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Effects of Temperature, Relative Humidity, Absolute Humidity, and
Evaporation Potential on Survival of Airborne Gumboro
Vaccine Virus

Yang Zhao,a,c,d Andre J. A. Aarnink,a Remco Dijkman,b Teun Fabri,b Mart C. M. de Jong,c and Peter W. G. Groot Koerkampa,d

Wageningen UR Livestock Research, Lelystad, the Netherlandsa; Animal Health Service (GD), Deventer, the Netherlandsb; Quantitative Veterinary Epidemiology,
Wageningen University, Wageningen, the Netherlandsc; and Farm Technology Group, Wageningen University, Wageningen, the Netherlandsd

Survival of airborne virus influences the extent of disease transmission via air. How environmental factors affect viral survival is
not fully understood. We investigated the survival of a vaccine strain of Gumboro virus which was aerosolized at three tempera-
tures (10°C, 20°C, and 30°C) and two relative humidities (RHs) (40% and 70%). The response of viral survival to four metrics
(temperature, RH, absolute humidity [AH], and evaporation potential [EP]) was examined. The results show a biphasic viral
survival at 10°C and 20°C, i.e., a rapid initial inactivation in a short period (2.3 min) during and after aerosolization, followed by
a slow secondary inactivation during a 20-min period after aerosolization. The initial decays of aerosolized virus at 10°C (1.68 to
3.03 ln % min�1) and 20°C (3.05 to 3.62 ln % min�1) were significantly lower than those at 30°C (5.67 to 5.96 ln % min�1). The
secondary decays at 10°C (0.03 to 0.09 ln % min�1) tended to be higher than those at 20°C (�0.01 to 0.01 ln % min�1). The initial
viral survival responded to temperature and RH and potentially to EP; the secondary viral survival responded to temperature
and potentially to RH. In both phases, survival of the virus was not significantly affected by AH. These findings suggest that long-
distance transmission of airborne virus is more likely to occur at 20°C than at 10°C or 30°C and that current Gumboro vaccina-
tion by wet aerosolization in poultry industry is not very effective due to the fast initial decay.

Epidemics of viral diseases in livestock production have trig-
gered research on airborne transmission as a possible mecha-

nism for spreading disease between farms (11, 24). However, this
mechanism is still not well understood, because many parameters
relating to the fate of viruses in the processes of airborne transmis-
sion have not been extensively investigated. The survival of air-
borne viruses, one of the most important parameters, determines
the impact of airborne transmission and infection in the recipient
animals (27).

Among the significant factors affecting the survival of viruses
during transportation in ambient air are temperature and humid-
ity. The effect of temperature and humidity on viral survival has
been frequently investigated since the 1950s. Initially, the metric
used most often for air moisture was relative humidity (RH),
which is the ratio between the actual water vapor pressure (VP) of
the air and the water VP of saturated air at a certain temperature
(1, 2, 16, 17). Later, absolute humidity (AH), i.e., the actual water
content of the air, was introduced and was found to constrain the
survival of some species of airborne virus more significantly than
the RH (23, 31). The effect of humidity on microbial survival can
also be analyzed with other metrics for air moisture, such as evap-
oration potential (EP), which is the numeric difference between
the actual water VP in the air and the water VP in saturated air.
The question is which metric is the best predictor of viral survival,
and the answer might depend on the species of virus. Gumboro
virus, known as the infectious agent of infectious bursal disease
(IBD) in poultry, is a nonenveloped double-stranded RNA (ds-
RNA) virus (13) that may lead to immunosuppression and mor-
tality in young chickens (36, 37) and cause huge economic losses
(21). This virus was recently detected in the air of a broiler room
(our unpublished data), suggesting a potential risk of disease
transmission through air. However, information on the viral sur-
vival at different temperatures and humidities is limited.

