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Abstract

We examined the long-term effect of feeding coconut oil (CO; rich in lauric acid, C12) on voluntary food intake and nutrient utilisation in

rainbow trout (Oncorhynchus mykiss), with particular attention to the metabolic use (storage or oxidation) of ingested medium-chain TAG.

Trout were fed for 15 weeks one of the four isoproteic diets containing fish oil (FO) or CO as fat source (FS), incorporated at 5 % (low fat,

LF) or 15 % (high fat, HF). Fat level or FS did not modify food intake (g/kg0·8 per d), despite higher intestinal cholecystokinin-T mRNA in

trout fed the HF-FO diet. The HF diets relative to the LF ones induced higher growth and adiposity, whereas the replacements of FO by CO

resulted in similar growth and adiposity. This, together with the substantial retention of C12 (57 % of intake), suggests the relatively low

oxidation of ingested C12. The down-regulation of carnitine palmitoyl-transferase-1 (CPT-1) confirms the minor dependency of medium-

chain fatty acids (MCFA) on CPT-1 to enter the mitochondria. However, MCFA did not up-regulate mitochondrial oxidation evaluated using

hepatic hydroxyacyl-CoA dehydrogenase as a marker, in line with their high retention in body lipids. At a low lipid level, MCFA increased

mRNA levels of fatty acid synthase, elongase and stearoyl-CoA desaturase in liver, showing the hepatic activation of fatty acid synthesis

pathways by MCFA, reflected by increased 16 : 0, 18 : 0, 16 : 1, 18 : 1 body levels. The high capacity of trout to incorporate and transform

C12, rather than to readily oxidise C12, contrasts with data in mammals and may explain the absence of a satiating effect of CO in

rainbow trout.
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Medium-chain fatty acids (MCFA), which are the principal con-

stituents of medium-chain TAG (MCT), are saturated with a

chain length of six to twelve carbons(1,2). In mammalian ver-

tebrates, the consumption of MCT has been reported to

decrease food intake(3–5) and to reduce fat deposition(6,7).

The satiety effect of MCT compared with long-chain TAG

has been attributed to the metabolic discrimination in fatty

acid utilisation. Long-chain fatty acids (LCFA), after being

packed into chylomicrons, enter the lymphatic system that

favours their uptake by peripheral tissues such as adipose

tissues and muscle(1,2). In contrast, MCFA can enter directly

into the portal vein that accelerates their uptake and oxida-

tion by the liver. As a result, minor amounts of MCFA are

recovered in the different tissues(8,9). Moreover, the transport

of MCFA across the mitochondrial membrane does not require

carnitine palmitoyltransferase-1 (CPT-1)(10), considered as

a rate-limiting step in the mitochondrial oxidation of LCFA.

In this context, the satiating effect of MCFA has been

explained by their rapid oxidation and the limited ‘storage’

of MCFA by the organism. The possible link between oxidative

metabolism, satiety and food intake has been documented in

rats and human subjects(11–13), but has been little studied in

growing teleost fish.

The use of MCT as a dietary lipid source, supplied either as

a blend of C8 and C10(14–16) or in the form of C12-rich coco-

nut oil (CO)(17–21) or both(22,23), has been evaluated in several

species of farmed fish, mainly in view of the replacement of

fish oil (FO) derived from wild-caught marine resources.

Overall, the digestibility of MCT appears high (.85 %) in

both warm-water(21) and cold-water fish species(16,17,24).

Data on MCT utilisation for growth or energy are more contro-

versial. Moreover, since most applied a fixed feeding

ration(14,19,22) or used small fish larvae fed in excess(15,23),

only a limited number of studies have explicitly reported
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data on voluntary food intake. Like in homeotherms, MCFA in

fish were found to result in a loss of adiposity(21,23) and to

reduce food intake in polka-dot grouper(21) and Atlantic

salmon(16). Regardless of apparent species-specific differ-

ences, MCT have been shown to be more efficiently utilised

by fish when provided as lauric (C12) than as caprylic (C8)

acid(15,22,23). Furthermore, the inverse relationship between

MCT and food intake, growth or fat deposition seems to be

exacerbated at high dietary MCT levels(16,21).

The objective of the present long-term feeding study was to

examine the relationship between voluntary food intake and

nutrient utilisation for growth (body composition and circulat-

ing nutrients) in rainbow trout (Oncorhynchus mykiss), with a

particular attention to the metabolic use (storage or oxidation)

of the ingested lipids. For that propose, CO rich in C12 MCFA,

was chosen to replace FO, rich in LCFA, at two incorporation

levels: 5 % (low fat, LF) or 15 % (high fat, HF). Key metabolic

factors involved in fatty acid synthesis and oxidation were

analysed in the liver and muscle of rainbow trout in order to

compare the effects of feeding MCFA and LCFA. The

expression of intestinal cholecystokinin (CCK) as a function

of the nutritional status was also evaluated for the first time

in this species.

Materials and methods

Diets

In the present study, four experimental diets were formulated

to be isoproteic (480 g/kg DM) using fishmeal as the

major protein source. The fishmeal contained approximately

80 g/kg residual fat, which allows fulfilling the essential fatty

acid requirement of rainbow trout(25). The four diets contained

either FO or CO as the lipid source at two incorporation levels:

5 % (LF) or 15 % (HF). The oils were added at the expense of

gelatinised starch. The ingredient and proximate composition

of the diets are presented in Table 1. Table 2 gives the details

of the fatty acid profile of the diets.

