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 Dietary fat is a strong predictor of chronic diseases, such as cardiovascular 

diseases, obesity, diabetes, dyslipidemia and metabolic syndrome [1-2]. A great 

number of epidemiological and observational studies clearly show that in 

addition to the amount of fat consumed in a diet, fat composition is an equally 

important factor in the development of chronic diseases. Evidence abounds 

indicating that adherence to a diet with high content of polyunsaturated 

(PUFAs) and monounsaturated (MUFAs) fatty acids such as the Mediterranean 

diet has substantial health benefits [3-6], while diets with high content of 

saturated fatty acids (SFAs) such as the Western type diet increase the risk for 

the development of several chronic diseases [7-9]. Nutrition science has 

traditionally focused on the physiological aspects of food and epidemiological 

studies on the relation between diet and disease risk. This approach led to the 

generation of a great number of dietary guidelines, which are aimed at disease 

prevention rather than cure. Despite specific guidelines on consumption of 

certain nutrients, especially dietary fats, the rates of diet related diseases remain 

high [10,11], leading to the search of more efficient approaches of disease 

prevention. In response to this need, interest has grown into understanding the 

molecular mechanisms underlying the diverse effects of food components, 

which has been the basis for the appearance of the science of molecular 

nutrition and nutrigenomics.  

 

Nutrigenomics  

 

 Nutritional genomics or nutrigenomics investigates the interaction between 

nutrients and genes at the molecular level by using genomic tools. The advent of 

high throughput technology led to the emergence of a novel field generally 

referred to as genomics, which includes transcriptomics, proteomics and 

metabolomics. Currently, transcriptomics is the most developed and feasible 

tool used in nutrigenomics research. Transcriptomics is extensively used to 

measure global changes in mRNA level (the transcriptome) of cell or tissue in 

response to external stimuli such as nutrients, pharmacological compounds or 

certain diets or diseases. Taking advantage of that technology, nutrigenomics 

research aims to provide a clear mechanistic framework that links uptake of 

specific nutrients such as fatty acids to specific biological pathways and disease 

process. To raise our understanding on food-metabolism interactions above 
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purely descriptive type of information, it is important to carry out studies on 

mutant mice or in cell cultures, in order to identify molecular targets of nutrients 

[12]. 

 As a part of nutrition research, nutrigenomics approaches have focused on 

understanding the early stages of disease development, as a response to 

consumption of a certain diet or certain food compounds. One of the main goals 

is to distinguish healthy individuals from those that are in a pre-diseased or 

diseased stage, based on information derived from gene or protein expression 

levels. Nutrigenomics research in humans focuses on tissues that are relatively 

easily accessible, including blood cells, adipose tissue and skeletal muscle. This 

approach is anticipated to produce novel and more sensitive markers of disease 

onset compared to those currently used in disease prevention. In such a way, 

increasing our understanding on the transition from pre-disease to the disease 

stage may allow early intervention that can restore health [13]. 

 

PPARα – major nutritional sensor of fatty acids 

 

 Within the field of nutrigenomics, dietary nutrients and their metabolites are 

seen as signaling molecules that target specific cellular response systems. An 

important set of signaling molecules in our diet are fatty acids. An important 

mechanism of action of fatty acids is via stimulation or inhibition of DNA 

transcription. The family of nuclear receptors represents an extensively 

characterized group of transcription factors that is involved in mediating the 

cellular responses of fatty acids [14,15]. Among them, the Peroxisome 

Proliferator Activated Receptors (PPARs) perhaps comprise the best recognized 

sensor system for fatty acids. PPARs are nuclear receptors that physically bind 

fatty acids and other lipophilic compounds. Ligand binding triggers a series of 

processes that include recruitment of specific coactivator proteins, leading to 

induction or inhibition of the expression of PPAR target genes. Investigating the 

type of target genes and their biological role has substantially improved our 

knowledge on the function of PPARs in different tissues. Three different 

subtypes of PPARs have been cloned, each characterized by an unique tissue 

expression pattern. PPARα shows the highest expression in tissues with high 

oxidative capacity, such as brown adipose tissue, cardiac muscle, skeletal 

muscle and liver. PPARβ/δ is found in many cell types, while PPARγ 

expression is more restricted in adipocytes and macrophages. Chapter 1 
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provides an extensive review on fatty acid sensing, explaining the role of 

Peroxisome Proliferator Activated receptors and other fatty acid sensors in fat 

recognition and regulation of fatty acid target genes.  

 

Heart, a highly oxidative muscle  

 

 The mammalian heart relies highly on fat oxidation for covering its energy 

demands. The main site of fat oxidation is the cardiomyocyte, which covers 

75% of the total number of cells in the heart. Under resting conditions fat 

oxidation covers up to 70% of cardiac energy demands and the remainder is 

covered by glucose utilization (20%-30%) [16,17]. In order to maintain the high 

rates of fat oxidation the heart can use a variety of metabolic fuels and its 

preference is determined to a large extent by the body’s metabolic state. After a 

meal heart takes up most of the fat in the form of chylomicron triglycerides, that 

are formed in the small intestine [18]. Chylomicron triglycerides are lipolysed 

via lipoprotein lipase activity to provide the heart with free fatty acids (FFAs). 

A small part of FFAs is also derived from albumin-bound FFA, that are taken 

up by the heart without the intermediate role of LPL. Finally, in case of 

nutritional deprivation the heart can catabolize ketones, amino acids or lactate 

[19]. 

 High rates of mitochondrial oxidation and oxygen utilization are coupled 

with enzymatic and non-enzymatic mechanisms, aiming to counterbalance the 

production of highly reactive secondary products of the respiratory chain, the 

reactive oxygen species (ROS) [20]. Among the best characterized enzymatic 

mechanisms are the catalase and glutathione peroxidase, superoxide dismutase 

(SODs), thioredoxin and thioredoxin reductase. Non-enzymatic mechanisms 

include the intracellular antioxidants, such as Vitamin E, C and beta carotene, 

ubiquinone, lipoic acid and urate [21]. ROS can play an important role in 

cardiac inflammation and their unbalanced production may lead to damage of 

cell membrane, organelle structures, DNA and peroxidation of lipids giving rise 

to lipotoxic metabolites, such as ceramide. Additionally, ROS have been 

described to directly regulate specific transcription factors involved in 

inflammation, such as NFkB and Nrf2 [22,23]. Under conditions of increased 

lipids uptake by the heart, such as chronic high fat diet or insulin resistance, 

increased rates of fatty acid oxidation, in combination with uncontrolled 

production of ROS and lipid intermediates may result in mitochondrial 
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malfunctioning and lipid accumulation [24]. Myocardial lipotoxicity refers to 

the accumulation of intramyocardial lipids and is associated with contractile 

dysfunction and even myocyte death [25]. 

  Previous studies have suggested that PPARα plays a central role in cardiac 

function. At initial stages of cardiomyopathy increased PPARα activity results 

in upregulation of beta oxidation genes and ROS production, whereas at later 

stages PPARα activity decreases, leading to mitochondrial malfunction and 

lipid accumulation [26-28]. Since the heart takes up substantial amounts of 

dietary fat, we set out to investigate the direct transcriptional targets of dietary 

lipids in the healthy heart. In chapter 2 we provide a detailed description of 

target genes and metabolic pathways that are regulated acutely after an oral 

gavage of triglyceride consisting of one type of fatty acid (C22:6, C18:3, C18:1 

or C18:1). In addition, the role of PPARα is investigated by conducting the 

experiment in PPARα  -/- mice. In chapter 3, we describe in depth a fatty acid 

induced mechanism that serves to inhibit the LPL dependent uptake of fatty 

acids and thereby protect against cardiomyocyte lipotoxicity.  

 

LPL- Angptl4 axis and its role in regulation of lipid uptake  

 

 Plasma levels of lipoproteins are considered a risk factor for atherosclerosis 

and coronary heart disease. Elevated levels of low-density lipoprotein (LDL) 

have been shown to increase the risk for atherosclerosis developement, while 

high levels of high density lipoprotein (HDL) are considered to be protective. In 

recent years plasma triglycerides (TG) are increasingly recognized as an 

independent factor for cardiovascular disease (CVD). Triglycerides (TGs) 

circulate in the plasma in the form of VLDL remnants and chylomicrons. VLDL 

remnants derive from the liver, whereas chylomicrons derive from the small 

intestine. Thus, levels of TGs in the plasma depend on the rate of production of 

TG-rich lipoproteins in the small intestine and liver, and their clearance in 

skeletal muscle, heart and adipose tissue. Clearance of plasma triglycerides is 

catalyzed by lipoprotein lipase (LPL), which is anchored to the capillary 

endothelium via heparin sulphate proteoglycans and the protein GPIHBP1. For 

an extended review on the function and regulation of LPL activity the reader is 

referred to the review of Lichtenstein L. and Kersten S.; BBA;2010 [29]. Here 

we briefly describe the regulation of LPL by Angptl4, a target gene of PPARs 

and a sensitive fatty acid target.  
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 Angptl4 is a secreted protein of size about 50KDa. It belongs to the family of 

fibrinogen/angiopoietin like proteins that includes Angptl1, Angptl2, Angptl3, 

and Angptl6. Similar to other angiopoietin-like proteins, Angptl4 is divided into 

distinct regions, which include a N-terminal signal sequence, a unique 

sequence, a coiled-coil domain and a large fibrinogen/angiopoietin-like domain. 

During protein maturation Angptl4 is cleaved to release an N-terminal and C-

terminal fragment. Angptl4 is now well accepted as a potent inhibitor of LPL 

activity. It has been shown in vivo and in vitro that the inhibitory role of 

Angptl4 on LPL activity is mediated by the N-terminal domain, which favors 

the formation of inactive LPL monomers at the expense of active LPL dimers 

[30,31]. Both Angptl4 and LPL are expressed in several tissues and cell types, 

such as liver, skeletal muscle, adipose tissue, heart, small intestine, and 

macrophages. Angptl4 was originally cloned as target gene of PPARs and is 

highly upregulated by fatty acids. Apart from being a potent inhibitor of LPL 

activity, Angptl4 has been reported to have angiogenic and wound healing 

functions  [32,33]. The C-terminal part of the protein, whose role is less 

understood compared to the N-terminal domain, seems to be involved in these 

functions. 

 

Outline of this thesis 

 

 In Chapter 2 we provide an overview of existing knowledge on gene 

regulation by fatty acids. The objective of this thesis was to provide a 

comprehensive analysis of gene regulation by dietary polyunsaturated fatty 

acids. We chose heart as the most relevant organ to investigate this question, 

because after a meal heart preferentially utilizes fatty acids released via LPL-

mediated lipolysis of chylomicron triglycerides. Chapter 3 is a transcriptomics 

study investigating the effect of different PUFAs on cardiac gene expression. 

We take advantage of a unique experimental design in which mice are fed a 

single bolus of dietary triglycerides consisting of one type of fatty acid. In 

addition, the role of PPARα, previously described as the master regulator of 

lipid homeostasis in the heart is explored.  

 In Chapter 3, we identify Angptl4 as the gene most strongly induced by 

PUFAs in the heart. Based on previous knowledge on the inhibitory role of 

Angptl4 on LPL activity, we hypothesized that increased influx of PUFA in the 

heart may result in upregulation of Angptl4, in order to inhibit LPL dependent 
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release of FFAs, thereby protecting against the toxic consequences of increased 

fat influx. In Chapter 4, we investigated in depth the transcriptional regulation 

of this mechanism and its contribution to regulate oxidative stress and prevent 

lipotoxicity in the heart.   

 LPL is anchored to the endothelium via heparin sulphate proteoglycans and 

its activity determines the plasma levels of triglycerides. Increased triglyceride 

levels are considered a risk factor for atherosclerosis. Therefore, in Chapter 5 

we investigate the role of Angptl4 in atherosclerosis development, using a 

model of whole body Angptl4 overexpression on a atherosclerosis-prone 

ApoE3Leiden background.  

 Macrophages are central players in atherosclerosis development. They 

function primarily as scavengers of lipids and modified lipids and excessive 

lipid accumulation leads to the formation of pro-inflammatory foam cells. In 

Chapter 6, we describe the identification and initial characterization of the gene 

Hig-2, which is sensitive to fatty acids uptake in macrophages. Finally, 

conclusions and suggestions deriving from this thesis are discussed in Chapter 

7. 
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Abstract:  

Consumption of specific dietary fatty acids has been shown to influence risk 

and progression of several chronic diseases, such as cardiovascular disease, 

obesity, cancer, and arthritis. In recent years, insights into the mechanisms 

underlying the biological effects of fatty acids have improved considerably and 

have provided the foundation for the emerging concept of fatty acid sensing, 

which can be interpreted as the property of fatty acids to influence biological 

processes by serving as signalling molecules. An important mechanism of fatty 

acid sensing is via stimulation or inhibition of DNA transcription. Here, we will 

focus on fatty acid sensing via regulation of gene transcription and address the 

role of Peroxisome Proliferator Activated receptors, Sterol Regulatory Element 

Binding Protein 1, Toll-like receptor 4, G-protein coupled receptors, and other 

putative mediators. 
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Introduction 

 Consumption of specific dietary fatty acids has been shown to impact risk 

for a wide range of chronic diseases. What traditionally has been lacking is a 

clear mechanistic framework that links uptake of specific lipids to a biological 

pathway and disease process. Such a molecular framework should 

accommodate the often differential effects of fatty acids differing in chain 

length and saturation on numerous biological parameters. In recent years, 

insights into the mechanisms underlying the biological effects of fatty acids 

have progressed rapidly, partly thanks to the widespread use of in vivo and in 

vitro gene targeting, and have provided the foundation for the emerging concept 

of fatty acid sensing. Fatty acid sensing can be interpreted as the property of 

fatty acids to influence biological processes by serving as signalling molecules. 

While it is well established that fatty acid derivatives such as eicosanoids have a 

major signalling function, there is convincing evidence that fatty acids 

themselves also carry this property. Part of this regulation occurs via regulation 

of gene transcription, which is the topic of this review. 

 

Trafficking and cellular sensing of dietary fat  

 

 Every day our body processes an amount of fat equivalent to almost half a 

cup. In the intestine, dietary triglycerides are first hydrolyzed into fatty acids 

and monoglycerides that together with bile acids associate into micelles in the 

intestinal lumen. After being taken up into enterocytes, fatty acids are 

reesterified into triglycerides (TG) and secreted as part of chylomicrons, 

initially to the intestinal lymph vessels and from there on into the blood 

circulation. The increase in circulating chylomicrons after a meal gives rise to 

the post-prandial peak in plasma triglycerides. The time-course and magnitude 

of the plasma triglyceride peak may differ between individuals and is elevated 

in obese and diabetic subjects, giving rise to post prandial lipaemia. Plasma 

chylomicrons undergo rapid lipolytic processing via the action of lipoprotein 

lipase (LPL) anchored to the capillary endothelium, leading to the release of 

fatty acids and their subsequent uptake into the underlying tissue [1]. 

 One of the major sinks for meal-derived fatty acids is the adipose tissue, 

which acquires most of the absorbed fatty acids via elevated local LPL activity. 

Other tissues that substantially contribute to post-prandial clearance of 
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chylomicron-TG are skeletal muscle, heart, and, after conversion to 

chylomicron remnants, the liver [2]. In contrast to plasma TG, circulating levels 

of adipose tissue derived non-esterified free fatty acids decrease rapidly after a 

mixed meal and again increase at the end of the post prandial period. A 

significant portion of circulating FFAs are taken up by the liver, where together 

with remnant-derived fatty acids and fatty acids produced via de novo 

lipogenesis they form the substrate for (re-)esterification and subsequent 

secretion into the plasma as VLDL-TG. Depending on the tissue and feeding 

status, either plasma FFA or TG-derived fatty acids comprise the major share of 

fatty acids for tissue uptake [2]. Irrespective of the specific route of delivery, it 

is evident that the rate of fatty acid uptake into many tissues is very variable and 

influenced by numerous factors, including tissue metabolic activity, feeding 

status, fat intake, and the intake of other nutrients, especially carbohydrates. 

Furthermore, circulating concentrations and tissues fluxes of FFA and TG-

derived fatty acids are often altered during obesity, type 2 diabetes or other 

metabolic disturbances. 

 A number of proteins are involved in cellular uptake of FFAs, including 

CD36 and various FATPs [3]. After uptake, fatty acids are bound by fatty acid 

binding proteins (FABPs) and can undergo a number of metabolic fates 

including oxidation in mitochondria and esterification and storage in lipid 

droplets. In addition, fatty acids can serve as signaling molecule by impacting 

intra- and extra-cellular receptor sensor systems either directly or after 

conversion to specific fatty acid derivatives. An example of these lipid sensors 

are the nuclear receptors, which mediate activation of gene transcription by a 

variety of hydrophobic compounds, including retinoic acid, steroid hormones, 

oxysterols and bile acids [4]. This review will provide an overview of our 

current knowledge on the various cellular receptor systems enabling the cell to 

sense the intra- or extracellular fatty acid concentration and respond by altering 

gene transcription. 

 

Peroxisome Proliferator Activated Receptors  

 

 The Peroxisome Proliferator Activated Receptors (PPARs) perhaps comprise 

the best recognized sensor system for fatty acids (Figure 1). PPARs are 

transcription factors that are members of the superfamily of nuclear hormone 

receptors, which also include receptors for fat soluble vitamins A and D and 
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steroid hormones [5]. Nuclear receptors function as ligand-activated 

transcription factors by binding small lipophilic molecules. They share a 

modular structure consisting of a DNA- and ligand-binding domain and play a 

role in a numerous biological processes [6]. Three different PPARs subtypes 

have been cloned, each characterized by a unique tissue expression pattern. 

PPARα (Nr1c1) is found in many tissues but is predominant in oxidative tissues 

such as brown adipose tissue, cardiac muscle, skeletal muscle and liver. 

PPARβ/δ (Nr1c2) is found in many cell types, while PPARγ (Nr1c3) expression 

is more restricted with adipocytes and macrophages expressing the highest level 

[7,8]. Binding of ligand is believed to trigger the physical association of PPARs 

to specific DNA sequences called PPAR response elements in and around target 

genes. Additionally, ligand binding leads to recruitment of co-activator proteins 

and loss of co-repressor proteins, resulting in activation of DNA transcription 

[5]. Similar to many other nuclear receptors, PPARs bind to DNA as 

heterodimer with the nuclear receptor RXR, which binds the vitamin A 

derivative 9-cis retinoic acid.  

 PPARs serve as a receptor for structurally diverse compounds. Although 

substantial specificity towards one particular PPAR subtype has been achieved 

in the design of synthetic PPAR agonists, there seems to be comparatively little 

subtype specificity among endogenous PPAR agonists. In several landmark 

papers from the 1990’s it was demonstrated that all three PPARs are able to 

bind fatty acids with a general preference towards long chain polyunsaturated 

fatty acids (PUFAs) [9-13]. Subsequent studies using a variety of biochemical 

techniques have firmly corroborated the direct physical association between 

fatty acids and PPARs and have thus established fatty acids as bona fide PPAR 

ligands [14-18]. In addition, numerous fatty acid-derived compounds and 

compounds showing structural resemblance to fatty acids, including acyl-CoAs, 

oxidized fatty acids (9(S)-HODE, 13(S)-HODE), eicosanoids, 

endocannabinoids, and phytanic acid, have been shown to activate PPARs (19-

26). Whereas the eicosanoid 15-Deoxy-Delta-12,14-prostaglandin J2 behaves as 

a specific high affinity agonist for PPARγ, (8S)-hydroxyeicosatetraenoic acid 

and prostacylin PGI2 show preference for PPARα and PPARδ, respectively [9, 

27-29]. Since the intracellular concentration of fatty acids (free and bound to 

fatty acid binding proteins) far exceeds the intracellular concentration of 

eicosanoids and other endogenous PPAR agonists, and since fatty acids are able 

to bind PPARs with high affinity, the question can be raised to what extent 
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eicosanoids and other fatty acid-derived compounds substantially contribute to 

the activation of PPARs in vivo. Rather, it can be argued that PPARs serve as 

general fatty acid sensors with comparatively limited ligand specificity. 

However, this concept is not universally embraced, and has clearly not stopped 

the quest to identify the potentially elusive single true endogenous PPAR 

ligand. Recently, Semenkovich and colleagues identified the 

phosphatidylcholine 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine as the 

lipid compound likely responsible for the activation of PPARα in mice carrying 

a targeted deletion of the fatty acid synthase gene [30]. Since 

phosphatidylcholines are abundant in any cell, it is unclear how activation of 

PPARα by 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine fits into the 

notion of PPARα being a lipid sensor that responds to changes in metabolic 

status and lipid fluxes.  

 As discussed above, dietary fatty acids mostly enter the liver as TG within 

chylomicron remnants, and are liberated after degradation of the remnant 

particles by hepatic and lysosomal lipase. It has been shown that PPARα is 

dominant in mediating the effects of dietary fatty acids on hepatic gene 

expression, including many genes involved in fatty acid catabolism, as revealed 

by experiments in which wildtype and PPARα -/- mice were provided with a 

single oral bolus of synthetic TG consisting of one type of fatty acid [17]. 

Lipolysis of circulating lipoproteins, whether hydrolysis of HDL by endothelial 

lipase or lipolysis of VLDL by lipoprotein lipase, was shown to be an important 

mechanism for generating ligands for PPARα in endothelial cells [31, 32], while 

hydrolysis of VLDL by hepatic lipase and lipoprotein lipase was shown to 

provide ligands for PPARβ/δ in hepatocytes and macrophages, respectively [33, 

34]. 

 In contrast and very surprisingly, circulating FFA, which primarily originate 

from adipose tissue lipolysis, do not seem to be able to activate PPARα, at least 

in the liver [35, 36]. The precise mechanism behind the differential effect of 

circulating FFA (“old fat”) versus dietary and endogenously synthesized fatty 

acids (“new fat”) on hepatic PPARα activation remain unclear but may be 

related to existence of distinct intracellular fatty acids pools with distinct 

metabolic and signaling properties [35]. In contrast, hepatic PPARβ/δ can be 

activated by plasma FFA (36), and likely the same is true in skeletal muscle, as 

revealed by the stimulatory effect of elevated FFA on expression of PPARβ/δ 

target Angptl4 in skeletal muscle [37, 38]. 
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 Interestingly, it was recently proposed that in the mouse heart, PPARα-

mediated gene transcription requires the prior esterification of fatty acids and 

subsequent hydrolysis catalyzed by Adipose Triglyceride Lipase (ATGL) [39]. 

Conversion to TG and subsequent lipolysis seems to be necessary in order for 

fatty acids to become active signaling lipids, but it is unclear whether the 

specific routing of fatty acids leads to the formation of a specific high affinity 

ligand or feeds a distinct intracellular fatty acid pool. In contrast, evidence was 

also provided that in liver ATGL promotes PPARα activity independently of 

ligand-induced activation [40]. 

 PPARα acts as a master regulator of hepatic lipid catabolism by inducing the 

expression of numerous genes involved in mitochondrial and peroxisomal fatty 

acid oxidation, as well as other lipid related pathways, inflammatory pathways, 

and glucose metabolism [41]. Accordingly, it can be argued that activation of 

PPARα by fatty acids in liver and heart is part of a feed-forward mechanism 

aimed at promoting oxidation of incoming fuels and thereby preventing the 

intracellular accumulation and consequent lipotoxicity of fatty acids by 

stimulating their oxidation. A similar role can be envisioned for PPARβ/δ in 

skeletal muscle. Besides via stimulation of fatty acid oxidation and possibly by 

stimulating conversion of fatty acids into triglycerides [41], activation of PPAR 

by fatty acids may protect against lipotoxicity by inhibiting LPL-dependent 

hydrolysis of circulating TG and consequent uptake of fatty acids via induction 

of the LPL-inhibitor Angptl4 [42]. 

 The role of PPARs in gene regulation by fatty acids is less clear in adipose 

tissue. Marine oil fatty acids have major effects on adipose tissue function and 

metabolism, as well as on adipose tissue gene regulation [43]. Although PUFAs 

are direct agonists for PPARγ [12], it is unclear to what extent the observed 

changes in adipose gene expression upon chronic PUFA feeding reflect direct 

ligand-activation of PPARγ or other PPARs, or are secondary effects conferred 

by specific eicosanoids or other fatty acid-derived compounds. Activation of 

PPARγ by fatty acids may be aimed at promoting conversion of incoming fatty 

acids to TG and stimulating overall TG storage capacity, thereby protecting 

against lipotoxicity.  
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Sterol-regulatory element binding protein 1  

 Dietary PUFAs suppress hepatic expression of genes involved in fatty acid 

synthesis (Figure 1). The underlying mechanism involves a member of the 

family of basic-helix-loop-helix-leucine zipper transcription factors named 

sterol regulatory element binding protein-1 (SREBP-1, Srebf1). There are two 

SREBP isoforms, designated SREBP-1c and SREBP-2, which differ in their 

tissue specific expression and their target genes selectivity. Whereas SREBP-1c 

preferentially activates genes involved in de-novo lipogenesis, SREBP-2 has a 

preference towards genes involved in cholesterol synthesis and uptake, at least 

in liver [44]. Together, SREBPs activate the expression of more than 30 genes 

involved in the synthesis and uptake of cholesterol, fatty acids, triglycerides, 

and phospholipids. 

 Although SREBP1 and SREBP2 have both been suggested to be inhibited by 

PUFAs, there is a lot more evidence implicating SREBP1 in downregulation of 

gene expression by PUFAs. Studies over the last decade have indicated that 

PUFAs potently lower SREBP-1 mRNA levels and inhibit proteolytic 

processing of SREBP-1 [45-49]. The latter process is required for maturation of 

precursor membrane-bound SREBP-1 to the mature SREBP-1, which moves to 

the nucleus and serves as the actual transcription factor. Recently, the target of 

PUFAs was identified as Ubxd8, a ER membrane-bound protein that facilitates 

the degradation of Insig-1, which normally sequesters the SCAP-SREBP 

complex in the ER and prevents its activation [50]. Specifically, it was shown 

that PUFAs inhibit the activity of Ubxd8, thus causing the SCAP-SREBP 

complex to stay in the ER. In addition to the mechanism described above, 

evidence has been provided that DHA but not other PUFAs stimulate the 

removal of mature nuclear SREBP-1 via a mechanism dependent on 26S-

proteosome and ERK signaling [51]. Downregulation of SREBP-1 mRNA by 

PUFAs has been proposed to be mediated by stimulation of SREBP-1 mRNA 

decay [52], or by antagonizing the activity of the nuclear receptor LXRα, a 

potent inducer of SREBP-1 gene transcription [53, 54]. Since a role of LXR in 

mediating effects of PUFAs is contentious [55], the reduction in SREBP-1 

mRNA by PUFA is more likely to be secondary to inhibition of SREBP-1 

maturation, which via autoregulation of SREBP-1 transcriptional activation 

leads to reduced SREBP-1 mRNA levels [56].  
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 PUFAs have also been shown to reduce expression of the glycolytic gene 

pyruvate kinase via a mechanism independent of PPARα [57]. This effect may 

be mediated by inhibiting nuclear translocation of either carbohydrate 

responsive element binding protein (ChREBP) or MAX-like protein X (MLX) 

(Figure 1) [58, 59]. ChREBP and MLX form a heterodimer functioning as 

glucose-responsive transcription factor that induces expression of genes 

involved in glycolysis and lipogenesis, including pyruvate kinase, acetyl-CoA 

carboxylase 1, and fatty acid synthase. However, additional data need to be 

collected to more precisely define how PUFAs influence ChREBP or MLX 

nuclear translocation and what are the direct molecular target of PUFAs. 

 

Hepatocyte nuclear factor 4α  

 The hepatocyte nuclear factor 4α (HNF4α, Nr2a1) is a nuclear receptor that 

is exclusively expressed in the gastrointestinal tract, liver and kidney [7]. 

Targeted disruption of HNF4α leads to early embryonic lethality related to 

defects in the expression of visceral endoderm proteins required for maintaining 

gastrulation [60]. Using liver-specific HNF4α-/- mice it was shown that liver 

HNF4α is important for hepatocyte differentiation and for governing the 

expression of genes involved in lipid homeostasis (61). In 1998 evidence was 

provided that saturated fatty acyl-CoA may be able to serve as agonists for 

HNF4α, whereas unsaturated fatty acyl-CoA were proposed to serve as 

antagonistic ligands [62]. These data have been contested experimentally and 

are not widely accepted [63]. Elucidation of the molecular structure using X-ray 

crystallography revealed the presence of a fatty acid that appeared to be 

constitutively bound [64, 65]. More recently, it was shown using affinity 

isolation/mass-spectrometry that HNF4α is occupied by linoleic acid in COS-7 

cells as well as in liver of fed but not fasted mice, suggesting fatty acid binding 

is exchangeable. However, no induction of HNF4α targets by linoleic acid was 

observed in a human colon cancer cell line, raising questions about the purpose 

of binding of linoleic acid to HNF4α [66]. Overall, the binding and especially 

the activation of HNF4α by fatty acids or acyl-CoAs remains controversial. 

Indeed, there is only very limited evidence that changes in the concentration of 

fatty acids or acyl-CoA lead to activation of HNF4α targets. 
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 In addition to PPARs and HNF4α, the nuclear receptors LXR, FXR and 

RXR have been proposed to serve as mediators of the effects of fatty acid on 

gene transcription. With respect to LXR, it was suggested that unsaturated fatty 

acids suppress Srebp1c gene expression by inhibiting LXR [53]. However, 

another study found that unsaturated fatty acids do not influence LXR-

dependent gene regulation in primary rat hepatocytes or in liver [55]. 

