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Abstract

Polyploidization, both ancient and recent, is frequent among plants. A ‘‘two-step theory’’ was proposed to explain the
meso-triplication of the Brassica ‘‘A’’ genome: Brassica rapa. By accurately partitioning of this genome, we observed that
genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes
(MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results
indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B.
rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-
synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between
MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest
that ‘‘two-step’’ genome triplication and differential subgenome methylation played important roles in the genome
evolution of B. rapa.
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Introduction

Genome polyploidization is widespread in all plants, with

consequences apparent in the genomes of important crop species

[1]. Genome duplication not only provided abundant genetic

materials for the evolution of gene family expansion or the

foundation of new genes, but might also have produced bulk

genetic variations supporting the evolution of plants that are better

adapted to diversified environments [2,3]. The traces of ancient

whole genome duplications can be detected by comparative

genome analysis. A run of syntenic gene pairs covering approx-

imately the entire genome, constitutes direct evidence for one

ancient whole genome duplication [4,5].

After genome duplication, subgenomes that co-exist in a nucleus

differentiate. This differentiation can be observed from compar-

isons between the two subgenomes: they may differ in both gene

density and the level of gene expression [5,6]. One subgenome is

prone to retain more genes, while the other one loses more genes.

This phenomenon is referred to as fractionation bias. This bias in

gene densities between subgenomes has been observed in

Arabidopsis thaliana and maize [6,7,8], and may be a common

feature in species with ancient polyploid genomes [9]. In addition

to biased gene fractionation, genes from different subgenomes also

show expression differences. The subgenome that harbors

significantly more genes also expresses to greater RNA levels than

the more fractionated subgenome. This phenomenon—called

genome dominance—has been observed in several genomes with

recent allotetraploidization, such as the allotetraploid of A. thaliana

and A. arenosa [10], the natural allotetraploid Tragopogon miscellus

[11], as well as an allotetraploid cotton species [12]. Furthermore,

in the autotetraploid species maize, the dominant gene expression

pattern was also clearly detected, even though the polyploidization

occurred about 12 million years ago [5].

For the maize genome, a model to illustrate the subgenome

dominance effect has been proposed [5]. This model predicts that

the overall rate of gene deletions in the two subgenomes of maize is

the same. However, maize genotypes with deletions in the higher

expressed duplicate copy of the syntenic genes were removed from

the population by purifying selection, while genotypes with

deletions in the lower expressed copy were more likely to be

under near-neutral selection, as their fitness may not be reduced.

Subsequently, the difference in selection pressure over the two

subgenomes resulted in the observed biased gene fractionation.

The mesopolyploid crop species Brassica rapa, a member of the

Brassicaceae family, has three subgenomes in its nucleus,

representing a genome triplication event that preceded the origin

of the diploid Brassica species, B. rapa, B. oleracea, and B. nigra [13].

B. rapa is a good model for studying genome polyploidization

because the triplicated genome is old enough to be fractionated,

but young enough such that most genes are clearly identifiable in

the out-group, A. thaliana [14,15]. Segments of the three

subgenomes in B. rapa are well distinguished; therefore, the

difference in gene loss among these subgenomes can be identified

unambiguously. We proposed a ‘‘two-step theory’’ to explain the

genome triplication events that occurred in B. rapa (Figure 1) [13].

In the present study, we found further evidence for differential

subgenome evolution, suggesting that differential methylation may

have played an important role in the genome evolution of B. rapa.
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Results

Reconstruction and definition of the three subgenomes
in B. rapa

The genomes of species from Brassicaceae comprise 24 genomic

blocks (A-X, also called the ancestral karyotypes, AK) [16,17],

which can be observed in the recently sequenced genomes of A.

lyrata, Thellungiella parvula, and B. rapa [13,18,19], as well asthe

model plant A. thaliana and others [20]. . These genomes were all

generated from polypoidization, followed by rearrangement of the

24 AK blocks. Many species from the genus Brassiceae have

several copies of the AK blocks in their genomes, and it is believed

that an ancestral karyotype of Brassiceae (AKBr) existed that

contained only one copy of the AK blocks. The genome

polyploidization of AKBr gave birth to the polyploid ancestor of

the Brassica species. Subsequent chromosomal rearrangements,

and breaking and fusion of the polyploid ancestor produced the

chromosomes of many species in Brassica, as exemplified by B. rapa

with its 10 chromosomes [13,21]. Given the well annotated A.

thaliana genome and the few million years of divergence time

between B. rapa and A. thaliana, the genome of A. thaliana, which

contains only one copy of the AK blocks, was chosen as a

representative of AKBr in this study, from which the three copies

of AK blocks in B. rapa originated.