Growth trial

The growth study was conducted following the Guidelines of

the National Legislation on Animal Care of the French Ministry

of Research (Decret no. 2001-464, 29 May 2001) and was

approved by the Ethics Committee of INRA (according to

INRA 2002-36, 14 April 2002). Rainbow trout were obtained

and reared at the INRA experimental fish farm of Donzacq

(Landes, France) in a flow-through rearing system supplied

with natural spring water at constant temperature (17 ^ 18C)

under natural photoperiod (October to January) conditions.

Each of the four diets was carefully fed by hand to apparent

satiation (two meals per d) to triplicate groups of fish (71·3 g

initial body weight, thirty-five individuals/tank, 350 litres/

tank). The feeding trial lasted 105 d. The amount of food

ingested by each group was recorded weekly. At the begin-

ning (twelve fish/tank) and end (six fish/tank) of the feeding

trial, a sample of 36 h food-deprived fish was randomly taken

Table 2. Fatty acid composition of the diets (g/100 g total fatty acid)

Diets

HF LF

CO FO CO FO

10 : 0 3·3 0·1 2·2 ND
12 : 0 31·8 0·7 19·6 0·2
14 : 0 14·5 5·8 10·7 5·7
16 : 0 11·7 16·0 12·9 16·3
18 : 0 2·8 3·3 2·6 3·0
20 : 0 0·1 0·2 0·1 0·2
SSaturates 64·5 27·1 48·5 26·4
16 : 1 1·2 4·9 2·3 4·6
18 : 1 10·0 15·9 10·8 14·7
20 : 1 2·2 5·4 3·9 6·0
22 : 1 3·4 4·5 6·2 7·0
SMUFA 16·9 30·8 23·3 32·3
18 : 2n-6 4·9 3·8 6·3 5·7
18 : 3n-6 ND 0·1 0·1 0·1
20 : 2n-6 0·1 0·2 0·2 0·2
20 : 3n-6 ND 0·1 ND 0·1
20 : 4n-6 0·2 0·7 0·3 0·6
Sn-6 5·3 4·9 6·9 6·7
18 : 3n-3 0·5 0·8 0·8 1·0
18 : 4n-3 0·5 1·6 1·0 1·6
20 : 3n-3 ND 0·1 0·1 0·1
20 : 4n-3 0·2 0·8 0·4 0·7
20 : 5n-3 2·2 9·4 4·0 8·1
22 : 5n-3 0·2 2·2 0·8 1·8
22 : 6n-3 1·9 13·1 7·3 12·3
Sn-3 5·6 28·6 14·4 26·2
PUFA 11·6 37·0 22·6 35·9
SFA:PUFA 5·6 0·7 2·2 0·7
SFA 93·0 94·4 94·9 94·6

HF, high-fat; LF, low-fat; CO, coconut oil; FO, fish oil; ND, not detected;
FA, fatty acid.

Table 1. Ingredient and proximate composition of the diets (DM basis)
fed to rainbow trout

Diets

HF LF

CO FO CO FO

Ingredients (g/kg)
Fishmeal* 380 380 380 380
Wheat gluten† 200 200 200 200
Whole wheat‡ 120 120 120 120
Gelatinised starch, maize† 110 110 210 210
CO§ 150 50
FO* 150 50
Vitamin mixk 10 10 10 10
Mineral mixk 10 10 10 10
Binder{ 20 20 20 20

Proximate composition
DM (g/kg) 909 918 917 916
Crude protein (g/kg DM) 478 475 480 480
Crude lipids (g/kg DM) 211 213 111 108
NFE (g/kg DM)** 250 251 346 351
Gross energy (MJ/kg DM) 23·6 24·0 21·7 21·6
Ash (g/kg DM) 60·7 61·0 62·8 61·3

HF, high-fat; LF, low-fat; CO, coconut oil; FO, fish oil; NFE, nitrogen-free extract.
* Sopropêche, Lorient, France.
† Roquette, Lestrem, France.
‡ Ets Union Invivo Inzo, Argentan, France.
§ Daudruy van Cauwembergher, Dunkerque, France.
k INRA UPAE, Jouy en Josas, France.
{Sodium alginate, Louis François, Croissy Beaubourg, France.
** NFE ¼ DM 2 protein 2 fat 2 ash.
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and stored at 2208C for subsequent whole body composition

analyses. At the end of the feeding trial, all fish were anaesthe-

tised with 2-phenoxyethanol (0·2 ml/l). Muscle, liver and

foregut (nine fish/treatment) were dissected at 7 h post-

feeding, immediately frozen in liquid N2 and stored at

2808C for the subsequent analysis of enzyme activity and

gene expression. Liver and viscera were weighed to calculate

the hepatosomatic index and the viscerosomatic index. At 7

and 46 h post-feeding, blood samples were taken by caudal

vein puncture and collected into tubes containing sodium

fluoride (2 %) and potassium oxalate (4 %) as anticoagulant.

Plasma samples, obtained after centrifugation (3000 g for

15 min at 48C), were stored at 2208C for further analyses.

Feed and whole-body analyses

Whole fish (36 h starved) were pooled per tank, ground and

subsequently freeze-dried. Feed and whole-body samples

were analysed for DM (1058C for 24 h), ash by combustion

in a muffle furnace (5508C for 12 h), crude protein (Kjeldahl;

N £ 6·25, Nitrogen analyser 2000; Fison Instruments, Milan,

Italy) after acid digestion and gross energy content by an

adiabatic bomb calorimeter (model C5000; IKA-Werke, Heiter-

sheim, Germany). Lipids were extracted from feed and whole-

body samples according to the method of Folch and fatty acid

methyl esters were determined as described previously(26).