 Docosahexanoic acid was originally picked up as ligand for RXR when 

looking for a factor in brain tissue that activates RXR in a cell-based assay [67]. 

Subsequent experiments showed the direct binding of PUFAs to RXR, with 

strongest RXR activation observed for DHA and arachidonic acid, followed by 

linolenic, linoleic, and oleic acid [68]. Recent studies confirmed the direct 

binding of DHA to RXR, although with much lower affinity compared to 9cRA 

[69]. In as much as DHA also binds PPARs and PPARs form a permissive 

heterodimers with RXR, it is technically challenging to distinguish between 

DHA gene signaling via PPAR versus RXR. Interestingly, using RXR and 

PPARγ antagonists, it was found that DHA induces expression of Adrp (Plin2) 

in human choriocarcinoma cells via activation of RXR [70]. Recently, effect of 

DHA on despair behaviors and working memory could be attributed to 

activation of RXRγ [71]. 

 

NF-E2-related factor-2 (NRF2)  

 An oral lipid load with PUFAs causes rapid upregulation of numerous 

oxidative stress genes in several organs, likely representing an adaptive 

mechanism aimed at preventing cellular lipotoxicity [72]. Increased levels of 

reactive oxygen species and derivatives of fatty acid peroxidation activate the 

transcription factor NRF2 (NFE2L2), which governs the expression of multiple 

genes involved in the oxidative stress response. Compounds that activate NRF2, 

ranging from diphenols to hydroperoxides and heavy metals, are believed to 

modulate the sulfhydryl group of cysteine residues with KEAP1, which serves 

as NRF2-specific adaptor protein for the Cullin-3 ubiquitin ligase complex [73]. 

As a result, these compounds cause the dissociation of Cullin-3 and thereby 

inhibit NRF2 ubiquitination, leading to stabilization and nuclear translocation of 

NRF2 and subsequent induction of NRF2 target genes. Studies have shown that 

oxidation products of linoleic acid, eicosapentanoic acid and DHA can react 

with KEAP1, while the intact fatty acids cannot [74-76]. Thus, the effects of 
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(dietary) PUFA on expression of genes involved in the oxidative stress response 

are likely mediated by specific fatty acid oxidation products via NRF2-

dependent signaling.  

 

Toll-like receptor 4  

 Numerous studies have investigated the impact of fatty acids on the 

inflammatory response in a great variety of cell types and tissues. These studies 

overwhelmingly point to a pro-inflammatory effect of saturated fatty acids, 

whereas n-3 PUFA exhibit mostly anti-inflammatory properties [77]. Most of 

the modulatory effect of fatty acids on inflammation can probably be attributed 

to fatty acid metabolites, including prostaglandins, leukotoxins, resolvins, 

endocannabinoids, ceramides and diacylglycerols [77]. However, there is 

accumulating evidence that fatty acids may be able to directly activate or 

suppress inflammatory pathways.  

 Most of the biological activities of LPS are mediated via its lipid A moiety. 

It is well established that the fatty acids that are part of lipid A play an 

important role in ligand recognition and receptor activation of Toll-like receptor 

4 (TLR4), leading to the suggestion that saturated fatty acids may promote 

inflammation by direct activation of TLR4 (Figure 1). Subsequent studies have 

provided compelling evidence that saturated fatty acids activate NF-κB and 

stimulate expression of NF-κB targets such as COX-2, iNOS and IL-1α in 

macrophages by activating TLR4 signaling in a MyD88, IRAK-1 and TRAF6 

dependent manner [78-80]. In contrast, unsaturated fatty acids are ineffective or 

may even act as antagonists. It was reported that saturated fatty acids activate 

TLR4 by promoting its recruitment to lipid rafts via a mechanism involving 

reactive oxygen species [81]. Data showing direct physical binding of saturated 

fatty acids to TLR4 are still lacking, leaving open the mechanism of TLR4 

activation [82]. Others have argued against TLR4 activation by saturated fatty 

acids [83]. Using TLR4-/- macrophages, the role of TLR4 in mediating the 

inflammatory effects of saturated fatty acids was convincingly demonstrated 

[84, 85]. Loss of TLR4 was also shown to partially protect against diet-induced 

obesity and insulin resistance, suggesting TLR4 may be involved in mediating 

the detrimental effects of chronic high saturated fat consumption [84, 86, 87].  
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G-protein coupled receptors  

 

 Members of the G-protein coupled receptor (GPCRs) family are involved in 

mediating the stimulatory effects of fatty acids on insulin secretion by 

pancreatic β-cells and on secretion of various gastrointestinal hormones in the 

gut [88, 89]. These receptors, which include GPR40 (FFAR1), GPR41 

(FFAR3), GPR43 (FFAR2), GPR84, and GPR120, each exhibit preference for a 

specific set of fatty acids. To what extent activation of GPRs by fatty acids 

directly influences gene transcription remains to be determined (Figure 1). 

Nevertheless, due to the emerging importance of GPRs in fatty acid sensing in a 

variety of tissues, some discussion on GPRs is warranted. 

 In addition to being activated by short chain FAs such as acetate, propionate, 

butyrate and pentanoate, GPR41 and GPR43 have in common that they are well 

expressed in the colon, which is exposed to elevated concentrations of SCFAs 

via bacterial fermentation [88]. Furthermore, GPR41 is expressed in numerous 

immune cells and adipose tissue, where it was shown to be involved in 

regulation of leptin production [90]. The relative role of GPR41 versus GPR43 

as sensor for SCFAs in the enteroendocrine system is not clear.  Recently, it 

was proposed that GPR41 mediates the effect of gut microbiota on fat mass 

[91], while stimulation of GPR43 by SCFAs was shown to be necessary for the 

normal resolution of certain inflammatory responses [92]. 

 In contrast to GPR41 and GPR43, GPR40 is activated by medium and long 

chain fatty acids , which include saturated and unsaturated fatty acids. GPR40 is 

expressed at high levels in pancreatic β-cells, where it mediates the stimulatory 

effect of fatty acids on glucose-stimulated insulin secretion [93, 94]. Apart from 

the pancreatic β-cells, GPR40 is known to be expressed in various other cell 

types such as enteroendocrine cells. In these cells, GPR40 is involved in the 

stimulation of production of GLP-1 and GIP by fatty acids [95].  

Other relevant members of the GPCR family are GPR84, GPR119 and GPR120. 

GPR84 is well expressed in bone-marrow derived macrophages and has been 

proposed as receptor for medium chain fatty acids [96]. GPR119 has a similar 

expression pattern as GPR40 but the receptors shares only little homology. 

Endogenous ligands of GPR119 have been identified and include the fatty acid 

derivatives monoacyl glycerol, lysophosphatidylcholine and 

oleoylethanolamide [97, 98]. GPR120 is activated by saturated and unsaturated 

fatty acids with twelve or more carbons. GPR120 is most abundant in mouse 
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large intestine, lung and adipose tissue, but is also expressed in enteroendocrine 

cells where it mediates the effect of fatty acids on release of glucagon-like 

peptide-1 and cholecystokinine [99-101]. Remarkably, GPR120 was recently 

proposed to serve as a specific sensor for n-3 fatty acids in macrophages that 

may mediate the putative insulin sensitizing and anti-diabetic effects of n-3 fatty 

acids in vivo by repressing macrophage-induced tissue inflammation [102]. So 

far, evidence is lacking that activation of these receptors is directly linked to 

regulation of gene expression.  

 

Conclusion 

While the importance of dietary fatty acids as determinants of risk for numerous 

chronic diseases has been well recognized, only recently have we started to gain 

appreciation for the vast regulatory functions of dietary fatty acids in the human 

body. It is now evident that fatty acids, either directly or via its metabolites, act 

via a great variety of signaling pathways to influence numerous metabolic, 

inflammatory, and other biological processes. In the past decade, nutrigenomics 

has provided the ideal conceptual framework and the necessary technological 

tools to address the global effects of dietary fatty acids, and has importantly 

contributed to a major advancement in our understanding of the molecular 

action of dietary fatty acids. So far the focus has been on the molecular 

characterization of specific signaling routes, coupled to the description of the 

whole genome effects of dietary fatty acids. In the future, greater emphasis will 

have to be placed on the functional consequences of specific target gene 

regulation in order to fully understand the functional impact of dietary fatty 

acids and their potentially preventive effect in specific disease conditions. It can 

be foreseen that nutrigenomics will continue to make a push towards a more 

mechanistic and genomics-driven approach within the domain of nutritional 

sciences and further promote the implementation of high throughput 

technologies. 
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Figure 1: General mechanisms of gene regulation by fatty acids 

The mechanisms shown mainly apply to hepatocytes. PUFAs reduce expression of 

genes involved in fatty acid and cholesterol synthesis by binding and inactivating 

UBXD8, thereby inhibiting proteolytic processing of SREBP-1. PUFAs reduce 

expression of L-type pyruvate kinase (glycolysis) in liver most likely by inhibiting 

nuclear translocation of MLX-ChREBP. Various fatty acids but especially PUFAs act 

as ligand for PPARs. Activation of PPARα by PUFAs in liver leads to stimulation of 

fatty acid catabolism. DHA has been reported as a ligand for RXR. GPR40-43 and 

GPR120 are expressed by enterocytes, enteroendocrine cells and other cell types and 

serve as membrane receptors for various types of fatty acids including SCFAs. It is 

uncertain whether they are involved in the effects of fatty acids on gene expression. 

TLR4 is present macrophages and other cell types and has been proposed to be activated 

by saturated fatty acids. bHLH, basic helix loop helix. 
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Abstract 

Fatty acids comprise the primary energy source for the heart and are mainly 

taken up via hydrolysis of circulating triglyceride-rich lipoproteins. While most 

of the fatty acids entering the cardiomyocyte are oxidized, a small portion is 

involved in altering gene transcription to modulate cardiometabolic functions. 

So far, no in vivo model has been developed enabling study of the 

transcriptional effects of specific fatty acids in the intact heart. In the present 

study, mice were given a single oral dose of synthetic triglycerides composed of 

one single fatty acid.  Hearts were collected 6h thereafter and used for whole 

genome gene expression profiling. Experiments were conducted in wild-type 

and PPARα-/- mice to allow exploration of the specific contribution of PPARα. 

It was found that: 1) C18:3 had the most pronounced effect on cardiac gene 

expression. 2) The largest similarity in gene regulation was observed between 

C18:2 and C18:3. Large similarity was also observed between PPARα agonist 

Wy14643 and C22:6. 3) Many genes were regulated by one particular treatment 

only. Genes regulated by one particular treatment showed large functional 

divergence. 4) The majority of genes responding to fatty acid treatment were 

regulated in a PPARα-dependent manner, emphasizing the importance of 

PPARα in mediating transcriptional regulation by fatty acids in the heart. 5) 

Several genes were robustly regulated by all or many of the fatty acids studied, 

mostly representing well-described targets of PPARs (e.g. Acot1, Angptl4, 

Ucp3) but also including Zbtb16/PLZF, a transcription factor crucial for Natural 

Killer T cell function. 6) Deletion and activation of PPARα had a major effect 

on expression of numerous genes involved in metabolism and immunity. Our 

analysis demonstrates the marked impact of dietary fatty acids on gene 

regulation in the heart via PPARα. 
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Introduction 

 Fatty acids serve as the primary energy substrate for the contracting heart via 

their oxidation in the mitochondria. Oxidation of fatty acids in the heart may be 

altered during specific disease conditions impacting the heart, including cardiac 

failure, myocardial ischemia and diabetes [23]. Impaired oxidation or excess 

delivery of fatty acids in the heart may give rise to cardiomyocellular lipid 

storage. Limited variation in cardiac lipid storage can be considered normal and 

occurs as a direct consequence of physiological fluctuations in circulating FFA 

[35]. However, chronically elevated cardiac lipid storage is considered harmful 

and may lead to lipotoxic cardiomyopathy [24]. 

 Fatty acids entering the cardiomyocyte can originate from two principal 

sources, which are circulating triglyceride-rich lipoproteins and circulating 

albumin-bound free fatty acids. The former pathway, shown to be the main 

source of fatty acids for the heart [3, 31], requires the catalytic activity of 

lipoprotein lipase (LPL), which is anchored into the capillary endothelium. To 

what extent fatty acids from different extracellular sources are channeled into 

different intracellular pathways in the heart remains to be investigated.  

 While most of the fatty acids entering the cardiomyocyte are oxidized, a 

small portion of the incoming fatty acids are transported towards the nucleus 

and alter gene transcription to modulate cardiometabolic functions. Several 

transcription factors are implicated in mediating effect of fatty acids on gene 

transcription in various tissues, including SREBP-1c, HNF4α, and PPARs [25]. 

PPARs are ligand-activated transcription factors that govern DNA transcription 

by direct binding to promoters of target genes [16]. In addition, they down-

regulate gene expression by interfering with the activity of other transcription 

factors. The family of PPARs consists of three members encoded by distinct 

genes: α, δ, and γ, which are each characterized by specific tissue- and 

developmental patterns of expression.  

 PPARα serves as the molecular target for the fibrate class of drugs. In 

addition, PPARα is activated by fatty acids and various fatty acid derivatives 

such as eicosanoids and endocannabinoids. In vitro studies show that PPARα 

has a preference towards long-chain poly-unsaturated fatty acids (PUFAs) [12, 

18, 19]. While several studies have examined the effect of fatty acids on PPAR 

target genes in isolated cardiomyocytes, showing induction of typical PPARα 
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target such as Ucp2, Cpt1a, Cd36, Fabp3, Acsl1, Acot1, and Acadl [5, 10, 32, 

34], little is known about gene regulation by fatty acids in the intact heart. 

 Previously, we described an in vivo model that allows characterization of the 

transcriptional targets of PUFAs in diverse tissues in vivo [14, 26]. In this 

model, mice are given a single oral bolus of synthetic triglycerides composed of 

a single fatty acid. We showed that the Angptl4 gene is a very sensitive target of 

fatty acids in the heart and furthermore that its upregulation is part of a 

protective mechanism against cardiac lipotoxicity [14]. The present study 

examines the whole genome effects of individual dietary fatty acids in the heart 

via transcriptional profiling. By conducting these experiments in wild-type and 

PPARα-/- mice, the specific contribution of PPARα could be determined. 

 

Methods 

Chemicals: Wy14643 was obtained from Eagle Picher Technologies 

laboratories (Lenexa, KS, USA). Triolein, trilinolein, trilinolenin, 

tridocosahexaenoin were from Nu-Chek-Prep, Inc. (Elysian, MN, USA). Cell 

culture media, fetal bovine serum and penicillin/streptomycin were from Lonza 

(Verviers, Belgium).  

Animals and oral lipid load: Pure-bred Sv129 and PPARα-/- mice (2-6 

months of age) on a Sv129 background were used. In the short term experiment, 

animals were switched to a run-in diet consisting of a modified AIN76A diet 

(corn oil was replaced with olive oil to minimize baseline intake of 

polyunsaturated fatty acids, which are more potent activators of PPARα) two 

weeks before the start of the experiment (Research Diet Services, Wijk bij 

Duurstede, the Netherlands). Starting at 5 a.m. the animals were fasted for 4 

hours followed by an intragastric gavage of 400 µL synthetic triolein, 

trilinolein, trilinolenin, or tridocosahexaenoin. Wy14643 was given as 400 µL 

of a 10 mg/mL suspension in 0.5% carboxylmethyl cellulose. The latter also 

served as control treatment  (400uL). 6 hours after the oral gavage the mice 

were anaesthetized with a mixture of isofluorane (1.5%), nitrous oxide (70%) 

and oxygen (30%). Blood was collected by orbital puncture, followed by 

sacrifice of the mice by cervical dislocation. Hearts were removed, snap-frozen 

in liquid nitrogen and stored at -80ºC.  
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 In the long term experiment, wild-type and PPARα-/- mice were fed a chow 

diet (RMH-B diet, Arie Blok, Woerden, the Netherlands) containing 0.1 % 

Wy14643 for 5 days. The animal experiments were approved by the animal 

ethics committee of Wageningen University. 

Microarray analysis: RNA from total heart was extracted with TRIzol reagent 

and purified using RNeasy Mini kit (Qiagen, Venlo, Netherlands). RNA quality 

was assessed on an Agilent 2100 bioanalyzer (Agilent Technologies, 

Amsterdam, the Netherlands) with 6000 Nano Chips using a Eukaryote Total 

RNA Nano assay.  Expression profiling was carried out on individual mouse 

hearts using Affymetrix Mouse Genome 430 2.0 Arrays (short term experiment) 

or on pooled RNA from 4-5 mice using Affymetrix Mouse NuGO arrays (long 

term experiment). Hybridization, washing and scanning of the arrays were done 

according to standard Affymetrix protocols. Scans of the Affymetrix arrays 

were processed using packages from the Bioconductor project [13]. Raw signal 

intensities were normalized by using the GCRMA algorithm [36]. Probesets 

were defined according to Dai et al. using remapped CDF version 11.0.2 based 

on the Entrez gene database [8]. The Bioconductor R package Linear models for 

microarray data (LIMMA) was used to identify differentially expressed genes. 

All comparisons were simultaneously analysed.  In order to balance between 

random responses and relative weak transcriptional effects by the treatments, 

genes that met the cut-off of mean absolute fold change > 1.2 and p-value<0.01 

were considered significantly regulated. A regularized t-test was used, which 

has the same interpretation as an ordinary t-test except that the standard errors 

have been moderated across genes, i.e. shrunk to a common value, using a 

Bayesian model [30]. The microarray datasets have been submitted to NCBI 

Gene Expression Omnibus (GEO numbers pending).  

 

Functional classification of genes: For functional classification of probe 

sets/genes into gene sets clusters or biological pathways, Gene set enrichment 

analysis (GSEA) and ingenuity software v.6.5 were used. For identifying 

specific pathways regulated by each treatment we used Ingenuity canonical 

pathways, considering only differentially expressed genes with a p-value<0.01 

(fatty acids and Wy treatment) or differentially expressed genes with a p-
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value<0.01 and fold-change>1.2 (baseline wildtype vs. PPARα-/-). For GSEA 

differentially expressed gene sets with a p-value<0.05 were considered. 

Correlation Plot: Signal log ratios were calculated between intensity values for 

individual animals and the mean intensity value of the wildtype control group. 

Signal log ratios of genes significantly regulated by at least one treatment were 

used as input for a correlation plot in Biowisdom Omniviz 6.0.3 (Cambridge, 

UK). 

 

Results 

Oral feeding of synthetic triglycerides 

 To study the effect of individual fatty acids on in vivo gene expression in the 

heart, mice fasted for 4 hours were given a single oral dose (400 µL) of 

synthetic triglycerides (TGs) consisting of one single fatty acid, followed by 

collection of the heart 6 hours thereafter (26). Those dosage mirrors the amount 

of dietary fat provided in a post-prandial lipid test in humans. The fatty acids 

studied were oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3), 

and docosahexaenoic acid (C22:6). In addition, a set of mice was given a single 

oral dose of the synthetic PPARα agonist Wy14643. No saturated fatty acids 

were included because triglycerides composed of common dietary saturated 

fatty acids are solid at room temperature and could not be administered orally. 

The 6-hour time point was chosen because dietary triglycerides enter into the 

circulation within 1 hour after intake and a constant rate of absorption is 

sustained for at least 4 hours thereafter (Figure  1A). The focus of the present 

study is on heart since heart shows the highest relative rate of uptake of dietary 

fatty acids, when expressed per gram organ weight [31]. No major differences 

in metabolic processing of dietary fat between WT and PPARα−/− mice and 

between different dietary fatty acids were observed in this study [26]. 
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Figure 1: Whole genome effects of dietary fatty acids on gene expression in the 

heart. A. Mice fasted for 5h were intravenously injected with lipoprotein lipase 

inhibitor tyloxapol and immediately thereafter given 400 µL of olive oil containing 

7µCi glycerol-tri[
3
H] oleate (triolein). Blood was collected every hour and used to 

determine radioactivity, which is expressed as a percentage of total oral dose. Results 

illustrate the constant rate of absorption of dietary triglycerides for several hours. B. 

Number of genes up- or down regulated (P<0.01) in mouse hearts six hours after a 

single oral dose of Wy14643 or synthetic triglycerides containing one specific fatty 

acid. Mice receiving carboxymethylcellulose served as reference. C. Number of genes 

regulated by each of the fatty acid treatments that were also significantly regulated by 

Wy14643 (P<0.01). 

 

Similarity in gene regulation between fatty acids 

 Expression profiling carried out on individual mouse hearts indicated that 

the largest number of genes was changed following treatment with C18:3, 

followed by C22:6, C18:2, Wy14643 and finally C18:1 (Figure 1B). The 

proportion of genes up- and downregulated was approximately equal, and was 

consistent throughout the various treatments. C22:6 showed the most 

pronounced overlap in gene regulation with Wy14643, followed by C18:3, 

C18:2 and C18:1 (Figure 1C). Next we studied the similarity in gene regulation 

between the various fatty acids via scatter plot analysis, in which the mean fold-

change in expression of a gene by one treatment is expressed in one dimension, 

and the mean fold-change in expression of the same gene by another treatment 

is expressed in the other dimension. Results indicated that mean changes in 
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gene expression elicited by C18:3 and C18:2 were highly similar (Figure 2A), 

as illustrated by the limited scatter. Much less similarity in gene regulation was 

observed between C18:2 (or C18:3) and C22:6. Consistent with the above data, 

Wy14643 showed the least scatter, indicating highest similarity, when plotted 

against C22:6, compared to the other fatty acids. Similar results were obtained 

via correlation analysis, which determines the magnitude of correlation in 

overall gene expression between two individual mice (Figure 2B). High 

correlation in gene expression was observed between mice that received C18:2 

and mice that received C18:3. Compared to C22:6, mice that received C18:2 or 

C18:3 correlated relatively poorly with mice given Wy14643. 
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Figure 2: Similarity in gene regulation between different fatty acids. A. Scatter 

plots showing similarities in gene regulation between two treatments.  The mean fold-

change in expression of a gene by one treatment (relative to control treatment) is 
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expressed in one dimension (y-axis), and the mean fold-change in expression of the 

same gene by another treatment (relative to control treatment) is expressed in the other 

dimension (x-axis). The more pronounced the scatter, the lower the similarity in gene 

regulation. B. Correlation plot showing correlation in gene expression between 

individual mice. Signal log ratios were calculated between intensity values for 

individual animals and the mean intensity value of the control group. Signal log ratios 

of genes significantly regulated by at least one treatment were used as input for a 

correlation plot. Red indicates high correlation, blue indicates weak correlation. 

 To compare the effects of the various treatments, we determined the top 10 

of genes most significantly up- or down-regulated by each treatment (Table 1). 

Some of the top upregulated genes were regulated by all five treatments 

(Zbtb16/PLZF) or by four treatments (Hmox1, Angptl4, Ucp3). Many of the 

commonly upregulated genes are involved in metabolic pathways (Hmgcs2, 

Acot1, Angptl4) or oxidative stress (Hmox1, Ucp3, Mt2). Genes that were 

consistently downregulated by Wy and fatty acids included the nuclear receptor 

Nurr1 (Nr4a1) and fibroblast growth factor 16 (Fgf16). To illustrate specific 

patterns of gene regulation, examples of genes that were regulated by all 

treatments, by all fatty acids, or by only one treatment are shown in Figure 3A. 

Only a small proportion of the genes were regulated by all five treatments or by 

all fatty acids (Figure 3B). Many more genes were either exclusively regulated 

by one particular treatment (Figure 3B) or shared between two treatments (data 

not shown). 
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Table 1: Top 10 of genes most significantly regulated by the various treatments 

ranked according to fold-change (FC). Genes regulated by more than one 

treatment are shown in bold. 
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Figure 3: Fatty acid specific gene regulation in mouse heart. A. Changes in 

expression of selected genes in wildtype mice by the different treatments, illustrating 

gene regulation by all treatments (Hmgcs2), specific/selective regulation by Wy14643 

(PGC1a), C22:6 (Lrrc52), C18:3 (Gsta3), C18:2 (Cldn5), and regulation by all fatty 

acids (Tbx5). B. Number of genes exclusively up- or down-regulated by one specific 

treatment or shared between one or more treatments (P<0.01). C. Comparative 

functional analysis of the whole genome effects of the various treatments. Gene sets up- 

and down-regulated by the various treatments as identified by GSEA (P<0.05) were 
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classified into broad functional categories. Results illustrate aberrant effect of C22:6 

with respect to upregulated genes, and aberrant effect of Wy14643 with respect to 

downregulated genes. 

 

 We next investigated whether similarities in gene regulation between the 

various treatments were also observed at the level of pathways. To that end, 

Ingenuity pathway analysis was carried out on the changes in gene expression 

caused by each treatment. The results reveal that many pathways are commonly 

regulated by the various fatty acids, including several pathways related to 

metabolism of amino acids and fatty acids (Table 2). The number of pathways 

specifically regulated by one fatty acid was limited, with the exception of 

C22:6, which specifically regulated several pathways related to inflammation 

and cytokine/growth factor signalling. Similar data were obtained by Gene Set 

Enrichment Analysis (Figure  3C). Most of the gene sets enriched among genes 

unregulated by the various treatments were related to nutrient/energy 

metabolism, except for C22:6 which induced gene sets involved in a variety of 

biological functions. The special status of C22:6 was not evident among down-

regulated gene sets. These data indicate that C22:6 induces the most diverse 

biological response in cardiac gene expression compared to the other fatty acids 

studied.  
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Table 2: Results of Ingenuity canonical pathway analysis considering only 

differentially expressed genes with a p-value<0.01. 
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Role of PPARα in gene regulation by fatty acids 

 Several of the top regulated genes by fatty acids are target genes of PPARα 

(Table 1). In addition, significant overlap was observed between gene regulation 

by fatty acids and Wy14643 (Figure 1C, Figure 2A). These results suggest that 

PPARα plays a role in gene regulation by dietary fatty acids in heart in vivo. To 

better define the role of PPARα in heart, we first determined the impact of 

PPARα deletion on basal whole genome gene expression in the heart using 

PPARα-/- mice. Using a cut-off of fold-change >1.2 and P<0.01, we found that 

294 genes showed elevated expression and 297 genes showed reduced 

expression in PPARα-/- mice (Figure 4A). Many of the top downregulated 

genes represented known targets of PPARα involved in lipid metabolism, 

including Acot1, Acot2, Ucp3, Gpam and Slc22a5 (Figure 4B). The functional 

roles of the top upregulated genes in PPARα-/- mice were more diverse, 

including genes involved in lipid metabolism (Acsl6, Angptl4) but also genes 

involved in immune response, cell cycle, and oxidative stress response. 

Pathways differentially expressed between wild-type and PPARα-/- mice 

according to Ingenuity pathways analysis fell into four main categories: lipid 

metabolism, amino acid metabolism, carbohydrate metabolism, and 

inflammation/immunity, reflecting the established role of PPARα in these 

processes (Figure 4C). 
 We next set out to investigate the importance of PPARα in gene regulation 

by dietary fatty acids in the heart. Regulation of a particular gene by dietary 

fatty acids or synthetic agonists was defined as PPARα-dependent when 

expression was statistically significantly up- or downregulated in WT but not 

PPARα-/- mice. As expected given the high specificity of the Wy14643 

compound, gene regulation by WY14643 was almost completely dependent on 

PPARα, which was equally observed for up- or down-regulated genes (Figure 

5A,B). The importance of PPARα in gene regulation by dietary fatty acids was 

less pronounced but still remarkably high. Interestingly, a very uniform picture 

was observed for the three PUFAs studied. Specific examples of genes showing 

clear PPARα-dependent or –independent gene regulation by dietary fatty acids 

are shownin Figure 5C. Induction of Ucp3 and Acot1 expression by Wy14643 

and fatty acids was entirely dependent on PPARα, whereas induction of 

Zbtb16/PLZF was completely independent of PPARα. Expression of Pdk4 and 

Hmox1 showed a mixed picture: Whereas induction by Wy14643 was entirely 
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PPARα-dependent, this was not or only partially observed for the various fatty 

acids. Taken together, these data indicate that PPARα plays a major role in gene 

regulation by dietary fatty acids in heart, although other mechanisms contribute 

as well.  

 

 

Figure 4: Effect of PPARα deletion on gene expression in mouse heart. A. Number 

of genes upregulated or downregulated in PPARα-/- mice compared to wildtype mice at 

baseline (control treatment, carboxymethylcellulose) according to P<0.01 and mean fold 

change>1.2. B. Heatmap showing changes in expression of the 20 genes exhibiting the 

highest mean fold increase (top panel) and decrease (lower panel) in PPARα-/- mice 
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compared to wildtype mice at baseline. Each column represents one individual mouse. 

Mean fold change of wildtype mice was set at 1.0. C. Ingenuity canonical pathway 

analysis of changes in gene expression between wildtype and PPARα-/- mice at 

baseline. Line reflects –log(P-value). The coloured bars reflect the percentage of genes 

within a particular pathway that was downregulated (green bar), upregulated (red bar) or 

absent from the dataset (white bars). 

 

 

Figure 5: Role of PPARα in gene regulation by fatty acids in the heart. Bars show 

the percentage of genes upregulated A. or downregulated B. in the different treatment 

groups in a PPARα-dependent manner (black bars, changed in wildtype but not in 

PPARα-/- mice), or PPARα-independent manner (white bars, changed in wildtype and 

PPARα-/- mice). Genes were considered statistically significantly regulated if P<0.01. 