To distinguish the subgenomes in B. rapa, syntenic orthologs

between B. rapa and A. thaliana were determined first. We

considered two genes between B. rapa and A. thaliana to be a

syntenic ortholog not only by their sequence similarity, but also the

number of homologous gene pairs in their flanking chromosomal

regions (See Methods). For each A. thaliana gene, we counted the

number of B. rapa syntenic orthologs in B. rapa: there were 7,813,

5,439, and 1,675 genes with 1, 2, and 3 syntenic copies in B. rapa,

respectively. These syntenic orthologs were used as anchors to

obtain syntenic genome segments between B. rapa and A. thaliana.

Syntenic segments were then listed along the chromosomes of A.

thaliana. Like playing jigsaw puzzles, with rules of a) avoiding

sequence overlap of the segments’ boundaries and b) minimizing

the number of inter-chromosomal rearrangement events in B. rapa,

these listed segments were merged into larger fragments. In each

genomic region of A. thaliana, three copies of the syntenic

fragments were clearly distinguished in B. rapa (Figure 2, Table

S1 and S2). Using the genomic block numbering in A. thaliana [16],

we identified the distribution of all the AK blocks in B. rapa.

When comparing the gene content in the three copies of

syntenic fragments, one copy always contained many more genes

than the other two; for the other two showing more fractionated

copies, they contained slightly different numbers of genes

(Figure 3). We further sorted these three copies of syntenic

fragments according to their relative gene densities and finally

grouped fragments with the highest gene densities as subgenome

LF, fragments with moderate gene densities as subgenome MF1,

and the fragments with the least genes as subgenome MF2. A full

list of the coordinates of these fragments is shown in Supplemen-

tary Table S1. As shown in Figure 2, for the three B. rapa

subgenomes corresponding to chromosomes 1–4 of A. thaliana,

there are few syntenic fragments with shared identical breakpoints

(two for chromosomes 1–3, one for chromosome 4). For A. thaliana

chromosome 5, the syntenic fragments share six breakpoints.

Taking chromosome 1 as an example, one shared breakpoints

located between block A-B-C and block D, the other one was

between block D and block E.

Biased gene fractionation in the three subgenomes
We selected 23,716 high-confidence B. rapa genes (subsequently

referred to as ‘‘high confidence genes’’) by filtering out low

confidence genes and genes that have no syntenic orthologs in A.

thaliana (see Methods). We further selected 1,675 orthologs (5,025

genes) that have syntenic copies in all three subgenomes of B. rapa,

and referred them as ‘‘fully retained homoeologs’’. These two gene

sets were used as basic data in subsequent analyses.

Subgenomes were ordered based on gene densities from high to

low and were named as LF, MF1, and MF2. In the 24 AK blocks,

gene density in subgenome LF was much higher than in the two

MF subgenomes (MF1 and MF2), except for blocks G and H.

Subgenome MF1 had slightly, but significantly, more genes than

MF2, except for blocks A, B, T and W. This differential gene

density was also obvious when we compared them in A. thaliana

chromosomes that were used as the representatives of AKBr

Figure 1. Flow chart of the ‘‘two-step theory’’ to explain the genome triplication that occurred in the early stages of the origin of B.
rapa species. Circles denote genes and circles with crosses indicate genes that are not detectable. Red circles are genes in subgenome LF, blue and
green circles are genes in subgenomes MF1 and MF2, respectively.
doi:10.1371/journal.pone.0036442.g001
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(Table 1 and Figure 3). The observed differentiation of gene

density among the three subgenomes indicated that biased gene

fractionation exists not only between LF and MFs, but also

between MF1 and MF2.