Plasma metabolite assays

Plasma glucose, TAG and NEFA were determined using com-

mercial kits: ‘Glucose RTU’ (no. 61 269) and ‘Triglycérides

Enzymatique’ PAP 150 (no. 61 236) from Bio-Mérieux

(Marcy-L’Etoile, France) and ‘NEFA-C’ from Wako (Neuss,

Germany), respectively. Plasma samples were analysed for

the presence of acetoacetate following the enzymatic

method as described previously(27).

Enzyme activity measurement

Fatty acid synthase (FAS, EC 2.3.1.85) and 3-hydroxyacyl-CoA

dehydrogenase (HAD, EC.1.1.1.35) activities were determined

in rainbow trout liver according to Figueiredo-Silva et al.(26)

and Kolditz et al.(28), respectively. Enzyme activity (units IU),

defined as mmol of substrate converted to product, per min,

at assay temperature, is expressed per mg soluble protein

(specific activity). Soluble protein content (Bradford method)

was determined using a protein assay kit (Bio-Rad, Munich,

Germany) and bovine serum albumin as a standard.

Gene expression analysis: quantitative RT-PCR

Total RNA was extracted from liver, muscle and intestine using

TRIzol (Invitrogen, Carlsbad, CA, USA). For each experimental

condition, nine individual samples were used as biological

replicates. Total RNA was quantified by spectrophotometry

(absorbance at 260 nm) and integrity was controlled using

the Agilent 2100 bioanalyser (Agilent Technologies, Kista,

Sweden). Total RNA (1mg) was reverse-transcribed to T
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complementary DNA with the SuperScript III RNase H reverse

transcriptase kit (Invitrogen) using oligo(dT)15 primers

(Promega, Madison, WI, USA). Reverse transcription of each

RNA extract was performed in duplicate. Real-time PCR was per-

formed with the iCycler iQ (Bio-Rad, Hercules, CA, USA) on tri-

plicates of 10ml of the RT reaction mixtures using the iQ SYBR

green Supermix (Bio-Rad). The total volume of the PCR mixture

was 25ml, containing 200 nM of primers. Gene abbreviations,

database accession numbers and the sequences of the

forward and reverse primers used for the analysis of gene

expression are shown in Table 3. The stearoyl-CoA desaturase

(SCD) unannotated sequence of rainbow trout (FP323026.1)

was identified based on sequence similarities with annotated

SCD sequences from other species, i.e. Atlantic salmon, Salmo

salar (National Center for Biotechnology Information (NCBI),

NM_001139980), common carp, Cyprinus carpio (GenBank

U31864.2 and AJ249259.1) and zebrafish, Danio rerio

(NM_198815). Specific primers for SCD- and CCK-like pairs

were designed using Primer3 software and chosen to contain

an overlapping intron when possible, using known sequences

in nucleotide databases (GenBank and National Institute of

Agronomic Research INRA-Sigenae; http://www.sigenae.org/

). SCD- and CCK-like PCR products were run on a 2 % agarose

gel to check that only one fragment was amplified (i.e. absence

of genomic DNA amplification) and sequenced to ensure that

the correct mRNA sequences were quantified.

A total of thirty-five steps of PCR were performed, each one

consisting of heating at 958C for 20 s for denaturing, and at

558C (CPT1), 598C (b-actin, elongation factor 1-a, HAD and

SCD) or 608C (acyl-CoA oxidase (ACOX), delta-6-desaturase,

CCK, fatty-acyl-chain elongase protein 3 and FAS) for 30 s,

for annealing and extension. After the final cycle of the PCR,

melting curves were systematically monitored (increasing

set-point temperature from 59 to 958C by 0·58C/10 s). Negative

controls (sample without RT and samples without RNA) were

run for each reaction. mRNA levels of the target genes in

muscle and liver were normalised to the housekeeping gene

a-elongation factor 1, and those in the intestine (for CCK-

like peptides) to b-actin. Expression levels were calculated

using the mathematical model described previously(28).

Table 4. Growth performance, feed efficiency (FE), food intake (FI) and gross energy intake (EI) of rainbow trout fed different dietary fat sources (FS)
and fat levels (FL) over 105 d at 17 ^ 18C†

(Mean values and standard deviations, n 3)

Diets

HF LF

PCO FO CO FO

Mean SD Mean SD Mean SD Mean SD FS FL FS£FL

Initial body weight (g) 71·4 0·6 71·2 1·2 71·3 1·0 71·2 1·2 NS NS NS
Final body weight (g) 379·6 32·8 398·7 7·8 348·2 4·13 353·5 13·0 NS ** NS
DGI‡ 2·9 0·2 3·1 0·1 2·8 0·04 2·8 0·1 NS ** NS
PER§ 2·2 0·2 2·2 0·02 1·9 0·04 1·9 0·1 NS ** NS
FEk 1·0 0·1 1·0 0·01 0·9 0·02 0·9 0·02 NS * NS
FI (g/fish per d) 2·9 0·1 3·0 0·04 2·8 0·01 2·9 0·03 * NS NS
FIMBW (g/kg20·8 per d){ 12·1 0·4 12·6 0·2 12·5 0·03 12·6 0·2 NS NS NS
EIMBW (kJ/kg20·8 per d){ 315·8 9·9 327·8 4·1 294·4 0·8 296·1 7·2 NS ** NS