C. Changes in expression of selected genes by the various treatments in wildtype and 

PPARα-/- mice, illustrating complete PPARα-dependent gene regulation (Ucp3, Acot1), 

partial PPARα-dependent up- (Pdk4, Hmox1) and down- (Nr4a1) regulation, and 

PPARα-independent regulation (Zbtb16). Error bars represent SEM. 
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Role of PPARα in cardiac gene regulation 

 As mentioned above, gene regulation by Wy14643 in heart was entirely 

mediated by PPARα. To further understand the impact of PPARα on cardiac 

gene regulation, we carefully analyzed the whole genome effects of short term 

or long term administration of Wy14643, focusing on metabolism and immunity 

related genes. Genes were classified according to 1) differential expression in 

PPARα-/- mice in the absence of Wy14643, 2) induction after short-term 

Wy14643 treatment, 3) induction after long-term Wy14643 treatment. A limited 

number of metabolic genes were regulated in all three conditions, representing 

robust PPARα targets such as Ucp3, Hmgcs2, Acot1 and Ehhadh (Appendix 

table 1). Interestingly, many genes classified as PPARα targets based on 

literature were not induced by Wy14643, even though their expression was 

decreased in the PPARα-/- mice. Conversely, a considerable number of genes 

was induced by Wy14643 but was unaltered in the PPARα-/- mice at baseline. 

The former could be classified as baseline PPARα targets whereas the latter 

may be classified as inducible targets. 

 A large number of genes altered by PPARα deletion or by Wy14643 was 

related to inflammation and immunity (Appendix table 2). Although the 

maximal magnitude of fold-change of inflammation/immunity related genes 

was less compared to metabolism-related genes, the number of genes altered 

was at least as high, demonstrating the impact of PPARα on inflammation and 

immunity in heart. One gene that was robustly regulated by PPARα in all three 

conditions was Serpine1, also known as plasminogen activator inhibitor 1 (PAI-

1). A complete list of genes can be found in Appendix table 1,2. 

  

 

Discussion  

 In this study we set out to study the impact of individual dietary unsaturated 

fatty acids on whole genome gene regulation in the intact mouse heart and 

assess the role of PPARα. Our findings can be summarized as follows: 1) C18:3 

had the most pronounced effect on cardiac gene expression. 2) The largest 

overall similarity in gene regulation was observed between C18:2 and C18:3, 

which was equally true for genes regulated in a PPARα-dependent and 

independent manner (Appendix Figure 1). The synthetic PPARα agonist 

Wy14643 and C22:6 also showed marked similarity in gene regulation. 3) 
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Many genes were regulated by one particular treatment only. Genes regulated 

by one particular treatment showed large functional divergence. 4) The majority 

of genes responding to fatty acid treatment were regulated in a PPARα 

dependent manner, emphasizing the importance of PPARα in mediating 

transcriptional regulation by fatty acids in the heart. 5) Several genes were 

robustly regulated by all or many of the fatty acids studied. A number of these 

genes are well-described targets of PPARs whereas others seem to be regulated 

via a different mechanism. 

 Dietary fatty acids enter the circulation packaged in triglyceride-rich 

chylomicron particles and enter the heart after lipolytic processing by 

lipoprotein lipase. The importance of hydrolysis of triglyceride-rich lipoproteins 

for generating endogenous ligands for cardiac PPARα has been recognized [9, 

37]. Our data extend these previous findings and show that dietary fatty acids 

cause marked induction of several PPARα target genes. In addition, it is shown 

that dietary fatty acids –and therefore the lipolysis pathway- also leads to gene 

regulation via other signaling routes. Part of the PPARα-independent regulation 

may occur via PPARβ/δ (e.g. Pdk4, Angptl4), but other mediators are likely 

also involved, including Nrf2. Nrf2 is a transcription factor that is activated by 

unsaturated fatty acids after their conversion to electrophilic oxo or nitro 

derivatives, and stimulates anti-oxidant gene regulation [15]. An important 

property of PUFAs is that they not only serve as metabolic substrates, but are 

also sources of lipotoxic derivatives such as lipid peroxides and reactive oxygen 

species as secondary products of fatty acid oxidation. Thus, the effects of 

(dietary) PUFA on expression of genes involved in the oxidative stress response 

are likely mediated by specific fatty acid oxidation products via NRF2-

dependent signaling. Activation of Nrf2 may explain why a large number of 

genes induced by dietary unsaturated fatty acids are involved in oxidative stress 

response. Recent data point to cross talk between regulation of lipid metabolism 

and the oxidative stress response. It was found that the anti-oxidant 

transcription factor Nrf2, besides governing oxidative stress target genes, also 

alters expression of numerous genes involved in lipid metabolism [17]. 

Conversely, PPARs, which have a primary function in lipid metabolism, 

directly regulate expression of a number of oxidative stress genes, exemplified 

by Hmox1 [1, 20, 21].  

 One surprising gene that was markedly and consistently induced by all fatty 

acids was Zbtb16/PLZF, encoding a transcription factor that controls the 
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development of effector functions in Natural Killer T (NKT) cells [2]. NKT 

cells represent an unique subset of lymphocytes that are reactive to so called 

lipid antigens, which include a broad range of microbial lipids that are unique 

structures of specific microorganisms. Based on its sensitive regulation by fatty 

acids, one could speculate whether Zbtb16/PLZF may link dietary lipids to 

NKT cell function. 

 Previously, we studied the impact of dietary fatty acids on gene expression 

in the liver under the same experimental settings [26]. When expressed per 

gram organ weight, the liver and heart both exhibit very high and very similar 

rates of fatty acid uptake from TG-rich lipoproteins [26]. Remarkably, the 

percentage of genes regulated by fatty acids independently of PPARα is 

considerably higher in heart compared to liver. Additionally, the panel and 

functional categories of genes regulated by fatty acids in the liver mostly 

reflects regulation of lipid metabolism, which is less the case in heart. 

Furthermore, relative inductions of PPARα target genes by dietary fatty acids 

are less pronounced in heart. Together, these data clearly demonstrate a less 

dominant role of PPARα in cardiac gene regulation by dietary fatty acids 

compared to the liver. Apart from differences in PPARα expression level 

between heart and liver, this finding may be related to differences in the route of 

uptake of fatty acids between the two tissues in the postprandial state. Whereas 

the heart takes up dietary fatty acids as non-esterified fatty acids after LPL-

mediated hydrolysis, the liver internalizes dietary fatty acids as TG within 

chylomicron remnant particles [3, 31]. The ability of fatty acids to directly 

activate PPARα may depend on the form in which they are presented to the cell 

[7, 27]. Free fatty acids may need to be converted to TG and undergo 

subsequent hydrolysis before they can activate PPARα. Alternatively, it is 

possible that within the heart fatty acids are more efficiently shuttled towards 

oxidative pathways to meet the high energetic demands of the contracting heart. 

 It can be argued that direct comparison of the various fatty acid treatments 

requires comparable levels of cardiac uptake of the different fatty acids. 

Unfortunately, the unavailability of radioactive triglycerides except triolein 

makes it impossible to get precise information on the kinetic behaviour of the 

fatty acids used. Our previous study did not reveal major differences in 

metabolic processing of dietary fat between WT and PPARα-/- mice and 

between different dietary fatty acids [26]. Even while assuming some 

differences exist in kinetic behaviour between the fatty acids used, they are 
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unlikely to account for the major qualitative differences in gene regulation 

between the fatty acids studied. It is difficult to directly compare our results 

with in vitro data. Lockrigde and colleagues performed microarray analysis on 

isolated cardiomyocytes treated with various fatty acids [22]. Remarkable, the 

number of genes altered by saturated fatty acids was much higher compared to 

unsaturated fatty acids. One of the limitations of this study is that we were 

unable to investigate the effects of saturated fatty acids, as triglycerides 

composed of saturated fatty acids are solid at body temperature. 

 Differential gene regulation by the various fatty acids via PPARα may be 

hypothesized to occur via the Selective PPAR Modulator (SPARM) concept, in 

which different PPARα ligands may not only give rise to quantitative 

differences but also cause qualitative differences in gene regulation due to the 

differential recruitment and release of coactivators and corepressors, 

respectively. While we previously found support for differential coactivator 

recruitment between Wy14643 and DHA, no differences were found between 

various fatty acids [26]. 

 Most of our understanding of the role of cardiac PPARα is based on studies 

of transgenic mice overexpressing PPARα in the heart. These mice are 

characterized by marked induction of genes involved in cardiac fat oxidation 

but also fatty acid uptake, resulting in cardiac lipid accumulation and 

subsequent cardiomyopathy [4, 6, 11]. A few genes within these pathways have 

been identified as direct targets of PPARα in heart. Our data underscore the 

importance of PPARα in lipid metabolism in the heart, and reveal a large 

resemblance between the PPARα transcriptome in heart and liver. Similar to the 

dietary fatty acids, Wy14643 was surprisingly much less potent in inducing 

gene expression in heart compared to liver. A possible explanation is that 

Wy14643 is taken up more poorly by the heart, although no actual data are 

available to support this notion.  

 Deletion of PPARα had a marked effect on cardiac gene regulation after a 10 

hour fast, representing the baseline condition, which suggests that 1) PPARα 

has a high constitutive activity, or 2) PPARα is already mostly ligand-activated 

after a 10 hour fast [33], which would be consistent with the high rate of fatty 

acid uptake under those conditions. Although expression of numerous genes 

involved in lipid metabolism was markedly reduced in PPARα-/- mice, this 

does not result in cardiac dysfunction, at least in the absence of an additional 

stressor [28]. 
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 Apart from metabolism related genes, many genes involved in 

inflammation/immunity were altered upon PPARα deletion. Our findings are 

supported by recent studies describing differential expression of immunity and 

cellular defence related genes in hearts of PPARα-/- mice compared to wildtype 

mice [28, 29]. Many of those genes are regulated via NF-κB, pointing towards 

transrepression by PPARα. This anti-inflammatory effect of PPARα may be 

especially relevant in the context of cardiac hypertrophy, which is characterized 

by induction of inflammatory pathways. 

 In conclusion, our study provides the first comprehensive analysis of the 

acute effects of dietary fatty acids on gene expression in the heart. The data 

demonstrate the importance of PPARα in mediating gene regulation by dietary 

fatty acids in the heart.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Detailed transcriptomics analysis of the effect of dietary fatty acids on gene 

expression in the heart 

67 

 

Sources of Funding 

This study was supported by the Nutrigenomics Consortium, TI Food and Nutrition, 

Marie Curie Research Training Network NucSys, and the Netherlands Heart Foundation 

(2007B046). 

References 

1. Ali F, Ali NS, Bauer A, Boyle JJ, Hamdulay SS, Haskard DO, Randi AM, and Mason 

JC. PPARβ/δ and PGC1alpha act cooperatively to induce heme oxygenase-1 and 

enhance vascular endothelial cell resistance to stress. Cardiovasc Res 85: 701-710, 

2010. 

2. Alonzo ES, and Sant'Angelo DB. Development of PLZF-expressing innate T cells. 

Curr Opin Immunol 23: 220-227, 2011. 

3. Augustus AS, Kako Y, Yagyu H, and Goldberg IJ. Routes of FA delivery to cardiac 

muscle: modulation of lipoprotein lipolysis alters uptake of TG-derived FA. Am J 

Physiol Endocrinol Metab 284: E331-339, 2003. 

4. Banke NH, Wende AR, Leone TC, O'Donnell JM, Abel ED, Kelly DP, and 

Lewandowski ED. Preferential oxidation of triacylglyceride-derived fatty acids in 

heart is augmented by the nuclear receptor PPARα. Circ Res 107: 233-241, 2010. 

5. Brandt JM, Djouadi F, and Kelly DP. Fatty acids activate transcription of the muscle 

carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome 

proliferator-activated receptor alpha. J Biol Chem 273: 23786-23792, 1998. 

6. Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, Shoghi 

K, Welch MJ, and Kelly DP. Nuclear receptors PPARbeta/delta and PPARα direct 

distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117: 3930-

3939, 2007. 

7. Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, Turk J, 

and Semenkovich CF. "New" hepatic fat activates PPARα to maintain glucose, lipid, 

and cholesterol homeostasis. Cell Metab 1: 309-322, 2005. 

8. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, 

Speed TP, Akil H, Watson SJ, and Meng F. Evolving gene/transcript definitions 

significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33: e175, 

2005. 

9. Duncan JG, Bharadwaj KG, Fong JL, Mitra R, Sambandam N, Courtois MR, Lavine 

KJ, Goldberg IJ, and Kelly DP. Rescue of cardiomyopathy in peroxisome 

proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein 



Chapter 3: Detailed transcriptomics analysis of the effect of dietary fatty acids on gene 

expression in the heart 

68 

lipase identifies sources of cardiac lipids and peroxisome proliferator-activated 

receptor-alpha activators. Circulation 121: 426-435, 2010. 

10. Durgan DJ, Smith JK, Hotze MA, Egbejimi O, Cuthbert KD, Zaha VG, Dyck JR, 

Abel ED, and Young ME. Distinct transcriptional regulation of long-chain acyl-CoA 

synthetase isoforms and cytosolic thioesterase 1 in the rodent heart by fatty acids 

and insulin. Am J Physiol Heart Circ Physiol 290: H2480-2497, 2006. 

11. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross 

RW, Kozak R, Lopaschuk GD, and Kelly DP. The cardiac phenotype induced by 

PPARα overexpression mimics that caused by diabetes mellitus. J Clin Invest 109: 

121-130, 2002. 

12. Forman BM, Chen J, and Evans RM. Hypolipidemic drugs, polyunsaturated fatty 

acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors 

alpha and delta. Proc Natl Acad Sci U S A 94: 4312-4317, 1997. 

13. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, 

Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, 

Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, 

Yang JY, and Zhang J. Bioconductor: open software development for computational 

biology and bioinformatics. Genome Biol 5: R80, 2004. 

14. Georgiadi A, Lichtenstein L, Degenhardt T, Boekschoten MV, van Bilsen M, 

Desvergne B, Muller M, and Kersten S. Induction of cardiac Angptl4 by dietary 

fatty acids is mediated by peroxisome proliferator-activated receptor beta/delta and 

protects against fatty acid-induced oxidative stress. Circ Res 106: 1712-1721, 2010. 

15. Groeger AL, Cipollina C, Cole MP, Woodcock SR, Bonacci G, Rudolph TK, 

Rudolph V, Freeman BA, and Schopfer FJ. Cyclooxygenase-2 generates anti-

inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 6: 433-441, 2010. 

16. Kersten S, Desvergne B, and Wahli W. Roles of PPARs in health and disease. 

Nature 405: 421-424, 2000. 

17. Kitteringham NR, Abdullah A, Walsh J, Randle L, Jenkins RE, Sison R, Goldring 

CE, Powell H, Sanderson C, Williams S, Higgins L, Yamamoto M, Hayes J, and 

Park BK. Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular 

defence and lipid metabolism as primary Nrf2-dependent pathways in the liver. J 

Proteomics 73: 1612-1631, 2010. 

18. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand 

P, Wahli W, Willson TM, Lenhard JM, and Lehmann JM. Fatty acids and 

eicosanoids regulate gene expression through direct interactions with peroxisome 

proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 94: 

4318-4323, 1997. 

19. Krey G, Braissant O, L'Horset F, Kalkhoven E, Perroud M, Parker MG, and Wahli 

W. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of 



Chapter 3: Detailed transcriptomics analysis of the effect of dietary fatty acids on gene 

expression in the heart 

69 

peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand 

assay. Mol Endocrinol 11: 779-791, 1997. 

20. Kronke G, Kadl A, Ikonomu E, Bluml S, Furnkranz A, Sarembock IJ, Bochkov VN, 

Exner M, Binder BR, and Leitinger N. Expression of heme oxygenase-1 in human 

vascular cells is regulated by peroxisome proliferator-activated receptors. 

Arterioscler Thromb Vasc Biol 27: 1276-1282, 2007. 

21. Lin H, Yu CH, Jen CY, Cheng CF, Chou Y, Chang CC, and Juan SH. Adiponectin-

mediated heme oxygenase-1 induction protects against iron-induced liver injury via 

a PPARα dependent mechanism. Am J Pathol 177: 1697-1709, 2010. 

22. Lockridge JB, Sailors ML, Durgan DJ, Egbejimi O, Jeong WJ, Bray MS, Stanley 

WC, and Young ME. Bioinformatic profiling of the transcriptional response of adult 

rat cardiomyocytes to distinct fatty acids. J Lipid Res 49: 1395-1408, 2008. 

23. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, and Stanley WC. Myocardial 

fatty acid metabolism in health and disease. Physiol Rev 90: 207-258, 2010. 

24. Park TS, Yamashita H, Blaner WS, and Goldberg IJ. Lipids in the heart: a source of 

fuel and a source of toxins. Curr Opin Lipidol 18: 277-282, 2007. 

25. Sampath H, and Ntambi JM. Polyunsaturated fatty acid regulation of genes of lipid 

metabolism. Annu Rev Nutr 25: 317-340, 2005. 

26. Sanderson LM, de Groot PJ, Hooiveld GJ, Koppen A, Kalkhoven E, Muller M, and 

Kersten S. Effect of synthetic dietary triglycerides: a novel research paradigm for 

nutrigenomics. PLoS ONE 3: e1681, 2008. 

27. Sanderson LM, Degenhardt T, Koppen A, Kalkhoven E, Desvergne B, Muller M, 

and Kersten S. Peroxisome proliferator-activated receptor beta/delta 

(PPARbeta/delta) but not PPARα serves as a plasma free fatty acid sensor in liver. 

Mol Cell Biol 29: 6257-6267, 2009. 

28. Smeets PJ, de Vogel-van den Bosch HM, Willemsen PH, Stassen AP, Ayoubi T, 

Van der Vusse GJ, and van Bilsen M. Transcriptomic analysis of PPAR{alpha}-

dependent alterations during cardiac hypertrophy. Physiol Genomics 2008. 

29. Smeets PJ, Teunissen BE, Planavila A, de Vogel-van den Bosch H, Willemsen PH, 

van der Vusse GJ, and van Bilsen M. Inflammatory Pathways Are Activated during 

Cardiomyocyte Hypertrophy and Attenuated by Peroxisome Proliferator-activated 

Receptors PPAR{alpha} and PPAR{delta}. J Biol Chem 283: 29109-29118, 2008. 

30. Smyth GK. Linear models and empirical bayes methods for assessing differential 

expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3, 2004. 

31. Teusink B, Voshol PJ, Dahlmans VE, Rensen PC, Pijl H, Romijn JA, and Havekes 

LM. Contribution of fatty acids released from lipolysis of plasma triglycerides to 

total plasma fatty acid flux and tissue-specific fatty acid uptake. Diabetes 52: 614-

620, 2003. 



Chapter 3: Detailed transcriptomics analysis of the effect of dietary fatty acids on gene 

expression in the heart 

70 

32. van der Lee KA, Vork MM, De Vries JE, Willemsen PH, Glatz JF, Reneman RS, 

Van der Vusse GJ, and Van Bilsen M. Long-chain fatty acid-induced changes in 

gene expression in neonatal cardiac myocytes. J Lipid Res 41: 41-47, 2000. 

33. Van der Lee KA, Willemsen PH, Samec S, Seydoux J, Dulloo AG, Pelsers MM, 

Glatz JF, Van der Vusse GJ, and Van Bilsen M. Fasting-induced changes in the 

expression of genes controlling substrate metabolism in the rat heart. J Lipid Res 42: 

1752-1758, 2001. 

34. Van Der Lee KA, Willemsen PH, Van Der Vusse GJ, and Van Bilsen M. Effects of 

fatty acids on uncoupling protein-2 expression in the rat heart. FASEB J 14: 495-

502, 2000. 

35. van der Meer RW, Hammer S, Smit JW, Frolich M, Bax JJ, Diamant M, Rijzewijk 

LJ, de Roos A, Romijn JA, and Lamb HJ. Short-term caloric restriction induces 

accumulation of myocardial triglycerides and decreases left ventricular diastolic 

function in healthy subjects. Diabetes 56: 2849-2853, 2007. 

36. Wu Z, Irizarry R, Gentleman R, Martinez-Murillo F, and Spencer F. A Model-Based 

Background Adjustment for Oligonucleotide Expression Arrays. Journal of the 

American Statistical Association 99: 909–917, 2004. 

37. Ziouzenkova O, Perrey S, Asatryan L, Hwang J, MacNaul KL, Moller DE, Rader 

DJ, Sevanian A, Zechner R, Hoefler G, and Plutzky J. Lipolysis of triglyceride-rich 

lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for 

lipoprotein lipase. Proc Natl Acad Sci U S A 100: 2730-2735, 2003. 

  

 

 

 

 

 

 

 

 

 

 



Chapter 3: Detailed transcriptomics analysis of the effect of dietary fatty acids on gene 

expression in the heart 

71 

APPENDIX 

Appendix Table1: Table of genes altered by PPARα deletion or by Wy14643 and 

they are related to energy metabolism  
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Appendix Table2: Table of genes altered by PPARα deletion or by Wy14643 and 

they are related to inflammation and immunity 
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Appendix Figure 1: Correlation plot of PPARα dependent genes and PPARα 

independent genes, showing correlation in gene expression between individual 

mice. Signal log ratios were calculated between intensity values for individual animals 

and the mean intensity value of the control group. Signal log ratios of genes 

significantly regulated by at least one treatment were used as input for a correlation plot. 

Red indicates high correlation, blue indicates weak correlation. 
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Abstract 

Although dietary fatty acids are a major fuel for the heart, little is known about 

the direct effects of dietary fatty acids on gene regulation in the intact heart. 

Objective: To study the effect of dietary fatty acids on cardiac gene expression 

and explore the functional consequences. Methods and Results: Oral 

administration of synthetic triglycerides composed of one single fatty acid 

altered cardiac expression of numerous genes, many of which are involved in 

the oxidative stress response. The gene most significantly and consistently 

upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)-4, 

a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. 

Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished 

in peroxisome proliferator-activated receptor (PPAR)β/δ
−/−

 and not PPARα
−/−

 

mice and was blunted on siRNA-mediated PPARβ/δ knockdown in cultured 

cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of 

PPARβ/δ but not PPARα to the Angptl4 gene. Upregulation of Angptl4 resulted 

in decreased cardiac uptake of plasma triglyceride-derived fatty acids and 

decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, 

Angptl4 deletion led to enhanced oxidative stress in the heart, both after an 

acute oral fat load and after prolonged high fat feeding. Conclusions: 

Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via 

PPARβ/δ is part of a feedback mechanism aimed at protecting the heart against 

lipid overload and consequently fatty acid–induced oxidative stress. 
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Introduction  

 Cardiac contractility is dependent on the adequate delivery of oxygen and 

energy substrates to the heart followed by their efficient metabolic degradation 

to yield ATP. The energy requirements of the contracting heart are primarily 

met by fatty acid oxidation, with the remainder of energy coming from glucose 

and lactate [1,2]. Although fatty acids are thus of major importance to the heart, 

excessive uptake of fatty acids causes lipid overload or lipotoxicity and may 

compromise cardiac function, possibly leading to cardiomyopathy [3]. 

Consequently, cardiac uptake of fatty acids needs to be well adjusted to fatty 

acid utilization. Because most of the fatty acids taken up by the heart are 

derived from lipoprotein lipase (LPL)-dependent hydrolysis of circulating 

triglyceride-rich lipoproteins [4] the activity of LPL needs to be carefully 

regulated via specific activators and inhibitors, especially after a fatty meal. 

 Besides serving as a major fuel for the heart and a potential lipotoxic 

substrate, fatty acids are able to regulate gene expression [5]. In vitro 

experiments in rat cardiomyocytes have shown that fatty acids increase 

expression of uncoupling protein 2, carnitine palmitoyltransferase 1, fatty acid 

transporter Cd36, fatty acid binding protein 3, acyl-coenzyme (Co)A synthetase 

long-chain family member 1, acyl-CoA thioesterase, and long chain acyl-CoA 

dehydrogenase [6–9]. As these genes all represent target genes of peroxisome 

proliferator-activated receptor (PPAR)α [10,11] they suggest an important role 

of PPARα in fatty acid-dependent gene regulation in the heart [12]. However, 

little is known about the direct effects of dietary fatty acids on gene expression 

in the intact heart. In addition, it is unclear what pathways are activated by fatty 

acids besides their own catabolism. 

 Here we studied the comprehensive effects of dietary fatty acids on cardiac 

gene expression in vivo by giving mice a single oral bolus of synthetic 

triglyceride composed entirely of one single fatty acid, which were either 

linolenic acid (C18:3), linoleic acid (C18:2) or oleic acid (C18:1). Subsequent 

microarrays analysis yielded Angptl4 as the gene most highly induced in the 

heart after oral fat administration. The collective data suggest that induction of 

Angptl4 by dietary fatty acids is mediated by PPARβ/δ and is part of a feedback 

mechanism aimed at protecting cardiomyocytes against lipid overload and 

consequently fatty acid–induced oxidative stress, eg, lipotoxicity. 

 



Chapter 4: Induction of cardiac Angptl4 by dietary fatty acids is mediated by PPARβ/δ 

and protects against fatty acid induced oxidative stress 

80 

Methods 

Materials: GW501516 was purchased from Alexis (Axxora, Raamsdonkveer, 

The Netherlands). Wy14643 was obtained from Eagle Picher Technologies 

laboratories (Lenexa, Kan). Trilinolein (9c,12c) and trilinolein (9c,12c,15c) 

were from Larodan Free Chemicals (Malmo, Sweden). SYBR green was from 

Eurogentec (Seraing, Belgium), and all other chemicals were from Sigma 

(Zwijndrecht, The Netherlands).  

Animals: Pure-bred Sv129 PPARα−/− mice (129S4/SvJae) and corresponding 

wild-type mice (129S1/SvImJ) were purchased from Jackson Laboratory (Bar 

Harbor, Maine). The Angptl4−/− and transgenic mice were on C57Bl/6 

background and have been previously described [13,14]. The PPARβ/δ−/− mice 

were on a mixed background (Sv129/C57Bl/6) and have been previously 

described [15]. Males mice were used at 2.5 to 4 months of age. Mice were 

anesthetized with a mixture of isoflurane (1,5%), nitrous oxide (70%), and 

oxygen (30%). Blood was collected via orbital puncture into EDTA tubes. After 

euthanasia, the hearts were excised and stored in −80°C. The animal studies 

were approved by Animal Ethics Committee of Wageningen University and the 

University of Lausanne, Switzerland.  

Oral Lipid Load: Starting at 5:00 am, the animals were fasted for 4 hours, 

followed by an intragastric gavage of 400 μL of synthetic triglyceride (triolein, 

trilinolein, and trilinolein). The control group received only 

carboxymethylcellulose (CMC). The mice were killed 6 hours thereafter. Four 

to 5 mice per group were used.  

High-Fat Diet: Angptl4-/-, +/+, and transgenic mice on C57Bl/6 background 

received a low-fat diet (LFD) or high-fat diet (HFD) for 8 weeks, providing 10 

or 45 energy percent in the form of triglycerides, respectively (D12450B or 

D12451, Research Diets, New Brunswick). The major source of fat in the diet 

was palm oil, with 5 energy percent provided as soybean oil.  

Cell Culture: Neonatal cardiomyocytes were isolated and cultured as described 

using differential plating to separate myocytes from nonmyocytes [16]. The 

experiments were approved by the Animal Ethics Committee of Maastricht 
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University. Neonatal cardiomyocytes were incubated with 1 μmol/L GW501516 

or 62.5 μmol/L, 125 μmol/L, or 250 μmol/L linolenic for 6 hours as previously 

described [17]. In a second experiment, cardiomyocytes were incubated with 1 

μmol/L GW501516, 10 μmol/L Wy14643, or 250 μmol/L linolenic acid for 24 

hours.  

Plasma Lipid Parameters: Plasma was obtained from blood by centrifugation 

for 10 minutes at 10,000 g. The plasma free fatty acids and triglyceride 

concentration were determined using kits from Instruchemie (Delfzijl, The 

Netherlands).  

RNA isolation and qRT-PCR: Total RNA was isolated with TRIzol Reagent 

(Invitrogen, Breda, the Netherlands). 1μg of total RNA for the in vivo studies 

and 350ng of total RNA for the in vitro experiment was reverse transcribed 

using iScript (Bio-Rad, Veenendaal, the Netherlands). cDNA was amplified on 

BioRad MyIQ or iCycler machine using Platinum Taq polymerase (Invitrogen, 

Breda, the Netherlands). PCR primer sequences were taken from the 

PrimerBank and ordered from Eurogentec (Seraing, Belgium). Sequences of the 

primers used are presented on Table I. To compare expression of the three 

PPAR isotypes in adult mouse heart and in rat neonatal cardiomyocytes, 

primers were used that yielded amplicons of equal length. A standard curve was 

included to confirm an amplification efficiency of 100%±2 for all PPARs and 

for the 18S control gene. PPAR expression was calculated as 1/(2^(CtPPAR-

Ct18S)), allowing for direct comparison between the PPAR isotypes (Appendix 

Figure 3) 
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Chromatin immunoprecipitation assay (ChIP): Wildtype C57Bl/6 mice were 

fasted for 4 hours followed by an oral gavage of Trilinolenin (n=3). Six hours 

thereafter the mice were killed by cervical dislocation and the hearts excised. 