Patterns of gene expression among subgenomes LF,
MF1, and MF2: genome dominance

Gene expression pattern for all genes in B. rapa were measured

using mRNA-Seq data. Using Illumina GAII, we generated pair-

end reads for mRNA extractions from three organs (root, stem,

leaf). Tissues were collected from four-week old Chiifu-401/42

plants grown in a greenhouse. We also used mRNA-seq data from

two pooled mRNA extractions of B. rapa Chiifu-401/42 and a

cultivar line L58CX, respectively (as previously described [13]).

In this analysis, genes from 1,675 fully retained homoeologs

were chosen to compare the gene expression patterns of the three

subgenomes. Thus, we compared the RNA levels expressed by

three syntenic genes in the same sample. We used a two-fold

change method to evaluate genes’ differential expression, and a

gene was considered overexpressed only when it was expressed at

least two-fold higher than both of the other two homoeologous

genes. When comparing the gene expression dominance between

MF1 and MF2, we only took syntenic genes from subgenomes

MF1 and MF2 into consideration, and considered a gene to be

dominantly expressed if it expressed two-fold higher expression

compared to the other copy. In the five expression datasets, we

observed that the number of genes from subgenome LF with

dominant gene expression was much higher than the number of

genes from subgenomes MF1 or MF2 (Table 2, Figure 3). The

number of genes from MF1 with dominant gene expression (MFs)

was also higher than the number of genes from MF2 (Table 3),

although the differences are less obvious compared to those

between LF and MFs.

Dominant gene expression was also tested by employing a

‘‘horserace experiment’’ in which a winner can win by any fraction

of a reads per kilobase of exon per million reads (RPKM) value,

the unit of RNA level. Syntenic gene pairs from the 1,675 fully

retained homoeologs and all the possible genome-wide pairs (LF

vs. MF1 or MF2, MF1 vs. LF or MF2, MF2 vs. LF or MF1) were

tested: genes from the less fractionated subgenome consistently

displayed just as great and significant differences to those observed

in the two-fold change tests described above (Table S3, S4, S5).

We further compared the expression level of all the syntenic gene

pairs between subgenomes. The median difference in syntenic

gene pairs in which LF expressed at a higher level was marginally

higher than the median difference for the pairs in which either

MF1 or MF2 expressed at a higher level. The median difference in

gene pairs in which MF1 expressed at a higher level was

marginally higher than the median difference for gene pairs in

which MF2 expressed at a higher level (Table S6).

Ongoing biased gene fractionation observed in B. rapa
cultivar lines Turnip and L144

To investigate the recent evolution of the three subgenomes in

B. rapa, we resequenced a turnip DH (double hybrid) line (a

Japanese turnip accession, abbreviated ‘‘Turnip’’) and an inbred

line L144 (a rapid cycling oil-like accession) to ,25 fold of the

genome size. For each of these B. rapa cultivars, we sequenced

three different libraries (insert sizes of 300 bp, 500 bp, and

2000 bp) with pair-end reads to 71 bp. In total we collected

,80 M and ,100 M pair-end reads for L144 and Turnip,

respectively. Burrows-Wheeler aligner (BWA) and Samtools were

used to do the Pair-end reads mapping and variant calling (SNP/

InDel) against the reference sequence of released Chiifu genome

[22,23]. Variants covered by at least six unique reads were

counted. Both of the two lines were pure homozygous lines;

therefore, to guarantee the confidence of the variants, we used

only homozygous SNPs/InDels for further analysis (See Method).

