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Abstract 

Vegetable production in Sub-Saharan Africa plays an important role in food security and 

poverty reduction. Although vegetables are an important emerging cash crop for the 

agricultural sector in Benin, their production and marketing systems are facing many 

challenges. The objective of this research is to investigate the production technology and 

efficiency of vegetable production and marketing at the farm level in Benin. Using recent 

advances in cross sectional efficiency analysis, we analyze two samples of vegetable 

producers following different perspectives. Chapters 2 to 5 offer an in depth analysis of 

vegetable production performance in the lowlands and in the urban and peri urban areas. 

Additionally, special emphasis is given to the marketing efficiency of producers in the urban 

and peri-urban areas. 

First, the difference in economic inefficiency among lowland producers at farming 

system level is examined. Second, technical and marketing inefficiency of a sample of urban 

vegetable producers is investigated using a non-radial Russell-type measure of inefficiency. 

Third, the impact of crop specialization on farm’s performance is assessed using a non-neutral 

stochastic frontier. Finally, the efficiency of the use of pesticides and other inputs of vegetable 

producers is analyzed using a smooth first-stage bootstrap non-parametric approach.  

The empirical results in Chapter 2 show that farms’ inefficiency in lowland farming 

systems is the most diverse. Average scale, allocative, output and input inefficiency are 

significantly lower in the integrated rice-vegetable farming system than in the vegetable 

farming system. The results in Chapter 3 suggest that vegetable producers are more inefficient 

with respect to marketing than production and that marketing inefficiency is affected by the 

type of marketing arrangements. The analysis in Chapter 4 shows that vegetable-production 

technology exhibits diseconomies of scope and that the degree of specialization has a positive 

effect on technical efficiency. Finally, the results on pesticide use in Chapter 5 provide 

evidence that pesticides are overused while there is no evidence of technical interdependence 

between pesticides and productive inputs. 

 

Keywords: Farm performance, Production function, Marketing, Efficiency, Bootstrap, DEA, Directional 

distance function, Russell-type measure, Input distance function, Non-neutral stochastic frontier, Specialization, 

Pesticides, Shadow prices, Vegetables, Lowland, Urban, Benin. 
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CHAPTER 1 

Introduction 

1.1. Background and Scope 

Benin’s economy largely depends on agriculture, which contributes about 32.6% to GDP, 

compared to 1% for U.S. and 6% for Brazil. Almost, 58 percent of  Benin’s labor force works 

in agriculture and for a large proportion, it is their primary activity. In most other developed 

countries, this is less than 10 percent (FAO, 2011; Lewis, 2004; MAEP, 2011). The 

agricultural sector in Benin is characterized by more than 550,000 small-scale farms with an 

average size of 1.7 ha and more than 34% of farms cultivate less than 1 ha. Almost 491 

million of euros of agricultural products are exported annually (80% of the total export 

revenue) and 791 million of euros of agricultural products are imported annually (FAO, 

2011). Thus, understanding how Benin will evolve out of its predominantly agricultural 

setting is an important issue. It is known from the seminal book of Adam Smith (1776) that 

the initial move out of agriculture came from productivity improvements in this sector, 

freeing up labor that could produce goods and services in other sectors of the economy. 

Previous research has demonstrated that the increase in agricultural productivity came in steps 

and is strongly related to the changes in the rest of the economy (Lewis, 2004, p. 203). The 

power of productivity growth as a tool for overall economic development and poverty 

reduction has been widely documented and empirically studied over the world (for an 

overview, see Lewis, 2004). Furthermore, the food crises in developing countries during this 

last decade and the world commodity price boom that started several years ago has put 

agricultural productivity growth at the core of the agenda for decreasing poverty and 

increasing food security (Byerlee et al. 2009; Irz et al. 2001; de Janvry, 2010; Tschirley and 

Jayne, 2008). 

This thesis focuses on the analysis of productivity in vegetable production in Benin. 

Vegetable producers have a strong motivation to produce vegetables for sale and household 

consumption is the residual of output after sales. Producers of vegetables are likely to respond 

to market and policy signals and can be termed as ‘market-oriented subsistence farmers’ as 

defined by Kostov and Lingard (2004). Generally, in developing countries, vegetable 

production stimulates the rural and urban economy, and generates employment and income 

(Ali and Abedullah, 2002). Producers learn to manage multiple cropping systems and to 
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deliver quality products in a timely fashion by participating in and experiencing contractual 

arrangements and sophisticated marketing systems. 

 

1.2. Problem Statement 

Over the last decades, most of the empirical work in Benin has focused on staple crops and 

cash crops such as maize, cassava and cotton. However, vegetables are increasingly produced 

in both rural and urban zones (Moustier et al. 1998). Vegetables are cultivated in every region 

of Benin in the uplands, lowlands and valleys. Vegetable production in Benin is an intensive 

system due to the high use of external inputs (fertilizer, pesticide, improved varieties). 

Vegetable production is twice as labor-intensive as cereal production and yields ten times 

more revenues from land than cereals (World Bank, 2007). Accordingly, vegetable production 

is a real source of income and employment generation. However, the potential of vegetable 

production in rural and urban zones is limited by technical, allocative and marketing 

inefficiency (PADAP, 2003). Technical efficiency is defined as the ability of a producer to 

obtain maximal output from a given set of inputs or to use the minimum inputs required to 

produce a given set of outputs. Allocative efficiency is defined as the ability of a producer to 

use the inputs in optimal proportions, given their respective prices and the production 

technology (Farrell, 1957). Marketing efficiency at the farm-level is a measure of the success 

of a producer and is defined as the extent to which a producer succeeded in getting the 

maximum price for his/her output, given the resources devoted to marketing activities. Thus, 

marketing efficiency represents a short-run concept related to the opportunities to arbitrage 

price differences. A producer’s marketing performance is primarily a function of his/her 

choice of marketing arrangement (Wollni and Zeller, 2007). Other sources of marketing 

inefficiency are lack of coordination, unequal information on prices between sellers and 

buyers (i.e. asymmetric information), heterogeneity of product quality and gaps between 

demand and supply. 

A major concern of vegetable productivity performance in rural areas of Benin is the 

effective utilization of lowlands for agricultural production (Erenstein et al. 2006). 

Agriculture in the lowlands takes place on small peasant farms that produce annual food crops 

for subsistence and markets. Rice and vegetables are the first and second most important food 

crops produced. Improving economic efficiency of these crop based systems will contribute to 

improving overall agricultural productivity. Despite the enormous potential of Benin in 

lowlands, only 4% of the 205,000 ha of available lowlands are cultivated (Cellule Bas-fond, 
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2002). Traditionally, much of the interest in lowlands has focused on the potential for 

technologically-intensive rice production (Abdulai and Huffman, 2002; Adesina and Djato, 

1997; Audibert, 1997; Barrett et al. 2008; Sherlund et al. 2008) even though vegetable 

production is highly integrated into lowland cultivation practices. A major limitation of these 

studies is that mono-cropping rice production is considered to be independent of its lowland 

production system. In reality, the integrated rice-vegetable farming systems are technically 

integrated (Erenstein et al. 2006). Thus, ignoring the farming system level in empirical studies 

may likely bias estimation of efficiency of a decision making unit in the lowlands. 

On the other hand, the production of vegetables in urban and peri-urban zones has 

increased over the past years in terms of the amount cultivated, the number of producers and 

the income generated. Urban and peri-urban vegetable production systems were not given 

much attention in past research. To date, urban and peri-urban production systems offer many 

opportunities for a developing-country’s agriculture due to advances in production and 

increasing consumer demand (Keatinge et al. 2011). The growth of vegetable production in 

urban areas is explained in large by the good marketing opportunities (proximity to urban 

markets or linkage to urban markets by efficient transportation networks), increasing 

urbanization and changing food consumption patterns (Erenstein et al. 2006). Vegetable 

producers are largely market-oriented and generally grow a wide range of vegetables. 

Therefore, improving the marketing activities and market participation of vegetable producers 

may improve the overall economic performance of vegetable production. A large number of 

studies on agricultural marketing performance argues that marketing inefficiency may have a 

negative impact on allocative and technical efficiency (Sabuhoro and Larue, 1997; Seyoum et 

al. 1998). Thus, marketing efficiency is a particular issue to be addressed when studying the 

performance of vegetable production. 

In Benin’s vegetable sector, the majority of farms produce both traditional and non-

traditional vegetables, indicating that multi-output farms are the rule rather than the exception. 

By producing both categories of crops instead of only one, the farm may be able to reduce 

risk. Another benefit associated with diversification is the complementary use of inputs on the 

farm (economies of scope). Diversification allows for a more efficient use of inputs that can 

be used in several production processes (Teece, 1980). However, specialization in crops 

allows operators to exploit scale economies. Moreover, specialized operators have better 

opportunities to fine-tune their skills (Oude Lansink and Stefanou, 2007). Therefore, the 

impact of crop diversification on vegetable farm’s performance is an empirical issue to be 

investigated. 
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Unlike traditional food crops like cereals, cassava and rice, farmers use a large amount 

of pesticides on vegetables. Moreover, the use of pesticides is associated with the 

development of resistance (Dinham, 2003; Martin, et al. 2006). Vegetable producers in Benin 

used the largest volume of pesticides among West Africa countries (Williamson et al. 2008). 

However, vegetable producers rarely have access to training in pesticide use and have only 

limited, or no access, to advice on the management of pesticides. Availability and 

affordability of pesticides was a major concern for many vegetable producers. Therefore, it 

remains a challenge to gain more insight into the economic performance of pesticide use in 

vegetable production. The empirical literature on pesticide use in the vegetable production 

systems in Benin, however, has paid little attention to pesticide productivity. By investigating 

the efficiency of pesticide use in vegetable production, researchers may provide useful results 

that may serve as a reference in designing pesticide use policy in agriculture. 

 

1.3. Objectives of the Thesis 

The overall objective of this thesis is to analyze the production technology and the 

performance of vegetable producers in Benin. This was done by investigating the level of, and 

factors that determine marketing, allocative, technical and scale efficiency of these producers. 

The specific objectives are: 

i) Estimate technical, allocative and scale inefficiency of lowland vegetable farming 

systems and analyze factors that explain inefficiencies. 

ii) Measure and explain Benin vegetable producers’ marketing and technical efficiency 

through an integrated approach. 

iii) Analyze the impact of vegetable crop specialization on the production frontier and on 

technical efficiency. 

iv) Analyze the technical efficiency and value of marginal product of pesticides in 

vegetable production and investigate the technical interdependence between damage 

abatement and productive inputs. 

 

1.4. Description of the Study Area 

Geographically, Benin is divided in three major agro-climatic regions: the Guinea zone, the 

Sudano-Guinea zone and the Sudanian zone (White 1983, p. 38; 175-178 p.). The present 

study was conducted in the Guinea and the Sudano-Guinea zones (Fig. 1.1). The Sudano-
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Guinea is a transitional zone between the Guinea and the Sudanian zones and located in the 

central region of the country which extends from 7
o
 and 9

o
30'N. The mean annual rainfall 

varies from 1200 to 1300 mm with one rainfall season (May to November). The Guinea zone 

extends from the Atlantic coast and stretches between 1
o
45' and 2

o
24'E and 6

o
15'and 7

o
00'N to 

the west and 6
o
15' and 7

o
30'N to the east (Akoègninou et al. 2006, p. xiv). The climate is a 

subequatorial type with two rainfall seasons (April to July and October to November). The 

annual average temperature is around 26
o
C and the mean annual rainfall varies from 900 to 

1400 mm. The Guinea zone is located in the southern region. In the central region, the present 

study was conducted in the Dassa local government of Collines Department. This region has 

the highest concentration of lowlands in Benin and receives a lot of support from different 

projects and research organizations for improving lowland farming practices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Central and Southern Benin with the study locations 

 

In the southern region, the study was conducted in the area closest to the sea that is 

characterized by coastal vegetation on a sandy littoral zone and covered the Cotonou local 

government of Littoral Department, the Ouidah local government of Atlantique, the Grand-

Popo local government of Mono Department, the Sèmé-Kpodji and Porto-Novo local 
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government of Ouémé Department. All these areas are the major locations where vegetable 

crops are produced in urban and peri-urban areas. The subequatorial climate that characterizes 

the southern region facilitates vegetable production throughout the year, particularly in the 

low altitude floodplains, where in the dry season, farmers have good access to irrigation 

water. Food crops and vegetables are mainly produced in southern Benin and represent a 

region widely used by vegetable sellers. In total, the study was carried out in five of the 12 

departments of Benin Republic according to the new territorial division and 6 out of the 77 

communes of Benin. 

In Benin, the annual growth rate of the population (3.25%), along with the increase of the 

number of people living in urban areas (an increase of 52% in the last 20 years), indicates a 

great opportunity for increasing food demand in urban areas. The growth in demand for food 

in urban areas is twice as high as the growth in food demand in rural areas (Keatinge et al. 

2011). Statistics also show that the Guinea zone, covering the southern part of the country, 

has a population of about 4 million inhabitants (60.4% of the total Beninese population). The 

population density is 227 inhabitants per km
2
 against 59 for the whole country (INSAE, 

2003). This figure indicates that the increasing demand for food is attributable to southern 

Benin. Consequently, the higher increase in demand for vegetables in urban and peri-urban 

areas of southern Benin compared to the other two regions (central and north) suggests 

opportunities for a larger supply of vegetables. 

 

1.5. Vegetable Production Systems in Benin 

Vegetables in Benin are produced in many different systems and locations. More generally, 

two distinct production systems cohabit in Benin’s vegetable sector, i.e. the rural area 

production system and the urban and peri-urban production system. Vegetables are cultivated 

in the rural area in the uplands, valleys and lowlands, depending on cultural agricultural 

practices. In the urban and peri-urban areas, vegetables are mainly produced on the upland 

and along the coast. In this thesis we focus on the vegetable production in the lowland 

production system in the central region and the urban and peri-urban production system in the 

southern region. The following sections briefly describe their particularities. 
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1.5.1. Lowland Vegetable Farming System 

In Benin, due to the promotion of small-scale agricultural lowland use since 1980, 

intensification and diversification practices are more frequently observed in lowlands. 

Compared to crop production in rural areas, intensification practices are related to water 

control management where upstream pond and irrigation canals or canals are used to prevent 

flooding.  

Lowland cultivation in Benin accommodates three major farming systems (Fig. 1.2). 

The first is the integrated Rice-Vegetable Farming System (RVFS). On the same plot, rice is 

produced during the rainy season, while vegetables are cultivated in the dry season. The 

second is the Rice Farming System (RFS) where rice is cultivated solely during the rainy 

season. The third is the Vegetable Farming System (VFS) in which vegetables are produced 

only in the dry season. Intercropping practices within the field are limited to two or three 

crops. The cropping pattern in vegetable cultivation is often extensive. Traditional vegetables 

are the most dominant type of vegetables produced in such lands. In the lowland farming 

system, the production of vegetables is considered as a female domain. Consequently, women 

play an important role in producing, marketing and trading. However, with the increasing 

contribution of lowland vegetable crops to cash income, norms and beliefs about men’s and 

women’s involvement in the production process may change (Weinberger et al. 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Lowland farming system in central Benin 
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1.5.2. Urban and Peri-urban Vegetable Production System 

The origin of urban and peri-urban agriculture goes back to 1972 when a collaboration started 

between a Dutch NGO and the National Horticulture Center (Assogba-Komlan et al. 2002) in 

Cotonou. In the late 1980s, structural-adjustment programmes of the World Bank were 

introduced, followed by the political tolerance and administrative support for urban 

agriculture since 1990. 

Contrary to the lowland production system, the urban and peri-urban vegetable 

production system is characterized by a large number of vegetable crops, both traditional and 

non-traditional. Generally, three farming types coexisted across and within the urban and peri-

urban landscape: the intensive type characterized by vegetable mono-cropping, often on 

raised beds using high levels of inputs; the semi-intensive farming type of mono-crops on 

raised beds using fewer inputs than intensive farming type; and the extensive farming type 

that produces vegetables in mixed associations with staple crops with very few purchased 

inputs (Gockowski et al. 2003; Weinberger and Pichop, 2009). 

In all three types, vegetables are produced throughout the year with big variations in 

the quantity supplied by producers. Intensification increases the use of labor, fertilizers, 

pesticides and irrigation equipment. Intercropping practices within the field production unit 

are the norm rather than the exception, indicating a high degree of production diversification. 

All types of urban and peri urban producers pursue market-oriented production. Urban and 

peri-urban vegetable production is mainly dominated by men contrary to the lowland 

production system, while women are involved in trading and marketing activities.  

 

1.6. Surveys’ Description: Sampling and Data 

The empirical results presented in this thesis are based on data collection on two different 

vegetable production systems and, accordingly, concern two separate cross sectional data sets. 

The first cross sectional data set is used in Chapter 2 and came from a survey in the lowland 

production system in central Benin in 2005. This survey was funded by the World Vegetable 

Center (AVRDC) and the Agricultural Policy Analysis Unit (PAPA) of the National Research 

Institute of Benin (INRAB) during a collaboration work. Chapters 3 to 5 used a data set from 

a survey among urban and peri-urban vegetable farms in southern Benin in 2010. This survey 

was financed by a Dutch government scholarship through the Netherlands fellowship 

programs (NUFFIC) and the International Foundation of Science (IFS). This section briefly 

describes the design of each survey. 
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1.6.1. The Lowland Farming Data Set 

A farm-level survey was conducted during the agricultural seasons of 2004 and 2005. The 

data set consisted of a stratified random sample of producers in three villages (Odo Otchere, 

Ouissi and Gankpetin) where the lowland farming system is used. The number of producers in 

this sample represents more than 60% of lowland producers registered in that region. The 

sampling unit was the plot and the plots were classified into the three farming systems 

described above. A questionnaire was used to collect data on producers’ input and output use, 

as well as socio-economic and environmental factors. To reduce the occurrence of 

measurement errors in the data, the questionnaire was improved following a pre-test. Data 

collection took place on a monthly basis from June 2004 to June 2005.  

 

1.6.2. The Urban and Peri-urban Farming Data Set 

The survey was conducted from June to November 2010. Samples were collected using a 

multi-stage sampling procedure by selecting departments, communes, locations and 

smallholder producers, respectively. The quality of survey is affected by survey errors like 

sampling errors due to selecting a sample rather than the whole population, and non-sampling 

errors arising from data collection and processing. Sampling errors were minimized by using 

probability sampling methods to select farmers. In addition, attention was paid to non-

sampling error arising from specification error, frame error, non-response, and measurement 

error. The sampling techniques developed by Whitley and Ball (2002) were used to determine 

the sample size in each location with a level of significance of 0.05 and power of 95%. First, 

four departments were selected from the major vegetable-producing departments, based on 

the intensity of vegetable production, agro-ecology, the types of crops produced and 

accessibility. These departments represent the major vegetable-producing areas which cover 

more than 80% of the smallholder urban and peri-urban vegetable producers. Second, six 

major locations where urban and peri-urban vegetables are mainly produced in the four 

departments were sampled. Third, a survey was carried out in collaboration with the local 

extension services to register the number of producers in each location. Fourth, a total number 

of 310 households producing vegetables were randomly sampled using the probability 

sampling method. A standardized questionnaire was used to interview producers. The survey 

covered information on the agricultural production year of 2009 and 2010 and data were 

collected on (1) socio-economic variables of the farmer and the farm household; (2) farming 
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environment; (3) farming systems; (4) inputs, outputs, and profitability of farming enterprises; 

(5) marketing activities and (6) social and institutional environment.  

 

1.7. Outline of the Thesis 

Each chapter addresses one of the objectives of the thesis and provides an empirical 

application. Chapter 2 empirically investigates the importance of different types of 

inefficiency (technical, scale, allocative and input and output inefficiency) in three lowland 

farming systems in the central region of Benin. We examine the economic performance of 

lowland farming systems using a directional distance function.  

Chapter 3 estimates technical and marketing inefficiency using a non-radial Russell-

type inefficiency measure. This chapter focuses on production and marketing activities of 

urban and peri urban vegetable producers. Chapter 4 estimates a non-neutral stochastic 

frontier that captures the effects of crop specialization on the production frontier and on farm-

level technical efficiency. Chapter 5 addresses the issue of pesticide productivity and 

estimates technical efficiency and the value of the marginal product of pesticides. Chapter 6 

presents the main findings of this thesis, discusses its limitations and offers suggestions for 

further research. 

 



 

CHAPTER 2 

Lowland Farming System Inefficiency in Benin (West Africa): Directional 

Distance Function and Truncated Bootstrap approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

This study uses a directional distance function and a single truncated bootstrap approach to investigate 

inefficiency of producers in lowland farming systems in the Benin Republic. First, we employed a dual approach 

to estimate and decompose short-run profit inefficiency of each farming system into pure technical, allocative 

and scale inefficiency and also into input and output inefficiency. Second, an econometric analysis of factors 

affecting the inefficiency was generated using a single truncated bootstrap procedure to improve inefficiency 

analysis statistically and obtain consistent estimates. In the short run, scale, allocative and output inefficiency 

were found to be the main sources of inefficiency. Based on inefficiency results, the inefficiency of lowland 

farming systems is the most diverse. Compared to the vegetable farming system, technical inefficiency is 

significantly higher if farmers switch to the rice farming system. Scale, allocative, output, and input inefficiency 

are significantly lower with integrated rice-vegetable farming system and there was high prevalence of 

increasing returns to scale in the integrated rice-vegetable farming system. Water control and lowland farming 

systems are complements and play a significant role in the level of inefficiency. Input inefficiency shows the 

difficulty that the producers face in adjusting the quality and quantity of seeds and fertilizers. The chapter 

provides empirical support for efforts to promote integrated rice-vegetable farming system in West Africa 

lowlands to increase food security. 

Keywords: lowlands, inefficiency, bootstrap, Benin. 

JEL classifications: C31, C34, C61 
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2.1. Introduction 

As a result of trade liberalization, the agricultural sector of developing countries is 

increasingly influenced by developments in world markets. The perceived rate of food crises 

in those regions has increased sharply during this last decade. Moreover, recent studies found 

that the world commodity price boom that started several months ago has accentuated 

concerns about the potential severity of future crises in Southern Africa (Tschirley and Jayne, 

2008). Productivity performance in the agricultural sector is thus critical to improvement in 

overall economic well-being and can offer good opportunities for food security and poverty 

reduction. One of the major concerns relates to greater and more effective utilization of 

lowlands for agricultural production in Sub Saharan African regions (Gockowski and 

Ndoumbe, 2004; Erenstein, 2006; Erenstein et al. 2006; Weinberger and Lumpkin, 2007; 

Barrett et al. 2008). 

In Benin, due to the promotion of small scale agricultural lowland use since 1980, 

intensification and diversification practices are frequently observed in lowlands. 

Intensification is related to water control management where upstream pond and irrigation 

canals or canals to prevent flooding are built. Agriculture in the lowlands takes place on small 

peasant farms that produce annual food crops for subsistence and markets. Rice and 

vegetables are the first and second most important food crops produced. Improving economic 

efficiency of these crop based systems will contribute to improving overall agricultural 

productivity of this land with high agricultural potential. In addition, empirical evidence 

suggests that small farms are desirable not only because they reduce unemployment, but also 

because they provide a more equitable distribution of income as well as an effective demand 

structure for other sectors of the economy i.e. food security (Binam et al. 2004; Bravo-Ureta 

and Pinheiro, 1993, 1997). Lowland cultivation in Benin comprises three major farming 

systems. The first is the integrated Rice-Vegetable farming system (RVFS). On the same plot, 

rice is produced during the rainy season while vegetables are cultivated in the dry season. The 

second is the Rice farming system (RFS) where rice is cultivated solely in the rainy season 

(May to November). The third is the Vegetable farming system (VFS) in which vegetables are 

produced on the plot exclusively in the dry season (December to April). Jute leaves 

(Corchorus olitorus), okra (Abelmoschus spp.) and amaranth (Amaranthus spp.) are the main 

vegetables produced in the central lowlands. Despite the enormous potential of Benin, only 

about 4% of the 205,000 ha available lowlands are cultivated. Several authors (Agli, 2000; 

Adégbola and Singbo, 2003; Verlinden and Soule, 2003) found that in order to reduce the gap 



Lowland Farming System Inefficiency 

13 

 

between domestic rice and vegetable consumption and supply for food security, the local 

production of rice needs to be increased by approximately 50,000 tons per year, and vegetable 

production by approximately 80,000 tons per year. 

Traditionally, much of the interest in lowlands in West Africa has nevertheless 

focused on the potential for technologically-intensive rice production. Consequently, most 

farm level productivity growth and efficiency analysis has focused on rice production 

(Adesina and Djato, 1997; Audibert, 1997; Abdulai and Huffman, 2002; Sherlund et al. 2002; 

Barrett et al. 2008). A major limitation of these studies is that a mono-cropping rice 

production is considered to be independent of its production system. In reality, the integrated 

rice-vegetable farming systems are technically highly interdependent (Erenstein et al. 2006). 

Thus, ignoring the farming system level in empirical studies may bias estimates of the 

efficiency analysis of a decision making unit (DMU) in lowlands. Focus on farming system 

level is in line with the grouping method developed by Farrell and Fieldhouse (1962) which 

permits the creation of homogeneous output groups. 

Ever since Charnes et al. (1978) first estimated a regression to explain variation in the 

distribution of inefficiency of a DMU, there has been a continuing search for alternative 

specifications and functional forms. Both parametric and non-parametric approaches to 

measuring inefficiency in the agricultural sector have evolved. However, parametric 

approaches are generally restricted by the functional specification underlying the production 

technology. Nonparametric approaches to measuring inefficiency are more flexible than 

parametric approaches, as they do not require a functional form to be specified for the 

production frontier. A well-known disadvantage of nonparametric approaches, however, are 

their deterministic nature, which implies that stochastic conditions, e.g., weather, may 

confound with inefficiency. Several studies that analyzed data with both non-parametric and 

parametric frontier estimators, however, did not show radical differences in the results with 

the various procedures (see Greene, 2008 for details). In sum, by comparing non-parametric 

and parametric approaches, some authors finally indicated that in most empirical studies the 

selection of the methodology used to measure inefficiency is arbitrary and mainly based on 

the objective of the study, the data available and the personal preference of the researcher 

(Resti, 2000; Wadud and White, 2000). 

A two-stage approach has become a standard when Data Envelopment Analysis 

(DEA) is used to assess the inefficiency of decision making units (DMU) and when there are 

factors not under control of the DMU that influence their performance. However, a standard 

two-stage approach used where inefficiency is estimated in the first-stage, and then the 
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estimated inefficiencies are regressed on a group of explanatory variables of interest, gives 

rise to problems. First, the two-stage estimates can suffer from the independence condition 

between input variables used in the first stage and the explanatory variables used in the 

second stage (Wilson, 2003). Second, a serious problem in this standard two-stage approach 

arises from the fact that DEA inefficiency estimates are serially correlated. An alternative 

approach that does not suffer from these drawbacks was proposed by Simar and Wilson 

(2007), who developed single and double bootstrap procedures. These latter approaches also 

allow the second-stage regression to be estimated and inferences to be made using truncated 

regression. 

The purpose of this chapter is to estimate short run inefficiency, accounting for the 

farming system in lowlands based on the directional distance function and to derive 

implications helpful in designing appropriate policies to promote optimal use of such lands. 