The fresh hearts were cut into half and placed into PBS containing 1% 

formaldehyde. Crosslinking was stopped after 15 min by adding glycine to a 

final concentration of 0.125M for 5 min at room temperature. The samples were 

centrifuged for 5 min at 700 g at 4 °C to collect the heart pieces, the supernatant 

was removed and washed once again with ice-cold PBS. Fresh PBS containing 

protease inhibitors (Roche, Almere, Netherlands) was added and the tissue was 

disaggregated with a homogenizer Ultra Turrax T25 basic (Ika Werke, Staufen, 

Germany). The tissue was distributed into 3 tubes (2 mL each), centrifuged for 

5 min at 700 g at 4°C. After the supernatant was removed, heart homogenate 

was resuspended in lysis buffer (1% SDS, 10mM EDTA, 50mM Tris-HCl pH 

8.1, protease inhibitors) and the lysates were sonicated with a Bioruptor TM 

(Diagenode, Liège, Belgium) to achieve a DNA length of 300- 800 bp. After 

removal of cellular debris by centrifugation, supernatants were diluted 1:10 in 

ChIP dilution buffer (150mM NaCl, 1% Triton X-100, 2mM EDTA, 20 mM 

Tris-HCl pH 7.5, protease inhibitors). Chromatin was incubated overnight at 

4oC with 2μg antibody, 25μl BSA (100 mg/ml) and 2.4μl sonicated salmon 

sperm (10 mg/ml). The following antibodies were used: anti-PPARα (sc-9000), 

and anti-PPARβ/δ (sc-7197). All were obtained by Santa Cruz Biotechnologies 

(Heidelberg, Germany). Immunocomplexes were collected with 25μl 

MagaCell® Protein A Magnetic beads (Isogen Life Science) for 1hour at room 

temperature, and subsequently washed with 700μL of the following buffers: 

ChIP was buffer 1 (150 mM NaCl, 1% Triton X-100, 2 mM EDTA, 20 mM 

Tris-HCl pH 8, protease inhibitors) two times, ChIP wash buffer 2 (500mM 

NaCl, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8, protease 

inhibitors), ChIP wash buffer 3 (250 mM LiCi, 1% NP40, 1% Deoxycholate, 

1mM EDTA, 10 mM Tris-HCl pH 8), two times TE buffer (1 mM EDTA, 10 

mM Tris-HCl pH 8). Elution of immucomplexes were carried out in 250μL 

elution buffer (10 mM EDTA, 0.5% SDS, 25mM Tris-HCl pH 7.5) at 64oC for 

30 min. After collection of supernatant, elution was repeated with 250μl elution 

buffer at room temperature for 2 min. After combining the supernatants, cross-

linking was reversed at 64oC overnight with 2.5μl Proteinase K (20 mg/ml) for 

digestion of any remaining proteins. Genomic DNA fragments were recovered 

by phenol-chloroform extraction with phase lock gel (Eppendorf, Wesseling-
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Berzdorf, Germany), followed by salt-ethanol precipitation. Samples were 

diluted in sterile H2O, and analyzed with qPCR. The ChIP data are normalized 

against IgG to account for non-specific immunoprecipitation. A fold-enrichment 

value of 1 represents baseline thus no enrichment and no specific precipitation. 

Primers were chosen to study binding of PPARs to the transcriptional start site 

of the Angptl4 and Ucp3 genes, and to the previously identified PPRE within 

intron 3 of the Angptl4 gene. The ribosomal phosphoprotein P0 (Rplp0) was 

used as negative control for PPAR binding. The sequences of primers used in 

ChIP were as follows: Ucp3-TSS:(For:5’-GAGCCCCAGGTCACGGAAG-

3’,Rev:5’CTGTGCGTCTAGCCAAGGTTG-3’), 

Angptl4-TSS:(For:5’CCAGCAAGTTCATCTCGTCC-3’, 

Rev:5’TCCCTCCCACTCCCACACC-3’),  

Angptl4:PPRE:(For:5’TCTGGGTCTGCCCCCACTCCTGG-3’ 

,Rev:5’GTGTGTGTGTGGGATACGGCTAT-3’),Rplp0(For:5’–

CGAGGACCGCCTGGTTCTC-3’,Rev:5’–GTCACTGGGGAGAGAGAGG- 

3’). 

In Vivo Clearance of very low density lipoprotein (VLDL)-Like Emulsion 

Particles: Tissue uptake of [
3
H]-labeled TG packaged into VLDL-like emulsion 

particles was measured as previously described [21]. The data shown represent 

the percentage of injected radioactivity taken up by the heart after 30 min 

Immunohistochemistry : Deep frozen tissues (-80ºC) were cryosectioned 

(5μm) with a cryostat (Leica, CM1900 UV). Immunostaining of protein adducts 

of the lipid peroxidation byproduct 4-hydroxy-2-nonenal (4-HNE) was 

performed on freshly cut frozen sections using a rabbit polyclonal antibody 

(Calbiochem, San Diego, CA, USA). All steps were carried out at room 

temperature. The tissue was fixed in 70% ethanol for 3 min and then rinsed in 

PBS 1X for 3 min. To block endogenous peroxidase activity, slides were 

incubated with 3% H2O2 for 10 min. Incubation with the primary antibody 

(rabbit anti 4-HNE protein-adducts, 1:50 dilution in PBS 1X) was performed for 

1h. After rinsing with PBS 1X, tissue was incubated for 45 min with the 

secondary antibody (Dako EnVision+® System Labelled Polymer-HRP 
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AntiRabbit). Visualization of the complex was carried out using AEC substrate 

chromogen (Dako Cytomation) for 15 minutes. Sections were mounted with 

Kaiser’s glycerol gelatin mounting medium (Merck KGaA, Darmstadt, 

Germany). Normal rabbit serum was used as a negative control (Vector 

Laboratories). Immunostaining of Angptl4 in human heart was performed using 

an antibody directed against the C-terminus of Angptl4. Five-micrometer 

sections of paraffin-embedded human heart were mounted on Superfrost 

microscope slides. These sections were dewaxed in xylene and rehydrated in a 

series of graded alcohols. To block endogenous peroxidase activity, slides were 

incubated with 3% H2O2 for 20 min. Antigen retrieval was performed by 

placing the slides in citrate buffer (pH 6.0) and heat them in a microwave oven 

5 min 700 W (without lid) and 4 times 5 min 500 W (with lid). After cooling 

down to room temperature, the sections were briefly washed with PBS. Prior to 

staining, a 20 min preincubation was performed using 20% normal goat serum 

(Vector Laboratories, Burlingame, CA, USA). Incubation with the primary 

antibody (1:50) was performed for 1h. After rinsing with PBS 1X, tissue was 

incubated for 45 min with the secondary antibody (Dako EnVision+® System 

Labelled Polymer-HRP AntiRabbit). Visualization of the complex was carried 

out using AEC substrate chromogen (Dako Cytomation) for 15 minutes. After 

counterstaining with Meyer’s hematoxylin, sections were mounted with DePex 

mounting medium (Gurr, BDH, Poole, Dorset, UK). Negative control staining 

was performed using only the secondary antibody. 

Tissue homigenization and quantification of oxidative stress: The extent of 

lipid peroxidation in heart homogenates was determined by measuring the levels 

of hydroxynonenal-histidine (HNE-His) protein adducts and malondialdehyde 

(MDA) adducts. 25mg of heart tissue were homogenized in 250μL of tissue 

homogenation buffer (1mM EDTA, PBS 1X pH 7.4 containing protease 

inhibitors). Heart tissue was homogenized over ice by needle sonication for 

15sec at 40V. Heart homogenates were centrifuged at 1600xg for 10min at 4ºC. 

Protein content was determined in tissue supernatants by BCA Protein assay 

reagent. Starting from a protein concentration of 10 μg/mL 4-HNE-His protein 

adducts and MDA adducts content were quantified using the Oxiselect HNE-

His Adduct ELISA kit (Cell Biolabs Inc., San Diego, USA) and MDA Adduct 

ELISA kit (Cell Biolabs Inc.), respectively. The quantity of HNE-His protein 

adducts was determined by using a standard curve containing known amounts 
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of HNE-BSA (0-10μg/ml). For the quantification of MDA adducts a standard 

curve of known amounts of MDA-BSA (0-120pmol/mg) was used. 

Tissue triglyceride content: Triglycerides content was measured in tissue 

homogenates with Triglyceride LiquiColor® Test (Mono) HUMAN GmbH, kit 

(Instruchemie, Delfzijl, The Netherlands). 5% tissue homogenates were 

prepared by needle sonication over ice in tissue homogenization buffer 

consisting of 10mM Tris, 2mM EDTA, 0.25M sucrose pH 7.5. 

Table 1: Primer Sequences used for QPCR 

 

Affymetrix microarray and pathway analysis: Expression profiling was 

carried out on individual mouse hearts. Total RNA (5 mg) was labeled using the 

Affymetrix One-cycle Target Labeling Assay kit (Affymetrix, Santa Clara, CA). 

The correspondingly labeled RNA samples were hybridized on Affymetrix 

Mouse Genome 430 2.0 Arrays, washed, stained and scanned on an Affymetrix 

GeneChip 3000 7G scanner. Packages from the Bioconductor project, integrated 

in an in-house developed on-line management and analysis database for 

multiplatform microarray experiments, were used for analyzing the scanned 

arrays [54]. Probesets were redefined according to Dai et al. as the genome 

information utilized by Affymetrix at the time of designing the arrays is not 
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current anymore, resulting in unreliable reconstruction of expression levels [55]. 

In this study probes were reorganized based on the Entrez Gene database, build 

36, version 2 (remapped CDF v10). Expression estimates were obtained by GC-

robust multi-array (GCRMA) analysis, employing the empirical Bayes approach 

for background adjustment, followed by quantile normalization and 

summarization. Differentially expressed probesets were identified using linear 

models, applying moderated t-statistics that implement empirical Bayes 

regularisation of standard errors [56]. A probeset was found to be significantly 

changed after treatment if p<0.05. For the pathway analysis ingenuity software 

version 6.5 was used. 

siRNA-mediated silencing of PPARα and PPARβ/δ in H9c2 

cardiomyocytes: H9c2 cardiomyoblasts at passage number 18 were seeded at a 

density of 40000 cells/well in 6-well plates and subsequently grown for 24h in 

DMEM, antibiotic-free medium containing 10% FCS. After 24h, cells were 

transfected for 72h with siRNA molecule (100pmol/ml) according to the 

DharmaFECT 1 siRNA Transfection Protocol Thermo Scientific for H9c2. The 

siRNA oligos used were selected from a set of 4 individual sequences (ON-

TARGETplus Set of 4) designed by Dharmacon that we tested for efficient 

silencing of PPARα and PPARβ/δ expression in H9c2 cells. The final target 

sequence used for PPARα was 5’- UCACCGAGCUCACGGAAUU-3’ and for 

PPARβ/δ 5’-CAUGAGUUCUUGCGCAGUA- 3’. Transfection medium was 

replaced with DMEM, antibiotic-free medium containing 10% FCS 48h after 

the siRNA transfection. After 72h, linolenic acid (250 μM) was added for 6h, 

followed by harvesting of the cells. Cell viability was assessed with trypan blue 

and exceeded 80 % 
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Results 

Dietary Fatty Acids Have a Major Impact on Cardiac Gene 

Expression 

 To study the acute effects of dietary fatty acids on cardiac gene expression in 

vivo, SV129 mice were given a single oral gavage of synthetic TGs composed 

entirely of either C18:1, C18:2, or C18:3 [18], thus mimicking a postprandial 

lipid challenge. Animals receiving carboxymethylcellulose were used as control 

to study the absolute effect of dietary fatty acids. Expression profiling was 

carried out on individual mouse hearts collected 6 hours after the gavage using 

Affymetrix Mouse Genome 430 2.0 Arrays. Pathway analysis using Ingenuity 

revealed that the dominant pathway affected by the oral fat load was nuclear 

factor-like 2 (Nrf2)-related oxidative stress, indicating that the fatty acids 

induced oxidative stress (Appendix Figure 1). This was supported by 

examination of the top 20 of upregulated genes, most of which were involved in 

the oxidative stress response, including uncoupling protein 3 (Ucp3), heme 

oxygenase 1 (Hmox1), FK506 binding protein 5 (Fkbp5), lipocalin 2 (Lcn2), 

glutathione S-transferase A3 (Gsta3), and metallothionein 2 (Mt2) (Figure 1). A 

large correspondence in gene regulation between the fatty acids was observed, 

especially between C18:2 and C18:3. Indeed, scatter plot analysis indicated that 

the effects of C18:2 and C18:3 on cardiac gene expression were remarkably 

similar, whereas effects of C18:1 were somewhat different (Appendix Figure 2). 

Therefore, the remainder of the present article focuses on effects of C18:3. 

 Apart from genes involved in the oxidative stress response, various genes 

involved in lipid metabolism were also induced by the fatty acids. Interestingly, 

the gene most significantly and consistently upregulated by each of the dietary 

fatty acids was Angptl4 (Figure 1), which encodes a secreted protein involved 

in the regulation of plasma triglyceride levels. Previous studies have shown that 

Angptl4 potently inhibits LPL and accordingly plasma triglyceride clearance by 

converting active LPL-dimers into inactive LPL-monomers [19–21]. 

 Although Angptl4 is known to be expressed in heart [22,23] the specific 

cardiac cell types that produce Angptl4 remain unclear. Accordingly, we 

performed immunohistological staining of Angptl4 in human heart samples. 

The results reveal the presence of Angptl4 protein in cardiomyocytes and 

vascular smooth muscle cells but not endothelial cells and fibroblasts (Figure 
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2A). Significant production of Angptl4 by cardiomyocytes was confirmed by 

the relatively low Ct values for amplification of Angptl4 cDNA from rat 

cardiomyocytes (Ct 22 to 23, data not shown). 

 

 

Figure 1: Cardiac Angptl4 expression is highly sensitive to dietary fatty acids. Top 

20 of genes upregulated after oral gavage of synthetic triglyceride composed of either 
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linolenic acid (C18:3), linoleic acid (C18:2), or oleic acid (C18:1). The heat maps were 

generated directly from the GCRMA normalized microarray data. Genes are ranked 

according to mean fold change with wild-type mice receiving CMC serving as control. 

Only probe sets showing significant upregulation by the different fatty acids were 

included in the analysis (P<0.05).  

 

 

Figure 2: Angptl4 protein localizes specifically to the cardiomyocytes and not to 

endothelial cells. A. High-magnification image (×200) of the human heart tissue 

stained with an antibody against Angptl4 (bottom) or negative control (top). Arrows 
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point to endothelial cells (EC), vascular smooth muscle cells (VSM), and 

cardiomyocytes (CM). (Inset) The antibody used specifically recognizes human 

Angptl4. HEK293 cells were transfected with an expression vector encoding hAngptl4 

and the medium was collected and used for immunoblotting. The protein recognizes the 

C-terminal portion of Angptl4 generated by endogenous proteolytic cleavage. B. mRNA 

expression of the 3 PPARs in adult mouse heart and rat neonatal cardiomyocytes as 

determined by quantitative PCR. Error bars represent SEM. A standard curve was 

included to confirm an amplification efficiency of 100±2% for all PPARs (Appendix 

Figure 3). PPAR expression was calculated as 1/[−2^(CtPPAR−Ct18S)], allowing for 

direct comparison between the PPAR isotypes.  

 

Regulation of Angptl4 by Dietary PUFA Is Entirely Mediated by 

PPARβ/δ 

 Long-chain fatty acids are bona fide ligands for PPARs. The previous 

demonstration that Angptl4 is a direct PPAR target gene prompted us to 

investigate the role of PPARs in Angptl4 gene regulation by dietary fatty acids. 

We first determined the relative expression of PPARs in mouse heart. All three 

PPAR isotypes were well expressed in heart, with expression of PPARγ and 

PPARβ/δ being ≈50% of PPARα (Figure 2B). In cultured neonatal rat 

cardiomyocytes, expression of PPARγ was markedly lower compared to both 

PPARα and PPARβ/δ (Figure 2B). Because PPARγ appears to be rather 

insensitive to (dietary) fatty acids, [24] we focused our studies on PPARα and 

PPARβ/δ. PPARα−/− mice, PPARβ/δ−/− mice, and the corresponding wild-type 

mice were given an oral gavage of C18:3 as synthetic TG. Hearts were collected 

6 hours thereafter for analysis of gene expression by quantitative PCR. 

Remarkably, upregulation of Angptl4 by C18:3 was entirely abolished in the 

PPARβ/δ−/− mice, whereas it was retained in the PPARα−/− mice (Figure 3A). 

In contrast, upregulation of Ucp3, another well-characterized PPAR target gene, 

was retained in PPARβ/δ−/− mice and completely abolished in PPARα−/− mice 

(Figure 3B). No compensatory increase in PPARβ/δ and PPARα expression was 

observed in PPARα−/− and PPARβ/δ−/− mice, respectively (Appendix Figure 

4) 
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 To examine whether regulation of Angptl4 by PPARβ/δ and not PPARα was 

supported by binding of PPARβ/δ to the Angptl4 gene, we performed chromatin 

immunoprecipitation (ChIP). Previously, we located the response element 

responsible for PPAR-mediated upregulation to intron 3 of the Angptl4 gene 

[25]. Consistent with data on Angptl4 gene regulation, ChIP on hearts of wild-

type mice six hours after oral gavage of C18:3 showed enhanced binding of 

PPARβ/δ but not PPARα to the intronic PPRE (Figure 3C). 

 Nuclear receptors and other transcription factors bound to such distal sites 

likely contact the basal transcription machinery via DNA looping, and 

accordingly binding of PPAR to distant PPREs can be demonstrated by showing 

cross-linking of PPAR to the transcriptional start site (TSS) [26,27]. Indeed, 

oral gavage of C18:3 enhanced binding of PPARβ/δ but not PPARα to TSS of 

the Angptl4 gene (Figure 3D), whereas C18:3 enhanced binding of PPARα but 

not PPARβ/δ to the TSS of the Ucp3 gene (Figure 3E). No binding of either 

PPARα or PPARβ/δ to the negative control gene Rplp0 was observed (Figure 

3F). These results demonstrate that the induction of cardiac Angptl4 gene 

expression by dietary C18:3 is mediated by PPARβ/δ. 

 The fatty acid- and PPARβ/δ-mediated induction of cardiac Angptl4 

expression likely occurred in cardiomyocytes, as treatment of rat neonatal 

cardiomyocytes for 6 hours with C18:3 dose-dependently increased Angptl4 

mRNA, which at the highest concentration was equivalent to that obtained 

using GW501516 (Figure 3G). To further investigate the specific role of 

PPARβ/δ in Angptl4 upregulation by fatty acids in cardiomyocytes, we 

knocked-down PPARα or PPARβ/δ in the cardiomyocyte cell line H9c2, which 

expresses both receptors, using siRNA and studied the effect on Angptl4 gene 

induction by C18:3 (Figure 3H). We observed that knock-down of PPARβ/δ 

almost entirely abolished the induction of Angptl4 gene expression by C18:3, 

whereas knock-down of PPARα had little to no effect (Figure 3I). 

 Our results do not imply that Angptl4 is an exclusive target gene of 

PPARβ/δ under any type of circumstances. Indeed, we find that in rat neonatal 

cardiomyocytes, Angptl4 is induced to a similar extent by synthetic PPARα and 

PPARβ/δ agonists, as are other cardiac PPAR targets such as Acsl1 and Acox1 

(Figure 3J). Instead, our data suggest that the stimulatory effect of dietary fatty 

acids on cardiac Angptl4 expression is mediated specifically by PPARβ/δ. 
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Figure 3: PPARβ/δ but not PPARα mediates the induction of Angtpl4 expression 

by dietary linolenic acid. Wild-type, PPARα−/−, and PPARβ/δ−/− mice were given a 

single oral gavage of 0.5% CMC (open bars) or synthetic triglycerides composed 

entirely of C18:3 (closed bars). mRNA expression levels of Angptl4 (A) and Ucp3 (B) 

were determined in mouse heart using real-time PCR. Results are expressed as fold 

change compared to the wild-type control mice. C through F, ChIP was performed on 

hearts of wild-type mice given an oral gavage of either CMC or C18:3. Chromatin was 

precipitated using antibodies against PPARα or PPARβ/δ. Rabbit IgG was used as a 

specificity control. Real-time quantitative PCR was performed on reverse–cross-linked 

chromatin templates using primers specific to the known PPRE in intron 3 of the 

Angptl4 gene (C), the TSS of Angptl4 (D), the TSS of Ucp3 (E), and the negative 

control gene RpLp0 (F). G, Angptl4 expression in rat neonatal cardiomyocytes 
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incubated with increasing concentrations of linolenic acid (0, 62.5, 125, and 250 

μmol/L) or GW501516 (1 μmol/L) for 6 hours. H. Expression of PPARα and PPARβ/δ 

in H9c2 cardiomyocytes transfected with siRNA against PPARα and PPARβ/δ. I. Fold 

induction of Angptl4 expression by 6 hours of linolenic acid treatment (250 μmol/L) in 

H9c2 cardiomyocytes transfected with siRNA against PPARα and PPARβ/δ. J. 

Expression of Angptl4 and known PPAR targets Acsl1 and Acox1 in rat neonatal 

cardiomyocytes incubated for 24 hours with linolenic acid (250 μmol/L), GW501516 (1 

μmol/L), or Wy14643 (10 μmol/L). Error bars represent SEM. Statistical significance 

was determined with a Student’s t test (P<0.05).  

 

Induction of Angptl4 Protects Against Fatty Acid–Induced Oxidative 

Stress 

 To study the effect of Angptl4 on the metabolic response to dietary fat, we 

performed the oral fat load with C18:3 triglyceride in wild-type, Angptl4−/− 

and Angptl4 transgenic (Angptl4-Tg) mice. In agreement with inhibition of LPL 

by Angptl4, the postprandial increase in plasma triglyceride was dramatically 

increased in Angptl4-Tg mice, whereas it was entirely blunted in Angptl4−/− 

mice (Figure 4A). Consistent with LPL inhibition, Angptl4 overexpression 

markedly reduced cardiac fatty acid uptake from [3H]triolein-labeled very-low-

density lipoprotein (VLDL)-like particles (Figure 4B). These results suggest 

that upregulation of Angptl4 by dietary fatty acids will lead to reduced cardiac 

uptake of fatty acids via inhibition of LPL, thereby suppressing the stimulus that 

led to induction of Angptl4 expression. 
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Figure 4: Angptl4 overexpression raises postprandial plasma triglyceride levels 

and decreases cardiac fatty acid uptake. A. Wild-type (gray squares), Angptl4−/− 

(open squares), and Angptl4-Tg (black squares) mice were given a single oral gavage of 

synthetic triglyceride (TG) composed entirely of C18:3. Plasma triglycerides were 

determined in blood collected via the tail vein. B. [3H]-labeled triolein was incorporated 

into VLDL-like emulsion particles and directly injected into the tail vein of wild-type 

and Angptl4-Tg mice. The heart was collected 30 minutes after the injection for 

determination of radioactivity. *Significantly different between wild-type and Angptl4-

Tg mice according to Student’s t test (P<0.05). Error bars represent SEM.  

 

 To examine whether the inhibitory effect of Angptl4 on cardiac fatty acid 

uptake is associated with reduced fatty acid-induced oxidative stress, expression 

of Fkbp5, Lcn2, and Gsta3 was determined 6 hours after oral gavage with either 

control treatment (CMC) or C18:3 triglyceride in wild-type, Angptl4−/− and 

Angptl4-Tg mice. All three genes represent markers of oxidative stress [28–30]. 

Consistent with a protective role of Angptl4 against fatty acid-induced oxidative 

stress, the magnitude of induction of Fkbp5, Lcn2, and Gsta3 by C18:3 was 

dependent on Angptl4 genotype and inversely correlated with Angptl4 

expression (Figure 5A and 5B). Expression of Fkbp5, Lcn2, and Gsta3 after the 

oral fat load was not related to plasma free fatty acid (FFA) levels, which 

followed an opposite pattern (Figure 5C). Expression of the endoplasmic 

reticulum stress marker Herpud1 mimicked the pattern of oxidative stress 

markers (Figure 5A). 
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Figure 5: Markers of oxidative stress are inversely correlated with Angptl4 

expression after oral fat load. Wild-type, Angptl4−/−, and Angptl4-Tg mice were 

given a single oral gavage of 0.5% CMC (open bars) or synthetic triglyceride composed 

entirely of C18:3 (closed bars). Mice were euthanized 6 hours later. A. mRNA 

expression levels of oxidative stress genes Fkbp5, Lcn2, and Gsta3 and endoplasmic 

reticulum stress marker gene Herpud1, as determined by real-time PCR. B. mRNA 

expression levels of Angptl4. C. Plasma levels of FFA and TG. Differences were 

evaluated statistically using two-way ANOVA. Significance (probability value) of 

effect of genotype (G), treatment (T), and interaction (I) between genotype and 

treatment is indicated in each graph. n.s. indicates non significant. Error bars represent 

SEM.  

 

 Finally, we examined whether Angptl4 may exert a similar effect in the 

context of a chronic fat overload. To that end, we measured expression of the 

oxidative stress markers and performed immunohistochemical and quantitative 

analysis of 4-HNE protein adducts in wild-type and Angptl4−/− mice fed a 

HFD for 8 weeks. 4-HNE is one of the major biologically active aldehydes 

formed during inflammation and oxidative stress. Formation of 4-HNE protein 

adducts is a marker for lipid peroxidation. 
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 Although high fat feeding did not influence expression levels of Fkbp5, 

Lcn2 and Gsta3, expression was significantly higher in Angptl4−/− mice fed 

HFD compared to wild-type mice fed HFD (Figure 6A). A similar tendency was 

observed for Herpud1. Furthermore, lipid peroxidation was increased in 

Angptl4−/− mice fed HFD, as shown by enhanced 4-HNE staining (Figure 6B). 

These results were supported by quantitative analysis of 4HNE protein adducts 

(Figure 6C) and MDA adducts (Figure 6D), which were significantly increased 

in Angptl4−/− mice fed HFD compared to wild-type mice fed HFD. These data 

indicate that Angptl4 protects against oxidative stress in the context of a chronic 

fat overload. No differences in cardiac triglyceride levels were observed 

between wild-type and Angptl4−/− mice (Figure 6E). 
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Figure 6: Angptl4 protects against oxidative stress in the context of chronic fat 

overload. A. Wild-type and Angptl4−/− mice were fed a LFD or HFD for 8 weeks. 

Expression levels of Fkbp5, Lcn2, Gsta3, and Herpud1 in the heart were measured by 

real-time PCR. Results are expressed as fold change compared to wild-type mice on 

LFD. B. Immunohistochemistry of 4-HNE protein adducts in mouse cardiac tissue from 

mice fed HFD for 8 weeks. Representative sections are shown. Magnification, ×400. 

Right, Negative control obtained using rabbit serum. Quantitative measurement of 

4HNE protein adducts (C) and MDA adducts (D). E. Cardiac triglyceride content. Gray 

bars indicate wild-type mice; black bars, Angptl4−/− mice. *Significantly different 

between wild-type and Angptl4−/− mice according to Student’s t test (P<0.05). Error 

bars represent SEM.  
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Discussion 

 In the present article we show that the gene most significantly and 

consistently upregulated by short term treatment with dietary fatty acids is 

Angptl4. Induction of Angptl4 by dietary fatty acids is mediated by PPARβ/δ 

and confers a protective effect against fatty acid-induced oxidative stress by 

restricting cardiac fatty acid uptake via inhibition of LPL. Overall, our data 

suggest that upregulation of Angptl4 by fatty acids is part of a feedback 

mechanism aimed at preventing myocardial fatty acid accumulation, thereby 

minimizing lipid-induced oxidative stress and lipotoxicity (Figure 7). Although 

our follow-up studies only included linolenic acid, the results are likely 

generalizable to other dietary fatty acids. 

 Lipotoxicity describes the untoward consequences of fat overload in a 

particular tissue and may be related to fatty acid-induced oxidative stress, 

accumulation of lipotoxic intermediates such as ceramides and fatty acyl-CoA, 

and excess storage of triglycerides [31]. Chronic lipotoxicity in the heart has 

been shown to promote cardiomyopathy in several animal models [12,32–34]. 

Most of these models are characterized by a mismatch between myocardial fatty 

acid uptake and utilization, as in mice with heart-specific overexpression of 

acyl-CoA synthetase, fatty acid transport protein 1, or lipoprotein lipase [32–

34]. Although triglycerides are unlikely to be the actual culprit in cardiac 

lipotoxicity, they may be guilty by association as its levels may be positively 

correlated with lipotoxic intermediates. However, we did not see increased 

cardiac triglyceride levels in Angptl4−/− mice compared to wild-type mice after 

8 weeks of high fat feeding, suggesting that the increase in fatty acid uptake is 

limited or that the incoming fatty acids are efficiently oxidized. In the present 

study, it was not possible to investigate the effect of Angptl4 deletion on cardiac 

lipid storage, oxidative stress, and parameters of cardiac dysfunction after a 

more prolonged period of HFD, as a cachectic phenotype progressively emerges 

after 12 weeks of HFD [53]. 

 In a previous study, heart-specific Angptl4 overexpression reduced cardiac 

LPL activity and reversed the excessive lipid storage in hearts of lipotoxic acyl-

CoA synthetase transgenic mice [22]. In agreement with these data, we find that 

Angptl4 overexpression reduced cardiac fatty acid uptake and protects against 

fatty acid-induced oxidative stress. In contrast, Angptl4 deletion aggravated 

oxidative stress both acutely and after chronic HFD. Because we used whole 
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body Angptl4 overexpression and deletion models, strictly we cannot rule out 

that the observed effects may be related to changes in extracardiac Angptl4 

expression. However, the current literature mainly supports a paracrine function 

of Angptl4, and the role of Angptl4 as endocrine factor remains somewhat 

uncertain. 

