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Lily 

Lilies belong to genus Lilium of Liliaceae family, and consist of about 80 species distributing 

in the northern hemisphere (Eurasia and North America continent). South-East Asia (China, 

Korean peninsula and Japan) and North America are two important distribution centers of lily, 

with 61 and 21 species respectively (Van Tuyl et al. 2011), and the number of native 

European and Caucasian (Eurasian) species is approximately 10 (Woodcock and Stearn 1950). 

Based on morphology, physiology, crossing ability and conserved DNA sequences, the 

species are taxonomically classified into seven sections, these sections are Martagon, 

Pseudolirium, Lilium, Archelirion, Sinomartagon, Leucolirion and Oxypetalum (Comber 

1949; De Jong 1974; Nishikawa et al. 2001; Nishikawa et al. 1999). 

Although many lily species have been used as ornamental plants for centuries, systematic 

breeding of lily cultivars started in the early 20th century, and the number of cultivars exceeds 

to more than 9000 thousand nowadays (International Lily register, 

http://www.lilyregister.com/; Leslie 1982; Woodcock and Stearn 1950). Today lilies are 

important plants that are cultivated for cut flowers and as pot plant, grown in  gardens and 

planted as vegetable or medical use in Eastern Asia. Because of the crossing barriers between 

different sections, different hybrid groups, which possess distinctive phenotype characters, 

have been bred since the early twentieth century (McRae 1998). These cultivar groups possess 

divergent genomes, which cannot crossed with each other by conventional hybridization 

method. Among which, Longiflorum, Asiatic and Oriental hybrids are of great commercial 

importance, and hence, are the most widely cultivated: 

Longiflorum hybrids (genome L): Cultivars in this group originated from section 

Leucolirion, and possess trumpet-shaped, pure white flowers, a distinctive fragrance, year-

round forcing ability and mostly nodding flowers. 

Asiatic hybrids (genome A): Cultivars in this group are derived from interspecific 

hybridization among about 12 species within Sinomartagon section, and possess a big 

variation of flower colour (orange, yellow, white, pink, red, purple and salmon), mostly 

upfacing flowers and early to late flowering (Woodcock and Stearn 1950). Some species, 

together with part of the cultivars in this group, show resistance to Fusarium oxysporum f.sp 

lilii and viruses (McRae 1998). 

Oriental hybrids (genome O): Cultivars from this group are bred from interspecific 

hybridization between six species in section Archelirion. Flowers in this group have large size 

and strong fragrance (McRae 1998). Most of the cultivars in this group show a fair degree of 

resistance to Botrytis elliptica  (Barba-Gonzalez et al. 2005a ) 
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Some basic concepts on genetics  

When an interspecific cross is made, the alien genome is introduced into a new genetic 

background, and the hybrids may undergo genomic shock (Chen and Ni 2006; McClintock 

1984; Natali et al. 1998). The instability in new-synthesized interspecific hybrids caused by 

genomic shock underlies rapid genome changes in the following generations,  such genome 

changes caused by complex intergenomic interaction consists of polyploidization, 

chromosome rearrangements (structural chromosome aberrations), gene conversion, 

aneuploidy and so on (Soltis and Soltis 2000), which are considered to be important in plant 

polyploids. As a result, extensive intergenomic exchanges were conclusively proven to have 

occurred in many allopolyploids, both revealed by DNA in situ hybridization and molecular 

markers (Brubaker et al. 1999; Osborn et al. 2003; Pontes et al. 2004).  

Recently, the so called chromosome rearrangements in allopolyploids were extensively 

analyzed in a few natural and re-synthesized allopolyploids. Among others, Brassica napus 

supplies a good example in point. B. napus is believed to originated from interspecific 

hybridization between B. oleracea (CC, 2n=18) and B. rapa (AA, 2n=20) followed by 

polyploidization (U 1935). When analyzing these natural and synthetic tetraploid B. napus 

populations with molecular markers, various types of “chromosome rearrangements” were 

detected, such as homoeologous non-reciprocal translocation, homoeologous reciprocal 

translocation, duplication, deletion and so on (Osborn et al. 2003; Parkin et al. 1995; Sharpe 

et al. 1995). Later on, it was confirmed that homoeologous recombination during meiosis of 

the haploid B. napus is the main reason of the genetic changes (Gaeta and Pires 2010; Gaeta 

et al. 2007; Nicolas et al. 2007; Xiong et al. 2011). In addition, genome changes, viz. deletion, 

duplication, inversion and so on, were also proven to be present by comparing the natural 

allopolyploids with the re-synthesized allopolyploids or their progenitors, in Arabidopsis 

suecica which is derived from cross between two diploid Arabidopsis species (Arabidopsis 

thaliana and A. arenosa)(O'Kane Jr et al. 1996; Pontes et al. 2004), in amphidiploid Nicotiana 

tabacum (Kenton et al. 1993), in cultivated Gossipium (Brubaker et al. 1999; Reinisch et al. 

1994), in Avena maroccana (Leitch and Bennett 1997; Soltis and Soltis 1999), in Avena 

sativa (Chen and Armstrong 1994), in allotetraploid Tragopogon (Lim et al. 2008b) and many 

other species.  

Genetic changes induced by genomic shock in early generations not only contribute to 

speciation of hybrids, but also supply diverse materials for plant breeding. Those above 

mentioned non-Mendelian and rapid genome reconstruction might be a mechanism for 

generating de novo genomic variation and increasing genetic and morphological complexity, 

which may partly explain the evolutionary success of allopolyploids over their diploid 
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counterparts (Finnegan 2002; Liu and Wendel 2002; Pikaard 2001; Rieseberg 2001b; Soltis 

and Soltis 1999; Song et al. 1995).  Since exchange of genetic contents is also critical for 

transferring traits across distantly related plant species to obtain combinations of desirable 

characteristics in agriculture and horticulture (Lim et al. 2003), intergenomic chromosome 

recombination has been extensively induced and utilized in introgression breeding and crop 

improvement of some main crops. Hexaploid wheat (AABBDD, 2n=6x=42) which contains a 

translocated  chromosome fragment on the long arm of the 1B chromosome from the rye 

(Secale cereale) 1R chromosome are widely used in wheat breeding, this satellite from 1R 

contains several agronomical important genes including those for seed storage proteins and 

for disease resistance. In the oilseed Brassica napus, lines with the N7-N16 reciprocal 

recombination harvested a significant higher seed yield compared with that without the 

reciprocal recombination (Osborn et al. 2003). 

Methods used for the detection of chromosome rearrangements 

Due to the importance of chromosome structure variation in plants, research on chromosome 

rearrangements has been a topic of interests for many decades, and the methods used to detect 

them cover classical cytogenetic methods, molecular marker systems, molecular cytogenetic 

techniques and sequence-based innovational methods. 

A wide range of classical cytogenetic methods have been applied for detecting 

chromosome rearrangements, both in diploid and polyploid species. Many small chromosome 

rearrangements that are not detected by mitotic observation can be seen in meiotic analysis 

according to the meiosis configuration. For example, an inversion heterozygote can be 

recognized by its association loop at metaphase I and dicentric & acentric fragments at 

anaphase I. A translocation heterozygote can also be detected by its multivalent formation at 

metaphase I and the aberrant segregation at anaphase I (reductional or equational segregation), 

which will cause duplication and deletion in the resultant gametes. Since the mid-20
th

 century, 

chromosome banding has become one of the main methods to analyze chromosome 

rearrangements. Because of the different banding karyotypes, some of the introgressed 

chromosome/segments can be distinguished by their specialized bands (Badaeva et al. 2007), 

For example, the chromosome 1R from rye demonstrates divergent C bands on the long arm, 

and as a result, the long arm becomes obviously visible when C banding technique is applied 

in the translocation lines. Furthermore, some structural variation can also be identified by 

combined banding techniques. A range of chromosome rearrangements, viz. inversion, 

deletion, fission and fusion, have been detected in many different species/species hybrids, 

such as Equus africanus somaliensis (Houck et al. 2000) and wheat (Friebe et al. 1996).   
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With the development of modern techniques, molecular markers are widely used for the 

detection of genome rearrangements. Compared with the traditional methods, molecular 

markers have solved the problem of poor resolution in detecting chromosome rearrangements, 

and have been proved to be a precise and effective way of detecting inter- and intra- specific 

chromosome rearrangements. Some types of structural variation of a chromosome, such as 

duplication and deletion, which are difficult to recognize with traditional cytogenetic methods, 

can be detected and reflected by the presence/absence of bands. One of the advantages is that 

the non-homologous translocation within the same genome can also be reflected. Furthermore, 

extensive inter- and intra- genomic rearrangements have been detected in many model plants, 

and the rates are much higher compared with conventional methods. In wheat, intergenomic 

translocation between non-homologous genomes can be easily detected using molecular 

markers (Mickelson-Young et al. 1995). Meanwhile, translocation between wheat and other 

species has also been characterized using different marker systems (Bonierbale et al. 1988; 

Boyko et al. 1999; Zhang et al. 1998). Furthermore, the characterization of chromosome 

rearrangements with molecular markers has also been used in some other plant species. For 

example, comparative genetics with RFLP mapping has revealed the existence of 

chromosome rearrangements between different plant species, viz., the comparison among 

wheat, maize, rice and other grass species(Gale and Devos 1998), between eggplant and 

tomato (Doganlar et al. 2002). As a result, comparative genetic mapping, in which different 

marker systems are used, has been proved to be an efficient way for detecting chromosome 

rearrangements.  

However, there are some drawbacks when detecting chromosome rearrangements with 

molecular markers, which will mislead the real occurrence of chromosome rearrangements. 

Firstly, markers can just identify the changes in the progeny, which leave the origin of such 

changes behind, and that is why molecular markers confused recombination from natural 

meiosis process and  real chromosome rearrangements. Secondly, changes in the intensity of 

bands cannot be well reflected by using DNA profiling method via counting the presence and 

absence of bands, when the parental bands share the same molecular weight or gene 

losses/conversion in duplications. Furthermore, balanced chromosome rearrangements such as 

reciprocal translocation and inversion, cannot be detected by molecular markers. As reported 

by many researchers, reciprocal recombinations in unreduced gametes produced by some 

interspecific hybrids could not be detected (Nicolas et al. 2007; Xie et al. 2010). In addition, 

marker systems require long-term collaborative research and is applicable for a limited 

number of plants (Badaeva et al. 2007).  

DNA in situ hybridization, including genomic in situ hybridization (GISH) and 

fluorescence in situ hybridization (FISH), was the predominant way and has received a 
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renewed interest in detecting chromosome rearrangements in recent years (Lim et al. 2008b; 

Pires and Hertweck 2008; Xie et al. 2010; Xiong et al. 2011). GISH, combined with FISH, 

allows the discrimination of alien chromosomes/segments and the identification of individual 

chromosomes in interspecific hybrids and backcrossing progenies (Barba-Gonzalez et al. 

2005b; Khan et al. 2009a; Lim et al. 2001b; Schwarzacher et al. 1992; Schwarzacher et al. 

1989; Stevenson et al. 1998; Zhou et al. 2008b). Since its successful application in detecting 

and analyzing intergenomic recombination between homoeologous genomes, the technique 

has been already used for detecting crossover events through analysis of anaphase I cells 

(Stevenson et al. 1998; Takahashi et al. 1997; Xie et al. 2010; Zhou et al. 2008a). The 

particular advantage of this system is that the two chromatids of each homoeologues have the 

same labeling status, and therefore all crossover exchanges between non-sister chromatids 

will be visible. As a result, it enables the accurate observation of homoeologous chromosome 

behaviours during meiosis. As pointed in a previous publication (Xie et al. 2010), the 

nonreciprocal and reciprocal recombination both originated from a natural meiosis process-

chiasmata formation and crossing over between homoeologous chromatids, that is also the 

reason that the term “translocation” is not accurate in Brassica napus (Nicolas et al. 2007; 

Parkin et al. 1995; Sharpe et al. 1995; Udall et al. 2005); As a result, some genera, which 

consist of divergent genomes and large chromosomes, viz. Tulipa, Lilium, Alstroemeria and 

so on, are ideal for the GISH analysis. However, several disadvantages are also unavoidable 

for detecting chromosome rearrangements using DNA in situ hybridization. the first one is its 

poor resolution which made small recombinations invisible. Meanwhile, some kinds of 

rearrangements like duplication and deletion are, however, very difficult to distinguish; 

another shortage is that GISH is very experimental demanding and labor-intensive. Beside 

these, GISH can only detect chromosome variations between homoeologous and 

nonhomologous chromosomes. With their pros and cons of molecular markers and molecular 

cytogenetic techniques, there is a tendency that the combining of these two methods will lead 

to relatively accurate results, which has been used in several reports.  

With the development of modern molecular biology, some innovational methods, such as 

whole genome sequencing and array comparative genomic hybridization (aCGH) which give 

detailed and informative sequence information,  have become available recently. Array-based 

comparative genomic hybridization allows high-resolution screening of copy number 

abnormalities in the genome, and becomes an increasingly important tool to detect deletions 

and duplications in the whole genome (Knijnenburg et al. 2005). 
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Scope for detection and analysis of chromosomal rearrangements in lilies 

Lily has been a model plant for cytogenetic research for more than one century. Lily species 

are predominantly diploid (2n=2x=24) with the exceptions of L. tigrinum and L. bulbiferum in 

which triploids (2n=36) are also present. Since Strasburger’s paper on the chromosomes of 

Lilium (Strasburger 1880), many researchers, using lily species, have focused on the study of 

chromosome morphology and karyotype analysis, meiosis studies, chromosome banding and 

so on (Anderson et al. 1994; Bach Holm 1976; Fogwill 1957; Noda 1978; Son 1977; Son and 

Song 1978; Stack et al. 1989; Stewart 1947). Furthermore, some structural aberrations in the 

diploid species and interspecific hybrids have also been detected by critically observation of 

mitotic and meiotic chromosome configurations. In an X-ray treated L. formosanum, 

paracentric inversion was detected according to the association configuration and the resultant 

dicentric and acentric fragments (Brown and Zohary 1955). In a natural population of L. 

maximowiczii, reciprocal translocation was characterized by the multivalent formation and 

abnormal segregation at anaphase I during meiosis  (Noda 1960). In addition, in the 

intrasectional hybrids of Lilium martagon var. album × L. hansonii, inversion was  also 

observed by  abnormalities of meiosis I (Richardson 1936). Since lily is not a  leading crop 

and its long generation time, previous studies only focused on normal cytogenetic research, 

with little interests in producing cytogenetic stocks like addition and substitution lines. 

Current commercial breeding of lily aims at combining desirable traits together through 

interspecific hybridization and backcrossing. Since the end of 20
th

 century, interspecific 

hybrids and polyploids have been two main characters of the new lily cultivars (Van Tuyl and 

Lim 2003), these cultivars are the combination of two or more homoeologous genomes from 

genetically divergent parental species. Such allopolyploids are ideal for analyzing 

intergenomic rearrangements using GISH for two main reasons: firstly, the lily genome 

belongs to the biggest in the plant kingdom (250 fold larger than that of Arabidopsis) and the 

chromosomes are very big which make the cytological observation easily (Leutwiler et al. 

1984; Zonneveld et al. 2005); Secondly, the genomes of different hybrid groups are so highly 

divergent that make the differentiation of each genome obviously and the structural 

rearrangements, if any, be detected accurately. 

As mentioned above, the occurrence of  chromosome rearrangements  in the newly formed 

allopolyploids has been revealed in many polyploid species. Like other plant taxa, how these 

genomes interact and harmonize with one another in lily interspecific hybrids as well as the 

backcrossing progenies is a topic of interests for many researchers. Though a critically 

analysis of the neopolyploids of lily, information about the origin of polyploids, 

homoeologous genome interaction and the speciation of allopolyploids can be acquired. As a 

result, GISH has already been successfully applied in lily hybrids for studying intergenomic 
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recombination, mechanisms of the unreduced gametes production, crossing-over events 

during meiosis and the construction of cytogenetic recombination maps (Barba-Gonzalez et al. 

2005a; Barba-Gonzalez et al. 2005b; Karlov et al. 1999; Khan et al. 2009a; Lim et al. 2000; 

Lim et al. 2001a; Lim et al. 2003; Xie et al. 2010; Zhou et al. 2008a).  Interestingly, it has 

been found that the so called intergenomic translocation in lily neopolyploids is not a real 

translocation, but recombination derived from phenomena in natural meiosis: chiasmata 

formation and crossing over (Xie et al. 2010).  

Unreduced gametes 

Polyploids with two or more chromosome sets, which consist of autopolyploids and 

allopolyploids according to the homologous relationship between genomes in the complement, 

are widespread in flowering plants. It is estimated that up to 70% species in angiosperm are 

polyploids and the origin is believed to arise commonly through the meiotic-derived 

unreduced gametes (Bretagnolle and Thompson 1995; Ramanna and Jacobsen 2003; Ramsey 

and Schemske 1998).  

Unreduced (2n) gametes,  gametes with a somatic chromosome number, are produced by 

most of the angiosperms. Since the 80s of the 20
th

 century, the importance of 2n gametes in 

crop breeding has been fully realized and the mechanisms responsible for 2n gametes 

production has been well studied in cultivated materials which possess high degree of 

heterozygosity and genetic variation (Ramanna 1992; Ramanna and Jacobsen 2003; Veilleux 

1985). Generally speaking, meiotic abnormalities such as the omission of the first or second 

meiotic division, abnormal spindle morphology in the second division, or disturbed 

cytokinesis can lead to the production of viable, unreduced gametes (Bretagnolle and 

Thompson 1995; Brownfield and Köhler 2011; Ramanna and Jacobsen 2003). Depending on 

the particular meiotic stages at which nuclear restituted, different restitution mechanisms have 

been proposed using traditional cytogenetic approaches and molecular cytogenetic techniques. 

In interspecific hybrids of lily, three different mechanisms viz. first division restitution (FDR), 

second division restitution (SDR), indeterminate meiotic restitution (IMR) (Lim et al. 2001a) 

are relevant to the production of viable unreduced gametes and are schematic illustrated in Fig. 

1.1. 
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Fig. 1.1. A comparison of normal meiosis and three types of restitution mechanisms during 

meiosis 

 

Meiotic analysis using cytogenetic and molecular cytogenetic methods has revealed that 

different types of unreduced gametes can be caused by various meiotic abnormalities. A 

normal meiosis involves two cell divisions. In the first division, homologous chromosome are 

segregated which is referred to as a reductional division; and the second division involves the 

separation of sister chromatids and hence is considered as an equational division. When there 
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is only an equational segregation in which homologous chromatids segregated during meiosis, 

FDR gametes will be produced; and when there is only a reductional segregation, SDR 

gametes will arise. During SDR, homologous and homoeologous chromosomes pair 

completely, and the chromatids in resultant products do not move to different poles but stay as 

one gamete without the simultaneous cytokinesis, and hence no formation of cell wall. 

However, in some of the interspecific hybrids of lily, bivalents disjoin reductionally and 

univalents divide equally before telophase I. Since there is only one-time division followed by 

cytokinesis, the resultant products are also 2n gametes, and the mechanism is called 

indeterminate meiotic restitution (IMR) (Lim et al. 2001a). For FDR-originated offspring, 

genetic loci that are proximal to the crossover point will be heterozygous, while for SDR, the 

segments distal to the crossover point will be heterozygous (Fig. 1.1).  

The process of polyploidization using unreduced gametes is termed as sexual 

polyploidization, which has progressed in some crops and contributed to plant breeding and 

crop improvement dramatically. Superiority of vigor, growth, yield, which are of agronomical 

importance, has been found in some of the sexual polyploidized progenies in a range of crops, 

such as banana, sugarcane, potato, alfalfa, lily, which are all triploid or complex polyploids 

(reviewed by Ramanna and Jacobsen 2003).  

Table 1.1. Some mutants that produce high frequencies of unreduced gametes during male 

meiosis in Arabidopsis thaliana 

Mutant Mutation 
Type of unreduced  

gametes 
References 

Dyad An equational segregation 

during meiosis 
FDR 

(Agashe et al. 2002; Mercier 

et al. 2001) 

Cdka1;2/tam No meiosis II occurring SDR 
(Cromer et al. 2010; Wang 

et al. 2010) 

Osd1 Failing to enter the second 

meiosis division 
SDR (d’Erfurth et al. 2009) 

Atps1 Disruption of spindle 

orientation in Meiosis II 
FDR (d'Erfurth et al. 2008) 

Tes/stud Failure of meiosis cytokinesis Tetraspores  (Yang et al. 2003) 

 

Recently, Arabidopsis has become a well-studied species for unreduced gametes formation. 

A few genes have been proved to be involved in the production of unreduced gametes (Table 

1.1). In Arabidopsis, a FDR-relevant gene SWI1/DYAD has been characterized, in which this 

dyad allele can result in an equational segregation without further division during female 
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meiosis (Mercier et al. 2001; Agashe et al. 2002; Ravi et al. 2008). Interestingly, mutants of 

two proteins, CYCA1;2 (a member of the cyclin A family) (d’Erfurth et al. 2010; Wang et al. 

2010; ) and Ommision of  Second Division 1 (OSD1) which both impede the entre of meiosis 

II and control the male and female meiosis (d’Erfurth et al. 2009), lead to the production of 

SDR gametes. A mutant of Arabidopsis parallel spindle1 (Atps1) can also disrupt the spindle 

orientation, which will lead to a mix of dyads and triads (two haploid cells together with a 

diploid cell) as well as some tetrads during meiosis (d’Erfurth et al. 2008). 

The recent discoveries of the genetic mechanisms that unreduced gametes produced in 

Arabidopsis and other species open an exciting avenue to put the knowledge into practice for 

plant breeding. Indeed, researchers are trying to develop new strategies to induce unreduced 

gametes by knockdown of specific proteins which have been mentioned before. With the 

available techniques of targeted gene manipulation, the generation of crops producing 

designed gametes is becoming realistic. Meanwhile, it will also enhance our understanding of 

the evolution and speciation of flowering plants.   

Meiotic abnormalities and bridges in interspecific hybrids 

Interspecific hybridization, which has been used for studying the relationship between 

different species and making new variation for further breeding, is quite a normal tool in plant 

breeding. One of the most important features of these distant hybrids is the reduced fertility. 