We employed the new two-stage inefficiency procedure to examine the potential production 

economic effects of lowland farming systems. Our study is one of the first to use the 

directional distance function framework and a single truncated bootstrap approach in the 

context of the two-stage approach. A convenient property of the directional distance function 

is that, unlike the traditional radial distance function, it easily accommodates the primal 

(production efficiency) and dual model (allocative efficiency). This enables us to compute the 

overall profit inefficiency which is the most natural measure of performance that is based on a 

difference rather than a ratio. This profit inefficiency measure is also called the Nerlovian 

profit efficiency (see Färe and Grosskopf, 2004). The ratio profit level is not an adequate 

measure to calculate profit inefficiency not only because these ratios can result in negative 

profit efficiency measures (that are hard to interpret) but also because these ratios do not have 

a dual interpretation in terms of the required adjustments in inputs and outputs to achieve the 

maximum profit target (Thanassoulis et al. 2008). This is also practical, as farms may earn 

zero profit, which poses problems in a ratio context. We decomposed the overall inefficiency 

into pure technical, allocative and scale inefficiency as well as output and input inefficiency 

for farms at the farming system level. In the short run, lowland production technology is 

subject to levels of quasi-fixed inputs (land, equipments and family labor). Given that most 

farms can adjust variable inputs more quickly than they can adjust quasi-fixed inputs, the 

calculation of short run inefficiencies may be of more immediate value (Tauer, 1993). The 

empirical analysis of this chapter is based on a farm survey in central Benin, where monthly 

data were collected on rice and vegetable production in different lowland farming systems.  
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The remainder of the chapter unfolds as follows. Section 2.2 develops the theoretical 

model of inefficiency analysis based on a semi-parametric frontier approach, and especially 

on inefficiency measures using a short-run directional distance function and truncated 

bootstrapping method in the two-stage approach to analyzing inefficiency. This is followed by 

a description of the data and variables in Section 2.3. Section 2.4 presents the research 

findings and discussion. The chapter ends with a conclusion. 

 

2.2. Two-stage Semi-parametric and Bootstrap Models 

2.2.1. Semi-parametric Model for Analyzing Inefficiency 

2.2.1.1. Directional Technology Distance Function Theory Framework 

Since introduction of the efficiency measurement method by Farrell (1957) and Farrell and 

Fieldhouse (1962), there has been a growing interest in methodologies and their applications 

to efficiency measurement. Using dual approaches, Chambers et al. (1996 and 1998) 

introduced directional distance functions as additive alternatives to the distance functions 

concepts. The directional distance function measures the amount that one can translate an 

input and or output vector non-radially from itself to the technology frontier in a preassigned 

direction (Chambers et al. 1998; Färe and Grosskopf, 2000; Ray, 2004). Hence, the Farrell 

decompositions of overall cost and revenue efficiency into allocative and technical efficiency 

are shown to be special cases of the corresponding profit efficiency decomposition. The 

directional distance function provides a measure of technical inefficiency; allocative 

inefficiency measures the residual inefficiency due to failure to choose the profit maximizing 

input-output bundle given prices. The directional distance function is shown to be appropriate 

in measuring lowland producer inefficiency for several reasons. 

In central Benin, lowland cultivation is practiced in a delimited area of land, contrary 

to upland systems, where households can increase their farm size. Family labor is the 

principal source of labor used indicating that family labor is one of the main constraints for 

lowland cultivation. Moreover, lowland producers face exogenously determined input and 

output prices and attempt to allocate inputs and outputs so as to maximize profit. Under this 

behavior both inputs and outputs are determined endogenously. In other words, producers 

have to decide not only how much of various inputs to use, but also how much rice and/or 

vegetables to produce. On the other hand, Kumbhakar and Lovell (2003) suggest that if one is 

interested in estimating profit inefficiency in a price-taking environment, then it is appropriate 
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to conduct the analysis within a short-run framework in which some inputs are exogenously 

determined because inefficient producers cannot survive in a long-run. In this context, the 

appropriate standard against which to evaluate profit inefficiency is the variable profit 

frontier. Following this assumption, producers are expected to maximize short term profit 

from their lowland farming systems. Thus, the directional distance functions we analyze are 

derived from the shortage function which generalizes the profit function in the short-run 

(Chambers et al. 1998; Färe and Grosskopf, 2004). This approach determines the minimum 

combination of variable inputs such that the profit is at least as large as the profit obtained by 

the     farm, and the quasi-fixed inputs used are no greater than the     farm. 

The reason for treating any inputs as quasi-fixed in the short run is to acknowledge the 

possibility that the first-order conditions for profit maximization are not satisfied for those 

inputs because of costs of adjustment. This setting is also consistent with our analysis because 

of the course of a single growing agricultural production year. 

Assume that the directional distance function gives an appropriate representation of 

the production technology of a number of different lowland farming systems. Suppose that, 

for the     farming system, there are sample data on    farms that produce a vector of outputs 

 ( )    
  from a vector of inputs  ( )    

  which is decomposed as   ( )
   

  variable 

inputs and   ( )
   

  quasi-fixed inputs. This farming system technology  ( ) is given by: 

 

 ( )  {( ( )  ( ))            ( )              ( )}        (1) 

 

We assume that the farming system technology is closed and convex, variables inputs (  ( )
) 

and outputs are freely disposable, there is no free lunch, doing nothing is feasible (Färe, 1988; 

Färe and Grosskopf, 2000). The short-run directional distance function is defined as: 
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where (   ( )
   ( )

) is a non zero vector in   
    

  and determines the direction in which 

 ⃗⃗  ( )
( ) is defined. Clearly, the interpretation of the inefficiency term depends on the choice 

of the directional vector. This short-run directional technology distance provides the 

maximum amount by which output can be expanded and variable input contracted and still be 

feasible in the short-run (see Fig. 2.1).  ⃗⃗  ( )
( ) provides a direct measure of how far 

(  ( )
  ( )) must be projected along the (   ( )

   ( )
) direction to reach the frontier of  ( ). 

Profit inefficiency measures the normalized difference between maximum and 

observed profit. This allows an additive decomposition of profit inefficiency for each 

producer in each lowland farming system. For simplicity of presentation, after omitting the 

index  , the short-run overall profit inefficiency is defined as (Chambers et al. 1998): 

 

 (   )         
{       (    )   }        (3) 

 

where  (   ) is the short run maximal profit,      
  denote a vector of output prices and 

     
  a vector of variable inputs prices. Since  (   ) is by definition greater than or 

equal to observed profit, it follows that overall profit scores are greater than or equal to zero. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Directional Technology Distance Function 
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The profit function and the directional distance function provide the basis for defining and 

decomposing profit efficiency where we have a price (dual) and a quantity (primal) measure 

of inefficiency (Chambers et al. 1998; Färe and Grosskopf, 2000; Färe and Grosskopf, 2004; 

Ray, 2004). 

The overall profit inefficiency (OIE) is defined as the difference between the 

maximum profit and observed profit, normalized by the value of the reference variable inputs 

and output combination (        
) which implies that zero profit poses no computational 

problems (Eq. 4). This inefficiency measurement also has the desirable property of being 

homogenous of degree zero in prices in the sense that it is independent of the measurement 

units.  

 

   (            
   )|  

 
 (   ) (      )

        

       (4) 

 

In each lowland farming system, farm   is overall efficient if    (            
   )|  

   

indicating that this specific farm achieves maximum profit. 

 

2.2.1.2. Directional Distance Function Computational Procedure 

The measure of short run technical inefficiency relative to a constant returns to scale (   ) 

technology for each producer by farming system is obtained by solving several linear 

mathematical programming problems. Suppose a case of data for one farming system. 

Consider that, for each farming system, there are         observations of inputs (variable 

and quasi-fixed) and outputs (     ). First, the short-run directional distance function used to 

describe the technical inefficiency in a particular farming system for observation    is defined 

by: 
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where the    are the intensity variables,   denotes the variable input factors (operating costs. 

i.e. seeds and fertilizers) and where         are the fixed factors (labor, capital cost, and 

plot size)
1
. The technology sets (5) also allows for variable returns to scale (   ) due to the 

convexity constraints in order to compute pure technical inefficiency (PTIE); then 

 ⃗⃗   (  
  
    

      |   ) is computed as in (5) by adding the ∑   
 
     . That is, variable 

returns to scale allows the lowland farming technology to exhibit increasing, constant or 

decreasing returns to scale. The convexity restriction ∑   
 
      in 

 ⃗⃗   (  
  
    

      |    ) and ∑   
 
      in  ⃗⃗   (  

  
    

      |    ) display 

nonincreasing and nondecreasing returns, respectively. Consequently, this convexity 

constraint allows for the possibility of negative, positive or zero profit (Fukuyama, 2003). 

Second, to compute the profit decomposition, we compute maximal profit for each 

producer relative to the technology   by solving the following linear programming problem 

for observation    for each farm in each farming system: 

 

   
      

(      ) 

s.t. 

∑      
 
        ,        , 

∑      
 
        ,    ,            (6) 

∑      
 
        ,        , 

    , 

∑   
 
     , 

 

where the    are the intensity variables, and all the other variables are the same as defined in 

(5). The short run maximum profit model (6) assumes variable returns to scale (VRS) as, for a 

technology exhibiting globally constant returns to scale (CRS), either the maximum profit 

level is zero or the solution of the maximum profit model is undefined (Thanassoulis et al. 

2008). Profit maximization in relation to a VRS technology implies that perfectly competitive 

markets are not assumed, since under this assumption all farms have zero profits in the long 

run. 

                                                 
1
 The directional distance function contracts variable inputs and expands output, at given levels of the three quasi-fixed 

inputs as demonstrated in Eq. 5. However, in order to make a correct representation of the production technology all inputs 

(variable and fixed) must be included in the model, where the fixed inputs are not corrected (see equation 5). If not, the 

estimates will suffer from omitted variable bias. The estimated profit function maximises the difference between revenues 

and variable costs at given levels of the three quasi-fixed inputs. 
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As mentioned above, maximal profit  (   ) minus observed profit (      ), 

normalized by (        
)  (      ), yields overall profit inefficiency (OIE). Since 

overall profit inefficiency (OIE) consists also of pure technical inefficiency (PTIE), allocative 

inefficiency (AIE) and scale inefficiency (SIE) such that OIE = PTIE + AIE + SIE, the next 

step is to compute short-run allocative inefficiency for each observation in each farming 

system by subtracting its short-run overall inefficiency from its short-run pure technical and 

scale inefficiency. In our DEA modeling approach, the allocative inefficiency also 

incorporates inefficiency due to slacks. 

Since overall profit inefficiency (OIE) also consists of input inefficiency (INIE) and 

output inefficiency (REVI) such that OIE = REVI + INIE, the third step is to compute short-

run input and output inefficiency. 

 

2.2.2. Second-stage Analysis: Truncated Bootstrap Model 

The conventional two-stage approach used censored regression and has been widely applied 

to determine whether or not certain factors influence the decision making unit’s (DMUs) 

inefficiency scores (see Fried et al. 2002; Gattoufi et al. 2004 for a comprehensive 

bibliography). This traditional censored regression procedure, however, is invalid because of 

the presence of the inherent dependence among the DEA efficiency scores which are a 

relative efficiency index instead of an absolute efficiency index. This suggests the violation of 

one of the basic model assumptions required by regression analysis. Authors found that a 

more serious problem in these methods arises from the fact that non parametric efficiency 

estimates are serially correlated in a complex way. Simar and Wilson (2007) found that it is 

difficult to give a statistical interpretation to the second stage estimator and also not provided 

a coherent description of a Data Generating Process (DGP). To overcome the problem of 

complex serial correlation in analysis of the DEA efficiency scores, Xue and Harker (1999) 

used a naïve bootstrap approach to address different problems in regression analysis (e.g. the 

non-normality of the distribution). 

The bootstrap is a method for estimating the distribution of an estimator or test 

statistic by resampling the data or a model estimated from the data (bootstrap sampling). 

Therefore, the bootstrap is a practical procedure for reducing errors in inference (Horowitz, 

2001). The main idea of the naïve bootstrap approach is to substitute the incorrect 

conventional estimators for the standard errors of the regression coefficient estimates with 

bootstrap estimators for the standard errors of these estimates. A naïve bootstrap method 
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requires only the randomness of the observed sample. In Xue and Harker (1999), this requires 

the independence among the DMUs in terms of their inputs, outputs and the explanatory 

variables but not the independence of their DEA efficiency scores. Recently, Simar and 

Wilson (2007) demonstrated that this naïve bootstrap approach is inconsistent in the context 

of non-parametric efficiency estimation and it is unclear what is being estimated. To 

rationalize the two-stage analysis, they proposed single and double bootstrap procedures 

which allow not only for heterogeneity in the distribution of inefficiency, but also incorporate 

assumptions on separability between the production set and the covariates. Given the small 

size of the sample and the number of variables considered in this study, a single truncated 

bootstrap is used. This single truncated bootstrap is an application of the Simar and Wilson 

(2007)
 
method for radial distance functions to the case of the directional distance function

2
. 

 

2.3. Data and Variables 

This study was conducted in the Dassa local government area of Collines Department, Benin. 

The town of Dassa (2°02 N, 2°20 W) is located in central Benin, 250 km north of the 

economic capital Cotonou and close to the nationally and regionally important agricultural 

market Glazoue. The road from Dassa to Cotonou is paved and many heavy trucks transport 

agricultural goods from Collines Department to Cotonou. The region has the highest 

concentration of lowlands in Benin and receives a lot of support from different projects and 

research organizations. For instance, since 2000 the Africa Rice Centre (WARDA) increased 

lowland activities in this region through their national lowlands consortium. This suggests 

that the area has good market access and high agricultural potential. A farm-level survey was 

conducted during the agricultural seasons of 2004 and 2005 to provide demographic data. The 

data set consisted of a stratified random sample survey of 72 producers in three villages (Odo 

Otchere, Ouissi and Gankpetin) where lowlands are cultivated and the study followed their 

activities on 93 plots. It is worth noting that the number of producers in this sample represents 

more than 60% of lowland producers registered in that region. To avoid heterogeneity 

problems at farm level analysis in cross-selection data, lowland farming system is used as 

stratification criterion for sampling farms. The sampling unit was the plot. Some producers 

had more than one plot. The 93 plots were classified into 30 plots for the integrated rice-

vegetable farming system (RVFS), 28 plots for the rice farming system (RFS) and 35 plots for 

vegetable farming system (VFS). 

                                                 
2 The application to the directional distance function follows the same reasoning as Simar and Wilson (2007). Details on the 

algorithm are available upon request from the authors. 
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Questionnaires were used to collect data on producers’ input and output use as well as 

socio-economics and environmental factors. To reduce the occurrence of measurement errors 

in the cross-section data, the questionnaire was improved following a pre-test. Data collection 

took place on a monthly basis from June 2004 to June 2005. Collecting data on a monthly 

basis enabled this study to capture the detailed cost and the revenue of production (measuring 

the quantities of inputs used, the prices at farm gate, labor used, measuring the output 

quantities obtained). Questionnaire design and data collection work were carried out under the 

supervision of the first author. 

 

2.3.1. First Stage Data 

The first stage data consisted of two outputs and three types of inputs. Outputs are rice and/or 

vegetables. The most important inputs in lowland cultivation are operating costs, labor and 

small materials (hoes, axes, machetes, watering cans, baskets, basins, etc.). Cultivation 

practices include land clearing, soil tillage, construction of beds, fertilization, planting, 

irrigation, weeding, and harvesting. Variables collected from the farmer survey were revenues 

from lowland crops (rice, and vegetables), expenses (seeds, labor, fertilizers, equipment, etc.). 

As rice is produced from May to November, inputs used to produce rice in this period were 

aggregated. Vegetables are cultivated in lowland from December to April. Inputs and outputs 

of vegetable were also aggregated for this period. Output consisted of rice or vegetables 

produced in each farming period. 

The inputs and the outputs we specify are based upon the production process of 

lowland farms. We had to address the trade off between using technical details by applying 

more inputs and adding the risk of multicollinearity on the one hand, and aggregating the 

inputs and sacrificing potentially useful information on the other hand. To avoid the risk of 

multicollinearity and the ‘zero-observation’ problem for input variables in the first stage, the 

inputs were aggregated into three categories (labor costs, operating costs, and capital), and the 

outputs were aggregated into a single index of lowland farm output. The linear aggregator was 

used to aggregate inputs and outputs. The input and output prices obtained did not vary across 

farms, implying that differences in the composition of a netput on the quality were reflected in 

the quantity (Cox and Wohlgenant, 1986). Thus, to implement the overall profit inefficiency 

given by (6) we assumed that all farms face the same output-input prices vector (i.e. unity). 

Labor input consisted of family labor and paid labor, measured at their effective costs. 

A problem was that reported hours of work may have had errors. The opportunity cost of 

family labor is determined within the household rather than by market forces and consists of 
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expenditures for food to sustain family labor of the farm operator capturing cross-sectional 

price variation. In Benin rural area, the labor market is constrained; especially women have a 

limited set of alternatives to remunerate their labor. In addition, neither hired and family labor 

nor the labor inputs of different family members are perfectly substitutable in agricultural 

production (Jacoby, 1993). As family and hired labor are not perfect substitutes, the labor 

supply model could be used to estimate the household’s unobserved shadow wage (Barrett 

1997; Barrett et al. 2008). However, the objective of this chapter was not to estimate 

structural labor supply in order to determine the shadow wages allocative inefficiency; the 

direct realized labor prices were used rather than the subjective, ex ante expected prices as 

proposed by Barrett (1997). It is also important to remember that our inefficiency method is 

homogeneous of degree zero in prices. Since labor input was treated as quasi-fixed in our 

model, the choice was consistent so that allocative and scale inefficiency were related to 

operating inputs. Labor was assumed to be a quasi fixed input because a large share of total 

labor consisted of family labor. The family labor represented about 80% to 90% of the total 

labor used in the Beninese lowlands (measured in man-days). The capital cost was computed 

as the sum of the real annual costs of materials involved in the production system
3
. The 

operating costs were computed as the sum of seed and mineral costs. The output value 

denotes the value of output involved in the given farming system evaluated at their farm-gate 

prices. In the directional distance function, we need to choose a directional vector, (   
   ), 

common to all farms in each farming system to aggregate the measures’ technical 

inefficiency. Following Färe and Grosskopf (2004), in a given lowland farming system, if 

each farm’s technology is such that the maximal profit function yields optimal outputs and 

optimal inputs which are the same for all farms, then a natural direction yielding for   

      farms is (  
    ). Unfortunately, in each farming system the optimal outputs and 

optimal inputs varied for each farm. Therefore, we measured technical inefficiency in the 

direction of the realized variable inputs-output vector (    ) (Chambers et al. 1998): in this 

case (        
)  (      ). This directional vector implies that the directional 

technology distance function gives an estimate of the maximum feasible expansion in outputs 

and the contraction in variable inputs. Thus, it is possible to make a radial interpretation of 

our inefficiency measures. 

                                                 
3 The partial annual cost of each material was calculated as follow: the number of a given material really used in the plot 

multiplied by its purchase price at farm gate divided by the probable length of time that it will be used for (in one year). The 

real annual cost is then calculated by multiplying this partial annual cost by the proportion of time the involved material was 

used in a given production system or to produce a given crop. 
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Descriptive statistics of variables for different lowland farming systems is presented in 

Table 2.1. These statistics indicate that there were considerable differences within and among 

the three farming systems in terms of the means and standard deviations of the outputs and 

inputs. 

 

2.3.2. Second Stage Data 

The second stage involves an explanatory analysis of the inefficiency scores using 

environmental and farmers’ characteristic variables to account for exogenous factors that 

affect the inefficiency performance of producers. This explanatory analysis assumes that the 

environmental and farmers’ socio-economic variables only affect the inefficiency and not the 

 

Table 2.1. Summary statistics for data on lowland farms in the central Benin ($1US=527.35 

FCFA in 2005) 

Lowland farming System Variables Mean 
St. 

Deviation 
Minimum Maximum 

C1 : Rice and vegetable farming system (RVFS), n1=30      

Output (F CFA)    45,494.07 25,316.23 13,093.75 106,000 

Variable input: Operating costs (F CFA)     5,714.37 3,081.70 1,559 18,150 

Fixed inputs:            Labor (F CFA)      5,555.25 3,041.84 2,412.5 17,750 

                                 Annual Capital cost (FCFA)      3,191.88 1,750.45 891.67 7,189.2 

                                 Land area (m2)      506.33 392.46 120 2,100 

Variable profit of C1 (FCFA)     39,779.69 23,641.85 9,786.25 100,823.5 

C2 : Rice farming system (RFS), n2=28      

Output (F CFA)    16,770.54 10,454.09 6,750 54,450 

Variable input: Operating costs (F CFA)     340.625 178.69 50 700 

Fixed inputs:            Labor (F CFA)      2,420.98 1,306.19 675 4,887.5 

                                 Annual Capital cost (FCFA)      1,763.32 925.94 465 4,170 

                                 Land area (m2)      250,36 151.91 100 800 

Variable profit of C2 (FCFA)     16,429.91 10,332.7 6,575 53,750 

C3 : Vegetable farming system (VFS), n3=35      

Output (F CFA)    13,411.15 10,144.95 2,082.25 61,500 

Variable input: Operating costs (F CFA)     3,910.7 3,478.51 600 19,633.33 

Fixed inputs:            Labor (F CFA)      2,650.53 2,289.88 375 13,525 

                                 Annual Capital cost (FCFA)      1,186.08 855.28 132.8 3,342.01 

                                 Land area (m2)      312.86 282.89 40 1,600 

Variable profit of C3 (FCFA)     9,500.45 7,126.09 837.5 41,866.67 

Note: Outputs and inputs were computed in monetary value because of aggregation so that outputs and inputs prices were set 

to one in the profit maximizing programme.  
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transformation process of inputs into outputs. Possible factors influencing lowland 

inefficiency include environmental factors (water control), farming system (integrated rice 

and vegetables), as well as producers’ characteristics. Variables collected from the farmer 

survey were farm characteristics (upland farm size, number of family members, marital status, 

level of education, age, years of management experience in the lowland, etc.) and 

environmental factors (type of lowlands). The following variables were assumed to explain 

the variation of pure technical, allocative and scale inefficiency scores: 

 Number of family members available for lowland farm work in adult workforce 

(NHADULT). Lowland cultivation is often considered more onerous and labor demanding 

than upland cultivation (Spencer and Byerlee, 1976; Richards, 1986). In addition, rice 

production coincides with the rainy season. Therefore, farmers with limited family labor are 

less likely to produce rice, as they would have to hire labor for rice production, reducing 

expected profits. Also, the production of vegetables has higher labor requirements than the 

production of staple crops or grains. Weinberger and Lumpkin (2007) found that vegetable 

production required twice as much, sometimes up to four times as much labor as the 

production of cereal crops. Therefore, a negative relationship was expected between technical 

or scale inefficiency scores and availability of family labor. On the other hand, family labor in 

rural areas is assumed to be less productive because this type of labor has low opportunity 

costs (Gockowski and Ndoumbe, 2004). Thus, this variable was expected to increase 

allocative inefficiency. 

 Formal Education of the farmer (EDUC). Various types of training help the farm 

operator to enhance profitability. Farmers who received a formal education are more likely to 

have been exposed to information on lowland cultivation technologies. Furthermore, educated 

farmers are expected to have better capabilities in processing information and searching for 

appropriate technologies to reduce use of inputs. Education of the farmer is expected to 

reduce technical inefficiency or what Welch has called ‘worker effect’ (Welch, 1970; Sidhu 

and Baanante, 1979). However, Huffman (1974) reported that the contribution of education is 

only an ‘allocative effect’. Stefanou and Saxena (1988) found that education may enhance the 

farmer’s ability to allocate inputs efficiently across competing uses, and contribute to good 

farm planning. Therefore, it was assumed in this study that the variable EDUC had a negative 

effect on technical, allocative and scale inefficiency. 

 Age of farmers (AGE). The age of producers captures differences in the quality of 

management. Age provides a major source of possible variation of inefficiency across 

producers since older farmers may lack up to date technology, machinery, equipment or 
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structures. Richards (1986) argued that participating in brushing and ploughing in lowland 

made clear that the most strenuous tasks are placed on young people. Old farmers are less 

likely to conduct lowland activities. In contrast, young women tend to work very hard in the 

lowlands. Therefore, the age of farmers was assumed to have a positive effect on inefficiency 

scores. Hence, the variable AGE was assumed to increase technical inefficiency in lowland 

farming systems; the effect was less clear for allocative and scale inefficiency. 

 Marital status (MARRIED). The effect of marital status on the level of inefficiency is 

difficult to predict. The lowland producers in the sample mainly consisted of women (85%). 

Married women are known to be responsible for many activities (cooking, fetching and 

carrying water, etc.) which decrease their performance in the agricultural sector (Gockowski 

and Ndoumbe, 2004). In contrast, older married women tend to have more family labor at 

their disposal, which is expected to decrease technical inefficiency of lowland cultivation 

(Richards, 1986). Thus, this variable could have either a positive or a negative effect on 

farmers’ inefficiency. 

 Irrigated lowland (TYBAS). Water control in lowlands has a particular importance in 

increasing agricultural production and productivity and facilitates intensification. It enhances 

weed control, improves N-fertilizer use efficiency in rice and makes cultivation less risky 

(Becker and Johnson, 1999 and 2001). Lack of water control can be an important constraint to 

lowland intensification (Erenstein, 2006). This variable also measures the physical 

environment of the farm. It is therefore expected that irrigation may decrease technical, 

allocative and scale inefficiency scores. To be consistent with the separable condition between 

environmental factors and inefficiency estimates, water control was coded as a dummy 

variable. 

 Years of management experience in lowland (YEAR). This variable is related to the 

lowland management quality and can also be seen as an informal training ‘learning by doing’. 

As the results of experimenting with alternative production techniques, the management 

experience can lead to gains in efficiency through better organization and knowledge 

(Stefanou and Saxena, 1988). Therefore, it was assumed that a decrease in lowland farming 

systems inefficiencies may result from more management experience. 

 Upland farm size (UPLAND). At farm system level, lowland and upland cultivation 

are complementary, but during the rainy season, lowland cultivation often comes second to 

upland cultivation due to the generally stricter timeliness, larger crop areas, increases 

diversity through preference heterogeneity and lower labor intensity of upland cultivation 
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(Lavigne-Delville and Boucher, 1998; Richards, 1986). Consequently, there may be limited 

interest in lowland intensification for farmers who hold large upland areas. Therefore, this 

variable was expected to increase technical inefficiency scores and scale inefficiency as well. 

But, a farmer who owns a large area of upland was expected to decrease allocative 

inefficiency because of the higher opportunity cost of the inputs used. 

 To test whether the inefficiency of the three farming systems differs, we created two 

indicator (dummy) variables: RVFS (integrated rice-vegetable farming system) and RFS (rice 

farming system). We compared these variables to the reference system (VFS). Compared to 

vegetable farming systems, integrated rice-vegetable farming systems and rice farming 

systems were expected to be more technical, allocative and scale efficient. 

The dataset shows that 21 producers engaged simultaneously in two farming systems 

(RFS and VFS). However, the correlation matrix of the explanatory variables showed that 

none of the Pearson partial correlation coefficients was high, indicating that there were no 

multicollinearity problems (see Annex). 