To study microbial survival, suspensions containing microor-
ganisms can be aerosolized into an enclosed air space and the
aerosolized microorganisms collected with bioaerosol samplers at
different moments (10, 15). The levels of viable microorganisms
collected at these moments are compared and expressed in several
measures of survival, such as decay rate, survival rate, or half-life
(7, 25, 34). During aerosolization and the intervals between air-
sampling moments, the bioaerosols inevitably deposit and/or im-
pact onto surfaces. This physical elimination of bioaerosols from
the air is not ascribable to the biological response of microorgan-
isms and should therefore be excluded when calculating the mi-
crobial survival rate. The physical elimination can be determined
by aerosolizing microbial suspension together with a tracer. The
fluorescent compound uranine (also known as fluorescein so-
dium) is a popular tracer due to its advantages in use: it is harmless
to many microorganisms (44), and it is detectable at very low
concentrations. The disadvantage of using uranine is that an extra
infectivity test is necessary beforehand, to ensure that microbial
survival is not affected by adding uranine. An alternative tracer is
the genetic materials (DNA or RNA) of microorganisms, which
can be quantified with the PCR technique. Because the genetic
materials originate from microorganisms themselves, no addi-
tional tracer is required and infectivity control is not necessary.
However, the suitability of using genetic materials quantified by
the PCR technique as microbial tracer has seldom been investi-
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gated. A drawback of the PCR technique is that the genetic mate-
rial might also be degraded when exposed to environmental and
sampling stresses (38, 39). For instance, the viral genetic material
degrades at high temperature (8, 26) and under UV radiation (35).

The objective of this study was to investigate the survival of
Gumboro virus aerosolized in an isolator at three temperatures
(10°C, 20°C, and 30°C) and two RHs (40% and 70%). The climate
metrics, i.e., temperature, RH, AH, and EP, were evaluated with
respect to their suitability for predicting the survival of airborne
virus. In addition, viral RNA quantified with the PCR technique
was used to indicate the physical elimination of bioaerosols, and
its efficacy as a tracer was compared with that of uranine. For
safety reasons, a vaccine strain was used instead of the virulent
Gumboro virus.

MATERIALS AND METHODS
Viral suspension for aerosolization. Gumboro vaccine virus (L258577;
Gallivac IBD) was purchased from Merial, Velserbroek, Netherlands. One
vial contained approximately 7 log10 50% egg infective doses (EID50s).
One viral suspension was made by diluting virus from two vials in 5 ml
Hanks’ balanced salt solution (HBSS; Gibco, Breda, Netherlands). One
liter of HBSS contains 8,000 mg NaCl, 1,000 mg D-glucose, 400 mg KCl,
350 mg NaHCO3, 60 mg KH2PO4, 48 mg Na2HPO4, and 10 mg phenol
red. In a previous study (Y. Zhao, A. J. A. Aarnink, W. Wang, T. Fabri,
P. W. G. Groot Koerkamp, and M. C. M. de Jong, submitted for publica-
tion), it was shown that 0.1% uranine addition did not harm Gumboro
vaccine virus infectivity. Therefore, in the present study, 0.1% uranine
was added to all viral suspensions.

Quantification of infective virus. Virus survival in a liquid sample was
quantified by performing an egg embryonic death test to determine the
level of virus that remained infective. The liquid sample was first decimal
diluted (10�1, 10�2. . .). A volume of 0.5 ml of each decimal dilution was
injected into the allantoic cavities of five 9-day-old specific-pathogen-free
(SPF) egg embryos. The inoculated eggs were incubated at 37°C for 7 days,
and the viral concentration was calculated from the death of the embryos
and specific abnormalities of the living embryos by using the method of
Spearman and Karber (16a, 33). The Spearman-Karber method obtains
an estimate of a weighted average of the midpoints between successive
log10 viral concentrations (14). The uncertainty of this estimation is from
0.03 to 0.1 log10 EID50 ml�1 (14). The final viral concentrations were
approximately 6 to 7 log10 EID50 ml�1 in the viral suspensions for aero-
solization and 0.5 to 3 log10 EID50 ml�1 in liquid air samples. The airborne
viral concentrations, (log10) EID50 m�3, were obtained by dividing the

level of collected virus in the liquid samples by the air volumes drawn in
through the bioaerosol samplers.