The reason of the sterility has been well studied in a few species hybrids and the reasons has 

been explained as due to the association failure and the abnormal segregation caused by 

chromosome structure differences at the first cell division during meiosis, which lead to 

aneuploidy and unviable gametes (Asano 1982; Barba-Gonzalez et al. 2005b; Gopinathan and 

Babu 1986; Jenkins and Scanlon 1987; Kopecký et al. 2008; Lee et al. 2011; Lim et al. 2001a; 

Pickering et al. 2004; Zhang et al. 1999; Zhou et al. 2008a). 

The main feature of interspecific hybrids during meiosis is the association failure in the 

first division. In interspecific hybrids, chromosomes from different species are normally 

partly homologous (homoeologous). During meiosis, these homoeologous chromosomes 

cannot recognize each other and hence, bivalents cannot be formed (Blanco et al. 1983; 

Jenkins and Scanlon 1987). As a consequence, univalents will randomly move to one of the 

cell poles and cause the imbalance of chromosome numbers between the subsequently formed 

two cells (Lim et al. 2001a; Poggio et al. 1999). Furthermore, it is also noticeable that in some 

of the distant hybrids, the meiosis is highly irregular due to the difference of basic 

chromosome number in the crossing parents. Even non-homologous chromosomes 

successfully paired together, interspecific hybrids could also suffer abnormal segregation at 

anaphase of the first division. During the process of speciation, genomes of related species are 
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quite divergent with various chromosome rearrangements. These structure variation can cause 

abnormal segregation and/or chromosome bridges during meiosis. Gametes from those 

meiotic divisions possess duplication/deletion and are generally sterile.  

Anaphase I bridging has been well documented in a few interspecific hybrids. Together 

with univalents and multivalents, the presence of anaphase bridges is a relatively normal 

phenomenon in hybrids, like Vigna umbellate × V. minima (Gopinathan and Babu 1986), 

Pinus hybrids (Saylor and Smith 1966), Chorthippus hybrids (Lewis and John 1963), Allium 

hybrids (McCollum 1974), Nicotiana tabacum × N. glauca (Trojak-Goluch and Berbec 2003), 

Phaseolus vulgaris × P. coccineus (Cheng et al. 1981),  Elymus farctus × E. repens (Heneen 

1963), Guizotia hybrids (Dagne 1994) and so on. The production of bridges during meiosis 

had once exclusively explained as the presence of chromosome rearrangements like inversion 

(McClintock 1931). Later on, another cause-U-type exchanges, became an alternative 

explanation for the production of bridges (Couzin and Fox 1973; Haga 1953; Jones and 

Brumpton 1971; Jones 1969; Karp and Jones 1983; Lewis and John 1963; Newman 1967; 

Rees and Thompson 1955). According to the meiotic configuration, these two causes can be 

distinguished. Moreover, molecular biology has revealed that two different mechanisms are 

mainly involved in the repair of double strand breaks (DSBs) in mitosis-homologous 

recombination (HR) and nonhomologous end joining (NHEJ). Crossovers have been 

explained as a process of DSBs and the repair with HR (Puchta 2005; Schwacha and Kleckner 

1995; Szostak et al. 1983), whereas the relationship between U-type exchanges and NHEJ is 

not clear yet.  

Scope and aim of the thesis 

In this research, an attempt will be made to investigate the following four topics:  

1. to analyze the genome composition of mitotic and meiotic polyploidized neopolyploids 

of lily hybrids, and detect, if any, intergenomic chromosome rearrangements as a result of the 

so-called genomic shock.  

2. to elucidate the meiosis process, especially the crossing-over events happened at 

anaphase I of interspecific hybrids of LA lilies and the gamete formation. 

3. to detect the abnormalities of meiosis, including the failure of chromosome pairing, 

abnormal association and segregation, and any other chromosome rearrangements during 

meiosis of the interspecific hybrids of LA lilies.  

4. to trace the origins and behavior of the aberrant small chromosomes occurring in the 

backcrossing progenies,. 

With those above mentioned purposes, interspecific hybrids were made and distantly 

related hybrids between Longiflorum and Asiatic cultivars became available. Then the 
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process of meiosis such as chiasmata formation and crossing over were critically analyzed 

using GISH and FISH. Some genotypes, which showed a low fertility (others highly sterile), 

were backcrossed with their Asiatic parent, and the triploid progeny derived from sexual 

polyploidization were evaluated for their intergenomic recombination. The thesis is structured 

as follow:  

Chapter 2 provides a comparison of intergenomic recombination in different populations 

(meiotic and mitotic polyploidized progenies), and traces the origin of these recombination by 

scoring the frequency of reciprocal and nonreciprocal products and analyzing the process of 

meiosis in the interspecific hybrids of LA lilies. 

Chapter 3 presents the GISH-analysis of association and crossing over events in  

interspecific LA-hybrids, and the statistics of different types of crossing over. 

In chapter 4, structural variation was characterized according to the bridge production and 

chromosome breakage during meiosis, and the bridges was explained as the occurrence of U-

type exchanges. 

Chapter 5 reports the observation of two types of aberrant small chromosomes (de novo 

and existing), and characterized them using GISH and FISH with different probes. 

In chapter 6 the general discussion the occurrence of chromosome rearrangements as well 

as polyploidization and their significance in genetic mapping of Lilium are discussed and the 

potential utilization of different chromosome rearrangements were prospected.  
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Abstract  

Two types of newly induced polyploids (neopolyploids) of Lilium hybrids were monitored for 

the occurrence of chromosomal rearrangements through Genomic in situ Hybridization (GISH) 

technique. One of the populations was obtained through crossing an allotriploid Longiflorum 

× Oriental hybrid (LLO) and an allotetraploid Longiflorum × Trumpet hybrid (LLTT) both of 

which were derived from somatic chromosome doubling. The other type of allopolyploid 

population was derived from meiotic chromosome doubling in which numerically unreduced 

(2n) gametes from two different interspecific hybrids, viz., Longiflorum × Asiatic (LA) and 

Oriental × Asiatic (OA), were used to get backcross (BC) progeny with the Asiatic parents. 

GISH clearly discriminated the three constituent genomes (L, T and O) in the complements of 

the progeny obtained from mitotic chromosome doubling. A total of 26 genotypes were 

analyzed from this population and there was no evidence for any chromosomal 

rearrangements. However, in the case of meiotically doubled allopolyploid progeny 

considerable frequencies of chromosomal rearrangements were observed through GISH. The 

so-called chromosomal rearrangements in meiotic polyploids are the result of homoeologous 

recombination rather than “translocations”. Evidence for the occurrence of meiotic 

recombination in the LA hybrids has been confirmed with GISH on meiotic chromosomes.  

Thus, there was evidence that neopolyploids of Lilium hybrids did not possess any noticeable 

chromosome rearrangements.  

Keywords: Lilium; polyploids; genomic in situ hybridization (GISH); homoeologous 

recombination 
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Introduction 

The occurrence of profound changes in newly synthesized polyploids (neopolyploids) has 

been recognized for a long time in many plant species (see review, Ramsey and Schemske 

2002). Such changes occur in both auto- and allopolyploids and exhibit meiotic complexity 

including multivalent pairing, multisomic inheritance and the production of unbalanced 

gametes. More recent investigations have indicated that extensive “chromosomal 

rearrangements” commonly occur in neopolyploids of some plant species, the chromosomal 

rearrangements in these cases include translocations, duplications and deletions. Some 

examples of neopolyploids that have been analysed in detail are: Brassica species hybrids 

(Nicolas et al. 2007; Osborn et al. 2003; Song et al. 1995; Udall et al. 2005) and hybrids 

between wheat and its related species (David et al. 2004; Feldman et al. 1997; Zhang et al. 

2008). The implications of such chromosomal rearrangements for the evolution of polyploids 

have been reviewed (Leitch and Bennett 1997, 2004; Wendel 2000). Moreover, if extensive 

chromosomal rearrangements do occur, they might have implications for the speciation of 

neopolyploids.  

Apart from other observations on neopolyploids, molecular cytogenetic analyses using 

genomic in situ hybridization (GISH) technique on some of the allopolyploid crops and their 

relatives have revealed the occurrence of several intergenomic translocations in their 

complements. For example, in tobacco (Nicotiana tabaccum L.) nine intergenomic 

translocations have been detected (Kenton et al. 1993); in Avena maroccana Gand. five and in 

cultivated oat (A. sativa L.) as many as 18 intergenomic translocations have been identified 

(Chen and Armstrong 1994; Jellen et al. 1994). It is concluded that such translocations may 

occur following polyploid formation (Leitch and Bennett 1997). In the case of tobacco and 

wheat there is convincing evidence that these translocations involve nonhomologous 

chromosomes of different genomes (Parokonny and Kenton 1995; Zhang et al. 2008). 

Unlike translocations that involve nonhomologous chromosomes, the occurrence of so-

called “homeologous translocations” have been reported in the case of neopolyploids of 

Brassica napus L. (2n = 4x = 38) (Nicolas et al. 2007; Osborn et al. 2003; Udall et al. 2005). 

The neopolyploids used in these analyses were produced by crossing dihaploids of B. napus 

(2n = 2x = 19) as female parents with tetraploid male parents. The progenies in these cases 

originated through the functioning of 2n eggs from the dihaploids and 2x pollen from the 

euploid parent. As expected, the progenies were tetraploid. By genotyping these 

neopolyploids with molecular markers, extensive chromosomal rearrangements that included 

“homeologous nonreciprocal translocations (HNRT), duplications and deletions were 

observed (Nicolas et al. 2007). The origin of chromosomal rearrangements was explained as 

due to recombination between the two distinct but related genomes of B. napus (AACC), i.e., 

A = B. rapa (x = 10) and C = B. oleracea (x = 9) during the formation of 2n eggs in the 

dihaploids. Thus, based on the examples of wheat and tobacco on the one hand and B. napus 
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on the other, two types of translocations can be distinguished: nonhomologous and 

homoeologous translocations. 

During the past several years, a large number of polyploids have been induced by using 

hybrids of species and cultivars of Lilium and the resulting neopolyploids were analysed  

through GISH (Barba-Gonzalez et al. 2004; Barba-Gonzalez et al. 2005b; Barba-Gonzalez et 

al. 2006b; Karlov et al. 1999; Khan et al. 2009a; Lim et al. 2000; Zhou et al. 2008b). For the 

synthesis of polyploids, both somatic chromosome doubling of the F1 hybrids through 

chemicals such as colchicine or oryzalin as well as sexual polyploidization through 

numerically unreduced (2n) gametes were used. These neopolyploid progeny are ideally 

suitable for cytological analysis using GISH technique for two important reasons. 1. The 

chromosomes of Lilium species are very large and suitable for cytological analysis. 2. The 

genomes of the parents used for producing hybrids and their neopolyploids are so well 

differentiated that structural rearrangements, if any, can be identified accurately through 

GISH in meiotic as well as somatic cells. The main aim of the present study is to investigate, 

through GISH analysis, whether chromosomal rearrangements occur in the neopolyploids of 

Lilium. Furthermore, the reasons why intergenomic recombination in hybrids might be 

mistaken for chromosomal rearrangements are discussed.  

Materials and methods 

Plant materials  

Plant material consisted of polyploids derived from the hybrids of four groups of diploid (2n 

= 2x = 24) cultivars, viz., Longiflorum (L), Asiatic (A), Oriental (O) and Trumpet (T). 

Because the cultivars are derived from crossing some closely related Lilium species (McRae 

1998), the specific names of individual species are avoided and the letters in each case 

indicate the genomes. The first three of these groups (L, A and O) have resulted from crossing 

of closely related species within each of the three taxonomic sections, viz., Leucolirion, 

Sinomartagon and Archelirion respectively. The last one, the Trumpet group, also belongs to 

the section Leucolirion, the same as Longiflorum, but forms a separate crossability group 

within the section and possesses a clearly differentiated genome (Lim et al. 2008a). For the 

analysis of polyploids derived from somatic chromosome doubling, the progeny of a cross 

between an allotriploid ‘Triumphator’ (LLO) with an allotetraploid (LLTT) the latter supplied 

by one of the Dutch lily companies (Worldbreeding BV) were used. The triploid parent of this 

cross was produced by backcrossing the allotetraploid, LLOO, hybrid with diploid 

Longiflorum (LL). Meiotically doubled polyploids were produced by backcrossing 

Longiflorum × Asiatic (LA) and Oriental × Asiatic (OA) F1 hybrids with Asiatic parents in 

which the F1 hybrids had contributed 2n gametes and the resulting progenies were triploids 

(Barba-Gonzalez et al. 2006a; Khan et al. 2009a). Part of the backcross progeny of meiotic 
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polyploids was supplied by the following Dutch lily breeding companies: De Jong Lelies BV, 

Royal Van Zanten BV, Testcentrum BV, Vletter and Den Haan BV and Worldbreeding BV.  

Mitotic and meiotic chromosome preparations    

For mitotic chromosome preparation, young roots were treated with 0.7mM cyclohexamide 

for 4-6 hours at 4°C then transferred to Carnoy’s Solution (Ethanol 3: Acetic acid 1) and 

stored at 4°C until use. Root tips were incubated in enzyme mixture (1% cellulose RS, 1% 

Pectolyase Y23, in 2mM citrate buffer, pH 4.5) for 90 minutes at 37°C. Mitotic metaphase 

chromosomes were spread according to Ross et al. (1996). For meiotic chromosome 

preparation, young anthers with stages from prophase I to telophase II were collected and 

fixed in fresh Carnoy’s solution for 24 h at 4°C. Part of fixed anthers was squashed in a drop 

of 2 % acetocarmine to determine appropriate meiotic stage. Anthers with proper meiotic 

stages were incubated in enzyme mixture containing 1% pectolyase Y23, 1% cellulase RS and 

1% cytohelicase in 10mM citrate buffer (pH 4.5) at 37 °C for about 25 – 35 minutes. 

Subsequently, the procedure used for meiotic chromosome preparations was the same as used 

for mitotic chromosomes.  

GISH procedure 

In case of LLO × LLTT population, total genomic DNA was extracted from young leaves of 

Oriental cultivar ‘Sorbonne’ and Trumpet cultivar ‘Royal Gold’ with CTAB method. The 

DNA was sonicated to 1-10kb fragments and used as probe. The DNA of Longiflorum 

cultivar ‘White Fox’ was autoclaved to 200-600bp fragments and used as block. For LA × AA 

and AA × OA hybrids and interspecific F1 genotypes, sonicated DNA from Longiflorum 

cultivar ‘White Fox’ and Oriental cultivar ‘Sorbonne’ was used as probe respectively, while 

autoclaved DNA from Asiatic cultivar ‘Connecticut King’ was used as block. Probe DNA 

was labelled with either Digoxigenin-11-dUTP or Biotin-16-dUTP by standard Nick 

translation according to the manufacturer’s instruction (Roche, Germany). The GISH 

procedure was carried out as described previously (Khan et al. 2009a; Lim 2000). Briefly, the 

hybridization mixture contained 50% formamide, 10% dextransulphate, 2×SSC, 0.25% SDS, 

0.6-1.0 ng/μl for each probe and 15-50 ng/μl block DNA. After hybridization and stringency 

washing, the probes labelled with Digoxigenin-11-UTP and Biotin-16-UTP were detected by 

anti-digoxigenin and Cy3-streptavidin systems respectively. Then the slides were 

counterstained with 1 μg/ml DAPI and mounted with Vectashield. Preparation were analysed 

using a Zeiss Axiophot epifluorescence microscope and photographed with a Canon digital 

camera. 

Chromosome identification and karyotyping 

Images of mitotic metaphase chromosomes were measured using the computer program 

MicroMeasure (Reeves and Tear 2000). In each of the four genomes (L, A, O, T), the 
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chromosomes were put into sequence according to the decreasing short arm length (Khan et al. 

2009a; Lim et al. 2001b; Stewart 1947), and in order to identify the chromosome number in 

each genome, chromosome length, arm ratio, the centromere index (short arm length/ long 

arm length +short arm length), and relative chromosome length index (individual 

chromosome length/total length of a set of chromosomes) were used as identification tools 

(Barthes and Ricroch 2001).  

Statistical analysis 

A Chi-square (χ
2
) test was used to determine whether observed reciprocal and nonreciprocal 

product frequencies in the polyploids from meiotic chromosome doubling are significantly 

different with expectations.   

Results 

Because the progeny derived from LLO × LLTT crosses were expected to possess 

chromosomes from three different genomes (L, O and T), GISH with two probes was used to 

detect three types of chromosomes simultaneously in the complements (Fig. 2.1a). For the 

interspecific F1 hybrids and meiotically doubled backcross progeny of LA and OA hybrids, 

only two genomes were involved and they were analysed through an one-probe GISH 

procedure. The results of the two types of populations are described separately.  

 

Table 2.1. Genome composition of the progeny derived from crossing allotriploid (LLO) × 

allotetraploid (LLTT) parents derived from somatic doubling determined through GISH 

Cross  Number of 

plants 

Number of 

chromosomes 

Genome composition Number of 

recombinant 

chromosomes 

L-

genome 

O-

genome 

T-

genome 

LLO × LLTT 6 40 24 4 12 0 

LLO × LLTT 8 41 24 5 12 0 

LLO × LLTT 5 42 24 6 12 0 

LLO × LLTT 4 43 24 7 12 0 

LLO × LLTT 3 44 24 8 12 0 

 

Chromosome composition of progenies derived from somatic doubling 

 The progeny of LLO × LLTT cross were expected to be aneuploid, because LLO was an 

allotriploid and had contributed aneuploid gametes whereas euploid 2x gametes were 

expected to be functional from the LLTT parent. In all, 26 progeny were analysed through 

GISH to assess their chromosome constitution (Table 2.1). As expected, all the genotypes of 

this population were aneuploid with chromosome numbers ranging from 40 to 44. A notable 

feature was that the chromosomes of the three constituent genomes, viz., L, O and T were 

clearly distinguishable in individual cells (Fig. 2.1a). Invariably, there were 24 chromosomes 
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of L genome and 12 of T genome. The number of chromosomes of O genome, however, 

varied from a minimum of four to a maximum of eight which was the cause of aneuploidy 

(Table 2.1). A significant feature was that in none of the analyzed 26 progeny there was any 

evidence for the presence of chromosomal interchanges, either due to intergenomic 

recombination or translocations. This was expected from the fact that a cursory examination 

of the parents (viz., LLO and LLTT) had indicated the absence of any chromosomal 

rearrangements. 

 

Table 2.2. Statistics of genotype number, recombinant chromosomes, reciprocal and non-

reciprocal product in the meiotic polyploidized progeny of LA × AA and AA × OA crosses 

Group 
Number of 

plants 

Recombinant 

chromosomes 

Number of reciprocal 

products 

found/Expected 

Number of 

nonreciprocal 

products 

found/Expected 

LA × AA 64 362 87/90.5 182/181 

AA × OA 36 131 28/32.75 77/65.5 

 

Chromosome composition of sexual polyploid progenies of LA and OA hybrids   

In the case of BC1 progeny of LA and OA hybrids, 100 (64 + 36 respectively) genotypes 

were analysed through GISH (Table 2.2). All of these progeny had originated through the 

functioning of 2n gametes from the F1 LA and OA hybrids. A common feature of these 

sexual polyploid progeny was the occurrence of extensive homoeologous chromosomal 

exchanges due to intergenomic recombination (Fig. 2.1b; Table 2.2)  In the backcross progeny, 

although  the number of recombination sites was restricted to one or two in most cases, there 

were instances in which seven to eight breakpoints per chromosome were present (Fig. 2.1d). 

The number of recombinant chromosomes varied from a single to as many as 20 per genotype. 

In all cases the recombinant chromosomes were identified and different types were indicated 

as follows: In the case of BC1 progeny of LA hybrids, a chromosome with the centromere of 

L and the recombinant segment of A was indicated as L/A and vice versa for its counterpart 

(i.e., A/L, see Fig. 2.1c). In the case of the progeny of OA hybrids, a chromosome with a 

centromere of O and a recombinant segment of A was indicated as O/A and vice versa for its 

counterpart (i.e., A/O). The recombinant chromosomes were expected to segregate in the 

progeny on the observation that almost all 2n gametes in interspecific hybrids had originated 

through first division restitution (FDR) in which the sister chromatids of a recombinant 

chromosome randomly moved , as a rule, to opposite poles during restitution nucleus 

formation (Fig. 2.2). Thus, when the sister chromatids of a pair of homoeologous 

chromosomes with a crossover segregated during FDR, two alternative types of segregations 

were expected: one in which two non-crossover and two crossover chromatids moved to 

opposite poles (Fig.2.2-I); and another in which only one of the crossover chromatid plus a 
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non-crossover chromatid moved to the opposite pole (Fig. 2.2-II). The segregants with two 

non-crossover chromatids could not identified in the progenies, but the three other types, 

 

Fig. 2.1. Mitotic and meiotic chromosomes painted by GISH.  (a) Mitotic metaphase of LLO 

LT (076928-21), an aneuploid (2n = 4x–5 = 43) derived from crossing allotriploid LLO and 

allotetraploid LLTT (both were derivatives of somatic chromosome doubling) showing no 

chromosomal interchanges. GISH clearly identified the chromosomes of the three genomes, 

T= red (biotin labelled and detected with Cy–3); O= green (digoxigenin labelled and detected 

with anti-digoxigenin FITC system) and L= blue (DAPI counterstaining). (b) Mitotic 

metaphase of a LA hybrid (074085-12), a triploid (2n = 3x = 36) showing five recombinant 

chromosomes (arrows) of which one pair represents reciprocal and three are non-reciprocal 

products  L=green (digoxigenin labelled and detected with anti-digoxigenin FITC system) and 

A=blue (DAPI counterstaining). (c) Meiotic chromosomes  at Anaphase I of an interspecific 

hybrid of Longiflorum × Asiatic (LA) lily (006001-16) in which GISH identified intergenomic 

crossing over between 6 pairs of homoeologous chromosomes (arrows) L=green (digoxigenin 

labelled and detected with anti-digoxigenin FITC system) and A=blue (DAPI counterstaining). 

