse gas emissions. Expected technological improvements 

offer possibilities for reducing the environmental impact of both wild-caught fishing and aquaculture. 
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Introduction 

Information on sustainability is important 

Since 2008, market prices for various wild-caught North Sea whitefish (mainly plaice and cod) have 

shown a sharp decrease, competing with relatively cheap imported whitefish products. Wild-caught 

North Sea whitefish also suffers from a bad image. In combination with declining prices and increased 

competition, this poses a serious threat to the Dutch fishing sector. Better market positioning of North 

Sea fish is required in order to secure a healthy sector in the future. Sustainability can be an important 

topic here, emphasising the qualities of North Sea fish in terms of people, planet and profit. 

The Dutch cutter fishers recognise the importance of sustainability and works hard on innovations to 

improve the sustainability performance of the sector’s products and production methods. Rapid 

developments are taking place in fishing techniques, such as the development of pulse trawl fishing. 

To maintain its economic viability and societal licence to produce, the sector invests in technologies 

that save fuel and reduce the impact on the environment. The sector is also engaged in the 

improvement of the management of the North Sea and its natural resources, in collaboration with 

government and social actors. 

Society places great importance on the sustainable production of fish. Producers and marketers 

acknowledge this and seek to position products as “sustainable”. This leads to heated debates about 

definitions of sustainability, clearly visible in debates on certification (Gulbrandsen 2009). Others 

speak of ‘whitefish’ war (Little et al. 2012). Claims on sustainability become part of the political and 

economic competition between different production systems. As stated by Mansfield (2011, 415), 

debates regarding the sustainability of aquaculture must now also be understood as both “an outcome 

of and an influence on changing political economic conditions”. 

At the heart of the controversy is the absence of a precise definition of sustainable produced fish. 

Different data and methodologies are used to make claims of sustainability. To improve the positioning 

of wild-caught whitefish, it is necessary to have scientifically solid information on the qualities of the 

most important North Sea species and to be able to compare these with competing products from 

aquaculture species or animal husbandry. 

Research goal and questions 

The objective of this study is to examine various aspects of the environmental impact of wild-caught 

North Sea whitefish in comparison to imported aquaculture fish and to meat. In particular, we aim to 

research whether or not claims on the environmental impact can be supported by scientific data. In 

this paper, we answer the following research questions: 

1. How does environmental impact of plaice and cod compare with imported aquaculture?  

2. How does the environmental impact of plaice and cod compare with animal products (pork, 

chicken, beef)? 

3. How can expected improvements in fisheries reduce environmental impact? 



Methodology 

Overview 

Given the lack of knowledge about environmental impact, a desk study was performed for some of the 

economically most important whitefish species. The desk study aimed to collect information on the 

performance of the North Sea species plaice and cod and to compare this with imported salmon, 

tilapia and pangasius from aquaculture. The focus was on energy use, global warming potential, 

acidification, eutrophication and land use. Subsequently, data from literature on the environmental 

impact of beef, pork and chicken was investigated and compared with that of wild-caught North Sea 

whitefish. 

Life cycle assessment 

The core of this study is the life cycle assessment (LCA). An LCA is a holistic method for evaluating 

the environmental impact during the entire life cycle of a product. LCA includes the use of resources 

(such as land or fossil fuels) and the emission of pollutants (such as ammonia or methane) (Guinée et 

al., 2002). The emission of pollutants contributes to categories of environmental impact such as global 

warming potential, the acidification and eutrophication of ecosystems, and human or terrestrial 

ecotoxicity. A carbon footprint is basically a single-issue LCA, focussing only on the emission of 

greenhouse gases through the life cycle of a product. In this paper, we use the notion of global 

warming potential (GWP) instead of a carbon footprint.  

An LCA expresses the environmental impact of a defined system in relation to a functional unit, which 

is the main function of the system expressed in quantitative terms. The majority of LCA studies 

evaluate the production stages until the farm gate and leave out succeeding stages, such as 

processing, retail and household consumption. We recalculated the results of the different studies to 

cradle-to-farm-gate boundaries. The functional unit in our system, therefore, is one kg of fresh fillet 

accounting for the amount of live weight required to produce one kg of marketable product, excluding 

the processing and transport stages.  

We have excluded the environmental impact in relation to infrastructure from our analysis. 

Infrastructure is often excluded from agricultural LCAs because the great deal of time it takes to 

include the infrastructure is not proportional to the relatively small environmental impact (Aubin et al., 

2006; Vásquez et al., 2010).  