Also, we assumed that the effects of the variable TYBAS and the farming systems were 

dependent and strictly multiplicative, so that the joint effect was the product of the marginal 

effects. This implies that we allowed for interaction effects in evaluating these qualitative 

factors. Then, we created two variables: TYBAS*RVFS and TYBAS*RFS. 

 

2.4. Results and Discussion 

2.4.1. Inefficiency Results 

A profit function and directional distance function was estimated using GAMS (General 

Algebraic Modeling System). The measures of short-run overall profit inefficiency, pure 

technical, allocative, and scale inefficiency as well as input and output inefficiencies for 

individual decision making unit in each lowland farming system were calculated and 

summarized in Table 2.2. The last column shows the directional technology scale inefficiency 

status identified with the use of the Fukuyama (2003) description. Recall that values of the 

overall, pure technical and allocative inefficiency scores equal to zero signify efficiency and 

values of the scores greater than zero signify inefficiency. Integrated rice-vegetables farming 

system (RVFS) had one third farmers (11 out of the 30 RFVS) who operated at the frontier of 

overall efficient (OIE=0) and rice farming system (RFS) had 13 out of the 28 farmers fully 

efficient; vegetable farming system (VFS) had only 3 out of the 35 farmers who were 

efficient. Although for a few lowland farmers in each farming system, pure technical 



Chapter 2 

28 

 

inefficiency was an important source of inefficiency, for most lowland producers allocative 

inefficiency and scale inefficiency were the major components for overall inefficiency. The 

results indicate that variable resource (seeds and minerals) allocation decisions particularly 

lacked profit maximizing behavior. Only 4 out of the 30 producers of RVFS, 7 out of the 28 

of RFS, and only 2 out of the 35 of VFS were fully allocatively efficient in the short run 

(AIE=0). This implies that 87% of producers in RVFS, 75% in RFS, and 94% in VFS were 

allocatively inefficient. 

The arithmetic mean value of pure technical inefficiency (PTIE) measure in the short 

run at the farming system level ranged from 0.169 for VFS to 0.349 for RFS, indicating that 

gains from improving pure technical inefficiency existed. For example, average farms in Rice 

farming system (RFS) could expand rice output by 34.9% and contract seed and fertilizers use 

by 34.9% while farms in Vegetable farming system (VFS) could expand vegetable output by 

16.9% and contract seeds and fertilizers by 16.98%. Eleven producers in RVFS, two in RFS 

and nine in VFS produced the maximum output possible, indicating that the majority of 

producers encountered problems which could include technical production constraints and 

socioeconomic and/or environmental factors. The results of this chapter imply that many of 

the lowland farms operate at technical inefficiency levels well below the efficient frontier. 

The inefficiency levels observed suggest a substantial amount of variable input savings and 

output expansions. If the average farmer in each group of the sample could eliminate pure 

technically inefficiency then he could realize a gain of 20% of the sum of revenue and 

variable cost in RVFS, 35% in RFS, and 17% in VFS. This result suggests that the majority of 

lowlands producers may have a substantial gain from improving efficiency of variable 

resource use. 

 

Table 2.2. First stage Inefficiency Results (Standard deviation in parenthesis) 

Farming System 

Mean of Inefficiency 

RS Profit 

(OIE) 

Pure 

technical 

(PTIE) 

Allocative 

(AIE) 

Scale 

(SIE) 

Output 

(REVI) 

Input 

(INIE) 

C1: Rice and vegetable farming 

system(RVFS), n1=30 

0.401 

(0.091) 

0.200 

(0.035) 

0.030 

(0.079) 

0.171 

(0.039) 

0.470 

(0.113) 

- 0.035 

(0.053) 
IRS 

C2: Rice farming system 

(RFS), n2=28 

0.085 

(0.025) 

0.349 

(0.038) 

0.006 

(0.017) 

- 0.224 

(0.019) 

0.082 

(0.025) 

- 0.069 

(0.151) 
DRS 

C3: Vegetable farming system 

(VFS), n3=35 

0.280 

(0.043) 

0.169 

(0.026) 

0.117 

(0.036) 

- 0.006 

(0.030) 

0.335 

(0.065) 

0.006 

(0.094) 
DRS 

Legend. RS – returns to scale, IRS – increasing returns to scale, DRS – decreasing returns to scale. 

Notes. (1) estimated values were obtained in the direction vector (   
   )  (    ). (2) The scale nature is 

determined by the sign of SIE. 
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The overall profit inefficiency equals the normalized difference between maximal and 

actual profits. The mean of overall profit inefficiency (OIE) ranged from 0.085 for RFS to 

0.401 for RVFS indicating greater profit inefficiency in lowland farming systems. The 

residual difference between overall inefficiency and technical inefficiency is allocative 

inefficiency. In the short run, farmers in VFS appeared to be more allocatively inefficient: 

mean allocative inefficient measures were 0.006 in RFS, 0.030 in RVFS, and 0.117 in VFS. 

This result is in line with the finding of Erenstein (2006) that lowlands are not always as 

valuable as they may seem, and there may be limited incentives to intensify. 

On average, farmers of integrated rice-vegetable farming system (RVFS) were found 

to be more scale inefficient than they were allocatively inefficient. This implies that there was 

a scale effect on the overall inefficiency of RVFS. By contrast, farmers in RFS and VFS 

appeared to be less scale inefficient than they were allocatively inefficient. Mean scale 

inefficiency ranged from 0.171 in RVFS to – 0.224 in RFS. Within the sample, only 13.33% 

farms in RVFS, 17.14% farms in VFS and 3.57% farms in RFS were scale efficient (i.e. 

operating at constant returns to scale: SIE = 0). Thus, most of the farms in the sample were 

scale inefficient and this type of inefficiency appears to be as serious a problem as overall 

inefficiency. Scale inefficiency indicates that lowland farms do not have the optimal size. The 

study further reveals scale inefficiency among farming systems and shows that the range of 

optimal scale is extremely wide, with both the maximal and minimal outputs as the optimal 

scale. Increasing returns to scale was the predominant form of scale inefficiency observed in 

RVFS while decreasing returns to scale was the predominant form in RFS. Furthermore, both 

increasing returns and decreasing returns to scale were the prevalent scale inefficiency in 

VFS. Approximately four-fifth of the farms in RVFS (83.33%) against one-half of the farms 

in VFS (48.57%) and no farm in RFS were found to operate at increasing returns to scale. By 

contrast, 3.33% of the farms in RVFS, against approximately one-third of the farms in VFS 

(34.29%) and 96.43% of the farms in RFS were operating at decreasing returns to scale. The 

farms with increasing returns to scale should consider increasing their size and those with 

decreasing returns to scale should consider reducing their size. On average, farmers in RVFS 

had a positive directional technology scale elasticity value of 0.171 and hence displayed 

increasing returns to scale. The high prevalence of increasing returns to scale in RVFS implies 

that farms which adopted the integrated system should increase their size indicating expansion 

of rice and vegetable outputs and simultaneously contraction of variable inputs to increase 

unit profit. However, the high presence of decreasing returns to scale in RFS indicates farmers 

who cultivated only rice should reduce their size. In RVFS, farms that were scale efficient had 
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a variable farm profit that was 52 percent larger than that of the scale inefficient farms. 

Similarly, farms that were scale efficient in VFS had a variable farm profit that was 48 

percent larger than that of the scale inefficient farms. In contrast, the unique farm that was 

scale efficient in RFS had a variable profit that was 41 percent smaller than that of the scale 

inefficient farms. The results confirmed that decreasing returns to scale is the predominant 

form of scale inefficiency observed in RFS. 

Finally, in the short run, farmers appeared to be more output inefficient (REVI) than 

they were input inefficient (INIE). Output inefficiency was mainly due to low yields, 

implying that a major effort has to be undertaken to increase yield levels and/or postharvest 

facilities that help to conserve yield (Weinberger and Lumpkin, 2007). The input inefficiency 

demonstrated that the observed variable inputs (seed and fertilizers) were not used at the 

optimal level showing that access to good quality seeds and fertilizers was a severe constraint 

for most farms (Cox and Wohlgenant, 1986). This finding also implies that farmers face high 

(shadow) prices for cash inputs because of liquidity constraints. First, farmers were mostly 

using the same traditional seeds, or if they had ever used improved hybrid seeds, they 

propagated it themselves, and the productivity of the seed would have deteriorated over time 

as a result. Second, the NPK fertilizers available in Benin are recommended and 

commercialized especially for cotton. Input inefficiency was also caused by the difficulty that 

producers face in adjusting the quality and quantity of inputs. This is in line with the findings 

of Crawford et al. (2003) who found that the increase in fertilizer in Benin is largely 

attributable to the expansion of fertilizer use by the cotton sector. The authors categorized the 

causes of low input use (fertilizer and seed) in food crops as a function of weak incentives and 

capacity to purchase inputs. Following Crawford et al. (2003), Jayne et al. (2003) and Kelly 

(2005), successful increase in the use of fertilizer and seeds requires policies and programs 

that ensure economically sound and technically efficient use. The results suggest that lowland 

producers face managerial or organizational problems that inhibit them from adjusting the use 

of operating inputs. To address the question why inefficiency is so pervasive in lowland 

farming in Benin, factors contributing to these inefficiency scores were further investigated. 

 

2.4.2. Truncated Bootstrap Analysis of Sources of Inefficiency 

A single truncated bootstrap procedure explaining inefficiency as defined in section 2.2.2 

were estimated using Stata software version 9.0.         bootstrap replications were used 

as suggested by Simar and Wilson (2007) by pooling data across all three farming systems. 
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Table 2.3 shows the second stage coefficients and Bootstrap Confidence Intervals for pure 

technical, allocative and scale inefficiency estimates. Positive coefficients indicate that the 

associated variable increases inefficiency while negative coefficients decreases inefficiency. 

A parameter estimate is significant when the value of zero is not within the confidence 

interval. 

Technical inefficiency was significantly and negatively affected by TybasRVFS (joint 

effect of water control and integrated rice-vegetable farming system), TybasRFS (joint effect 

of water control and rice farming system), Married (married household), Educ (producers 

who have a formal education), Nhadult (number of family members available for lowland 

farm work), and Year (number of years of management experience in the lowland). On the 

other hand, technical inefficiency was significantly and positively affected by RFS (rice 

farming system), RVFS (integrated rice-vegetable farming system), Tybas (water control), and 

Age (farmer’s age). The significance of the effects of the two farming systems (RVFS and 

RFS) suggests in the short run, that the three lowland farming systems are different in terms of 

technical inefficiency. Their positive effects imply that the rice (RFS) and the integrated rice-

vegetable farming systems (RVFS), ceteris paribus, have a higher technical inefficiency than 

the vegetable farming system (VFS). This suggests that the degree of technical inefficiency of 

vegetable’s producers is less than that of rice farmers. The result indicates that despite the fact 

that much of the interest in lowlands in West Africa has focused on the potential for 

technologically-intensive rice production (Erenstein et al. 2006), rice production technology is 

still a severe constraint for farmers. The effect of water control (Tybas) was shown to have 

significant and positive effects on technical inefficiency, indicating that technical efficiency is 

not enhanced by only water control. The joint effect of water control and rice farming system 

(TybasRFS) and the joint effect of water control and integrated rice-vegetable farming system 

(TybasRVFS) were shown to have significant and negative effects on technical inefficiency, 

suggesting that water control and farming systems have a decreased interaction effect on 

technical inefficiency. Thus, the level of irrigation and lowland farming systems are 

complements and play a significant role in the level of inefficiency. Furthermore, the results 

indicate that formal education and additional years of management experience resulted in 

lower technical inefficiency. This implies that increasing investment in formal and informal 

education might lead to better performance in the agricultural sector (Dhungana et al. 2004) 

and that education and experience are substitutes and play a significant role in the level of 

technical inefficiency. The positive effect of producer age on technical inefficiency suggests 

that younger farmers are more likely to be technical efficient than their older counterparts. 
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This is consistent with the findings of Dhungana et al. (2004) who showed that, in Nepalese 

rice farms, younger farmers may be more willing to adopt new technologies and/or to have a 

stronger educational background. The households that had a higher number of family 

members performed better in terms of technical efficiency. The hypothesis that a higher 

upland farm size significantly raises technical inefficiency in the lowlands was not confirmed. 

A plausible explanation is that higher upland farm size is interpreted by households as a 

strategy for risk diversification. 

 

Table 2.3. Second stage coefficients and Bootstrap confidence intervals at 5% (L=2000) 

Pure Technical inefficiency (PTIE) Coefficients Std. Err. Intervals, 5% 

Constant 0.154* 0.005 [0.144;0.1633] 

System 1 (RVFS) 0.328* 0.0039 [0.3202;0.3354] 

System 2 (RFS) 0.4105* 0.004 [0.4027;0.4183] 

Age of producer 0.001* 0.00007 [0.0011;0.0014] 

Married - 0.0495* 0.0022 [-0.0537;-0.0451] 

Educ (formal education) - 0.0488* 0.0013 [-0.0514;-0.0463] 

Tybas (water control) 0.1442* 0.0037 [0.1369; 0.1515] 

Nhadult (family member) - 0.0173* 0.0004 [-0.01803;-0.01666] 

Year (experience) - 0.0029* 0.0001 [-0.0031;-0.0027] 

Upland (upland size) 0.0008 0.0006 [-0.0003;0.0019] 

Tybas*RVFS (interaction) - 0.2450* 0.0042 [-0.2532;-0.2369] 

Tybas*RFS (interaction) - 0.2820* 0.0041 [-0.2901;-0.2739] 

Allocative inefficiency (AIE) Coefficients  Intervals, 5% 

Constant 0.3750* 0.1845 [-0.7368;-0.0133] 

System 1 (RVFS) 0.0879 0.1169 [-0.1414;0.3171] 

System 2 (RFS) - 6.2461* 0.1672 [-6.5741;-5.9182] 

Age of producer 0.0027 0.0027 [-0.0025;0.0079] 

Married - 0.6658* 0.0959 [-0.8539;-0.4776] 

Educ (formal education) 0.0906* 0.0461 [0.0003;0.1809] 

Tybas (water control) - 1.0274* 0.1044 [-1.2321;-0.8227] 

Nhadult (family member) 0.1225* 0.01207 [0.0988;0.1462] 

Year (experience) 0.0568* 0.0032 [0.0505;0.0631] 

Upland (upland size) - 0.2687* 0.0211 [-0.3101;-0.2272] 

Tybas*RVFS (interaction) 0.4288* 0.1296 [0.1747;0.6829] 

Tybas*RFS (interaction) - 0.6691* 0.1685 [-0.9997;-0.3386] 

Scale inefficiency (SIE) Coefficients  Intervals, 5% 

Constant 1.135* 0.0371 [1.0619;1.2073] 

System 1 (RVFS) - 0.0347 0.0253 [-0.0843;0.0149] 

System 2 (RFS) 0.0617* 0.0256 [0.0115;0.1120] 

Age of producer 0.0130* 0.0006 [0.0117; 0.0142] 

Married - 0.7010* 0.0201 [-0.7405;-0.6615] 

Educ (formal education) - 0.6728* 0.0141 [-0.7005;-0.6451] 

Tybas (water control) - 1.4172* 0.0268 [-1.4698;-1.3646] 

Nhadult (family member) - 0.2061* 0.0043 [-0.2145;-0.1977] 

Year (experience) - 0.0140* 0.0008 [-0.0156;-0.0124] 

Upland (upland size) 0.0311* 0.0052 [0.0208;0.0414] 

Tybas*RVFS (interaction) 1.4232* 0.0315 [1.3614;1.4850] 

Tybas*RFS (interaction) - 0.0894* 0.0289 [-0.1461;-0.0327] 

Legend. RVFS-Integrated rice-vegetable farming system; RFS- Rice farming system 

* significance at 5% level 
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Results showed that allocative inefficiency was affected significantly and negatively 

by RFS (rice farming system), Tybas (water control), TybasRFS (joint effect of water control 

and rice farming system), Married, and Upland (upland farm size) and positively by the joint 

effect of water control and integrated rice-vegetable farming system (TybasRVFS), number of 

adult members available for lowland farm work (Nhadult), Educ (formal education) and Year 

(number of years of management experience in lowlands). Further, the results indicated that 

water control and farming system have a joint negative effect on allocative inefficiency. 

Producers dealing with the rice farming system on irrigated plots were more successful in 

choosing a mix of variable inputs that maximizes profit at given input prices than those who 

grow only vegetables on the same type of plot. However, the results also suggest that 

producers who farm in water control lowland succeed better in making profit efficient choices 

of variable inputs. Thus, the best irrigation scheme has a negative effect on allocative 

inefficiency. The hypothesis that educated farmers and lowland management experience have 

a negative effect on allocative inefficiency is rejected. This is not consistent with the finding 

of Stefanou and Saxena (1988) who found that operators of dairy farms in Pennsylvania with 

post-secondary education demonstrated a greater degree of flexibility in the allocation of 

variable inputs. The significant effect of the joint interaction of water control and lowland 

farming systems (TybasRFS and TybasRVFS) on allocative inefficiency indicates that the 

level of irrigation and lowland farming systems are complements and also play a significant 

role in allocative efficiency. This result corroborates the finding of Erenstein et al. (2006) that 

temporal integration of rice and vegetables is constrained by the limited degree of water 

control in West African lowlands. 

Scale inefficiency was affected negatively and significantly by Tybas, Married, Educ, 

Nhadult, TybasRFS, and Year and positively by TybasRVFS, RFS, Upland, and Age. The 

insignificant coefficient of the RVFS indicates that the scale inefficiency effect of the 

integrated rice-vegetable farming system is similar to that of vegetable farming system. The 

results also suggest that water control and lowland farming systems are complements and play 

a significant role in scale inefficiency. Our results show that irrigated lowland and rice 

farming system have a negative joint interaction on scale inefficiency indicating that 

producers who cultivated only rice on irrigated plots operate on a more optimal (higher) scale 

than those who produced only vegetables on irrigated plots. This result demonstrates that the 

contribution of the policy of technologically-intensive rice production is a scale effect. The 

results also suggest that educated farmers and more years of management experience in 

lowland cultivation decrease scale inefficiency. The implication is that education and 
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experience are substitutes and also play a significant role in the level of scale efficiency. The 

producer age and additional upland size increase scale inefficiency. It appears that farmers 

with relatively higher upland size are less scale efficient than the others. Also, young farmers 

tend to be more scale efficient than old farmers. Large number of family members available 

for lowland farming decreased scale inefficiency, implying that households with much family 

labor tend to operate at the optimal size. 

The joint test of water control and farming systems interaction coefficients rejects the 

null hypothesis of independence of water control and farming systems. Because the 

interaction terms are jointly significant, it would be a misspecification to fit the regression 

based on independent and strictly additivity of the two factors. 

The results in this chapter are in line with previous findings (Erenstein, 2006; and 

Erenstein et al. 2006) indicating that the degree of economic motivation and success in the 

allocation of resources in Benin’s lowlands differ significantly among farming systems. In the 

short run, producers were not able to allocate their resources optimally in the profit 

maximizing sense. Furthermore, technical, allocative, and scale inefficiencies differed 

significantly among farming systems. Researchers who have examined lowlands practices in 

West Africa believed that inefficiency could be improved through better management 

practices (Erenstein et al. 2006). Management practices do play an important role in 

production as shown by the parameter estimates for family labor, water control and upland 

farm size. In addition, a better policy should be implemented for seeds and fertilizers to 

increase outputs and reduce inputs used. The results of the three farming systems indicated 

that the profit loss due to technical inefficiency is quite similar across them. This implies that 

all producers have difficulty obtaining  optimum input-output mixes, although vegetables 

producers were somewhat more technically efficient than the  farmers of the other systems. A 

more likely explanation, as shown by the second stage result, may be the educational need to 

teach farmers the value and use of lowland technology (irrigation, inputs used in lowland, 

etc.). In the short run, basic farm management training could possibly address this problem. 

Allocative inefficiency increased with the variability of prices faced by producers in local 

markets implying that alternative strategies for reducing producers’ price volatility might be 

implemented. Finally, the results of this study are in line with the policy implication of the 

OECD (Organization for Economic Co-operation and Development) that agricultural 

production in developing countries can be enhanced through appropriate technology and 

management techniques applied to farms, resources and land. These will not harm the 

environment and will enable developing countries  to reach the goal of food security. To reach 
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this goal, lowland production processes could be reorganized and resources managed more 

effectively. Producers’ levels of education and farming skills should be upgraded and policy 

makers must search for incentives conducive to farmers’ adoption of appropriate technology 

(OECD, 2008). 

 

2.5. Conclusions 

This chapter aimed at examining the differences in economic inefficiency among lowland 

producers at farming system level to assess a farm’s competitive position. It estimated several 

performance measures such as overall, technical, allocative, scale, input, and output 

inefficiency; moreover sources of inefficiency are analyzed. We employed a new robust two 

stage semi-parametric directional technology distance function approach and a single 

truncated bootstrap procedure to analyze the inefficiency performance of lowland farming 

systems. 

The first stage results indicated that there is evidence of significant technical, 

allocative and scale inefficiencies among producers of which scale inefficiency, allocative 

inefficiency and output inefficiency were the main sources of inefficiency. It is possible for 

the producers to increase profit gain of rice and vegetable production by removing these 

inefficiencies. Increasing returns to scale prevailed in the integrated rice-vegetable farming 

system. Input inefficiency indicated that variable inputs (seed and fertilizers) were not used at 

the optimal level, reflecting limited access to quality and quantity of seeds and fertilizers for 

most farms. 

To address the issue of why inefficiency is so pervasive, the second stage results 

examined the influence of environmental and socio-economic factors on the inefficiency 

performance of the lowlands producers. There were substantial differences between the three 

lowland farming systems. Compared to the vegetable farming system, technical inefficiency 

increased significantly when farmers produced only rice in the rainy season. Allocative and 

scale inefficiency decreased more significantly with rice farming system or an integrated rice-

vegetable farming system. Water control, size of family workforce, years of management 

experience in lowland cultivation and the upland farm size held by the households were other 

factors influencing inefficiency of farmers in lowlands. Formal education and experience 

were substitutes whereas water control and lowland farming systems were complements, each 

having a significant effect on the level of inefficiency. Finally, there is economic and food 
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security gain in promoting lowland development strategies with integrated rice-vegetable 

farming systems. 
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Annex. Correlation matrix between explanatory variables 

Variables syst1 syst2 age simat inst tybas nhadult year upland 

syst1 1.0000         

syst2 -0.4529 1.0000        

age -0.1915 0.1644 1.0000       

simat -0.0997 -0.0185 -0.1815 1.0000      

inst 0.1067 -0.1000 -0.1378 -0.0840 1.0000     

tybas -0.2113 -0.0208 0.0544 -0.1462 -0.1572 1.0000    

nhadult 0.0994 -0.1286 0.0608 0.1619 0.1135 0.0191 1.0000   

year -0.0412 0.0539 0.6729 0.0112 -0.1897 0.1656 -0.0802 1.0000  

upland 0.0352 -0.0306 0.1307 0.1483 -0.0204 0.1165 0.4826 0.0606 1.0000 
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Estimating farmers’ productive and marketing inefficiency: An application 
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Abstract 

This study estimates the technical and marketing inefficiency of a sample of urban vegetable producers in Benin. 

The study proposes a Russell-type measure of inefficiency using a directional distance function that accounts 

simultaneously for the expansion of outputs and prices and the reduction of variable inputs. A truncated 

bootstrap regression is used in the second stage to consistently analyze factors that underlie differences in 

inefficiencies. The first-stage results suggest that vegetable producers are more inefficient with respect to 

marketing than production. The second-stage results indicate that technical inefficiency is affected by the 

production environment and private extension services. Marketing inefficiency is affected by the type of 

marketing arrangements and specialization in production.  

Keywords: Vegetables, technical inefficiency, marketing inefficiency, Russell-type measure, bootstrap, Benin. 

JEL classifications: C34, C61, C67, D24, D49 
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3.1. Introduction 

Improving the performance of the agricultural sector remains an important issue in many 

developing countries. This topic has been addressed by a considerable volume of work that 

assesses technical efficiency relative to a production frontier representing the benchmark. 

However, producers are different not only with respect to efficiency in the production process, 

but also with respect to efficiency in marketing outputs. In farm management theory, farms 

are involved in three basic activities: production, marketing and investment activities. In 

developing countries, investment activities are a major constraint and are problematic due to a 

lack of bank institutions in the agricultural sector. Farm profitability, therefore, is related not 

only to production efficiency but also to the farmers’ marketing strategies. Charnes et al. 

(1985) were the first to apply data envelopment analysis (DEA) to measure the efficiency of 

marketing efforts. Yet, thus far, no studies have integrated the measurement of technical and 

marketing efficiency (Rust et al. 2004). Doing so, however, could provide insights on the 

efficient utilization of resources that are used in the production process and in marketing 

outputs, such as labor and fuels. Such insights would help farmers better target improvement 

in their overall efficiency. Moreover, insight into the factors that underlie the differences in 

technical and marketing inefficiency are required, as such information would allow 

governments and extension services to assist farmers in improving their performance. 

In West Africa, the rapid population growth, infrastructure development and 

urbanization require the intensification of agricultural systems in urban regions. The 

production of vegetables in urban zones has increased over the past several years in terms of 

the amount of area cultivated, the number of producers and the income generated. Urban 

vegetable producers are largely market oriented and generally grow a wide range of 

vegetables. Although there have been quite a large number of studies on technical and 

allocative efficiency in sub-Saharan Africa (rice, cereals and coffee are the most commonly 

analyzed products), there are only a few studies related to vegetable production and marketing 

in West Africa (Haji, 2006; Haji and Anderson, 2006). 

The purpose of this chapter is twofold. First, this chapter develops an integrated 

approach to assessing technical and marketing inefficiency. Marketing inefficiency, in this 

study, reflects the failure of farmers in achieving a high price for their outputs. Our study is 

the first to measure marketing inefficiency simultaneously with output- and input-oriented 

technical inefficiency using a Russell-type measure of inefficiency. As the resources used for 

production and marketing activities are not separable at the farm level (i.e., the problem of 
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production is not separable from the marketing decisions), a Russell-type measure is 

straightforward for measuring technical and marketing inefficiency. In this chapter, marketing 

activities refer to choices regarding product quality and distribution channels. The 

inefficiency measure reflects the maximum feasible equiproportionate reduction of inputs and 

expansion of outputs and output prices. The conceptual model of the integrated measurement 

of marketing and technical inefficiency is applied to a sample of urban vegetable producers in 

Benin. Second, this chapter analyzes the determinants of urban vegetable producers’ 

marketing and technical inefficiencies. In recent years, the bootstrap technique has become a 

valid approach in the semi-parametric DEA method to correct for small sample bias. 

Therefore, in this chapter, we apply the single truncated bootstrap procedure that enables 

statistical inference in the second-stage regression. 

The remainder of the chapter is organized as follows. Section 3.2 describes the 

vegetable marketing channels of urban vegetable producers in Benin. Section 3.3 describes 

the conceptual framework of our approach. Section 3.4 presents the data, the grouping method 

and the construction of the variables and identifies the factors that explain technical and 

marketing inefficiency. Section 3.5 presents and discusses the results, and section 3.6 

provides conclusions and policy implications. 