For all the 23,716 high confidence genes, we found 561,367

SNPs and 45,995 InDels in L144, and 562,935 SNPs, 60,003

Figure 2. Construction of the three subgenomes in B. rapa. Subgenomes are displayed along the five chromosomes of A. thaliana, with 24 AK
blocks painted in different colors, as reported elsewhere [16]. The deep grey chromosome segments denote subgenome LF, while grey and light grey
segments denote MF1 and MF2, respectively. The present-day B. rapa chromosomes, such as ‘‘A10’’ from which any segment originates, is labeled to
its right. Vertical grey arrows to the left side of block names indicate inverted directions. Horizontal blue lines together with the red arrows indicate
identical break regions shared by subgenomes and block boundaries, while black arrows represent identical break regions shared only by
subgenomes of B. rapa.
doi:10.1371/journal.pone.0036442.g002
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InDels in Turnip. The total number of SNPs and InDels in the

1,675 fully retained genes among the three subgenomes was not

significantly different from each other in both Turnip and L144

(Table 4), which indicated that the mutations occurred randomly

and under equal frequencies in the three subgenomes in the two

cultivar lines. For each B. rapa gene, were counted the variances

located in its 1.5 kb upstream region, exons, and introns,

separately. We observed that the genes in subgenome LF always

had fewer non-synonymous SNPs and frame-shift InDel mutations

than genes in MFs, in both L144 and Turnip (Figure 4). The

difference between MF1 and MF2 was not significant, which

indicated that subgenome LF was under significantly more

selection pressure to sweep the functional mutations in comparison

to MFs.

Discussion

The accuracy of subgenome partition is very important for the

genome evolution analysis in this study. The relatively recent

genome triplication event that occurred in the early stage of B. rapa

species origin is not as old as that in C. vinera (.80 MY) or the

most recent tetraploidy in the A. thaliana lineage; the AK blocks in

the genome of B. rapa’s hexaploid ancestor are readily identifiable.

Almost all the blocks, although they have been translocated and

fused to form the 10 chromosomes of B. rapa, are retained intact.

All three copies of each block can be separated, facilitating the

partitioning of the genome into subgenomes. Using chromosomes

of A. thaliana as the representative of B. rapa’s diploid ancestral

karyotype, and employing the rules of 1) nonoverlap of syntenic

boundaries and 2) least translocation in B. rapa’s chromosomes, we

aligned and separated each AK block. This led to a reconstruction

Table 1. Biased gene fractionation among the three subgenomes of B. rapa, listed along the 24 AK blocks and the chromosomes
of A. thaliana.

#Genes x2 testa

LF MF1 MF2 LF & MFs MF1 & MF2

Blocks A 921 498 550 9.94E-18 2.75E-01

B 559 355 356 4.10E-08 9.79E-01

C 299 229 188 1.20E-03 1.76E-01

D 144 117 38 3.11E-04 6.11E-06

E 727 503 356 7.80E-13 4.46E-04

F 1,159 766 638 3.79E-18 1.73E-02

G 8 11 0 8.23E-01 2.67E-02

H 117 198 108 8.59E-02 3.23E-04

I 267 247 56 4.37E-06 5.97E-16

J 783 611 509 7.38E-07 3.44E-02

K 85 76 52 1.91E-01 1.67E-01

L 157 116 74 1.72E-03 3.90E-02

M 192 83 82 5.50E-08 9.56E-01

N 604 386 339 2.13E-10 2.37E-01

O 171 110 51 3.18E-06 1.23E-03

P 95 69 35 4.73E-03 2.45E-02

Q 260 138 132 2.78E-07 8.63E-01

R 1,003 651 623 1.43E-13 6.06E-01

S 190 99 33 1.08E-10 4.74E-05

T 108 28 77 4.10E-04 8.52E-04

U 1,179 770 535 4.52E-24 4.66E-06

V 213 141 141 2.11E-03 9.33E-01

W 433 322 329 1.63E-03 8.90E-01

X 371 202 185 9.13E-10 5.90E-01

Unspecified 652 454 352 3.76E-10 1.26E-02

Chromosomes Chr1 2,650 1,790 1,689 2.06E-29 2.35E-01

Chr2 1,477 1,172 838 9.61E-15 1.48E-07

Chr3 2,212 1,435 1,190 1.41E-35 7.87E-04

Chr4 1,658 1,034 767 5.69E-35 9.53E-06

Chr5 2,609 1,606 1,589 1.54E-37 8.51E-01

Total 10,606 7,037 6,073 1.90E-142 2.76E-09

a: a x2 test was performed between observed gene numbers and expected gene numbers (equal number of genes retained) among subgenomes.
doi:10.1371/journal.pone.0036442.t001
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of the three subgenomes in B. rapa. Most blocks are conserved and

are arranged in groups (many blocks existed continuously in all

three subgenomes). However, only 11 breakpoints were found to

be shared by all three subgenomes, such as the breakpoint located

between blocks C and D (Figure 2). These identical breakpoints

probably reflect the chromosome boundaries of the real diploid

ancestor of B. rapa; the A. thaliana genome is only a representative

of the three true diploid ancestral genomes.