Many production processes yield more than one product. In the case of fisheries, filleting yields fillet 

and fish waste that can be used as feed and other products. In these situations, the environmental 

impact of the production system or process has to be allocated to the various outputs. There are three 

main allocation methods described in the ISO 14044 standard (ISO, 2006): economic allocation, 

physical allocation (e.g. mass or energy allocation) and system expansion. In the case of mass or 

energy allocation, the environmental impact of a production system or process is allocated to its 

multiple outputs based on their relative mass (or energy), whereas in economic allocation the basis is 

their relative economic value. LCA results based on different methods of allocation cannot be 



compared directly. In comparing wild-caught and aquaculture, we chose mass allocation because this 

was the most common allocation method used in the reviewed articles (see annex 1).  

Comparing wild-caught whitefish and aquaculture 

We found thirteen articles and two reviews in peer-reviewed scientific journals and scientific reports 

examining the environmental impact of individual fish products (see annex 1). These studies described 

the LCA results of products from fishery or aquaculture for one or more species and diverging 

production systems. Being interested in wild-caught plaice and cod versus farmed salmon, tilapia and 

pangasius (data is collected on striped catfish, Pangasiadom hypophthalmus), we focused on these 

species only (numbers 1-13 in annex 1). The Ellingsen and Aanondsen study (2006) was not included 

because they based their article on the data by Thrane (2006). We included the only LCA of a 

recirculation aquaculture system (RAS) (Ayer and Tyedmers, 2009), which evaluated char, to 

demonstrate the strengths and weaknesses of RAS. 

Annex 1 shows that most articles reviewed included only energy use or global warming potential in 

their LCA. To assess the impact on global warming potential of the production of a specific product, 

the studies we reviewed quantified emissions of carbon dioxide (CO2), methane (CH4), and nitrous 

oxide (N2O). In all studies, CO2, CH4, and N2O emissions were summed up based on their equivalence 

factor in terms of CO2 equivalents (100-year time horizon): 1 for CO2, 25 for CH4, and 298 for N2O. 

This enables a valid comparison of the global warming potential (GWP) across studies. Similarly, in all 

studies energy use related to production and use of fossil fuels was summarised based on MJ.  

Not all studies addressed eutrophication and acidification; only a few studies assessed land use.  

To enable a comparison of eutrophication (EP), acidification potential (AP) and land use of plaice and 

cod with salmon, tilapia and pangasius, we used the following approach: 

1. We deduced technical parameters from the articles reviewed (1-13 in Table 2.1), such 

as feed conversion, diet composition, origin of feed ingredients, energy requirement for feed 

processing or fish farming, etc. 

2. We predicted the global warming potential of the diet by combining knowledge on 

technical parameters with Ecoinvent data 2.2. Ecoinvent data 2.2 allowed us to compute the 

GWP for each feed ingredient. If recent yield data were not available in Ecoinvent 2.2, we 

used production data from FAO (http://faostat.fao.org/default.aspx) for the countries 

concerned, averaged for the period 2005 to 2007. In addition, the energy requirements for the 

production of fishmeal were based on Schau et al. (2009). 

3. We validated our predictions of GWP per kg of fillet by comparing them with the 

original results as published by the authors (see Table 1). The difference between published 

GWP and calculated GWP averaged 7.2% (range from 1-18%).  

4. We combined technical parameters about diet composition with Ecoinvent data to 

assess the EP, AP and land use of each feed ingredient. 



5. To determine the EP and AP per kg of fish fillet, we also assessed emissions of 

eutrophying elements (nitrate [NO3
-] to water, phosphate [PO4

3-] to water, and ammonia [NH3] 

to air) and acidifying elements (NH3) at the aquaculture farm. For each farm, we computed a 

farm-gate nitrogen (N) and phosphorus (P) loss as the difference between the NP in feed and 

the NP retained in fish. Subsequently, we assumed that about 13% of this farm N loss was 

NH3 emission, and 87% was lost as NO3
- to water (Gross et al., 2000), where the farm P loss 

was assumed to fully leach as PO4
3- to water. 

6. To determine land use, we combined knowledge of technical parameters with 

Ecoinvent data 2.2. Ecoinvent data 2.2 allowed us to compute the land use for each feed 

ingredient. If recent yield data were not available in Ecoinvent 2.2, we used production data 

from FAO (http://faostat.fao.org/default.aspx) for the countries concerned, averaged for the 

period 2005 to 2007. Land use computation is only relevant for aquaculture. 