 

3.2. Background Description of Vegetable Marketing Channels in Benin 

Urban vegetable production is one of the high-value agriculture food activities in Benin. As 

the major portion of vegetables is sold in rural and urban markets through many marketing 

arrangements, there is no doubt that marketing plays a role in the economic development of 

the country. Pepper, tomato, amaranth, carrot, cabbage, cucumber, solanum plants (black 

morelle), lettuce, onion, corchorus, okra and bitterleaf are the major vegetable crops 

cultivated year round on mostly small, scattered pieces of land ranging from 0.005 ha to 12 

ha. 

Similar to the cereal market, the distribution of vegetables is regulated by a private 

market system. Vegetables are available in the market every month of the year with 

significant variations in the quantity supplied. While most transactions between producers and 

buyers occur at the farm gate, the vegetables are transferred from producers to the final 

consumers through conventional marketing channels, where fresh products are traded between 

actors who are involved in recurrent trade relationships. In contrast to the cereal market 

(Kuiper et al. 2003), vegetable retailers prefer to obtain their products either from the 
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wholesaler or directly at the farm gate, as production occurs closer to the consumer. 

Vegetable producers market much of their produce in bulk at harvest time because of the 

highly perishable nature of their products. In general, producers conduct all of their sales 

immediately after harvest. 

The long marketing channel of vegetables in urban areas involves two types of 

intermediaries, the wholesalers and the retailers. These two groups serve as the link between 

producers and consumers and other buyers of vegetables, though producers may also sell a 

portion of their products directly to consumers. As a result, farmers primarily use three 

channels to market their products, that is, the wholesalers, retailers and consumers. 

During the last 25 years, vegetable crop production and marketing in Benin has 

experienced two significant changes. First, the sector has become increasingly concentrated. 

Second, for the procurement of market vegetables, the buyers (wholesalers and retailers) 

increasingly rely on alternative marketing arrangements (AMAs), such as contracts, thus 

decreasing their dependency on the spot market (Akplogan et al. 2007). 

 

3.3. Theoretical Framework and Empirical Specification 

We assume that producers decide not only how many resources to devote to production, but 

also how many resources to devote to their marketing strategy. The marketing process in a 

farm involves choices regarding product quality and distribution channels, each of which 

affects output. As previously indicated, from the producers’ perspective, selling their products 

at the highest possible price constitutes efficient marketing (Abbott and Markeham, 1981). 

Hence, we assume that producers seek the optimal output prices in their marketing 

arrangements. The pricing decision is at the core of every business plan, as it directly impacts 

the critical components of a farm’s marketing strategy. Furthermore, the marketing process is 

likely to affect production-related decisions, such as the area allocated to each crop and 

whether to purchase modern inputs. 

Let     
  denote the output vector,     

  the input vector and      
  the output 

price vector. The reference production technology   is fully characterized by the input-output-

price requirement set: 

 

 (     )  {(     )                   }          (1) 
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The technology set is nonempty, compact and convex. We assume that the technology set 

allows for variable returns to scale and strong disposability of outputs and inputs. Output 

prices are assumed to be weakly disposable, as prices cannot be expanded freely due to 

certain market regulations (for instance, producers and buyers agreed on the maximum output 

price levels in the previous year or period). Relative to this technology, we can define a 

measure of inefficiency in which the output quantity and prices are expanded, while, 

simultaneously, inputs are contracted. A non-radial representation of the technology is as 

follows: 

 

 (     )  {(               )  
          

          
            }  (2) 

 

where   is a vector of intensity variables (producer weights), which identifies the producers 

who determine the production frontier. The vectors      
 ,      

  and       
  are the 

directional vectors. The directional distance vector (        ) assumes a direction in which 

efficiency is gauged. It expands outputs and prices in the directions    and   , respectively, 

and contracts inputs in the direction   . In this chapter, a measure of technical and marketing 

inefficiency is computed using Russell-type measures of inefficiency (Färe et al. 1994, p. 81 

& 115; Oude Lansink and Ondersteijn, 2006). The Russell measure of technical and 

marketing inefficiency is based on maximum required outputs, optimal obtained prices and 

minimum required inputs in the (        ) direction (see Fig. 3.1). The equality        

   in (2) implies weak disposability of output prices. Specifically, the Russell measure of the 

directional technology distance function can be defined as follows: 

 

 ⃗⃗ (  
                )     {(       ) (           

                )   }  

  (3) 

where     is the technical inefficiency (     ) for the     producer and     is the 

marketing inefficiency (     ). All other variables are as defined in (1) and (2). Following 

Färe and Grosskopf (2005, p. 8-10), our directional technology function measure satisfies the 

translation property and is homogeneous of degree – 1 in the directional vector (        ). 

In other words, there is no free lunch. The directional distance function measures the distance 

to the boundary of   in a preassigned direction. It is important to note that our directional 

distance function is a complete characterization of the technology  , that is, 
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Figure 3.1. Russell-type measure of technical and marketing inefficiency 

 

 ⃗⃗ (  
                )    (     )    (Chambers et al. 1998). As the technology   is 

convex,  ⃗⃗ (  
                ) is concave in (      ) (see Chambers et al. 1996 for proofs). 

A producer is fully efficient in the (        ) direction if  ⃗⃗ (  
                )   , that 

is, if       and      . This implies that a producer is fully efficient in the (        ) 

direction if he/she is simultaneously technical and marketing efficient.  

The Russell-type measure in the case of a directional distance function (DDF) model 

measuring inefficiency (technical and marketing) of DMU  , under the assumption of variable 

returns-to-scale, can be computed as the solution to the linear programming problem: 
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where      
   is a vector of variable inputs and      

   is a vector of fixed inputs with 

       . All other variables are as defined in (1), (2) and (3). The directional vectors 

(        ) used in this study are the observed variable input, output and output prices, 

respectively, implying that the directional vector is specific to DMU (Chambers et al. 1998; 

Färe and Grosskopf, 2005, p. 141). With this choice of directional vector, the inefficiency 

measures have a radial interpretation. In this specification, technical efficiency refers to the 

achievement of the maximum potential output and the minimum potential use of variable 

inputs, taking into consideration physical production relationships. Marketing efficiency 

represents the optimal prices a producer could obtain through his marketing arrangements, 

subject to a given production technology. The model consists of a convex combination of 

inputs, outputs and output prices of the most efficient farms. 

To determine why inefficiencies are present, we add a two-stage approach to our 

model to account for the nondiscretionary factors that influence the inefficiency scores. We 

add to our first-stage model a truncated bootstrap regression of the estimated inefficiencies on 

the environmental factors for purposes of statistical inference. A major problem in a standard 

two-stage approach relates to the dependence of the inefficiency scores, which violates the 

dependency assumption within the sample required by regression analysis. To resolve this 

problem, Simar and Wilson (2007) developed two complementary consistent procedures in 

the two-stage DEA approach: the double bootstrap and the single truncated bootstrap. The 

double bootstrap procedure facilitates statistical inference in the first and second stages. 

However, this technique is too complex and it is not yet developed for the DEA estimators of 

the directional distance function approach. Therefore, in this chapter, we adapt the single 

bootstrap technique, thus enabling statistical inference in the second-stage regression. The 

description of the algorithm of this chapter is similar to that by Singbo and Oude Lansink 

(2010). The truncated bootstrap regression is defined as: 

 

 ̂   
         

  ,  

 ̂   
         

  ,          (5) 

 

where  ̂   
 and  ̂   

 are, respectively, the technical inefficiency and marketing inefficiency 

for the  th
 producer obtained in (4);   and   are exogenous variables (   );   and   are 

parameters to be estimated; and   are the error terms. The error components in this second-

stage truncated bootstrap regression are probably not identically and independently 
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distributed, since the technical and marketing inefficiency scores are derived simultaneously 

from the first stage non-radial Russell-type model. Thus, it might be preferable to stack the 

two regressions and estimate via seemingly unrelated regression (SUR), allowing for the two 

error terms to be correlated. This would be feasible within a conventional error structure. 

However, the truncated-bootstrap framework accounting for possible correlation of the error 

terms is complex and extremely demanding from a computational perspective (Hajivassiliou, 

1993). As the truncated bootstrap regression consistently corrects for the correlation between 

the error terms and the explanatory variables in (5), we estimate each model separately to 

control for the within correlation in each model. 

 

3.4. Data Description and Variables 

Data for this chapter were obtained from a survey conducted among 186 producers in six 

cities and towns in Benin. The data were collected during the agricultural production year of 

2009/2010 using a two-stage stratified random sampling procedure. A structured 

questionnaire was used and was designed in such a way that the data for specific crops and 

activities that had been introduced could be collected. To avoid or minimize measurement 

errors and non-response bias, specific aspects of the questionnaire were addressed two or 

three times in each household. With respect to farm size, our sample consists of small, 

medium and large farms, with medium and large farms being the majority. Questionnaire 

design and data collection were conducted under the supervision of the first author. 

Data were obtained on more than 30 vegetable crops. Vegetables are aggregated into 

two groups, that is, the traditional vegetables and the non-traditional vegetables. This 

grouping strategy is based on the classification by Achigan-Dako et al. (2009), who asserted 

that traditional vegetables refer to all plant species that have been used by communities for 

several generations and are integrated as part of the cultural habits. Our grouping method 

identifies 23 non-traditional vegetables and 10 traditional vegetables, implying that vegetable 

farms are well diversified
1
. Our grouping method is also consistent with the categorization 

according to the managerial practices used by Haji and Andersson (2006). 

Two outputs (traditional vegetables and non-traditional vegetables), five inputs 

(operating costs, land, labor, capital and water), and two Laspeyeres weighted-average output 

price indices are distinguished. Output in each category consists of the average price of crops 

                                                 
1 The term non-traditional vegetables refers to species such as lettuce, cabbage, courgette, cucumber, beet, carrot, radish, turnip, french bean, 
melon, squash, watermelon, celery, chicory, chives, coriander, dill, fennel, garden mint, leek, overripe, parsley, rocket and thyme. Species 

such as tomato, solanum plants, okra, pepper, amaranth, corchorus, bitterleaf, African basil, cockscomb and onion are considered as 

traditional vegetables. 
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times the quantity produced. Variable input represents the operating costs that include 

fertilizers (mineral and organic), pesticides, seeds, and other miscellaneous expenses. Fixed 

inputs are land, labor, capital and water. Land is measured in hectares, while labor consists of 

family labor and hired labor and is measured in hours. Labor is assumed to be a fixed input, as 

a large share of total labor consists of family labor and permanent contract labor. Capital 

consists of machinery and equipment and is assessed in terms of the replacement cost. As 

water is one of the major constraints in vegetable production in urban areas, the quantity of 

water used for irrigation is included as an input. 

The model for computing marketing inefficiency requires output price indices that 

reflect the farmer’s success in marketing outputs. The farm-specific price index we 

constructed reflects price differences that result from differences in the quality of output and 

differences due to the choice of the marketing channel. For each output category, we 

constructed a Laspeyeres price index     for producer   and aggregate output   (=  for 

traditional vegetables, and   for non-traditional vegetables); furthermore,   reflects a crop in 

category        . The Laspeyeres weighted average price index of each category of 

producer   (   ) is computed as follows: 

 

    
∑       

 
   

∑  ̅    
 
   

            (6) 

 

where     is the output quantity in kg of crop   for producer   and  ̅  is the average output 

price of crop  . 

The second stage of our procedure involves explanatory variables that influence our 

inefficiency estimates. This property implies that changes in the exogenous variables do not 

affect the shape of the distribution of inefficiency scores but that they affect the level of 

inefficiency. Several variables have been evaluated in previous studies as possible 

determinants of technical and marketing inefficiencies. Among the variables used in this 

analysis are the following: (a) market competition, where distance to the central market is 

used as a proxy, (b) alternative marketing arrangements, (c) output specialization index, (d) 

extension services such as public and private extension visits, (e) soil fertility index, and (f) 

farm characteristics. The distance between the production site and the main market place is 

assumed to reflect the impact of more distant production areas on efficiency. To determine 

whether heterogeneity in selling outlets affects marketing inefficiency, the main target of the 

exogenous variables is the effect of alternative marketing arrangements on inefficiency. As a 
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proxy for this variable, we use the proportion of vegetable outputs sold to wholesalers, 

retailers and consumers. As the proportions add up to one, two variables are included in the 

regression, that is, the proportion sold to the wholesaler and to the consumer. Hence, the 

proportion sold to the retailer serves as the reference level. The interpretation of the 

parameters is made relative to the reference. 

The specialization variable used in our inefficiency effects model is specified as a 

normalized Hirschman index of the concentration of output shares for each vegetable crop. 

This index discriminates between producers who are relatively more specialized. It is a widely 

used measure of concentration and was used, for example, by Al-Marhubi (2000) to specify 

the concentration of output shares in his analysis of export diversification and growth. 

Following Al-Marhubi (2000, p. 561), the normalized Hirschmann index is defined as 

follows: 
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∑   
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            (7) 

 

where   is the producer index,    represents the producer output quantity of vegetable crop  , 

and 33 is the number of vegetables produced in the data set. The Hirschmann index is 

normalized to assume values ranging from 0 to 1. Note that a normalized Hirschmann index 

of 1 indicates perfect specialization. Likewise, a value closer to 0 signifies a more diversified 

vegetable crop production. 

Agricultural extension services are considered as a single mechanism by which 

information on new technologies, more effective management options, and better practices 

can be transmitted to farmers (Owens et al. 2003). In Benin, there are two types of extension 

services: the national public extension services and the private extension services provided by 

NGOs. In general, both services work separately, though in some cases, they collaborate to 

extend programs. Public and private extension services are found by many authors to have 

complementary effects on inefficiency (Dinar et al. 2007). We include the number of 

extension visits in the specification without any prior hypothesis. 

Summary statistics of the data used in this chapter are presented in Table 3.1. This 

table shows the inputs, outputs and the Laspeyeres weighted average price index for each 

output category, as well as the summary statistics for the exogenous variables that affect the 
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magnitude of technical and marketing inefficiencies. A simple comparison indicates 

considerable variations among the variables. 

 

Table 3.1. Descriptive Statistics 

Variable (n=186) Unit Mean 
St. 

Deviation 

Aggregate output for traditional vegetables 103 FCFA 2,546 6,659 

Aggregate output for nontraditional vegetables 103 FCFA 1,674 3,531 

Laspeyeres weigthed average price index for traditional vegetables Index 1.1086 0.4204 

Laspeyeres weigthed average price index for nontraditional vegetables Index 0.9145 0.3225 

Variable input: Operating costs 103 FCFA 435.583 694.455 

Fixed inputs:            Labor Man-hour 313.573 129.271 

                                 Capital 103 FCFA 509.470 829.234 

                                 Land area ha 0.539 1.347 

                                Water 103 Liter 4,137 1.06E+04 

Exogenous variables Unit Mean 
St. 

Deviation 

Gender of household head (1=male, 0=female) Dummy 0.892 0.311 

Years of management experience in vegetable production2 Year 15.102 9.459 

Number of years spent in formal education by the producer Years of schooling 7.344 5.335 

Concentration of output shares 
Hirschmann normalized 

index 
0.530 0.137 

Number of public extension service visits to the producer during the 

campaign 2009-2010 
Number 6.41 13.184 

Number of private extension service visits to the producer during the 

campaign 2009-2010 
Number 0.866 3.547 

Best soil fertility index (1=best, 0=others) Dummy  0.151 0.359 

Medium soil fertility index (1=medium, 0=others) Dummy  0.667 0.473 

Amount of credit received by the producer during the campaign 2009-

2010 
104 FCFA 24.559 68.399 

Distance of the farm to the central market km 15.738 17.561 

Fraction of vegetables output sold to Wholesaler Number 0.307 0.416 

Fraction of vegetables output sold to Retailer Number 0.687 0.413 

Fraction of vegetables output sold to Consumer Number 0.006 0.042 

Note: $1US = 494.030 FCFA in 2010 or 1 Eur = 655.957 FCFA. 

                                                 
2
 As the correlation of the explanatory variables showed that the Pearson partial correlation coefficients between the variable 

age of the household head and the number of years for management experience of the household head is high, we remove the 

variable age of the household head from both models. 
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3.5. Empirical Results and Discussion 

3.5.1. Inefficiency Results 

Table 3.2 provides the technical and marketing inefficiency scores. The directional vector we 

have chosen for xg , 
yg , and 

pg  is the observed values for vx , y , and p , respectively, as 

suggested by Chambers et al. (1998). A particular advantage of our global measures of 

inefficiency is that they do not impose a single orientation (e.g., output-oriented or input-

oriented). The outcome gives an estimate of the maximum feasible expansion in outputs and 

price indices and the contraction in variable inputs, implying a radial interpretation of our 

inefficiency measures. In general, the first-stage estimates indicate that vegetable producers 

appear to be less technically inefficient than they appear to be marketing inefficient. 

The results suggest that the directional distance function model yielded average 

inefficiency scores of 0.137 and 0.25 for technical and marketing inefficiency, respectively. 

Approximately 54% (101 out of 186) of the farmers are technically efficient, and 45% (84 out 

of 186) attain full marketing efficiency. Only 40% (77 out of 186) of the vegetable producers 

are located in the economically efficient frontier, meaning that they are simultaneously 

technically and marketing efficient
3
. 

The average technical inefficiency score of 0.137 means that, on average, vegetable 

producers can simultaneously reduce their variable input use by 14% and increase their output 

level by 14% if they were to become production efficient. One can briefly compare this set of 

results to those reported by Singbo and Oude Lansink (2010) in their study on lowland 

farming system inefficiency in Benin. The same results are noted by Haji (2006) when 

addressing the technical efficiency of vegetable farming systems in eastern Ethiopia. This 

result is also consistent with the findings of Iráizoz et al. (2003) in their study on horticultural 

production in Spain. The conclusion is that most of the producers who cultivate vegetables 

demonstrate high managerial skills on the production side, though to some extent, they over-

utilize fertilizers, pesticides and other variable inputs. 

The average marketing inefficiency score of 0.25 means that, on average, vegetable 

producers can increase their output price levels by 25% if they were to become marketing 

efficient at the optimal price level. In addition, the distribution of the marketing inefficiency 

scores suggests that approximately a fourth (48 out of 186) of the vegetable producers 

                                                 
3
 To check whether the most technically efficient producers are also the most efficient with respect to marketing, we use the 

Pearson rank correlation statistic. The result gives a coefficient value of 0.21 with a p-value of 0.035, indicating the 

correlation between technical inefficiency scores and marketing inefficiency scores. This result implies, to some extent, that 

technically efficient farms have a good marketing strategy. 
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relinquish at least half of the optimal price. First, the result suggests that, given the level of 

the resources they use, vegetable producers in the urban areas of Benin are facing marketing 

problems. Second, the result captures the major differences in the quality of vegetables 

available in the markets, meaning that the best-quality vegetables bring higher prices. The 

high-level marketing inefficiency suggests the need for producers to incorporate a profitable 

pricing strategy into their overall marketing strategy. Vegetable producers must be well 

prepared to develop profitable pricing strategies, that is, to develop a proactive pricing 

approach. The above findings confirm, to a large extent, the normative recommendations that 

have been proffered within the existing marketing literature (e.g., Monroe, 2003; Nagle and 

Holden, 1995). 

Our findings suggest that vegetable producers must pursue not only a high productive 

performance but also a profitable marketing strategy. Producers need to shift from pricetaking 

behavior and engage in profitable pricesetting behavior by paying more attention to the 

market conditions. This implies that producers have to search for other marketing outlets or 

conduct better negotiations, as indicated by Jaleta and Gardebroek (2007) in their study on the 

tomato market in Ethiopia where farmers succumb three times more often in reducing prices 

from their initial price quotes. Producer organizations must assume a major role by becoming 

proactive actors in assisting their members to improve their marketing strategies. As 

producers sell the vast majority of their products at the farm gate, this result possibly suggests 

that middlemen (wholesalers and retailers) create barriers to entry in the spot markets for 

producers to maintain low prices at the farm gate. Consequently, policy makers must exert 

parallel efforts to promote effective vegetable producer organizations that can influence 

market regulations. 

 

Table 3.2. Inefficiency scores (n=186). 

Parameters Ineff. Scores ( ̂) Minimum Maximum 

Technical inefficiency (TE) 
0.137 

(0.191) 
0.000 0.695 

Marketing inefficiency (ME) 
0.250 

(0.309) 
0.000 0.971 

Note. As the DEA estimators are generally known to be sensitive to extreme observations, we also implemented the method 

for detecting outliers developed by Tran et al. (2010). After dropping from the sample 26 observations that have a high level 

of the defined weights (efficient farms), the technical inefficiency scores still range from 0 to 0.695 and the marketing 

inefficiency scores from 0 to 0.971, showing that the datasets do not suffer from extreme observations that could drive the 

frontier far from the inefficient farms. 
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As urban vegetable production is input intensive (e.g., the use of high pesticides and 

mineral fertilizers), the quality of vegetables produced raises questions regarding asymmetric 

information for plant health in the market (Oude Lansink, 2011). On average, producers use 

33 kg/ha (std. 70) of pesticides. Whereas vegetable producers know the phytosanitary history 

of their products at the moment of delivery, the phytosanitary history of the product is not 

directly observable for the buyers in the market. The outcome of this asymmetry is that, while 

many policy makers seek policies related to the use of chemical inputs in Southern Africa, 

attention must be paid to the appropriate use of pesticides and mineral fertilizers (Nakano et 

al. 2011). 

 

3.5.2. Determinants of Inefficiency 

The second stage of the model uses the inefficiency scores and regresses them on non-

discretionary variables. The truncated bootstrap regression model results are presented in 

Table 3.3. The two models are strongly significant with a Wald    value of 745.46 and 40.88 

for the marketing inefficiency and technical inefficiency models, respectively. 

Technical inefficiency in urban vegetable production is strongly related to four 

variables: soil fertility (best and medium soil fertility types), amount of credit received by 

producers, private extension service visits, and years of formal education. The estimated 

coefficients of the soil fertility index are statistically significant and negatively related to the 

technical inefficiency measure. The best fertility type reduces technical inefficiency, implying 

that farmers producing vegetable crops in sandy soil use more operating inputs (especially 

fertilizers) and achieve lower output levels than farmers producing crops in loamy soil. 

The results in Table 3.3 also show that private extension services contribute positively 

to technical inefficiency. This finding could be attributed to private extension service agents 

who mainly focus on the worst performing producers and provide less attention to well-

performing farmers. In practical terms, this suggests that vegetable producers who are not 

performing well are those searching for solutions to specific management problems, such as 

disease controls or yields management, and that they need advice. The insignificant effect of 

public extension services is surprising but could be interpreted as an indirect effect of 

farmers’ behavior against public extension services
4
 or the selection bias in targeting farmers. 

In addition, this result may suggest that public extension services do not provide useful 

technology messages due to a shortage of qualified staff. In addition, the positive effect of the 

                                                 
4
 We also experimented with the joint effect of public and private extension services to search for the 

complementary effect on technical inefficiency, but the results are not statistically significant. 
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amount of credit the producer receives implies that access to credit increases technical 

inefficiency. This result suggests that the amount of credit received by vegetable producers is 

not sufficient to allow farmers to purchase a better quality of inputs and services or to close 

the technology gap. Furthermore, the result may indicate that producers who have access to 

credit overinvest in inputs and technology
5
. As the average amount of credit received in the 

agricultural year 2009-2010 by producers was 245 10
3
 FCFA and ranged from 0 to 5 10

6
 

FCFA, the latter implication is plausible, meaning that the loan must be adapted and be 

compatible with vegetable production constraints. This result is in line with a criticism of the 

role of microfinance in agricultural production, that is, credit does not really improve 

agricultural production (Cole, 2009). Specialization has an insignificant effect on technical 

inefficiency, although a positive effect was expected, a priori (see also Coelli and Fleming 

(2004) for Papua New Guinea). 

Marketing inefficiency is strongly related to six variables: marketing arrangements 

(fraction of output sold to wholesaler and fraction of output sold to consumer), specialization 

index, years of management experience, distance to market, gender of producer, and number 

of years spent in formal education. The negative and significant coefficients of the 

specialization index on marketing inefficiency indicate that, other things being given, greater 

crop diversification and lower vegetable crop specialization are associated with marketing 

inefficiency. The positive effect of selling to wholesalers implies that farms selling output to 

wholesalers, ceteris paribus, have a higher marketing inefficiency than those selling to 

retailers. As retailers are in direct contact with consumers (and they know the preferences of 

final consumers), this result implies that better quality products go to retailers, and the long-

term relationship results in higher prices to producers. This is because the retailers have long-

term contact with all categories of producers (small and large) unlike the wholesalers, who 

buy mainly from large producers. Compared to retailers, the negative effect of selling to 

consumers indicates that selling directly to consumers increases the marketing efficiency of 

the vegetable producers. This implies that vegetable producers should diversify their 

marketing outlets to increase their marketing efficiency. As indicated by many authors, 

producers who rely completely on wholesalers may have weak bargaining power (Haji and 

Andersson, 2006; Jaleta and Gardebroek, 2007). As producers are often concerned about 

maintaining a good relationship with their customers to secure their selling opportunities in 

the long term, the customers may take a lower price for granted (Lancioni, 2010). The 

                                                 
5
 There may also be an endogeneity issue where the worst managers receive more credit. 
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positive effect of the distance to the central market variable indicates that longer distances to 

the central market are likely to increase marketing inefficiency. The result implies that 

vegetable producers far from the central market have a weakened bargaining position due, in 

part, to the short-term life of the products. This result is in line with the findings of Jabbar and 

Akter (2006, 2008) in Vietnam. 

In addition, we found that years of management experience of household head and the 

number of years spent in formal education negatively affect marketing inefficiency, thus 

implying that more experienced producers have increased bargaining power and generate a 

higher price for their products. The negative impact of the amount of credit received suggests 

that microfinance in agriculture helps farmers improve their market participation. The positive 

effect of the gender of the producer implies that women producers have more power in output 

price negotiations.  