HF, high-fat; LF, low-fat; CO, coconut oil; FO, fish oil; DGI, daily growth index; PER, protein efficiency ratio; MBW, metabolic body weight.
P-value for FS, FL and interaction between the main effects of the two tested factors (FS v. FL) are as follows: *P,0·05; **P,0·01 (two-way ANOVA).
† Mean values with no unlike superscript letters indicate no significant interaction between the two dietary factors (FS and FL; P.0·05).
‡ DGI ¼ 100 £ ((final body weight)1/3 2 (initial body weight)1/3) per d.
§ PER ¼ wet weight gain/crude protein intake.
kFE ¼ wet weight gain/dry feed intake.
{FI and EI expressed per kg MBW/d. MBW is calculated as the geometric mean body weight (

ffi

ð
p

initial body weight £ final body weightÞ0·8Þ

(
ffi

ð
p

initial body weight £ final body weight=1000Þ0·8Þ.
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Fig. 1. Postprandial (7 h) gene expression of (A) cholecystokinin (CCK)-T-

and (B) CCK-L-like peptides in the intestine of rainbow trout fed during the

15-week feeding trial with different fat sources (FS: coconut oil (CO) or fish

oil (FO)) and fat levels (FL: high fat (HF) or low fat (LF)). Values are means,

with their standard errors represented by vertical bars, n 9. Expression

values are normalised to the expressed b-actin transcripts. Statistical signifi-

cance for the two independent factors, FS and FL, and their interaction are

indicated as follows: FS, P,0·05; FL, P,0·05; FS £ FL, P,0·05. Mean

values with no unlike letters indicate no significant interaction between the

two dietary factors (FS v. FL; P.0·05). a,b Mean values with unlike letters

were significantly different (P,0·05).
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Statistical analysis

Statistical analyses were performed using STATISTICA 7.0
(StatSoft Inc., Tulsa, OK, USA). All data were tested for
normality and homogeneity of variances by Kolmogorov–
Smirnov and Bartlett tests, and then subjected to a two-way
ANOVA, using fat source (FS) and fat level (FL) as inde-
pendent factors. When the interaction between FS and FL
was significant (P,0·05), individual means were compared
using Tukey’s honestly significant difference test.

Results

At the end of the 15-week feeding trial, the dietary FL (210 v.
110 g/kg), but not the dietary FS (CO v. FO) significantly
affected rainbow trout growth performance (Table 4). Irre-
spective of the FS, fish fed HF diets compared with LF diets
had higher final body weight, with improved daily growth
index, protein efficiency ratio and feed efficiency. Daily food
intake was significantly affected by the FS when expressed
per individual. However, when corrected for the metabolic

weight of the fish, food intakes of the four diets were found

to be similar (Table 4). Energy intake was higher with HF

diets, reflecting the higher energy content of those diets.

The dietary FS and, to a lesser extent, the FL affected the

intestinal expression of CCK-T, however, with a significant

interaction between the two factors (Fig. 1). This interaction

is related to the fact that the stimulating effect of FO on

CCK-T was only seen with the HF diets and not with the LF

diets. No significant differences between the groups were

found for CCK-L-like gene expression (Fig. 1).

As seen for growth parameters, final body composition was

significantly affected by the FL but not by the FS (Table 5).

Whole-body lipid content and lipid and protein gain were

higher in fish fed the HF diets than in fish fed the LF diets,

with an opposite trend for whole-body moisture and relative

protein content. The reduced body lipid content in LF-fed

fish was associated with a reduced viscerosomatic index,

particularly when fed the LF-CO diet. Fish hepatosomatic

index was unaffected by the dietary treatments (Table 5).

Irrespective of the FS, the retention of protein (%, gain/

intake) was slightly improved by the HF level, whereas that

of lipid was higher with the LF diets. An effect of both FS

Table 5. Whole body composition (g/100 g body weight (BW)), nutrient gain (g/fish), nutrient retention and plasma metabolites in rainbow trout fed diets
with different fat sources (FS) and fat levels (FL)

(Mean values and standard deviations, n 3 or 9 for plasma metabolites)

Diets

HF LF

PCO FO CO FO

Mean SD Mean SD Mean SD Mean SD FS FL FS£FL

Final body composition†
Moisture (g/100 g) 68·8 0·7 68·3 0·5 70·6 0·7 70·3 0·4 NS ** NS
Protein (g/100 g) 16·8 0·4 17·0 0·3 17·4 0·5 17·6 0·1 NS * NS
Lipid (g/100 g) 12·4 0·8 12·8 0·7 9·7 0·4 9·6 0·3 NS ** NS
Ash (g/100 g) 2·0 0·03 1·9 0·1 2·0 0·1 2·1 0·1 ** NS NS

HSI (%)‡ 1·2 0·1 1·1 0·2 1·2 0·2 1·1 0·2 NS NS NS
VSI (%)§ 8·0 0·9 7·3 1·2 5·9 0·5 6·3 0·7 NS ** *k
Protein gain (g) 52·1 4·6 56·0 1·0 49·0 1·5 50·8 2·1 NS * NS
Lipid gain (g) 41·5 5·3 45·1 2·9 28·1 1·5 28·3 2·3 NS ** NS
C12 gain (g) 10·9a 0·8 0·2c 0·02 3·9b 0·01 0·1c 0·01 ** ** **
Retention (% intake)

Protein 36·2 2·2 37·2 0·4 34·2 0·9 34·7 1·6 NS * NS
Lipid 65·4 6·2 66·8 4·0 85·0 4·2 86·3 7·6 NS ** NS
C12 57·2b 2·9 39·9b 3·6 56·4b 4·0 173·8a 18·3 ** ** **

Plasma metabolites
Glucose (g/l)

7 h 1·158 0·285 1·161 0·174 1·191 0·278 1·049 0·153 NS NS NS
46 h 1·575 0·340 1·059 0·360 0·859 0·305 0·834 0·233 NS ** NS

NEFA (mEq/l)
7 h 0·49a 0·17 0·22b 0·05 0·19b 0·03 0·17b 0·02 ** ** **
46 h 0·60 0·10 0·39 0·10 0·40 0·12 0·32 0·10 ** ** NS