To assess the EP along the entire life cycle, we added all emissions of nitrate (NO3
-) to water, 

phosphate (PO4
3-) to water, nitrogen oxide (NOx) to air, and ammonia (NH3) to air, based on their 

equivalence factor in terms of nitrate: 1 for nitrate, 10.45 for phosphate, 1.35 for NOx and 3.64 for 

NH3. To assess the AP, we added emissions of sulphur dioxide (SO2), NOx, and NH3, based on their 

equivalence factor in terms of sulphur dioxide: 1 for SO2, 0.7 for NOx and 1.88 for NH3. 

Table 1 Comparison of GWP (kg of CO2�eq/kg of fillet) as published 

in different articles with our own computations 

Diet Published (P) Our computation (O) O/P (in %) 

Salmon NO (6) 2,160 2,063 95.5 

Salmon NO (7) 1,790 1,518 84.8 

Salmon CI (8) 2,300 2,123 92.3 

Salmon CA (9) 1,830 1,850 101.1 

Tilapia Lake based ID (11) 1,520 1,249 82.2 

Tilapia Pond based ID (12) 2,100 1,848 88.0 

Pangasius VN (13) 4,743 4,576 96.5 

Cod Fishing NO (1) 740 755 102.0 

 

The procedure described above enabled a comparison of energy use and GWP among published 

studies about cod, plaice, salmon, tilapia and pangasius, as well as EP, AP and land use. 

Using our own data, we also computed the energy use, GWP, AP and EP of two Dutch fishery-

systems: cod caught by flyshoot and plaice caught by twinrig. Data about fossil fuel use were based 

on the average statistics for 2010 (LEI, 2011), i.e. 0.84 litre of fuel for 1 kg of landed plaice by twinrig 

and 1.08 litre of fuel per kg of landed cod by flyshoot. 

  



Comparing wild-caught whitefish to animal products 

Data on the environmental impact of animal husbandry was taken from the publication by De Vries & 

De Boer (2010), who carried out a meta-analysis of the environmental impact of various products from 

the livestock farming sector. These results therefore relate to the global livestock sector. On the basis 

of the available data, the environmental impact of livestock farming is expressed below in two impact 

categories: fossil energy consumption and global warming potential. However, in this study, economic 

allocation is used. To enable a comparison with the LCA data on meat, we had to recalculate the 

environmental impact of fisheries from mass allocation to economic allocation. To recalculate, we used 

the figures presented in table 2 (personal communication with Jaczon). Note that this is the value of 

fillet for the first seller, not for retail.  When comparing wild-caught whitefish and animal husbandry, we 

had to exclude foreign studies on fisheries because the data required to recalculate were not 

available. 

Table 2 Factors used to recalculate 

environmental impact of fisheries 

Indicator Factor 

% of fillet (plaice) 40% 

% of fillet (cod) 45% 

Value of fish waste 0.11 

Value of plaice (fillet) 4.14 

Value of cod (fillet) 7.09 

 

Environmental impact of wild-caught compared with aquaculture 

Energy use and global warming potential  

Figure 1 shows the results for energy use per kg of fillet for the thirteen published systems included in 

our analysis (number 1-13 in Annex 1) and the two NL systems added. Energy use varied from 11 to 

305 MJ per kg of fillet. Similarly, results for the GWP per kg of fillet are presented in Figure 2. The 

GWP varied from about 0.7 to 16.4 CO2-eq per kg of fillet. 



Figure 1 Total fossil energy use of analysed systems (in MJ/kg of 

fillet) 

 

 

Figure 2 Global Warming Potential of analysed systems  

(in kg of CO2�eq/kg of fillet) 

 

 

A comparison of Figures 1 and 2 shows that the GWP is determined to a great extent by the use of 

fossil fuels (CO2-emission). This is because current LCA studies did not include N2O emissions on the 

fish farm, which implies a systematic underestimation of GWP per kg of farmed fish. Although the 

amount of N2O emitted can be low, because of the high equivalence factor (298) the influence on the 

GWP can be substantial. The relative influence of this omission is difficult to assess without further 

research.  

The GWP of pangasius is relatively high compared to the energy use of this system. This is caused by 

the fact that the feed in this system contains about 20% rice products. The paddy fields, where the rice 

is cultivated, emit about 1,270 kg CH4 ha-1 yr-1 (IPCC, 2006). 