 

Table 3.3. Second-stage coefficients and confidence intervals at 5% (n=186, B=2,000) 

Technical inefficiency ( ̂  ) Coefficients Std. Err. Intervals, 5% 

Constant 0.5159
***

 0.0768 [0.4109;0.7142] 

Gender of the household head - 0.0634 0.0435 [-0.1015;0.0699] 

Years of management experience of the household head - 0.0024 0.0015 [-0.0039;0.0018] 

Number of years spent in formal education by the producer 0.0009
*
 0.0026 [-0.0094;0.0005] 

Concentration of output shares - 0.0842 0.0997 [-0.3348;0.0563] 

Number of public extension visits per year - 0.0006 0.0010 [-0.0019;0.0023] 

Number of private extension visits per year 0.0114
**

 0.0037 [0.0017;0.0160] 

Best soil fertility - 0.1518
***

 0.0469 [-0.3432;-0.1479] 

Medium soil fertility - 0.1571
***

 0.0346 [-0.2485;-0.1062] 

Amount of credit received 0.00022
***

 0.00019 [0.0001;0.0009] 

Distance of the farm to the central market 0.0022 0.0008 [-0.0004;0.0027] 

Statistics: Wald χ2 (10) = 40.88
***

    

Marketing inefficiency  ( ̂  ) Coefficients Std. Err. Intervals, 5% 

Constant 0.4454
***

 0.0389 [0.2543;0.4154] 

Gender of the household head 0.01005
**

 0.0237 [0.0004;0.1003] 

Years of management experience of the household head - 0.0073
***

 0.00085 [-0.0079;-0.0044] 

Number of years spent in formal education by the producer 0.0038
**

 0.0014 [0.00096;0.0065] 

Concentration of output shares - 0.3189
***

 0.0536 [-0.3097;-0.0935] 

Amount of credit received - 0.00024
*
 0.0001 [-0.0004;0.00002] 

Distance of the farm to the central market 0.0021
***

 0.0005 [0.0018;0.0037] 

Fraction of vegetables sold to the wholesaler 0.3533
***

 0.0224 [0.2856;0.3744] 

Fraction of vegetables sold to the consumer - 0.2080
**

 0.2151 [-1.4193;-0.685] 

Statistics: Wald χ2 (8) = 745.46
***

    

Legend. *** Significance at 1% level, ** Significance at 5% level, * Significance at 10% level.  
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As the parameter estimates for the inefficiency model presented in Table 3.3 only 

indicate the direction of the effects these variables have upon inefficiency levels, we estimate 

the contributions of these variables to the levels of inefficiency. The contributions are 

determined by the marginal effects, and we use the partial differentiation of the inefficiency 

predictors with respect to each of the inefficiency variables (Wilson et al. 2001; Zhu and 

Oude Lansink, 2010). Following Cameron and Trivedi (2009, p. 527), the marginal effect of a 

variable that is left-truncated at 0 is defined as follows: 
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where  ̂   is the technical inefficiency estimate,   is an explanatory variable,  ̂  
  are the 

consistent coefficients of the explanatory variables obtained from the truncated bootstrap 

regression,  ̂  
  is the standard deviation of the error term,  ( ) is the standard normal 

distribution, and  ( ) represents the standard normal cumulative distribution function. We 

also compute the marginal effects for the case of marketing inefficiency. In Table 3.4, we 

only report the contributions of the variables that are significant. 

 

Table 3.4. Marginal effects of inefficiency effects model variables 

Technical inefficiency ( ̂  ) Coefficients Std. Err.   | | 

Best soil fertility - 0.2334 0.0236 0.000 

Medium soil fertility - 0.16099 0.0314 0.000 

Number of private extension visits per year 0.0069 0.0032 0.030 

Amount of credit received 0.00076 0.00017 0.000 

Number of years spent in formal education by the producer - 0.0069 0.0023 0.003 

Marketing inefficiency  ( ̂  ) Coefficients Std. Err   | | 

Concentration of output shares - 0.2595 0.0504 0.000 

Fraction of vegetables sold to the wholesaler 0.3665 0.0215 0.000 

Fraction of vegetables sold to the consumer - 0.0723 0.1703 0.671 

Distance of the farm to the central market 0.0022 0.00046 0.000 

Years of management experience of the household head - 0.0052 0.00078 0.000 

Number of years spent in formal education by the producer 0.0027 0.0013 0.036 

Amount of credit received - 0.000195 0.0001 0.058 

Gender of household head 0.0875 0.0231 0.000 

Note. The marginal effect of each variable is evaluated at their mean value and discrete change of the dummy variable from 0 to 1. 

 



Chapter 3 

54 

 

First, the marginal effect of the soil fertility index on technical inefficiency scores is -

0.23 and -0.16 for best and medium soil fertility, respectively, suggesting that producers who 

farm poor land using organic fertilizer have an expected increase of approximately 23% in 

their technical inefficiency, most likely because they use more mineral and organic fertilizers 

to facilitate intensive cultivation. Second, for each additional private extension visit, the 

expected technical inefficiency of a producer decreases by 0.7%. As previously indicated, this 

suggests that private extension addresses practical problems associated with the use of inputs, 

indicating that extension visits help the worst performing producers focus on their 

management strategy. Our finding is consistent with the finding of Dinar et al. (2007). The 

policy implication of the results on extension services is that private extension improves the 

management skills of the worst performing producers. Third, farm debt is found to increase 

technical inefficiency, indicating that producers who have access to credit have an expected 

increase of 0.08% in technical inefficiency.  

The parameter associated with the concentration of output share suggests that a 

vegetable producer who increases his/her specialization index by one unit reduces his/her 

marketing inefficiency by 26%. The results show that specialization increases the marketing 

performance of vegetable farmers and provides additional information to the common view 

that diversification is a strategy used by smallholders to manage risk. This finding is 

consistent with the findings of other authors (Allen and Lueck, 1998) that producers who 

focus on a small number of crops may be more efficient than those who are more diversified 

because of the relatively high skill level associated with individual crops. The contribution of 

the variable fraction of vegetables sold to wholesalers is 0.37, implying that producers who 

sell their products to retailers are expected to decrease their marketing inefficiency by 37%. 

Because the vegetable market is characterized by a large number of retailers, the result from 

selling to retailers implies that the long-term relationship of producers with retailers helps 

producers to obtain higher prices. Compared to retailers, selling directly to consumers would 

reduce the marketing inefficiency scores of producers by 7%. The results of this chapter stress 

the evidence that marketing activities are also important for vegetable producers in their 

production management strategy. 

 

3.6. Conclusions 

This study estimates technical and marketing inefficiency of a sample of urban vegetable 

producers in Benin. The study proposes a Russell-type measure of inefficiency using a 
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directional distance function that accounts simultaneously for the expansion of outputs and 

prices and the reduction of variable inputs. The results indicate that producers are more 

inefficient in marketing (25%) than in production (14%). Additionally, results suggest that 

farmers vary widely in their technical and marketing inefficiency.  

The truncated bootstrap regression of the determinants of the two inefficiency terms 

shows that more specialized producers have lower marketing inefficiency, and the soil fertility 

index negatively affects technical inefficiency. Another important finding that emerges from 

our analysis is that producers using retailer marketing arrangements are more marketing 

efficient than those selling to wholesalers. The result also suggests that private extension 

service agents mainly focus on the worst-performing producers.  

The results further imply that agricultural policies should improve the capacity of 

producers to apply the available technology more efficiently. In addition, public and private 

extension services must focus on the managerial skills and sales management to help 

producers implement a profitable pricing strategy, rather than focusing solely on the 

production process. In conclusion, even though it is important to reduce the technology gap 

and improve the managerial skills of producers, agricultural policy must be accompanied by 

increasing market participation of farmers and market access to increase the economic impact 

of agriculture. 
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CHAPTER 4  

Assessing the impact of crop specialization on farms’ performance in 

vegetables farming in Benin: a non-neutral stochastic frontier approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

A non-neutral stochastic distance function model is used to examine whether output specialization has an impact 

on the economic performance of vegetable producers in Benin. Specialization is assumed to have an effect on the 

production frontier and on the distance to the production frontier (technical inefficiency). The technology is 

found to exhibit diseconomies of scope, indicating that vegetable producers have an incentive for specialization. 

At the same time, the degree of specialization has a positive effect on technical efficiency. From a policy 

perspective, the findings imply that current government policies to encourage diversification may lead to a lower 

performance. 

Keywords: Farm performance, Specialization, Impact, Input distance function, Non-neutral stochastic frontier, 

Benin. 

JEL classifications: C34, C52, Q12, Q16 
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4.1. Introduction 

Over the last four decades, agricultural productivity has been growing at fairly high rates in 

most regions of the world, reflecting the important role played by innovations in agriculture. 

However, Sub-Saharan African countries are still far behind (Chavas, 2011; Fuglie, 2008). 

The main cause of the low levels of agricultural productivity in Sub-Saharan Africa is the 

ineffective establishment of agricultural R&D institutions to sustain productivity growth. This 

suggests the need for a more selective strategy that can help to increase the competitiveness of 

agriculture and the viability of small-scale farms in Sub-Saharan Africa. It is worth noting that 

Sub-Saharan African countries are categorized as agriculture-based countries in which 

agriculture contributes to approximately one third of overall GDP (Byerlee et al. 2009). 

Additionally, to reduce poverty and secure food needs in Sub-Saharan Africa, there is a 

growing interest in green revolution through diversifying production toward higher-value 

outputs. Vegetables in West Africa are an important crop and its importance is increasing over 

time. As fresh vegetables are characterized by high elasticity of demand, there is 

overwhelming evidence that vegetable production can contribute importantly to economic 

growth and food security. In Benin’s vegetable sector, a large majority of farms produce both 

traditional and non-traditional vegetables, indicating that multi-output farms are the rule 

rather than the exception. By producing both categories of crops instead of only one, the farm 

may be able to reduce risk. For example, in some periods of the year, low revenues from 

traditional vegetables may be counterbalanced by relatively high revenues from non-

traditional vegetables.  

Another benefit associated with diversification is the complementary use of inputs on 

the farm (economies of scope). Diversification allows for more efficient use of inputs that can 

be used in different production processes (Teece, 1980). However, other studies have shown 

that specialization in crops allows operators to exploit scale economies. Moreover, specialized 

operators have better opportunities to fine-tune their skills (Oude Lansink and Stefanou, 

2007). To the best of our knowledge no studies in West Africa explore the direct impact of 

horizontal crop choice strategies on producers’ multi-output performance. 

Most studies on the impact of specialization on technical efficiency regress the 

technical efficiency scores obtained from a stochastic frontier model on a specialization index 

using one- or two-stage procedures (Coelli and Fleming, 2004; Rahman and Rahman, 2008). 

This technique of measuring the effect of specialization on technical efficiency assumes a 

neutral effect of specialization, i.e. the composition of outputs is independent of the 



Impact of Crop Specialization on Farms’ Performance 

59 

 

production process. The neutral specification ignores the adjustment of inputs with different 

output choices. In a multiple-output production technology the effects of specialization on 

technical efficiency may be related to input use, indicating that the effect of crop composition 

on technical efficiency is non-neutral. The non-neutral frontier model assumes that the 

method of application of inputs as well as the level of inputs (i.e. scale of operation) 

determine the potential output composition (Dinar et al. 2007; Huang and Liu, 1994; 

Karagiannis and Tzouvelekas, 2009). 

The objective of this chapter is twofold. The first is to evaluate the causal effect of 

specialization on technical efficiency. The second objective is to investigate the presence or 

absence of economies of scope in vegetables farming. The non-neutral stochastic frontier 

approach is adopted to estimate the effect of specialization on production technology and 

technical efficiency. This flexibility of the model allows direct computation of a measure of 

economies of scope by exploiting the duality theory between the cost function and the input 

distance function.  

The rest of this chapter is organized as follows. Section 4.2 discusses the conceptual 

framework and our modelling approach. The data and the empirical specification are 

described in Section 4.3. The empirical results are discussed in Section 4.4 and the chapter 

concludes in section 4.5. 

 

4.2. Conceptual Framework and Modeling Approach 

4.2.1. Distance Function 

To explore the impact of crop diversification vs. specialization on the production process (i.e. 

on the shape of the production frontier) and on technical efficiency, we require a multi-output, 

multi-input specification of the technology. Distance functions developed by Shephard (1953, 

1970) are shown to be a convenient way to represent a multiple-input multiple-output 

production technology (Coelli and Perelman, 1996; Färe and Primont, 1995; Morrison-Paul 

and Nehring, 2005). Such a specification may be characterized from the output or input 

perspective. Vegetable producers are likely to have more control over inputs rather than 

outputs, so input orientation is used here.  

The input requirement set  ( ) represents the set of all input vectors,     
 , which 

can produce the output vector     
 : 
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This relationship can be used to develop an estimable form of an input distance function. The 

input distance function   (   ) identifies the quantity of   necessary to produce  , 

conditional on  ( ). More formally, as developed by Färe and Primont (1995): 
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where   is a positive scalar “distance” by which the input vector can be deflated.  

  (   ) can be interpreted as a multi-output input-requirement function allowing for 

deviations (distance) from the frontier. It gives the maximum amount by which an input 

vector can be radially contracted while still being able to produce the same output. The input 

distance function is greater than or equal to one if the input vector is an element of the 

feasible set,  ( ). The distance function is equal to unity if   is located on the boundary of the 

input set.   (   ) is assumed to be non-decreasing, positively linearly homogenous and 

concave in inputs and non-increasing in outputs (Kumbhakar et al. 2008). Thus, all the 

deviations from the frontier are interpreted in terms of technical efficiency,   . The input-

contracting view of technical efficiency leads to the following definition: 

 

   (   )  [  (   )]            (3) 

 

This measure assumes values in the interval (   ] and the points for which   (   )    

define the boundary of the input requirement set and can be interpreted as the proportion of 

the observed inputs that could be used to produce the same amount of output (Kumbhakar and 

Lovell, 2003, p. 50). To empirically estimate this function, linear homogeneity with respect to 

inputs must be imposed. This can be accomplished by normalizing by one input, i.e. 

  (    )     (   ) for any    , so if   is set at    ⁄ , 

  (   )   ⁄    (   ⁄   )    (    ), where       ⁄ . 

Suppose that we have data on inputs and outputs for a sample of farms. Then, for 

producer   we get: 
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where    is a white-noise error term. From the above homogeneity property, we have: 
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    )                   (  

    )      (     )   (5) 

 

with   
  

  

  
 and    being the normalizing input. Substituting (4) in (5) we get an estimable 

form of the input distance function: 
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where   
        

  is treated as an one-sided error term. The equation can be estimated 

econometrically using maximum likelihood techniques, assuming that    is independently and 

identically distributed random variable,  (    
 ). However, as output crop composition 

influences both the production frontier and the efficiency with which producers utilize the 

resources, a modified non-neutral approach developed by Huang and Liu (1994) has to be 

employed. In reality, technical efficiency is dependent on the input choices and the method of 

application of inputs. Some vegetables may need more inputs and require more management 

skills than other vegetables . Following Alvarez et al. (2006) and Dinar et al. (2007),   
  is 

modeled as: 

 

  
   (    )    ,            (7) 

 

where   is a vector of explanatory variables which includes an output specialization index, 

interactions between this index and the elements of   , and farm-specific characteristics (e.g. 

demographic, socio-economic, etc.) (Dinar et al. 2007; Huang and Liu, 1994);   is a vector of 

parameters to be estimated and   is a random error referring to the unexplained or residual 

technical efficiency. The requirement that   
   (    )       is met by truncating    from 

below such that      (    ), and    is assumed to be an independently, but not identically 

distributed random variable with     (    
 )1. Substituting equation (7) into equation (6) 

yields: 

 

          (  
    )     [ (    )    ],       (8) 

                                                 
1
 In the spirit of Huang and Liu (1994),    is assumed to follow a normal distribution with zero mode, truncated 

from below at a variable truncation point [  (    )], which allows     , but enforces   
   . 
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The specification of the efficiency model allows for a non-neutral shift of observed input from 

the frontier. The assumptions imposed on   
  and    are consistent with   

     ( (    )   
 ) 

(Battese and Coelli, 1995), and that    and   
  are distributed independently (Kumbhakar and 

Lovell, 2003, p. 267). The first term on the right-hand side of equation (8) is the change in the 

frontier quantity of inputs; the  ( ) function gives the change in the distance to the frontier i.e. 

technical efficiency. The information contained in the first right-hand side term can be used to 

test whether economies of scope exist. The log likelihood function of the above model is a 

straightforward extension of the Huang and Liu (1994) and can be found in Kumbhakar and 

Lovell (2003, p. 270). 

A few comments are in place here. First, the model in (8) yields two effects of crop 

specialization on input uses. The first partial derivative of the input distance function defined 

in (8) with respect to one output is assumed to be negative, implying that an extra unit of 

output ceteris paribus reduces the amount by which the input vector has to be deflated to 

reach the production frontier (Coelli and Fleming, 2004). The dual relation between cost 

function and the input distance function can be exploited to derive a measure of economies of 

scope (or cost complementarities) without requiring estimates of the parameters of the cost 

function (Hajargasht et al. 2008). This approach has the advantages that the estimation of an 

input distance function does not require behavioral assumptions, such as cost minimization, 

nor does it require access to input price data, which are not available in our case (especially 

capital and land). 

Second, the non-neutral specification gives a marginal contribution of output 

specialization on technical efficiency and varies with the farm’s input utilization. It is 

important to indicate that the model is different from the one used by Rahman (2009) to 

explain the effect of diversification on technical efficiency. Rahman assumed a neutral 

specification where the marginal effect of crop diversification on technical efficiency is 

constant. Since the Huang and Liu (1994) paper, in which a neutral specification is 

demonstrated to suffer from misspecification, the non-neutral stochastic frontier model is 

preferred to a neutral model in many empirical applications (Alvarez et al. 2006; Dinar et al. 

2007; Karagiannis and Tzouvelekas, 2009). These authors argued that the conventional 

formulation and estimation of the stochastic frontier production function may not be 

appropriate in identifying the sources of technical inefficiency in production. Also, Dinar et 

al. (2007) have shown that the hypothesis of a neutral shift in the production frontier is 

strongly rejected. 
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For the empirical implementation, we assume that the input distance function is 

approximated by a Translog. The Translog is a flexible functional form which approximates 

any twice differentiable function without imposing a priori restrictions on the production 

technology. However, a complication arises with the ‘traditional’ Translog specification 

because some producers in the sample are perfectly specialized in one category of vegetables 

(i.e. traditional or non-traditional vegetables). For this reason a modified Translog function is 

used in which vegetable outputs are adjusted according to the Battese (1997) transformation 

(see Tsekouras et al. 2004). Moreover, variables related to production conditions are included 

in the production frontier model (see e.g. Dinar et al. 2007; Sherlund et al. 2002). The 

empirical model is given by: 
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where     are input quantities normalized by   ,    are outputs,    are physical production 

variables, and   indexes farms.    is a dummy variable for traditional vegetable production 

with      if         and      if        ; and       (        ). Similarly,    

is a dummy variable for non-traditional vegetable production with      if          and 

     if         ; and       (         ). Using (8), we obtain the following 

estimable form: 
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The modified non-neutral efficiency regression with interactions is given by , 

 

  
            ∑             

  
  ∑           

 
                  (10b) 

 

    refers to specialization index and    are farm characteristics;     are the same as defined 

in (9). 

From (10b), the marginal effect of output crop specialization on the expected 

production efficiency is a function of the normalized inputs, farm characteristics and 
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environmental variables. The marginal effect is given in Huang and Liu (1994), Kumbhakar 

and Lovell (2003, p. 270) and Wang (2002), and is: 
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where   is the expectation operator,   and   are the probability and cumulative density 

functions of a standard normal distribution, respectively. 

 

4.2.2. Economies of Scale and Scope 

From equation (10a), the input elasticity for output   ,        
            ⁄  

          ⁄       
, represents the percent change in    from a 1% change in   , holding 

all input ratios    (and thus input composition) constant. The scale elasticity can be calculated 

as the negative sum of the input-output elasticities; that is,         ∑           ⁄ 
  

∑           ⁄ 
  ∑      

     
 
 . The measure of scale economies is indicated by the 

short-fall of      from unity. 

In a multiproduct production technology, economies of scope exist when for outputs 

   and   , the average cost of joint production is less than the cost of producing each output 

separately (Cowing and Holtmann, 1983; Panzar and Willig, 1981; Teece, 1980). That is, 

economies of scope are measured by: 

 

     (    )   (    )   (     )                 (12) 

 

where  (     ) is the variable cost of producing both outputs simultaneously and  (    ) 

and  (    ) denote the variable costs of producing the two outputs separately. Economies of 
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scope exist if EOS > 0, in which case the costs of producing both outputs separately is higher 

than the cost of producing them jointly. 

More generally, a sufficient condition for the presence of economies of scope between 

outputs   and   is: 

 

   ( )

      
  , for                        (13) 

 

where  ( ) is the variable cost function. This expression implies that the cost function exhibits 

cost complementarities. 

The input distance function and the cost function are dual to one another, meaning that 

the information contained in the input distance function about the production technology is 

identical to the cost function (Färe and Primont, 1995, p. 47-48). In this study, economies of 

scope are measured using a primal input distance function. Consequently, we use the dual 

measure of economies of scope approach developed by Hajargasht et al. (2008). In this 

chapter, the derivative-based measure of economies of scope is obtained by exploiting the 

duality between the shadow cost function and the input distance function. Focusing on the 

sufficient condition in (13), they derived a general expression to calculate the economies of 

scope between outputs   and   using the derivatives of the input distance function as follows: 
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where subscripts denote partial differentiation. 

From this equation, one can see that information on the sign of the second cross partial 

derivatives of outputs,    
 (   ), is not sufficient to conclude if scope economies exist or not. 

As shown by Hajargasht et al. (2008), if the technology satisfies certain restrictions, such as 

input homotheticity or global constant returns to scale, simpler expressions are obtained. A 

value of (14) less than zero (i.e.,     ⁄   ) indicates the presence of economies of scope, 

meaning that the vegetable producer has an incentive to diversify. In contrast, a value greater 

than zero (i.e.,     ⁄   ) represents diseconomies of scope, implying that the producer has 

an incentive to specialize in the production of one output category. 
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4.3. Data and Specification of the Model 

Data used in this chapter are part of a broader survey on the structural characteristics of the 

vegetable sector in southern Benin. The survey is based on farm-level cross-section data for 

the agricultural year 2009/2010. A multistage stratified random sampling technique was 

employed to locate the departments, the cities/towns in each of the four departments, and the 

sample households. Data are available for a total of 239 households
2
. Vegetable producers are 

usually involved in producing two categories of vegetables, i.e. traditional vegetables and 

non-traditional vegetables. The data set contains 23 non-traditional (      ) vegetable crops 

and 10 traditional (     ) vegetable crops (see Achigan-Dako et al. 2009 for detail on 

vegetables grouping). Four inputs are distinguished: material cost (    ) that include 

fertilizer, pesticides, seeds, and other miscellaneous expenses; farm labor in hours (    ); 

capital (    ) measured in replacement cost and farmland in hectares (     ). Two soil 

fertility indicators (dummy) variables are used as additional variables in the specification of 

the distance function. 

The specialization variable is specified as a normalized Hirschman index of the 

concentration of output shares for each vegetable crop. This index discriminates between 

producers who are relatively more specialized. It is a widely used measure of concentration 

and was used, for example, by Al-Marhubi (2000) to specify the concentration of output 

shares in his analysis of export diversification and growth. Following Al-Marhubi (2000, p. 

561), the normalized Hirschmann index is defined as follows: 
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where   is the producer index,    represents the producer output quantity of vegetable crop  , 

and 33 is the number of vegetables produced in the data set. The Hirschmann index is 

normalized to assume values ranging from 0 to 1. Note that a normalized Hirschmann index 

of 1 indicates perfect specialization. Likewise, a value closer to 0 signifies a more diversified 

vegetable crop production. 

                                                 
2
 The sample producers were selected based on the information on the total number of vegetable producers 

including their farms size categories, which were obtained from a census survey in each city/town. Then a 

stratified random sampling procedure was applied using a formula from Whitley and Ball (2002) with a 5% error 

limit.  
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Based on the existing literature, farmers’ socio-economic characteristics are included 

in the model. These are: producers’ education (    ), and farming experience (   ). Most 

empirical studies found that farm experience and producer education have the strongest 

impact on the producer management practices. For example, Pope and Prescott (1980) found 

that less experienced farmers (or younger farmers) are more specialized as they may start 

small and specialized operations, and perhaps become more diversified as they expand their 

operations. Katchova (2005) found that more educated farmers have higher excess farm 

values. The ratios of the amount of credit received by producer over total revenue (     ), 

and the proportion of vegetables sold to wholesaler (     ) are included to represent 

socioeconomic characteristics of farms. Vegetable cultivation requires more purchased inputs 

such as fertilizers, pesticides, and irrigation water, increasing the need for liquidity in hand. 

Vegetable cultivation also demands more labor than field crops, such as cereals and a large 

proportion of labor in vegetable cultivation is hired labor (Ali and Abedullah, 2002). All these 

conditions increase the demand for liquidity in vegetable production. Consequently, more 

loans are required to finance vegetable production. Vegetables have a shorter shelf life than 

cereal crops, so strong relationships between producers and buyers are essential to ensure a 

timely delivery to the market. Hence, the proportion of vegetable output sold to wholesaler is 

included in the model as an explanatory variable. Table 4.1 presents summary statistics for all 

farms. Aggregate non-traditional vegetable outputs represent 55% of the total vegetable 

output share, meaning that producing non-traditional vegetables is one of the strategic 

decisions made by producers. 

In our model specification (10a), capital is set as the normalizing input    so that all 

other inputs are represented relative to capital. All input and output variables were mean-

corrected prior to estimation, so that the coefficients of the first-order terms can be directly 

interpreted as distance elasticities evaluated at the geometric mean of the data. That is, each 

output and input variable has been divided by its geometric mean. 

 

4.4. Empirical Results 

4.4.1. Economies of Scale and Scope 

The parameter estimates of the Translog specification of the input distance are presented in 

Table 4.2. The results show that all elasticities (first-order terms for input and output 

variables) are between zero and one and possess the expected signs at the geometric mean. 
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Table 4.1. Descriptive Statistics of the Variables
a
 (     ) 

Variable Variable Mean
b
 St. dev. Min. Max. 

Economic data      

Aggregate output for traditional vegetables
c
 (10

3
 F CFA)       2,269 3,767 5.136 2.40E+4 

Aggregate output for non-traditional vegetables
c
 (10

3
 F CFA)        1,574 3,386 24.355 3.42E+4 

Total output (10
3
 FCFA) - 3,818 6,585 141.70 4.67E+4 

Materials (10
3
 F CFA)      367.431 488.614 14.750 4,712 

Labor (Hours)      314.861 125.472 83.294 912.307 

Capital (10
3
 F CFA)      465.844 525.613 1.350 2,739 

Land area (ha)       0.4879 0.9824 0.0048 10.5 

Specialization index     0.5748 0.1677 0.2407 1 

Dummy for traditional vegetables        
0 = 02.09% 

1 = 97.91% 
  

Dummy for non-traditional vegetables         
0 = 18.83% 

1 = 81.17% 
  

Farm characteristics      

Years of management experience in vegetables production (Year)     14.0042 9.2757 1 40 

Number of years spent in formal education by the producer (Year)      6.9539 5.2574 0 21 

Ratio of credit received over revenue (Ratio)       0.0758 0.1372 0 0.8241 

Fraction of vegetables output sold to Wholesaler       0.39361 0.4470 0 1 

a Descriptive statistics calculated for non-zero output observations. 
b Frequencies are reported for dummy variables. 
c Aggregate output consists of the average price of crops times the quantity produced. 

$1US = 494.030 F CFA in 2010 or 1 Eur = 655.957 F CFA. 

 

Hence, the input distance function satisfies the property of monotonicity, i.e. the input 

distance function is non-decreasing in inputs and non-increasing in outputs. 

The two output dummy variable parameters are both statistically significant at the 5% 

critical level, showing that the hypothesis that the intercepts are equal for both types of 

vegetable producers (specialized in one output and not) is rejected. This result implies that a 

considerable bias would be introduced in the parameter estimates if the distance function was 

estimated without addressing explicitly this “zero” observation problem (Battese, 1997; 

Tsekouras et al. 2004). 