(d) Chromosome 9 of LA hybrids from different genotypes showing multiple crossover sites 

(comparable to ‘zebra’ chromosomes). 

such as L/A-A/L; L/A-L; A/L-A could be identified with GISH. So was the case with the 

segregations of progeny of OA hybrids: O/A-A/O; O/A-A; A/O-A. After identifying 

individual recombinant chromosomes, it was possible to detect in each case whether the two 

reciprocal products of crossover or only one of the two crossover products was present in a 
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genotype. Assuming that the segregation of crossover and non-crossover chromatids during 

FDR gamete formation was random, it was expected that the three classes (viz., L/A-A/L; 

L/A-A and A/L-A or O/A-A/O; O/A-A and A/O-A) were expected to be of equal proportion. 

The segregation in the case of progenies of LA hybrids confirmed the expectation (χ
2
 = 0.484, 

0.70<P<0.80, Table 2.2). In the case of the progeny of OA hybrids, there was a slight excess 

of non-reciprocal products (χ
2
 = 7.12, 0.01<P< 0.05), i.e., O/A-A (Table 2.2). This might well 

be due to the sample size which was small as compared to the progeny of LA hybrids.  

 

Fig. 2.2 (a) Diagrammatic illustration of the segregation of crossover and non-crossover 

chromatids during FDR gamete formation and (b) expected chromosome composition in the 

backcross progenies (e.g., LA × AA and LL × LA) assuming a single crossover between the two 

non-sister chromatids of a pair of homoeologous chromosomes. Note: (1) Only three types can be 

detected in the progenies. (2) Alleles that are distal to the crossover point can conform to the 

segregation in an autopolyploid, e.g., triplex (BBB), duplex (BBb), simplex (Bbb) and nulliplex 

(bbb). 

 

In order to verify the origin of recombinant chromosomes in the backcross progenies, meiosis 

was analysed in the parent LA hybrid through GISH. Especially at anaphase I stages it was 

possible to identify the half-bivalents that clearly showed the products of intergenomic 

recombination (Fig. 2.1c). This clearly established the fact that the chromosomal exchanges 
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observed in the somatic metaphase stages were not translocations but the products of 

recombinations. 

Discussion 

The absence of any type of chromosomal exchanges in the progeny derived from allotriploid, 

LLO and allotetraploid, LLTT cross was quite conspicuous in the progeny. In the case of LLO 

strict autosyndetic pairing between the two L genomes during meiosis excludes the possibility 

of any intergenomic recombination between L and O genomes. In such cases, the 

chromosomes of the O genome were left out as univalents during meiosis giving rise to 

aneuploid BC1 progeny (Table 2.1). In the case of allotetraploid LLTT in which both L and T 

genomes have their counterparts and the homologues pair normally prevent any possibility of 

intergenomic recombination. Other than intergenomic recombination, if there were to be any 

chromosomal translocation, such exchanges should have become visible in GISH preparations. 

In none of the 26 genotypes that were analysed there was any indications for chromosomal 

rearrangements. A previous cytological study on the progeny of somatically doubled 

interspecific hybrids of L. longiflorum Thunb. × L. rubellum Baker. have indicated that 

because of autosyndetic pairing during meiosis no intergenomic recombination occurs in such 

allopolyploid progeny of Lilium hybrids (Lim et al. 2000). However, it should be pointed out, 

however, that intergenomic recombination does occur in allopolyploids derived from somatic 

doubling as in the case of Lolium perenne/Festuca pratensis (King et al. 2002). Other than 

meiotic recombination, the occurrence of chromosomal translocations between the 

nonhomologous chromosomes of alien genomes has also been reported as in the case of 

hybrids of Elymus trachycaulus/Triticum aestivum (Zhang et al. 2008) which gave rise to 

unusual structures called “Zebra” chromosomes (see later). 

In contrast to somatically doubled neopolyploids of lily hybrids, the progeny derived from 

meiotic doubling possess numerous chromosomal exchanges. In these cases the exchanges 

result from intergenomic recombination (Table 2.2, Fig. 2.1c) during the origin of 2n gametes. 

Such recombinant chromosomes are comparable to those that were reported in the case of 

neopolyploids produced from the dihaploids of Brassica napus  in which FDR-like 2n 

gametes were functional (Nicolas et al. 2007; Udall et al. 2005). In Brassica these authors 

have detected chromosomal rearrangements such as “homeologous nonreciprocal 

translocations”, duplications and deletions. The detection of these chromosomal 

rearrangements is, however, based on the use of molecular markers but not through 

cytological identification of recombinant chromosomes. There are certain drawbacks of 

drawing conclusions based on molecular marker analysis alone, which will be considered later. 

But the frequent use of the term ‘translocation’ to indicate what actually is an intergenomic 

recombination is confusing. This confusion arises because, in traditional cytogenetic literature, 

the term translocation is used to imply a chromosomal structural aberration. When a 

translocation heterozygote segregates during meiosis, it leads to the formation of the so-called 
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duplication-deletion gametes which are normally lethal resulting in sterility. But, as is evident 

from meiosis observation and the survival of the nonreciprocal products of recombinant 

chromosomes in the present study, it may not be appropriate to consider the chromosomal 

exchanges observed here as translocations. It may be pointed out that whereas translocations 

are aberrations, recombinant chromosomes occur as a result of a natural phenomenon of 

intergenomic crossing over. The ratios of reciprocal and nonreciprocal products observed in 

the segregating progenies (Table 2.2) are of nearly equal proportion in both types of BC1 

progenies. This means, the nonreciprocal products of recombinant chromosomes are not 

similar to duplication-deletion chromosomes that result from the segregation of reciprocal 

translocations. Furthermore, normal haploid gametes are produced by some genotypes of LA 

hybrids, with many recombinant chromosomes and are fully viable (Khan et al. 2009b) 

indicating that there are no deletions in such chromosomes. 

There have been extensive discussions regarding the distinction between auto- and 

allopolyploids in plants (Ramsey and Schemske 1998). When allopolyploids originate strictly 

through somatic chromosome doubling, they are expected to behave like ‘permanent hybrids’ 

due to autosyndetic pairing of homologous pairs of chromosomes. On the other hand, when 

allopolyploids originate through meiotic doubling, there can be numerous intergenomic 

recombinant chromosomes in their complements as is evident in the present investigation. In 

this case, there is a prospect for multivalent formation because of the presence of recombinant 

segments in the complements. This means, chromosome assortment and segregation of 

genetic loci that present distal to the recombination point can segregate in allopolyploids. In 

this sense, even allopolyploids may no longer behave like permanent hybrids but behave like 

autopolyploids. If this is the case, the allopolyploids synthesized in the case of Lilium hybrids 

through 2n gametes can display the attributes of autopolyploids. Because the cytological 

evidence supports normal Mendelian segregations of reciprocal and nonreciprocal 

recombinant products in the progenies, it may be not out of place if we use the same 

terminology as is used in the case of autopolyploids. Thus, for example, the expressions such 

as triplex (BBB), duplex (BBb), simplex (Bbb) and nulliplex (bbb) can be appropriately used 

in the case of segregations in allopolyploid in Lilium (Fig. 2.2b).  

As compared to the use of molecular markers for the analysis of chromosomal 

rearrangements in the case of neopolyploids of Brassica napus, the use of GISH in the present 

study has certain advantages. Molecular marker analysis cannot detect the reciprocal products 

of recombination but GISH can unequivocally detect such events. Moreover, assessment of 

the so-called duplications and deletions in Brassica napus is based on an indirect quantitative 

method (Nicolas et al. 2007). Unlike the small chromosomes of Brassica, the large and well 

differentiated chromosomes of Lilium are certainly advantageous for GISH analysis and a 

better insight can be obtained into the chromosomal rearrangements, if any. In the present 

investigation there seem to be little cytological evidence for the occurrence of extensive 

chromosomal rearrangements in the neopolyploids of Lilium. Finally, there are instances in 



Chapter 2 

 

26 

which several exchanges of chromosomal segments between the homoeologous chromosomes 

of L and A genomes (Fig. 2.1d ) occurred that resemble “zebra” chromosomes reported in the 

case of Elymus trachycaulus/Triticum aestivum hybrids (Zhang et al. 2008). The latter of 

these resulted from illegitimate recombination between nonhomologous chromosomes of 

Elymus and Triticum. But in the case of LA hybrids the chromosomes with multiple 

crossovers have originated through crossing-over between homoeologous chromosomes but 

not due to any aberrations. 
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Supplement tables 

Table S2.1. Ploidy level, chromosome numbers and genome composition of the progeny derived 

from crossing allotriploid (LLO) × allotetraploid (LLTT) parents derived from somatic doubling 

 

Genotype 
Ploidy 

level** 

Number of 

chromosomes 

Genome composition*** Number of 

recombinant 

chromosomes 
L-genome O-genome T-genome 

076928-1 3.5 43 24 7 12 0 

076928-2 3.4 40 24 4 12 0 

076928-3 3.4 44 24 8 12 0 

076928-4 3.2 41 24 5 12 0 

076928-5 3.5 43 24 7 12 0 

076928-6 3.5 44 24 8 12 0 

076928-7 3.1 40 24 4 12 0 

076928-8 3.4 43 24 7 12 0 

076928-11 3.4 42 24 6 12 0 

076928-12 3.3 41 24 5 12 0 

076928-13 3.4 42 24 6 12 0 

076928-14 3.2 41 24 5 12 0 

076928-15 3.2 40 24 4 12 0 

076928-16 3.3 40 24 4 12 0 

076928-17 3.3 41 24 5 12 0 

076928-18 3.4 41 24 5 12 0 

076928-19 3.4 41 24 5 12 0 

076928-20 3.3 40 24 4 12 0 

076928-21 3.4 43 24 7 12 0 

076928-22 3.3 41 24 5 12 0 

076928-23 3.3 41 24 5 12 0 

076928-24 3.3 42 24 6 12 0 

076928-25 3.5 44 24 8 12 0 

076928-26 3.4 42 24 6 12 0 

076928-28 3.5 40 24 4 12 0 

076928-29 3.4 42 24 6 12 0 

 

** determined by flow cytometry 

*** determined through GISH 

 

 



Chapter 2 

 

28 

Table S2.2. The number of recombinant chromosomes and segregation of reciprocal and 

nonreciprocal pairs of homoeologous in 64 genotypes of BC1 progenies of LA × AA crosses 

Genotype 

No of 

recombinant 

chromosomes 

No of pairs 

segregating 

Reciprocal 

products 

(L/A-A/L) 

Non-reciprocal 

product 

L/A-A A/L-A 

044525-1 3 3 0 2 1 

044539-1 2 1 1 0 0 

044571-1 3 2 1 0 1 

062035-1 6 6 0 3 3 

062035-2 6 5 1 1 3 

062071-1 13 9 4 2 3 

062071-2 14 10 3 5 3 

062074-1 14 8 6 1 1 

062074-3 12 8 4 2 2 

062074-4 14 8 6 1 1 

065051-2 6 6 0 2 4 

066828-2 1 1 0 0 1 

066960-4 7 6 1 2 3 

066960-6 7 5 2 2 1 

066960-8 4 4 0 4 0 

066960-13 7 5 2 1 2 

066960-14 3 3 0 1 2 

066960-20 8 5 3 1 1 

066963-5 12 9 3 4 2 

066963-8 4 4 0 1 3 

066994-3 20 11 9 2 0 

066994-4 12 8 4 2 2 

066994-11 13 9 4 3 2 

066994-12 13 11 2 3 6 

066995-1 8 7 1 3 3 

044595-1 5 4 1 1 2 

044601-1 3 3 0 1 2 

044601-2 6 6 1 1 3 

044601-3 1 1 0 0 1 

044601-4 2 2 0 1 1 

044601-5 1 1 0 1 0 

044601-6 3 2 0 1 0 

044601-7 3 3 0 1 2 

044601-8 3 2 1 1 0 

044638-1 2 2 0 0 2 

044638-2 2 2 0 0 2 

044638-3 4 4 0 1 3 
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041552 4 3 1 1 1 

041553 3 3 0 1 2 

041554 1 1 0 1 0 

041555 1 1 0 1 0 

041571 4 3 1 1 1 

041572 3 2 1 1 0 

041575 2 1 1 0 0 

041578 1 1 0 1 0 

041580 5 3 2 1 0 

041581 3 3 0 0 3 

041583 2 2 0 1 1 

061029 1 1 0 1 0 

074051-1 8 6 2 1 4 

074051-4 10 8 2 3 2 

074051-5 6 5 0 3 3 

074051-6 10 7 3 3 1 

074051-9 8 5 3 0 2 

074051-11 8 8 0 3 5 

074051-12 7 5 1 2 1 

074085-3 2 1 1 0 0 

074085-6 6 3 3 0 0 

074085-7 4 3 1 2 0 

074085-12 5 4 1 2 0 

074085-13 2 1 1 0 0 

074085-20 3 2 1 0 0 

074085-22 6 4 2 1 1 

Total 362 272 87 87 95 

No. of expected   90.5 90.5 90.5 
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Table S2.3. The number of recombinant chromosomes and segregation of reciprocal and 

nonreciprocal homoeologous in 36 genotypes of the BC1 progenies of AA × OA crosses 

Genotype 

No of 

recombinant 

chromosomes 

No of pairs 

segregating 

Reciprocal 

products 

(O/A-A/O) 

Non-reciprocal 

product 

O/A-A A/O-A 

022538-1 7 4 3 1 0 

022538-3 6 4 2 2 0 

022538-7 6 4 2 1 1 

022538-8 4 4 0 2 2 

022538-9 4 4 0 2 2 

022538-15 4 5 0 1 4 

022538-16 8 6 2 3 1 

022605-2 2 2 0 1 1 

022605-5 2 2 0 1 1 

022605-8 3 2 1 1 0 

022605-9 7 6 0 4 3 

022605-11 2 1 1 0 0 

022605-12 2 2 0 1 1 

022605-16 4 2 2 0 0 

022605-20 6 4 2 2 0 

022605-21 8 7 1 3 3 

022605-22 2 1 1 0 0 

022605-23 5 4 1 2 1 

022605-24 4 4 0 4 1 

022605-25 5 5 0 3 2 

022605-27 2 1 1 0 0 

022605-28 1 1 0 1 0 

022605-30 4 3 1 1 1 

022605-31 2 2 0 2 0 

022605-35 7 5 2 3 0 

022605-36 2 2 0 2 0 

022605-37 1 1 0 1 0 

022605-38 2 1 1 0 0 

022605-39 4 2 2 0 0 

022605-40 4 2 2 0 0 

022605-44 2 1 1 0 0 

022605-45 3 3 0 0 3 

022605-46 6 6 0 3 3 

Total 131 103 28 47 30 

No. of expected   32.75 32.75 32.75 
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Abstract  

With the aim of tracing the origin of intergenomic exchanges in lily backcross progenies and 

distinguish differences, if any, between intergenomic recombination and translocation, 13 

genotypes of an interspecific hybrids, which were previously used as parents to generate 

sexual polyploids, were selected for a detailed meiosis analysis. In all genotypes variable 

numbers of bivalents (0-12) resulting from homoeologous pairing and univalents were 

observed. But in two genotypes (006001-6 and 006001-13), a multivalent which was either a 

quadri- or a trivalent, as well as a bivalent involving two Asiatic chromosomes, was observed. 

An interesting feature of the multivalent in the case of 006001-6 was that two of the Asiatic 

chromosomes were always found to be associated either in the quadrivalent or the trivalent 

configurations. This indicated that there was a duplication common to two non-homologous 

chromosomes within the Asiatic parent. Such a duplication might have resulted from the 

segregation of a chromosomal translocation between two non-homologous chromosomes in 

the Asiatic parent ‘Connecticut King’ which was transmitted to the progeny (006001-6). With 

the exception of two genotypes, in 11 genotypes that formed variable frequencies of bivalents, 

the homoeologous chromosome pairing and chiasma formation were similar to that between 

homologous chromosomes. Especially from the analysis of anaphase I stages it was evident 

that the expected types of chiasma formation involving non-sister chromatids gave rise to two 

strand single, two strand double, three strand double , four strand double and multiple 

exchanges. Whereas these events resulted from locus specific homoeologous exchanges, the 

translocations resulted from an aberrant form of non-homologous chromosomal exchange of 

segments. Elucidation of such differences is only possible through the analysis of meiosis 

using GISH. 

Keywords: Recombination; crossing-over; translocation; Lily; meiosis; interspecific hybrids; 

genomic in situ hybridization (GISH)  
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Introduction 

Intergenomic recombination and chromosome translocation are totally different phenomena, 

although exchanges of chromosome segments occur in both cases. Whereas recombination is 

the result of crossing-over between homo- or homoeologous chromosomes during meiosis (a 

natural event), chromosome translocations occur due to chromosome aberrations or mutations 

(Rieger et al. 1976). Among many other differences, recombinations are locus specific events, 

whereas translocations are random events – implying that any chromosome segment may be 

transferred to another location in the genome through breakage and reunion. Despite these 

differences, in recent years the terms recombination and translocation have been used as 

synonyms in the cytogenetic literature because little is known about the origin of such genetic 

changes (Heslop-Harrison 2000; Nicolas et al. 2007; Osborn et al. 2003; Szadkowski et al. 

2011; Udall et al. 2005). Especially in the case of newly induced polyploids (neo-polyploids) 

of species such as Brassica napus, intergenomic recombinations have been considered as 

translocations that lead to extensive chromosomal structural alterations (Gaeta et al. 2007). 

Lily (Lilium, 2n=2x=24) species have been used for investigating chromosome structural 

alteration by traditional cytogeneticists during the past century. Together with a few other 

plant species, especially maize (Zea mays), barley (Hordeum vulgare), wheat (Triticum 

aestivum) and other crops (Burnham 1962; Lewis and John 1963), chromosome 

rearrangements such as translocations, inversions, duplications and deletions, have been 

extensively investigated. These studies were not only confined to spontaneous events that 

occurred in nature but also included aberrations induced by radiations as well as chemical 

agents. In addition to gaining insights into various aspects of chromosome functions and 

behaviour, chromosome aberrations were also helpful to establish the relationship between 

chiasma formation and crossing-over (chiasmatype hypothesis). For this purpose, the plant 

species with large chromosomes such as those of lilies are especially helpful because they are 

favourable for critical cytological studies. Some of the examples are: inversion heterozygotes 

in Lilium martagon var. album and  L. hansonii in which spontaneous paracentric inversions 

were used to test chiasmatype hypothesis (Richardson 1936); x-ray induced terminal deletion 

and paracentric inversion in L. formosanum were used to establish the relationship between 

chiasma and crossing-over (Brown and Zohary 1955); using a reciprocal translocation in L. 

maximowiczii, chiasmatype hypothesis was confirmed (Noda 1960); by analysing a pair of 

heteromorphic chromosomes resulting from reciprocal translocations in Disporum sessile, 

chiasmatype hypothesis was also confirmed (Kayano 1960). A favourable feature of 

reciprocal translocations in the case of L. maximowiczii and Disporum sessile was the 

possibility to quantify the frequencies of chiasmata in the interstitial segments (chromosome 

segments that lie between the centromere and the translocated segment) by estimating 

equational and reductional separation at anaphase I stages (see later). In all the above cases 

analyses of meiotic stages in pollen mother cells have been successfully used. 
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Lily allopolyploids are favorable for the use of genomic in situ hybridization (GISH) 

techniques because of their large chromosomes and well-differentiated genomes. GISH has 

been used for the study of genome composition (Barba-Gonzalez et al. 2005b; Lim et al. 

2003), intergenomic recombination (Barba-Gonzalez et al. 2006b; Zhou et al. 2008b), 

mechanisms of unreduced gametes production (Lim et al. 2001a) in sexual polyploidized 

progenies and/or interspecific lily hybrids. In a recent GISH analysis, the phenomenon of 

intergenomic recombination was evaluated by using somatic metaphase chromosomes of 

newly synthesized polyploids of interspecific hybrids of Lilium (Xie et al. 2010). It was 

argued that the exchanges of chromosome segments between homoeologous chromosomes of 

two genomes were recombinations but not translocations. This conclusion is further 

substantiated through a detailed GISH analysis of meiosis during microsporogenesis in the 

interspecific hybrids between Longiflorum × Asiatic groups (LA) of lilies in the present study. 

The observations on the types of chromosome and chromatid segregations are discussed in 

relation to intergenomic recombination and chromosome translocation. Finally, the 

significance of chromosome translocation with relevance to gametes formation and genetic 

mapping is also discussed. 

Materials and methods 

Plant materials 

Interspecific hybrids were obtained through crossing between a Longiflorum (L) cultivar 

‘White Fox’ and an Asiatic (A) cultivar ‘Connecticut King’ with the use of cut-style 

pollination and embryo rescue (Van Tuyl et al. 1991).These hybrids were in vitro propagated 

and then transferred into the greenhouse for maintenance. Most of the hybrids are highly 

sterile, whereas13 genotypes, which showed a low fertility with the production of functional 

unreduced (2n) gametes, were selected for the analysis of meiosis. 

Meiotic chromosome preparation 

Young anthers with proper stages of metaphase I and anaphase I were collected and fixed in 

fresh-prepared Carnoy’s solution (Ethanol : Acetic Acid/ 3:1, v/v) for 24h at 4°C. Part of the 

fixed anthers were squashed in a drop of 2% acetocarmine to determine appropriate meiotic 

stage, and the remaining part of anthers were transferred into 70% ethanol and stored at -20°C. 

For the meiotic chromosome preparation, anthers with proper meiotic stages were incubated 

in an enzyme mixture containing 1 % pectolyase Y23, 1 % cellulase RS and 1% cytohelicase 

in 10mM citrate buffer (pH 4.5) at 37 °C for about 25-35 minutes. Digested anther slice was 

put on a clean slide, then chromosomes were spread according to Ross et al. (1996). 

In situ hybridization  

Total genomic DNA was extracted from young leaves of Longiflorum cultivar ‘White Fox’ 

and Asiatic cultivar ‘Connecticut King’ according to Fulton et al. (1995). DNA of ‘White 
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Fox’ was sonicated to 1-10kb fragments and used as probe. ‘Connecticut King’ DNA was 

autoclaved to 100-500bp fragments and used as block. The probe DNA was labelled with 

Digoxigenin-11-dUTP by standard nick translation according to the manufacturer’s 

instruction (Roche Diagnostics GmbH, Mannheim, Germany).  