154 305 

5.88 16.36 



Cod fishing with a trawler (3) resulted in a higher GWP and energy use per kg of wild-caught fish than 

cod fishing with a gillnet or flyshoot (2). The Swedish study that explored cod trawler fishing, however, 

used relatively old data (1999). Current trawler equipment might be more efficient, which might reduce 

the observed difference. Differences in available fish stocks also influence the results. Cod and plaice 

fishing in the Netherlands resulted in a relatively higher energy use (and related GWP) as compared to 

Norway or Denmark. It should be noted that Dutch fishers generally do not specifically fish for cod. 

This takes place incidentally but it can be done more energy efficient.  

Energy use (and the related GWP) in aquaculture was highest for char recirculation systems (i.e. 305 

MJ/kg of fillet). This is not due to the species, but is partly inherent in recirculation aquaculture 

systems (RAS). RAS energy requirements are high because the water is filtered and recycled. New 

water is added to the system only to make up for splash-out and evaporation, and for the water used 

to flush out waste materials. However, RAS energy requirements have improved over the last couple 

of years and will continue to improve (Martins, 2010).  

Based on current cradle-to-farm gate LCAs, we cannot conclude that wild-caught fish has a higher or 

lower energy use or GWP per kg of fillet than farmed fish. There were large differences among 

individual fishing techniques and aquacultural systems, and in itself this offers potential for 

improvement. We also noticed that the current LCAs of farmed fish did not include N2O emissions on 

the fish farm, which might have resulted in an underestimation of GWP per kg of fillet. 

Eutrophication and acidification potential 

Figure 3 shows the EP per kg of fillet for the thirteen published systems included in our analyses 

(numbers 1-13 in Table 2.1) and the two NL systems added.  

Figure 3 Eutrophication potential of analysed systems  

(in kg of NO3��eq/kg of fillet) 

 

 

The EP of wild-caught fish is very low compared to the EP of farmed fish. The EP in aquaculture 

results from emissions of NH3 and leaching of NO3
- during the cultivation of feed ingredients and 



during fish farming. Except for RASs, on average 86% (range 79%-93%) of the EP in aquaculture 

originated from on-farm emissions of NH3 and leaching of NO3
-. In RASs, however, the emission of 

NH3 is almost zero (Schneider et al., 2007).  

Figure 4 shows the AP per kg of fillet for the thirteen published systems included in our analyses 

(numbers 1-13 in Table 2.1) and the two NL systems added.  

Figure 4 Acidification potential of analysed systems  

(in kg of SO2�eq/kg of fillet) 

 

 

The AP mainly resulted from two aspects: (1) emissions of SO2 related to the burning of fossil fuel, 

and (2) ammonia emissions during fish farming. In the aquaculture systems (except for RASs), on 

average 51% (range 33%-64%) of the AP originates from the ammonia losses from the pond. Based 

on a cradle-to-farm gate analysis, we cannot conclude that wild-caught fish has a higher or lower AP 

per kg of fillet than farmed fish. There were differences among individual fishing techniques and 

among the aquaculture systems. 

Land use 

Figure 5 shows the land use per kg of fillet for the thirteen published systems included in our analyses 

(numbers 1-13 in Table 2.1) and the two NL systems added.  

  



 

Figure 5 Land use of analysed systems (in m2/kg of fillet) 

 

 

The land use attributed to caught fishing is land used for the production of fuels. In aquaculture a 

substantial amount of land is required to cultivate feed ingredients. Differences in land use among 

different studies can be explained by differences in diet composition and feed conversion rate (kg of 

feed/kg of fish fillet). Diets with a higher proportion of fishmeal or fish oil have a lower land use. In 

addition, a higher feed conversion will increase the land requirement per kg of fillet (11 vs 12). 

Conclusions 

The following conclusions can be drawn from the LCA analysis: 

• Current LCA results do not show a significant difference (p=0.80) in energy use or global 

warming potential per kg of plaice and cod or salmon, tilapia and pangasius. Although there is 

some difference in the mean values, there is a great deal of variance in the data, resulting in 

insignificance. 

• The average GWP of aquaculture (excluding one extremely high measurement) is 2.03. This 

equals the use of 0.67 l fuel per kg of landed fish. Current figures for fule consumption of 

fishery  in the Netherlands are 0.84 l/kg for plaice and 1.08 l/kg for cod. 

• The GWP of pangasius is strongly influenced by the amount of rice products included in the 

feed. 