TAG (g/l)
7 h 6·2 2·4 4·5 1·0 6·4 1·0 4·0 1·5 ** NS NS
46 h 4·8 1·7 4·2 1·0 3·0 1·0 2·7 0·9 NS ** NS

Acetoacetate (mM)
7 h 0·41 0·06 0·31 0·06 0·35 0·06 0·37 0·05 NS NS *k
46 h 0·41a 0·05 0·23b 0·10 0·21b 0·12 0·33a,b 0·07 NS NS **

HF, high-fat; LF, low-fat; CO, coconut oil; FO, fish oil; HIS, hepatosomatic index; VSI, viscerosomatic index.
a,b,c Mean values within a row with unlike superscript letters showed a significant interaction between the two tested factors (FS v. FL; P,0·05).
P value for FS, FL and interaction between the main effects of the two tested factors (FS v. FL): *P,0·05; **P,0·01 (two-way ANOVA).
† Initial body composition (percentage of whole BW): moisture 73·3 %; protein 16·2 %; lipid 8·1 %.
‡ HSI ¼ 100 £ liver weight/final BW.
§ VSI ¼ 100 £ weight of viscera/final BW.
kWithout significant differences after post hoc analysis.
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and FL was observed for the amount of C12 incorporated by

the animal, in absolute (g/individual) as well as in relative

(%, gain/intake) terms. Here, the apparently high relative

retention in the LF-FO group is to be attributed to the very

low amount of C12 in the LF-FO diet. It was observed that

57 % of the ingested C12 was recovered in the body lipids of

trout fed with the CO diets (Table 5).

Whole-body fatty acid composition of rainbow trout fed the

different diets is shown in Table 6. Except for some minor

fatty acids, the whole-body fatty acid profile (percentage of

total fatty acids) of the trout reflected in general terms that of

the diets. The proportion of SFA was almost twice higher in

fish fed the CO diets (53 and 40 % with the HF-CO and LF-CO

diets, respectively) than in fish fed the FO diets (27 % with

both LF-FO and HF-FO diets), mainly due to the efficient C12

and C16 retention. Surprisingly, more than 20 % (percentage

of total fatty acids) of the fatty acids in fish fed the HF-CO diet

were C12 compared with ,1 % in fish fed the HF-FO diet.

Fish fed the FO diets had higher MUFA and PUFA, reflecting

the higher dietary levels. In addition, MUFA percentages were

higher in fish fed the LF diets, irrespective of the FS (Table 6).

Selected key enzymes of lipid metabolism were analysed for

activity in the liver (Fig. 2) and for gene expression in the liver

(Fig. 3) and muscle (Fig. 4). Both hepatic FAS activity and FAS

mRNA expression were affected by the interaction between

the FS and the FL, being higher in fish fed the LF-CO diet.

In muscle, FAS mRNA expression was significantly decreased

by feeding the HF diets compared with the LF diets, but

unaffected by the FS. A significant interaction between the FS

and the FL was observed for fatty-acyl-chain elongase protein

3 and SCD expressions in liver, being higher in fish fed the

LF-CO diet, whereas liver delta-6-desaturase expressions were

unaffected by the diet (Fig. 3).

Regarding the markers involved in fatty acid oxidation, both

CPT1-b and ACOX mRNA expressions in liver showed a sig-

nificant interaction between the FS and the FL, being higher

in fish fed the HF-FO diet (Fig. 3). The increased hepatic

HAD activity (Fig. 2) in trout fed the HF diets was not reflected

in terms of HAD expression (Fig. 3). As for CPT1-b, the

expression of CPT1-a isoform in liver was affected by the

FS, being lower in fish fed the CO diets, but without affected

by the FL (Fig. 3). The effect of the diets on the expression of

fatty acid oxidation markers was less pronounced in muscle

than in liver. The expression of ACOX and CPT1-a was not

affected by the dietary treatment in muscle, while a significant

effect of both FS and FL was found for CPT1-b.

Table 6. Whole-body fatty acid composition (g/100 g total fatty acids) in rainbow trout fed diets with different fat sources (FS) and fat levels (FL)

(Mean values and standard deviations, n 9)