Quantification of viral RNA by PCR technique. Viral RNA for real-
time reverse transcription-PCR (RT-PCR) amplification was extracted
from 0.1 ml of sample with the MagMAX express system (Applied Biosys-
tems by Life Technologies Corporation, Carlsbad, CA) using the Mag-
MAX viral RNA isolation kit (AM1836), following the protocols recom-
mended by the manufacturer. The primers and probe were developed
from the VP2 sequence of the Gumboro vaccine virus (3). Their sequences
were as follows: forward primer IBDV-gal-F1, 5=-TGA TGG GAC AAC
GGT AAT CAC C-3=; reverse primer IBDV-gal-R1, 5=-AGG TCA CTA
TCT CCA GTT TGA TGG-3=; and probe IBDV-gal-P1, 6-carboxy-
fluorescein (6-FAM)-CCG CAA ACA ATG GGC TGA CGA CCG-BHQ1.
PCR was performed on the Applied Biosystems 7500 real-time PCR sys-
tem using the AgPath-ID one-step RT-PCR reagents (Applied Biosystems
by Life Technologies Corporation, Carlsbad, CA) and the primers and
probe. Viral RNA amplification was a reverse transcription at 45°C for 30
min, followed by enzyme activation at 95°C for 15 min and then 45 cycles
of denaturation at 95°C for 20 s and a combined annealing/extension step
at 60°C for 60 s.

Sensitivity of the PCR was determined using a 10-fold dilution series of
the Gumboro vaccine virus containing 2.5 � 106 EID50 ml�1 as was de-
termined by titration using the egg embryonic death test. Serial dilutions
ranging from 2.5 � 10�3 EID50 ml�1 to 2.5 � 106 EID50 ml�1 were
prepared in triplicate in HBSS. Viral RNA in serial dilutions was extracted
and subjected to PCR, and the standard curve was constructed using the
dilution steps which were positive in the PCR. The PCR efficiency was
expressed as 10(�1/slope).

Uranine analysis. Uranine (CAS#518-47-8) was purchased from
Fisher Scientific, Landsmeer, Netherlands. The uranine was analyzed with
a fluorescence detector (HP 1046 A; Hewlett-Packard) that had a detec-
tion limit of 0.002 �g ml�1. The excitation and emission wavelengths for
uranine were chosen as 494 nm and 521 nm, respectively. A series of
reference uranine solutions (of known concentration) were measured
with the detector before analyzing the samples, and a standard curve was
made which showed the relationship between uranine concentration and
fluorescence intensity. The uranine concentrations in samples were deter-
mined by comparing their fluorescence intensities with the standard
curve.

Isolator and insulation. A stainless steel isolator (Beyer and Eggelaar,
Utrecht, Netherlands) of 1.38 m3 (1.95 m � 0.75 m � 0.95 m) was used
(Fig. 1). HEPA filters were installed at the air inlet and outlet of the isola-
tor. To reduce heat transfer, the isolator was insulated by Dupanel boards
and glass wool. A 50-m-long plastic tube was entwined between the glass

FIG 1 Drawing of the isolator system. Halogen lamp (for heating) and freezing packs (for cooling) were used when the measured temperature did not fully fit
the required temperature.
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of the isolator and the insulation materials, and water from a water bath
was circulated through it. The temperature of the circulating water could
be adjusted from 0 to 100°C as required. This heating and insulation
system maintained the air inside the isolator at the required temperature
during the experiment.

Aerosolization. A Walther Pilot spray head (Walther Spritz- und
Lackiersysteme, Wuppertal, Germany) connected to an air compressor
(Mecha Concorde type 7SAX, 1001; SACIM, Verona, Italy) was used to
aerosolize 5 ml of viral suspension each time. The duration of aerosoliza-
tion was about 20 s, with an air pressure of 2 � 105 Pa. The aerosol size
distribution of the spray head was characterized by laser diffraction
(Mastersizer-S long bed; Malvern Instruments, Malvern, United King-
dom); the volume median diameter of the sprayed aerosol near the spray
head was approximately 10 �m. When aerosols were expelled away from
the spray head, the aerosols shrank into small ones due to evaporation. A
spectrum of the aerosol sizes, measured by a particle counter (Grimm
1.109; Grimm Aerosol Technik GmbH and Co. KG, Ainring, Germany),
in a 20-min experimental run can be found in our previous studies (44,
45). Two small fans were used to uniform the viral aerosols.