• Current estimates of the GWP of farmed salmon, tilapia and pagasius might be 

underestimated, because on-farm emissions of N2O (greenhouse gas with a significant 

impact) are not included.  

• The eutrophication potential of wild-caught cod or plaice is lower than the eutrophication 

potential of farmed salmon or tilapia (p<0.0001). 

• Current LCA results do not show a significant difference in acidification potential per kg of 

wild-caught cod and plaice or farmed salmon or tilapia (p=0.33).  



• The land use is significant in aquaculture. This land is used to cultivate feed ingredients 

(p<0.0001).  

• The land use for wild-caught fishing only includes land used for the extraction and production 

of energy. Figures are very low. Wild-caught fishing often has an impact on the ecosystems in 

the sea. The biodiversity is influenced by disruptions to the seabed and by the exploitation of 

fish resources (both target fish and by-catch and discards). It is difficult to quantify this and 

weigh it against other impact categories (Thrane, 2004). 

Environmental impact of wild-caught compared with animal 

husbandry  

Energy consumption and global warming potential 

Approximately 43 MJ of energy was required for the production of one kilogram of beef (De Vries and 

de Boer, 2010). That is more than double the amount of energy consumed for the production of a 

kilogram of pork or chicken. Energy consumed in the livestock sector is used for matters including: the 

production and transport of animal feed and the production and use of fuels (diesel, gas) and 

electricity at the farm (Thomassen et al., 2009). 

The global warming potential (GWP) for three products from animal husbandry sector, measured in 

CO2-equivalents per kilogram of the product, are highest for beef production (14 to 32 CO2-eq) 

followed by pork (3.9 – 10 kg CO2-eq) and chicken (3.7 – 6.9 kg CO2-eq). Global warming potential 

resulting from livestock farming could be a consequence of emissions released by manure and 

emissions caused by the transportation of feed, amongst other things (Thomassen et al., 2009).  

Production of beef requires the most land: between 27 and 49 m2 land per kilogram of meat. The 

amount of land used for the production of pork (8.9-12.1 m2 of land per kilogram of meat) and chicken 

(8.1-9.9 m2 of land per kilogram of meat) is considerably less (De Vries en de Boer, 2010). 

Table 5 compares the results of the LCA of plaice and cod with the results of the LCA of beef, pork 

and chicken. Note that the data on plaice and cod is recalculated from mass allocation to economic 

allocation (see methodology)  

Table 5 Comparing energy use and GWP of plaice, cod, pork, chicken and beef 

 Energy use (MJ/kg of fillet) GWP (kg of CO2�eq/kg of fillet) 

Cod flyshoot (NL) 106 7.2 

Plaice twinrig (NL) 91 6 

Pork  18245 3.9210  

Chicken  15229  3.726.9  

Beef  34252 14232  

 

  



The following conclusions can be drawn from this overview: 

• The energy use for plaice and cod is higher than the energy use for pork, chicken or beef.  

• The global warming potential of plaice and cod is in the same range as that of pork and chicken. 

Beef has a higher GWP. This difference can be explained by the non-CO2 greenhouse gas 

emissions from animals and manure. 

Expected improvements to environmental performance 
In this section, we look at some of the predicted developments in the fisheries sector. Our objective is 

to analyse how innovations in fishing and fish-farming methods can affect the life cycle impact of wild-

caught fishing and aquaculture. Various studies analyse the potential of long-term changes are taken 

into account and the scenarios are compared by reference to macro-economic, social, and 

governance criteria (Hoefnagel et al., 2011). In this study, we focus on the short-term changes and 

analyse how these might change the LCA of wild-caught fishing in the near future. Given the 

complexity of life cycle assessments, the cross-relations between the sorts of environmental impact, 

and the lack of validated data, we cannot accurately recalculate the LCA with these innovations in 

mind. We can, however, argue how innovations would change the impact, focussing on the direction of 

change (higher or lower impact) and the magnitude (small, medium, large). We present a schematic 

overview of the impact of various improvements at the end of this section (Table 6). 

Increasing fish stock 

Fish stocks constantly change under the influence of several factors, including climate change, 

changes in ecosystems, and changing fishery conditions. In the LCA, technical parameters for energy 

use, global warming, acidification and eutrophication were deducted from scientific papers published 

between 2003 and 2011. The total population size does not include information on the age distribution 

within the population. This also influences the revenues of fishermen: when populations are relatively 

young, revenues are lower. Why are increasing fish stocks important for the LCA of wild-caught 

fishing? Larger stocks mean that fishermen spend less time and fewer resources to catch equal 

amounts of fish. Consequently, the energy use per kg of fillet decreases.  