We have proposed a ‘‘two-step theory’’ to explain the B. rapa

genome evolution [13]. According to this theory, there has been a

diploid ancestral genome that contained one copy of the AK

blocks. Step 1: two diploid genomes became a tetraploid with two

new subgenomes (precursors of MF1 and MF2). Along evolution-

ary time progressed, loss of genes from the duplicate genomes

finally resulted in a fractionated diploid genome (consisting of the

two subgenomes MF1+MF2). Step 2: another diploid genome (LF)

was added to the fractionated diploid genome, which initiated

another round of gene loss. As a result, LF experienced one round

of gene loss and retained more genes than MF1 and MF2, which

experienced two rounds of gene loss. The two-step theory for

genome triplication in B. rapa is well supported by the obvious

differentiation of gene density between subgenomes LF and MFs.

However, we do not exclude the differential methylation

hypothesis, because the differences in gene densities could also

be maintained by different levels of subgenome methylation [5].

Using mRNA-seq data from both different tissues and pooled

tissues of two different accessions of B. rapa (Chiifu subspecies

pekinensis and L58 subspecies parachinensis), we found that genes in

subgenome LF are dominantly expressed over genes in two MFs

(Table 2), and we further found that more genes are dominantly

expressed in MF1 compared to MF2 (Table 3). The expression

activitys of the three subgenomes was ordered as LF.MF1.MF2.

Many studies have noted that methylation represses gene

expression [24,25,26,27,28], thus gene methylation levels might

be different among the three subgenomes. Consequently, meth-

ylation is likely to have played an important role in B. rapa genome

evolution.

We observed ongoing biased gene fractionation in B. rapa

similar to that observed in maize [5]. Using resequencing data of

two B. rapa accessions (L144, a rapid cycling laboratory accession

and Vegetable Turnip VT117, subspecies rapa), we found that

subgenome LF accumulates significantly fewer non-synonymous

SNPs and frameshift InDels than the other two MFs, which

correlates with the dominant gene expression in LF compared to

MFs. However, this ongoing gene fractionation was a result of the

differentiation process of the two subspecies after LF, MF1, and

MF2 were combined into one genome. The explanation of biased

gene fractionation by genome dominance leaves unanswered

questions. In maize, the most likely explanation was proposed to

be differential epigenetic marking of subgenomes within an

allotetraploid, possibly because allotetraploidy produces epigenet-

ically inherited differentiation of parental genomes [5]. If this is

true, the ‘‘two-step theory’’ is consistent with the presence of an

allotetraploid during B. rapa evolution before LF was added to

MFs. We identified many regions in which the gene densities in

MF1 are higher than those in MF2 (Table 1). This could also be

the result of differential methylation between MF1 and MF2. MF1

and MF2 were merged at the same time; therefore, the different

gene density could not be explained by evolution time difference.

Evidence of ongoing biased gene fractionation together with the

differential gene expression among the subgenomes of B. rapa

could be better explained by differential subgenome methylation,

although extensive whole genome methylation status data is

needed to test this hypothesis. However, this does not exclude the

hypothesis of the ‘‘two-step theory’’. Considering the current data,

we tend to believe that the ‘‘two-step’’ evolution process, together

with methylation differentiation, both played important roles

during the evolution of the B. rapa genome.