The returns to scale calculated as the negative of the sum of the first-order output 

coefficients is 0.23, indicating possible presence of increasing returns to scale economies at 

the sample mean. The null hypothesis of constant returns to scale (CRS) is tested using a 

Wald test on the sum of the two output coefficients. The resulting    statistic shows that the 

null hypothesis of CRS is rejected at the 1% critical level. 
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Table 4.2. MLE estimates of the Translog input distance function frontier 

Coefficients
a
 Estimates S.E.   | | Coefficients Estimates S.E.   | | 

   0.7321*** 0.1547 0.000             -0.0256 0.0247 0.300 

     0.1613** 0.0642 0.012           0.1196*** 0.0327 0.000 

     0.6954*** 0.0655 0.000           -0.1261*** 0.0313 0.000 

      0.1237* 0.0647 0.056            0.0108 0.0209 0.604 

         0.0423 0.0279 0.129            -0.0257 0.0351 0.465 

         -0.04756 0.0355 0.181            -0.0016 0.0427 0.969 

           0.0012 0.0186 0.947             0.0809** 0.0336 0.016 

        -0.3316*** 0.1274 0.009          0.0533 0.0496 0.283 

         -0.2095*** 0.0642 0.001           -0.1987*** 0.0606 0.001 

      -0.1379*** 0.0221 0.000           0.1804*** 0.0491 0.000 

       -0.0878*** 0.0250 0.000         0.0016 0.0591 0.978 

           -0.0337*** 0.0112 0.003         0.0119 0.0429 0.780 

             -0.0056 0.0191 0.770     
        

Model diagnostic        

Log likelihood -2.5714       

Wald    
  3506.26

***
       

    |            | 0.2257       

Number of obs. 239       
a RTS stands for the returns to scale; veg. for vegetables. 

*** Significance at 1% level, ** Significance at 5% level, * significance at 10% level. 
 

Additionally, the inverse of this sum is equal to 4.43, providing a measure of Ray 

scale economies, suggesting the presence of increasing returns to scale. Thus, the 

transformation process described in our model may be thought of as exhibiting increasing 

returns to scale. This is important for computing the economies of scope in the next paragraph 

as the calculation of economies of scope are based on an input distance function that exhibits 

variable returns to scale. This finding is consistent with results in many other empirical 

analyses of small-scale farms (e.g. Coelli and Fleming, 2004) and implies that vegetable 

farms are likely to benefit from scale increases. The individual output contributions 

underlying the scale elasticity show that both categories of output contributed significantly to 

input use. The result indicates that traditional vegetables require a greater input share than 

non-traditional vegetables. However, both outputs appear to have almost similar output share 

(45% for traditional vegetables and 55% for non-traditional vegetables) (Table 4.1). The 

Pearson correlation test indicates that the two outputs are not correlated. However, the theory 

of diversification pointed out that even though a Pearson correlation test shows that two 

outputs are not correlated, the production of one can be reduced if uncertainty over the second 

output rises (Just and Pope, 1978). 

To further investigate the implications of our estimates about output 

complementarities, we focus on the economies of scope equation in (14). Since the data are 
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mean-corrected prior to the estimation of the distance function, the presence of economies of 

scope is evaluated at the means of the sample data. The expression of    (   )  ⁄  evaluated 

at the sample means of the data is equal to 0.085. This value implies that vegetable producers 

have 8.5 per cent higher costs by producing traditional vegetables together with non-

traditional vegetables compared to producing the two categories of outputs separately. 

Therefore, vegetable producers have a strong incentive for specialization in the production of 

one of the two outputs defined in this study. This result is in line with the finding of Oude 

Lansink and Stefanou (2001) who found substantial diseconomies of scope in the Dutch 

arable farms when considering dynamic adjustments of areas of crops. The incentive for 

specialization in traditional vegetables is relatively higher than the incentive for specialization 

in non-traditional vegetables, since the scale effect of traditional vegetables is higher than the 

scale effect of non-traditional vegetables (Table 4.2). An explanation of the presence of 

diseconomies of scope is that the two groups of outputs are produced in the same period and 

have the same input requirements.  

 

4.4.2. Impact of specialization on technical efficiency 

Table 4.3 provides the results of the estimation of the non-neutral technical efficiency effect 

model. The estimated variances    and   
  are 0.086 and 0.047, respectively. The parameter   

is positive and significant at the 5% critical level, indicating that technical inefficiency is 

likely to have an important role in explaining variability in performance among vegetable 

producers in the sample. The value of   in Table 4.3 indicates that about 54.2% of the 

variability of the disturbances is due to technical inefficiency.  

Table 4.4 reports the results of the likelihood-ratio (LR) test of several hypotheses on 

the technology and technical efficiency. First, the null hypothesis that a distribution of    has 

a mode at zero, that is                                                        

                         is rejected at the 5% critical level. This implies that the technical 

efficiency specification in (10b) cannot be reduced to the half-normal model as proposed by 

Aigner et al. (1977). Second, we tested for the effect of output specialization on technical 

efficiency. The null hypothesis is,                                                     

                        (i.e. the specification is truncated normal stochastic frontier model 

with constant mode   ). This hypothesis is rejected at the 5% critical level implying that 

technical inefficiency follows a truncated normal distribution with variable mode depending 

on vegetable crop specialization. Third, in specifying the model we assumed that 
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specialization in output production has a non-neutral effect on technical efficiency. The null 

hypothesis is,                                                                       , is 

rejected at the 5% critical level indicating that the non-neutral effect of specialization on 

technical efficiency in (10b) cannot be reduced to a neutral specification that was used by e.g. 

Coelli and Fleming (2004) and Rahman (2009). This outcome implies that crop specialization 

does not have a constant impact on technical efficiency.  

 

Table 4.3. MLE estimates of the efficiency effect model (Non-neutral specification)
3
 

Variables
a
 Coefficients Estimates S.E.   | | 

Constant    0.1985 0.2211 0.369 

Specialization      -0.7449* 0.4493 0.097 

Specialization    ln(Materials/Capital)          -0.2422 0.2525 0.338 

Specialization    ln(Labor/Capital)          -0.0430 0.1622 0.791 

Specialization    ln(Land/Capital)           0.4258
**

 0.1689 0.012 

Specialization    Experience          0.0023 0.0077 0.770 

Specialization    Education           0.0244
*
 0.01269 0.054 

Specialization    Credit            0.00067 0.00086 0.438 

Specialization    Wholesaler            0.5883
**

 0.27489 0.032 

     

     
    

   0.08646 0.0282  

    
      0.5416 0.2536  

  
   0.0468 0.0364  

  
   0.0396 0.0112  

a Specialization stands for Specialization index; Experience for Years of management experience in vegetable production; 

Education for Number of year spent in formal education by the producer; Credit for ratio of amount of credit received over 

total revenue; Wholesaler for fraction of vegetable sold to wholesaler. 

*** Significance at 1% level, ** Significance at 5% level, * significance at 10% level. 

 

Table 4.4. Tests of hypotheses for parameters of the efficiency frontier model for vegetable 

producers in Benin 

No. Hypothesis LR-test 
Critical 

value at 0.05 

1. 

Ho. Aigner et al. (1977) formulation (i.e.                  

                                      

                       ) 

42.77   
       *

 

2. 

Ho. Stevenson. (1980) formulation (i.e.               

                                      

                       ) 

21.93   
        

3. 

Ho. Coelli and Fleming (2004) neutral specification (i.e.          

                                      

                       ) 

31.13   
        

* The critical value is obtained from Kodde and Palm (1986, Table 1) as the LR-test statistic follows a mixed chi-squared 

distribution. 

                                                 
3
 We have also experimented an alternative model by adding the four farm characteristics variables standing 

alone into the above model to check the individual effects of these variables and encounter omitted variable bias. 

But this model couldn’t converge because of high multicollinearity problems. 
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The result shows that specialization has a positive effect on vegetables farmers’ 

technical efficiency. These results are consistent with the results of Alvarez et al. (2006) and 

Dinar et al. (2007) who found that restrictions on the general non-neutral model are rejected. 

Column 2 of Table 4.5 shows the average technical efficiency and its quartile 

distribution. The result reveals a positive skewness in the distribution of technical efficiency. 

The average technical efficiency of the sample is 79.40%, implying that the same output can 

be produced with 79% of the observed inputs. In addition, Table 4.5 reports the quartile 

distribution of the marginal effects of crop specialization on the technical efficiency, 

(computed using (11)). The results suggest a positive effect of specialization on technical 

efficiency. As indicated by Wang (2002), the opposite marginal effects in these two quartiles 

show that specialization in vegetable outputs production affects technical efficiency non-

monotonically in the sample. Consequently, the results cannot tell more about when the 

impact of crop specialization turns from negative to positive. Since we cannot interpret 

directly the meaning of the marginal effects, we also compute the elasticity of technical 

efficiency with respect to specialization using the method described in Cameron and Trivedi 

(2009, p. 335). On average, the contribution of vegetable output specialization to technical 

efficiency is found to be quite low, but different from zero at the 5% level of significance. 

Specifically, the result shows that a 1% increase in specialization is associated with a 0.02% 

increase in technical efficiency. The result implies that, on average, specialization generates 

gains in technical efficiency. This suggests that the costs of diversifying outweigh the 

benefits, and specializing is the preferred strategy. The results are consistent with the findings 

in many empirical works, indicating that diversification often requires specialized equipment 

and that diversified farms accumulates fewer assets than specialized farms (Harwood et al. 

1999). In line with Katchova (2005), the results suggest that diversified vegetable farms had a 

lower excess value than specialized farms. The results are also in line with the finding of  

 

Table 4.5. Distribution of technical efficiency and the marginal effect and elasticity of technical 

efficiency with respect to specialization  

 Mean efficiency (TE) 
Marginal effect of 

Specialization (ME) 

Elasticity with respect to 

Specialization (EL)
a
 

First Quartile 0.3458 -0.1941 -0.1405 

Median 0.8514 0.0281 0.2035 

Third Quartile 0.9086 0.0580 0.4200 

Mean 0.7940 0.0169 0.0123 

a       
  ̅̅ ̅̅

   ̅̅ ̅̅ ̅
, where   ̅̅̅̅  refers to mean of technical efficiency;    ̅̅ ̅̅ ̅ mean of specialization index (Cameron and Trivedi, 2009, p. 335) 
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Llewelyn and Williams (1996) for irrigated farms in Indonesia, that greater diversification is 

associated with lower technical efficiency. Since vegetables are cash crops, the result stresses 

that diversification increases costs by the presence of diseconomies of scope and by 

decreasing technical efficiency. The reason for our finding is that the two categories of 

vegetables are grown in the same period and compete for the same inputs (labor, pesticides, 

fertilizers and water) and require similar managerial skills. Like in Rahman’s (2009) study of 

smallholders in Bangladesh, the worsening evidence of diversification economies observed 

between traditional and non-traditional vegetables is largely due to the practice of producing 

both categories of crops. From the survey results, it turns out that vegetable production is 

generally input intensive regardless of the type of vegetable in consideration. However, this 

result is in contrast with Coelli and Fleming (2004) who found that greater specialization 

leads to lower technical efficiency.  

 

4.5. Conclusion and Implications 

This chapter provides an empirical evaluation of the impact of crop specialization on 

vegetable producers’ economic performance in Benin. The challenge in this chapter was to 

assess whether changes in farm orientation through diversification or specialization can be 

attributed to the search for greater performance. We based our estimation on a non-neutral 

stochastic frontier model to test and consider the adjustment of input utilization with output 

choices and estimate the effect of specialization on production technology and producer 

management performance. The study employs a parametric method in estimating an input 

distance function using a modified Translog specification and a truncated efficiency 

regression, representing efficiency in production. The results show a prevalence of increasing 

returns to scale. Compared to non-traditional vegetables, traditional vegetables have greater 

returns to scale. The results also provide evidence for diseconomies of scope, indicating that 

vegetable producers have a strong incentive for specialization in either traditional or non-

traditional vegetables. The production of traditional and non-traditional vegetables jointly at 

the farm-level induces 8.5 per cent higher costs compared to producing the two output 

categories separately. The contribution of vegetable output specialization to technical 

efficiency is found to be quite low, but significant. Specifically, a 1% increase in crop 

specialization is associated with a 0.02% increase in technical efficiency. 

Our results suggest that policy makers aiming at food security and agricultural growth 

may enhance specialization. The policy implication of this chapter is that the current 
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government agricultural policy to encourage diversification may lead to larger costs and 

greater technical inefficiency of production.  
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Efficiency analysis of pesticide use in vegetable production in Benin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

This chapter analyzes the efficiency of pesticide use in vegetable production in Benin. A bootstrap 

DEA technique is applied to estimate the mean and 95% confidence interval of technical efficiency and 

the value of the marginal product of pesticides. Technical efficiency measures show that the initial 

DEA estimators are biased upward. The bias-corrected efficiency estimator indicates that vegetable 

producers are less efficient in terms of pesticide use than in the use of other inputs. Also, results 

suggest that along with pesticides, land and fertilizer are overused. The findings imply that efforts 

should be made to enhance the market of approved pesticides and that the training of vegetable 

producers could be appropriate in order to limit the overuse of pesticides. Special attention should be 

paid to a coordinate policy between different actors that aims at reducing structural dependence on 

pesticide use. 

Keywords: vegetables, pesticides, efficiency, shadow prices, smooth bootstrap, Benin. 

JEL Classifications: C6, D49, Q0, Q1 
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5.1. Introduction 

In Sub-Saharan Africa, both domestic and international demand for vegetables is 

showing upward trends. In recent years increasing attention has been directed towards 

vegetable production and consumption. Vegetables are essential for a healthy and 

balanced diet and add variety, interest and flavor to the menu. Vegetable crops are, 

however, susceptible to pests and diseases. High-value vegetables are sensitive to pest 

pressure and subject to intensive application of pesticides. To prevent and cure from 

pests and diseases, farmers use a large amount of pesticides on vegetables such as 

insecticides, fungicides and herbicides. In contrast to traditional food crops like 

cereals, cassava and rice, several authors found that farmers in Sub-Saharan Africa 

use a large amount of pesticides on vegetables and the use is exacerbated by 

insecticide resistance (Dinham, 2003; Martin et al. 2006). 

Pesticide use has been standard practice in vegetable production for several 

decades and an increase in intensity is due to higher pest pressure reported by 

producers in recent years. For example, Williamson et al. (2008) found that vegetable 

producers in Benin used larger volumes of pesticides than vegetable farmers in Ghana 

and Ethiopia and reported higher frequency of application (every 3-5 days insecticides 

spraying) than cotton farmers. Previous research also showed that small scale 

vegetables farmers did not receive adequate agricultural extension services and were 

lacking knowledge in pesticide use (Ngowi et al. 2007). There is evidence that the 

pesticide use in the vegetable production in urban and peri-urban areas is much more 

intensive than in the rural areas. 

The problems associated with pesticide use in developing countries have been 

widely documented (see Dinham, 2003 for an overview). Inappropriate use of 

pesticides has consequences not only for the effectiveness of the intended pest control 

but also for operator and consumer health, farm livestock, soil organisms, wildlife and 

vegetation and may lead to contamination of soil, water and air (Williamson et al. 

2008). Consequently, much of the interest in pesticide use in vegetable production in 

West Africa has focused on alternative methods to control pest attacks. In fact, 

various policies aiming at reducing the use and dependence of vegetables on synthetic 

pesticides are encouraged and tested in West Africa, including classical biological 

control, resistant varieties, crop rotation, recycling of organic matter and biopesticide 

use (Martin et al. 2006). On the other hand, availability and affordability of pesticides 
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was a major concern for many vegetable producers. The market of pesticides in Benin 

is composed of formal and informal markets where both approved and banned 

pesticides are sold. Williamson et al. (2008) indicated that the relative costs of 

pesticides have risen sharply in recent years, implying that insight into the value of the 

marginal product of pesticides in vegetable production could help to determine the 

optimal level of pesticide use. 

The empirical economics literature on pesticide use in vegetable production in 

Benin, however, has paid little attention to the value of the marginal product of 

pesticides. Most farm-level economic analysis of pesticide use has focused on cost-

benefit analysis and the willingness to pay for biopesticides or organically grown 

vegetables (Adégbola and Singbo, 2001; Coulibaly et al. 2006, 2011; Martin et al. 

2006; Singbo et al. 2008). A major limitation of these studies is that they did not 

investigate the technical interdependence between pesticides and other productive 

inputs. Biological evidence supports the importance of allowing for interactions 

among inputs, practices and outputs when non-experimental data are used. 

Furthermore, these previous studies treated pesticides as an output expanding input, 

while agronomic evidence suggest that pesticides reduce crop damage (Lichtenberg 

and Zilberman, 1986). Thus, ignoring the interaction between productive and damage 

abatement inputs may bias the estimation of technical efficiency and value of 

marginal product of pesticides. 

The literature uses two alternative frameworks for incorporating pesticides as 

a damage control input into a production function: the abatement function 

(Lichtenberg and Zilberman, 1986) and the output damage function (Fox and 

Weersink, 1995). In the former, it is assumed that the abatement function is 

independent of the initial infestation, implying that the abatement function approach is 

an appropriate modeling method when pesticides are applied in a prophylactic way to 

prevent infestation or diseases. The other specification, i.e. the output damage 

function assumes that the effect of pesticides on the effective output is the result of a 

process involving two stages: (a) the effect of the damage control input on the damage 

agent (abatement), and (b) the effect of the remaining damage agent on the effective 

output. In the first stage, pest incidence depends on the untreated pest population and 

on the proportion of it controlled by the abatement activities. In the second stage, 

effective output is indirectly affected by abatement through the loss caused by the 

remaining damage agent incidence. The output damage function approach is more 
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appropriate when pesticides are applied once pest incidence is realized (Karagiannis 

and Tzouvelekas, 2011). 

Parametric and non-parametric approaches have been used to study the value 

of the marginal product of pesticides. A limitation of most studies using the 

parametric approach is the assumption of asymmetry between damage abatement and 

productive inputs, i.e. homothetic separability of productive inputs and damage 

abatement inputs. This implies that the asymmetric specification fails to recognize the 

interactions and interdependencies across inputs, field practices, pest population and 

pest treatments. Oude Lansink and Carpentier (2001) adopted a parametric approach 

based on Carpentier and Weaver (1997), that treating damage abatement inputs and 

productive inputs symmetrically. More recently, Oude Lansink and Silva (2004) 

provided an empirical application of a non-parametric data envelopment analysis 

(DEA) model in an effort to investigate the technical interdependence between 

productive inputs and pesticides
1
. Like all non-parametric approaches, their approach 

is attractive because no functional form needs to be assumed to represent the 

production technology. Furthermore, the non-parametric DEA approach allows for 

simultaneously measuring the technical efficiency of inputs. Moreover, bootstrap 

methods have been proposed to assess the uncertainty due to sample variation by 

estimating bias, confidence intervals and testing hypotheses. 

The objective of the chapter is threefold. First, we use a multiple-output, 

multiple-input technology framework to estimate technical efficiency and the value of 

the marginal product of pesticides and other inputs. The effect of pesticides on the 

value of the marginal product of other inputs is investigated in order to analyze the 

technical interdependence between damage abatement and productive inputs. Second, 

we propose a bootstrap method for obtaining confidence intervals of technical 

efficiency and the value of the marginal product. The application focuses on a sample 

of vegetable producers in Benin. 

The remainder of this chapter is organized as follows. Section 5.2 presents 

DEA models and the bootstrap technique to correct for bias and determine confidence 

intervals of technical efficiency and the value of the marginal product. The data 

                                                 
1
 Technical interdependence relates to the impact of an input on the value of the marginal product of another input. 

If the value of the marginal product of an input increases (decreases) as the other input increases, then the two 

inputs are complements (substitutes) (Beattie and Taylor, 1993; Oude Lansink and Silva, 2004). 
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employed in the chapter is described in section 5.3, followed by the presentation of 

the empirical results in section 5.4. Concluding remarks follow in the last section. 

 

5.2. Input Distance Function with Damage Abatement Inputs 

5.2.1. DEA Models Incorporating Damage Abatement Inputs 

Consider a sample of   farms which produce   marketed outputs from   purchased 

productive inputs and   purchased damage abatement inputs. Let     
 

,     
 , 

and     
  denote vectors of non-negative outputs, non-negative productive inputs 

and non-negative damage abatement inputs, respectively. The production technology 

for a decision making unit (DMU) is fully represented by the input requirement set: 

 

 ( )  {(   )    
    

 |(   )               }       (1) 

 

which represents the set of all feasible combinations of vectors of productive and 

damage abatement inputs given a vector of output  . A non-parametric representation 

of  ( ) is: 

 

 ( )  {(   )         
       

       
        }     (2) 

 

where   is the (   ) matrix of observed outputs,    is the vector of observed 

outputs of farm  ,   is the (   ) matrix of observed productive inputs,    is the 

vector of productive inputs used by farm  ,   is the (   ) matrix of observed 

damage abatement inputs,    is the vector of damage abatement inputs (pesticides) 

used by farm  ;   is a (   ) vector of intensity variables (farm weights) and   is the 

(   ) unitary vector. We assume that (1) satisfies the standard regularity 

conditions: possibility of inaction, no free lunch, strong input and output disposability, 

closedness of  ( ) and variable returns to scale (VRS) (Färe, 1988, p. 35; Färe and 

Grosskopf, 1990; Fukuyama and Weber, 2002). The VRS condition (     ) ensures 

that increased amounts of inputs do not necessarily lead to a proportional increase of 

the amount of outputs. Technical efficiency is defined as the ability of a farm to use 

the minimum feasible amounts of productive and damage abatement inputs to produce 

a given level of output. Hence technical efficiency is measured relative to production 
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possibilities characterized by  ( ). The Shephard input distance function is defined 

as: 

 

  (     )     {    (  ⁄    ⁄ )   ( )}               (3) 

 

The input distance function can reflect joint production of multiple outputs and the 

duality between the input distance function and the cost function allows to retrieve the 

input shadow prices. In order to compute the technical efficiency of an individual 

input, sub-vector technical efficiency measures are introduced to generate technical 

efficiency measures of a subset of inputs rather than for the entire vector of inputs, 

holding all other inputs and outputs constant. Four input-oriented models are 

constructed for measuring technical efficiency, i.e. they contract inputs in four 

different directions.  

The first model measures technical efficiency by radially contracting all 

productive and damage abatement inputs equiproportionately while keeping the 

outputs constant. This standard radial measure is incapable of identifying the technical 

efficiency of individual input use, since such a measure treats the contribution of 

productive and abatement inputs to technical efficiency equally. The second model 

measures technical efficiency by radially contracting only productive inputs 

equiproportionately, given the damage abatement inputs and outputs. The third model 

measures technical efficiency by radially contracting all damage abatement inputs 

with an equal proportion, given the productive inputs and the output level. The fourth 

model is a variation of the Russell technical efficiency measure that allows for non-

proportional contractions in each input. This model allows for non-proportional 

reductions in each subset of inputs, allowing for different technical efficiency scores 

of productive inputs and damage abatement inputs (Ball et al. 1994; Oude Lansink 

and Silva, 2004). This is equivalent to the non-radial notion of input technical 

efficiency, as discussed by Kopp (1981). The general form of the four models is given 

by: 
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s.t. 

      

         

                    (4) 

     

     

 

where    and    are the input sub-vector space technical efficiency scores for farm  . 

The specification of each of the four models is summarized in Table 5.1.  

A set of dual variables for each observation is obtained from each model. 

These dual variables are used to generate the value of the marginal product (shadow 

price) of each input. The value of the marginal product of each input for output   is 

given by (Ball et al. 1994; Oude Lansink and Silva, 2004): 

 

     
  

    

    
  

        ⁄
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,        ;        ;        ;        , 

 

     
  

    

    
  

        ⁄

        ⁄
,        ;        ;        ;        ,  (5) 

 

where      
  is the marginal product of the productive input   for output   and for 

observation   estimated from model  ,      
  is the marginal product of the damage  

 

Table 5.1. Specification of the models 

Models 
Technical efficiency 

choice variables 
Objective function 

Model 1: 

Radial technical efficiency in the full input 

space 
               

     
    

Model 2: 

Radial technical efficiency in the productive 

input subspace 
     ,         

   
     

    

Model 3: 

Radial technical efficiency in the damage 

abatement input subspace 

     ,         
   
     

    

Model 4: 

Non-radial technical efficiency using Russell-

type measure 
        

   
         

(       )  ⁄  
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abatement input   for output   and for observation   estimated from model   and     

is the technical efficiency score for the     observation in model  (      ). The 

quantities         ⁄ ,         ⁄  and         ⁄  are the dual variables in model 

 (      ) associated with the constraints on the productive input  , the damage 

abatement input   and the output  . The value of the marginal product of each input is 

obtained as: 

 

     
         

 , 

 

     
         

 ,           (6) 

 

where    is the observed price of output  . Each model provides an estimate of the 

shadow prices of each input at a particular point on the frontier. Since our model 

includes multiple outputs, the values of the marginal product are calculated for each 

output separately. If farmers maximize profits, then the shadow prices of a given input 

is the same across the two outputs (Varian, 2002, p. 566). However, in practice the 

shadow prices computed from the two outputs will not coincide. To circumvent this 

problem, revenue shares of the   outputs are used to compute a weighted (using 

revenue shares as weight) average of the shadow prices for each input of observation   

in each model as follows: 

 

    
  ∑ (         

 ) 
   , 

 

    
  ∑ (         

 ) 
   ,          (7) 

 

where     is the revenue share of output   for observation  . 

The extent to which damage abatement inputs are underused or overused is 

inferred from a comparison of the shadow prices and the market prices. Shadow 

prices are greater (lower) than market prices for inputs that are underused (overused). 

Technical interdependence between damage abatement inputs and productive 

inputs is investigated using the four previous models. First, a set of shadow prices of 

the productive inputs is generated for each model. Second, one damage abatement 

input constraint is increased by one unit and new shadow prices of the productive 
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inputs are generated for each model. This constraint perturbation is done for each of   

damage abatement inputs. Comparison of the shadow prices of the productive inputs 

from the perturbed model and the original set of shadow prices provides information 

on the local technical interdependence between these inputs and a particular damage 

abatement input (Oude Lansink and Silva, 2004). If increasing a damage abatement 

input increases (reduces) the shadow price of another input, then the two inputs are 

local complements (substitutes). Furthermore, increasing the pesticides constraint is 

expected to decrease the shadow price of pesticides. 

 

5.2.2. Smooth Bootstrap Procedure 

Simar and Wilson (1998 and 2000) methodologically studied the statistical properties 

of nonparametric envelopment estimators and developed a single-smooth bootstrap 

algorithm which can be used to examine the statistical properties of technical 

efficiency scores generated through DEA. As statistical properties of the frontier are 

obtained from finite samples, the corresponding measures of technical efficiency are 

sensitive to the sampling variations of the obtained frontier. Hence, the DEA 

estimators could be biased upwards (Simar and Wilson, 1998 and 2008). 

The full-sample homogenous smooth bootstrap is a consistent way to analyze 

the sensitivity of technical efficiency scores relative to the sampling variations of the 

estimated frontier. As stated by Simar and Wilson (1998 and 2000), we assume a 

data-generating process where farms randomly deviate from the underlying true 

frontier in a radial direction. We apply the full-sample homogenous smooth bootstrap 

to overcome the possible statistical noise that may affect the measurement of technical 

efficiencies and shadow price of pesticides. Therefore, the model accounts for the 

effects of statistical noise due to measurement error and other causes. In this chapter, 

we subsequently estimate the bias-corrected technical efficiency scores along with the 

shadow prices from the bootstrap sample. 95% confidence intervals are also generated 

for technical efficiency scores and shadow prices. 