 Angptl4 was discovered by screening for target genes of PPARα and PPARγ 

in liver and adipose tissue, respectively [35,36]. It is member of a family of 

angiopoietins and angiopoietin-like proteins and is produced by a variety of 

organs. Numerous studies using Angptl4 transgenic or knock-out mice have 

invariably shown a stimulatory effect of Angptl4 on plasma triglyceride levels, 

which is achieved by inhibiting LPL activity [13,14,19,22,37–40]. These data 

have established Angptl4 as an important regulator of plasma triglyceride 

levels. The present data suggest that Angptl4 is upregulated by dietary fatty 

acids to inhibit local LPL activity and consequently reduce fatty acid uptake and 

lipid-induced oxidative stress. 

 To study the role of PPARs in cardiac gene regulation by dietary fatty acids, 

we ideally should have used cardiomyocyte-specific PPAR−/− mice but 

unfortunately we did not have access to these animals. The PPAR-dependent 

upregulation of Angptl4 and Ucp3 by dietary linolenic acid underscores the 

importance of TG-rich lipoproteins as source of PPAR ligands in the heart, 

which are liberated via LPL [41,42] Remarkably, upregulation of Angptl4 by 

C18:3 in intact heart and cultured cardiomyocytes was entirely mediated by 

PPARβ/δ and not PPARα. These data were supported by ChIP data showing 

C18:3-induced binding of PPARβ/δ and not PPARα to the Angptl4 gene in the 

intact heart. Because we did not study PPARγ, strictly we cannot rule out a role 

for PPARγ in mediating the effect of (dietary) fatty acids on cardiac Angptl4 

expression. However, as similar results were obtained in cultured 

cardiomyocytes, which express little PPARγ, the data favor a specific role of 

PPARβ/δ in the regulation of cardiac Angptl4 by C18:3. It is unclear what 

mechanism may underlie the differential role of PPARβ/δ versus PPARα in 

mediating induction of Angptl4 and Ucp3 by C18:3, respectively. Induction of 

Ucp3 by linoleic acid via PPARα rules out a PPARβ/δ-specific ligand activity 

that is generated by linolenic acid in heart. Gel shift and transactivation studies 

have failed to provide convincing evidence for the existence of response 

elements or promoters that are specifically or selectively bound or regulated by 

a particular PPAR isotype [43,44]. Indeed, in vitro experiments have revealed 
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that all three PPARs are intrinsically able to (trans)activate the human and 

mouse Angptl4 gene [25]. However, the situation may be different in vivo in the 

absence of PPAR overexpression or when PPARs are activated via endogenous 

ligands rather than via high-affinity synthetic agonists. Thus, the dominant 

receptor in the regulation of a particular PPAR target is likely context- and 

tissue-dependent and additionally depends on whether PPAR is activated via 

endogenous or synthetic agonists. When as in cardiomyocytes two or more 

PPARs are expressed in the same cell and are simultaneously activated, it is 

possible that specific binding of one PPAR isotype to a particular PPRE is 

promoted via interactions with another protein that binds adjacent to the PPRE 

and is expressed in a tissue-specific manner. In this context, it is interesting to 

mention that recent genome wide profiling of PPARα and PPARγ binding sites 

revealed colocalization of PPAR binding with other transcription factor binding 

sites and demonstrated interplay between PPARs and other transcription factors 

in PPAR-mediated gene regulation [45–47]. 

 Recently, targeted PPARβ/δ overexpression in the heart was shown to have a 

clear differential effect on cardiac metabolism compared to PPARα 

overexpression [48]. In contrast to PPARα, PPARβ/δ overexpression did not 

impact fatty acid transport and failed to induce myocardial lipid accumulation. 

Based on the data presented here it can be hypothesized that PPARβ/δ is neutral 

toward cardiac lipid storage by inducing Angptl4 expression, which in turn 

feeds back on fatty acid uptake. 

 Multiple studies support an effect of Angptl4 on endothelial function, mostly 

pointing to an antiangiogenic activity of Angptl4 [49–51]. Our 

immunohistochemical results indicate that Angptl4 is absent from vascular 

endothelial cells in the heart, whereas it is abundantly present in 

cardiomyocytes. These data are in line with previous studies showing that 

Angptl4 is absent from a number of different endothelial cells, yet is 

dramatically induced under hypoxic conditions [50]. Hypoxia also upregulates 

Angptl4 in cardiomyocytes [52]. Induction of Angptl4 by hypoxia and the 

associated inhibition of fatty acid uptake may be an adaptive mechanism to shift 

fuel use toward glucose, which requires less oxygen for oxidation. 

 In conclusion, our data show that an acute oral load of triglycerides 

stimulates an oxidative stress response in the heart. The concomitant 

upregulation of Angptl4 by dietary fatty acids is mediated by PPARβ/δ and is 

part of a feedback mechanism aimed at protecting the heart against lipid 
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overload and consequently fatty acid–induced oxidative stress, one of the 

hallmarks of lipotoxic cardiomyopathy. 

 

 

Figure 7: Model of the role of Angptl4 in the heart. Triglycerides arrive at the 

heart packaged into chylomicrons or VLDL particles. Plasma triglycerides are 

hydrolyzed by lipoprotein lipase to release fatty acids, that are taken up by the 

cardiomyocyte. Excess uptake of fatty acids gives rise to oxidative stress and leads to 

induction of Angptl4 expression via PPARβ/δ. Angptl4 will feed back on fatty acid 

uptake by inhibiting lipoprotein lipase.  
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Appendix Figure 1: Induction of oxidative stress response 6 hours after the oral 

ingestion of linolenic acid (A), linoleic acid (B) or oleic acid (C). Bars show the 

percentage of upregulated genes (red) and downregulated genes (green) out of the total 

number of eligible genes for each pathway, based on the Ingenuity knowledge database. 

The white part represents the percentage of genes that do not overlap with the 

experimental dataset. The pathways are displayed from the direction of the most 

significantly regulated to least significantly regulated based on Fisher’s Exact Test p-

value (cut off p<0.05). The –log(p-value) is displayed on the top of each pathway 

(yellow square). 
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Appendix Figure 2: Similarity in cardiac gene regulation between fatty acids. 

Graphs show fold-change in gene expression after treatment with C18:3TG (y-axis) 

plotted against fold-change in gene expression after treatment with C18:2TG (A) or 

C18:1TG (B) (x axis). Analysis shows more significant similarity in gene regulation 

between C18:3 andC18:2, compared to between C18:3 and C18:1. 
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Appendix Figure 3: Equal efficiency of amplification of mPPARα, mPPARβ/δ, and 

mPPARγ in mouse heart. A standard curve was generated from cDNA prepared from 

mouse heart. cDNA wasamplified by qPCR using primers specific for the three PPAR 

isotypes. Similar efficiencies of amplification were obtained using cDNA from rat 

neonatal cardiomyocytes. 
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Appendix Figure 4: No compensatory increase in PPARβ/δ and PPARα expression 

in PPARα-/- and PPARβ/δ -/- mice, respectively. Wild type, PPARα-/-, and 

PPARβ/δ-/- were given a single oral gavage of 0.5% CMC (open bars) or synthetic TG 

composed entirely of C18:3 (closed bars). mRNA expression levels of PPARβ/δ (left 

panel) and PPARα (right panel) were determined in mouse heart using real time PCR. 

Results are expressed as fold-change compared to the WT control mice. Error bars 

represent SEM. 
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Abstract 

 

Atherosclerosis is a multi-factorial chronic disease characterized by lipid 

retention and inflammation in the arterial intima. Inflammatory activation of 

macrophages combined with increased lipid uptake leads to formation of foam 

cells, which form the core of atherosclerotic plaques. Inhibition of lipoprotein 

lipase-mediated lipolysis by the protein Angptl4 was shown to prevent 

macrophage foam cell formation in vitro, as well as in mesenteric lymph nodes 

upon high fat feeding. Accordingly, we hypothesized that Angptl4 may affect 

atherosclerosis development by reducing foam cell formation. To investigate 

this hypothesis, we studied Angptl4 expression in atherosclerotic lesions and 

macrophages and determined the effect of Angptl4 transgenic overexpression in 

atherosclerosis prone ApoE3Leiden (E3L) mice fed a Western diet containing 

0.4% cholesterol. Angptl4 was localised to macrophages in human 

atherosclerotic lesions and was regulated by inflammatory stimuli in human 

THP-1 macrophages. During the 24 weeks of diet intervention, plasma 

cholesterol and triglyceride level were not different between the two groups. 

Remarkably, Angptl4Tg.E3L mice showed a 34% decrease in lesion area 

compared to E3L mice. In addition, content of macrophages and numbers of 

adhering monocytes were decreased in Angptl4Tg.E3L mice compared to E3L 

mice. Furthermore, Angptl4 decreased uptake of oxLDL in mouse and human 

macrophages. Our results suggest that Angptl4 is involved in an anti-

inflammatory signaling that suppresses development of atherosclerosis by 

reducing foam cell formation. 
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Introduction 

Despite a major decrease in mortality from atherosclerosis in many Western 

countries in recent decades, atherosclerosis-related morbidity and mortality 

remain a major global health concern. Atherosclerosis is a multi-factorial 

chronic disease characterized by lipid retention and inflammation in the arterial 

intima, forming the so called atheromas. While traditionally atherosclerosis was 

mostly viewed as a lipid retentive disease caused by elevated plasma lipids, in 

the past two decades the interplay between inflammatory mechanisms and 

dyslipidemia in development of atherosclerosis has been increasingly 

recognized. It is well accepted that circulating monocytes responding to 

chemotactic stimuli adhere to endothelial cells and subsequently migrate into 

the sub-endothelial space where they become activated. Activated macrophages 

may subsequently accumulate lipid and become foam cells by scavenging 

oxidized lipoprotein remnants - mainly oxidised LDL (oxLDL) - trapped in the 

sub-endothelial space [1]. 

Uptake of oxLDL and formation of foam cells via macrophage scavenger 

receptors are thus considered key events in the development and progression of 

arterial intimal inflammation. According to this view, scavenger receptors are 

proatherogenic proteins, although recent data present a more complicated 

picture in which these multifunctional receptors may both protect and 

exacerbate atherosclerosis development [2-5]. Furthermore, innate immune 

mechanisms also appear to contribute to macrophage activation and subsequent 

fat accumulation in macrophages [6]. Specifically, the finding that oxidized 

lipoproteins or their component oxidized lipids may act as ligands for Toll-like 

receptors (TLRs) coupled with the recent demonstration that mice deficient in 

TLR2 or TLR4 exhibit reduced atherosclerosis points to a key role of Toll-like 

receptor signaling in atherosclerosis development [7, 8]. 

While macrophage foam cell formation has been studied primarily in the 

context of atherosclerosis, they also participate in other pathologies including 

multiple sclerosis [9], non-alcoholic fatty liver disease, and kidney disease. 

Recently, we described the accumulation of macrophage foam cells in 

mesenteric lymph nodes of mice fed a high saturated fat diet. Foam cell 

formation was specific for mice lacking Angptl4, an endogenous inhibitor of the 

triglyceride hydrolyzing enzyme lipoprotein lipase (LPL), which catalyzes 

uptake of circulating lipids into tissues [10, 11]. Specifically, the N-terminal 
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portion of Angptl4 irreversibly inhibits LPL activity by converting active LPL 

dimers into inactive monomers [10]. As a consequence, overexpression of 

Angptl4 leads to hypertriglyceridemia and reduced fatty acid uptake into 

tissues, whereas Angptl4 deletion results in lowering of circulating triglyceride 

levels [12-16]. Angptl4 is a protein secreted by a variety of tissues including 

adipose tissue, liver, skeletal muscle, and intestine. In addition, Angptl4 as well 

as LPL are well expressed in macrophages [17]. Angptl4 expression in 

macrophages is governed by PPARβ/δ and PPARγ.  

Considering the importance of foam cells in atherosclerosis and the 

stimulatory effect of LPL on atherosclerosis [18], we were interested to examine 

the potential impact of Angptl4 on atherosclerosis development. For these 

studies we took advantage of the atherosclerosis prone ApoE3Leiden (E3L) 

mouse model.  E3L mice carry a partially disabled ApoE gene that is associated 

with familial hypercholesterolemia in humans [19, 20]. E3L mice represent an 

unique human-like model for studies on atherosclerosis characterized by: 1) 

plasma cholesterol levels that are proportional to the cholesterol content in the 

diet, 2) development of diet-induced atherosclerosis in the presence of the LDL 

receptor and apoE. In the present study, we show that whole body 

overexpression of Angptl4 protects against atherosclerosis as manifested by a 

decreased size of atherosclerotic plaques. 

 

Materials and Methods 

Materials: Human Recombinant Angptl4 (full length 4487-AN) was purchased 

by R&D systems. Mouse recombinant MCP-1 was purchased by ITK 

Diagnostics, The Netherlands. Intralipid was purchased from Fresenius Kabi. 

TLR agonists were purchashed from Sigma, Fluka, Brunwich amd InvivoGen. 

Animals: Animal studies were done using pure-bred WT and Angptl4Tg mice 

on a C57BI/6 background [13]. The ApoE3Leiden were also on C57BI/6 

background (n=19-18). Mice were housed under standard conditions with a 12-

hour light/dark cycle and had free access to food and water. Female mice were 

fed a Western type diet with 15% w/w cacao butter (diet T, Hope Farms, 

Woerden, the Netherlands) supplemented with 0.4% (wt/wt) cholesterol, 

(Sigma-Aldrich, Zwijndrecht, the Netherlands). Detailed description of diet T is 

shown in Apprendix Table 1. 
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Plasma Lipids: Blood was collected into EDTA containing tubes to prevent 

coagulation. Blood samples were placed on ice and centrifuged at 4°C for 10 

minutes at 10,000 g. The plasma concentration of triglycerides was determined 

using the Triglycerides liquicolor mono kit by Instruchemie (Delfzijl, 

Netherlands). Plasma cholesterol was determined using the Elitech cholesterol 

PAP SL from Sopachem (Wageningen, Netherlands). 

Lipoproteins profiling: Plasma lipoproteins of Angptl4Tg.E3L and E3L mice 

were separated using fast liquid chromatography (FPLC). For fast protein liquid 

chromatography (FPLC) fractionation of lipoproteins, 18μl were pooled from 

each mouse up to 0.4ml per group. 0.35ml of pooled plasma was injected into a 

Superose 6B 10/300 column (GE Healthcare Bio-Sciences AB, Roosendaal, 

Netherlands) and eluted at a constant flow of 0.5 mL/minute with phosphate 

buffered saline (pH 7.4). The effluent was collected in 0.5 mL fractions and TG 

and cholesterol levels were determined as described above. 

Atherosclerosis quantification and plaque composition (immunohistology): 

After 24 weeks on diet T + 0.4% cholesterol, final blood collection was 

withdrawn from the eye, after the mice have been anaesthetized with injection 

of VDF (Vetranquil, Dormicum, Fentanyl). Mice were killed by CO2 inhalation 

and organs were perfused followed by heart perfusion with PBS. Hearts were 

isolated and later fixed in phosphate-buffered 4% formaldehyde, dehydrated, 

embedded in paraffin, and cross-sectioned (5 µm), throughout the aortic root 

area. Four sections per mouse with 50-µm intervals were used for 

atherosclerosis measurements. For further histological analysis, sections were 

stained with hematoxylin-phloxin-saffron (HPS staining). Lesions were 

categorized for severity according to the guidelines of the American Heart 

Association, adapted for mice [37, 38]. Briefly, we describe the criteria: severity 

type 0 -no lesion, type 1- early fatty streaks containing up to 10 foam cell 

macrophages in the intima, type 2- early fatty streaks with more than 10 foam 

cell macrophages in the intima, type 3- early fatty streak, containing foam cells 

in the intima, covered by a fibrous cap, type 4- advanced lesions with foam cell 

macrophages in the intima, signs of fibrosis, lipid core, but no disruption of the 

media, type 5 - advanced lesions containing foam cells in the media, presence of 

fibrosis, cholesterol clefts, mineralization, and/or necrosis. Lesion area was 

determined with Leica Qwin image analysis software (Image J). AIA 31240 

antiserum (1:3000, Accurate Chemical and Scientific, Westbury, NY) was used 
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to quantify the macrophage area and the number of monocytes adhering to the 

endothelium. Sirius Red was used to quantify the collagen area and 

M0851(1:800, Dako) against smooth muscle cell actin to quantify the smooth 

muscle cell area. 

 Paraffin preserved sections from human carotid artery embedded in paraffin 

cross sectioned (5 µm) and used for histological analysis. A general HE 

(hematoxylin eosin) staining, to visualize the structure of the tissue was 

performed. Human Antibody for Cd68 staining was purchased from Abdserotec 

and human Angptl4 antibody, which recognizes the C-terminus was a gift from 

Andrew Tan. The first day, sections were left overnight at 37
o
C. Second day, 

we performed deparafinization of the sections, followed by inhibition of 

endogenous peroxidases for 30min. Antibody for Cd68 and for Angplt4 was 

used in dilution 1:100. Staining with primary antibody was performed 

overnight. Negative control was not incubated with primary antibody. 

Secondary antibody was used in dilution 1:200 and it was applied on the 

sections for 45min. Visualization of the complex was done with DAB staining. 

Hematoxyline staining was perfomed, as well. Areas of positive staining 

obtained a brown colour. 

 

Migration assay: QCM™ Chemotaxis 96 well (5 iM) Cell Migration Assay 

Fluorimetric assay from Millipore was used. Boyden chambers with filters of 

5µm pore size were used. Mouse bone marrow cells were differentiated into 

macrophages for 9 days in DMEM medium, containing 10% heat inactivated 

FCS and 20% L929 conditioned medium. Medium was changed every day after 

day 9 and cells were used at day 12. Before the migration assay cells were 

starved from FCS for 24hrs (medium containing only 1,5% of FBS deriving 

from L929 medium). At the upper part of the filter we added 2000 cells in 

100uL serum free DMEM medium with additional 1% BSA. At the bottom part 

of the filter, we added serum free DMEM medium with additional 1% BSA, 

with or without mouse recombinant MCP-1 (5µg/ml). Migration was stopped 

after 3hours. Cells attached at the bottom of the filter were detached, via 

incubation with a detachment buffer, provided with the kit and pooled with 

those that have migrated towards the MCP-1 containing medium at the bottom 

chamber. A mix of lysis buffer/DNA binding fluorescent dye (CyQuant GR 

Dye) was added on the migrated cells for 15 min at RT. Fluorescence was 

measured at 480/520nm.  
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RNA isolation and qRT-PCR: Total RNA was isolated with TRIzol Reagent 

(Invitrogen, Breda, the Netherlands). 1µg of total RNA was reverse transcribed 

using Fermentas (Bio-Rad, Veenendaal, the Netherlands). cDNA was amplified 

on BioRad iCycler machine using Sensimix (Invitrogen, Breda, the 

Netherlands). PCR primer sequences were ordered from Eurogentec (Seraing, 

Belgium). List of primers used are shown in Table 1. 

 

Table 1: Sequences of primers used for qRT-PCR.  

Primer 

Name Forward sequence Reverse sequence 

hAngptl4 CACAGCCTGCAGACACAACTC GGAGGCCAAACTGGCTTTGC 

mAngptl4 GTTTGCAGACTCAGCTCAAGG CCAAGAGGTCTATCTGGCTCTG 

mPtgs2 TGAGCAACTATTCCAAACCAGC 

 

 

 

GCACGTAGTCTTCGATCACTATC 

mCxcl2 CCAACCACCAGGCTACAGG GCGTCACACTCAAGCTCTG 

mDdit3 CTGGAAGCCTGGTATGAGGAT CAGGGTCAAGAGTAGTGAAGGT 

mGdf15 CTGGCAATGCCTGAACAACG GGTCGGGACTTGGTTCTGAG 

 

Oil red O staining on fixed cells: Oil red O stock solution was prepared by 

dissolving 0.5 g oil red O (Sigma, #O0625) in 500 ml isopropanol. Oil red O 

working solution was prepared by mixing 30 ml oil red O stock with 20 ml 

dH2O, followed by filtration. Attached cells were washed twice with PBS and 

fixed for 10 min in formal calcium (4% formaldehyde, 1% CaCl2). After that 

cells were washed twice with PBS and covered with Oil Red O working 

solution for 20min, followed by two rinses with dH2O. 

Lipoprotein isolation and tritium labelling: Isolation of human lipoproteins 

was achieved by sequential ultracentrifugation at the respective density at 

40,000 rpm in a Ti-50 fixed-angle rotor (Beckman Instruments, Geneva, 

Switzerland) for 18h at 5°C, followed by dialysis at 4°C overnight against PBS, 

pH 7.4. VLDL and LDL fraction was isolated and labelled with tritium, using 

glycerol tri
3
[H]oleate (

3
[H]TO) and 

3
[H]cholesteryl oleoyl ether (

3
[H]COEth), 

respectively. Labeling protocol has been previously described [39]. Protein 

concentrations in the lipoporteins fractions were determined with BCA Pierce 

assay using a BSA standard curve. 
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Quantification of cellular uptake of tritium labelled lipoproteins: After 

incubation of macrophages with tritium labelled lipoproteins, cells were washed 

twice with 500μL PBS and cell lysates were precipitated in 500μL of 0,1M 

NaOH, with gentle shaking for 15min. 250μL of cell lysates were used for 

quantification of radioactivity. dmp values were normalised to the total amount 

of protein (mg) present in 250μL of cell lysates. Protein from cell lysates was 

quantified with BCA Pierce assay. 

LDL oxidation with CuSO4 : LDL preserved in Kbr was dialysed overnight in 

PBS. Oxidation of LDL was done with CuSO4 at a final concentration of 20uM 

for 3hours in 37
o
C. Oxidation was terminated by adding 200uM EDTA and 

palce the tube on ice. EDTA and CuSO4 were removed with overnight dialysis 

in PBS.  

Cells: Bone marrow cells were grown in DMEM +10% heat inactivated (HI) 

FCS +1% P:S with additional 20% L929 conditioned medium DMEM (10% HI 

FCS, 1% P:S), in order to stimulate macrophage differentiation. Differentiation 

was allowed up to 7-9 days. During that period fresh medium was added to the 

cells without removing the old medium. After that period medium was renewed 

every day. Bone marrow derived macrophages were used for experiments at day 

10 or 11. 

THP-1 monocytes were differentiated into macrophages after 2 days incubation 

in RPMI medium, 10% HI FCS, 1% PS containing 100ng.ml phorbol-12-

myristate-13-acetate (PMA). After 2days, PMA was washed away and THP-1 

macrophages were kept in complete medium without PMA, for 2 days further 

and then used for experiments.  

RAW 264.7 cells were grown in DMEM supplemented with 10% FCS and 1% 

P:S. 

Intralipid was purchased from Sigma and used in final concentration of 2mM. 

Recombinant Angptl4 was used in concentration 1.5ug/ml 

Activation of macrophages with TLR agonists: The different TLR agonists used 

and their concentrations are shown in Table 2 
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Table 2: Targeting receptors and experimental concentrations of TLR agonists  

TLR ligands Receptor Concentration 

TLR4 LPS 1ug/ml 

TLR1+2 Pam3Cys 1ug/ml 

TLR5 Flageline 10ng/ml 

TLR2+6 FSL-1 1ug/ml 

TLR3 Poly(I:C) 2ug/ml 

Dectrin 1+TLR2+6 b-glucan 4ug/ml 

NOD1 MTP 18nM 

NOD2 MDP 10ug/ml 

NOD1 Tri-dap 5ug/ml 

 

Results 

Angptl4 is induced by Toll- like receptors 3 and 4 in macrophages 

Previous studies have shown that Angptl4 expression is highly upregulated 

by chylomicrons and fatty acids in peritoneal macrophages [17]. In line with 

these data we observed that incubation of RAW 264.7 macrophages with a 

triglyceride emulsion, which causes foam cell formation and macrophage 

activation (Figure 1A), increases Angptl4 mRNA expression, as well as 

expression of several inflammatory markers and ER stress marker, Ddit3 

(Figure 1B). Similar results were obtained in bone marrow derived 

macrophages (BMDMs) (Figure 1C,D). To investigate whether activation of 

macrophages independent of foam cell formation may induce Angptl4 

expression, macrophages were treated with various Pattern Recognition 

Receptor (PRR) agonists. Human THP-1 macrophages were used to enable 

measurement of Angptl4 protein secretion using ELISA [21]. TLR3 and TLR4 

agonist potently induced Angptl4 mRNA and protein secretion (Figure 1E,F), 

whereas the other agonists were weak or not effective. These data show that 

macrophage activation induced by PRR agonists or lipid overload leads to 

upregulation of Angptl4 gene expression. 
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Figure 1: Angptl4 expression is induced in macrophages, after lipid overload or 

activation with TLR4 and TLR3 agonists A. Oil red O staining of RAW 264.7 mouse 

macrophages treated 6hrs with intralipid (IL) B. Mean fold change of mRNA levels of 

highly responding genes to 6 hrs intralipid (IL) treatment of RAW 264.7 cells black 

bars-IL, white bars-control C. Oil red O staining of bone marrow derived mouse 

macrophages (BMDMs) treated 6hrs with intralipid (IL) D. Mean fold change of mRNA 

levels of highly responding genes to 6 hrs intralipid (IL) treatment of bone marrow 

derived macrophages, black bars-IL, white bars-control (Mean fold change over the 

control,which is 1) E. THP-1 macrophages treated for 4h, 12h and 24h with a panel of 

TLR agonists. Human Angptl4 mRNA levels were quantified with qRT-PCR and 

expressed as mean fold change over its basal levels for each time point. F. Protein levels 

of Angptl4 were quantified with ELISA, in medium collected from THP-1 macrophages 

treated 24 hrs with different TLR agonists. Error bars represent SEM. *Significantly 

different between treatment and control, according to Student’s t-test (*P<0.05, ** 

P<0.01). 

A pathological condition characterized by macrophage activation and lipid 

overload is atherosclerosis. To study the potential role of Angptl4 in 

atherosclerosis, we first ascertained the presence of Angptl4 in human 

atherosclerotic plaques. Staining of serial sections from human carotid tissue 

with antibodies against Cd68 and Angptl4 revealed co-localization of Angptl4 

with Cd68, suggesting Angptl4 is present in macrophages (Figure 2).  

 

Figure 2: Angptl4 protein localizes to the macrophages at the arterial wall A. 

Staining of serial sections of human carotid artery. Top left, top middle: High 

magnification of x200 and x400 of section of human carotid artery stained with HE 

staining in order to inspect the structural morphology of the arterial wall. Arrows point 

to lipid-loaded macrophages (foam cells). Top right: Staining with human Cd68 
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recognizing antibody, diluted 1:100, magnification x400. Bottom right: Staining with 

human Angptl4 recognizing antibody, diluted 1:100, magnification x400. The antibody 

recognizes specifically the C-terminal portion of Angptl4. Bottom left: negative control. 

  

Overexpression of Angptl4 on an E3L background does not affect 

plasma cholesterol and triglyceride levels 

To further explore the role of Angptl4 in atherosclerosis development, we 

crossed mice with whole body overexpression of Angptl4 with ApoE3 Leiden 

(E3L) mice to generate the Angptl4Tg.E3L mice. E3L mice represent an unique 

human-like model for studies on atherosclerosis characterized by: 1) plasma 

cholesterol levels that are proportional to the cholesterol content in the diet, 2) 

development of diet-induced atherosclerosis in the presence of the LDL receptor 

and apoE. Both Angptl4Tg.E3L mice and control E3L mice were fed a Western 

type diet containing 0.4% cholesterol for 24 weeks. Weight gain was equal 

between the two groups (Figure 3A). In contrast, Angptl4Tg.E3L ate slightly 

less than the E3Lgroup (Figure 3B). After 4 weeks all animals were 

hypercholesterolemic and plasma cholesterol levels remained high until the end 

of the study. Importantly, plasma cholesterol levels were not significantly 

different between the two groups (Figure 3C). Whereas plasma triglycerides 

were increased in Angptl4Tg.E3L mice up to week 4, triglycerides subsequently 

dropped to levels that were not significantly different from the E3L group 

(Figure 3D). Elevated plasma cholesterol and triglyceride levels in 

Angptl4Tg.E3L and E3L mice could be attributed to elevated VLDL/LDL 

levels, as determined by fast liquid protein chromatography (FPLC) (Figure 

3E).  
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Figure 3: No difference in plasma cholesterol and triglyceride levels between 

Angptl4Tg.E3L and E3L after 24 weeks on Western diet + 0.4% cholesterol. A. 

Body weight, in grams, of Angptl4Tg.E3L and E3L mice after 24 weeks on a Western 

diet + 0.4% cholesterol B. Food intake expressed in grams/day C,D. Plasma cholesterol 

and triglycerides levels (mM). E. Quantification of plasma cholesterol and 

triglycerideslevels in FPLC fractions. Black squares refer to Angptl4Tg.E3L group and 

white squares to ApoE3Leiden group. Y-axis values represent mean, error bars 

represent SEM.* Significantly different between Angptl4Tg.E3L and E3L, for the 

specific time point, according to Student’s t-test (P<0.05). Numbers of animals per 

group were 16 to 18. 
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Angptl4Tg.E3Leiden mice developed smaller lesions 

 

We further investigated the severity of atherosclerosis by measuring the 

lesion area and by assigning lesions to different levels of severity based on 

cellular composition of the plaques (for criteria see Methods/Materials). 