Temperature and humidity. Survival of aerosolized Gumboro vac-
cine virus was investigated at three temperatures (10°C, 20°C, and 30°C)
and two RHs (40% and 70%). A combination of temperature and humid-
ity level was called a treatment; all combinations were tested, and each
treatment was repeated four times. So, in total there were 24 aerosoliza-
tion events.

When the measured temperature did not exactly match with the re-
quired value it was adjusted by a halogen lamp (for heating) or by freeze
packs (for cooling). The required RH was achieved by spraying a certain
amount of HBSS medium into the dry air inside the isolator. The amounts
that needed to be sprayed were calculated with the Vaisala humidity cal-
culator (version 2.1; Vaisala, Vantaa, Finland). All these adjustments were
done before aerosolization. The temperature and RH values were re-
corded by a sensor (HygroClip2; Acin Instrumenten, Rijswijk, Nether-
lands) every 6 s. The actual mean temperature values in all treatments
during the experiments deviated by less than 1°C from the levels required,
and the RH values fell within 5% of the levels required.

Water VP (kPa) was used as the measure of AH; water VP deficit
(VPD) (kPa) was used as the measure of EP. VPD was calculated as the
difference between actual VP in the air and the VP in the saturated air. VP
and VPD were calculated from the measurements of actual temperature
and RH. To check the significance of temperature and humidity on viral
survival, the viral survival (both initial and secondary survival; see “Sur-
vival rate of aerosolized virus” below) was regressed over the above-
mentioned metrics.

Bioaerosol sampler and sampling. The all-glass impinger (AGI-30)
was used to sample aerosolized virus. In this experiment, the AGI-30 was
filled with 20 ml of HBSS containing 0.005% silicone antifoam (85390;
Sigma-Aldrich Inc., Netherlands) as the collection medium. Two identical
AGI-30 samplers were placed in the middle of the isolator before the
experiment started. One of the AGI-30 samplers took samples immedi-
ately after aerosolization, and the other took samples 20 min after aero-
solization. Each sampling lasted 2 min with a sampling flow rate of 12.5
liter min�1. To clean the air inside the isolator, the isolator was ventilated
at 70 m3 h�1 for 2 h between two aerosolization events. This ventilation
scheme has been proven to be able to effectively reduce residue bioaero-
sols to an undetectable level (19, 20).

Survival rate of aerosolized virus. Previous studies have shown that
microorganisms are inactivated at two different rates (2, 30). In the first
few seconds or minutes after aerosolization, the inactivation rate is high;
this is followed by a lower inactivation rate. Accordingly, in our experi-
ment, the survival of Gumboro vaccine virus at each temperature and RH
level was expressed in two phases: initial survival and secondary survival.
The initial survival rate (S0) was determined using equation 1 by compar-
ing the virus/tracer ratio (EID50 �g�1) in an air sample collected imme-

diately after aerosolization to the ratio in the viral suspension (with either
uranine or the RNA analyzed by PCR as the tracer):

S0 �
Cvirus, sample ⁄ Ctracer, sample

Cvirus,suspension ⁄ Ctracer, suspension
� 100% (1)

where Cvirus, sample is the concentration of virus in air sample collected
immediately after aerosolization (EID50 ml�1), Ctracer,sample is the concen-
tration of tracer in air sample collected immediately after aerosolization
(�g ml�1 [uranine] or TCID50 ml�1 [RNA]), Cvirus,suspension is the con-
centration of virus in viral suspension (EID50 ml�1), and Ctracer,suspension is
the concentration of tracer in viral suspension (�g ml�1 [uranine] or
TCID50 ml�1 [RNA]).