 

5.3. Data Description 

The data used in this chapter were obtained through a survey among specialized 

vegetable producer in southern Benin in the agricultural production years 2009-2010. 
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The sample was selected based on the proportion of traditional and non-traditional 

vegetable farms in each administrative region and the sample is representative of the 

urban and peri-urban vegetable producers in Benin. The primary focus of this survey 

was to understand the production and cost structure in vegetable production. Each 

individual farmer in this survey was requested to report details on the outputs 

produced and inputs used. The vast majority of producers in the area are on-farm 

decision-makers vis-à-vis pesticide applications. A sample of 136 vegetable producers 

is obtained which includes a range of farm sizes. All producers face the same 

productive process, i.e. they produce both traditional and non-traditional vegetables. 

Table 5.2 reports the descriptive statistics of key variables. 

The variable list contains two aggregate outputs (traditional vegetables and 

non-traditional vegetables), six productive inputs (N-fertilizer, other variable inputs, 

land, labor, capital and water) and two damage abatement inputs (insecticides and  

 

Table 5.2. Descriptive Statistics 

Variable Unit Mean 
St. 

Deviation 

Quantities    

Aggregate output for traditional vegetables 106 FCFA 2.521 6.519 

Aggregate output for non-traditional vegetables 106 FCFA 1.203 2.016 

N-Fertilizer 105 FCFA 2.342 4.209 

Other Inputs 105 FCFA 1.049 1.702 

Land area ha 0.638 1.509 

Labor 102 Man-hour 3.195 1.156 

Capital 105 FCFA 6.034 9.423 

Water 106 Liter 5.124 12.287 

Insecticides 104 FCFA 3.328 4.795 

Other Pesticides 104 FCFA 4.134 10.372 

    

Prices    

Laspeyeres weigthed average price index for traditional vegetables Index 1.004 0.448 

Laspeyeres weigthed average price index for non-traditional 

vegetables 
Index 0.873 0.590 

Note: $1US = 494.030 FCFA in 2010 or 1 Eur = 655.957 FCFA. 



Efficiency of Pesticide Use 

85 

 

other pesticides). Traditional vegetables consist of tomato, solanum plants, okra, 

pepper, amaranth, corchorus, bitterleaf, African basil, cockscomb and onion. Non-

traditional vegetables consist of lettuce, cabbage, courgette, cucumber, beet, carrot, 

radish, turnip, french bean, melon, squash, watermelon, celery, chicory, chives, 

coriander, dill, fennel, garden mint, leek, overripe, parsley, rocket and thyme. The 

quantity of output is measured as the sum of the revenues from traditional and non-

traditional crops, respectively. Other variable input consists of seeds and other 

miscellaneous expenses. Land represents the total area under vegetable crops and is 

measured in hectares. Labor consists of family labor and hired labor and is measured 

in man-hours. Capital consists of machinery and equipment and is measured in 

replacement cost. In the study area, insecticides dominated chemical pest 

management, reflecting not only the serious problems of insect attack in vegetable 

production, but also the availability and relatively low cost of many older generation 

insecticides. Other pesticides consist of fungicides, herbicides, nematicides, 

acaricides, fumigant, rodenticides and biopesticides. As found by Williamson et al. 

(2008), the most encountered active ingredients were the insecticides endosulfan, 

dimethoate, cypermethrin, chlorpyrifos, fenitrothion, malathion, profenofos, lambda-

cyhalothrin and delthamethrin. We limit our study to two categories of pesticides to 

avoid zero values in the damage abatement inputs. The data set exhibits considerable 

variation, especially with respect to the quantity of damage abatement inputs where 

standard deviations exceed the means and the difference between the minimum and 

maximum is relatively large. 

 

5.4. Results and Discussion 

5.4.1. Technical Efficiency Analysis 

The results of each model for the smoothed bootstrap with 2,000 bootstrap 

replications for each observation are reported in Table 5.3. The results consist of the 

average initial technical efficiency scores, the average bias-corrected technical 

efficiency estimates and the lower and upper bounds of the 95% confidence intervals 

of the average technical efficiency. The technical efficiency scores generated from the 

four models suggest a significant amount of technical inefficiency. Since the initial 

DEA estimates in all models are outside the 95% confidence intervals (meaning that 

the bias estimates are large relative to the standard error estimates), the bias-corrected 
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technical efficiency estimates are preferred over the initial estimates (Simar and 

Wilson, 2008). In each model, the initial technical efficiency scores for the 136 units 

yield an average uncorrected technical efficiency score of 0.635 (Model 3) to 0.879 

(Model 4), while the bootstrap model generates an average bias-corrected score of 

0.314 (Model 3) to 0.787 (Model 4). The 95% confidence intervals are of moderate 

length. The average bias-corrected technical efficiency score of model 3 suggests a 

relatively higher amount of technical inefficiency than models 1 and 2. Since model 3 

measures technical efficiency in the use of pesticides, this indicates that vegetable 

farms in the sample are less efficient in the use of pesticides. This implies that by 

using pesticides efficiently, the vegetable producers would be able to reduce their 

pesticide use by almost 69%, on average, keeping output and productive inputs 

constant. Also, the bias-corrected technical efficiency score of model 4 indicates, on 

average, a higher amount of technical inefficiency in the use of pesticides than in the 

use of productive inputs, given the output level. Since the estimated technical 

efficiency score of pesticides in models 3 and 4 is lower than the technical efficiency 

in model 1, the results suggest that the application of pesticides is more difficult to 

manage for vegetable producers than the use of productive inputs such as fertilizers, 

labor, land, capital and water. These findings can be explained by the fact that in the 

conventional agricultural production system, the technical efficiency of pesticides is 

generally more dependent on weather, soil conditions and pest incidence than the 

technical efficiency of productive inputs (Oude Lansink and Silva, 2004). The  

 

Table 5.3. Average technical efficiency scores and confidence intervals (          
     ) 

Models 
Initial Eff. 

Scores 

Bias 

corrected 

Eff. Scores 

95% Confidence 

interval 

Lower 

bound 

Upper 

bound 

Model 1: Radial measure of productive inputs 

and pesticides abatement technical efficiency 
0.849 0.724 0.716 0.726 

Model 2: Radial measure of productive inputs 

technical efficiency 
0.652 0.362 0.341 0.371 

Model 3: Radial measure of pesticides abatement 

technical efficiency 
0.635 0.314 0.297 0.327 

Model 4: Russell-type measure of 

productive inputs and pesticides 

abatement technical efficiency 
 

Productive 0.879 0.787 0.779 0.789 

Pesticides 0.656 0.439 0.412 0.454 



Efficiency of Pesticide Use 

87 

 

formulation and the method of application also have greater influence on the technical 

efficiency of pesticides on the size of the target pest population than the choice of 

active ingredient (van Emden and Service, 2004). 

 

5.4.2. Analysis of Shadow Values and Input Interdependences 

The estimation of the input distance function allows us to generate shadow prices of 

damage abatement inputs for each producer, along with their confidence intervals. In 

order to get the shadow values of each productive unit, we use expressions (6) and (7) 

under the hypothesis that the shadow prices of outputs are equal to their observed 

market prices as suggested by Ball et al. (2004) and Färe and Grosskopf (1990). Table 

5.4 reports the bootstrap sample average of the shadow values of all productive and 

damage abatements and the corresponding 95% confidence intervals. Shadow values 

of productive inputs (pesticides) in model 2 are smaller (larger) than their values in 

models 1 and 3. The differences between the shadow values of model 2 versus models 

1 and 3 reflect the different points at the frontier at which the shadow prices are 

evaluated. This is because shadow prices in model 2 are evaluated at the point on the 

frontier that reflects the minimum quantity of productive inputs required for 

producing a given bundle of vegetable outputs and the quantity of pesticide use. 

Overall, shadow prices of productive inputs in model 4 are larger than their respective 

values in the other models. 

In models 1, 2 and 3, the shadow price of fertilizer was found to be lower than 

the market price, which suggests overuse of fertilizer. For example, in model 2, where 

performance was evaluated in the productive input subspace, vegetable producers’ 

return for each additional FCFA of fertilizer use was 0.70 FCFA, which suggests that 

fertilizer is less productive. An explanation of the low shadow price of fertilizer is that 

a continuous and intensive vegetable production practice is observed on poor sandy 

soils with a large use of nutrients (Drechsel et al. 2006). The policy implication is that 

excessive use of fertilizer (manure) should be restricted. An additional hectare of land 

yielded at least 2.00 10
6
 FCFA of revenue, which suggests a high competition for 

urban and peri-urban farmland. However, the shadow prices of land are significantly 

lower than the market price, which implies overuse of land in vegetable farming.  
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The average shadow price of labor in all models was found to be significantly 

higher than the market price, implying underuse of labor. For each additional hour of 

labor, producers’ return ranged from 3.06 10
2
 FCFA (model 3) to 3.92 10

2
 FCFA 

(model 2). 

The shadow price of water in all four models is higher than the market price, 

indicating underuse of water. This result implies that the value of the marginal 

product of irrigation exceeds the cost of irrigation, meaning that water was not 

optimally used at the farm level. This result is consistent with the finding of Danso et 

al. (2003) in West Africa showing that manual irrigation (the most common method 

of irrigation) in vegetable production needs to be carried out with high frequency, 

leading to underuse. However, the increased use of irrigation in vegetable production 

may be attributed to risk aversion by producers related to the probability of droughts 

(Henry and Bowen, 1981), as access to water is a crucial requirement for year-round 

vegetable production.  

From an additional FCFA of insecticides, producers’ return ranged from 

0.0006 FCFA (model 4) to 0.43 FCFA (model 2). The return from each additional 

FCFA of other pesticides was 0.0025 FCFA (model 4) to 0.47 (model 1). The results 

imply that insecticides and other pesticides were less productive for vegetable 

producers. The shadow prices of insecticides and other pesticides are lower than their 

average market prices in all models, suggesting overuse of insecticides and other 

pesticides. This means that vegetable producers could increase their profitability by 

decreasing the use of insecticides and other pesticides. This result implies that 

producers are allocatively inefficient in damage abatement input use. This finding is 

in line with the conventional wisdom in the agricultural community that farmers 

overuse pesticides (Macharia et al. 2011; Sexton et al. 2007). An explanation for 

excessive use of pesticides is an intensive growing systems with high yields, short 

rotations and thus a high use of insecticides, herbicides, fungicides, nematicides as 

well as pest resistance against pesticides (de Kort, 1993; Kortenhoff, 1993). As 

pesticides are used in a prophylactic way to prevent anticipated infestations, the 

overuse of pesticides may kill pest species as well as beneficial species. Destruction 

of a pest’s natural enemies often leads to rapid resurgence of the pest or to 

introduction of secondary pests, which necessitates more treatments (de Kort, 1993). 

In all four models the results also show that more than 97% of vegetable producers in 

the sample overuse the damage abatement inputs (insecticides and other pesticides).  
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Table 5.4. Average Shadow values of inputs and 95% Bootstrap confidence intervals (               ) 

Inputs 
Market 

Price 

Model 1  Model 2  Model 3  Model 4 

Shadow 

Price 
95% CI  

Shadow 

Price 
95% CI  

Shadow 

Price 
95% CI  

Shadow 

Price 
95% CI 

Productive inputs            

N-Fertilizer 1(1) 0.83 [0.28;2.61]  0.70 [0.27;2.57]  0.68 [0.28;2.67]  1.07 [0.42;2.82] 

Other Inputs 1(1) 0.54 [0.22;1.40]  0.60 [0.26;1.47]  0.62 [0.26;1.41]  0.73 [0.22;1.99] 

Land area 5.00(2) 2.00 [0.53;7.35]  2.21 [0.57;7.21]  2.17 [0.55;7.48]  2.86 [0.51;8.76] 

Labor 1.19(3) 3.24 [1.36;6.26]  3.92 [1.42;6.62]  3.06 [1.42;6.34]  3.64 [1.54;7.42] 

Capital - 1.43 [0.18;3.90]  1.41 [0.19;3.55]  1.97 [0.19;6.32]  3.30 [1.06;6.11] 

Water 0.00(4) 0.52 [0.09;1.63]  0.92 [0.13;1.68]  0.54 [0.13;1.37]  1.07 [0.28;3.56] 

Damage abatement inputs            

Insecticides 1(1) 0.36 [0.21;0.71]  0.43 [0.21;0.75]  0.36 [0.22;0.62]  0.0006 [0.00;0.004] 

Other 

Pesticides 
1(1) 0.47 [0.13;1.27]  0.45 [0.14;1.33]  0.43 [0.15;1.31]  0.0025 [0.00;0.012] 

Note. CI: Confidence Intervals, $1US = 494.030 FCFA in 2010 or 1 Eur = 655.957 FCFA 

(1) Prices of N-Fertilizer, Other Inputs, Insecticides and Other Pesticides are set to one because these inputs are aggregated and measured in FCFA. For instance, if a producer wants to 

buy 1 FCFA of fertilizer, he/she has to pay 1 FCFA. 

(2) Land Price is based on the state land price per ha (Law No.164/PC/MFAEP-EDT of 11th of September 1964) since the majority of land cultivated in urban and peri-urban areas is the 

property of the state (106 FCFA). In fact, Benin is still a transition country in terms of its land policy with heterogeneous nature of land tenure arrangements (Le Meur, 2008). 

(3) Labor price per man-hour is the price for permanent hired labor (FCFA) and is calculated from the survey data. 

(4) Water price is set to be zero as the cost for irrigation equipment is included in capital and the labor used for irrigation is included in labor. 
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Based on the estimation results of the linear programming problem in (4), we 

performed a further analysis of technical interdependence of inputs. Table 5.5 reports 

the differences in the shadow values of productive and damage abatement inputs 

resulting from increasing separately by one unit the constraint of each pesticide. The 

95% confidence intervals are also presented in Table 5.5. In general, the impact of an 

increase in each damage abatement input on the shadow value of a productive input is 

not significant at the critical 5% level. This result implies that there is no evidence for 

technical interdependence between productive and damage abatement inputs. This 

result contrasts with Oude Lansink and Silva (2004) who found evidence of strong 

technical relationships between both types of inputs. The difference with Oude 

Lansink and Silva (2004) may be explained by the failure of Oude Lansink and Silva 

to account for sampling variation in the estimated frontiers.  

As expected, in all four models, the shadow price of insecticides decreases 

significantly when the insecticide constraint is increased by one unit. The same result 

is found for other pesticides.  

In sum the result in Table 5.5 indicates no evidence of technical 

interdependence between pesticide use and productive inputs. This is the challenge in 

most of empirical analysis of the economics of pesticides where the estimated form of 

such relationships can be critical for farm-level decision making (Hall and Moffitt, 

2002; Marsh et al. 2000; Saphores, 2000; Sexton et al. 2007). 

These results could be of interest in defining an efficient point of pesticide use 

in vegetable production. From the above results, the main problem with the use of 

pesticides could be related to the mix of approved and banned pesticides. As indicated 

by Snelder et al. (2008) in the case of Philippines, a mechanism is needed to control 

the use and sale of restricted and banned pesticides as most of the pesticides used in 

vegetable production are freely sold in stores and markets. Since, the market of 

approved pesticides (selective pesticides) for vegetable production is missing, policy 

makers should make such products available to producers, a distribution is required 

for low-cost application products. Due to lack of training in pesticide use, vegetable 

producers do not always respect the re-entry periods after spraying and essential 

harvest intervals are not known. In this respect, integrated pest management 

addressing the issues of pesticides usage and alternatives must be adjusted and 

reinforced to the case of vegetable products with emphasis on cost-effective pest-
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control methods for covering the investment risks. However, its success is strongly 

related to a good extension service in the early stage (van Lenteren, 1993). 

 

5.5. Conclusions 

This chapter provides valuable information on the pesticides used in pest control in 

vegetable production. As pesticide application in vegetable production systems of 

Benin are applied prophylactically to prevent from the occurrence of an infestation or 

diseases, the input function is used to study the value of the marginal product of 

pesticides. Shadow prices of two categories of pesticides are determined using four 

input-oriented models, each measuring the shadow price at different subspaces of the 

frontier. The homogenous smoothed bootstrap technique is used to determine 

confidence intervals of technical efficiency scores and shadow prices. 

Results show that vegetable producers have a lower technical efficiency in the 

use of pesticides. Also, results suggest that vegetable producers overuse insecticides 

and other pesticides. The overuse of pesticides means that the actual market prices of 

pesticides are higher than the value of the marginal product of pesticides in the 

production process. The overuse of pesticides can be attributed to the characteristics 

of the vegetables production system and may also point at risk aversion of farmers, 

i.e. farmers overuse pesticides in order to reduce the risks of pests and diseases. The 

study shows that there is no evidence of technical interdependence between pesticides 

and productive inputs. The overuse of pesticides may result in contamination of 

vegetable products and have adverse effects on the health of both producers and 

consumers. The results indicate the need for producers to apply rational methods for 

pesticide use. The implication is that the government may support producers by 

providing better information through extension services. The government may pay 

special attention to a policy that aims at the reduction of structural dependence of 

producers on pesticides. Integrated pest management addressing the issues of 

pesticides usage and alternatives may be adjusted and reinforced to the case of 

vegetable products with emphasis on cost-effective pest-control methods. 

 

 



Chapter 5 

92 

 

Table 5.5. Average differences in the shadow values of inputs and the corresponding 95% Bootstrap confidence intervals when the insecticides and 

other pesticides constraints change by one unit (               ) 

Inputs 
Model 1  Model 2  Model 3  Model 4 

Difference 95% CI  Difference 95% CI  Difference 95% CI  Difference 95% CI 

Insecticides            

N-Fertilizer 0.157 [-1.80;2.04]  0.165 [-1.63;1.93]  0.187 [-1.81;1.81]  -0.026 [-1.90;1.86] 

Other Inputs -0.002 [-0.91;1.08]  -0.024 [-1.00;0.95]  -0.048 [-1.03;0.91]  -0.044 [-1.43;1.28] 

Land area -0.31 [-6.19;5.34]  -0.047 [-5.84;4.72]  0.039 [-6.15;4.75]  -0.017 [-6.13;5.88] 

Labor 0.540 [-2.78;3.58]  -0.709 [-3.74;3.78]  0.514 [-3.60;3.69]  -0.283 [-3.57;2.73] 

Capital 0.815 [-1.93;3.70]  -0.034 [-2.26;2.58]  -0.702 [-5.07;2.24]  -0.378 [-3.57;2.50] 

Water 0.308 [-1.08;1.43]  -0.128 [-0.92;1.63]  0.268 [-77;1.55]  -0.212 [-2.07;1.14] 

Insecticides -0.344** [-0.70;-0.19]  -0.402** [-0.68;-0.18]  -0.323** [-0.58;-0.17]  -0.0004a [-0.004;0.0003] 

Other Pesticides 0.067 [-0.76;0.86]  0.046 [-0.80;0.96]  0.028 [-0.90;0.90]  0.0003 [-0.009;0.008] 

Other Pesticides            

N-Fertilizer -0.060 [-1.93;1.82]  0.005 [-1.57;1.77]  0.002 [-1.87;1.82]  -0.049 [-1.56;1.83] 

Other Inputs 0.31 [-0.74;1.03]  0.025 [-0.85;0.75]  0.006 [-1.01;0.84]  -0.057 [-1.37;1.17] 

Land area 0.101 [5.31;5.26]  -0.042 [-5.46;5.75]  0.206 [-5.60;4.97]  0.348 [-5.81;6.12] 

Labor 0.435 [-2.73;3.34]  -0.652 [-3.19;3.81]  0.215 [-3.48;3.81]  0.099 [-3.12;3.06] 

Capital 0.843 [-2.18;3.10]  -0.031 [-2.33;2.52]  -0.589 [-4.97;2.39]  0.170 [-3.10;3.44] 

Water 0.33 [-0.95;1.55]  -0.005 [-84;1.46]  0.452 [-0.62;1.77]  0.19 [-1.73;1.92] 

Insecticides 0.032 [-0.31;0.34]  -0.088 [-0.38;0.21]  -0.019 [-0.30;0.21]  -0.00001 [-0.0025;0.002] 

Other Pesticides -0.465** [-1.27;-0.12]  -0.448** [-1.34;-0.13]  -0.426** [-1.30;-0.14]  -0.00252a [-0.012;0.0.00007] 

Legend. ** Significance at 5% level, * Significance at 10% level, a Significance at 20% level.  



 

CHAPTER 6 

General Discussion and Conclusions 

6.1. Introduction 

The overall objective of this thesis was to analyze the production technology and the 

performance of vegetable producers in Benin. This was done by investigating the level of, and 

factors that determine marketing, allocative, technical and scale efficiency of these producers. 

The thesis focuses on the supply-side of vegetable production and targets farm-level decision 

making. While pursuing the main objective, this research also paid special attention to the 

development of methodologies for implementing the theory in empirical studies. 

This final chapter reviews the scientific implications of the present thesis, provides a 

general discussion on the methodology and empirical results and gives policy implications 

and suggestions for future research. This chapter is organized as follows. Section 6.2 reviews 

the theoretical and methodological issues. Section 6.3 summarizes the main findings. Section 

6.4 develops the policy implications of the thesis. Section 6.5 provides suggestions for future 

research and Section 6.6 the main conclusions of the thesis. 

 

6.2. Theoretical and Methodological Issues 

6.2.1. Theoretical Issues 

This thesis employs the neo classical production theory as the basis for the empirical models. 

The primal approach based on the distance function is used in Chapters 2, 3, 4 and 5 of the 

thesis. In the context where there is no particular orientation and the profit maximization 

problem must be solved by choosing inputs and outputs simultaneously, the directional 

distance function introduced by Chambers et al. (1996 and 1998) is shown to have its dual 

representation in the profit function. The directional distance function treats outputs and 

inputs as endogenous and so, is consistent with the economic objective of profit 

maximization. The dual relation between the directional distance function and the profit 

function was the basis of Chapter 2. The primal approach using the input distance function, 

where one is interested in reducing input usage while keeping outputs fixed, is employed in 

Chapters 4 and 5. In these chapters, we exploit the duality between the input distance function 

and the cost function to examine economies of scope and the efficiency and interdependency 

of specific inputs, respectively. 
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A producer has three non-exclusive ways to increase competitiveness: decrease 

production costs; increase market share; and adjust the prices to the state of the market 

(Dolgui and Proth, 2010). Whereas decreasing production costs is achieved by the 

improvement of technical, scale and allocative efficiency, maximising output prices (i.e. a 

pricing strategy) is achieved by improving marketing efficiency. Additionally, from the farm 

management perspective, producers are involved in three basic activities: production, 

marketing and investment (i.e. financial activities) (Kay et al. 2008, p. 42). However, in 

developing countries, including Benin, the investment activities in the agricultural sector 

(mainly for small scale farmers) are problematic due to the lack of a financial market. In this 

thesis, as we do not have data on farms’ investment activities, the analysis related to 

investment activities is ignored. The outcome is that producers need not only decide how 

much to produce and how much inputs to use, but also at what price to sell the output. In other 

words, producers must optimize both their productive and marketing performance. Thus, an 

integrated microeconomic framework was developed in Chapter 3 to assess the efficiency 

with which vegetable producers allocate their resources to production and marketing 

activities. Therefore, output prices are no longer exogenous, but the outcome of producers’ 

marketing efforts and skills. 

Chapter 4 extended the analysis to horizontal crop diversification (mainly for small-

scale producers). By diversifying, farmers can benefit from economies of scope (or cost 

complementarities) that are associated with the use of inputs common to a number of 

production processes. Besides this, diversification requires giving up the benefits of 

specializing in one enterprise, like scale economies. Hence, the direction in which 

diversification affects producer performance is not clear. The stochastic production frontier 

forms the basis for analyzing the direct and indirect impact of vegetable crops diversification 

on producer performance. The objective in this chapter, from a theoretical perspective, is to 

develop a model for measuring economies of scope and technical efficiency from the primal 

perspective. 

Another issue is the role of some inputs in the production process from an agronomic 

point of view. Most importantly, pesticides are a damage control input rather than a 

productive input (labor, fertilizers, capital and other materials). In fact, pesticides are used to 

reduce damage rather than increasing output directly. This agronomic fact is the core of 

Chapter 5 that examines the efficient use of pesticides in vegetable production, both 

technically and allocativelly. 
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6.2.2. Methodological Issues 

This section discusses the methodological issues in the empirical applications of Chapters 2-5. 

The first issue is the level of aggregation of outputs. By incorrectly treating vegetable 

production as a homogenous product, estimation of efficiency may be biased and policy 

conclusions likely in error. One approach to allow flexibility in the assumptions is the use of a 

multiproduct technology. In this thesis, we do allow for the multi-output technology, but there 

are several limitations for adding more outputs (see Chapters 3, 4 and 5). Increasing the 

number of outputs may lead to the occurrence of zero values, as the likelihood of a farm not 

producing a particular output increases. That is problematic in non-parametric applications. It 

also results in a situation where many farms will be located at the frontier. 

The second issue is the choice between parametric econometric techniques and non-

parametric mathematical programming techniques for measuring efficiency. Developments in 

comparing both techniques concluded that the overall results drawn by the two approaches are 

similar (Greene, 2008, p. 114). Consequently, the objective of the study and the data available 

are the main criteria one can use to make a choice. In Chapters 2, 3 and 5 of this thesis, we 

use the non-parametric data envelopment analysis (DEA) technique since the primary 

objective in these chapters was to estimate different efficiency measures (technical, allocative, 

scale, output, input and marketing) in the case of a multiple output technology. In Chapter 4, 

the parametric stochastic frontier approach is used because the objective of this chapter was to 

estimate not only technical efficiency and scale economies but also to assess the presence or 

absence of economies of scope. Therefore, in Chapter 4, the characteristics of the production 

function is of particular interest. 

When dealing with the non-parametric DEA, one has a choice between radial and non-

radial measures of efficiency. The non-radial models are useful in situations where both 

inputs and outputs are controllable and we seek their improvement. For instance, they reflect 

the potential for improvement in desired input and output directions. In Chapters 2 and 3, the 

directional distance function and its dual profit function (Chambers et al. 1996 and 1998) 

form the basis for the analysis of technical, scale and allocative efficiency. Specifically, in 

Chapter 2 the directional distance function allows for measuring output and input technical 

inefficiency of lowland farming. In the context where the same resources are used in the 

production of outputs and in marketing outputs, a Russell-type efficiency measure is 

appropriate. The Russell efficiency measure allows for non-proportional increases in output 

quantity and output price, allowing for different scores of technical and marketing efficiency. 
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In Chapter 3, the Russell-type measure is used to derive technical and marketing inefficiency 

of vegetable producers. Also, in Chapter 5, the Russell-type measure is employed to measure 

different technical efficiency scores of productive inputs and damage abatement inputs. 

Although the non-parametric efficiency analysis is appealing in many ways, the 

fundamental practical problem is that any measurement error and any other outcome of 

stochastic variation is embedded in the inefficiency estimates. In any sample, a single extreme 

observation can have profound effects on the estimates. Hence, it is important to find an 

appropriate method to deal with the stochastic nature of production and sampling process. In 

Chapter 5, the homogenous smooth bootstrap technique developed by Simar and Wilson 

(1998 and 2000) was used to provide statistical inference for the technical efficiency scores. 

For the directional distance function, the implementation of the bootstrap technique is very 

complex and not yet well developed. In Chapter 3, therefore, we rely on outlier detection 

techniques to examine the sensitivity of the technical and marketing inefficiency estimates. 