Whereas Angptl4Tg.E3L mice developed on average an equal number of 

plaques compared to the E3L mice (Figure 4A), average lesion size was reduced 

by 34% in Angptl4Tg.E3L mice (Figure 4B). We next classified lesions 

according to severity and determined the distribution of lesions according to 

severity in the two groups. Angptl4Tg.E3L mice showed a tendency towards the 

development of less severe lesions compared to E3L mice (Figure 4C). We next 

evaluated the effect of Angptl4 overexpression on monocyte recruitment and 

lesion composition including macrophage content, collagen content and smooth 

vascular muscle cells content. Angptl4 overexpression significantly decreased 

the number of adhering monocytes to the vessel wall compared to E3L mice 

(Figure 5A). The decrease in adhering monocytes was accompanied by a 2-fold 

(P<0.05) decrease in macrophage content in the intima of Angptl4Tg.E3L mice 

(Figure 5B). No statistically significant differences in collagen and smooth 

vascular muscle cells content were observed between the two groups (Figure 

5C,D). Thus, overexpression of Angptl4 reduces lesion size compared to the 

E3L group and leads to a less inflammatory lesion phenotype characterized by 

decreased monocyte/macrophage accumulation. 
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Figure 4: Angptl4Tg.E3Leiden mice developed smaller lesions A. Average number 

of lesions in Angptl4Tg.E3L and E3L mice (E3L n=15, Angptl4Tg.E3L n=16) Number 

of lesions were counted in four sections per mouse, each of those containing three 

segments B. The total lesion area (μm
2
) in Angptl4Tg.E3L and E3L mice. Lesion area 

was counted in four sections (50-µm intervals) per mouse, three segments per section. 

C. Percentage of lesions per type of severity over the total number of lesions belonging 

in each type of severity are shown. Numbers of animals per group were 15-16. 

*Significantly different between Angptl4Tg.E3L and E3L group, according to Student’s 

t-test (P<0.05). Error bars represent SEM. 
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Figure 5: Decreased monocyte and macrophage content in atherosclerotic plaques 

of Angptl4Tg.E3L mice A. Counted numbers of monocytes adhered to the endothelial 

layer. B, C, D. (Right) Absolute area (µm
2
)

 
of staining is shown. (B, right ) Mean area 

of AIA 31240 antiserum staining for macropahage area (brown staining), (C,right) 

Sirius Red staining collagen area (red staining) and (D,right) a-actin staining for smooth 

vascular muscle cell area (brown staining) is shown. (Left) Representative images of 
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stained atherosclerotic lesions of camplarable size are presented. A black line is drawn 

to define the lesion area. Y-axis represent mean in Angptl4Tg.E3L and E3L group and 

error bars SEM. Numbers of animals per group were 15-16. *Significantly different 

between Angptl4Tg.E3L and E3L group, according to Student’s t-test (*P<0.05, 

**P<0.01). 

In the early stages of atherogenesis, monocytes/macrophages are recruited to the 

vessel wall in response to chemokines such as MCP-1 produced by the inflamed 

endothelium [22]. To further investigate the effect of Angptl4 on the 

chemotactic recruitment of macrophages, we performed an in vitro macrophage 

migration assay. BMDMs from Angptl4-Tg mice, characterized by 4-fold 

elevated Angptl4 mRNA levels (Figure 6A), migrated significantly less towards 

chemotactic signal (MCP-1) compared to WT macrophages (Figure 6B). These 

results suggest a suppressive effect of Angptl4 overexpression on macrophage 

migration and chemotaxis.  

 

 

Figure 6: Decreased migration of Angptl4-Tg BMDMs towards MCP-1 A. Mean 

fold change of mouse Angptl4 mRNA expression levels in BMDMs derived from 

Angptl4-Tg mice, compared to BMDMs derived from WT mouse. Quantification was 

done with qRT-PCR (Ct values: 25-27) B. BMDMs from WT or Angptl4-Tg mice were 

added on the top chamber of QCM™ Chemotaxis 96 well (5 ìM) Cell Migration Assay 

plate from Millipore. At the bottom chamber 5µg/ml MCP-1 mouse recombinant 

protein was added. Number of cells migrated to the bottom chamber were quantified via 

measurements of fluorescence DNA binding substance introduced to the cells during 

cell lysis. Y-axis represent mean and error bars SEM. *Significantly different between 

Angptl4-Tg and WT group, according to Student’s t-test (P<0.05) 
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Angptl4 decreased the uptake of oxLDL in macrophages  

Oxidized LDL (oxLDL) is known to promote atherogenesis by causing foam 

cell formation and inducing secretion of proinflammatory cytokines like MCP-1 

[23]. Since Angptl4 overexpression decreased the recruitment of 

monocytes/macrophages, we were interested to assess its role in oxidized LDL 

uptake and subsequent formation of foam cells. For this purpose, we used 

BMDMs from WT and Angptl4-Tg mice. We first assessed whether BMDMs 

may transform into foam cells after uptake of oxLDL. OxLDL efficiently 

promoted foam cell formation in WT and Angptl4-Tg BMDMs. In contrast, 

native LDL did not have any effect on foam cell formation (Figure 7A). In order 

to quantitatively assess macrophage uptake of oxLDL, we incubated BMDMs 

from WT and Angptl4-Tg mice with [
3
H] labelled oxLDL and LDL for 48hrs. 

Uptake of oxLDL was lower in Angptl4-Tg compared to WT macrophages, 

while uptake of LDL was unaltered (Figure 7B).  

TG-rich VLDL particles have been also shown to stimulate foam cell 

formation and provoke the release of proinflammatory cytokines [24, 25], which 

may further stimulate uptake of oxLDL and thereby accelerate the formation of 

foam cells [26]. To mimic that sequence of events, we first treated THP-1 with 

VLDL for 2h in order to induce lipid uptake and a pro-inflammatory phenotype. 

Thereafter, after 2hours, VLDL was washed away, and cells were treated with 

oxLDL in the presence of human recombinant Angptl4 for 6 hours. 

Interestingly, recombinant Angptl4 reduced the uptake of oxLDL by 2-fold, but 

had no effect on uptake of native LDL (Figure 7C). 

Previously, we showed that by inhibiting LPL activity, Angptl4 reduces 

macrophage uptake of TG-derived fatty acids and impairs macrophage 

activation [17], which may be suspected to indirectly lead to decreased uptake 

of oxLDL. To explore this possibility, THP-1 macrophages were incubated with 

VLDL in the presence of Angptl4 for 24 hours followed by a wash and 

treatment of the cells with oxLDL for 6 hours. Human recombinant Angptl4 

decreased the uptake of triglycerides from VLDL (Figure 7D), which led to 

decreased uptake of oxLDL but not LDL (Figure 7E). Overall, the data indicate 

that Angptl4 suppresses oxLDL uptake. 
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Figure 7: Angptl4 reduced the uptake of oxLDL in macrophages A. Oil Red O 

staining on BMDMs derived from WT and Angptl4-Tg mice, treated with 10ug/ml 

oxLDL or LDL for 24hrs B. Quantification of the uptake of tritium labelled 
3
[H]oxLDL 

and 
3
[H]LDL from BMDMs of WT and Angptl4-Tg mice, after 48hrs of incubation 

with each of the lipoproteins C. Quantification of the uptake 
3
[H]LDL and 

3
[H]oxLDL. 

THP-1 macrophages were preincubated for 2hrs with VLDL (150ug protein /ml), 

subsequently washed and treated for 6hrs with 
3
[H]LDL or 

3
[H]oxLDL, in the absence 

of presence of human recombinant protein Angptl4 (full length,1.5ug/ml) D. 

Quantification of the uptake of 
3
[H] VLDL from THP-1 macrophages after 24hrs 

incubation with 
3
[H]VLDL (30ug protein /ml), in the presence of absence of human 

recombinant protein Angptl4 (full length,1.5ug/ml) E. Quantification of the uptake of 
3
[H]LDL and 

3
[H]oxLDL. THP-1 macrophages were preincubated for 24hrs with 

VLDL (30ug protein /ml) in the presence or absence of human recombinant protein 

Angptl4 (full length,1.5ug/ml), subsequently washed and incubated with 
3
[H]LDL and 
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3
[H]oxLDL, for 6hrs. Values are expressed as mean of dpm 3[H] /mg of protein (see 

methods). Errors bars represent SEM. * Significantly difference between the compared 

groups is indicated in the graph, according to Student’s t-test (*P<0.05,**P<0.01). 

 

Recently, it was suggested that atherosclerosis and NASH (non-alcoholic 

steatohepatitis) are two aspects of a shared disease characterized by infiltration 

of activated macrophages in the arterial wall and liver, respectively [27]. To 

study the potential impact of Angptl4 overexpression on macrophage abundance 

in liver, we measured Cd68 and F4/80 mRNA expression. Although, F4/80 did 

not show any difference between Angptl4Tg.E3L and E3L mice, Cd68 mRNA 

was reduced by approximately 20% in Angptl4Tg.E3L mice (Appendix Figure 

1). Despite the small reduction in Cd68 mRNA levels, these data provide a hint 

of less macrophage infiltration in livers of Angptl4Tg.E3L mice. 

 

Discussion 

 In this study we have investigated the role of Angptl4 in atherosclerosis 

development. For that purpose we crossed Angptl4-Tg mice characterized by 

whole body overexpression of Angptl4 with atherosclerosis prone E3L mice. 

Here, we show that after 24 weeks on an atherogenic diet, Angptl4Tg.E3L mice 

showed less atherosclerosis. This effect was independent of the plasma 

cholesterol and triglyceride levels, since levels were similar between the two 

groups. Importantly, Angptl4Tg.E3L exhibited a less pro-inflammatory 

phenotype with decreased accumulation of monocytes/macrophages in the 

atherosclerotic plaque, suggesting an anti-inflammatory role of Angptl4 in 

atherosclerosis development. 

 The impact of Angptl4 on atherosclerosis has been previously investigated 

by Adachi H. et al. [28]. In that study Angptl4-/- mice on a ApoE-/- background 

developed less atherosclerotic lesions on a chow diet compared to control mice. 

ApoE-/- mice are characterized by a severe deficiency in clearance of VLDL 

remnants and develop severe atherosclerosis from birth, whereas E3L mice only 

develop hyperlipoproteinemia when fed a diet rich in fat and cholesterol, which 

we believe better mimics the lifestyle-dependent development of atherosclerosis 

in humans. Angptl4-/- mice on ApoE-/- background exhibited a significant 

decrease in circulating LDL-C and triglyceride levels, which very likely 
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accounted for the improvement in atherosclerosis in that model. In contrast, 

plasma VLDL/LDL-cholesterol and total cholesterol as well as plasma 

triglycerides were unaffected in Angptl4Tg.E3L mice compared to E3L mice 

after several weeks on the atherogenic diet. Previously, we found that whole 

body Angptl4 overexpression was associated with elevated plasma total and 

VLDL-cholesterol and triglycerides in FVB and C57Bl/6 mice. This effect was 

prominent in the fasted state and minimal in the fed state, and could be 

attributed to inhibition of LPL-dependent lipolytic processing of triglyceride-

rich lipoproteins[10, 13]. The exact reason why Angptl4 overexpression did not 

alter plasma triglycerides and cholesterol in E3L mice is not clear but maybe the 

inhibitory effect of Angptl4 on LPL is dependent on a fully functional ApoE 

molecule.  

 The absence of any changes in plasma lipoproteins suggests that Angptl4 

overexpression reduces atherosclerosis via a mechanism independent of 

inhibition of LPL-mediated systemic lipid clearance and consequent lipid 

lowering. Previously, we have shown that Angptl4 dramatically reduced foam 

cell formation and inflammatory gene expression in peritoneal macrophages 

incubated with chylomicrons in a LPL-dependent manner [17]. The present 

study indicates that inhibition of LPL-dependent lipid loading and activation of 

macrophages by Angptl4 also leads to downregulation of subsequent oxLDL 

uptake. In addition, Angptl4 seems to directly inhibit oxLDL uptake by 

macrophages. Consistent with Angptl4 exerting its effect via LPL, externally 

added and endogenously-produced LPL was previously found to enhance 

binding and uptake of oxLDL in macrophages [29-32]. Supporting a stimulatory 

effect of macrophage LPL on atherosclerosis in vivo, macrophage-specific 

overexpression of LPL was found to stimulate the formation of atherosclerotic 

lesions and accumulation of macrophage-derived foam cells, which occurred in 

the absence of any changes in circulating lipoproteins [18]. It was shown using 

transgenic mice expressing catalytically active or inactive LPL that the 

noncatalytic bridging function of LPL is sufficient for its proatherogenic effect 

[33]. Whereas Angptl4 is known to potently inhibit LPL catalytic activity, it is 

unclear whether Angptl4 inhibits the bridging function of LPL. It should be 

realized that Angptl4 may lower oxLDL uptake via a mechanism entirely 

independent of LPL and that may be mediated by its C-terminal Angiopoietin-

like domain. Future studies will have to address this issue in more detail. 
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 Interestingly, Angptl4 inhibited oxLDL uptake when macrophages were 

preloaded and activated with VLDL. Accumulation of intracellular triglycerides 

may trigger inflammatory pathways and ER stress that may cause upregulation 

of oxLDL uptake [6], [17], [26]. In this context it would be of interest to 

determine the effect of preloading of macrophages with lipid on oxLDL 

receptors and study the potential impact of Angptl4.  

Besides lowering oxLDL uptake, Angptl4 seems to reduce atherosclerosis by 

reducing chemotaxis. Specifically, we found that Angptl4-overexpression led to 

decreased accumulation of monocytes/macrophages in the atherosclerotic 

plaque. Additionally, Angptl4-Tg macrophages exhibited a decreased 

chemotactic response in an in vitro migration assay. Recently we showed that 

the C-terminal portion of Angptl4 binds to integrin β1 and β5 and stimulates 

integrin-linked signaling pathways [34, 35]. Since integrin β1 and β5 are highly 

expressed by macrophages (http://biogps.org; data not shown), these data raise 

the prospect that Angptl4 may influence macrophage chemotaxis via integrin β1 

and/or β5. Alternatively, it is possible that Angptl4 impacts chemotaxis via its 

N-terminal domain. To our knowledge, there are no data linking macrophage 

LPL to chemotaxis.   

 Expression of Angptl4 in macrophages was markedly induced by TLR4 and 

TLR3 agonists, as well as by lipid loading. More modest induction was 

observed upon treatment with NOD2 agonist muramyl dipeptide. A stimulatory 

effect of LPS on Angptl4 mRNA has also been observed in vivo in heart, 

skeletal muscle and adipose tissue [36]. In the same study, several pro-

inflammatory stimuli including LPS, IL-1β and TNFα upregulated Angptl4 

expression in 3T3-L1 adipocytes. The stimulatory effect of lipids (as fatty acids 

or lipoproteins) on Angptl4 expression has been extensively studied and 

confirmed in a variety of cell types, suggesting Angptl4 may mediate effects of 

lipids. In intimal macrophages, induction of Angptl4 by lipids and other 

inflammatory stimuli may be a protective mechanism to reduce foam cell 

formation and mitigate anti-inflammatory responses, resembling its role in 

mesenteric lymph node macrophages [17]. 

 There is increasing interest in the link between obesity and associated 

adipose tissue inflammation, and atherosclerosis. Despite the chronic feeding of 

a high fat/high sucrose diet, animals showed only minor weight gain and were 

not obese at the end of the experiment. The inhibitory effect of Angptl4 

overexpression on macrophage recruitment in atherosclerotic plaques may also 

http://biogps.org/
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be manifested in the adipose tissue, possibly leading to lower inflammatory 

status of adipose tissue. Detailed analysis of the inflammatory status of adipose 

including determination of the abundance of numerous immune cells will be the 

subject of future investigations. 

 In conclusion, the present study reveals a protective role of Angplt4 in 

atherosclerosis development that is independent of changes in levels of plasma 

lipoproteins. Furthermore, the study suggests an inhibitory effect of Angptl4 on 

macrophage oxLDL uptake and chemotaxis.  
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APPENDIX 

Appendix Table 1: Composition of diet T(4021 04) 

 

Purified diet T

Composition Weight (g)  Percentage

8500 STAND.VIT.PREMIX 37,50 0,25

8503 ST.SPOR.PREMIX 37,50 0,25

7559 CaHPO4.2H2O (LAAG F) 195,00 1,30

7560 CaCO3 REINST/Me.2069 150,00 1,00

7547 KH2PO4 105,00 0,70

7546 KCl. 105,00 0,70

7083 ZOUT (GEZAKT). 45,00 0,30

7611 MgSO4.7H2O 60,00 0,40

7552 MgO SCHWER REINST 30,00 0,20

7082 METHIONINE SYNTH. DL 30,00 0,20

7514 CHOLINE CL 50% 300,00 2,00

7599 ZURE CASEINE. 3.000,00 20,00

7584 DICACEL2+4/cellulose 930,00 6,20

7579 MAISZETMEEL GEL INST 1.500,00 10,00

7639 MAISOLIE/CORN OIL. 150,00 1,00

7529 CACAO-BOTER. 2.250,00 15,00

7154 SUIKER/sucrose 6.075,00 40,50

15.000,00 100,00

Analysis Unit Portion

1 Cr.Prot g/kg 176,16

2 Cr. Fat g/kg 160,45

3 Cr.Fiber g/kg 62,69

4 Minerals g/kg 23,62

5 Moisture g/kg 29,33

6Sug.+St. g/kg 495,16

7 Nfree ex g/kg 508,47

8 Dry Mat. g/kg 967,82

9 Lysine g/kg 12,42

10 Methion. g/kg 6,78

12 Cystine g/kg 0,52

13 Threonin g/kg 7,12

14 Tryptoph g/kg 2,32

15 Isoleuc. g/kg 10,08

16 Arginine g/kg 6,12

17 Phenylal g/kg 7,28

18 Histidin g/kg 4,64

19 Leucine g/kg 19,04

20 Tyrosine g/kg 9,44

21 Valine g/kg 11,76

22 Alanine g/kg 3,96

23 Asp.acid g/kg 9,26

24 Glut.ac. g/kg 35,10

25 Glycine g/kg 5,12

26 Proline g/kg 16,06

30 Calcium g/kg 7,12

31 Phos.tot g/kg 4,17

34 Potass. g/kg 5,68

35 Magnes. g/kg 1,57

36 Sodium g/kg 1,15

37 Chlorine g/kg 7,59

38 Sulfur g/kg 0,54
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49 C8-C12:0 g/kg -

50 C14:0 g/kg -

51 C16:0 g/kg 40,10

52 C16:1 g/kg -

53 C18:0 g/kg 52,70

54 C18:1 g/kg 55,05

55 C18:2 g/kg 10,50

56 C18:3 g/kg 0,10

57 C20-C22 g/kg 1,51

61 Vit. A IU/g 18,00

64 Vit. D3 IU/g 2,00

65 Vit. E mg. 62,67

67 Vit. K3 mg. 10,00

68 Vit. B1 mg. 20,00

69 Vit. B2 mg. 11,56

70 Vit. B6 mg. 15,33

71 Niacin mg. 39,20

72 Pant.ac. mg. 15,90

73 Vit.B12 mcg. 50,00

74 Folic.ac mg. 7,84

75 Choline mg. 7.457,80

76 Biotin mcg. 306,65

77 Inositol mg. 499,98

82 Starch g/kg 78,50

83 Sugars g/kg 405,00

86 Lactose g/kg 0,40

91 Cellulos g/kg 55,80

93 Glucose g/kg 3,70

96 Iron mg. 129,98

97 Mangan. mg. 63,50

98 Zinc mg. 52,40

99 Copper mg. 17,97

100 Cobalt mg. 0,14

101 Iodine mg. 0,47

102 Selenium mg. 0,19

104 Chromium mg. 0,49

105 Nickel mg. 0,07

107 Fluorine mg. 2,12

109 Arsenic mg. 0,07

111Lead mg. 0,80

113 Alumin. mg. 3,31
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Appendix Figure 1: Mean fold change of mRNA levels of macrophage markers Cd68 

and F4/80, in liver of Angptl4Tg.E3L mice compared to E3L control, fed for 24 weeks 

dietT with 0.4% additional cholsterol. Quantification was done with qRT-PCR. 

*Significantly different between E3L and Angptl4Tg.E3L, according to Student’s t-test 

(*P<0.05). 
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Abstract  
 

Most of the modulatory effects of fatty acids on inflammation can probably be 

attributed to fatty acid metabolites, including prostaglandins, leukotoxins, 

resolvins, endocannabinoids, ceramides and diacylglycerols. However, there is 

accumulating evidence that fatty acids are able to directly activate or suppress 

inflammatory pathways. The aim of the present study was to elucidate 

transcriptional targets of fatty acids in macrophages, as part of a general goal to 

elucidate mechanisms through which fatty acids exhibit a direct role in 

modulating inflammatory processes in macrophages. To that aim we performed 

microarray analysis in elicited mouse peritoneal macrophages treated with fatty 

acids, oleic (C18:1) or palmitic acid (C16:0), intralipid or chyle for 6 hours. We 

identified Hig-2 to be strongly upregulated by all treatments, which prompted 

us to further characterize its function. We found expression of Hig-2 to be the 

highest in peritoneal macrophages and white adipose tissue. Hig-2 was 

increased in lipid loaded mouse macrophages together with another lipid droplet 

coated protein Plin2. Hig-2 was highly induced by hypoxia in mouse 

macrophages, while intralipid and hypoxia showed a synergistic effect. 

Transcriptional regulation of Hig-2 was independent of PPARs. Further 

characterization of the transcriptional regulation of Hig-2 in macrophages is 

currently in progress. Chronic high fat feeding increased Hig-2 expression 

levels in adipose tissue but not in liver. Immunohistochemistry indicated 

colocalization of Hig-2 with Cd68 in infiltrating macrophages as part of crown-

like structures. We propose that Hig-2 has a specific role in macrophages and 

may function as an interesting target in the study of obese adipose tissue.  
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Introduction 
 

 Numerous studies have examined the impact of fatty acids on inflammatory 

pathways in tissues and cells. These studies point to a proinflammatory effect of 

saturated fatty acids, while n-3 PUFA have mostly anti-inflammatory properties 

[1]. Most of the modulatory effects of fatty acids on inflammation can probably 

be attributed to fatty acid metabolites, including prostaglandins, leukotoxins, 

resolvins, endocannabinoids, ceramides and diacylglycerols [1]. However, there 

is accumulating evidence that fatty acids may be able to directly activate or 

suppress inflammatory pathways.  

 Immune cells and particularly macrophages are equipped with a number of 

receptors that are able to recognize antigens, called pattern recognition receptors 

(PRR). Among those, the TLR family has been the most extensively 

characterized. Saturated fatty acids have been demonstrated to elicit TLR4-

dependent and TLR2-dependent responses in several cell types, including 

macrophages [2-5]. Subsequent studies have provided compelling evidence that 

saturated fatty acids activate NF-κB and stimulate expression of NF-κB targets 

such as COX-2, iNOS and IL-1α in macrophages by activating TLR4 signaling 

in a MyD88, IRAK-1 and TRAF6 dependent manner. In contrast, unsaturated 

fatty acids are ineffective or may even act as antagonists [2], [6]. Apart from 

TLR receptors, GPR120, a member of the G-protein coupled receptor (GPCRs) 

family was recently proposed to serve as a specific sensor for n-3 fatty acids in 

macrophages that mediates the putative insulin sensitizing and anti-diabetic 

effects of n-3 fatty acids in vivo by repressing macrophage-induced tissue 

inflammation [7]. 

 The aim of the present study is to explore transcriptional targets of free fatty 

acids in macrophages, as part of the general goal to elucidate mechanisms 

through which fatty acids exhibit a direct role in modulating inflammatory 

processes in macrophages.  
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Methods and Materials 

 

Materials: GW501516, Rosiglitazone was purchased from Alexis (Axxora, 

Raamsdonkveer, The Netherlands). Wy14643 was obtained from Eagle Picher 

Technologies laboratories (Lenexa, Kan). SYBR green was from Eurogentec 

(Seraing, Belgium), and all other chemicals were from Sigma (Zwijndrecht, The 

Netherlands). Fatty acids were from Larodan Free Chemicals (Malmo, Sweden). 

Chyle was isolated from rats fed a palm-oil based diet overnight, as previously 

described [8]. 

 

Cell culture: Peritoneal macrophages were obtained from C57Bl/6 mice by 

intraperitoneal injection with 1 mL 4% thioglycolic acid. After three days, mice 

were anesthetized with 1.5% isoflurane, bled by orbital puncture and killed with 

CO2. The macrophages were collected from the peritoneal cavity by washing it 

with 10 mL DMEM supplemented with 1% penicillin:streptomycin (P:S). 

Erythrocytes were removed by incubating the cell pellets with red blood cell 

lysis buffer (RBC) for 5 min on ice. After removal of the RBC, the cells were 

suspended in warm DMEM with 10% heat inactivated fetal calf serum (HI 

FCS) and seeded in a density of 3*10
5
 cells/cm

2 
and incubated at 37°C in a 

humidified 5% CO2 incubator. Three hours post plating, the cells were washed 

twice with warm PBS to remove non-adherent cells. Attached macrophages 

were kept always in fresh medium for two more days, before the experiments. 

 

RAW 264.7 cells were grown in DMEM supplemented with 10% HI FCS and 

1% P:S. 

 

Human THP-1 and U937 monocytes were grown in RPMI 1640 medium 

supplemented with 10% HI FCS and 1% P:S. They were differentiated into 

macrophages for 2 days with 100ng/mL phorbol-12-myristate-13-acetate 

(PMA) and after PMA was washed away, cells were kept for 2 days in fresh 

complete medium.  

 

Bone marrow derived cells macrophages were obtained from bone marrow cells 

via the following process: Bone marrow cells were obtained from the long 

bones of the hind legs of C57Bl/6 mice. The bones were removed, rubbed clean 

with 70% ethanol and washed with PBS. Bones were cut at the edges and the 
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bone marrow was flushed in 5ml of DMEM, with the use of a syringe. Acquired 

pellet was washed twice with PBS and resuspended in differentiation-medium 

consisting of 80% DMEM with 10% HI FCS and 1% P:S and 20% L929 

conditioned DMEM (10% HI FCS,1% P:S). The cells were seeded in a density 

of 1*10
5
 cells/cm

2
 and incubated for two days. After two days, 50% of the 

original volume of differentiation-medium was added and incubated again for 

three days. The medium was refreshed again and the cells were incubated 24h 

again before initiation of the treatment. 

 

Binding of free fatty acids to BSA: Before applied to the cells, free fatty acids 

were bound to BSA (5ug/mL per 1L) by incubation at 37
o
C for 30 min, 

as previously described [9]. Fatty acids were used in concentration of 250μM. 

 

Intralipid was used in concentration of 2mM 

 

PPAR agonists: The PPARα agonist Wy14643 was used in a concentration of 

1μM, the PPARβ/δ agonist GW501516 and PPARγ agonist rosiglitazone were 

used at a concentration of 0.5μM. 

 

Induction of hypoxia: Hypoxia was induced by the addition of 100μM iron 

chelator 2,2'-dipyridine (DP).  

 

Microarray Analysis: RNA from peritoneal macrophages was extracted with 

TRIzol reagent and purified using RNeasy Mini kit (Qiagen, Venlo, 

Netherlands). RNA quality was assessed on an Agilent 2100 bioanalyzer 

(Agilent Technologies, Amsterdam, the Netherlands) with 6000 Nano Chips 

using a Eukaryote Total RNA Nano assay. RNA from three different wells per 

condition was pooled and gene expression was measured with microarray 

analysis, using Affymetrix Mouse Genome 430 2.0 Arrays. Hybridization, 

washing and scanning of the arrays were done according to standard Affymetrix 

protocols. Scans of the Affymetrix arrays were processed using packages from 

the Bioconductor project. Raw signal intensities were normalized by using the 

GC-RMA algorithm [10]. Probesets were defined according to Dai et al. using 

remapped CDF version 12.0.0 based on the Entrez gene database [11]. In order 

to balance between random responses and relative weak transcriptional effects 

by the treatments, genes that met the cut-off of mean absolute fold change >1.2 
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were considered significantly regulated. Since we used pools of RNA per 

conditions, no statistics were feasible.  

 

Immunobloting: Rabbit-produced antibody against mouse Hig-2 was 

purchased from Santa Cruz. The antibody was used at 1:1000 dilution. 

Secondary antibody was a peroxidase-conjugated goat anti-rabbit IgG, 

purchased from Jackson Immunoresearch, West Grove US, and used at 1:5000 

dilution. Immunoprecipitation was performed in standard RIPA buffer. 18 ug of 

protein from cell lysates, collected in RIPA buffer was loaded.  

 

High-Fat Diet: Mice were purchased at The Jackson Laboratory (Bar Harbor, 

ME) and bred in our local facility. C57Bl/6 received a low-fat diet (LFD) or 

high-fat diet (HFD) for 18 weeks providing 10 or 45 energy percent in the form 

of triglycerides (D12450B or D12451, Research Diets, New Brunswick, NJ). 

The lard component in these diets was replaced by palm oil. At the end of the 

feeding experiment, liver and epididymal white adipose tissue were dissected, 

weighed, and immediately frozen in liquid nitrogen. The animal experiments 

were approved by the animal experimentation committee of Wageningen 

University. 