The survival rate of virus at 20 min after aerosolization (S20) was cal-
culated in the same way as S0, i.e., by dividing the virus/tracer ratio in the
air sample at 20 min by the ratio in the viral suspension. Then, the sec-
ondary survival (S0 –20) was determined by equation 2:

S0�20 � S20 ⁄ S0 � 100% (2)

For many microorganisms, the slope of the natural logarithm survival
rate (ln %) over time generally fits nicely to a linear plot and has been
termed the “decay constant” (9). In our study, the initial decay constant
(k0) and secondary decay constant (k0 –20) were determined from S0 and
S0 –20 (equation 3). As noted above, the aerosolization of 5 ml of suspen-
sion lasted for approximately 0.3 min (20 s), and the first sampling im-
mediately after aerosolization lasted 2 min; therefore, the time denomi-
nator for k0 was set to 1.2 min (half of 2.3 min). The time denominator for
k0 –20 was 20 min.

ki � (ln 100 � ln Si) ⁄ t (3)

where ki is the decay constant (i is “0” or “0 –20”), Si is the survival rate
(i is “0” or “0 –20”), and t is the time denominator (t � 1.2 min [when i is
“0”] or 20 min [when i is “0 –20”]).

RESULTS

The average threshold cycle (CT) values obtained from the PCR on
the dilution series of the Gumboro vaccine virus were plotted
against the log10 of the dilution, and the linear equation for the
PCR was y � 3.68x � 10.64. Using the slope from the linear equa-
tion, a PCR efficiency of 87% was obtained and the quantitative
range was at least 6 log10 dilution steps with coefficients of regres-
sion exceeding 0.99. The detection limit of the PCR using 0.1 ml as
the input for viral RNA extraction is the PCR equivalent of 25
EID50 ml�1 (L258577; Gallivac IBD).

Table 1 shows the virus survival rates and corresponding decay
constants, which were corrected either for RNA with PCR tech-
niques or for uranine to exclude physical deposition of aerosolized
virus, at different temperatures and RHs. There was a pronounced
decrease of initial survival at all the temperatures and RHs. The
decrease was especially striking at 30°C: only 0.1 to 0.2% of the
aerosolized virus remained infective. At 10°C and 20°C, the sec-
ondary survival of virus was 7.4 to 76.4% when corrected for RNA
and 23.9 to 114.9% when corrected for uranine. The concentra-
tion of viable virus at 20 min after aerosolization at 30°C was
below the detection limit of the bioaerosol samplers, i.e., 3.3 log10

EID50 m�3; therefore, S0 –20 was not calculated.
The initial decay constants at 30°C were significantly higher

than those at 10°C and 20°C. The initial decay constant at 10°C/
70% was significantly lower than that at 20°C/40%; however, nei-
ther of these decay constants differed from the initial decay con-
stants at 10°C/40% and 20°C/70%. The secondary decay constants
were significantly lower than the initial decay constants (P �
0.001). The secondary decay constants at 10°C were significantly
higher than those at 20°C.

Zhao et al.
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In most cases, the survival rates corrected for the two tracers
were not significantly different. This was also true for the decay
constant. Three exceptions were noticed when using the two trac-
ers to correct S0 –20 and k0 –20 at 20°C/40% and k0 –20 at 10°C/40%.
In these situations, when the tracer was RNA rather than uranine
the calculated survival rate was lower and the calculated decay
constant was higher. To understand the preservation of viral RNA
in the air, the pooled RNA preservation in all treatments was cal-
culated using uranine as the tracer with equation 1 (by replacing
infectious virus data with RNA data). A one-sample t test shows
that the RNA preservation, 105.5% � 9.5%, was not significantly
different from 100% (P � 0.147), which means that viral RNA was
well preserved under the tested climate conditions.

The response of viral survival to temperature, RH, VP, and
VPD is shown in Fig. 2, both as data points and as the results of
linear regression analysis. Because the spot plots showed an obvi-
ous nonlinear relationship between the survival rate (%) and these
environmental metrics, the natural logarithm survival rate (ln %)
was used as the dependent variable. The initial survival of aerosol-
ized Gumboro vaccine virus was inversely related to temperature,
VP, and VPD (Fig. 2a, c, and g). In contrast, no relationship was
found between RH and viral survival (P � 0.537). As no virus
remained infective at 20 min after aerosolization at 30°C (Table 2),
the secondary survival of virus at this temperature was excluded
from linear regression analysis (Fig. 2b, d, f, and h). The secondary
survival was positively related to temperature (P � 0.007) and
VPD (P � 0.006) but was not related to RH (P � 0.236) and VP
(P � 0.275).