B. rapa has an ancient triplicated genome, which is old enough

to have fractionated (many genes have been lost after polyploi-

dization), but young enough so that most genes are clearly

identifiable in the outgroup, A. thaliana. It represents a good model

Figure 3. Gene densities and dominance of gene expression in the three subgenomes of B. rapa along the chromosomes of A.
thaliana. The vertical grey lines are the separators of the 24 AK blocks. Red lines and crosses represent subgenome LF, while green and blue ones
represent subgenomes MF1 and MF2, respectively. Gene densities are indicated above the lines and dominance of gene expression below. Gene
densities were estimated by a window of 1,000 genes with a step of 1 gene moving through the reference genome A. thaliana. The ratio of syntenic
genes in each of the three B. rapa subgenomes for each window was calculated and plotted. For the gene expression, we used a window of 60 genes
with a step of 1 gene sliding through the 1,675 A. thaliana genes that have three retained syntenic orthologs in B. rapa. For each window, we counted
the number of genes that have the highest expression among syntenic paralogs for each of the three subgenomes. The expression dominance was
then plotted as crossed with the ratio of the highest expressed genes in each subgenome.
doi:10.1371/journal.pone.0036442.g003

Table 2. Dominant gene expression between subgenomes
LF and MFs in B. rapa.

Organisms #2-fold changesa
Not
expressed

Binomial test
(LF & MFs)

LF MF1 MF2

leaf 393 262 233 106 1.42E-11

stem 362 258 228 78 1.48E-08

root 356 273 221 75 2.22E-07

Chiifu 363 253 216 50 7.06E-10

L58CX 355 229 194 29 1.16E-12

a: number of genes expressed at least two-fold higher compared to both of the
other two syntenic genes.
doi:10.1371/journal.pone.0036442.t002

Table 3. Dominant gene expression between subgenomes
MF1 and MF2 in B. rapa.

Organisms

#2-fold
changes Not expressed Binomial test

MF1 MF2

leaf 627 555 165 3.89E-02

stem 617 544 121 3.45E-02

root 643 537 128 2.22E-03

Chiifu 620 538 80 1.73E-02

L58CX 616 552 46 6.52E-02

doi:10.1371/journal.pone.0036442.t003

Subgenome Dominance in Brassica rapa

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e36442



for studying mesopolyploid genome differentiation and offers an

opportunity to study evolutionary events on an intermediate

timescale. We previously proposed a ‘two-step polyploidization’

hypothesis to explain the gene density difference in subgenomes of

B. rapa [13]. Here, using more genomic datasets and accurate

subgenome partition, we observed dominant expression of genes in

a subgenome with higher gene density and ongoing biased gene

fractionation between subgenomes of B. rapa. We hypothesize that

both differential methylation and ‘two-step polyploidization’

played important roles in B. rapa genome evolution.

Methods

Identification of syntenic genes
For most genes in B. rapa, their syntenic genes in A. thaliana were

determined by both sequence similarity and the colinearity of

flanking genes. To obtain syntenic genes, we simplified the analysis

of genes that are organized in tandem repeats, using one gene for

each array as a representative. Tandem genes were defined as

homologous gene clusters that contained no more than one non-

homologous gene [20]. All protein sequences derived from

predicted gene models of B. rapa were then compared to genes

of A. thaliana using BLASTP. The gene pair with the best hit or any

with an e-value,1.0E-20 were further analyzed. In this step,

almost every gene of B. rapa obtained several homologous genes in

A. thaliana. The flanking genes of theses homologous gene pairs

were then used to exclude nonsyntenic gene pairs. For every B.

rapa gene, we counted the numbers of best hit gene pairs in A.

thaliana for both flanking regions of chromosome. From each side,

we selected a window of 20 B. rapa genes and 100 A. thaliana genes

and counted the best hit pairs among them as m (left side) and n

(right side). We calculated (m+n)/40 as the support ratio. A

homologous gene from A. thaliana was determined as the syntenic

ortholog of a particular B. rapa gene when it had the highest

flanking support ratio and a ratio .0.4.