 

Table 3.1. Chromosome association  and segregation abnormalities during meiosis in 13 LA 

hybrids 

 

Genotype 
# of cells 

analyzed 

Chromosome pairing 

Remarks Range of 

bivalents 

Average 

bivalents 

006001-6 256 9-12 11.2 Sporadic multivalents 

006001-13 132 6-11 8.7 
Sporadic non-homologous 

pairing 

006001-9 228 3-11 7.6  

006001-16 143 5-10 6.2  

006001-17 139 4-11 7.2  

006001-36 141 2-9 5.4  

006001-42 133 3-9 4.2  

006001-72 136 4-7 5.6  

006001-80 129 3-9 3.9  

006001-88 126 7-12 10.7  

006001-97 135 4-10 6.2  

041501 133 10-12 10.8  

041502 124 4-10 7.3  

 

The procedure of in situ hybridization was carried out according to Khan et al. (2009) and 

Xie et al. (2010) with minor modification. The 60μl hybridization mixture contained 50% 

formamide, 10% dextran sulphate, 2 × saline sodium citrate (SSC), 0.25% sodium dodecyl 

sulphate (SDS), 1.0-1.5ng/μL probe DNA and 25-50 ng/μL block DNA. The mixture was 

incubated at 73°C for 10 minutes and ice cooled for 10 minutes, then hybridization mixture 

was added on each slide. After denaturation the slides for 5 minutes at 80°C, slides were left 

in a pre-warmed box for overnight hybridization at 37°C. After hybridization, the slides were 

washed in 2×SSC for 15 minutes, then stringency washing followed with 0.1×SSC at 42°C for 

30 minutes. The probes, labelled with digoxigenin-11-dUTP, were detected with the anti-

digoxigenin detection system. Then the slides were counterstained with DAPI and mounted 
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with Vectashield. Finally, photographs were taken with a Canon digital camera attached to a 

Zeiss Axiophot fluorescence microscope. 

 

 

Fig. 3.1. Chromosome pairing at metaphase I during meiosis of interspecific hybrids of lily. (a) A 

pollen mother cell with 12 bivalents involving homoeologous pairing (006001-6); (b) Formation of a 

quadrivalent  containing two Asiatic and two Longiflorum chromosomes (white arrow) in one of the 

pollen mother cells of genotype 006001-6; (c) Formation of a trivalent including two chromosomes 

from Asiatic and one chromosome from Longiflorum (white arrow) in pollen mother cells of genotype 

006001-6; (d) Formation of a bivalent resulted from non-homologous chromosomes from Asiatic 

genome (white arrow) in genotype 006001-13. Green fluorescence stands for chromosomes from 

Asiatic genome and blue fluorescence stands for chromosomes from Longiflorum genome. 

 

Results 

Chromosome pairing at metaphase I in LA hybrids 

Since the two parents, L. longiflorum and Asiatic lilies, belong to two different botanical 

sections, homoeologous chromosomes were clearly distinguished in the hybrids by GISH (Fig. 

3.1a, b, c and d). In order to estimate the extent of chromosome pairing, metaphase I stages 

were analysed in 13 different genotypes (Table 3.1). In each case approximately 120 to 250 

pollen mother cells were analysed. There was a great variation regarding the chromosome 

associations in different genotypes. The average number of bivalents per cell ranged from 3.9 
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(006001-80) to 11.2 (006001-6) in these different hybrids. Also, the number of bivalents 

among different pollen mother cells within a genotype varied considerably: in genotype 

006001-6 with high average, for example, the number of bivalents varied between 9 to 12 per 

cell (for 12 bivalents, see Fig. 3.1a), whereas in another genotype with a low average of 

bivalents (e.g., 006001-36) they varied between 2 to 9 per cell. With rare exceptions, bivalents  

invariably resulted from the association of homoeologous chromosomes of the parents that 

could be clearly identified based on differential fluorescence labelling. 

Besides bivalents and univalents, there were also multivalents as well as bivalents resulting 

from non-homologous association in some of the cells of two genotypes (006001-6 and 

006001-13, arrows in Fig. 3.1b, c and d). The common feature of the quadrivalents (Fig. 3.1b), 

the trivalents (Fig. 3.1c) and the non-homologous bivalents (Fig. 3.1d) was the association of 

two chromosomes from the Asiatic genome (blue fluorescence). Such non-homologous 

association between two chromosomes within a haploid set from a parent was normally not 

expected to occur. In the multivalents of genotype 006001-6, two chromosomes from Asiatic 

genome as well as at least one chromosome of Longiflorum genome was involved (green 

fluorescence in Fig. 3.1b and c). The formation of multivalents and nonhomologous bivalents 

in the F1 hybrid progenies might be due to the presence of a duplication that is common to 

two non-homologous chromosomes within the Asiatic parent ‘Connecticut King’. 

Alternatively, a reciprocal translocation might be present in the Asiatic parent and a 

duplication-deficiency gamete (a gametes with duplications as well as deletions) transmitted 

to the progeny that formed multivalent (see Fig. 3.3). A notable feature of multivalents was 

the absence of ring multivalents. This was explained from the fact that most of the 

chromosomes in the karyotypes of Lilium species consist of sub-metacentric or sub-telocentric 

chromosomes they do not form typical  ring quadrivalents. Of particular interest was the 

association of two Longiflorum chromosomes at both ends in the chain quadrivalent (Fig. 

3.1b, arrow). The probable explanation for this type of quadrivalent formation is shown in Fig. 

3.3 in which both homo- (solid line in Fig. 3.3) and homoeologous (dashed lines in Fig. 3.3) 

chromosome associations are highlighted. Based on different possibilities of chiasma 

formation between the four chromosomes that are involved in multivalent formation, different 

meiotic configurations shown in Fig. 3.1 can be explained as follows: a) If chiasmata are 

formed in the homoeologous regions but not in the homologous region they result in forming 

12 bivalents (Fig. 3.1a). b) If chiasmata are formed in both the homoeologous regions as well 

as the homologous region it leads to the formation of a quadrivalent in which two Asiatic 

chromosomes are adjacent each other (Fig 3.1b). c) If a chiasma is formed in the homologous 

region followed by a chiasma in one of the homoeologous regions, then it results in a trivalent 

with two Asiatic chromosomes (adjacent to each other) and a Longiflorum chromosome (Fig. 

3.1c). d) When there is a chiasma formation only in the homologous region but not in the 

homoeologous regions, this results in the association of two non-homologous Asiatic 

chromosomes (Fig. 3.1d). Except for the two genotypes that formed a multivalent and 
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abnormal bivalents, in all other cases variable frequencies of bivalents and univalents were 

observed. Because of chromosome pairing abnormalities, the expected metaphase I 

orientation at the equatorial plate of the cell was rare. 

Anaphase I separation 

Since anaphase I separation of homoeologous chromosomes occurred regularly only in some 

of the pollen mother cells, normal metaphase I orientation had occurred in those cases. In 

other cases, the chromosomes (half-bivalents) were present haphazardly in the cells (Fig. 3.2a, 

b, c and d). Nevertheless, it was possible to identify the pairs of half-bivalents with and 

without recombinant segments in the sister and non-sister chromatids. The remarkable feature 

was that it was possible to identify the types of crossovers that had occurred between the non-

sister chromatids of the pairs of homoeologous chromosomes during meiosis based on 

differential fluorescence. Based on the number and positions of recombinant segments on the 

non-sister chromatids it was possible to classify the types of intergenomic recombination 

events that had occurred. These were classified into five classes: a) two strand single (Fig. 

3.2a and c), b) two strand double (Fig. 3.2b and c), c) three strand double (Fig. 3.2a and d), d) 

four strand double (Fig. 3.2a, b and d) and e) multiple cross-overs (Fig. 3.2d). The frequencies 

of each of these events were estimated in five genotypes (Table 3.2). From an analysis of a 

total of 637 pairs of half-bivalents it was evident that a large majority (65 %) were two strand 

single crossing overs, 5.5 % were two strand double, 3.0 % three strand double, 9.3 % four 

strand double and 17.3 % were multiple crossing over events. Although there was differences 

in the frequencies of these events, two conclusions could be made from these observations. 1) 

Regardless of the type of cross-over event, equational separation had occurred for the 

recombinant segments. 2) All the five crossover types of half-bivalents were similar to the 

events that are expected (Fig. 3.2) following a normal meiosis in the parent. This evidently 

indicated that despite genome differentiation between the genomes of the species of L. 

longiflorum and Asiatic lilies they retained homoeology that enabled normal crossing-over 

between the homoeologous pairs of chromosomes. In the two genotypes (006001-6 and 

006001-13) with multivalent and nonhomologous bivalent formation there was no deviation at 

anaphase I that could be observed with regard to disjunction as compared with other 

genotypes without multivalent formation.  
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Table 3.2. Crossover events in 166 anaphase I pollen mother cells from five progenies of an  

interspecific LA hybrid 

Genotype 
Nr. of 

cells 

Pairs of 

recombinant 

chromosomes 

Two strand Three 

strands 

double 

Four 

strands 

double 

Multiple 

crossover 
Single Double 

006001-6 52 194 115 5. 11 15 48 

006001-9 15 75 41 6 0 9 19 

006001-13 4 9 8 0 0 1 0 

006001-16 66 266 180 20 5 23 38 

006001-88 29 93 70 4 3 11 5 

Total 

Frequency 

(%) 

166 

 

637 

 

414 

65 

35 

5.5 

19 

3.0 

59 

9.3 

110 

17.3 

 

Discussion 

In order to resolve the difference between intergenomic recombination and chromosome 

translocation, we have investigated two genotypes with translocations (006001-6 and 006001-

13) and 11 genotypes without translocations (Table 3.1). Because of disturbed chromosome 

pairing between L and A genomes during meiosis in the F1 hybrids, the pairing configurations 

reported in L. maximowiczii which had normal chromosome synapsis (Noda 1960) could not 

be found in any of the genotypes used in the present study. Nevertheless, non-homologous 

bivalents and multivalent formation (Figs. 1 and 2) were clear enough evidence for the 

presence of translocations in two genotypes. A unique feature of the translocation in L. 

maximowiczii was that as a result of translocation it had given rise to two pairs of 

heteromorphic chromosomes whose modes of distribution during anaphase I stage could be 

identified morphologically due to the inequality of the arms. Taking advantage of the easily 

identifiable interchanged chromosomes, Noda (1960) quantified the frequencies of crossing-

over in the interstitial segments based on equational segregations at anaphase I. Unlike in 

traditional staining techniques, however, GISH provides opportunities to identify the modes 

of chromosome segregation during anaphase I due to differential fluorescence. This facilitates 
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Fig. 3.2. Homoeologous chromosome segregation and crossing over ar anaphase I during meiosis of 

interspecific hybrids of lily. (a) Anaphase I segregation of homoeologous chromosomes confirmed the 

occurrence of single crossover, three strand double and four strand double crossovers. (b) Anaphase I 

segregation of homoeologous chromosomes illustrated the happening of two strand double and four 

strand double crossovers. (c) Anaphase I segregation of pollen mother cells indicated the happening of 

single crossover and a two strand double crossover; (d) Anaphase I segregation of pollen mother cells 

in meiosis revealed the occurrence of single, three strand double, four strand double and multiple 

crossovers 
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the detection of not only reductional and equational segregation of chromosomes in some 

cases but also identify different types of cross-overs between the non-sister chromatids of 

homoeologous chromosome pairs. Assuming normal chromosome pairing and crossing-over 

in LA hybrids, one can expect different types cross-overs to occur, viz., two strand single, two 

strand double, three strand double, four strand double and multiple cross-overs (Fig. 3.3). All 

the expected types have been found in the present study (Fig. 3.2a, b, c and d). Then the 

question arises whether these exchanges of segments between the non-sister chromatids of 

each pair of homoeologous chromosomes should be considered as recombinations or 

translocations? Undoubtedly the latter possibility must be ruled out because cross-over events 

are locus specific events between homoeologous pairs of chromosomes. Moreover the 

frequencies of exchanges per cell are so high that it is inconceivable that such high rates of 

chromosome mutations (translocations) can occur spontaneously in any organism.   

Based on difficulty of crossing, F1 hybrid sterility, reduced chromosome pairing and 

clearly differential fluorescence of chromosomes, the genomes of L. longiflorum and Asiatic 

species are well differentiated. Despite this, however, there is almost completely normal 

crossing-over between some of the pairs of homoeologous chromosomes. Considering the 

crossover types observed in this study as well as those reported earlier (Zhou et al. 2008a), the 

genomes of different groups of Lilium species appear to be homo-sequential. So much so, that 

it has enabled the construction of cytological maps of three different genomes, viz., 

Longiflorum, Asiatic and Oriental groups (Khan et al. 2009a). In view of the high degree of 

homoeology between the genomes, the exchanges of chromosome segments through crossing-

over events cannot be considered as translocations.  

The occurrence of either duplication or translocation in the cultivar ‘Connecticut King’ is 

of considerable importance because attempts have been made to construct molecular maps in 

recent years (Abe et al. 2002; Khan 2009; Shahin et al. 2011; Van Heusden et al. 2002). A 

main problem to establish molecular maps is that the number of linkage groups exceed the 

basic chromosome number. One cause of this problem is the presence of very large genomes 

in Lilium species with a large basic chromosome number (x=12), which means larger number 

of markers and mapping individuals are needed. On the other hand, chromosome 

rearrangements provide another candidate reason for the mapping problem of lily. Although 

the relationship between chromosome structure variation and genetic mapping has not been 

well studied, limited reports have showed that reciprocal translocation can also cause the 

variation of linkage groups (Farré et al. 2010; Kamphuis et al. 2007; Larson et al. 2011). Until 

now, none of the chromosomes of Lilium species have been associated with any of the genes 

or molecular markers so far. In this context, it might be essential to carefully analyse the 

genome of ‘Connecticut King’ and identify the aberration that has been encountered. 
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Fig. 3.3. Gametes production and the resultant hybrids in the parental parent ‘Connecticut King’ with 

a reciprocal translocation. If a single crossover happened between two non-sister chromatids in the 

interstitial segment (the segment between the centromere and the translocated segment on the 

chromosome with a translocation), both adjacent and alternate segregation lead to duplication-

deficiency gametes.  

 

The occurrence of multivalents and nonhomologous bivalents in two genotypes is 

explained due to the presence of a duplication between two chromosomes from the Asiatic 

genome. It is noticeable that this duplication is large enough to form chiasma(ta) in the 

homologous segment so frequently that it results in forming multivalents (quadri- and 

trivalent) or abnormal bivalents involving two non-homologous Asiatic chromosomes. This 
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duplication indicates that there is either a duplication or a reciprocal translocation in the 

paternal parent ‘Connecticut King’, and in the latter, a so-called duplication-deficiency 

gametes has been transmitted to the progeny successfully (Burnham 1962). These two 

alternative possibilities need cytological confirmation through the analysis of the Asiatic 

parent. From the available observations and previous reports (Abe et al. 2002; Khan 2009; 

Shahin et al. 2011; Van Heusden et al. 2002), it appears that the presence of a reciprocal 

translocation may be more likely. During meiosis of reciprocal translocation, quadrivalents 

are normally formed at metaphase I. Chiasma formation and crossing over in such cases will 

be suppressed in the area close to the translocation breakpoints, both alternate and adjacent 

segregation lead to reduced fertility. When progenies from these gametes are used for genetic 

mapping, markers will show skewed segregations, which has been found when these LA 

population were used for mapping (Shahin et al. 2011). Furthermore, two translocated 

chromosomes usually lead to the formation of ‘pseudolinkage’ (Albrecht and Chetelat 2009; 

Beeman et al. 1986; Farré et al. 2010; Kamphuis et al. 2007; Larson et al. 2011). One example 

is the linkage maps of an interspecific F2 Solanum ochranthum × S. juglandifolium population. 

Chromosome 8 and 12 were connected in one large linkage groups, which indicating a likely 

reciprocal translocation (Albrecht and Chetelat 2009). In the maps of LA lily, linkage group 1 

(219 cM) is more than two times longer compared with the average longth of the linkage 

grous (95 cM)(Khan 2009), which also indicate a likely reciprocal translocation in 

‘Connecticut King’. Meanwhile, if crossovers happen in the interstitial segment of the 

translocated chromosome, different types of duplication-deficiency gametes, which are 

generally sterile, will be produced (Fig. 3.3).  

In conclusion, intergenomic recombination in lily allopolyploids are derived from crossing 

over events during meiosis; while the non-homologous chromosome pairing in multivalents 

and bivalents potentially lead to the production of gametes with real chromosome 

rearrangements. 
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Abstract  

Meiotic abnormalities were investigated in interspecific lily hybrids using genomic in situ 

hybridization (GISH) and fluorescence in situ hybridization (FISH). At metaphase I, the 

bivalents involving homoeologous chromosomes and unpaired univalent were the main 

configuration for most of the pollen mother cells. Besides these, also multivalents as well as 

bivalents involving non-homologous chromosome pairing in the same genome, were also 

observed. Moreover, broken chromosomes were sporadically detected at metaphase I using 

GISH and FISH with telomere repeats as probe. At anaphase I, chromatid bridges 

accompanied with fragments were present. GISH and FISH revealed that these bridges 

involved not only non-sister chromatids but also sister-chromatids. This strongly suggests that 

the bridges and the fragments found were derived from U-type exchanges. In conclusion, U-

type exchanges, including spontaneous chromatid breakage and fusion, leads to anaphase 

bridging at meiosis in interspecific hybrids of lily. It is argued that during meiosis of 

interspecifc hybrids of lily, both homologous recombination (HR) and nonhomologous end 

joining (NHEJ) were both involved to repair double strand breaks (DSBs). U-type exchanges, 

together with association failure, will cause reduced fertility, and lead to aneuploidy and 

production of isochromosomes during sexual polyploidization. 

Keywords: Anaphase bridging; interspecific hybridization; meiosis; lily; nonhomologous end 

joining (NHEJ); double strand breaks (DSBs), GISH; FISH 
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Introduction 

Anaphase bridging during mitotic division has been found to be due to the erroneous repair of 

double strand breaks (DSBs). The formation of bridges during mitosis involves two process: 

DSBs and the repair. Other than homologous recombination (HR) in the repair of DSBs, 

nonhomologous end joining (NHEJ) can also restore chromosome integrity (Rothkamm et al. 

2003). Since NHEJ can ligate any broken ends of chromosomes, this mechanism of repair can 

result in chromosome rearrangements, including translocation, inversion, isochromosome 

formation, chromosome bridges and so on (Acilan et al. 2007; Hartlerode and Scully 2009; 

Yu and Gabriel 2004). The dicentric chromosomes or ring chromosomes caused by fusion of 

dysfunctional telomeres and broken chromosome ends in maize, yeast, mammals and human 

tumour cells, have been revealed to be due to the repair of DSBs by NHEJ (Gisselsson 2008; 

Rai et al. 2010). Thus, NHEJ is considered as an error-prone mechanism of DSB repair 

(Gorbunova and Levy 1999). 

Other than mitotic bridges, anaphase I bridges at meiosis have been well documented by 

cytogenetists. Two causes have been explained as the origin of dicentric bridges in meiosis. 

One of the main causes of anaphase bridging is the existence of (paracentric) inversion 

heterozygote. When a single crossover happens within the inversion loop, bridges and 

fragments will arise at anaphase I. This phenomenon has been observed in many species like 

maize (Zea mays) (McClintock 1931), Drosophila (Matzkin et al. 2005), sunflower 

(Helianthus) (Rieseberg et al. 1999), wheat (Triticum aestivum) (Lukaszewski et al. ; Qi et al. 

2006) and many others. U-type exchange is thought to be the other important cause of 

anaphase bridging. This process involves spontaneous chromatid breakage (DSBs) at 

prophase I of meiosis and fusion of broken ends before separation, which will also lead to the 

production of dicentric bridges and acentric fragments at anaphase I (Couzin and Fox 1973; 

Haga 1953; Jones and Brumpton 1971; Jones 1969; Karp and Jones 1983; Lewis and John 

1963; Newman 1967; Rees and Thompson 1955). However, compared with mitosis, repair 

mechanisms of DSBs during meiosis were rarely studied, and the limited results showed that 

homologous recombination exclusively took responsibility of the DSBs and lead to crossing 

over (Keeney 2001; Puchta 2005; Szostak et al. 1983). Combining the two causes of anaphase 

I bridging with the DSB repair mechanisms, it seems that HR and NHEJ are both involved 

during meiosis, in which the former takes responsibility of bridges from inversion 

heterozygote and the latter leads to the bridges from U-type exchange.  
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There are some criteria to distinguish the bridges and fragments with respect to their 

different origins. Bridges from paracentric inversion and U-type exchanges result in different 

meiotic configuration at the first meiotic division, which can be recognised through a critical 

meiotic observation. The first difference is that bridges and fragments from inversion 

heterozygote involve non-sister chromatids, while U-type exchanges can happen between 

both sister and non-sister chromatids. Another feature caused by inversion is the invariable 

size of the fragments. No matter where the crossover happened in the inversion loop, the 

resultant acentric fragments should be of constant size. On the contrary, asymmetrical 

bivalents, fragment size variation and side arm bridges are all evidence for the occurrence of 

U-type exchanges. Moreover, bridges and fragments in some species and species hybrids, 

which had been considered to originate from inversion, have been proven to be derived from 

U-type exchanges. In the species of Tradescantia and Paeonia brownii, “the occurrence of 

inversion was presumptive and circumstantial” and the presence of bridges and fragments 

have finally been explained as due to U-type exchanges (Lewis and John 1963). In conclusion, 

inversion heterozygote, as well as U-type exchanges, lead to anaphase bridging with different 

configuration at meiosis. 