Technical improvements 

Fuel use constitutes one of the greatest expenses for wild fisheries. It is predicted that fuel prices will 

increase in the future, a result of increased competition for fossil fuels and depleting resources 

(International Energy Agency, 2011). Given the impact of fuel prices on income, fishers seek ways to 

improve the fuel efficiency of their fleets. One of the Fisheries Knowledge Networks ('Slim 

ondernemen in de Platvisserij', ‘Clever Entrepreneurship in Flatfishing’) examined options for reducing 

fuel use for beam trawlers in greater detail. The results of this study are published in the leaflet Hoezo 

dure gasolie? (“What do you mean, expensive gas oil?”) (Kenniskring Slim Ondernemen in de 

Platvisserij, 2009). 



Fuel use is largely determined by the method used for fishing. The beam trawl method requires a great 

deal of energy and the use of alternative methods results in much lower fuel consumption. It is 

estimated that the use of a SumWing can result in savings of 10-20%. An average beam trawler (a 

vessel measuring around 40 metres) can save up to 300 tonnes of fuel by using SumWings and still 

catch equal amounts (Taal et al., 2010). The use of the pulse trawl method is expected to reduce fuel 

consumption even more: a shift to pulse trawling can, with the current state of technology, reduce 

energy use by 45 to 60% (ompared to beam trawlers in 2008), depending on the type of vessel and 

engine (Kenniskringen Puls en Sumwing and Slim Ondernemen in de Platvisserij, 2009). 

Fuel consumption can also be reduced by taking relatively easy measures that require little or no 

investments. Examples of such measures include using lighter nets, reducing speed while fishing, and 

using cruise control and fuel consumption instruments. Each of these measures can result in a 

reduction in fuel use of 1-5%.  

For wild-caught fishing, fuel consumption is linearly related to the environmental indicators GWP, 

eutrophication and acidification. A 20% reduction of fuel consumption means that GWP, eutrophication 

and acidification are all reduced by 20%.  

Changes in the fuel mix 

The use of sustainable fuels, or biofuels, is another way to reduce CO2 emissions and fuel use by 

fishers. Fossil fuels are used at present, and replacing them with alternative fuels could reduce the 

GWP of fisheries. The use of biofuels leads to a net reduction of a number of emissions, particularly 

carbon dioxide emissions, as CO2 is extracted from the air when natural resources are grown. 

There are two methods for the production of biofuels. The first, and currently most common, option is 

to produce biofuels from plant materials derived from plants such as oil palms, Jatropha and sugar 

cane. The second option is to use animal products for the production of aquatic biofuels (FAO, 2011). 

This option is currently being researched by various institutes and corporations, as it would make it 

possible to produce biofuels from what is currently redundant catch. This production could be carried 

out on shore or even on board. 

Although CO2 is emitted by the combustion of these fuels, it is common to attribute no GWP to these 

fuels. The reason for this is that CO2 is captured during the production of these fuels. If biofuels are 

produced from plant material, land use increases. The use of alternative fuel sources derived from 

plant material means higher impact on the EP and AP because use and production of these fuels have 

an impact on these indicators.  

Improved Feed Conversion Ratio 

The environmental impact of aquaculture is influenced by the feed conversion rate (FCR) describing 

how much feed is required to produce a fixed amount of fish. Improving the feed conversion rate is 

one way to reduce the total environmental impact of aquaculture. In the literature used for the LCA 

(see Annex 1), the FCR for tilapia are circa 1.7. The FCR for aquaculture salmon is reported to vary 

between 1.1 and 1.5 (Pelletier et al., 2009). A great deal of research focuses on what feed conversion 



rate can be achieved. This would mean an immediate improvement in the economic and ecological 

performance of aquaculture. For tilapia, it is expected that FCR can be reduced to 1.2.  This requires a 

change in diet and earlier harvesting (meaning smaller fish). For salmon, feed conversion rates close 

to 1 are now reported.  If we assume hypothetically that a better FCR means that less of the same 

feed is required, the environmental impact would logically decrease, albeit not linearly. The total 

environmental impact is also influenced by the energy used during production. If diets change, which 

is almost inevitable, net effects on the environment are more difficult to assess.  

Alternative feed resources 

Changes in diet in aquaculture is another way to reduce the life cycle environmental impact. The net 

benefits of such changes are not easily assessed. A change in diet will almost certainly affect the FCR 

and growth of fish. Therefore, we only give some indications on how changing diets might affect LCA. 