Immunohistology: Parafin preserved sections of liver and adipose tissue were 

used. Antibody for Cd68 was purchashed by Abdserotec and for Hig-2 from 

Bioconnect. The first day sections were left overnight at 37
o
C. Second day, we 

performed deparafinization of the sections, followed by inhibition of 

endogenous peroxidases for 30min. Hig-2 and Cd68 antibodies were used in 

dilution 1:500, overnight.  Negative control was not incubated with primary 

antibody. The third day incubation with senondary antibody was performed.  

Secondary antibody was used in dilution 1:200 and it was applied on the 

sections for 45min. Visualization of the complex was done with DAB staining. 

Hematocylin staining was perfomed as well. Areas that were stained obtained a 

brown colour. Furthermore, a general HE (hematoxylin eosin) staining was 

performed to visualize the structure of the tissue. 
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RNA isolation and qRT-PCR: Total RNA was isolated with TRIzol Reagent 

(Invitrogen, Breda, the Netherlands). 1μg of total RNA for the in vivo studies 

and 350ng of total RNA for the in vitro experiment was reverse transcribed 

using iScript (Bio-Rad, Veenendaal, the Netherlands). cDNA was amplified on 

BioRad MyIQ or iCycler machine using Sensimix polymerase (Invitrogen, 

Breda, the Netherlands). PCR primer sequences are shown in table 2. 

Table 2: Primer Sequences used for QPCR 

Primer 

Name 

Forward sequence Reverse sequence 

mHig-2 TGCTGGCGATCATGTTGACC TGACCCCTCGTGATCCAGG 

hHig-2 AAGCATGTGTTGAACCTCTACC TGTGTTGGCTAGTTGGCTTCT 

mPlin2 GCCTCTCAACTGGCTGGTAG ACAGCAAAAGGGGTCATCTG 

hPlin2 ATGGCATCCGTTGCAGTTGAT GATGGTCTTCACACCGTTCTC 

mCd68 CCAATTCAGGGTGGAAGAAA CTCGGGCTCTGATGTAGGTC 

mCd36 GAGCAACTGGTGGATGGTTT TCACTTCCTGTGGATTTTGC 
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Results 
 

Hig-2 is a novel target of fatty acids in mouse macrophages 

 

To screen for novel targets genes of fatty acids in macrophages, we treated 

thioglycolate elicited mouse peritoneal macrophages with palmitic acid (C16:0) 

or oleic acid (C18:1) for 6 hours and performed Affymetrix microarrays. 

Alternatively, peritoneal macrophages were treated with lipid emulsions in the 

form of rat chyle or Intralipid. Genes were ranked according to fold-induction 

by C16:0 and displayed in a heat map. Fold-induction by C18:1, intralipid, and 

chyle are shown in parallel. Interestingly, the RIKEN gene 2310016C08 was 

found to be the most highly upregulated gene by fatty acids (Figure 1). RIKEN 

2310016C08 was first described as a novel gene, that is inducible by hypoxia 

and glucose deprivation, giving rise to the name hypoxia inducible gene 2 (Hig-

2) [12]. Later it was described as a lipid droplet associated protein and a specific 

target of HIF-1, but not HIF-2 in human cancer cell lines. Our data show that 

Hig-2 is the gene most highly upregulated in response to fatty acids in mouse 

peritoneal macrophages. The official gene symbol of RIKEN 2310016C08 and 

Hig-2 is Hilpda. 
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Figure 1: HIG-2 is the highest regulated gene by free fatty acids. Microarray 

analysis on macrophages treated 6 hours with palmitic acid (C16:0), oleic acid (C18:1), 

intralipid (IL) and Chyle. Differentially expressed genes ranked from the highest to the 

lowest according to C16:0 group. Fold change of the top 20 differentially expressed 

genes and their functions are shown. Colours correspond to fold change values 

compared to the control. Red represents upregulated gene and green represents 

downregulated genes. 

 

We next determined the expression profile of mouse Hig-2 gene in several 

mouse tissues. Remarkably, Hig-2 was most highly expressed in thioglycolate-

elicited mouse peritoneal macrophages, followed by white adipose 

tissue>colon>brown adipose tissue>skeletal muscle (Figure 2). Based on its 

elevated expression, we could speculate that Hig-2 may have a specific role in 

macrophages. 
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Figure 2: Mouse Hig-2 shows the highest expression levels in mouse peritoneal 

macrophages and white adipose tissue. qRT-PCR quantification of Hig-2 mRNA 

levels, on mouse tissues. Expression levels of Hig-2 was normalized to the average 

values of 4 different housekeeping genes (36B4, U18S, actin and cyclophilin). mRNA 

levels of Hig-2 per tissue were divided by the Average mRNA expression level of Hig-2 

in all tissues measured, which was set at 1. 

 

In order to test the consistency of induction of Hig-2 mRNA levels by fatty 

acids in macrophages, we treated several macrophage cell lines and primary 

cells with oleic acid (C18:1). Despite a dramatic increase in macrophage lipid 

accumulation (Figure 3A), Hig-2 expression was only modestly or not increased 

by C18:1, in M1 and M2 human monocyte derived macrophages, respectively 

(Figure 3B). A similar lack of increase in Hig-2 by C18:1 despite enhance lipid 

accumulation was observed in human U937 macrophages and human THP-1 

macrophages, even though expression of the well characterized lipid droplet 

coating protein Plin2 was induced by C18:1 (Figure 3C,D). In contrast, 

expression of Hig-2 and Plin2 mRNA were increased in parallel by C18:1 in 

mouse RAW 264.7 and mouse peritoneal macrophages (Figure 3D). 
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Figure 3: Hig-2 regulation by fatty acids in different macrophage cells lines A. Oil 

red O staining on human M1 and M2 differentiated human monocyte derived 

macrophages, treated with C18:1 (250uM ) for 24 hours B. qRT-PCR quantification of 

mRNA levels of Hig-2 in M1 and M2 macrophages treated with C18:1 (250uM) for 

24hrs C. Oil red O staining on human U937 macrophages treated with C18:1 for 6h 

(left). qRT-PCR quantification of mRNA levels of Hig-2 and Plin2 in U937 

macrophages treated with C18:1, for 6hrs (right) D. qRT-PCR quantification of mRNA 

of Hig-2 and Plin2 in mouse and human cell line and primary cells after 6hours 

incubation with oleic acid (C18:1). Y-axis represents mean fold change. Errors bars 

represent SEM.*Significantly different between treatement (C18:1) and control, 

according to Student’s t-test (*P<0.05).  

 

Similar inductions of Hig-2 mRNA in RAW264.7 and peritoneal 

macrophages were observed in response to intralipid (Figure 4A). Upregulation 

of Hig-2 mRNA by intralipid was associated with marked induction of Hig-2 

protein in both types of macrophages (Figure 4B). 
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Figure 4: Upregulation of Hig-2 mRNA and protein in mouse RAW264.7 and 

mouse peritoneal macrophages after incubation with intralipid A. Mean fold 

change of mRNA levels of Hig-2 gene, quantified with qRT-PCR. Mouse RAW246.7 

cells and mouse peritoneal macrophages were incubated for 6 hours with intralipid.* 

Statistically different between the treated (IL) and control group, according to Student’s 

t-test (*P<0.05). B. Immunoblot showing that Hig-2 protein levels are increased in 

mouse RAW 264.7 and mouse peritoneal macrophages cell lysates, after 6 hours and 24 

hours incubation with intralipid. 

 

Hig-2 expression is upregulated by chemical hypoxia 

 

In order to investigate whether Hig-2 is upregulated by hypoxia in 

macrophages, we exposed mouse peritoneal macrophages, mouse RAW 264.7 

and BMDMs to chemical hypoxia by incubating them with the iron chelator 

2,2'-dipyridine (DP), an inhibitor of the respiratory chain reaction, and 

compared the effect with intralipid. Both DP and intralipid were almost equally 

potent in inducing Hig-2 in all tested macrophages, while together they 

produced a synergistic increase in Hig-2 expression. In contrast, Plin2 

expression did not respond or was even reduced by DP, while intralipid alone or 

in combination with DP effectively increased Plin2 mRNA levels (Figure 5A). 
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Hig-2 induction in lipid loaded macrophages is PPAR independent  

 

Considering that fatty acids act as ligands for PPARs and that Plin2 is a 

PPAR target gene [13,14], we explored the possible regulation of Hig-2 by 

PPARs. To that end we treated mouse peritoneal macrophages, mouse RAW 

264.7, human U937 and human THP-1 macrophages with pharmacological 

agonists for PPARα (WY14643), PPARβ/δ (GW501516) and PPARγ 

(Rosiglitazone). Whereas Plin2 was consistently upregulated by agonist for 

PPARβ/δ and PPARγ, we did not observe any effect of PPAR agonists on Hig-2 

mRNA levels, except of a 1.8-fold increase by GW501516 in RAW 264.7 

macrophages. There results suggest that in contrast to Plin2, Hig2 is probably 

not a PPAR target gene, at least in macrophages. 
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Figure 5: Hig-2 is induced by hypoxia mimetics and not by PPAR agonists in 

macrophages A. Mean fold change of mRNA levels of Hig-2 and Plin2 measured in 

mouse peritoneal macrophages, mouse RAW 264.7 macrophages and BMDMs, under 

normoxia, hypoxia (induced by hypoxia mimetic DP, 100uM), intralipid (2mM) and 

combined DP and intralipid. Duration of incubation was 6 hours. B. Mean fold change 

of Hig-2 and Plin2 mRNA levels in mouse peritoneal macrophages, mouse RAW 264.7 

macrophages, human U937 and human THP-1 macrophages treated for 6 hours with 

PPARα (WY 14643), PPARβ/δ (GW 501516) and PPARγ (Rosiglitazone). Expression 

levels were quantified by qRT-PCR. Error bars represent SEM.*Significantly different 

between treatment and control group, according to Student’s t-test, (* P<0.05, 

**P<0.01). 

 

Hig-2 is induced in adipose tissue upon high fat diet  
 

Obesity is associated with macrophage infiltration in adipose tissue. We found 

Hig-2 to be expressed at high levels in white adipose tissue and in peritoneal 

macrophages. Thus, we set out to investigate the expression of Hig-2 in liver 

and adipose tissue in lean mice and mice rendered obese by chronic high fat 

feeding. Whereas 18 weeks potently induced Cd36 in the liver in concert with 

development of fatty liver (Figure 6A,C), expression of Hig-2 as well as 

macrophage marker Cd68 were not increased. In contrast, chronic high fat 

feeding significantly increased Hig-2 and Cd68 mRNA in adipose tissue (Figure 

6B). Immunohistochemistry indicated colocalization of Hig-2 with Cd68 in 

infiltrating macrophages as part of crown-like structures (Figure 6D) 
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Figure 6: Hig-2 is upregulated in adipose tissue upon high fat diet and it colocalizes 

with the macrophages. Gene expression of Hig-2 and Cd68 and Cd36 in liver (A) and 

Hig-2 and Cd68 in white adipose tissue (WAT) (B) after 18 weeks high fat diet C. 

Hematoxylin eosin (HE) staining showing liver steatosis after 18 weeks on HFD. Low 

fat diet (LFD) is used as a control D. Immunhistological staining of white adipose tissue 

(WAT) sections from low fat diet (LFD) and high fat diet (HFD) group. Hig-2 staining 

is observed together with Cd68 macrophage staining (brown colour), around crown like 

structures. 
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Discussion  

 

Fatty acids have been shown to regulate a wide range of genes in several cell 

types. However, the impact of fatty acids on gene expression in macrophages 

has not been extensively investigated. Using microarray we identified Hig-2 as 

the most sensitive target gene of fatty acids in macrophages. Hig-2 has been 

previously described to be induced by hypoxia, chemical hypoxia and lipid 

accumulation in human renal carcinomas cells, human HeLa cells and human 

HuF7 cancer cell lines [12], [15]. In line with these data, we also found Hig-2 

mRNA and protein levels to be upregulated under conditions of lipid droplet 

accumulation as it is induced by intralipid in mouse RAW 264.7 and mouse 

peritoneal macrophages. Although most of the existing work on Hig-2 is on 

human cell lines, fatty acid treatment of human THP-1, U937 and human 

monocyte derived macrophages (M1 and M2) did not result in increased Hig-2 

expression levels, despite enhanced intracellular lipid accumulation, as 

manifested by Plin2 induction and confirmed by Oil red O staining.  Basal 

expression of Hig-2 in THP-1 and U937 macrophages seems to be similar to its 

expression in mouse RAW 264.7 and primary mouse macrophages (Ct 24-27). 

Since cancer cell lines may have very different characteristics from primary 

cells, further studies on human primary cells such as human monocyte 

macrophages are necessary to study the differential regulation of Hig-2 in 

human and mouse macrophages. For that purpose, the high variation between 

human donors necessitates a big sample size in order to draw reliable 

conclusions. The data presented here on Hig-2 expression in M1 and M2 human 

monocyte derived macrophages are based on the average result of two different 

donors and cannot be considered conclusive.  

Previously Gimm et al. visualized Hig-2 in HeLa cells using 

immunofluorescent staining. Hig-2 was found to partially colocalize with Plin2 

to the periphery of lipid droplets, and after staining for organelle markers, its 

localization in other cellular organelles such as mitochondria, endoplasmic 

reticulum, Golgi, autophagosomes and peroxisomes was excluded. Lipid 

droplets in non-adipose tissues have very small size, often less than 1µm [16]. 

In addition, lipid droplets are often juxtaposed to the endoplasmic reticulun 

(ER), mitochondria and peroxisomes [17], which makes it difficult to 

distinguish them from other cellular organelles without using electron 

microscopy. Saturated fatty acids are known to induce endoplasmic reticulum 
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stress and promote the formation of foam cells [18]. The ER is a large organelle 

running throughout the cytoplasm and therefore it cannot be excluded that Hig-

2 acts upon the lipid droplets formation via the ER. Although the intracellular 

localization of Hig-2 might be indicative of its function, further studies are 

necessary to elucidate how it may be involved in the formation of foam cells. 

Gimm et al. showed that overexpression of Hig-2 in HeLa cells clones increased 

lipid droplet formation. Currently, we are exploring siRNA mediated Hig-2 

knockdown in macrophages, which we expect to reveal the potential 

involvement of Hig-2 in lipid droplets formation under baseline and conditions 

of hypoxia or Intralipid/fatty acids incubation. So far attempts to knock down 

Hig-2 in mouse RAW 264.7 macrophages have proven to be difficult. 

In contrast to adipocytes, the primary function of macrophages is not to 

deposit lipids. Biogenesis of lipid bodies in macrophages is a process that 

happens in vivo during inflammatory reactions of different causes, such as 

bacterial infection, uptake of modified lipids or systemic inflammation. Lipid 

laden macrophages (foam cells) are sources of proinflammatory cytokines. 

Gimm et al. showed that Hig-2 overexpression is accompanied by lipid 

accumulation and cytokines expression in HeLa cells. Although it is likely that 

secretion of cytokines a is consequence of the lipid accumulation, we cannot 

exclude a direct role of Hig-2 in cytokine production by the macrophage.  

In adipose tissue, which becomes enriched with macrophages during obesity, 

we observed no staining of Hig-2 at the periphery of adipocytes and thus around 

the lipid droplets. Instead, Hig-2 was present in the recruited macrophages. 

While both Hig-2 and Cd68 mRNA were increased in the adipose tissue, neither 

Hig-2 or Cd68 increased in the liver, despite steatosis as reflected by increased 

Cd36 mRNA levels.  These data indicate that increase in Hig-2 mRNA is not 

necessarily connected with lipid droplet formation and might be a result of 

macrophage activation. This may be indirectly supported by the observation that 

Hig-2 is activated by hypoxia, which has been described to stimulate 

macrophage activation and phagocytic functions [19,20].  

Plin2 has been also described to be induced during hypoxia [21]. In contrast 

to Hig-2, in mouse macrophages Plin2 was found to be a specific target of 

PPARs and was not induced by chemical hypoxia. This discrepancy might be 

due to a difference between DP-induced hypoxia and hypoxia induced by a 

decreased oxygen tension, which is the most common way to study hypoxia. 

However, based on our results we may speculate that Hig-2 is regulated 
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differently than a typical lipid droplet associated protein. In order to clarify the 

regulation of in vivo, it would be useful to measure its expression in the liver, 

adipose tissue and macrophages derived from PPARα-/- and PPARβ/δ -/- mice 

fed a high fat diet, as well as in Hif-1 KO mice.  

This study provides a preliminary description of a newly identified target of 

fatty acids, Hig-2, in macrophages. Apart from what has already been suggested 

in the present discussion, the acquisition of a Hig-2 KO mouse would be 

extremely helpful to further characterize its function. Exposure of Hig-2 KO 

mice to high fat diet may reveal the potential involvement of Hig-2 in obesity 

and hepatic steatosis. 
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Increased levels of plasma triglycerides is one of the features of the 

metabolic syndrome and is considered a risk factor for cardiovascular disease 

[1,2]. Metabolic syndrome is associated with delayed postprandial clearance of 

plasma triglycerides, leading to hyperlipidaemia. After a meal triglycerides are 

packaged into chylomicrons in the small intestine and via the lymph system 

reach the blood and the peripheral tissues. Triglyceride-rich chylomicrons 

deliver free fatty acids to the organs after undergoing lipolysis by lipoprotein 

lipase, which is anchored to the capillary endothelium [3]. Under physiological 

conditions, organs respond to the increased plasma levels of triglycerides, by 

increased uptake of lipids, increased mitochondrial fat oxidation, esterification 

and storage of fatty acids as intracellular lipid droplets [4-6]. In metabolic 

syndrome ectopic fat storage to tissues with limited fat deposition, such as liver, 

skeletal muscle and heart [7,8], concomitant with improper balance of fat 

uptake, intracellular lipid accumulation and fat oxidation in those organs, give 

rise to cellular lipotoxicity. Lipotoxicity is a general term used to describe the 

condition of cell dysfunction or cell death due to excess accumulation of fat [9]. 

Mitochondrial dysfunction, endoplasmic reticulum stress, apoptosis and 

inflammation are some of the cell dysfunctions observed in lipotoxicity [10] and 

have been reported to be common characteristics of lipid related diseases, such 

as myocardial dysfunction, atherosclerosis and liver steatosis. Apart from the 

intracellular levels of lipids, the composition of fatty acids has been recognized 

as a separate factor in lipotoxicity occurrence. Accordingly, saturated fatty acids 

have been described as more lipotoxic compared to unsaturated fatty acids. 

Despite the big effort to understand the functions of dietary fatty acids at the 

cellular level, still the mechanisms via which they may perturb cell function 

remain unclear. In the first part of this thesis, we explore direct target genes of 

different dietary polyunsaturated fatty acids (PUFAs), in the mouse heart and 

we investigate the role of Angptl4, a highly responsive gene to dietary fatty 

acids, in the prevention of cardiac lipotoxicity. In the second part of this thesis, 

we explore the role of Angptl4 in the context of atherosclerosis and 

inflammation. Finally, we present a preliminary characterization of Hig-2, 

which we found to respond potently to fatty acid uptake and hypoxia in 

macrophages and we further explore its expression under high fat diet in liver 

and adipose tissue.  
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Fatty acids differ in their lipotoxic potential 

 

Fatty acids may affect lipotoxicity in several ways. They are substrates for 

production of lipotoxic compounds, they affect cell membrane organization and 

gene transcription [11-13]. Evidence suggest that fatty acids differ in their 

lipotoxic and inflammatory potential. Under conditions of increased influx of 

fatty acids, limited TG storage, or uncontrolled lipolysis, may direct fatty acids 

towards other metabolic pathways than lipid droplets, giving rise to a variety of 

lipotoxic derivatives, such as diacylglycerol, ceramides, C6-C22 acylcarnitines 

or other intermediates of impaired beta oxidation or lipid peroxide free radicals 

[14]. Increased levels of these intermediates have been associated with insulin 

resistance in skeletal muscle, cell apoptosis and myopathy in the cardiac muscle 

[15,16]. Long chain-saturated fatty acids, such as palmitate are precursors for 

ceramide synthesis. The latest is a highly bioactive lipid, which attacks cell 

membranes and promotes apoptosis. In addition, saturated fatty acids have been 

shown to induce endoplasmic reticulum stress, with subsequent effects on 

apoptosis, insulin sensitivity and uptake of modified lipids, such as oxidized 

LDL by macrophages [17,18]. In contrast n-3 PUFAs, DHA and EPA give rise 

to eicosanoids, such as resolvins and protectins, that have anti-inflammatory 

properties [19,20]. In turn, n-6 PUFAs have been described as pro-

inflammatory, since they are precursors of arachidonic acid. Those differences 

have led to the hypothesis, that the ratio between n-3/n-6 PUFA in our diet is an 

important factor of inflammatory and immune response. In line with this 

hypothesis, it has been observed that diets which have been proven beneficial 

for health, such as the Mediterranean diet are characterized by increased 

consumption of n-3 PUFA, whereas Western diet, that has been associated with 

chronic disease developement is more enriched in n-6 PUFAs [21,22]. 

Fatty acids may differentially alter antigen presentasion and immune 

response via modification of cell membrabe organisation. Membrane lipid rafts 

require lipids with saturated acyl chains and cholesterol, which pack tightly to 

form a liquid ordered phase. This tight packing is conferred by favorable van 

der Waals forces between saturated acyl chains, in addition to hydrogen 

bonding between neighboring sphingolipids and between the variable 

sphingolipidamide and the 3-OH of cholesterol. Unsaturated acyl chains, 

including PUFAs, do not pack well with cholesterol molecules and therefore 

form a liquid disordered phase [23]. It has been speculated that through these 
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physical properties PUFA acyl chains can modify membrane lateral 

organization and protein appearance on the cell surface, which may alter antigen 

presentation, cytokine production, lymphocyte proliferation, surface molecule 

expression, phagocytosis, and apoptosis or inhibit the activity of Tcells, such as 

natural killer (NK) cells [24,25]. 

Finally fatty acids can directly affect gene transcription, via interaction with 

nuclear receptors. PPAR ligand dependent activation by PUFA has been the 

most well characterized nuclear receptors. So far, three different isotypes of 

PPARs have been identified PPARα, PPARβ/δ and PPARγ. PPARα has been 

previously described as a master regulator of lipid metabolism. Additionally, 

PPARα has been shown to have an anti-inflammatory affect, which is partly 

mediated via NF-κB inhibition [26]. Regards the role of saturated fat on 

inducing inflammation, several studies have provided compelling evidence that 

saturated fatty acids activate NF-κB and stimulate expression of NF-κB targets 

such as COX-2, iNOS and IL-1α in macrophages by activating TLR4 signaling 

in a MyD88, IRAK-1 and TRAF6 dependent manner [31,32]. In contrast, 

unsaturated fatty acids are ineffective or may even act as antagonists. It has 

been reported that saturated fatty acids activate TLR4 by promoting its 

recruitment to lipid rafts via a mechanism involving reactive oxygen species 

[33]. Furthermore, a recent study showed rpL13a snoRNAs U32a, U33, and 

U35a to mediate the effect of lipotoxic myristate, palmitate and stearate in 

respect to increased ROS production, ER stress and subsequent cell death, while 

the less lipotoxic plamitoleate and oleate didn’t have the same effect [34]. 

Gene regulation by fatty acids in the focus of this thesis. In Chapter 3 we 

explore gene regulation by fatty acids in the mouse heart. Among heart’s inbuilt 

metabolic characteristcs is increased fat oxidation rates and limited storage 

capacity. Therefore, increased formation of lipid droplets or lipotoxic 

derivatives in the myocardium results in myocardial metabolic inflexibility and 

cardiac failure. It has been suggested that cardiac increased fatty acid oxidation 

and uncoupling, occur more efficiently by oleic acid, compared to palmitic acid, 

preventing the accumulation of ROS and lipid derivatives in the cytoplasm.  A 

small number of studies have investigated the differential effects of saturated 

and unsaturated fatty acids on cardiac metabolism. According to their findings, 

rodents that had received a diet rich in saturated fatty acids had increased 

ceramide production, apoptosis and cardiac damage after 8 weeks on diet. In 

contrast, those that were fed with unsaturated fatty acids were protected [27]. 
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Furthemore, a transcriptomics analysis comparing the type of genes induced by 

either oleic acid or palmitic acid in the isolated rat cardiomyocytes showed 

increased expression of beta oxidation genes, such as Cpt1, Pdk4 and Ucp3 by 

oleic acid, whereas palmitic acid induced endoplasmic reticulum stress and 

ROS production [28]. In line with this, we were able to appreaciate a number of 

genes in our study that were robustly regulated by PPARα and they were 

involved in fatty acid oxidation, such as Acot1, Acot2 and Ucp3. In the present 

thesis, we were not able to investigate the direct effects of saturated fatty acids 

on cardiac gene transcription. The main reason for that is the fact that 

triglycerides composed of long chain saturated fatty acids are solid at room 

temperature and can not be administered as an oral gavage. Since long chain 

saturated fatty acids are the most lipotoxic for cardiomyocytes, it is of interest to 

investigate the type of genes regulated acutely by saturated fatty acid. For that 

purpose, triglycerides composed of saturated fatty acids could be delivered by 

infusing chylomicrons isolated from the lymph of rats fed a diet that contains 

exclusively tristearin or tripalmitin, although it would be quite difficult to 

determine the appropriate dose. Alternatively, VLDL-like particles could be 

prepared using tristearin or tripalmitin and subsequently infused to the mice. 

In Chapter 3 we observed that after 6hours oral gavage of different PUFAs 

fed to WT and PPARα -/- mice, many target genes of PPARα were involved in 

inflammation and immunity. Immune related functions of PPARα have been 

less explored in the heart compared to other tissues, for example liver. 

Furthermore, we observed a substantial number of PUFA target genes to be 

PPARα independent. One gene that was markedly and consistently induced by 

all fatty acids was Zbtb16/PLZF, encoding a transcription factor that controls 

the development of effector functions in Natural Killer T (NKT) cells [29]. 

NKT cells represent a unique subset of lymphocytes that are reactive to so 

called lipid antigens, which include a broad range of microbial lipids that are 

unique structures of specific microorganisms and they are presented to them 

bound to Cd1d receptor. The latest is mainly expressed on antigen presenting 

cells, such as macrophages, dendritic cells, but it is also found in hepatocytes 

and according to public databases may be also present in white and brown 

adipose tissue. NKT cells comprise up to 2% of spleen, 20% of mononuclear 

cells in the liver and 40% of CD3+ cells in bone marrow in the mouse, making 

these cells a major component of the total T cell population. A recent study, 

interestingly showed that high fat diets enriched in saturated fatty acids (SFA) 
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and monounsaturated fatty acids (MUFA) caused a depletion in hepatic NKT 

cells in the liver leading to further activation of inflammatory signaling, insulin 

resistance, and hepatic steatosis, whereas high fat diet enriched with 

polyunsaturated fatty acids (PUFAs) didn’t have this effect [30]. Cd1d 

expression in cardiomyocytes and functions of NKT cells in the heart haven’t 

been explored. We have measured expression levels of Zbtb16 in several mouse 

tissues and we find heart to be the tissue with the highest expression of Zbtb16 

followed by the white adipose tissue and skeletal muscle. Thus, we may even 

speculate that specific cardiac functions of Zbtb16 in cardiomyocytes may 

mediate the immune related effects of PUFAs, independently of their effect on 

PPAR activation. 

 

Distinct functions of PPARα and PPARβ/δ in the heart  

 

All three PPARs are expressed in the heart. PPARα and PPARβ/δ are highly 

expressed in the cardiomyocyte, while PPARγ is almost absent (Chapter 4) [35]. 

For long time, PPARβ/δ was believed to be redundant to PPARα functions in 

the skeletal muscle [36], mainly due to the observation, that in vitro activation 

studies with PPAR isotype specific agonists showed that both PPARα and 

PPARβ/δ are able to activate mitochondrial fat oxidation [37]. Although, in 

vivo data on PPARβ/δ activation with synthetic agonists have not been reported, 

mice lacking PPARβ/δ suffer from mild cardiac steatosis (normal cardiac 

triglycerides in 2-month-old mice and a twofold increase when they are 9 

months old) and decreased OXPHOS in cardiac muscle [38]. Subsequent 

studies have suggested a distinct role for each of the PPAR isotypes in the heart 

and in the skeletal muscle [39,40], based on which PPARβ/δ has greater control 

over processes related to response to oxidative stress and adaptation to substrate 

availability. Accordingly, PPARβ/δ activation has been reported to reduce 

oxidative stress-induced apoptosis in cardiomyocytes [41] and to promote 

mitochondrial biogenesis, via PGC-1 activation [42]. Furthermore, Kelly et al.; 

have investigated the cardiomyocyte specific overexpression of PPARα and 

PPARβ/δ, showing the PPARβ/δ overexpression protected against 

cardiomyopathy. PPARβ/δ specifically regulated the expression of Glut4, hence 

PPARβ/δ overexpressing hearts had a higher capacity for glucose utilization 

compared to PPARα overexpressing ones. This resulted to reduced myocardial 

injury due to ischemia/reperfusion [43]. Finally, cardiomyocyte specific 
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deletion of PPARβ/δ, in PPARα null mice impaired mitochondrial biogenesis, 

but had no further effect of fat oxidation [44]. In chapter 4 we observed that 

upon activation of PPARs with physiological ligands, Angptl4, the most highly 

upregulated gene by all fatty acids, was a specific target of PPARβ/δ, but not 

PPARα, in mice with global deletion of PPARα or PPARβ/δ. Additionally, we 

found that PPARα didn’t increase Angptl4 expression upon activation with fatty 

acids, in rat cardiomyocytes, that had been transfected with siRNA targeting 

PPARβ/δ. In the same chapter we describe that Angptl4 overexpression protects 

against cardiac lipotoxicity, while Angptl4 deletion leads to increase production 

of lipotoxic derivatives in the mouse heart. The same is probably true for the 

skeletal muscle. Staiger H. et al had showed that Angptl4 is a specific target of 

PPARβ/δ in the skeletal muscle, though expression of PPARβ/δ is much higher 

than PPARα in skeletal muscle than in the heart [45]. Overall these studies 

postulate a distinct function of PPARα and PPARβ/δ in the heart. Driven by the 

above described observations, we may speculate that PPARα secures ongoing of 

fat oxidation, which is crucial for the heart function, whereas PPARβ/δ may 

sense changes in substrate availability or even distinct lipotoxic derivatives and 

activate downstream mechanisms, which aim to protect the heart from 

lipotoxicity. Further, exploring the target genes and functions of PPARβ/δ in the 

heart would help to increase our understanding on the functions of these nuclear 

receptor. Although, initially we aimed to carry out a detailed comparison of 

gene regulation upon deletion of PPARα and PPARβ/δ after an oral gavage of 

dietary fatty acids great differences in mice genetic background made this 

comparison non feasible. 