In Chapter 4, we analyzed scale economies, economies of scope and the direct effect 

of vegetable crop specialization on technical efficiency. In a multiple-output production 

technology, the effects of specialization on technical efficiency may be related to input use, 

indicating that the effect of crop composition on technical efficiency is non-neutral. The non-

neutral frontier assumes that the method of application of inputs and the level of inputs (i.e. 

scale of operation) determine the potential output level. The  model developed in this chapter 

allows for computing a primal measure of economies of scope and for determining the impact 

of specialization on technical efficiency. 

Moreover, in all efficiency analysis frameworks, it is attractive to separate factors that 

can be controlled by producers and those that producers cannot control, i.e. exogenous 

variables. To that end, appropriate models for incorporating exogenous variables are needed. 

In the case of the stochastic frontier analysis (SFA), the one-step method that estimates the 

frontier and the relationship of technical inefficiency to exogenous variables is shown by 

Schmidt (2011) to be consistent. Chapter 4 dealt with this issue and used a flexible production 

functional form and a modified non-neutral method to investigate the impact of specialization 

on vegetable producers’ performance. The two-stage approach is shown to be valid in the case 

of the non-parametric DEA approach. The potentially serious problem that DEA efficiency 

estimates are serially correlated is addressed by using a truncated bootstrap technique (see 

Chapters 2 & 3). 
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6.3. Synthesis of Results 

The purpose of this section is to synthesize the main findings across Chapters 2-5. 

Chapter 2 investigates the performance of vegetable producers in the lowlands. The 

comparison of three lowland farming systems provides useful information on technical, 

allocative, scale, output and input inefficiency differences. Overall, vegetable producers are 

found to have a low technical inefficiency. This result is consistent with the findings in 

Chapters 3, 4 and 5 for vegetable producers in urban and peri-urban areas. Table 6.1 

summarizes the technical inefficiency results in Chapters 2-5. According to the technical 

inefficiency results, producers are found to be less than 27% inefficient. 

The results in Chapters 2 and 5 provide evidence that producers are allocatively 

inefficient. The returns to scale results in Chapters 2 and 4 provide evidence that the 

production technology exhibits increasing returns to scale. On top of technical, scale and 

allocative inefficiency, other sources of efficiency are analyzed such as marketing, input and 

output inefficiency. 

The results in Chapter 4 indicate that vegetable producers in urban and peri-urban 

areas have a strong incentive for specialization. This chapter suggests gains in technical 

efficiency that follow from specialization. This result is consistent with the result of 

increasing returns to scale of the integrated rice-vegetable farming system in lowlands in 

Chapter 2. This is because by specializing, producers can take advantage of scale economies. 

The analysis of Chapter 5 indicated that vegetable producers are technically less 

efficient in the use of pesticides than in the use of other inputs. The cost (input) inefficiency 

result in Chapter 2 of lowland farms is manifested in the high shadow prices of some 

productive variable inputs in Chapter 5. Therefore, the results show that urban and peri-urban 

vegetable producers rely substantially on pesticides and some productive inputs while lowland 

producers are constrained by access to input use. On the other hand, the results in Chapter 5  

 

Table 6.1. Summary of technical inefficiency results by Chapters 

Chapter Technical inefficiency scores 

2. Lowland farming systems analysis
(1)

 0.20 

3. Technical and marketing analysis 0.14 

4. Impact of specialization on performance 0.21 

5. Pesticide use analysis
(2)

 0.27 

(1)The result of Chapter 2 presented here is related to Integrated Rice and vegetable farming system. 
(2)The result of Chapter 5 presented here is related to overall inefficiency measure (model 1) 
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suggest that urban and peri-urban vegetable producers face managerial problems in the use of 

pesticides.  

 

6.4. Policy Implications 

The results in Chapter 2 pointed out that producers could benefit by cultivating in the 

lowlands throughout the year. The final result in Chapter 2 shows that there are economic and 

food security gains in promoting lowland development strategies within the integrated rice-

vegetable farming system. The policy implication of this result is that the government can 

promote lowland production by enhancing the use of appropriate technology and management 

techniques. Since the market of seeds, fertilizers and pesticides is not functioning well, the 

government may facilitate supply of these inputs. 

In Chapter 3 of the thesis, it was found that vegetable producers are more marketing 

inefficient than they are technically inefficient. The policy implication of this result is that 

producers can get higher prices by obtaining better information through different marketing 

channels. As it was shown in Kenya by Ngugi et al. (2007), farmers organized in groups are 

able to realize higher profits compared to farmers not organized in groups. As stated by 

Barrett (2010), the interventions aimed at facilitating smallholder organization, at reducing the 

costs of selling and perhaps, especially at improving poorer household’s access to improved 

technologies and productive assets are central to stimulating smallholder market participation. 

Given the past experience of failure in most of farmer organizations in Africa, however, more 

homogeneity and optimal group size and market orientation can enhance the role of producer 

organizations in improving access to markets. These producer organizations need to prioritise 

agribusiness opportunities over social welfare objectives even though this may mean that 

some households are unable to take advantage of them (Shiferaw et al. 2011).  

The results in Chapter 4 suggested the presence of diseconomies of scope and that the 

degree of specialization has a positive effect on technical efficiency. In other words, the 

government should change its current policy of enhancing diversification to enhancing 

specialization. 

The results in Chapter 5 of the thesis suggest that pesticides are overused in vegetable 

production. Hence, there is a potential for pesticide use reduction in the vegetable production. 

The policy implication is that the government may support producers by providing better 

information through extension services. The government may introduce measures that reduce 

structural dependence of producers on pesticides. Integrated pest management addressing the 
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reduction of pesticide use and the promotion of alternatives may be applied to vegetable 

production. 

 

6.5. Suggestions for Future Research 

Our empirical analysis has focused on static models of farm performance. If we had panel 

data at our disposal, further methodological advances could be achieved by fixed and random 

effects stochastic frontier models accounting for unobserved heterogeneity (Emvalomatis et 

al. 2011). Meanwhile, the absence of panel data in our study limits the dynamic analysis of 

efficiency for vegetable producers, e.g. by accounting for costs in adjusting quasi-fixed inputs 

such as investment in capital and change in labor. The dynamic efficiency of vegetable 

production can be assessed using a model based on the adjustment of quasi-fixed inputs to 

their long-run equilibrium and time interdependence of production decisions (Emvalomatis et 

al. 2011; Serra et al. 2011). Therefore, even though the construction of panel data sets is 

costly, researchers in developing countries should pay special attention to collecting these 

data. 

The uncertainty around the level of output prices could also be incorporated in the 

models in chapter 4 by adding the price variability attached to different crops. The seasonality 

effect of output prices is another issue to search for in the model to analyze whether a 

producer’s marketing inefficiency varies across seasons. 

 

6.6. Main Conclusions 

The objective of this thesis is to investigate the production technology and the performance of 

vegetable producers in Benin. We arrive at the following conclusions: 

i) The analysis of different lowland farming systems indicated that scale inefficiency, 

allocative inefficiency and output inefficiency are the main sources of overall 

economic inefficiency (Chapter 2). 

ii) Increasing returns to scale prevailed in the integrated rice-vegetable farming system. 

Allocative and scale inefficiency are significantly smaller in the rice or the integrated 

rice-vegetable farming systems than the vegetable farming system (Chapter 2). 

iii) Urban and peri-urban vegetable producers are more marketing inefficient than they are 

technically inefficient (Chapter 3). 
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iv) Vegetable producers in urban and peri-urban areas using retailer marketing 

arrangements are more marketing efficient than those selling to wholesalers (Chapter 

3). 

v) The production technology of vegetable producers in urban and peri-urban areas 

exhibits increasing returns to scale (Chapter 4). 

vi) The study among urban and peri-urban vegetable producers provides evidence for 

diseconomies of scope, indicating that vegetable producers have a strong incentive for 

specialization in either traditional or non-traditional vegetables (Chapter 4). 

vii) An increase in crop specialization at the farm level is associated with an increase in 

technical efficiency of vegetable producers in urban and peri-urban areas (Chapter 4). 

viii) Vegetable producers in urban and peri-urban areas are less technically efficient in the 

use of pesticides than in the use of other inputs and also overuse pesticides (Chapter 

5).  
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Summary 

 

Productivity performance in the agricultural sector is important for the improvement in 

overall economic performance and can offer good opportunities for increasing food security 

and reducing poverty. The overall objective of this thesis is to analyze the production 

technology and the performance of vegetable producers in Benin. In each chapter, we use up-

to-date methods for analyzing different efficiency notions.  

Chapter 2 examines differences in economic inefficiency between three lowland 

farming systems. Several performance measures such as overall, technical, allocative, scale, 

input and output inefficiency are estimated. Moreover, the sources of inefficiency are 

analyzed to gain insight in the lowland production environment characteristics. This chapter 

employs a new robust two stage semi-parametric approach that consists of a directional 

distance function and a single truncated bootstrap. The first stage results provide evidence of 

significant technical, allocative and scale inefficiencies among producers, of which scale 

inefficiency, allocative inefficiency and output inefficiency are the main sources of overall 

economic inefficiency. Increasing returns to scale prevails in the integrated rice-vegetable 

farming system. Input inefficiency indicates that variable inputs (seed and fertilizers) are not 

used optimally, reflecting limited access to quality and quantity of seeds and fertilizers for 

most farms. The second stage results examine the influence of environmental and socio-

economic factors on the technical, allocative and scale inefficiency of the lowland producers. 

There are substantial differences between the three lowland farming systems. Technical 

inefficiency is significantly smaller when farmers produce only rice in the rainy season. 

Allocative and scale inefficiency is significantly smaller in the rice and the integrated rice-

vegetable farming systems. Water control, size of family workforce, years of management 

experience in lowland cultivation and the upland farm size held by households are other 

factors influencing technical, allocative and scale inefficiency. Formal education and 

experience are substitutes, whereas water control and lowland farming systems are 

complements, each having a significant effect on the level of technical, allocative and scale 

inefficiency. Finally, there is economic and food security gain in promoting lowland 

development strategies with integrated rice-vegetable farming systems. 

Chapter 3 proposes an approach to measure technical and marketing inefficiency of a 

sample of urban vegetable producers. The study provides a Russell-type measure of 

inefficiency using a directional distance function that accounts simultaneously for the 
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expansion of output and output prices and the reduction of variable inputs. The results 

indicate that producers are more marketing than technically inefficient. The truncated 

bootstrap regression of the determinants of the two inefficiency terms shows that more 

specialized producers have lower marketing inefficiency and that soil fertility decreases 

technical inefficiency. Another finding is that producers using retailer marketing 

arrangements are more marketing efficient than those selling to wholesalers. The results imply 

that agricultural policies should improve the capacity of producers to apply the available 

technology more efficiently. In addition, public and private extension services must focus on 

the managerial skills and sales management to help producers implement a profitable pricing 

strategy, rather than focusing solely on the production process. In conclusion, even though it 

is important to reduce the technology gap and improve the managerial skills of producers, 

agricultural policy must be accompanied by increasing market participation of farmers and 

market access. 

A large majority of farms in Benin’s vegetable production subsector produce both 

traditional and non-traditional vegetables. By producing both categories of crops instead of 

only one, the farm may be able to reduce risk. Another benefit associated with diversification 

is the complementary use of inputs on the farm. Specialization in crops, however, allows 

operators to exploit scale economies. Moreover, specialized operators have better 

opportunities to fine-tune their skills. Chapter 4 provides an empirical evaluation of the 

impact of crop specialization on vegetable producers’ economic performance. The challenge 

in this study is to assess whether changes in farm orientation through diversification or 

specialization can lead to better performance. A non-neutral stochastic frontier model is used 

to test and consider the adjustment of input utilization with output choices and estimate the 

effect of specialization on production technology and producer management performance. An 

input distance function is estimated using a Translog specification and a truncated efficiency 

regression. The results suggest that the technology exhibits increasing returns to scale. 

Compared to non-traditional vegetables, traditional vegetables have larger contribution to 

returns to scale. The results also provide evidence for diseconomies of scope, indicating that 

vegetable producers have a strong incentive for specialization in either traditional or non-

traditional vegetables. The contribution of vegetable output specialization to technical 

efficiency is found to be quite low, but statistically significant. An increase in crop 

specialization increases technical efficiency. The policy implication of this chapter is that the 

government has to change its policy towards enhancing specialization rather than 

diversification. 
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High-value vegetables are sensitive to pest pressure and subject to intensive 

application of pesticides. To prevent and cure from pests and diseases, producers use a large 

amount of pesticides on vegetables such as insecticides, fungicides and herbicides. Various 

policies aiming at reducing the use and dependence of vegetables on synthetic pesticide use 

are encouraged by public and private extension services. The market of pesticides in Benin is 

composed of formal and informal markets, where both approved and banned pesticides are 

sold. Therefore, the efficiency of the use of pesticides and other inputs of vegetable producers 

is analyzed in Chapter 5. As vegetable producers in Benin applied pesticides prophylactically 

to prevent from the occurrence of an infestation or diseases, the input function is used to study 

the value of the marginal product of pesticides. Shadow prices of two categories of pesticides 

are determined using four input-oriented models to measure technical efficiency in four 

different directions. Each model estimates the shadow price of damage abatement and 

productive inputs at different subspaces of the frontier. The homogenous smooth bootstrap 

technique is used to determine confidence intervals of technical efficiency scores and shadow 

prices. Results show that vegetable producers have lower technical efficiency in the use of 

pesticides than in productive inputs. Also, results suggest that vegetable producers overuse 

insecticides and other pesticides. The overuse of pesticides can be attributed to the 

characteristics of the vegetable production system and may also point at risk aversion of 

farmers. The study shows that there is no evidence of technical interdependence between 

pesticides and productive inputs. The implication is that the government may support 

producers by providing better information through extension services. The government may 

also take measures aiming at reducing the structural dependence on pesticides. 

Based on the findings of this thesis, the main conclusions are: 

i) The analysis of different lowland farming systems indicates that scale inefficiency, 

allocative inefficiency and output inefficiency are the main sources of overall 

economic inefficiency (Chapter 2). 

ii) Increasing returns to scale prevails in the integrated rice-vegetable farming system. 

Allocative and scale inefficiency are significantly smaller in the rice or the integrated 

rice-vegetable farming systems than the vegetable farming system (Chapter 2). 

iii) Urban and peri-urban vegetable producers are more marketing inefficient than they are 

technically inefficient (Chapter 3). 

iv) Vegetable producers in urban and peri-urban areas using retailer marketing 

arrangements are more marketing efficient than those selling to wholesalers (Chapter 

3). 
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v) The production technology of vegetable producers in urban and peri-urban areas 

exhibits increasing returns to scale (Chapter 4). 

vi) The study among urban and peri-urban vegetable producers provides evidence for 

diseconomies of scope, indicating that vegetable producers have a strong incentive for 

specialization in either traditional or non-traditional vegetables (Chapter 4). 

vii) An increase in crop specialization at the farm level is associated with an increase in 

technical efficiency of vegetable producers in urban and peri-urban areas (Chapter 4). 

viii) Vegetable producers in urban and peri-urban areas are less technically efficient in the 

use of pesticides than in the use of other inputs and also overuse pesticides (Chapter 

5).  

 

 

 

 

 



 

 

Samenvatting (Summary in Dutch) 

Verbetering van productiviteit van de agrarische sector is een belangrijke voorwaarde voor de 

verbetering van de welvaart en voedselzekerheid en voor vermindering van armoede. De 

overall doelstelling van dit proefschrift is: het analyseren van de productie technologie en 

performance van groenteproducenten in Benin. In elk hoofdstuk worden up-to-date methode 

gebruikt voor het analyseren van verschillende efficiëntie concepten.  

Hoofdstuk 2 onderzoekt verschillen in de economische inefficiëntie tussen drie 

verschillende laagland bedrijfssystemen. Verschillende performance maatstaven zoals overall, 

technische, allocatieve, schaal, input specifieke en output specifieke inefficiënties worden 

geschat.  Tevens worden verschillende bronnen van inefficiëntie geanalyseerd om inzicht te 

krijgen in de rol van omgevingsfactoren in de laagland productie. Dit hoofdstuk gebruikt een 

nieuwe robuuste semi-parametrische methode die bestaat uit een directional distance functie 

en een truncated bootstrap regressie. De directional distance functie geeft informatie over 

technische, allocatieve en schaal inefficiënties van producenten. Schaal- en allocatieve 

inefficiëntie zijn de belangrijkste bronnen van overall economische inefficiëntie. De 

productietechnologie van geïntegreerde laagland rijstproductiesystemen wordt gekenmerkt 

door toenemende schaalopbrengsten. De input inefficiëntie laat zien dat variabele inputs 

(zaaizaden en kunstmest) niet optimaal worden gebruikt. Dit resultaat suggereert dat 

producenten beperkte toegang hebben tot de gewenste kwaliteit en hoeveelheid van deze 

inputs. De truncated bootstrap onderzoekt de invloed van omgevingsfactoren en 

sociaaleconomische variabelen op de technische, allocatieve en schaal inefficiëntie van 

laagland producenten. Technische inefficiëntie is significant lager voor producenten van 

uitsluitend rijst in het regenseizoen. Allocatieve en schaal inefficiëntie zijn significant lager in 

het rijst- en geïntegreerde rijst-groente systeem. Water management, aantal meewerkende 

familieleden, aantal jaren management ervaring in laagland systemen en de grootte van het 

hoogland areaal bepalen mede de technische, allocatieve en schaal inefficiëntie. Onderwijs en 

ervaring zijn substituten, terwijl water management en laagland bedrijfssystemen 

complementen zijn, elk met een significant effect op de inefficiëntie. Toepassing van 

geïntegreerde rijst-groente productiesystemen kan leiden tot verbeteringen van de welvaart en 

voedselveiligheid. 

Hoofdstuk 3 introduceert een maatstaf van technische en marketing inefficiëntie van 

een steekproef van stedelijke groente producenten. Dit hoofdstuk gebruikt een Russell-type 

inefficiëntie maatstaf gebaseerd op een directional distance functie die gelijktijdig de 
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productie en output prijs maximaliseert en de variabele inputs minimaliseert. De resultaten 

geven aan dat producenten een grotere marketing inefficiëntie hebben dan technische 

inefficiëntie. De truncated bootstrap regressie van de factoren die deze inefficiëntie 

maatstaven verklaren, laat zien dat gespecialiseerde producenten een lagere marketing 

inefficiëntie hebben en dat bodemvruchtbaarheid de technische inefficiëntie doet afnemen. 

Producenten die gebruikmaken van retailer marketing arrangementen hebben een hogere 

marketing efficiëntie dan producenten die direct verkopen aan de groothandel. De resultaten 

impliceren dat landbouwbeleid de capaciteit om de technologie efficiënt te gebruiken, moet 

verbeteren. Daarnaast moeten publieke en private voorlichtingsdiensten zich meer focusen op 

het verbeteren van verkoop management, in plaats van zich uitsluitend te richten op de 

verbetering van het productieproces. Alhoewel het belangrijk is om de technologie gap te 

verminderen en management skills van producenten te verbeteren, moet landbouwbeleid 

samengaan met een grotere marktparticipatie van producenten en verbetering van 

markttoegang. 

De meerderheid van de groenteproducenten in Benin produceren zowel traditionele als 

niet-traditionele groenten. Door beide typen groenten te produceren kunnen producenten de 

risico’s verminderen. Een ander voordeel van diversificatie is gelegen in complementariteit 

van inputs op het bedrijf. Specialisatie maakt het daarentegen mogelijk om schaalvoordelen te 

behalen en om de kennis van, en vaardigheden in het productieproces te maximaliseren. 

Hoofdstuk 4 analyseert de invloed van specialisatie op de economische performance van 

groenteproducenten. Een non-neutrale stochastische frontier wordt gebruikt om de 

verandering van het gebruik van inputs te testen en het effect van specialisatie op performance 

te meten. Een input distance functie wordt geschat op basis van een Translog specificatie, 

samen met een inefficiëntie model. De resultaten suggereren dat de productietechnologie 

wordt gekenmerkt door toenemende schaalopbrengsten. Traditionele groeten leveren een 

grotere bijdrage aan de schaalopbrengsten dan niet-traditionele groeten. De resultaten laten 

ook zien dat er sprake is van diseconomies of scope, wat impliceert dat groente producenten 

een sterke drijfveer hebben voor specialisatie in ofwel traditionele dan wel niet-traditionele 

groenten. Specialisatie in groenten heeft een klein maar significant positief effect op de 

technische efficiëntie. De beleidsimplicatie is dat de overheid haar beleid moet wijzigen en 

specialisatie in plaats van diversificatie moet bevorderen om de performance van 

groenteproducenten te vergroten. 

Groenten met een hoge waarde zijn doorgaans gevoeliger voor ziekten en plagen; de 

productie gaat dan ook gepaard met een intensief gebruik van pesticiden zoals insecticiden, 
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fungiciden en herbiciden. De publieke en private voorlichtingsdiensten promoten 

verschillende manieren om het gebruik en de afhankelijkheid van het gebruik van pesticiden 

in de groenteproductie te verminderen. Op de formele en informele markten van pesticiden in 

Benin worden zowel toegelaten middelen als verboden middelen verkocht. Daarom wordt de 

efficiëntie van het gebruik van pesticiden en andere inputs door groenteproducenten 

geanalyseerd in Hoofdstuk 5. De input distance functie wordt gebruikt omdat producenten 

pesticiden vooral preventief gebruiken. Schaduwprijzen van twee categorieën van pesticiden 

worden bepaald met behulp van vier verschillende input distance functies. Elk model schat de 

schaduwprijs op een ander deel van de frontier. De homogene smooth bootstrap techniek 

wordt gebruikt om betrouwbaarheidsintervallen van technische efficiëntie en schaduwprijzen 

te bepalen. De resultaten laten zien dat groente producenten pesticiden minder efficiënt 

gebruiken dan andere inputs. Ook laten de resultaten zien dat groente producenten 

insecticiden en overige pesticiden overmatig gebruiken. Het overmatig gebruik van pesticiden 

duidt op problemen bij de toepassing en op risico aversie van producenten. Hoofdstuk 5 laat 

zien dat er geen technische afhankelijkheid is tussen pesticiden en overige inputs.  De 

beleidsimplicatie van deze resultaten is dat de overheid aan producenten betere informatie kan 

verschaffen over een doelmatig pesticidengebruik, b.v. via voorlichting. De overheid kan ook 

maatregelen treffen om de structurele afhankelijkheid van pesticiden te verminderen. 

De belangrijkste conclusies van dit proefschrift zijn: 

i) De analyse van verschillende laagland bedrijfssystemen laat zien dat schaal, 

allocatieve en output inefficiëntie de belangrijkste bronnen zijn van overall 

inefficiëntie (Hoofdstuk 2) 

ii) Geintegreerde rijst-groente bedrijfssystemen worden gekenmerkt door toenemende 

schaalopbrengsten. Allocatieve en schaal inefficiëntie zijn significant kleiner in het 

rijst en het geïntegreerde rijst-groente systeem dan in het groente systeem  (Hoofdstuk 

2). 

iii) Stedelijke en stedelijk-perifere groente producenten hebben een groter marketing 

inefficiëntie dan technische inefficiëntie (Hoofdstuk 3). 

iv) Groente producenten in stedelijke en stedelijk-perifere gebieden die gebruikmaken van 

marketing arrangementen hebben een grotere marketing efficiëntie dan producenten 

die direct verkopen aan de groothandel (Hoofdstuk 3). 

v) De productie technologie van groente producenten in stedelijke en stedelijk-perifere 

gebieden wordt gekenmerkt door toenemende schaalopbrengsten (Hoofdstuk 4). 
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vi) De productie technologie van stedelijke en stedelijk-perifere groente producenten 

wordt gekenmerkt door diseconomies of scope. Dit geeft aan dat groente producenten 

een sterke drijfveer hebben voor specialisatie in ofwel traditionele dan wel niet-

traditionele groentes (Hoofdstuk 4). 

vii) Een toename van de gewasspecialisatie op bedrijfsniveau gaat samen met een grotere 

technische efficiëntie van groente producenten in stedelijke en stedelijk-perifere 

gebieden (Hoofdstuk 4). 

viii) Groente producenten in stedelijke en stedelijk perifere gebieden gebruiken pesticiden 

minder efficiënt dan andere inputs. Ook is er sprake van overmatig gebruik van 

pesticiden (Hoofdstuk 5).  
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Completed Training and Supervision Plan 

 

Description Institution Year ECTS
1
 

I. General Part    

Techniques for Writing and Presenting a Scientific Paper WGS, WU
2
 2008 1.2 

II. Graduate School Part    

Mansholt Introduction Course MG3S, WU
3
 2008 1.5 

Research Proposal MG3S, WU
3
 2009 6.0 

III. Discipline-Specific Courses    

Economic Models WUR
4
 2008 6.0 

Advanced Econometrics WUR
4
 2008 6.0 

Organization of Agribusiness WUR
4
 2008  

Advanced Macroeconomics WUR
4
 2008  

Spatial Econometrics: Theory and Practices MG3S, WU
3
 2008 1.5 

Non-Parametric Methods for Efficiency Analysis MG3S, WU
3
 2008 4.0 

Dynamics Efficiency Analysis MG3S, WU
3
 2008 1.5 

The Bayesian Approach in Theory and Practice MG3S, WU
3
 2008 1.5 

Integrated Assessment of Agriculture and Sustainability 

Development (SEAMLESS) 
PE&RC,WU

5
 2008 2.0 

The Economic Institutions of Agriculture Food and Rural Areas: 

Institutional Dynamics, Organizations and Governance 
MG3S, WU

3
 2009 1.5 

Survival Analysis: Analysis of Individually Registered Time of 

Event Data 
PE&RC,WU

5
 2009 0.6 

Panel Data Analysis in Microeconomics MG3S, WU
3
 2009 4.0 

Advance Microeconomics WUR
4
 2009 6.0 

Panel Data Models for Limited Dependent Variable 
Tilburg University 

(NAKE
6
) 

2009 3.0 

PhD Discussion Groups BEC, WU
7
 2008-12 3.0 

III. Teaching Assistant    

Agricultural Business Economics BEC, WU
7
 2012 0.5 

IV. Conferences Presentations    

The Fifth North American Productivity Workshop (NAPW-V), 

New York, USA 

Stern School of 

Business of New 

York University 
2008 1.0 

The XI European Workshop on Efficiency and Productivity 

Analysis (EWEPA-XI), Pisa, Italy 

School of 

Engineering, 

University of Pisa 
2009 1.0 

The XII European Workshop on Efficiency and Productivity 

Analysis (EWEPA-XII), Verona, Italy 
School of Economics, 

University of Verona 
2011 1.0 

Efficiency Measurement: New Methods and Application to the 

Food Sector Analysis, Toulouse, France 
Toulouse School of 

Economics 
2011 1.0 

TOTAL
8
   53.8 

1 One ECTS on average is equivalent to 28 hours of course work.    6 Netherlands Network of Economics. 
2 Wageningen Graduate School, Wageningen University.     7 Business Economics Group, Wageningen University. 
3 Mansholt Graduate School of Social Sciences, Wageningen University.    8 Minimum of 30 ECTS are required. 
4 Wageningen University and Research centre.       
5 Production Ecology and Resource Conservation Graduate School, Wageningen University. 
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