From an examination of the literature on sustainable aquaculture and certification schemes for 

sustainable aquaculture, it appears that a reduction of the percentage fish oil is desirable. If we look at 

the LCA data, a reduction of fish oil use appears less favourable as it increases land use, 

eutrophication and acidification.  

If we increase the amount of fish oil to a hypothetical 100%, the following picture emerges. Obviously, 

land use is reduced to nearly zero. Life cycle contributions to the EP and AP are also reduced, but 

energy use and GWP increase (more energy required to catch feed).  

Overview 

We have described various options for reducing the environmental impact of both wild-caught fishing 

and aquaculture. Table 6 summarises how these developments and innovations affect the life cycle 

environmental impact. 

Table 6 Summary of effects on outcome of LCA 
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caught 

Increased fish stock  ꜜ ꜜ ꜜ ꜜ = 

Reduced fuel consumption  ꜜ ꜜ ꜜ ꜜ = 

Alternative fuels Plant2based = ꜜ ꜛ ꜛ ꜛ 

Fish2based = ꜜ = = = 

Aqua2
culture 

Improved FCR  ꜜ ꜜ ꜜ ꜜ ꜜ 

Alternative feed sources Plant2based ꜜ ꜜ ꜛ ꜛ ꜛ 

Fish2based ꜛ ꜛ ꜜ ꜜ ꜜ 

 

Current developments in both fishing technology and fisheries management will most probably result 

in a significant reduction of the environmental impact of wild-caught whitefish and aquaculture.  

• Increasing fish stock can reduce the environmental impact of fisheries 



• All technologies that reduce fuel use have a direct positive impact on the LCA. 

• A shift to biofuels comes with pros and cons. There is no easy win. 

Effects of improvements in aquaculture do not seem to be as straightforward as in fisheries. Some of 

the changes, such as a shift to using biofuels in the diet of aquaculture, come with pros and cons. 

Changing to plant-based feed or fuel results in greater land-use. The alternatives (use of fish oil for 

feed and use of biofuels) use more energy and have a higher GWP. 

Conclusion 
Current LCA results do not show a significant difference (p=0.80) in energy use or global warming 

potential per kg of wild-caught cod and plaice or farmed salmon, tilapia and pangasius. Although there 

is some difference in the mean values, there is a great deal of variance in the data, resulting in 

insignificance. 

The eutrophication potential of wild-caught cod or plaice is lower than the eutrophication potential of 

farmed salmon or tilapia (p<0.0001). Current LCA results do not show a significant difference in 

acidification potential per kg of wild caught cod and plaice or farmed salmon or tilapia (p=0.33).  

The land use is significant in aquaculture (p<0.0001). This land is used to cultivate feed ingredients.  

The land use for wild-caught fishing only includes the land used for the extraction and production of 

energy. Figures are very low. Wild-caught fishing often has an impact on the ecosystems in the sea. 

The biodiversity is influenced by disruptions to the seabed and by the exploitation of fish resources 

(both target fish and by-catch and discards). It is difficult to quantify this and weigh it against other 

impact categories (Thrane 2004). 

Comparing the environmental impact of plaice and cod with the environmental impact of animal 

husbandry, it is concluded that fossil energy use for plaice and cod is higher than the fossil energy use 

for pork, chicken and beef. However, global warming potential of plaice and cod is in the same range 

as that of pork and chicken. Beef has a higher GWP. This difference can be explained by the non-CO2 

greenhouse gas emissions from animals and manure. 

Expected technological improvements offer possibilities for reducing the environmental impact of both 

wild-caught fishing and aquaculture. Current developments in both fishing technology and fisheries 

management will most probably result in a significant reduction of the environmental impact of wild-

caught whitefish in the coming years. All technologies that reduce fuel use have a direct positive 

impact on the LCA. Other changes, such as a shift to biofuels or changes in the diet of aquaculture, all 

come with pros and cons. There is no easy win. 

Discussion 
This desk study concerning the environmental impact of North Sea plaice and cod is the first of its 

kind. A systematic analysis of environmental impact, enabling comparison with other fish or meat, was 



not available. We have presented the conclusion of our comparison but we wish to formulate the 

following points of discussion. Regarding the methodology used, it should be emphasised that: 

• We tried to include sole in the LCA but no proper information was available.  