Meiotic bridges not only occur spontaneous, but can also be induced by genomic shock, 

including radiation treatment and interspecific hybridization. Radiation treatment, which is 

probably the most efficient method, leads to chromosome breakage and various types of 

anaphase bridging in a number of species like Lilium longiflorum (Mitra 1958), Zea mays 

(Viccini and De Carvalho 2002), Triticum (Wu and Yu 2001) and many others. Interspecific 

hybridization is another cause of the dicentric bridge production in a wide range of species 

hybrids like Vigna umbellate × V. minima (Gopinathan and Babu 1986), Pinus hybrids 

(Saylor and Smith 1966) and so on. Interestingly, the bridges and fragments in F1 hybrids 

found between some species in the genus Chorthippus, which were once thought to have 

originated from paracentric inversion, have been proven to arise from spontaneous 

chromosome breakage and reunion (Lewis and John 1966). In all of the above mentioned  

species and species hybrids, meiotic bridges were studied using traditional cytogenetic 

methods.  

Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) have 

the potential to give more convincing results about the origin of anaphase bridging. These two 

methods, which enable the localization of labelled probes after DNA hybridization, can not 

only distinguish non-sister chromatids in hybrids and allopolyploids (GISH), but also check 
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the intactness of chromosomes (FISH), which is essential for chromosome breakage detection. 

As a result, GISH and FISH can identify bridges and fragments and trace their origins. 

In the present chapter, meiosis irregularities at metaphase I and anaphase I stages were 

investigated in interspecific hybrids of lily using GISH and FISH, and the origin of anaphase 

bridging was analysed according to the anaphase I configuration. Finally, the significance of 

the meiotic bridges and fragments was discussed. 

 

Materials and methods 

Plant material 

Interspecific hybrids were obtained through crossing between a Longiflorum (L) cultivar 

‘White Fox’ and an Asiatic (A) cultivar ‘Connecticut King’ with the assistance of cut-style 

pollination and embryo rescue (Van Tuyl et al. 1991). These hybrids were in vitro propagated 

and then transferred into the greenhouse for maintenance. Thirteen genotypes, which had been 

successfully used to produce sexual polyploidized progenies, were selected for the analysis of 

meiosis.  

Meiotic chromosome preparation 

Young anthers in putative meiotic stages from metaphase I to telophase I were collected and 

fixed in freshly prepared Carnoy’s solution (Ethanol : Acetic Acid/ 3:1, v/v) for 24h at 4°C. A 

part of the fixed anthers was squashed in a drop of 2% acetocarmine to determine the 

appropriate meiotic stage, whereas the rest of the anthers were transferred into 70% ethanol 

and stored at -20°C. Anthers with proper stages were incubated in enzyme mixture containing 

1 % pectolyase Y23, 1 % cellulase RS and 1% cytohelicase in 10mM citrate buffer (pH 4.5) at 

37 °C for about 25-35 minutes for meiotic chromosome preparation,. Digested anther slices 

were put on a clean slide and chromosomes were spread according to Ross et al. (1996).  

Probes for GISH and FISH 

Total genomic DNA was extracted from young leaves of Longiflorum cultivar ‘White Fox’ 

and Asiatic cultivar ‘Connecticut King’ according to Fulton et al. (1995). DNA of ‘White 

Fox’ was sonicated to 1-10kb fragments and used as probe. ‘Connecticut King’ DNA was 

autoclaved to 100-500bp fragments and used as block. The probe DNA was labelled with 

digoxigenin-11-dUTP by standard nick translation according to the manufacturer’s instruction 

(Roche Diannostics GmbH, Mannheim, Germany).  
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FISH experiments were performed using two different probes, 1) clone pTa71 which contains 

the EcoRI fragment of 45S ribosomal DNA from wheat (9kb) (Gerlach and Bedbrook 1979); 

2) a probe of telomere repeat sequence generated by PCR according to Cox et al. (1993) with 

minor modifications. In brief, two oligomer primers 1fw (5’-TTTAGGG-3’)5 and 1rev (5’-

CCCTAAA-3’)5 were synthetized by Isogen Life Science, the Netherlands. PCR reactions 

were set-up in the absence of template DNA. Each 100 µL PCR reaction comprised of 10 µL 

of 10 × Taq buffer (Promega), 1.5 mM MgCl2, 2 units of Taq polymerase (Promega), 2.5 mM 

dNTPs and 10 pmol of each primer 1fw and 1rev. Temperature cycling was performed 

according to Ijdo et al. (1991)  with a final extension step of 10 min at 72°C. Probes of 

different genomic DNA were labelled with either digoxigenin-11-dUTP or biotin-16-dUTP by 

nick translation according to the manufacturer’s instruction (Roche Diannostics GmbH, 

Mannheim, Germany). 

In situ hybridization  

The procedure of in situ hybridization was carried out according to Khan et al. (2009a) and 

Xie et al. (2010) with minor modification. For GISH, the hybridization mixture contained 

50% formamide, 10% dextransulphate, 2 × saline sodium citrate (SSC), 0.25% sodium 

dodecyl sulphate (SDS), 1.0-1.5 ng/μL for the probe and 25-50 ng/μL block DNA. While for 

FISH, the hybridization mixture contained 50% formamide, 10% dextransulphate, 2 × saline 

sodium citrate (SSC), 0.25% sodium dodecyl sulphate (SDS), 2.0-2.5 ng/μL for the probe and 

50-100 ng/μL block DNA. The mixture was incubated at 73°C for 10 minutes and ice cooled 

for 10 minutes, then 60μl hybridization mixture was added on each slide. After denaturation 

for 5 minutes at 80°C , slides were left in a pre-warmed box for overnight hybridization at 

37°C. After hybridization, the slides were washed in 2 × SSC for 15 minutes then stringency 

washing was followed with 0.1 × SSC at 42°C for 30 minutes. The probe labelled with 

digoxigenin-11-dUTP was detected with the anti-digoxigenin detection system and probe 

labelled with biotin-16-dUTP was detected by cy3-streptavidin system. Then the slides were 

counterstained with DAPI and mounted with Vectashield. At last, photographs were taken 

with a Canon digital camera attached to a Zeiss Axiophot epifluorescence microscopy. 
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Table 4.1. Chromosome associations  and segregation abnormalities during meiosis in 13 LA hybrids 

Hybrid 

genotype 

number 

# of cells 

analyzed 

Chromosome pairing Bridge 

formation 

frequency at 

anaphase I 

*(%) 

Remarks Range of 

bivalents 

Average 

bivalents 

006001-6 256 9-12 11.2 17 Sporadic multivalents 

006001-9 228 3-11 7.6 6  

006001-13 132 6-11 8.7 1 

Sporadic non-

homologous/homoeologous 

pairing 

006001-16 143 5-10 6.2 11  

006001-17 139 4-11 7.2 3  

006001-36 141 2-9 5.4 7  

006001-42 133 3-9 4.2 5  

006001-72 136 4-7 5.6 6  

006001-80 129 3-9 3.9 2  

006001-88 126 7-12 10.7 9  

006001-97 135 4-10 6.2 0  

041501 133 10-12 10.8 4  

041502 124 4-10 7.3 0  

*Bridge information was scored according to the anaphase I and telophase I pollen mother 

cells  

 

Results 

Chromosome breakage at metaphase I 

Chromosome association was observed at metaphase I during meiosis using GISH. In these 

hybrids, 120 to 260 pollen mother cells were observed and analysed. The main character in 

these 13 interspecific hybrids is the occurrence of bivalents involving homoeologous 

chromosomes, as well as univalent with failed association. Meanwhile, few quadrivalents, 

trivalents and bivalents involving non-homologous association between two Asiatic 

chromosomes were also detected, indicating the existence of chromosome translocation. 

Furthermore, chromatid breakage was also sporadically observed at metaphase I stage. In one 

of the pollen mother cells with 12 bivalents, an Asiatic chromosome  in one of the bivalents 
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was apparently shorter, with additional fragments present nearby (Fig. 4.1a ). This obviously 

indicated that the Asiatic chromosome was broken into two pieces.  
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Fig. 4.1. Chromosome breakage at metaphase I and anaphase I bridging during meiosis of interspecific 

hybrids of lily (006001-6). (a) a pollen mother cell with successful association showed 12 bivalents, 

one of which had an apparently shortened Asiatic chromosome as well as an additional fragment 

nearby (white arrows); (b) FISH analysis with telomere repeat and 45s rDNA as probes revealed the 

presence of a number of broken chromosomes (white arrows); (c) a dicentric bicolour bridge and an 

acentric bicolour fragment at anaphase I stage in one of the pollen mother cells (white arrows); (d) two 

unicolor bridges (green fluorescence, white arrows), as well as one bicolour bridge at anaphase I in 

one of the pollen mother cells; (e) two unicolour bridges at anaphase I stage in one of the pollen 

mother cells (blue fluorescence, white arrows); (f) anaphase I bridging, accompanied by a fragment, 

between two nonhomologous chromosomes from the Asiatic genome (white arrows); (g) two 45s 

rDNA loci on the bridge indicate the bridge happened in two sister chromatids (green fluorescence, 

white arrows); (h) a putative ring chromosome with two telomere signals on one end and two telomere 

missing on the other end (white arrow). Green fluorescence stands for chromosomes from 

Longiflorum genome, and blue fluorescence represents chromosomes from Asiatic genome 

 

FISH with telomere repeats as probe also confirmed the occurrence of chromosome 

breakage at metaphase I. Normally an intact chromosome consists of two chromatids and 

possesses four telomeres at meiosis, any breakage of a chromosome or chromatid can be 

characterized by the absence of telomeric signals in FISH. In a few pollen mother cells at 

metaphase I, a number of broken chromosomes were detected that lacked half of the telomere 

signals, indicating chromosome breakage (Fig. 4.1b).  

 

Dicentric bridges and fragments at anaphase I stage 

Bridges and fragments were detected at anaphase I and telophase I stages during meiosis. In 

the 13 genotype investigated (Fig. 4.2), diverse bridging frequencies were scored by 

traditional cytogenetic observation (Table 4.1). In one genotype (006001-6), the frequency of 

bridging formation reached 17%, followed by around 11% in genotype 006001-16. Most 

genotypes showed relatively low bridging frequencies (less than 10%), while two genotypes 

(006001-97 and 041502) didn’t show any anaphase I bridging.  

FISH and GISH revealed two types of bridges at anaphase I. One type of bridges and 

fragments involved non-sister chromatids (Fig. 4.1c). Such bridges and fragments both 

showed two different fluorescences (Fig. 4.1c). Since their variable size of the accompanying 

bicolor fragments of the bicolour bridges, paracentric inversion was excluded. In addition, a 

common feature of the bicolor fragments is that two fluorescences have the same lengths in 

all cases (Fig. 4.1c), which was also rejecting the existence paracentric inversion. This type of 
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bridges is explained as U-type exchange between non-sister chromatids. In this process, two 

nonsister chromatids from homoeologous chromosomes broke respectively, two broken 

chromatids, which possessed centromeres, mismatched together and formed a bridge, and two 

acentric chromatids formed a fragment at anaphase I (Fig. 4.2).   The other type of bridges 

and fragments involved sister-chromatids (Fig. 4.1d). This type of bridging not only happened 

with Asiatic chromosomes (Fig. 4.1d), but could also be detected in Longiflorum 

chromosomes (Fig. 4.1e). In this case, the bridges and fragments only showed one 

fluorescence. FISH experiments with telomere repeats and 45s rDNA as probes revealed that 

the fragments possessed two normal telomeres in all cases, and the two 45s rDNA loci on the 

bridge further confirmed that the bridge involved sister-chromatids, (Fig. 4.1g). According to 

the configuration of the bridge-linked homoeologous chromosomes revealed by GISH and 

FISH, formation of this type of bridges & fragments involved a U-type exchange between 

sister chromatids and a single crossing over between non-sister chromatids (Fig. 4.2). 

There were two additional indications for the occurrence of U-type exchanges. The first 

one is that U-type exchanges occured not only between homoeologous chromosomes, but also 

between two non-homologous chromosomes from Asiatic genome (Fig. 4.1f). In this case, 

both the bridge and the fragment showed the same fluorescence. The second proof was the 

presence of a putative ring chromosome with an additional fragment, except another bridge 

and fragment (Fig. 4.1h). This broken chromosome was recognized as chromosome number 2 

from Asiatic genome, which was sub-metacentric and showed a very strong 45s rDNA locus 

on the short arm near the second constriction. It was deduced that a U-type exchange 

happened between two sister chromatids, and no crossover (or rarely with even number of 

crossovers) happened between non-sister chromatids of these two homoeologous 

chromosomes. As a result, one part of the broken chromosome formed a ring chromosome 

and two other arm fragments fused together and formed an acentric fragment with two 

telomere (Fig. 4.2). The ring chromosome will cause anaphase bridging in the second meiotic 

division. In conclusion, the bridges produced at anaphase I during meiosis of the interspecific 

lily hybrids were the outcome of chromosome breakage and fusion, with or without crossing 

over between homoeologous chromatids.  

Discussion  

In the present study, anaphase bridges with fragments between sister and non-sister 

chromatids were observed and the origin was found to be due to U-type exchanges. There are 

a number of reasons for this conclusion: 1) chromosome breakage was found at metaphase I; 
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2) bridges involved, not only non-sister chromatids, but also sister-chromatid; 3) breakage and 

fusion between sister chromatids without crossing over (or rarely even number of crossovers) 

lead to a ring chromosome together with a fragment, indicating that for U-type exchange 

crossing over is not always needed; 4) chromosome breakage and fusion occured not only 

between two nonsister chromatids of two homoeologous chromosomes, but also between the 

two non-sister chromatids of two non-homologous chromosomes; and 5) in view of the 

variation in fragment size, paracentric inversion was excluded. As a result, bridges and 

fragments at anaphase I during meiosis of these lily hybrids were derived from spontaneous 

chromosome breakage and fusion, and similar to many species hybrids in which inversion 

heterozygote was usually expected,  judge these bridges from paracentric inversion is 

arbitrary.  

DNA in situ hybridization is a powerful technique in studying bridges, which enables the 

discrimination of sister U-type exchanges from non-sister U-type exchanges. GISH revealed 

that anaphase I bridges and fragments are not sufficient proof for non-sister U-type exchanges. 

In classical cytogenetics, non-sister U-type exchange was characterized by the configuration 

of anaphase I bridges and fragments, while sister U-type exchanges were recognised by the 

anaphase I loops with fragments, univalent loops and univalent bridges at meiosis (Haga 1953; 

Jones and Brumpton 1971; Jones 1969; Karp and Jones 1983; Walters 1956). Our results 

revealed that not only non-sister U-type exchanges, but also sister chromatid U-type 

exchanges, with a single crossing over, can also give rise to the production of an anaphase I 

bridge together with an acentric fragment (Fig. 4.1d and 1e; Fig. 4.2). The only difference of 

these two is that bridges and fragments derived from non-sister U-type exchanges are the 

merger of chromatid segments from two genomes that are differentially labelled by the  

fluorescence labelling . On the other hand, anaphase I loops with fragments, univalent loops 

and univalent bridges at meiosis are of course proof of sister U-type exchanges, but loops are 

difficult to be identified at meiosis since chromosomes are so condensed. However, FISH 

with a telomere repeat as probe can simultaneously detect the number of telomeres on 

individual chromosomes, which provides convincing proof for ring chromosomes.  

Anaphase bridging in interspecific hybrids results in reduced fertility, aneuploidy and 

probably the production of isochromosomes in the progeny. During male meiosis which will 

give rise to haploid pollen, a chromatid bridge will break at one or multiple locations, 

resulting in chromosome structural changes and/or loss of chromosome material. This will 

cause half of the gametes from the pollen mother cell to be unbalanced and lethal, and explain 

the remarkable reduction of fertility. Since unreduced gametes can endure aneuploidy, some 
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of the sexual polyploidized progenies can be aneuploids. That is why a few aneuploids were 

found with one or two chromosomes missing in backcross progenies of lily after sexual 

polyploidization (Khan 2009; Khan et al. 2009a; Zhou 2007). However, anaphase bridging is 

not the only factor that contributes to aneuploids, at metaphase I during meiosis, numerical 

univalent were also present in most of the pollen mother cells (chapter 3), the random 

movements of these univalents in the first meiotic division can also lead to the production of 

aneuploids (Zhou 2007). In conclusion, meiosis with anaphase bridges mostly produced 

unviable gametes due to chromosome number or structure variation.  

 

 

Fig. 4.2. Illustration of the production of chromosome bridges  with different configurations at 

anaphase I stage during meiosis of interspecific lily hybrids 
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Chromatid breakage is probably a genetic response to genomic shock caused by 

interspecific hybridization in lily. Like radiation, interspecific hybridization can cause meiotic 

instability, which is common in many species hybrids. Our results showed that univalents, 

multivalents, non-homologous bivalents, bridges as well as ring chromosomes were present 

during meiosis of these lily hybrids. Similarly,  univalent, chain and ring multivalents and 

anaphase bridges were found in the pollen mother cells of a F1 hybrid between Vigna 

umbellate and V. minima (Gopinathan and Babu 1986). Non-homologous chromosome 

pairing has also been found in the hybrids of Lolium temulentum × L. perenne. In the hybrids 

of Helianthus annuus × H. tuberosus, genomic alterations were revealed to be the response to 

genomic shock following the interspecific cross (Natali et al. 1998). These meiotic 

abnormalities all involved chromatid breakage. Since normal meiosis can be found in both of 

the parents of the hybrids, the meiotic irregularity is probably due to interspecific 

hybridization. Indeed, during allopolyploid formation, interspecific hybridization, rather than 

polyploidization, is likely the reason of extensive genetic and epigenetic changes (Wang et al. 

2006). Furthermore, if chromosome breakage occurs at the centromere position, fusion of two 

broken chromatids from one chromosome arm will probably lead to the production of 

isochromosomes (see chapter 5), which has been also presumed as a mechanism leading to B 

chromosomes.  

We propose that U-type exchanges in lily hybrids are DSBs and the repair mediated by 

NHEJ. It has been revealed that crossovers are indeed DSBs followed by the repair by HR 

(Keeney 2001; Puchta 2005; Szostak et al. 1983). In mitotic cells, DSB repair with the sister 

chromatid appears to be preferred, whereas interhomolog recombination is favoured during 

meiosis (Pradillo and Santos 2011). Sequence repeats comprise a large fraction of lily genome 

and, although they can be quite divergent from each other, their enormous number and 

dispersal throughout the genome also makes them potential repair templates. Increase of HR 

mediated events—such as unequal sister-chromatid exchange and ectopic HR between non-

allelic repeated DNA fragments can result in chromosomal rearrangements (Aguilera and 

Gómez-González 2008). As a result, altered karyotypes in yeast have been explained as due to 

DSBs repaired either by reciprocal unequal sister chromatid recombination or ectopic 

recombination between non-homologous chromosome (Loidl and Nairz 1997). However, such 

explanation doesn’t fit the current results for two reasons. Firstly, none of reciprocal unequal 

recombination and ectopic recombination can produce bridges and fragments like what has 

been found in lily (Fig. 4.1). Like in yeast, two mechanisms normally lead to variation of 

chromosome size. Even there was an inversion, the chance that two fluorescence of the 
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fragment have the same length would be rare. In addition, ectopic recombination is mostly 

nonreciprocal. Secondly, as shown in the results, the allelic homologies/homoeologies were 

still available in the pollen mother cells that formed bridges at anaphase I. On the contrary, 

bridges happened not only between sister chromatids but also nonsister chromatids from 

homoeologous chromosome pairs (Fig. 4.1). Moreover, isochromosomes from centric fission 

and fusion have also been found in the backcross progenies of LA lilies. All of these evidence 

indicates that the repair of DSBs in bridge & fragment formation is nonhomologous. Thus, 

NHEJ is proposed to be involved in the repair of DSBs during meiosis of interspecific LA 

lilies. 
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Abstract 

Supernumerary (B) chromosomes and small aberrant chromosomes were detected in Lilium 

hybrids and characterized through genomic in situ hybridization (GISH) and florescence in 

situ hybridization (FISH). Two small, supernumerary or B chromosomes were detected as 

extra chromosomes in a tetraploid plant derived from chromosome doubling of a hybrid 

(2n=2x=24) between a cultivar of the Longiflorum (L) and the Trumpet (T) group. When this 

tetraploid LLTT hybrid was crossed with a triploid LLO hybrid (O=Oriental), the B 

chromosome was transmitted to 73.4% of the progenies. Based on GISH and FISH 

characterization it was shown that the B chromosome found consisted of two identical arms, 

with 5S rDNA hybridizing to the majority of it, which were flanked by normal telomeres, 

suggesting that this is an isochromosome. In another population, which is a backcross progeny 

between a F1 hybrid of Longiflorum × Asiatic (LA) and its Asiatic parent, the former 

produced functional 2n gametes which resulted in a triploid LAA progeny (2n=3x=36), in 

which three exceptional plants possessed 35 normal chromosomes and a small aberrant 

chromosome instead of the expected normal number of 36. In all three cases the small 

aberrant chromosomes were isochromosomes which had obviously originated  during the first 

backcross generation. These three chromosomes showed normal telomeres and mitosis. In 

addition, one of the new generated chromosomes possessed two 45S rDNA sites in the 

proximal positions. These new arisen isochromosomes were proposed to originate from 

centric breakage and fusion of two short arms of the missing chromosome in three genotypes 

respectively, based on the comparison of arm lengths as well as rDNA loci. Their  relevance 

to the origin of Bs is discussed.   

Keywords: lily, B chromosomes, isochromosome, centromere misdivision, multicolour GISH, 

rDNA 
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Introduction 

B chromosomes (Bs) have been reported to occur in more than a thousand flowering plant 

species (Jones and Houben 2003; Jones and Rees 1982). The survey is by no means complete, 

but the available literature suggests that some families (e.g. Compositae, Graminae and 

Liliaceae) possess larger numbers of species with Bs as compared with others (Jones 1995; 

Levin et al. 2005; Trivers et al. 2004). Based on cytological studies, certain general trends for 

Bs are detected: 1. Bs are incidental, i.e. present only in some of the individuals in a sampled 

population; 2. during meiosis, they might pair among themselves but not with standard 

chromosomes (As); 3. their inheritance is normally non-Mendelian and their number can vary 

among individuals of a species; 4. except for rDNA genes, no other major gene loci have been 

found; 5. they occur predominantly in plants with large chromosomes; and 6. they are derived 

from As, but “their mode of origin remains a mystery” (Jones et al. 2008a; Jones et al. 2008b).  