Diets

HF LF

PCO FO CO FO

Mean SD Mean SD Mean SD Mean SD FS FL FS£FL

10 : 0 1·5 0·1 ND 0·6 0·1 ND – – –
12 : 0 21·0a 0·7 0·3c 0·01 10·3b 0·7 0·3c 0·02 ** ** **
14 : 0 11·7a 0·02 4·9c 0·1 7·7b 0·3 4·2d 0·1 ** ** **
16 : 0 15·1b 0·5 17·0a 0·4 17·1a 0·3 17·7a 0·5 ** * *
18 : 0 3·5 0·2 3·5 0·02 3·8 0·04 3·8 0·1 NS ** NS
20 : 0 0·1 0·01 0·1 0·04 0·1 0·03 0·2 0·02 ** * NS
Saturates 53·2a 0·6 26·7c 0·5 40·0b 0·8 26·8c 0·4 ** ** **
16 : 1 4·0c 0·2 6·2a 0·1 5·5b 0·4 6·2a 0·3 ** * **
18 : 1 18·8 0·7 18·9 0·2 22·6 0·4 21·7 0·4 NS ** NS
20 : 1 2·1c 0·1 3·2b 0·1 3·0b 0·01 3·6a 0·2 ** ** **
22 : 1 1·5c 0·1 2·3b 0·1 2·5b 0·1 2·9a 0·1 ** ** **
MUFA 26·6c 0·9 30·7b 0·2 33·6a 0·9 34·5a 0·2 ** ** **
18 : 2n-6 5·5 0·2 5·2 0·1 7·0 0·1 6·4 0·1 ** ** NS
18 : 3n-6 0·16b 0·002 0·15b 0·01 0·18a 0·01 0·13c 0·05 ** NS **
20 : 2n-6 0·4 0·1 0·4 0·02 0·5 0·01 0·5 0·02 NS ** NS
20 : 3n-6 0·2 0·01 0·2 0·01 0·3 0·03 0·3 0·01 NS ** NS
20 : 4n-6 0·3d 0·004 0·7a 0·01 0·4c 0·03 0·6b 0·01 ** NS **
n-6 6·7c 0·2 6·6c 0·1 8·4a 0·1 7·9b 0·1 * ** *
18 : 3n-3 0·6c 0·02 0·9b 0·04 0·9a,b 0·04 1·0a 0·1 ** ** **
18 : 4n-3 0·4d 0·01 1·3a 0·04 0·5c 0·01 0·9b 0·03 ** ** **
20 : 4n-3 0·3c 0·1 1·1a 0·1 0·5b 0·1 1·0a 0·1 ** NS *
20 : 5n-3 1·4d 0·02 7·4a 0·1 1·9c 0·1 4·8b 0·1 ** ** **
22 : 5n-3 0·6d 0·01 2·8a 0·1 0·8c 0·01 2·0b 0·1 ** ** **
22 : 6n-3 5·9c 0·1 13·6a 0·2 8·4b 0·3 13·4a 0·1 ** ** **
n-3 9·2d 0·1 27·8a 0·1 13·2c 0·2 23·6b 0·1 ** NS **
PUFA 16·5d 0·3 36·8a 0·3 22·3c 0·1 33·1b 0·2 ** ** **
SFA:PUFA 3·2b 0·1 0·7a 0·01 1·8c 0·04 0·8a 0·02 ** ** **
SFA 96·3 94·2 95·9 94·4

HF, high-fat; LF, low-fat; CO, coconut oil; FO, fish oil; FA, fatty acid.
a,b,c,d Mean values within a row with unlike superscript letters showed a significant interaction between the two tested factors (FS v. FL; P,0·05).
P value for FS, FL and interaction between the main effects of the two tested factors (FS v. FL): *P,0·05; **P,0·01 (two-way ANOVA).
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Levels of plasma glucose, TAG and NEFA at 7 and 46 h after

the meal are presented in Table 5. The replacement of FO by

CO did not affect plasma glucose levels but significantly

increased plasma TAG at 7 h and NEFA at 46 h after the

meal. Feeding the HF diets compared with the LF diets

increased circulating NEFA, TAG and also glucose at 46 h.

In addition, NEFA were affected by the interaction between

the FS and the FL at 7 h, being higher in fish fed the HF-CO

diet. Plasma acetoacetate levels were significantly affected by

the interaction between the FS and the FL, in particular 46 h

after the last meal (Table 5).

Discussion

Enhanced satiety and reduced food intake have been reported

in homeotherms fed diets containing C12-rich CO or other

sources of MCFA(3–5). In teleosts, data on the effect of dietary

MCT on voluntary food intake are limited. However, the

negative relationship between food intake and the MCT load

(a 1:1 blend of C8:C10) in Atlantic salmon(16) agrees with

the appetite-suppressive effect of MCT reported in mammals.

Similarly, food intake of polka-dot grouper fed a diet contain-

ing 15 % CO, equivalent to the amount used in the present

study, dropped by 50 % compared with the FO-based control

diet, whereas the 30 % CO level reduced intakes to such an

extent that growth was severely compromised(21). In contrast,

the CO diets in the present study only slightly (3 %) reduced

food intake when expressed on an individual basis, and not

at all when corrected for the metabolic body weight of the

rainbow trout. This absence of an inhibitory effect of CO on

food intake has also been shown in sunshine bass in which

food intake (percentage of whole body weight) was un-

affected by the replacement of 15 % FO by 10 % CO and 5 %

palm oil(20). In that study, fish fed the CO diet had, however,

reduced growth, in line with other findings in fish fed

MCT(19,21). In contrast, the final body weight of the present

rainbow trout, which increased five-fold during the 15-week

feeding trial, was not affected by the presence of CO, irrespec-

tive of its level (5 or 15 %). Regarding the effect of the dietary

FL, trout fed the HF diets had a higher final body weight,

mainly related to the higher amount of body fat as expected

from other studies with salmonids(28,29). Importantly, food

intake or energy intake was not reduced by the high energy

level of the HF diets. This contrasts with reports that rainbow

trout adjust food intake so as to ingest a fixed amount of diges-

tible energy(30–32), but agrees with our previous observations

that food intake in (rapidly) growing rainbow trout is not

retro-inhibited by the dietary fat or energy level when fed a

diet non-limiting in protein(33).

The gut is the first organ involved in the signalling of

hunger and satiety induced by the dietary nutrient supply.