Table 2 shows the multiple linear regression of viral survival
rate on the climate metrics. The viral initial survival was negatively
related to temperature and positively related to RH (P � 0.035).
VP was not related to initial viral survival (P � 0.413), but there
was a tendency for a relationship between VPD and initial survival
(P � 0.085). Temperature (standardized coefficient � �0.89) was
more important than RH for the initial viral survival (standard-
ized coefficient � 0.23). The results also show that the secondary
survival was significantly correlated with temperature and that
there was a tendency for a relationship with RH (P � 0.075).

DISCUSSION

Previous studies have reported biphasic survival kinetics for many
species of aerosolized viruses, including Newcastle disease virus
(32), influenza virus (30), and infectious bovine rhinotracheitis
virus (32). Biphasic kinetics were also noticed in this study of
aerosolized Gumboro vaccine virus.

The first phase was a rapid initial loss of infectivity during a
20-s aerosolization of the 5-ml viral suspension and the 2-min air
sampling. The decay of virus was faster at the highest temperature
(30°C) than at the lower temperatures (10°C and 20°C). In this
phase, it is unlikely that the inactivation of virus was caused by
sampling stress, because it has been reported that the AGI-30 im-
poses negligible stress on airborne Gumboro vaccine virus (Zhao
et al., submitted). Therefore, the inactivation was probably due to
the stress of the sudden changes of temperature and humidity,
caused by evaporation of water from the droplets, and the shear
force stress that deagglomerated the big droplets into small aero-
sols during aerosolization (22, 28, 44, 45). With the setup we used,
it is not possible to precisely distinguish the percentages of virus
inactivated by each of the two stresses; however, the loss of infec-
tivity due to shear force stress seemed less important because the
sizes of aerosols containing virus (cutoff diameter was 10 �m)
generated by the spray head were much larger than the virus itself
(0.06 to 0.09 �m) (44, 45). A more precise discrimination of the
effects of the two starting stresses on viral survival could be
achieved by passing the aerosolized virus through a volume of
saturated air at the same temperature as the viral suspension be-
fore the viral aerosols enter the isolator. By doing this, the inacti-
vation of virus by the shear force can be determined from the loss
of viral survival in the saturated air.

Our finding of a rapid initial loss of viral infectivity especially at
high temperature suggests that the current method of vaccinating
poultry by wet aerosolization might not be effective. Other vacci-
nation methods should be investigated, e.g., the dry aerosolization
of vaccine virus (5, 6).

Decay of viral infectivity was much slower during the second
phase than that during the first phase. We found that the second-

TABLE 1 Survival rates and decay constants of airborne Gumboro vaccine virus at different temperatures and RHs (physical elimination of virus
from air was corrected either for RNA or for uranine)

Treatment S variabled

Survival rate (�SE, %)

k variablee

Decay constant (�SE, ln % min�1)c

RNA Uranine RNA Uranine

10°C/40% S0 6.0 � 1.9 4.0 � 1.8 k0 2.55*† � 0.39 3.03*† � 0.48
10°C/70% S0 19.7 � 5.0 14.0 � 2.3 k0 1.42† � 0.18 1.68† � 0.16
20°C/40% S0 2.2 � 0.5 1.6 � 0.5 k0 3.23* � 0.19 3.62* � 0.35
20°C/70% S0 6.0 � 2.6 3.8 � 1.6 k0 2.65*† � 0.46 3.05*† � 0.47
30°C/40% S0 0.1 � 0.0 0.1 � 0.0 k0 5.61‡ � 0.27 5.96‡ � 0.32
30°C/70% S0 0.2 � 0.1 0.1 � 0.0 k0 5.34‡ � 0.37 5.67‡ � 0.22
10°C/40% S0–20 18.0 � 6.0 58.0 � 16.4 k0–20

a 0.10¶§ � 0.02 0.03¶§ � 0.02
10°C/70% S0–20 7.4 � 2.3 23.9 � 10.8 k0–20 0.14¶ � 0.02 0.09¶ � 0.03
20°C/40% S0–20