Despite the wide occurrence of Bs among plants, critical analysis of their molecular structure, 

organization and genetics has been investigated in only a few species such as: maize, rye, 

Brachycome dichromosomatica, Crepis capillaries (Donald et al. 1995; Jones et al. 2008b; 

Maluszynska and Schweizer 1989). In most of these cases, already existing Bs have been 

investigated. However, the origin of an apparent new B chromosome has been clearly 

detected and characterized in detail in Plantago lagopus (Dhar et al. 2002). This origin 

involved a “mutation (aneuploidy), chromosome fragmentation, specific DNA sequence 

amplification, addition of telomeric repeats, and centromeric misdivision” (Dhar et al. 2002). 

This obviously indicates that the origin of Bs involves a series of events which cannot always 

be traced or clearly defined. 

The genus Lilium is well known to possess one of the largest genomes and chromosomes 

among flowering plants (Bennett and Smith 1976; Zonneveld et al. 2005). In this genus the 

occurrence of accessory chromosomes has been reported in at least 17 species (reference in 

Brandram 1967). These so-called accessory chromosomes vary in size from very minute to as 

large as the normal A chromosomes. Their numbers vary from one in L. davidii var. 

willmottiae to as many as eight in the hybrid L. leichtlinii var. maximowiczii × L. amabile var. 

unicolor. Although the Bs in Lilium species have not been characterized in great detail, the 

presence of sub-median, telocentric as well as median chromosomes has been detected in 

different species. Besides establishing the occurrence of B chromosomes in several species, 

preferential transmission and maintenance in EMCs (embryo-sac-mother cells) and Mendelian 

transmission in pollens have been investigated in wild populations of L. callosum (Kayano 

1957; Kimura and Kayano 1961). In all the investigations on Lilium species, there appears to 

be no detailed investigation on the structure and organization of B chromosomes so far. While 

investigating the karyotypes of Lilium hybrids we have detected B chromosomes as well as 

small aberrant chromosomes (newly originated), the latter of which resemble potential Bs. In 

order to compare the existing Bs and aberrant small chromosomes in lily hybrids, and trace 
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their origin, the structure of these small chromosomes is analyzed using GISH and FISH 

techniques and the relevance of these structures to the probable origin of B chromosomes is 

discussed. 

Materials and methods 

Plant materials 

Two types of lily populations were investigated for extra chromosomes in this study. In one 

case, a population consisting of 26 genotypes was derived from crossing an allotriploid 

(2n=3x=36) and an allotetraploid (2n=4x=48). The allotriploid was the backcross progeny 

between a Longiflorum cultivar (LL) and a somatic chromosome doubled Longiflorum × 

Oriental hybrid (LOLO), and was denoted as LLO; while the allotetraploid was obtained 

through somatic chromosome doubling of a cross between a Longiflorum (LL) and a Trumpet 

(TT) cultivar, and accordingly was denoted as LLTT. All the progenies of the LLO × LLTT 

combination were aneuploid in which chromosome numbers varied from 40 to 45 due to 

variable numbers of chromosomes from the O genome (Table 5.1). The other population 

consisted of 25 progenies derived from crossing a 2n gamete producing Longiflorum × 

Asiatic hybrid (2n=2x=24) with its Asiatic parent (2x) and was denoted as LAA. The 

progenies were predominantly triploid (3x) except for three aneuploids (2n=3x-1=35). 

Mitotic chromosome preparation 

Young roots were collected from in vitro plants and treated with 0.7mM cyclohexamide for 4-

6 hours at 4°C after which they were transferred to freshly prepared Carnoy’s solution 

(ethanol : acetic acid, 3:1 v/v) and stored at 4°C until use. Root tips were washed and 

incubated in an enzyme mixture (1% cellulose RS and 1% Pectolyase Y23 in 2mM citrate 

buffer, pH 4.5) for 90 minutes at 37°C. Mitotic metaphase chromosomes were spread 

according to Ross et al. (1996).  

DNA preparation for GISH and FISH experiments 

Genomic DNA was extracted from young leaves using the protocol described by Murray and 

Thompson (1980). For GISH in the progeny of LLO × LLTT, DNA of Oriental cultivar 

‘Sorbonne’ and Trumpet cultivar ‘Royal Gold’ was sonicated to 1-10kb fragments and used as 

probes. Genomic DNA extracted from Longiflorum ‘White Fox’ was autoclaved to 200-600 

bp fragments and used as block. In the case of the LAA progeny, genomic DNA from 

Longiflorum cultivar ‘White Fox’ was sonicated to 1-10kb fragments and used as probe, and 

the genomic DNA from Asiatic cultivar ‘Connecticut King’ was autoclaved to 200-600 bp 

fragments and used as block.  

FISH was performed using three different probes, 1) clone pTa71 which contains the 9kb 

EcoRI fragment of 45S ribosomal DNA from wheat (Gerlach and Bedbrook 1979); 2) clone 

pScT7 which contains the 462bp BamHІ fragment of 5S ribosomal DNA from rye (Lawrence 
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and Appels 1986); 3) a probe of telomere repeat sequence generated by PCR according to Cox 

et al. (1993) with minor modifications. In brief, two oligomer primers 1fw (5’-TTTAGGG-

3’)5 and 1rev (5’-CCCTAAA-3’)5 were synthesized by Isogen Life Science,  Netherlands. 

Concatemers were produced during a PCR reaction in which the primers also serve as 

template. Each 100 μl reaction comprised 10μl of 10×Taq buffer (Promega) 1.5mM MgCl2, 2 

units of Taq polymerase (Promega), 2.5mM dNTPs and 10pmol of each primer. Temperature 

cycling was performed according to Ijdo et al. (1991) with a final extension step of 10 min at 

72°C.  

Probes were labelled with either digoxigenin-11-dUTP or biotin-16-dUTP using standard 

nick translation according to the manufacturer’s instruction (Roche Diagnostics GmbH, 

Mannheim, Germany).  

In situ hybridization 

GISH was carried out according to Barba-Gonzalez et al. (2005b) and Khan et al. (2009a), the 

40μl hybridization mixture contained 50% (v/v) deionized formamide, 10% (w/v) sodium 

dextran sulphate, 2×SSC, 0.25% (w/v) sodium dodecyl sulphate, 0.6-1.0 ng/μL for each probe 

and 15-50 ng/μL block DNA. FISH was carried out according to Lim et al. (Lim et al. 2001b) 

with a 40μl hybridization mixture of 50% (v/v) deionized formamide, 10% (w/v) sodium 

dextran sulphate, 2×SSC, 0.25% (w/v) sodium dodecyl sulphate, 2-2.5 ng/μL for each probe 

and 100-200 ng/μL sheared herring sperm DNA, the latter was used as block DNA. The 

hybridization mixture for GISH or FISH was incubated at 73°C for 10 minutes and ice cooled 

for at least 10 minutes, and then was added on each slide, the slides were covered with cover 

slips and denatured at 80°C for 5 minutes after which slides were transferred to a pre-warmed 

hybridization chamber for overnight incubation at 37°C. After hybridization, stringency 

washing was performed using 0.1×SSC at 42 °C for 30 minutes. The probes labelled with 

digoxigenin-11-dUTP or biotin-16-dUTP were detected with the anti-digoxigenin-FITC or 

Cy3 respectively. After detection the slides were counterstained with 1 μg/mL 4’,6-

diamidino-2-phenyl-indole (DAPI) and mounted with Vectashield (Vector Laboratories, Inc., 

Builingame, USA). Preparations were photographed with a Canon camera attached to a Zeiss 

Axiophot epifluorescence microscopy.  

Chromosome identification and karyotyping 

Images of mitotic metaphase chromosomes were measured using the computer program 

MicroMeasure (Reeves and Tear 2000). In all four genomes (L, A, O, T), the chromosomes 

were put into sequence according to decreasing short arm length (Stewart 1947). In order to 

identify the chromosome in each genome, the chromosome length, arm ratio, centromere 

index (short arm length/ long arm length + short arm length), relative chromosome length 

index (individual chromosome length/total length of a set of chromosomes) and 45S rDNA 

locus were used as identification tools (Barthes and Ricroch 2001; Lim et al. 2001b).  
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Fig. 5.1. Discovery of B chromosomes in the male parent (LLTT) and its multicolour GISH analysis 

in the progeny. (a) Two Bs in the male (L) parent of the tetraploid LLTT (white arrows). (b) B 

chromosome (white arrow) was blocked by L genome DNA in multicolour GISH in genotype 076928-

21 (LLO × LLTT) in which GISH clearly identified the chromosomes of the three genomes. T= red 

(biotin labelled and detected with Cy3– streptavidin); O= green (digoxigenin labelled and detected 

with anti-digoxigenin FITC system) and L= blue (DAPI counterstaining) 

 

Results  

Extra chromosomes in progenies of LLO × LLTT 

As a first step, the karyotypes of the two parents were investigated for their chromosome 

constitution. Whereas the triploid LLO possessed the expected 36 chromosomes without any 

extra chromosomes, there were two small extra chromosomes in the LLTT parent in addition 

to the normal chromosome complement (Fig. 5.1a). As expected, all the progenies from LLO 

× LLTT combination were aneuploid with chromosome number varying from 39 to 45. 

Beside the standard chromosomes (As), the small extra chromosomes were also detected in 

the progeny. Besides their small size, the extra chromosomes were clearly metacentric and 

present in all somatic metaphase cells of the root meristem. Because chromosomes of three 

different genomes (i.e., L, T and O) were expected to be present in the progenies of the LLO 

× LLTT cross, multicolour GISH analysis was used to analyze these progenies. Results 

showed that chromosomes of the three genomes could be clearly distinguished and there was 

indication that the small extra chromosome was blocked by Longiflorum DNA (Fig. 5.1b). 

Out of the analyzed 26 offspring plants, 19 genotypes possessed either one or two extra 

chromosomes, which will be mentioned as B chromosomes (Bs), whereas seven of the 26 

progenies had no Bs (Table 5.1). This indicated that the transmission of Bs through the male 

parent LLTT was very high (73.4 %).  
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Table 5.1. Distribution, size and characters of small chromosomes in two different types of 

lily populations 

Genotype # of A chr. 
# of small 

chr. 
Origin Length (μm) Remarks 

LLO × LLTT 

population 

Aneuploid 

39-45 
1-2 Male (LLTT) 6.29 existing 5S rDNA 

074051-9 35 1 Female (LA) 8.41 
de 

novo 
45S rDNA 

084798-2 35 1 Female (LA) 4.91 
de 

novo 
No rDNA 

084798-6 35 1 Female (LA) 6.77 
de 

novo 
No rDNA 

 

 

Fig. 5.2. Cytogenetic structure of small chromosomes in different genotypes  of lily revealed by GISH 

and FISH. (a) B chromosome (LLO × LLTT, 076928-23) is wholly hybridized by 5S rDNA probe (red 

represents 45S rDNA loci and green represents 5S rDNA loci). (b) B chromosome can be hybridized 

by genomic DNA probe of Longiflorum (LAA, 074051-9, green represents L genome and blue 

represents A genome). (c) 45S rDNA loci on B chromosome (LAA, 074051-9, red represents 45S 

rDNA loci and green represents 5S rDNA loci). (d) Telomere labelling with telomere repeat sequences 

as probe in 074051-9; the small aberrant chromosome  showed a normal telomere signals (white arrow 

and inset). 
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In order to investigate the structure of these Bs in more detail, FISH was applied using 5S 

rDNA and 45S rDNA as probes (Fig. 5.2a). In addition, the telomeric repeat sequence was 

used as a probe to detect the status of the chromosome ends. A notable feature was that FISH 

clearly detected several hybridization sites of both 5S rDNA (green) and 45S rDNA (red) sites 

in the standard chromosomes (Fig. 5.2a). The B chromosomes clearly contained two equal 

arms and possessed blocks of 5S rDNA on both arms (inset in Fig. 5.2a) flanked by telomeric 

sequences (result not shown). In view of the identical morphology of both arms of these B 

chromosomes it was concluded that they are isochromosomes. 

Small aberrant chromosomes in progeny of LA × AA cross  

 Out of 25 triploid progenies derived from LA × AA cross, 22 genotypes were euploids with 

the expected 36 chromosomes. None of these normal triploids possessed any extra 

chromosomes or fragments, similar to both of the parents from which the progeny was 

derived (results not shown). In the other three genotypes of this progeny, viz., 074051-9, 

084798-2 and 084798-6, however, all the somatic cells possess 35 chromosomes together 

with a small chromosome in all the somatic cells. Because the small chromosome occurred in 

all three genotypes together with 35, instead of 36 normal chromosomes, the small structures 

which are probably related to the missing A chromosomes in each genotype are called 

‘aberrant’. The size of the aberrant chromosomes varied from 4.9 to 8.4 μm in different 

genotypes (Table 5.2). The structural organization of these three small chromosomes was 

investigated through GISH and FISH using 5S rDNA, 45S rDNA and telomeric sequences as 

probes. The results of GISH and FISH analyses of the aberrant chromosome in genotype 

074051-9, are shown in Fig. 5.2b, c and d. GISH results indicated that the small aberrant 

chromosome in genotype 074051-9 (Fig. 5.2b) and 084798-2 originated from Longiflorum 

whereas the aberrant chromosome in 084798-6 was derived from Asiatic genome. By using 

two probes, 45S rDNA and 5S rDNA, different hybridization sites were detected through 

FISH in the complement (Fig. 5.2c). The striking feature, however, was that the small 

aberrant chromosome in genotype 074051-9 possessed a hybridization site of 45S rDNA 

repeat (red fluorescence) on each of its two arms in proximal positions (arrow and inset in Fig. 

5.2c). When probed with telomeric sequences, FISH clearly demonstrated the presence of 

telomeres in the small aberrant chromosome (Fig. 5.2d, arrow and inset). Thus, each arm of 

this aberrant chromosome has a block of 45S rDNA proximally followed by a non-hybridized 

region and a telomere. In two other genotypes, 084798-2 and 08798-6, the small aberrant 

chromosomes were clearly median chromosomes without any rDNA repeats but possessed 

normal telomeres as revealed by FISH (results not shown). In view of the similar morphology 

of the arms of small chromosomes in all three genotypes, they were concluded to be 

isochromosomes as well.  
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Table 5.2. Comparison of arm length between the aberrant small chromosome and the missing 

chromosome in  three LAA genotypes 

Genotype 

Arm length of 

aberrant chr. 

(µm) 

Missing 

chromosomes 

Short arm length 

of missing chr. 

(µm)** 

Other similarity 

074051-9 4.21±0.17 L4 4.33 45s rDNA 

084798-2 2.45±0.08 L9 2.36  

084798-6 3.38±0.06 A6 3.73  

Note: L4 and L9 stands for chromosome 4 and 9 from Longiflorum genome respectively. Similarly, 

A6 represents chromosome 6 from Asiatic genome. ** data from Khan et al. (2009a) 

 

 

Fig. 5.3. A comparison of the small aberrant chromosome and the missing chromosome (L4) in 

genotype 074051-9.  
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Centric breakage and fusion lead to the production of isochromosomes in progeny of LA × 

AA cross 

As mentioned before, a common feature of the three genotypes with isochromosomes in the 

progeny of LA × AA cross is that they were all aneuploids with a loss of a normal 

chromosome. Interestingly, GISH results revealed that the new generated isochromosomes 

were  from the same genome as the missing chromosome in all of the three genotypes. As a 

next step, a comparison was made between the isochromosomes and the corresponding 

missing chromosomes according to the arm length and FISH analysis. Results showed that the 

arm length of the new generated chromosome was the same as the short arm length of the 

missing chromosome in these three genotypes respectively (Table 5.2). Furthermore, 45S 

rDNA signals were detected in the proximal position on the isochromosome in genotype 

074051-9, which was exactly the same as the short arm of the missing chromosome L4 (Fig. 

5.3). In view of these facts, it was proposed that these new generated isochromosomes 

originated from a centric breakage and fusion of two short arms of the missing chromosomes 

during meiosis.  

Discussion 

The small aberrant chromosomes in three genotypes of LA hybrids have been proposed to 

originate from centric fission and fusion of two short arms of the missing chromosomes. 

Firstly, there are reliable indications that the small aberrant chromosomes in the progeny of 

LA × AA backcross have originated independently in the BC1 generation. None of the parents 

possessed any small aberrant chromosome comparable to those observed in the three progeny 

BC1 plants; secondly, all three genotypes that possessed aberrant chromosomes had an 

aneuploid chromosome number of 35 instead of the expected 36 As; thirdly, the small 

aberrant chromosome and the missing chromosome in each of the three genotypes are 

respectively from the same genotype; fourthly, as what has been shown in the results part, the 

similarity of arm length relationship and 45S rDNA distribution also strongly support the 

hypothesis; and finally, chromosome breakage and fusion have been found during meiosis of 

interspecific hybrids of Longiflorum × Asiatic (LA) lilies (see chapter 4). All these evidence 

indicates that due to misdivision of the centromere, two telocentric chromosomes are formed. 

The telocentric long arm is probably eliminated whereas the short arm has given rise to an 

isochromosome which has survived. This survival might be due to the fact that, in one step, a 

stable chromosome with a functional centromere and telomeres at both ends are formed. It 

means that the species of the genus Lilium are well positioned to generate aberrant small 

chromosomes such as the ones reported in this study. This is because, the karyotypes of 

Lilium species possess two pairs of median or sub-median chromosomes while the other 10 

pairs are highly asymmetrical with very small or minute short arms relative to the long arms 

(Lim et al. 2001b; Stewart 1947). Furthermore, there are some other proofs to support that 
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chromosome centric fission and fusion lead to the production of isochromosomes. In maize 

and wheat, meiotic univalents not only randomly move to one pole when segregating at 

anaphase I, but also have a tendency to misdivide at the centromere (Lukaszewski 2010). 

Such centromere misdivision gives rise to centric translocation, production of telocentric and 

isochromosomes (Kaszas et al. 2002; Lukaszewski 2010). 

The occurrence of telocentrics and isochromosomes has been reported previously in Lilium 

species (Brandram 1967). They have been called accessory chromosomes. Whether they 

behave similar to B chromosomes from other species is not known. Because the origin of Bs 

has been considered as a ‘mystery’, it might be worthwhile to investigate the origin of these 

small aberrant chromosomes as the ones observed in this study in more detail. One instance in 

which the mode of origin of a B chromosome has been investigated is in Plantago lagopus 

which involves the formation of a minichromosome, amplification of 5S rDNA, stabilization 

of telomeric repeats and formation of an isochromosome (Dhar et al. 2000; Jones et al. 2008b). 

Compared to this mode of origin, the formation of isochromosomes from the short arms 

following misdivision of the centromere, as described in this investigation, is a more simple 

mechanism for the potential origin of Bs.  

The presence of rDNA repeats in two cases deserves a comment. In more than 30 plant 

species the presence of rDNA sequences on Bs has been recorded (Dhar et al. 2002; Donald et 

al. 1995; Flavell and Rimpau 1975; Friebe et al. 1995; Jones 1995; Maluszynska and 

Schweizer 1989). A good example resembling the aberrant chromosome in genotype 074051-

9 is the B chromosome found in Allium cernuum. Using Ag-NOR banding, the B 

chromosome was found to be median and possessed rDNA sites with nucleoral activity on 

both arms (Friebe 1989). Furthermore, there is information suggesting that NOR regions are 

prone to chromosome breakage and this may provide a mechanism behind the appearance of 

B chromosome following interspecific hybridization (Beukeboom 1994; Camacho et al. 2000; 

Jones and Houben 2003). It is not known whether rDNA sites of As are more vulnerable for 

breakage compared to other chromosome regions. It may be pointed out that such breakage 

may not result in a chromosome fragment that can survive on its own, a centromere is 

absolutely necessary. For this reason, it might be logical to assume that a chromosome arm 

that possesses a secondary constriction or nucleolus organizer, is probably more susceptible 

for breakage, or centromere misdivision. In tomato, the origin of an isochromosome of the 

short arm of chromosome 2 (2S) is instructive in this connection. Moens (1965) reported the 

occurrence of an isochromosome of 2S in Lycopersicon esculentum which had resulted from 

the misdivision of the centromere in a trisomic of chromosome 2. In addition to being 

heterochromatic, 2S also carries the nucleolus organizer. Although this isochromosome 

possessed a functional centromere, telomeres in addition to nucleolus organiser, it was not 

stable morphologically (Quiros 1976) but was transmitted to the progenies, accumulating as 

many as eight copies in some of the progenies. In a later study, the isochromosomes of 2S 

were shown to be highly unstable due to breakage-fusion-bridge cycle (Ramanna et al. 1985). 
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It has not, however, been established that the instability is due to the presence of rDNA sites 

on both arms of the isochromosome but it does provide an instance of instability in such 

newly produced chromosomes. In Lilium species, there are many 5S and 45S rDNA sites and 

some of them are in proximal positions (Lim et al. 2001b). One example is the 45S rDNA site 

on the short arm of chromosome 4 of Longiflorum. The isochromosome in the genotype, 

074051-9 which showed a stable mitosis, might have originated from the short arm of 

chromosome 4 of Longiflorum. A critical further investigation of the behaviour of the newly 

arisen iso-chromosomes reported in this investigation might shed light on the probable modes 

of origins of B chromosomes. 
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The results presented in this thesis mainly focus on the analysis of chromosome behaviour in 

lily hybrids, including interspecific F1 hybrids as well as backcross progenies, using 

molecular cytogenetic techniques. It has been found that 1) there were no chromosome 

rearrangements in neopolyploids of Lilium hybrids (Chapter 2); 2) the intergenomic 

recombination, which has been found in sexual polyploidized backcross progenies, originated 

from chiasmata formation and crossing over during meiosis (Chapter 2 and 3); 3) meiotic 

abnormalities, such as non-homologous chromosome pairing involved in multivalents and 

(few) bivalents, were due to the existence of a reciprocal translocation in the paternal parent 

‘Connecticut King’; 4) chromosome breakage and anaphase bridging were found to be the 

cause of chromosome structure variation (Chapter 4); 4) isochromosomes were produced due 

to the irregularity of meiosis in the interspecific hybrids of lily (Chapter 5). Such results do 

not only contribute to fundamental research in allopolyploid evolution and speciation, but can 

also benefit plant breeding by solving problems in genetic mapping. In this Chapter, some 

topics namely:  

1) Interspecific hybrids of lily: a model for molecular cytogenetic research 

2) Chromosome rearrangements and its relevance to genetic mapping 

3) Sexual polyploidization and its significance in polyploidy mapping 

4) Meiotic abnormalities in lily interspecific hybrids 

5) Crossing over and introgression breeding 

6) Genomic shock, isochromosome formation and B chromosome origin during sexual 

polyploidization 

will be discussed and future perspectives will be presented to draw more attention to the 

theoretical and practical aspects of homoeologous chromosome interaction. 