CCK, secreted by the proximal intestine, has been documen-

ted to suppress food intake in many species(34) including

fish(35). Also in rainbow trout, indirect evidence suggests an

anorectic role for CCK, as shown by enhanced feeding follow-

ing administration of CCK receptor antagonists(36). In rainbow

trout, three putative CCK-8 peptides, CCK-N, CCK-L and

CCK-T (containing a different amino acid in position 6 from

the C-terminal), have been identified, with the CCK-L and

CCK-T transcripts being predominantly detected in the entire

gut(37). In fish, information on intestinal gene expressions of

CCK as a function of nutritional status is limited to the com-

parison of fed v. starved fish, showing that starvation

decreases intestinal CCK gene expression in yellowtail(38),

but not significantly in Atlantic salmon (CCK-L/N)(39). Besides,

in fish, only one study so far has quantified changes in plasma

CCK in response to diet composition, showing an increased

amount of circulating CCK in rainbow trout fed HF diets, con-

sistent with its presumed role as a satiety agent(40). To our

knowledge, there are no further data in teleosts on the post-

prandial regulation of CCK release (gene expression or circu-

lating levels) by the dietary FL or fatty acid profile. Using a

murine enteroendocrine cell line, C12, given as NEFA, has

been reported to induce an acute CCK release(41), whereas

the finding that intraduodenal infusion of C12 relative to C18

in human subjects did not modify CCK secretion suggests

that CCK is not directly responsible for the satiating effect of

C12(42). Furthermore, when supplied as a TAG, long-chain

TAG appear to be more effective in stimulating CCK release

than MCT(43), which has been attributed to the rapid absorp-

tion and hence lower exposure time of MCT to the foregut.

Also in the present study, rainbow trout fed the long-

chain TAG-rich HF-FO diet displayed increased postprandial

CCK-T transcript levels, however, without reducing the fed
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Fig. 2. Postprandial (7 h) specific activities of (A) fatty acid synthase (mIU/mg protein) and (B) 3-hydroxyacyl-CoA dehydrogenase (mIU/mg protein) in the liver of

rainbow trout fed during the 15-week feeding trial with different fat sources (FS: coconut oil (CO) or fish oil (FO)) and fat levels (FL: high fat (HF) or low fat (LF)).

Values are means, with standard deviations represented by vertical bars, n 9. Statistical significance for the two independent factors, FS and FL, and their

interaction are as follows: (A) FS, P,0·05; FL, P,0·01; FS £ FL, P,0·05; (B) FS, P¼0·66; FL, P,0·01; FS £ FL, P ¼ 0·96. Mean values with no unlike letters

indicates no significant interaction between the two dietary factors (FS v. FL; P.0·05). a,b Mean values with unlike letters were significantly different (P,0·05).
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intake. On the other hand, CCK-L transcript levels were un-

affected by the FS or FL, which coincides with the similarity

in food intake in the four groups. Further studies on the dietary

regulation of the gene expression and circulating levels of

the different CCK-8 peptides are necessary to elucidate the med-

iating role of CCK in food intake regulation in rainbow trout.

Evidence in mammals indicates that it is the metabolic utili-

sation of the ingested nutrients that determines satiety and

feeding behaviour(11–13). In this respect, it has been hypoth-

esised that fat which is oxidised enhances satiety in contrast

to fat which is stored. As such, the satiating effect of MCT

has been explained by the small storage capacity of MCFA

compared with LCFA(1,2), reflected by the loss of adiposity,

as shown in terrestrial vertebrates(6,7) as well as in tele-

osts(21,23) fed MCT. Conversely, in the present study, the

trout fed the CO and FO diets accumulated and retained

(gain/intake) similar amounts of body lipids. Even more sur-

prising is that the final whole-body fatty acid profile consisted

for over 10 and 20 % of C12 in trout (46 h starved) fed the

LF-CO and HF-CO diets, respectively, compared with less

than 1 % in FO-fed trout. As a result, over 50 % of the body

fatty acids were saturated in HF-CO-fed rainbow trout, how-

ever, without visible detrimental effects on the fish. The

substantial C12 retention (57 %) roughly indicates that more

than half of the ingested C12 was stored, irrespective of the

dietary CO level. This contrasts with low C12 retentions in
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Fig. 3. Postprandial (7 h) expression of selected genes (A) fatty acid synthase, (B) fatty-acyl-chain elongase protein 3, (C) delta-6-desaturase, (D) stearoyl-CoA

desaturase, (E) carnitine palmitoyl transferase 1 a, (F) carnitine palmitoyl transferase I b, (G) 3-hydroxyacyl-CoA dehydrogenase and (H) acyl-CoA oxidase in the

liver of rainbow trout fed during the 15-week feeding trial with different fat sources (FS: coconut oil (CO) or fish oil (FO)) and fat levels (FL: high fat (HF) or low

fat (LF)). Values are means, with their standard errors represented by vertical bars, n 9. Expression values are normalised to the expressed elongation factor 1a

transcripts. Statistical significance for the two independent factors, FS and FL, and their interaction are as follows: (A) FS, P,0·01; FL, P,0·01; FS £ FL,

P,0·01; (B) FS, P¼0·19; FL, P¼0·33; FS £ FL, P,0·01; (D) FS, P,0·05; FL, P,0·05; FS £ FL, P,0·01; (E) FS, P,0·05; FL, P¼0·34; FS £ FL, P ¼ 0·68;

(F) FS, P,0·01; FL, P,0·05; FS £ FL, P,0·05; (H) FS, P,0·05; FL, P,0·05; FS £ FL, P,0·05. Mean values with no unlike letters indicates no significant inter-

action between the two dietary factors (FS v. FL; P.0·05). a,b Mean values with unlike letters were significantly different (P,0·05).