Defining the high confidence homoeolog and fully
retained homoeolog gene sets

A B. rapa gene was considered as ‘‘high confidence’’ when it was

based on start and stop codons and the gene model was supported

by cDNA, EST, or mRNA-seq data (40,985 out of the 41,174 total

predicted genes satisfied this criterion). Then these high confidence

B rapa genes were used to find syntenic orthologs in A. thaliana;

27,542 of 40,985 genes had syntenic orthologs. Each A. thaliana

gene had one, two, or three syntenic orthologs in B. rapa; multiple

orthologs are homoeologs. For each A. thaliana gene, if there were

any unannotated syntenic blast hits detected in any of the

subgenomes in B. rapa, then the corresponding homoeologs were

eliminated (26,533 of 27,542 genes). Additionally, a homoeolog

was removed if it belongs to a local (tandem) gene array in either

B. rapa or A. thaliana, because these genes add complexity to the

interpretation of gene expression data and are known to change

copy number rapidly (23,716 of 26,533 genes). Finally, 23,716

genes in 14,927 high confidence homoeolog pairs were generated.

There were 1,675 high confidence homoeologs comprising three

copies in B. rapa, one from each of the three subgenomes.

Gene expression level determination
The mRNA extractions from three organs (root, stem and leaf

of Chiifu-401/42 seedlings harvested from 5-leaves plants growing

in greenhouse), and two pooled mRNA extractions (B. rapa Chiifu-

401/42 and a cultivar line L58) [13] were prepared for

sequencing. mRNAs were purified by beads with dT-oligos and

then fragmented into short sequences using a RNA fragmentation

kit (Ambion). cDNA libraries with insert sizes of ,300 bp were

constructed following the manufacturer’s instructions (Illumina

GAII) and 90 bp paired-end reads were generated using the

Illumina HiSeqTM 2000 platform. We obtained about 30,40 M

reads for each of the above RNA samples. Reads containing the

sequence adapters or that were of low quality (the number of ‘N’

bases exceeded 5% or the number of bases whose Phred-like score

was less than 5 exceeded 50%) were removed from the raw data.

Reads were then mapped to genes of Chiifu-401/42 using the

SOAP2 package [29], allowing a maximum of two mismatches.

Uniquely mapped reads that were located completely in exons

were used in the expression level determination. Finally, gene

expression levels were calculated in units RPKM [30]. RPKM files

for gene expression and the raw reads files are available at http://

brassicadb.org/brad/genomeDominanceData.php.

SNP and InDel discovery in the resequencing data
Pair-ends resequencing data of three libraries, with insert sizes

of ,300 bp, ,500 bp and ,2,000 bp for both L144 and Turnip

were generated on using an Illumina HiSeqTM 2000 platform.

Reads containing the sequence adapters or that were of low

quality (the number of ‘N’ bases exceeded 5%, or the average

Phred-like score was ,20) were removed, and only one copy of the

duplicated pair-ends reads was kept. Reads were mapped to the

Chiifu genome using BWA [22]. Data from different libraries were

independently mapped and the map results were merged to call

variants (SNPs and InDels). The Samtools package was used to call

variants from the merged file [23]. Only reads with a map quality

above 30 and bases with quality above 13 were used to call

variants. Heterozygous variants (#reads of reference allele ,3,

#reads of derived allele .5; ‘‘derived allele’’ means that it is

different from the reference allele) were removed, and only

homozygous variants that were covered by at least five unique

reads were used as data for our experiments.

Table 4. Variants showing no biased distribution among the three subgenomes in B. rapa cultivar lines L144 and Turnip.

Sample Variant Subgenomes (per gene) x2 test

LF MF1 MF2

L144 #SNP 36,124 (19.86) 36,630 (20.14) 35,581 (19.56) 6.92E-01

#InDel 3,271 (1.80) 3,306 (1.82) 3,275 (1.80) 9.70E-01

Turnip #SNP 37,442 (20.58) 37,189 (20.44) 36,075 (19.83) 5.13E-01

#InDel 4,579 (2.53) 4,337 (2.38) 4,318 (2.37) 2.12E-01

#fully retained homoeologs 1,675

doi:10.1371/journal.pone.0036442.t004
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Figure 4. Number of variants (SNPs+InDels) in different regions of fully retained genes (triplets of homeologs) in the three
subgenomes of B. rapa’s cultivar lines L144 and Turnip. Nonsynonymous SNPs and frameshift InDels in genes from subgenome LF are fewer
than those from MFs (p = 9.71E-4, 1.79E-2 for L144; p = 1.74E-11, 1.91E-2 for Turnip). However, no significant differences were observed between MF1
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