a 76.4 � 9.4 114.9 � 8.2 k0–20
a 0.01� � 0.01 �0.01§ � 0.00

20°C/70% S0–20 50.2 � 18.8 97.7 � 24.2 k0–20 0.05§� � 0.03 0.01§ � 0.01
30°C/40% S0–20

b — — k0–20
b — —

30°C/70% S0–20
b — — k0–20

b — —
a There is a significant difference between the survival (or decay) corrected for the RNA quantified with the PCR technique and that corrected for uranine.
b —, no airborne virus could be detected at 20 min after aerosolization; therefore, the S0 –20 and k0 –20 values were not calculated.
c Means of k0 in one column lacking a common symbol (*, †, ‡) are significantly different (P � 0.05). Means of k0 –20 in one column lacking a common symbol (¶, §, �) are
significantly different (P � 0.05).
d S0 and S0 –20 represent initial viral survival and secondary viral survival, respectively.
e K0 and K0 –20 represent initial and secondary decay constants, respectively.
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ary decay constants at 10°C (0.03 to 0.09 ln % min�1) tended to be
higher than those at 20°C (�0.01 to 0.01 ln % min�1). Some of the
survival rates at 20°C were calculated to be higher than 100%,
probably due to variations in virus quantification analyses. At
30°C, no infective virus was detected in the air sampled 20 min
after aerosolization. The secondary survival at this temperature

was not calculated, because it was not clear whether the failure in
viral detection was caused by inactivation of all virus or by the
airborne viral concentration being below the detection limit of the
assay method and the sampler. However, the range of the second-
ary survival at 30°C could be estimated. The average concentra-
tion of virus immediately after aerosolization was 3.5 log10 EID50

FIG 2 Natural logarithm initial survival rate, lnS0 (a, c, e, and g), and logarithm secondary survival rate of Gumboro vaccine virus, lnS0 –20 (b, d, f, and h), plotted
against temperature, RH, vapor pressure, and vapor pressure deficit. Regression formula, regression lines, and regression results are shown in each plot. No
infective virus was detected at 30°C at 20 min after all aerosolization events; thus, the regression of lnS0 –20 was done with data on 10°C and 20°C only.
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m�3. Assuming the viral concentration at 20 min after aerosoliza-
tion was in the range from 0 to the detection limit, i.e., 3.3 log10

EID50 m�3 (Zhao et al., submitted), then the range of the second-
ary survival of virus at 30°C was from 0 (all virus was inactivated
20 min after aerosolization) to 63.1% (viral concentration equaled
the detection limit 20 min after aerosolization). Secondary sur-
vival at 10°C (23.9 to 58.0%) and 30°C (0 to 63.1%) was lower than
the secondary survival at 20°C (97.7 to 114.9%). This suggests that
20°C is the optimal temperature for the long-distance airborne
transmission of Gumboro vaccine virus.

In terms of the airborne transmission of virus, the initial sur-
vival data at 20°C and 30°C obtained in this study are more infor-
mative for the practical situation, because the viruses are shed by
chickens and become airborne inside poultry houses, where the
temperature is generally controlled at 20°C (for laying hens) or
higher (for broilers). The secondary survival is more meaningful
when long-distance airborne transmission between farms is of
concern.

Our analysis revealed that temperature was more influential
than humidity on the survival of airborne Gumboro vaccine virus.
The effects of different humidity metrics on viral survival varied
when different analysis methods were applied. For instance, AH
had a significant relationship with the initial viral survival as an
individual variable (Fig. 2e), but this relationship was no longer
significant after temperature had been introduced into the model
(Table 2). This is because of the confounding relationship between
AH and temperature (AH is calculated from temperature and
RH). A large part of the AH effect on viral survival actually was
attributable to the effect of temperature. Our results also show
that temperature and RH together gave the best prediction of ini-
tial (77%) and secondary (48%) viral survival and that there was a
tendency (P � 0.085) for EP to affect the initial survival (Table 2).