Interspecific hybrids of lily: a model for molecular cytogenetic 

research 

Conventional diploid lily cultivars are being replaced by recently produced polyploidy 

cultivars. The genus Lilium consists of about 80 species and has been classified into 7 

botanical sections (Comber 1949; De Jong 1974). A noticeable feature is that interspecific 

crosses within each section are relatively easy and the resultant hybrids are generally fertile, 

while crosses between species from different sections are difficult because of the existence of 

pre- and post- fertilization  barriers (Van Tuyl and Lim 2003). As a result, a number of hybrid 

groups which show distinct morphological characteristics have been bred through 

conventional crossing methods (McRae 1998). However, neopolyploids, derived from  

interspecific (between sections) hybridization and polyploidization, are playing a prominent 

role in lily breeding with the aim of combining desirable traits of different hybrid groups (Van 

Tuyl and Lim 2003). With the advance of technology, barriers of interspecific hybridization 
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have been overcome by using cut-style pollination and embryo rescue methods (Van Tuyl et 

al. 1991), while the hybrid sterility can also be restored by using mitotic and meiotic 

polyploidization (Ramanna and Jacobsen 2003; Van Tuyl and Lim 2003). This is also the 

reason that polyploid cultivars are becoming increasingly popular and most of the new 

registered cultivars are derived from interspecific hybridization between different hybrid 

groups.  

The allopolyploid and interspecific hybrids of lily offer an excellent model for molecular 

cytogenetic research. Besides the large size of chromosomes, the divergent genomes in 

different hybrid groups, which is ideal for studying homoeologous genome interaction in 

interspecific hybrids and backcross progenies on the chromosome level facilitate the 

utilization of DNA in situ hybridization (GISH and FISH). Numerical examples have showed 

that the genomes of Longiflorum, Asiatic, Longiflorum, Oriental and Trumpet can be well 

distinguished simultaneously by GISH (Barba-Gonzalez et al. 2006a; Xie et al. 2010; Zhou et 

al. 2008b). Through an effort of more than 25 years in our group (Plant Breeding, 

Wageningen Univerisity), lily hybrids have been used to clarify several cytogenetic 

mechanisms. The first one is the reduced fertility in interspecific hybrids.  The association 

failure at meiosis has been proven to be the main reason for the fertility reduction (Asano 

1982; Lim et al. 2001a). The second one is the meiotic restitution mechanisms with relevance 

to the production of unreduced gametes. Through observations of pollen mother cells of F1 

hybrids and analysis of genomic composition in backcross progenies, FDR has been proven to 

be the main mechanism that contributes to viable unreduced gametes in interspecific hybrids 

of lily (Barba-Gonzalez et al. 2006a; Lim et al. 2001a). In addition, a novel restitution 

mechanism -indeterminate meiotic restitution (IMR)- has also been identified (Lim et al. 

2001a). The third one is the occurrence of chromosome rearrangements in neopolyploids. 

Other than translocation, the extensive inter-genomic exchanges existing in newly synthesized 

allopolyploids of lily have been shown to be derived from chiasmata formation and crossing 

over events, through meiotic and mitotic analysis (Xie et al. 2010). The last one to be 

mentioned is the origin of anaphase I bridging during meiosis of  interspecific F1 hybrids. 

During meiosis of interspecific hybrids of lily, broken chromosomes at metaphase I, two types 

of bridges involving sister and non-sister chromatids as well as a putative ring chromosome 

have suggested that these bridges and fragments were the results of spontaneous chromosome 

breakage and fusion (U-type exchanges)(Chapter 4). In conclusion, the interaction of 

homoeologous chromosomes in interspecific hybrids of lily can be well studied using GISH 

and FISH, and gives more information to the allopolyploid origin, sexual polyploidization, 

chromosome structure variation and speciation in nature. In contrast, genomes in other crop 

hybrids (Tulip) are either too close to each other (homologous genomes), which makes it 

difficult to distinguish by GISH, or too distantly related which makes it non-homologous 

(wheat). Moreover, chromosomes in some genera are too small to be critically observed both 

in mitosis and meiosis (Brassica). Hence, interspecific hybrids of lily have become an ideal 
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model for molecular cytogenetic research when studying the interaction of homoeologous 

genomes in interspecific hybrids and allopolyploids. However, it should also be noticed that 

since the large genome, large probes (>2Kb) need to be used to get clear signals when 

analyzing lily with FISH.  

Chromosome rearrangements and its relevance to genetic 

mapping 

In genetic mapping, normally two crossing parents are involved to produce a segregating 

population. These crossing materials, although related, should produce enough detectable 

sequence polymorphism throughout the genome. These populations, however, might give 

complicated maps because of parental chromosome structural differences (Chapter 3), which 

is discussed in the following paragraph. 

Changes in chromosome composition have been considered as a cause of ambiguities in 

genetic mapping with molecular markers. Such changes consists of translocations, deletions, 

duplications and inversions. Each of these events involves breakage of DNA double helices in 

the genome at two different locations, followed by a reunion of the broken ends to produce a 

new chromosomal arrangement of genes, and causes gene order variation compared to the 

original order. These alterations of gene order will have certain consequences in genetic 

mapping when parents with chromosome rearrangements are involved in crossing to generate 

segregating populations. In general, structure variations cause reduced fertility in gametes, 

which lead to skewed populations (Fig. 6.1; Fig. 6.2). Different types of chromosome 

rearrangements give rise to various mapping problems. First, inversions, both pericentric and 

paracentric, lead to suppressed recombination between the inverted and non-inverted genomic 

regions (Loren H 2001; Noor et al. 2001; Rieseberg 2001a; Schaeffer and Anderson 2005). 

Molecular mapping studies have highlighted that loci within inversions can be in strong 

linkage disequilibrium with each other for two reasons: a) chromosome pairing of the inverted 

region is commonly hampered and an inversion loop is formed when the size of the inverted 

segment is not big enough. b) even if inverted segments paired together and a single crossover 

happened in the inverted region, pericentric inversions would produce sterile gametes with 

duplication and deletion while paracentric inversions give rise to anaphase bridging, which 

would also result into unviable gametes (Fig. 6.1). Second, reciprocal translocations give 

pseudolinkage when progenies result from material with a reciprocal translocation is used for 

genetic mapping. During meiosis of a plant with a reciprocal translocation, quadrivalents are 

normally formed at metaphase I. Chiasma formation and crossing over will be suppressed in 

the interstitial area (between centromere and translocation breakpoints) because such 

exchanges between non-sister chromatids will lead to gametes with duplication and deletion 

(Fig. 6.2, see unviable gametes from alternate segregation). 

http://www.ncbi.nlm.nih.gov/books/n/mga/A3041/def-item/A3412/
http://www.ncbi.nlm.nih.gov/books/n/mga/A3041/def-item/A3390/
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Fig. 6.1. The meiosis process of a chromosome with a deletion, a duplication and an inversion and their relevance to genetic mapping. Note: “+” stands for 

gametes that are viable, “-” stands for gametes that are unviable.  
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Fig. 6.2. The meiosis process of  chromosomes with a reciprocal translocation and their relevance to genetic mapping. Gametes from adjacent segregation of a 

quadrivalent from a reciprocal translocation are generally unviable, while gametes from alternate segregation are balanced and viable if crossovers happened 

in the translocated chromosome segments, as well as the other chromosome arms. Any single crossover between non-sister chromatids in the interstitial area 

will lead to the production of duplication-deficiency gametes.  Note: “+” stands for gametes that are viable, “-” stands for gametes that are unviable. 
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Two translocated chromosomes usually form ‘pseudolinkage’ (Albrecht and Chetelat 2009; 

Farré et al. 2010; Kamphuis et al. 2007). Meanwhile, since normal and translocated segments 

lead to reduced crossover interference, distance between markers on normal and translocated 

chromosome fragments will be wrongly estimated, marker order is ambiguous along the 

merged linkage groups and higher stringencies (increase the LODs) do not result in a division 

into two balanced chromosomes (Albrecht and Chetelat 2009). Third, the existence of 

duplication leads to erroneous location of markers in  the linkage group associated with the 

chromosome with duplication (Fig. 6.1). Furthermore, chromosomes with two or more types 

of structure variation make the genetic maps even more complicated. In conclusion, 

chromosome rearrangements not only cause reduced fertility, but also lead to errors when 

estimating genetic distances between markers. 

Sexual polyploidization and its significance in polyploidy mapping 

When interspecific crosses are made between distantly related species, the resulting hybrids 

are generally sterile. This hybrid sterility is explained to be due to the failure of chromosome 

association and the forthcoming error-disjoining during meiosis because of the parental 

divergence (Asano 1982). However, there is still a wide genetic variation, with some 

individuals possessing a low fertility. These outstanding genotypes normally produce 

unreduced (2n) gametes, as well as fewer n gametes (Ramanna and Jacobsen 2003). The 

process of restoring fertility through unreduced gametes is termed as sexual (meiotic) 

polyploidization, as a comparison with asexual (mitotic) polyploidization. The production of 

unreduced gametes has been reported in many interspecific hybrids, such as Lilium (Van Tuyl 

et al. 1989), Alstroemeria (Kamstra et al. 1999), Allium (Khrustaleva and Kik 1998) and 

others. One of the main advantages of sexual polyploidization, compared with its counterpart, 

is the occurrence of intergenomic recombination during the production of unreduced gametes, 

which will lead to segregation and diversity in the next generation (Ramanna and Jacobsen 

2003). The segregation in the resulting population provides a possibility for genetic mapping. 

When detecting intergenomic alteration in sexual polyploidized allopolyploids, molecular 

cytogenetic techniques (GISH and FISH) are more powerful compared with molecular 

markers. The detecting efficiency of the two methods with respect to unreduced (2n) gametes 

is compared in Fig. 6.3. GISH can simultaneously detect intergenomic recombination, 

characterize the crossing over events and trace the origin of non-sister chromatid exchanges 

when combined with meiosis observation. However, molecular markers with multi-locus 

analysis in crossing progenies cannot detect reciprocal crossing over, and quantification of 

allele number by the intensity of bands is not always accurate (Gaeta and Pires 2010; Nicolas 

et al. 2007). For example, in four types of segregated products between homoeologous 

chromosomes with a single or two strand double crossover during FDR meiosis (Fig. 6.3), 

GISH can detect all the intergenomic recombinations, whereas molecular markers can only 

detect two types of them. In the recombinant chromosomes derived from different crossing 
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over events during FDR meiosis in the present study, only half of them can be detected by 

molecular markers (Fig. 6.3), which significantly underestimates the real occurrence of 

crossover. For SDR originating allopolyploids, underestimation will also occur in case of  

recombination in a three strand double crossing over (Fig. 6.3). In conclusion, progeny 

analysis of genetic mapping in polyploids resulted from unreduced gametes will considerably 

underestimate the real crossing over events during meiosis. 

Similarly, underestimation of crossing over events also takes place in autopolyploid 

genetic mapping. Currently, most polyploidy mapping is based on disomic inheritance (1:1 

and 3:1 segregation) and maps were based on the scoring of allele number and/or dosage 

using dominant markers (Luo et al. 2001; Zhang et al. 2006), while trisomic inheritance 

(trivalent formation during meiosis), tetrasomic inheritance (quadrivalent formation during 

meiosis), as well as intermediate inheritance were ignored. However, multivalent formation, 

like trivalents and quadrivalents, is quite a normal phenomenon in polyploids, especially in 

autopolyploids (Kamiri et al. 2011; Stift et al. 2008). At anaphase I, segregants including two 

or more chromosomes resemble random segregation in FDR-like meiosis in the second 

meiotic division, and crossing over between non-sister chromatids in the same segregant also 

form reciprocal and non-reciprocal products. Recombinant sites can be detected in the former, 

on the contrary, the latter cannot be detected, which will lead to the underestimation of 

crossing over and errors in locating  the exact positions of markers in the linkage groups (Fig. 

6.3). Since reciprocal recombination is impossible to be detected with molecular markers, 

polyploidy with the formation of multivalent should be avoided when generating a mapping 

population. Hence, analytic breeding is proposed and genetic mapping can be done at diploid 

level and the  ploidy level can be raised  by mitotic or meiotic polyploidization.  
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Fig. 6.3. A comparison of detecting efficiency of crossing over events in the unreduced gametes 

resulted from a FDR or SDR meiosis. Numbers stand for recombination sites detected by molecular 

markers. In some cases, GISH is more accurate when detecting reciprocal products (in  brackets) 

Meiotic abnormalities in lily hybrids 

Different types of meiotic irregularities has been found during meiosis of interspecific hybrids 

of lily. Homoeologous chromosome pairing as well as univalents is one of the main features 

at metaphase I during meiosis of lily hybrids. Bivalent numbers ranging from 0 to 12 as well 

as univalents are present. These bivalents predominantly involve homoeologous chromosome 

pairing, while the univalents are chromosomes with failed association (Chapter 3; Barba-

Gonzalez et al. 2005a; Lim et al. 2001a; Zhou et al. 2008a). Except homoeologous bivalents 

and univalents, abnormal pairing is also observed in some of the genotypes of lily hybrids 

(Chapter 3). Multivalents and non-homologous bivalents have been found in two of LA 

hybrids, and it has been proven that a reciprocal translocation exists in the paternal parent 

‘Connecticut King’ (Chapter 3). Another abnormality is the chromosome disjoining at 

anaphase stage in the first division. Bivalents divided into two half-bivalents normally, 

whereas two chromatids of a univalent segregated and moved to different poles (Chapter 3; 

Lim et al. 2001a; Zhou et al. 2008a). Chromosome breakage also contributes to the 

irregularity of meiosis. At both metaphase and anaphase I stages, broken chromosomes have 
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been detected with GISH and FISH, and later on a U-type reunion led to the formation of 

anaphase bridges and fragments (Chapter 4). Finally, microspores with different chromosome 

numbers have also been detected after meiosis (Zhou et al. 2008a). In conclusion, 

intersectional lily hybrids show a range of abnormalities during different stages of meiosis. 

Some other kinds of meiotic abnormalities in interspecific lily hybrids have also been 

reflected and emphasized by progeny analysis. The first evidence is the polyploidized 

backcross progenies. The resultant progenies from crosses involving interspecific lily hybrids 

were predominant triploids, indicating the functional gametes were unreduced gametes and 

the mechanism has been identified as first division restitution (FDR) and indeterminate 

meiotic restitution (IMR) (Lim et al. 2001a). The second feature in backcross progenies of lily 

is aneuploidy. When analyzing the genomic composition of these triploid lily hybrids, a small 

proportion of aneuploids has been found. The last character of the backcross progeny is the 

presence of isochromosomes. In a few genotypes, resulting from some interspecific hybrids of 

LA lilies, isochromosomes with different sizes were detected, and these newly-generated 

small aberrant chromosomes were derived from the fusion of the two short arms of the 

missing chromosomes during meiosis, respectively (Chapter 5). 

Crossing over and introgression breeding 

The role of crossing over during evolution and speciation has long been realized and studied 

in flowering plants. Crossing over, which is one of the key features that distinguish meiosis 

from mitosis, not only facilitates the proper segregation of homologous chromosome in the 

first meiotic division, but also generates novel combinations of alleles via homologous 

chromosome exchanges. This process, in addition to maintaining the ploidy level during 

sexual reproduction, contributes to genetic diversity, which is essential for introgression 

breeding. 

Crossing over between homoeologous chromatids has been proven to be less frequent as 

compared with crossing over between homologous non-sister chromatids. In monosomic 

additions of tomato, a homologous bivalent (II) together with a univalent was the main 

meiotic configuration, GISH has revealed that the number of rod bivalents (stands for single 

crossing over) was much higher compared with that of ring bivalents (stands for other types of 

crossing over which probably lead to chromosomes with two or more recombinant sites), 

indicating single crossing over was the predominant type of exchange between homologous 

chromosomes. While in the substitution line of tomato SL-8, reduction of homoeologous 

recombination has been revealed by the considerable decrease of ring bivalent formation (Ji 

and Chetelat 2003). Similarly, results from several studies of homeologous recombination 

between chromosomes of wheat and related species have showed the absence of multiple 

crossovers (Dubcovsky et al. 1995; Lukaszewski 1995, 2000; Luo et al. 1996; Luo et al. 2000).  

Homoeologous crossing over has been proven to occur with different frequencies in 

different species hybrids. Although different types of crossing over events have been checked 
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during meiosis in the interspecific hybrids of lily (Chapter 3), the number of chromosomes in 

the half-bivalents with two or more recombinant sites is low, compared with those with one 

recombinant site. Since different crossover events have certain segregation patterns ( such as 

single crossover produces two recombinant chromosomes each with one recombinant site, 

with the exception of multiple crossover), the 637 pairs of half-bivalents in pollen mother 

cells in Chapter 3 showed 1191 recombinant chromosomes in total. 1102 chromosomes, 

which occupied 92.5%, possessed one recombinant site and 89 chromosomes (7.5%) with two 

recombinant sites. Although chromosomes with more than two recombinant sites did occur 

during meiosis, the frequency is relatively low compared with other species hybrids. In 

polyploid cotton (Gossypium), the frequency of intergenomic recombination events possessed 

one, two, three or more recombinant sites were 70.3%, 20.6% and 9.1% respectively (Salmon 

et al. 2010). Similarly, in an alien substitution line of tomato, in which chromosome with two 

breakpoints took up around 15% of the total recombinant chromosomes (Tam et al. 2011), the 

percentage of chromosomes with more than 1 recombinant site in lily is considerably low. 

There are three potential reasons for the low frequency of chromosomes with two or more 

recombinant sites in lily hybrids: 1) the genomes of the lily parents are more divergent 

compared those in cotton and as a result, complicated crossing overs with multiple 

recombinant sites on each chromosome are suppressed; 2) gene conversion, which usually 

gives rise to two or more recombinant sites in genetic mapping and can be detected by mRNA 

sequencing, occurs frequently in cotton; or 3) since the limited resolution of GISH, such gene 

conversions or small introgressed chromosome segments cannot be detected by molecular 

cytogenetic methods, which gives an underestimation of recombinant sites on chromosomes.   

Genomic shock, isochromosome formation and B chromosome 

origin during sexual polyploidization 

Genomes facing stress will suffer genomic shock which, on a chromosomal level, leads to 

structure remodeling (McClintock 1984). All kinds of  structure remodeling (structure 

variation) experience a process that involves double strand breaks (DSBs, chromosome 

breakage in cytogenetics) and error-reunions. DSBs can happen at centromere (centric fission), 

in interstitial or terminal regions on a chromosome, and error-reunion of broken chromosomes 

give rise to the production of structure variation. A simple example is that chromosome 

breakage followed by the fusion of broken arms from different chromosomes leads to the 

generation of so-called Robertsonian translocation in humans (Perry et al. 2004). In view of 

this, genomic shock is the driver of chromosome breakage, which causes erroneous repair in 

plants. It is not surprising that interspecific hybridization leads to spontaneous chromosome 

breakage, which has been detected in Chapter 4. As a second step, error-reunion leads to 

various types of chromosome rearrangements, including chromosomal inversions, deletions, 

translocations, and duplication (Britt 1999). 
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Another feature caused by interspecific hybridization is the occurrence of univalents 

during meiosis in interspecific hybrids. Univalents, which arose from association failure, have 

been found in many interspecific hybrids, and are considered to be the main reason of the 

reduced fertility (Asano 1982; Lee et al. 2011; Lukaszewski 2010; Sears 1950).  Meiotic 

univalents not only randomly move to one pole when segregating at anaphase I, but also have 

a tendency to misdivide at the centromere (Lukaszewski 2010). Centromere misdivision gives 

rise to centric translocation, production of telocentric and isochromosomes, which have been 

found in maize and wheat (Kaszas et al. 2002; Lukaszewski 2010). Chapter 5 reported the 

production of isochromosomes, which were derived from centric fission and fusion during 

meiosis of the maternal parent. Meanwhile, chromosome breakage has been found not only in 

univalents, but also in bivalents (Chapter 4). As a result, it is still not known whether the 

newly-generated isochromosomes in the backcross progenies are the result of centric breakage 

and fusion from either an univalent or a bivalent. 

B chromosomes, which extensively exist in many flowering plants, are probably derived 

from aberrant chromosomes. It is already well accepted that B chromosomes originate from 

meiotic errors in which interspecific hybridization provides an ideal platform, and this type of 

chromosomes are deduced to be escaped from standard chromosomes (Jones and Houben 

2003). However, what should be noticed is that the origin of B chromosomes is not a one-step 

process, which has been shown by Dhar et al. (Dhar et al. 2002) in  Plantago. Combined with 

the fact  that most of the species are involved in at least one round polyploidization, it can be 

concluded that B chromosomes arose in the process of speciation of polyploids in 

interspecific hybrids, which has been shown by the production of small aberrant 

chromosomes during sexual polyploidization of lily hybrids. 

Conclusions and future perspectives 

As presented in this thesis, it has been shown that not only intergenomic recombination which 

is derived from crossovers, but also chromosome rearrangements causes genetic variation in 

backcross progenies of lily. Moreover, chromosome breakage and fusion lead to the 

production of chromosome bridges at anaphase I stage during meiosis and the generation of 

small aberrant chromosomes in the backcross progenies. However, to apply these results  in 

practical breeding, the following research  should also be done in the future: 

Although crossover events have been studied in this thesis, it is necessary to study it on the 

level of individual chromosomes. Since recombination sites on different chromosomes are 

highly uneven (Khan et al. 2009a), it is a precondition to make an accurate identification of 

individual chromosomes. Traditional methods to identify chromosomes are based on 

chromosome length, arm length, arm length ratio and so on, which makes it  difficult to 

recognize chromosomes with short arms since most lily chromosomes are morphological 

similar (Noda 1978; Stewart 1947). Later on, a few efforts were made to distinguish 

chromosomes with different banding techniques (Smyth et al. 1989; Von Kalm and Smyth 
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1980) and FISH with different repetitive probes, but no substantial progress has been made 

(Lim et al. 2001b; Sultana et al. 2011; Sultana et al. 2010). FISH with 45s and 5s can only 

recognize a few chromosomes and short single copy probes (up to 2kb) or microsatellite motif 

probes were unsuccessful in lily because no signals could be detected (unpublished results). In 

view of this, it is necessary to develop techniques, such as bacteria artificial chromosomes 

(BACs) with repetitive sequences, to identify individual chromosomes in lily. 