An intriguing question deriving from this thesis is how activation of PPARs 

by dietary PUFAs led to specific activation of Angptl4 by PPARβ/δ, while 

another well described PPAR target gene Ucp3 was specifically activated by 

PPARα. It is conceivable that in vivo metabolic processing of fatty acids give 

rise to compounds that may interact specifically with certain PPAR isotypes 

leading to differential gene regulation. Liver exhibits high and very similar rates 

of fat uptake with the heart, however long chain fatty acids effect on gene 

expression in the liver are mainly mediated by PPARα, with high overlap 

between different fatty acids, which is not the case in the heart. Possibly 

differences in the routes of uptake of fatty acids between the two tissues in the 

postprandial state may be the cause of differences in gene expression. Whereas 

the heart takes up dietary fatty acids as non-esterified fatty acids after LPL-
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mediated hydrolysis, the liver internalizes dietary fatty acids as TGs within 

chylomicron remnant particles [46,47]. In the liver circulating FFAs, which 

primarily originate from adipose tissue lipolysis (“old fat”), do not seem to be 

able to activate PPARα [48,49], whereas endogenously synthesized fatty acids 

(“new fat”) seem to mediate hepatic PPARα  activation [48]. In contrast, hepatic 

PPARβ/δ can be activated by plasma FFA [49], and likely the same is true in 

skeletal muscle, as revealed by the stimulatory effect of elevated FFA on 

expression of PPARβ/δ target Angptl4 in skeletal muscle [45],[50]. Apart from 

lipolysis of chylomicrons via LPL, fatty acids may be delivered in the heart in 

the form on NEFAs bound to albumin, coming from the adipose tissue or from 

VLDL remnants, which has been shown to be internalized via the VLDL 

receptors in the heart [51]. Therefore, similar to the liver it would be interesting 

to investigate in what extent VLDL-derived fatty acids or NEFA may cause 

differential activation between PPARα and PPARβ/δ in the heart. Tissues 

differences in intracellular fatty acid processing, via which PPAR ligands 

become available may serve as a possible explanation. Recently, Zechner et al; 

described Atgl lipolysis as an essential intermediate process for intracellular 

formation and release of PPARα endogenous ligands in the heart [52]. AtglKO 

mice and cardiomyocyte specific AtglKO mice suffered from impaired fatty 

acid oxidation and cardiomyopathy, which could be corrected by PPARα 

synthetic ligand Wy 14643, but not by PPARβ/δ synthetic ligand GW 501516. 

Interestingly, it has been shown that in the liver Atgl promotes PPARα activity, 

independently of ligand-induced activation [53]. These observations suggest 

that synthetic agonists of PPARs follow different routes of PPAR activation, 

compared to fatty acids and serve as a plausible explanation for the little overlap 

that we observe in genes regulated by fatty acids and by Wy 141643 in the heart 

as opposed to the liver.  However, still remains to be investigated whether 

different routes of lipids uptake from these tissues may differentially modify the 

Atgl dependent release of PPAR ligand formation or may even by pass it. 

Accordingly, future research on PPAR functions should be directed towards 

identifying the structure of endogenous PPAR ligands, in relation to their 

intracellular or tissue origin.  
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Anti-inflammatory functions of Angptl4 

 

Angptl4 exhibits high sensitivity to lipids, responding acutely to fatty acid 

fluxes in heart (this thesis) and muscle [45], exercise, fasting [50] or high fat 

diet [54]. Angptl4 has been described to be a potent inhibitor of LPL activity 

and Angptl4 overexpressing animals are characterized by elevated plasma 

triglyceride levels, that are dramatically induced during fasting. In the present 

thesis we have shown that global overexpression of Angptl4 decreased the 

production of lipotoxic derivatives in the heart on mice that were on a high fat 

diet for 8weeks, while Angptl4 KO mice showed the opposite. In line with these 

findings cardiac specific Angptl4 transgenic animals are characterized by 

elevated plasma TG together with decreased cardiac LPL activity yet these mice 

do not exhibit any change in post-heparin plasma LPL activity or LPL activity 

in non-cardiac tissues [55]. Hence, Angptl4 produced in heart seems to 

primarily act locally to protect the heart from lipid overload and consequent 

lipotoxicity [56]. It is unclear what accounts for the primary autocrine/paracrine 

versus endocrine function of Angptl4 in tissues. Additionally, cardiac specific 

Angptl4 overexpression resulted in a cardiac dysfunction, due to decreased 

availability of fatty acids as a substrate. In the present study we didn’t assess 

cardiac function in Angptl4 Tg or Angptl4 KO mice on a high fat. However, we 

plan to do this in the future.  

Both Angptl4 and LPL are targets genes of PPARs. In the present thesis we 

have shown that Angptl4 is upregulated by PPARβ/δ in response to increased 

influx of fatty acids. In addition, we have previously shown that the same 

mechanism is employed by macrophages to prevent lipotoxocity and foam cell 

formation. In macrophages Angptl4 is specifically activated by PPARβ/δ 

agonist. Hence, we postulate that Angptl4 may serve as a lipid “gate” keeper, 

which responds to differences in intracellular levels of fatty acids and attenuates 

their increased uptake in order to prevent lipotoxicity. In line with this model, 

during hypoxia, that promotes the utilization of glucose instead of fatty acids by 

the cardiomyocytes, Angptl4 is also potently activated. We may speculate that 

via regulation of lipid fluxes Angptl4 may indirectly affect the activation status 

of antigen presenting cells, like macrophages and further influence systemic 

inflammation. In Chapter 5, we suggest another mechanism of Angptl4 on 

inflammatory response and chemotaxis. We were able to show that Angptl4 

reduced atherosclerosis in mice on Western type diet with additional cholesterol 
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for 24 weeks, without causing any changes in plasma triglycerides and 

cholesterol compared to the control group. Angptl4 overexpression led to a 

significant decrease in monocyte adherence and macrophage accumulation in 

the plaque. In line with these findings, bone marrow derived macrophages 

(BMDMs) with higher expression of Angptl4 than the WT, migrated much less 

towards the chemoattractant protein MCP-1, compared to the WT BMDMs.  

Our findings suggest an effect of macrophage produced Angptl4 on 

chemotaxis. Recent studies have showed that the C-terminal portion of Angptl4 

protein interacts physically with integrin αVβ5 and affects keratinocyte 

migration, wound healing, and extracellular matrix remodelling [57,58]. 

Therefore, the role of the C-terminal may be more relevant in understanding the 

effect of Angptl4 in chemotaxis. Interestingly, we found that few TLR agonists 

increased Angptl4 expression in human THP-1 macrophages. TLRs are innate 

immune receptors, which recognize a wide range of bacterial proteins. 

Specifically TLR 4 has been shown to be activated by saturated fatty acids, 

while unsaturated fatty acids have been reported to have no effects or even may 

act as antagonists. Angptl4-/- mice on a high fat diet with saturated fatty acids, 

but not unsaturated fatty acids turn extremely sick after 12 weeks on a high fat 

diet, exhibiting inflammation and accumulation of foam cell macrophages in 

mesenteric lymph nodes. Our findings suggest a model of action of Angptl4 on 

inflammation, which probably involves TLR activation and thus, innate 

immunity, which doesn’t necessarily exclude the effect of Angptl4 on LPL 

activity.  

Several tissues have the ability to synthesize Angptl4 protein with the 

highest expression found in the liver, followed by the adipose tissue, thyroid, 

brain and small intestine. Recently, it has been suggested that non alcoholic 

fatty liver disease shares a common cause with atherosclerosis [59], the same 

might be is conceivable for adipose tissue inflammation that is often present in 

atherosclerosis. Therefore, we may speculate that Angptl4 might have a more 

systemic effect on atherosclerosis development, via local action in these tissues. 

Adipose tissue is a great pool of adipokines/cytokines and other lipophilic 

compounds. Several adipokines, such as adiponectin, visfatin, leptin and retinol 

binding protein-4 have been associated with systemic inflammation without 

necessarily having an effect of lipoproteins metabolism [60-65]. Angptl4 

overexpression increases lipolysis in the adipose tissue. Hence we may 

speculate that Angptl4 function may affect the secretion of lipolysis released 
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proteins or other lipophilic molecules that may have an effect on systemic 

inflammation and thus atherosclerosis. Of course this is speculative and such 

compounds need to be identified. However, it is a suggestion for future 

research.  

The role of Angptl4 in atherosclerosis in humans is uncertain. So far, there 

are inconsistent results regards the effects of a loss of function mutation of 

Angptl4 (E40K) on coronary atherosclerosis. In the study of Folsom et al E40K 

carriers exhibited lower levels of circulating triglycerides, higher HDL and 

overall a lower incidence of cardiovascular disease (CAD) incidence [66]. 

However, another study examining the CAD risk found that although E40K 

carriers had lower triglycerides and higher HDL, they showed a higher CAD 

risk independent of triglycerides and HDL-concentrations [67]. 

 

Hig-2 

 

Transcriptomics data have been a treasury of valuable information, which 

allows discoveries of novel genes, much faster compared to the pre 

transcriptomics era. In chapter 6 we performed microarray analysis on 

macrophages treated with different fatty acids. Hig-2, a gene that has been 

previously described to be a target gene of hypoxia inducible factor 1 (HIF-1) 

was the highest upregulated gene by fatty acids in macrophages. HIF-1 is a 

transcription factor, which is sensitive to oxygen and levels of reactive oxygen 

species in the cells and it is upregulated during hypoxia.  Accordingly, we found 

Hig-2 to be upregulated specifically by hypoxia in macrophages, but not by 

PPAR agonists. It is also upregulated in adipose tissue and liver during high fat 

diet, where we find it to colozalize with macrophages. Gimm T. et al described 

it as a lipid droplet associated protein [68]. Accumulating information on lipid 

droplets reveal that this cellular organelle have a rather complicated 

composition, which associates them with function beyond the triglyceride 

storage [69]. As it is discussed above they may host endogenous ligands of 

PPARs and other bioactive molecules. In relation to that, it is even conceivable 

that components of lipid droplets, such as lipid droplet-associated proteins, 

many of which are targets of PPARα and some are also able to promote fat 

utilization, such as Oxpat/pat-1 [70], may dissociate during lipolysis and 

regulate PPAR signalling. Indeed several lipid-associated droplets are regulated 

by ligand activation of PPARα, such as Mldp, Plin5. We didn’t find Hig-2 to be 
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a PPAR target gene in macrophages, however its regulation by PPARs has to be 

explored in other tissues, such as liver and adipose tissue. In macrophages Hig-

2 is upregulated by drug induced hypoxia, thus we may speculate that its role 

could be connected with substrate switch utilization (from fat to glucose), which 

is a characteric of hypoxia or inflammatory response, since hypoxia increases 

oxidative stress in macrophages and adipose tissue [71,72]. Lipid droplets are 

connected to the endoplasmic reticulum and also mitochondria and may affect 

the functions of these organs via proteins or lipophilic compounds exchanged 

among them. Future experiments in Hig-2-KO mice is expected to give more 

answers on the functions of Hig-2, which may serve as a link between high fat 

diet induced adipose tissue inflammation and liver steatosis and intracellular 

lipid induced inflammation.  

 

Conclusions 

 

  In conclusion, this thesis contributes new information on gene regulation by 

dietary PUFA in the mammalian heart and provides mechanistic insight on their 

previous reported beneficial effects. We show that PUFA can activate 

transcriptional mechanisms that are able to sense very early increases in influx 

of fatty acids and upregulate Angptl4 in order to prevent excess uptake of fatty 

acids and protect the cardiomyocyte from lipotoxocity. The upregulation of 

Angptl4 was due to selective activation of PPARβ/δ, but not PPARα by 

linolenic acid. Furthermore, we provide new insight in the role of Angptl4 on 

lipid metabolism and inflammation by describing a potential anti-inflammatory 

role of Angptl4, which protects against atherosclerosis development, possibly in 

an LPL independent manner. Finally, this thesis provides novel information on 

target genes of fatty acid on macrophages, by exploring the case of Hig-2, the 

most highly upregulated gene by fatty acids in macrophages. 
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SUMMARY  

Dietary fat is a strong predictor of chronic diseases, such as cardiovascular 

diseases, obesity, diabetes, dyslipidemia and metabolic syndrome. A great 

number of epidemiological and observational studies clearly show that in 

addition to the amount of fat consumed in a diet, fat composition is an equally 

important factor in the development of chronic diseases. Evidence abounds 

indicating that adherence to a diet with high content of polyunsaturated 

(PUFAs) and monounsaturated fatty acids (MUFAs) such as the Mediterranean 

diet has substantial health benefits, while diets with high content of saturated 

fatty acids (SFAs) such as the Western type diet increase the risk for the 

development of several chronic diseases.  

Nutritional genomics or nutrigenomics investigates the interaction between 

nutrients and genes at the molecular level, by using genomic tools. Within the 

field of nutrigenomics, dietary fatty acids and their metabolites are seen as 

signaling molecules that target specific cellular response systems. Dietary fatty 

acids have been reported to bind physically to PPARs, a family of ligand 

activated transcription factors, that play a major role in metabolic homeostasis. 

Three PPAR isotypes have been identified, PPARα, PPARβ/δ and PPARγ. 

Their expression and target genes vary among different tissues and cell types. 

After a meal triglycerides are packed into chylomicrons in the small intestine 

and via the lymph system, they reach the blood and the peripheral tissues. 

Triglyceride chylomicrons deliver free fatty acids to the organs after being 

lipolylised by lipoprotein lipase (LPL), which is anchored to the capillary 

endothelium. Among different organs, heart and liver show the highest uptake 

of dietary triglycerides, postprandialy.  However, opposite to the liver, heart is a 

constant working muscle, which covers its demands on energy mainly by fatty 

acids, delivered to the heart via hydrolysis of circulating triglyceride-rich 

lipoproteins. Unbalanced fatty acid uptake and fatty acid oxidation is common 

in cardiac diseases, such as cardiac failure, myocardial ischemia and diabetes. 

Heart is characterized by decreased lipid storage capacity, therefore chronic 

elevated levels of lipids uptake and intracellular storage is considered harmful 

and may lead to lipotoxic cardiomyopathy.  

Our first aim was to explore the whole genome effects of individual dietary 

fatty acids in the intact heart via transcriptional profiling. By conducting these 

experiments in wild-type and PPARα−/− mice, we aimed to determine the 
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specific contribution of PPARα, which has been previously described as a 

master regulator of lipid homeostasis in the heart. We took advantage of a 

unique experimental model, where mice were given a single oral bolus of 

synthetic triglycerides composed of a single fatty acid. We sacrificed the mice 

6hours after the oral gavage and we compared the effects of different fatty acids 

on gene expression by microarray analysis in the total heart. Many genes were 

regulated by one particular treatment only and among those most of them 

showed large functional divergence. Although, the majority of genes responding 

to fatty acid treatment were regulated in a PPARα-dependent manner, 

emphasizing the importance of PPARα in mediating transcriptional regulation 

by fatty acids in the heart, we observed a substantial number of genes regulated 

in a PPARα-independent manner. Finally, we observed that deletion and 

activation of PPARα had a major effect on expression of numerous genes 

involved in metabolism and immunity.  

We identified response to oxidative stress as the top upregulated process 

activated by all administered fatty acids in the heart. High rates of mitochondria 

oxidation, due to increased supply of substrate after the oral gavage are coupled 

with enzymatic and non-enzymatic mechanisms aiming to counterbalance the 

production of highly reactive secondary products of the respiratory chain, the 

reactive oxygen species (ROS) in the heart. Under conditions such as chronic 

high fat diet or insulin resistance, increased lipid influx in combination with 

uncontrolled production of ROS and lipid intermediates may result in 

mitochondrial malfunctioning and lipid accumulation. Myocardial lipotoxicity 

refers to the accumulation of intramyocardial lipids and is associated with 

contractile dysfunction and even myocytes death. We found Angptl4 to be the 

top upregulated gene, in all groups that received the fatty acids oral gavage. 

Angptl4 has been described as a target gene of PPARs and an endogenous 

inhibitor of the triglyceride hydrolyzing enzyme lipoprotein lipase (LPL), which 

catalyzes uptake of circulating lipids into tissues.  We were able to show that 

the strong upregulation of Angptl4 by dietary fatty acids is mediated by 

PPARβ/δ and is part of a feedback mechanism aimed at protecting the heart 

against lipid overload and consequently fatty acid–induced oxidative stress, one 

of the hallmarks of lipotoxic cardiomyopathy. 

Angptl4 has been shown to have a potent inhibitory effect in LPL activity 

and subsequent reduction in uptake of lipids by several tissues and cell types, 

including macrophages. Furthermore, Angptl4 was shown to prevent the 
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formation of foam cells in mesenteric lymph nodes upon high fat feeding. 

Accordingly, we hypothesized that Angptl4 may affect atherosclerosis 

development by reducing foam cell formation. Thus, our second aim was to 

investigate the role of Angptl4 on atherosclerosis development. We studied 

Angptl4 expression in atherosclerotic lesions and macrophages and determined 

the effect of Angptl4 transgenic overexpression in atherosclerosis prone 

ApoE3Leiden (E3L) mice fed a Western diet containing 0.4% cholesterol. We 

observed a decrease in atherosclerosis in Angptl4 overexpressing mice on an 

ApoE3L background. This effect was independent of the plasma cholesterol and 

triglyceride levels. Importantly, Angptl4Tg.E3L exhibited a less pro-

inflammatory phenotype with decreased accumulation of 

monocytes/macrophages in the atherosclerotic plaque, suggesting an anti-

inflammatory role of Angptl4 in atherosclerosis development. 

Finally, we set out to identify transcriptional targets of fatty acids in 

macrophages, as part of a general goal to elucidate mechanisms through which 

fatty acids exhibit a direct role in modulating inflammatory processes in 

macrophages. We identified Hig-2 to be strongly upregulated by all treatments. 

We found expression of Hig-2 to be the highest in peritoneal macrophages and 

white adipose tissue. Chronic high fat feeding increased Hig-2 expression levels 

in adipose tissue but not in liver. Immunohistochemistry indicated 

colocalization of Hig-2 with Cd68 in infiltrating macrophages as part of crown-

like structures. Based on these findings we propose that Hig-2 has a specific 

role in macrophages and may function as an interesting target in the study of 

obese adipose tissue. 

In conclusion, this thesis contributes new information on gene regulation by 

dietary PUFA in the mammalian heart and provides mechanistic insight on their 

previous reported beneficial effects. Furthermore, we reveal a novel protective 

role of Angptl4 in atherosclerosis development. We propose that this effect is 

mediated by a mechanism, which is independent of inhibition of LPL-mediated 

systemic lipid clearance and it is probably related to the effect of Angptl4 on 

macrophage oxLDL uptake and chemotaxis. Finally, in the present thesis we 

start up an effort to identify fatty acid target genes in macrophages, which open 

new future research paths. 
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SAMENVATTING (Summary in Dutch) 

 De hoeveelheid vet in onze voeding draagt bij aan het risico voor diverse 

chronische ziekten, zoals hart en vaatziekten, obesitas, diabetes, dyslipidemie en 

metabool syndroom. Een groot aantal epidemiologische studies laten zien dat 

naast de hoeveelheid vet in de voeding ook de vetsamenstelling een belangrijke 

factor is in de ontwikkeling van chronische ziekten. Er zijn sterke aanwijzingen 

dat het volgen van een voeding die rijk is aan meervoudig onverzadigde 

vetzuren en enkelvoudig onverzadigde vetzuren, zoals een mediterrane voeding, 

aanzienlijke gezondheidsvoordelen oplevert, terwijl een voeding die rijk is aan 

verzadigde vetzuren, zoals een westerse voeding, het risico op diverse 

chronische ziekten verhoogt. 

 Nutritional genomics of nutrigenomcis onderzoekt de interactie tussen 

voeding en genen op moleculair niveau door gebruik te maken van genomics 

tools. Binnen het vakgebied van nutrigenomics worden vetzuren in onze 

voeding en de daaruit gevormde metabolieten gezien als signaal moleculen die 

aangrijpen op specifieke cellulaire respons systemen. Vetzuren binden aan een 

familie van ligand-geactiveerde transcriptiefactoren die een belangrijke rol 

spelen bij metabole homeostase: de zogenaamde PPARs. Er zijn drie 

verschillende PPARs bekend: PPARa, PPARb/d en PPARg. De expressie van 

de verschillende PPARs varieert aanzienlijk tussen verschillende weefsels en 

diverse celtypen. 

 Na een maaltijd worden triglyceriden verpakt in chylomicronen in de dunne 

darm en bereiken vervolgens via de lymfe het bloed en de perifere weefsels. De 

in chylomicronen aanwezige triglyceriden komen beschikbaar voor de organen 

als vrije vetzuren na lipolyse door het enzym lipoproteïne lipase dat verankerd 

zit in de wand van de capillairen. De organen die relatief de grootste 

hoeveelheid van het vet in de voeding opnemen zijn het hart en de lever. In 

tegenstelling tot de lever is het hart een orgaan dat veel fysieke arbeid verricht 

en voornamelijk in de energiebehoefte voorziet in de vorm van vetzuren die via 

hydrolyse van triglyceride rijke deeltjes beschikbaar komen. Een disbalans 

tussen opname van vetzuren en oxidatie van vetzuren is een veel voorkomend 

probleem bij hartziekten, zoals hartfalen, myocardiale ischemie en diabetes. Het 

hart heeft een zeer beperkte opslagcapaciteit aan vet. Indien als gevolg van een 

verhoogde vetopname er sprake is van een verhoogde vetopslag dan kan dit 
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schade veroorzaken en aanleiding geven tot zogenaamde lipotoxische 

cardiomyopathie. 

 Het eerste doel was om de individuele effecten van vetzuren op het intacte 

hart in kaart te brengen via transcriptionele profiling. Door deze experimenten 

uit te voeren in wildtype en PPARa-/- muizen zijn we in staat de specifieke 

bijdrage van PPARa vast te stellen. PPARa is eerder beschreven als master 

regulator van het vet metabolisme in het hart. In ons onderzoek is gebruik 

gemaakt van een uniek experimenteel model waarbij aan muizen een enkele 

orale dosis wordt toegediend van synthetische triglyceriden bestaande uit één 

specifiek vetzuur. De muizen werden 6 uur na de orale toediening opgeofferd en 

vervolgens werden de effecten van de verschillende vetzuren op gen expressie 

in het hart vergeleken door middel van microarray analyse. Een groot aantal 

genen reageerde alleen op één specifieke behandeling en binnen een set van 

vergelijkbaar reagerende genen bestond veel variatie qua functie. Het merendeel 

van de genen die op vetzuren reageerden vertoonden een afhankelijkheid van 

PPARa, wat het belang van PPARa in regulatie van gen expressie door vetzuren 

illustreert. Desondanks werden ook diverse genen onafhankelijk van PPARa 

door vetzuren gereguleerd. Tenslotte had de afwezigheid van PPARa en de 

activatie van PPARa een aanzienlijk effect op expressie van talloze genen die 

betrokken zijn bij metabolisme en immuniteit.  

 De respons op oxidatieve stress kwam naar voren als het proces dat het 

meest sterk door de diverse vetzuren geïnduceerd werd. Een intensieve 

mitochondriële oxidatie als gevolg van een verhoogde aanvoer van substraat 

door middel van de orale gavage brengt enzymatische en niet-enzymatische 

mechanismen in gang die erop gericht zijn de productie van reactive oxygen 

species (ROS) in de ademhalingsketen te neutraliseren. Onder condities zoals 

een chronisch hoog vet dieet of insuline resistentie kan de verhoogde opname 

van lipiden in combinatie met ongecontroleerde productie van ROS en lipide 

intermediairen leiden tot mitochondriële dysfunctie en zelfs het afsterven van 

myocyten. Angptl4 kwam naar boven als het gen dat het meest sterk 

geïnduceerd werd door de verschillende vetzuur behandelingen. Angptl4 is 

uitgebreid beschreven als target gen van PPARs en fungeert als endogene 

remmer van het enzyme lipoproteïne lipase, wat verantwoordelijk is voor de 

hydrolyse van circulerende triglyceride-rijke deeltjes en essentieel is voor de 

opname van vet in de weefsels. De resultaten lieten zijn dat de inductie van 

Angptl4 door vetzuren loopt via PPARb en deel uitmaakt van een feedback 
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mechanisme dat erop gericht is het hart te beschermen tegen een overdaad aan 

vet en de daarmee gepaard gaande oxidatieve stress, wat één van de kenmerken 

is van lipotoxische cardiomyopathie. 

 Van Angptl4 is bekend dat het een sterke remmer is van de LPL activiteit en 

de daarmee tevens de opname van lipiden door verschillende weefsels en cellen, 

waaronder macrofagen, onderdrukt. Onze groep heeft recentelijk aangetoond 

dat bij gebruik van een vetrijke voeding Angptl4 de vorming van schuimcellen 

in de mesenterische lymfknopen voorkomt. Bijgevolg ontstond de hypothese 

dat Angptl4 de ontwikkeling van atherosclerose zou kunnen remmen door de 

vorming van schuimcellen te onderdrukken. Het tweede doel was aldus om de 

rol van Angptl4 bij de ontwikkeling van atherosclerose te onderzoeken. Om dat 

te bereiken is de expressie van Angptl4 in atherosclerotische plaques bepaald en 

tevens het effect onderzocht van Angptl4 overexpressie in het ApoE3Leiden 

diermodel, wat gekenmerkt wordt door ontwikkeling van atherosclerose bij 

consumptie van voer dat rijk is aan vet en cholesterol. Transgene overexpressie 

van Angptl4 leidde tot een aanzienlijk afname van atherosclerose. Dit effect was 

onafhankelijk van de plasma cholesterol en triglyceriden gehalten. De Angptl4 

transgene muizen hadden een minder inflammatoir fenotype met verminderde 

ophoping van monocyten/macrofagen in the atherosclerotische plaques, wat 

duidt op een anti-inflammatoire rol van Angptl4 bij de ontwikkeling van 

atherosclerose.  

 Het laatste deel was gericht op het proberen te identificeren van 

transcriptionele targets van vetzuren in macrofagen, wat deel uitmaakt van een 

poging om de mechanismen op te helderen waarbij vetzuren ontsteking in 

macrofagen kunnen beïnvloeden. Behandeling van macrofagen met diverse 

typen vet leidde tot een sterke toename van de mRNA expressie van het Hig2 

gen. Expressie van Hig2 was het hoogst in peritoneale macrofagen en wit 

vetweefsel. Expressie van Hig2 ging omhoog in vetweefsel maar niet in lever 

van dieren die langdurig voer kregen dat rijk was aan vet. Immunohistochemie 

liet zien dat Hig2 in het vetweefsel op dezelfde plek aanwezig is als de 

macrofaag marker Cd68 en deel uitmaakt van zogenaamde crown-like 

structuren. Op grond van deze bevindingen stellen we voor dat Hig2 een 

specifieke rol heeft in macrofagen en zou kunnen dienen als belangrijke target 

bij de bestudering van vetweefsel. 

 Samengevat draagt dit proefschrift nieuwe informatie aan over regulatie van 

genen door vetzuren in het hart en tevens beter mechanistisch inzicht aanlevert 
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voor de beschreven gunstige effecten van onverzadigde vetzuren. Tevens toont 

het proefschrift een nieuwe beschermende rol van Angptl4 bij de ontwikkeling 

van atherosclerose, waarschijnlijk via een mechanisme dat onafhankelijk is van 

het effect van Angptl4 op vet klaring door LPL maar waarschijnlijk gerelateerd 

is aan effecten van Angptl4 op opname van geoxideerd LDL door LDL en op 

chemotaxis. Tenslotte laat het proefschrift de identificatie zien van nieuwe door 

vetzuren gereguleerde gene in macrofagen, wat nieuwe 

onderzoeksmogelijkheden biedt. 
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“ It was long, many things changed in my life in the last five years, I had to 
manage a great deal of new information and projects, I felt hopeful and 
hopeless about it several times, but I’ve walked down this long road and now I 
do feel a bit wiser than before.”  
Great last words on my PhD experience! 

 
Now enough about me! Acknowledgements follow!!! 
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