Temperature affects both the capsid protein coating and the
RNA of nonenveloped viruses (8, 26). It has been suggested that
the stabilities of capsid protein coating and RNA vary with tem-
perature independently of each other, so inactivation of virus at a
particular temperature occurs through whichever component is
the least stable at that temperature; additionally, the RNA of some
viral species, e.g., poliovirus, has been shown to be more suscep-
tible at temperatures of �44°C, whereas protein coating is more
susceptible at temperatures of �44°C (8). The temperatures used
in our study were much lower than 44°C. We infer that the inac-

tivation of airborne Gumboro vaccine virus was mainly due to the
protein coating being damaged at temperatures below 30°C, be-
cause during the experiment the viral RNA was quite stable (Table
1). The probable reasons for the differences in inactivation be-
tween poliovirus and Gumboro vaccine virus are the unique char-
acteristics of the individual virus species or the different living
microcosms for virus (poliovirus in liquid medium, but Gumboro
vaccine virus in air). The more likely mechanism of inactivation of
Gumboro vaccine virus probably starts with the removal, defor-
mation, or denaturation of a critical site in the protein coating,
causing release of viral RNA, which subsequently decays (29). The
exact mechanism of the humidity effect on the survival of aerosol-
ized virus is not yet fully understood, but it seems that humidity
might affect the virus differently in the two successive phases. In
the first phase, i.e., immediately after aerosolization, water in the
viral aerosols evaporates into the ambient air, resulting in water
moving out of the wet aerosols and in a decrease in temperature of
the aerosol (evaporative cooling). The extent of water movement
greatly depends on the deficit of aerial water content, i.e., RH and
EP (4, 18), and has been suspected to be an important reason for
intervention of the natural structure of protein coating (40–42).
In the latter phase, there is less water movement, and the response
of the virus to humidity is probably due to the slower reaction
between water and viral constituents (43).

No extra tracer compound is needed in survival studies if viral
genetic material is used to indicate physical elimination of viral
aerosols. However, the prerequisite is that the genetic material is
stable under all the conditions tested. Hermann et al. (12) re-
ported that porcine reproductive and respiratory syndrome virus
(PRRSV) RNA did not decay under their experimental conditions
and therefore was a promising tracer for measuring physical loss.
In our study, the survival and decay rates of Gumboro vaccine
virus corrected either for viral RNA or for uranine were not sig-
nificantly different in most cases (17 out of 20). Moreover, the
pooled preservation of RNA (105.5% � 9.5%) was not signifi-
cantly different from 100%. This finding suggests that the decay of
the viral RNA was negligible under these conditions and that RNA
is a potential tracer. In some situations, i.e., secondary decay at
20°C/40% and 10°C/40%, the virus decay was higher when cor-
rected for RNA than when corrected for uranine. This finding
suggests that the viral RNA was prone to be destroyed at the lower
temperatures (8), at the lower RH, and in the later airborne phase
(29).

Conclusion. This study investigated the response of airborne
Gumboro vaccine virus’s survival to temperature and humidity.
We conclude the following. (i) The initial viral survival (0 to 2.3
min after aerosolization) was affected by temperature and RH and
potentially by EP; the secondary viral survival (2.3 to 20 min after
aerosolization) was affected by temperature and potentially by
RH. However, viral survival was not significantly affected by AH
in both phases. (ii) The initial viral survival was much worse than
the secondary survival at 10°C and 20°C and at 40% and 70% RH.
(iii) The fact that the best secondary viral survival was found at
20°C suggests that long-distance transmission of airborne virus is
more likely to occur at 20°C than at 10°C or 30°C. (iv) Current
Gumboro vaccination by wet aerosolization in poultry industry is
not very effective due to fast initial decay of the aerosolized vaccine
virus.

TABLE 2 Results of the multiple linear regression of lnS0 and lnS0 –20 of
airborne Gumboro vaccine virus on temperature and humidity metrics

Dependent Factor
Standardized
coefficient Significance

Adjusted
R2

lnS0 Temp �0.89 �0.001 0.77
RH 0.23 0.035

lnS0 Temp �1.01 �0.001 0.73
VP 0.17 0.413

lnS0 Temp �0.62 0.002 0.76
VPD �0.31 0.085

lnS0–20 Temp 0.67 0.003 0.48
RH �0.36 0.075

lnS0–20 Temp 0.96 0.006 0.42
VP �0.42 0.171

lnS0–20 Temp 0.37 0.187 0.43
VPD 0.40 0.159
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