Manipulation of crossovers in other plants has provided a promising way for lily breeding. 

Due to its significance, crossovers have been studied in model organisms, such as yeast 

(Saccharomyces), in detail and researchers are trying to control meiotic recombination 

(Phadnis et al. 2011). As mentioned before, the frequency of intergenomic recombination in 

lily hybrids is relatively low, as compared with other crops. Increase of crossovers though 

control of double strand breaks and the repair can cause more intergenomic recombination 

and hence, speed up the introgression breeding. 

The occurrence of small aberrant chromosomes in lily hybrids opens a new window for lily 

breeding. As mentioned in Chapter 5, the new generated isochromosomes are the fusion of the 

short arms from the missing chromosomes. Because of the structure variation of 

chromosomes, phenotypic variation caused by such chromosomes can be expected in the 

progenies and the function of these isochromosomes can be studied in the future. The dosage 

effect of the genes on the isochromosomes (duplicated arms) has a potential to create breeding 

materials with outstanding phenotypes. Moreover, these genotypes are quite unique because  

isochromosomes are only present in a few backcross progenies from a certain interspecific LA 

hybrid. Beside the length relationship between isochromosomes and the missing 

chromosomes, rDNA sites are also present on the isochromosome in one of the three 

genotypes. If the isochromosomes are stable during the meiosis and can pass to next 

generations, they have a potential to be used as markers for selection in breeding, cultivar 

identification and protection of breeder’s right in the future. 
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Summary 

Lily (Lilium) has become one of the top bulbous crops for the cut flower industry in the past 

two decades. The genus Lilium comprises of approximately 80 species, which have been 

classified into seven sections. Each section possesses distinctive phenotypic characters, such 

as flower color, flower shape and  resistances to diseases and pests. Crosses between species 

in the same section are relatively easy and the resulting  hybrids are in general fertile, while 

interspecific crosses between species from different sections are rather difficult and the 

resulting  hybrids are in general sterile. As a result, different hybrid groups have been bred in 

the 20
th

 century. Within these different hybrid groups, Longiflorum (L), Asiatic (A) and 

Oriental (O), which are derived from the section Leucolirion, Sinomartagon and Archelirion 

respectively, are of  commercial importance and hence, are the most widely cultivated lilies 

worldwide. 

Lily hybrids provide an ideal model for molecular cytogenetic research. With the 

development of techniques of overcoming pre- and post- crossing barriers of interspecific 

crosses, as well as the application of asexual and sexual polyploidization to restore the fertility 

of F1 lily hybrids, combining of  desirable traits from different hybrid groups has become 

feasible. As a result, interspecific hybridization and polyploidization have been widely used in 

the breeding of new cultivars of lily. These cultivars, as well as other breeding materials from 

interspecific crosses, facilitate the application of molecular cytogenetic analysis due to three 

reasons: 1) the chromosomes of lily are large enough for cytological observations; 2) genomes 

of different hybrid groups are homoeologous; and 3) these homoeologous genomes can be 

simultaneously distinguished by DNA in situ hybridization. Using these lily hybrids 

combined with genomic in situ hybridization (GISH) and florescence in situ hybridization 

(FISH), the interaction of homoeologous genomes can be studied though meiotic observation 

of the F1 hybrids. Meanwhile, chromosome sequential variation with relevance to crossover 

and chromosome rearrangements can also be observed. 

For this purpose, interspecific crosses between the Lilium longiflorum cultivar ‘White Fox’ 

and the Asiatic cultivar ‘Connecticut King’ were made, and some of these F1 hybrids, which 

show a relatively high fertility with the production of unreduced gametes, were backcrossed 

with an Asiatic cultivar . The meiosis of the interspecific hybrids, as well as the sexual 

polyploidized progenies, were analysed by GISH and FISH. In addition, one population of 

sexual polyploidized AOA hybrids was also analysed for the genome composition. Results 

showed that there was no evidence that lily allopolyploids possess any noticeable 
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chromosome rearrangements. The equal segregation of reciprocal and non-reciprocal 

recombinant product showed that the intergenomic recombination in the sexual polyploidized 

progenies was indeed from a natural process-chiasmata formation and crossovers and hence, 

should not be considered as translocations as was suggested in literature for intergenomic 

recombination. This conclusion was further confirmed by meiotic observation of the 

interspecific F1 hybrids. 

Detailed meiotic observations were carried out in interspecific hybrids between 

Longiflorum × Asiatic groups of lilies (Lilium) which were  used as parents to generate sexual 

polyploids with intergenomic recombination. Bivalents involving two homoeologous 

chromosomes, as well as unpaired univalents were the main configurations at metaphase I. 

However, in two genotypes, multivalents and bivalents both involving non-homologous 

pairing of two Asiatic chromosomes were observed. This indicated the presence of a 

duplication which was common to two non-homologous chromosomes in the hybrids. It is 

deduced that there was a reciprocal translocation in the Asiatic parent cv. ‘Connecticut King’ 

and these two genotypes resulted from duplication-deficiency gametes. Results from 

Anaphase I showed that chiasma formation involving non-sister chromatids gave rise to two 

strand single, two strand double, three strand double, four strand double and multiple 

exchanges. It is also noticeable that there was a high frequency of multiple crossovers in the 

genotypes with duplication, indicating a reduced crossover interference in multivalents. 

Beside the normal crossovers, also chromosome bridges at anaphase I of meiosis were  

observed. GISH and FISH painting showed that these bridges involve not only non-sister 

chromatids but also sister-chromatids. The bridges, without any differentiation along their 

length, were always accompanied by fragments with a variable size. These results indicated 

that the bridges, together with the accompanying fragments, were derived from U-type 

exchanges. Other than homologous recombination (HR), nonhomologous end joining (NHEJ) 

probably led to the production of bridges when repairing the double strand breaks (DSBs) 

during meiosis. 

Progenies from unilateral polyploidization of crosses between LA hybrids and Asiatic 

cultivars  were predominant triploids. However, three exceptional plants, which possessed 35 

normal chromosomes and a small aberrant chromosome instead of the expected normal 

number of 36, were observed. In all three cases the small aberrant chromosomes were 

isochromosomes which had obviously originated during the first backcross generation, and 

the length of the arms of these aberrant chromosomes were always related with the length of 

the short arm of the missing chromosome. Furthermore, one of these three chromosomes 
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possessed 45S rDNA hybridization sites in the proximal positions, which resembles the short 

arm of the missing chromosome (chromosome 4 of L genome). Combined with the results of 

chromosome breakage during meiosis, centric breakage and fusion is a putative mechanism of 

the production of these isochromosomes. Meanwhile, two small, supernumerary or B 

chromosomes were detected as extra chromosomes in a tetraploid plant derived from 

chromosome doubling of an intersectional hybrid (2n=2x=24) between a cultivar of the 

Longiflorum (L) and the Trumpet (T)  group. When this tetraploid LLTT hybrid was crossed 

with a triploid LLO hybrid (O=Oriental), the B chromosome was transmitted to 73.4% of the 

progenies. Based on GISH and FISH characterization it was shown that the B chromosome 

found consisted of two identical arms, with 5S rDNA hybridizing to the majority of it, which 

were flanked by normal telomeres, suggesting that this is an isochromosome.  

The results of current investigations are of practical implication for a number of reasons. 

Firstly, the behavior of homoeologous chromosomes during meiotic processes in lily hybrids 

was  studied in detail, and it can be used to explain the profound genetic changes in the early 

generations during hybrid speciation. Secondly, some problems that go unnoticed in genetic 

mapping can be predicted and well explained by the occurrence of chromosome 

rearrangements in the parents which are used to produce the segregation population and  

thirdly, the discovery of U-type exchanges during meiosis and de novo isochromosomes in 

the backcross progenies supplies an alternative mechanism for the origin of B chromosomes.
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Samenvatting 
Lelie (Lilium) is in de afgelopen twee decennia één van de belangrijkste bolgewassen 

geworden voor de snijbloemen sector. Het genus Lilium bestaat uit ongeveer 80 soorten die in 

zeven secties zijn onderverdeeld. De secties onderscheiden zich in fenotypische 

eigenschappen zoals bloemkleur, bloemvorm en resistentie tegen ziektes en plagen. Terwijl 

kruisingen binnen dezelfde sectie relatief gemakkelijk zijn en de resulterende hybriden fertiel, 

zijn interspecifieke kruisingen tussen soorten uit verschillende secties niet eenvoudig en zijn 

de resulterende hybriden vaak steriel. Ten gevolge hiervan zijn in  de 20
e
 eeuw verschillende 

hybride groepen ontstaan.  Deze hybride groepen zijn Longiflorums (L), Aziaten (A) en 

Orientals (O) welke  zijn ontstaan uit respectievelijk de secties Leucolirion, Sinomartagon en 

Archelirion. Dit zijn wereldwijd de meest geteelde en geproduceerde lelies. 

Lelie hybriden zijn een ideaal modelsysteem voor moleculair cytogenetisch onderzoek. 

Door de ontwikkeling van technieken om pre- en post-fertilisatie barrières bij interspecifieke 

kruisingen te overbruggen en  de toepassing van aseksuele en seksuele polyploïdisatie  om de 

fertiliteit van F1 lelie hybriden te herstellen, is het mogelijk geworden om gunstige 

eigenschappen van verschillende hybride groepen te combineren. Hierdoor is interspecifieke 

hybridisatie en  polyploïdisatie breed toepasbaar geworden in de veredeling van nieuwe lelie 

cultivars.   

Deze cultivars en ander veredelingsmateriaal uit interspecifieke kruisingen faciliteren de 

toepassing van moleculair cytogenetisch onderzoek om drie redenen: 1) lelie chromosomen 

zijn groot genoeg voor cytogenetische observaties; 2) de genomen van verschillende hybride 

groepen zijn homoeoloog; en 3) deze homoeologe genomen kunnen worden onderscheiden 

door DNA in situ hybridisatie. Door gebruik van deze lelie hybriden in combinatie met 

genomische  in situ hybridisatie (GISH) en fluorescentie in situ hybridisatie (FISH), kunnen 

de interacties tussen de homoeologe genomen worden bestudeerd tijdens de meiose van de F1 

hybriden. Tegelijkertijd, kan chromosoom variatie in relatie tot overkruisingen en 

chromosoom reorganisaties worden waargenomen . 

Voor dit doel zijn interspecifieke kruisingen tussen Lilium longiflorum cultivar ‘White 

Fox’ en de Aziatische cultivar ‘Connecticut King’ gemaakt waarvan sommige F1 hybriden, 

die een relatief hoge fertiliteit hebben in de productie van ongereduceerde gameten, werden 

teruggekruist met een Aziatische cultivar. De meiose van de interspecifieke hybriden en hun 

seksueel gepolyploïdiseerde nakomelingen zijn vervolgens geanalyseerd met GISH en  FISH.  
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Daarnaast is ook de genoom samenstelling van een populatie van seksueel 

gepolyploïdiseerde  AOA hybriden geanalyseerd. Resultaten laten zien dat er in 

allopolyploïde lelies geen aanwijzingen zijn voor chromosoom translocaties.  De gelijke 

uitsplitsing van reciproke en niet-reciproke recombinanten laat zien dat de intergenomische 

recombinatie in seksueel gepolyploïdiseerde nakomelingen inderdaad het resultaat is van 

normale chiasmata formatie en overkruising en als zodanig niet beschouwd moeten worden 

als translocatie zoals gesuggereerd in de literatuur over intergenomische recombinatie. Dit 

wordt verder bevestigd door meiotische analyse van de interspecifieke F1 hybriden.    

Gedetailleerde meiose observaties zijn uitgevoerd in interspecifieke hybriden tussen 

Longiflorum × Aziaat cultivar groepen welke zijn gebruikt als ouders om seksueel  

gepolyploïdiseerde planten met intergenomische recombinatie te genereren. Combinaties van 

zowel bivalenten met twee homoeologe chromosomen, als ongepaarde univalenten waren de 

meest voorkomende configuraties. Echter twee genotypen bevatten multivalenten en 

bivalenten van niet homologe Aziaat chromosomen. Dit is een aanwijzing voor de 

aanwezigheid van een duplicatie tussen twee niet homologe chromosomen in deze hybriden. 

Een reciproke translocatie in de Aziatische ouder ‘Connecticut King’ moet hieraan ten 

grondslag hebben gelegen en de twee afwijkende genotypen zijn uit duplicatie deficiënte 

gameten ontstaan.  

Resultaten van anafase I laten zien dat chiasma formatie met niet-zuster chromatiden 

resulteert in dubbel strengs enkel, dubbel strengs dubbel, drie strengs dubbel, vier strengs 

dubbel en meervoudige overkruisingen. Opmerkelijk was de hoge frequentie van 

meervoudige overkruisingen in de genotypen met de duplicatie wat een indicatie is voor het 

wegvallen van recombinatie onderdrukking in multivalenten. Naast de normale 

overkruisingen werden ook chromosoom bruggen in de anafase I waargenomen. GISH en 

FISH laten zien dat deze bruggen ontstaan tussen zowel niet zuster chromatiden als zuster 

chromatiden. De chromosoom bruggen bestaan uit gelijke delen terwijl de bijbehorende 

fragmenten verschillende lengtes hebben. Deze resultaten wijzen erop dat de chromosoom 

bruggen en de bijbehorende fragmenten zijn ontstaan door zgn. U-type chromosoom 

uitwisselingen. Naast homologe recombinatie (HR), hebben niet homologe uiteinde 

verbindingen (in het Engels: Non Homologous End Joining) waarschijnlijk geleid tot het 

ontstaan van de chromosoom bruggen bij de reparatie van dubbel strengs breuken (DSB) 

tijdens de meiose. 

Nakomelingen van eenzijdige  polyploïdisatie in kruisingen van LA hybriden en 

Aziatische cultivars waren hoofdzakelijk  triploïd. Echter in drie bijzondere planten is het 
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chromosoom aantal 35 met  daarnaast een klein afwijkend chromosoom in plaats van het 

normale aantal van 36 chromosomen. In alle drie de gevallen waren de kleine afwijkende 

chromosomen iso-chromosomen die blijkbaar waren ontstaan tijdens de eerste generatie terug 

kruising en de lengte van het afwijkende chromosoom was altijd gecorreleerd met  de lengte 

van de korte arm van het missende chromosoom. Eén van de drie iso-chromosomen liet 

bovendien 45S rDNA hybridizatie zien in de proximale posities die vergelijkbaar zijn aan de 

korte arm van het missende chromosoom (chromosoom 4 van het L genoom). 

Samen met chromosoom breuken tijdens de meiose zijn centromeer breuken en fusies een 

mogelijk mechanisme voor het ontstaan van iso-chromosomen. In een  tetraploïde plant die 

was ontwikkeld door chromosoom verdubbeling van een interspecifieke hybride (2n=2x=24) 

uit een Longiflorum cultivar met een Trompet veredelingslijn werden twee B chromosomen 

gedetecteerd bovenop het normale aantal chromosomen in een tetraploïd. Wanneer deze  

tetraploïde LLTT hybride werd gekruist met een  triploïde LLO hybride (O=Oriental) werd in 

73.4% van de nakomelingen een B chromosoom doorgegeven. Met GISH en FISH is 

aangetoond dat de gevonden B chromosomen bestaan uit twee identieke armen, met 5S rDNA 

hybridisatie signalen op het grootste deel van het chromosoom aan beide kanten geflankeerd 

door normale telomeren die erop duiden dat dit een iso-chromosoom is.  

De resultaten van deze studie zijn van praktische waarde vanwege een aantal verschillende 

redenen. Ten eerste, het gedrag van homoeologe chromosomen tijdens de meiose in lelie 

hybriden is in detail bestudeerd en kan worden gebruikt voor de verklaring van de grote 

genetische veranderingen in de eerste generaties tijdens hybride soortvorming. Ten tweede, 

sommige problemen die onopgemerkt blijven in het genetisch karteren kunnen worden 

voorspeld en ook verklaard worden uit het voorkomen van chromosoom translocaties  in de 

ouders die gebruikt zijn voor de uitsplitsende populatie. Ten derde, de ontdekking van U-type 

uitwisselingen tijdens meiose en het ontstaan van iso-chromosomen in 

terugkruisingspopulaties bieden een alternatief mechanisme  voor de herkomst van B 

chromosomen. 
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摘要 
百合系百合科百合属植物的统称，是世界上最重要的球根类切花之一，其亦可用

于庭院绿化，盆栽，并具有重要的食用及药用价值。百合属由约 80 个野生种组成，广

泛分布于北半球温带地区。依其生物学性状，杂交亲和性及 DNA保守序列，百合属可

再分为 7 个组。由于组内种间杂交亲和性较高且杂种可育而组间杂交不亲和且杂种高

度不育，经过数十年的实践，育种者育成了 9 大百合杂种系，各系具有差别明显的农

艺性状。在 9大杂种系中，分别来源于 Leucolirion，Sinomartagon 及 Archelirion组的麝

香百合杂种系（Longiflorum，L），亚洲百合杂种系（Asiatic，A）及东方百合杂种系

（Oriental，O）最具有商业价值，在世界范围内广泛用于切花生产。 

百合远缘杂种及其后代是优良的分子细胞遗传学分析材料。二十世纪八十年代

起，众多新技术成功用于克服百合远缘杂交不亲和，杂种胚败育，杂种一代高度不育

等问题，这为百合组间渐渗育种提供了可能。截至目前，远缘杂交及多倍化已经在百

合新品种培育中广泛应用。该多倍体新品种和众多的中间育种材料均为分子细胞遗传

学分析提供了理想的材料。首先，百合巨大的染色体使得其成为经典细胞遗传学研究

中的模式植物；其次，百合品种不同杂种系间形成了近同源基因组；最后，这些近同

源基因组可以利用基因组原位杂交进行清楚的鉴别及区分。因此，DNA 原位杂交结合

百合远缘杂种后代进行减数分裂过程中近同源染色体互作及行为分析能为染色体序列

变异如交换，染色体重排等提供最直接的证据。 

本论文的试验材料包括麝香百合与亚洲百合杂种 F1 代（LA）群体，有性加倍的

LA × AA回交一代群体，有性加倍的 AA × OA杂交后代群体，及父母本均为无性加倍

来源的 LLO × LLTT 杂交后代群体。对以上百合杂种后代的基因组原位杂交分析结果

显示百合异源多倍体内不存在任何形式的染色体重排，而有性加倍来源的 LA及 OA杂

种后代广泛存在基因组间重组。通过对相互重组产物及非相互重组产物在杂种后代的

分离统计及杂种 F1 代减数分裂分析显示，该重组来源于减数分裂过程中近同源染色体

正常的联会，交叉及交换，因此不应被视为易位。 

对麝香百合与亚洲百合杂种 F1 代的减数分裂的详细分析显示，在第一次分裂中

期，两条近同源染色体组成的二价体及联会失败的单价体是最主要的联会形式。此

外，在两个基因型内，四价体，三价体，及少数二价体都涉及了来自亚洲百合基因组

的两条非同源染色体配对。这说明该染色体间存在一个同源重复，而对此的一个解释

是其父本材料中存在一个相互易位，而该基因型来自其父本材料所产生的重复-缺失配

子。第一次分裂后期显示非姐妹染色单体联会产生各种形式的交叉交换形式，如单交

换，双线双交换，三线双交换，四线双交换，复合交换。需要指出的是，在存在非同

源联会的基因型中复合交换的概率明显比其他基因型高，这可能是因为在多价体联会
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中交叉干涉降低所致。除却正常的交换外，在不同的基因型的花粉母细胞内存在不同

比率的染色体后期 I 桥，GISH 和 FISH 结果显示此染色体桥不仅涉及到姐妹染色单体

而且涉及到非姐妹染色单体。此外，该种染色体桥的出现均伴随着不同大小的染色体

片断。以上证据表明该染色体桥来自于姐妹染色单体或非姐妹染色单体间的 U 型交

换。和 DNA 双链断裂及同源重组修复导致的交叉交换不同，U 型交换可能来源于

DNA双链断裂和非同源末端连接。 

虽然当 LA百合杂种 F1代与其父本回交时，单向有性加倍通常导致三倍体后代，

但是少数的非整倍体基因型同样存在。在众多的回交一代中，三个非整倍体植株具 35

条正常的染色体外加一条畸形小染色体。此三条小染色体虽然大小不一，但均为等臂

染色体且均来自母本材料。由于细胞学证据表明母本材料中染色体不存在任何异常，

此畸形小染色体产生于母本的减数分裂过程。对比发现此小染色体臂长均与其对应基

因型所缺失的正常染色体短臂长度相同。此外，在基因型 074051-9 中，畸形小染色体

着丝粒附近的两臂上和其缺失的正常染色体靠近着丝粒位置的短臂上均有一个 45S 

rDNA位点。因此，此畸形小染色体分别来自减数分裂过程中所缺失的正常染色体两条

短臂的末端融合。同时，两条 B 染色体发现被于一个异源四倍体 LLTT 杂种中。当该

材料以父本与一个异源三倍体 LLO杂交后，73.4%的杂种后代均具有 B染色体。GISH

和 FISH结果表明此种 B染色体亦为等臂染色体，除却正常的端粒结构外，整条染色体

均为 5S rDNA重复序列。 

本论文结果具有以下应用价值：1）近同源染色体在减数分裂过程中的互作及行

为可以为杂种物种形成的早期世代提供直接证据；2）减数分裂过程异常可以解释遗传

图谱构建过程中一系列问题；3）减数分裂过程中的 U型交换及回交后代中畸形小染色

体为 B染色体起源提供了另一种可能。 
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