• The LCA is merely part of a broader analysis of environmental impact. An integrated comparison 

of the environmental impact of plaice, cod, salmon, tilapia and pangasius also requires insight into 

the impact on ecosystems. Currently, there is no suitable information available for including such 

impact in the LCA. 

• Current estimates of the GWP of farmed salmon, tilapia and pangasius might be underestimated, 

because on-farm emissions of N2O (greenhouse gas with a significant impact) are not included.  

• Under current conditions, the life cycle assessment does not include the energy used while 

building the vessel. In LCA analyses, it is common practice to omit this impact, as it constitutes 

less than 10% of the total energy use. Reducing fuel consumption means that the relative weight 

of energy use during construction increases. This may mean that to obtain a methodologically 

sound LCA, energy should be included in the future as well.  

• Given the limitations of a desk study, it was also impossible to collect more information on the 

acidification and eutrophication potential of pork and chicken. 
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 Annex 1 Characteristics of 15 studies on the life cycle assessment of fish products originating from fisheries and aquaculture 

  Environmental issues considered Nr in study 

 Reference Country and system Species Allocation energy use global 

warming 

eutrophi�

cation 

 

acidification land use 

 

F
is

h
e
ri

e
s 

Winther et al. (2009) NO2country average Cod mass + +    1 

Winther et al. (2009) NO2country average Saithe mass + +     

Winther et al. (2009) NO2country average Haddock mass + +     

Winther et al. (2009) NO2country average Herring mass + +     

Winther et al. (2009) NO2country average Mackerel mass + +     

Ziegler and Hanson (2003) SE2gillnet Cod mass/econ +     2 

Ziegler and Hanson (2003) SE2trawler Cod mass/econ +     3 

Thrane (2006) DK2country average Cod System expansion  +  +  4 

Thrane (2006) DK2country average Flatfish (Plaice) System expansion  +  +  5 

Ellingsen and Aanondsen (2006) NO2trawler Cod mass 2 +      

Vásquez et al. (2010) ES2bottom trawler Horse Mackerel mass/econ  + +    

Vásquez et al. (2010) ES2purse Seiner Horse Mackerel mass/econ  + +    

Iribarren et al. (2011) ES2 trawler Horse Mackerel economic  +     

Iribarren et al. (2011) ES2seiner  Horse Mackerel economic  +     

Iribarren et al. (2011) ES2trawler Mackerel economic  +     

Iribarren et al. (2011) ES2seiner  Mackerel economic  +     

Iribarren et al. (2011) ES2trawler Hake economic  +     

A
q
u
a
c
u
lt
u
re

 

Winther et al. (2009) NO Salmon mass + +    6 

Pelletier et al. (2009) NO2Country average Salmon energy + + + +  7 

Pelletier et al. (2009) UK2Country average Salmon energy + + + +   

Pelletier et al. (2009) CA2Country average Salmon energy + + + +   

Pelletier et al. (2009) CI2Country average Salmon energy + + + +  8 

Roque d'Orbcastel et al. (2009) FI2flow through Trout system expansion + + + + +  

Roque d'Orbcastel et al. (2009) FI2Recirculation  Trout system expansion + + + + +  

Ayer and Tyedmers (2009) CA2Marine Net pen Salmon energy 1 + + + +  9 

Ayer and Tyedmers (2009) CA2Marine floating bag Salmon energy 1 + + + +   

Ayer and Tyedmers (2009) CA2Flow flow through Salmon energy 1 + + + +   

Ayer and Tyedmers (2009) CA2Recirculation Char energy 1 + + + +  10 

Aubin et al. (2006) FR2Recirculation Turbot economic + + + +   

Aubin et al. (2009) GR2Sea cages Sea2bass economic + + + +   

Ellingsen and Aanondsen (2006) NO Salmon economic +      



Grönroos et al. (2006) FI2Net cages Trout mass + + + +   

Pelletier and Tyedmers (2010) ID2Lake2based  Tilapia energy + + + +  11 

Pelletier and Tyedmers (2010) ID2Pond2based  Tilapia energy + + + +  12 

Bosma et al. (2011) VN Pangasius 

(Striped Catfish) 

Mass 

+ + + +  

13 

 DK=Denmark, NL=The Netherlands; NO=Norway; GR= Greece; CA=Canada; CI=Chile; ES= Spain; FR=France; UK=United Kingdom; ID = Indonesia; FI=Finland; SE=Sweden. 
1 For feed energy allocation, for output (if necessary) system expansion. 
2 For fishery mass allocation, for others economic allocation. 

 