Long-term effects of feeding medium-chain TAG 1721

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n



rats(8,9) or in other fish such as the polka-dot grouper that

diverted C12 mainly to oxidative pathways(18,21,23), but

agrees with reports in some other teleosts(14,20) and also in

infants(44) suggesting that body lipids contained considerable

amounts of MCFA. Besides, feeding red drum(22) with MCT

did not alter their total body lipid contents. As in mammals(2),

feeding the CO diets activated fatty acid synthesis pathways,

reflected here by increased levels of 16 : 0, 18 : 0, 16 : 1 and

18 : 1 in the body lipids of the trout. Accordingly, CO stimu-

lated the transcription of enzymes involved in fatty acid

synthesis (FAS) and fatty acid elongation/desaturation (fatty-

acyl-chain elongase protein 3 and SCD) in liver, although

significant only at the low incorporation level (interaction

between the FS and the FL). Yet, the present experimental

diet design does not allow to distinguish whether the latter

changes result from a higher CO or from a lower FO supply,

taking into account the inhibitory effect of PUFA on FAS(45)

and SCD(46). Enhanced lipogenesis in trout fed CO is also

suggested by the elevated level of circulating TAG, as seen

in mammals following chronic MCT consumption(47). On the

other hand, reduced FAS in skeletal muscle and liver with

both HF diets corroborates the inhibitory effect of increased

dietary lipid (and/or decreased dietary starch) on lipogenic

activity, as documented earlier in teleosts(48) and found here

to be independent of the fatty acid profile.

The hypothesis of a lower satiating power of lipids when

stored rather than oxidised(11–13) has received little attention

in teleosts, but has been proposed to explain the absence of

food intake adjustments according to the digestible energy

level in a foregoing study with rainbow trout fed increasing

amounts of FO(33). A common point between the latter and

the present study, apart from the fact that food intake in

both studies appeared to be unregulated by the dietary lipid

level, is that the dietary protein level largely covered the

requirements for lean body growth (as determined by the gen-

etic growth potential and experimental conditions). This

allows, at least to a certain extent, the storage of the fat

ingested in excess, which, according to Friedman(11), might

in turn explain why FO is not being perceived as satiating

by the fast-growing trout(33). The present results extend this

idea in that the similar lipid retention and hence the apparent

lack of a preferential oxidation of MCFA possibly account for

the absence of a suppressive effect of CO on food intake in

the present study. In contrast, the satiating effect of MCT in

rodents has been attributed to increased hepatic fatty acid oxi-

dation and hepatic ATP content(3,4,10). The role of hepatic fatty

acid oxidation in the control of food intake has been evi-

denced in studies with rats, where portal mercaptoacetate

injection, which suppresses fatty acid oxidation by inhibiting

acyl-CoA dehydrogenases, abolished the feeding-inhibitory

effect of high lipid(13) or MCT(3,4). In rats, further evidence

of the importance of hepatic fatty acid oxidation in the

control of food intake is given in a study, in which the admin-

istration of methylpalmoxirate, which blocks CPT1 and thus

mitochondrial LCFA oxidation, stimulated food intake in rats

when fed a diet rich in long-chain TAG but not when fed a

diet rich in MCT(10), probably because MCFA do not require

CPT1 to enter the mitochondria. In fish, no study has so far

compared the effects of MCFA and LCFA on specific markers

of fatty acid oxidation. Earlier studies in rainbow trout have

demonstrated the existence of at least one gene encoding

CPT1, showing a protein sequence identity of 63 and 61 %

with human L- and M-CPT1(49). Later work in rainbow trout

has identified different CPT1 isoforms, designated as a, b, c

or d (our laboratory(28)) or as multiple a- and b-isoforms(50).

The present data confirm the presence of both CPT1a and b

isoforms in the skeletal muscle and liver of rainbow

trout(28,51). Moreover, the increased level of CPT1 transcripts
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Fig. 4. Postprandial (7 h) expression of selected genes (A) fatty acid synthase, (B) acyl-CoA oxidase, (C) carnitine palmitoyl transferase 1 a and (D) carnitine pal-

mitoyl transferase I b in the muscle of rainbow trout fed during the 15-week feeding trial with different fat sources (FS: coconut oil (CO) or fish oil (FO)) and fat

levels (FL: high fat (HF) or low fat (LF)). Values are means, with their standard errors represented by vertical bars, n 9. Expression values are normalised to the

expressed elongation factor 1a transcripts. Statistical significance for the two independent factors, FS and FL, and their interaction are as follows: (A) FS,

P¼0·11; FL, P,0·05; FS £ FL, P¼0·19; (D) FS, P,0·05; FL, P,0·05; FS £ FL, P¼0·10. Mean values with no unlike letters indicates no significant interaction

between the two dietary factors (FS v. FL; P.0·05).
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(except for muscle CPT1-a) in liver and skeletal muscle when

fed FO compared with CO probably confirms the higher

dependency of LCFA than MCFA on CPT1 to enter the mito-

chondria(10). In liver, this effect on CPT1-b was significant

only at high FO supply, whereas in skeletal muscle, both

fatty acid type (LCFA) and lipid level (HF) enhanced its

expression. The up-regulation of CPT1-b transcription by diet-

ary lipid and the tissue-specificity of the dietary regulation of

the different CPT1 isoforms corroborate previous observations

in rainbow trout(28,51,52). The apparent lower dependency of

MCFA on CPT1 transcription was, however, not accompanied

by enhanced mitochondrial fatty acid oxidation as suggested

by similar hepatic HAD activity and expression in CO- and

FO-fed fish. In addition, feeding MCFA neither increased

hepatic peroxisomal fatty acid oxidation, measured by ACOX

expression, despite some reports on the importance of per-

oxisomes in the catabolism of lauric acid and MCFA in

mammals(2) or fish(53). The above findings are consistent with

the apparent absence of preferential CO oxidation in trout as

suggested by the body composition analyses. Conversely, the

high v. low lipid supply increased the hepatic activity of

HAD and ACOX expression, in line with previous findings

in trout(28).

In mammals fed high-MCT loads, the enhanced delivery of

NEFA to the liver and their subsequent oxidation to acetyl-CoA

favour the production of ketone bodies (acetoacetate and

b-hydroxybutyrate), which are assumed to play a role in the

satiating effect of MCT(2). The concentrations of acetoacetate

found here (0·2–0·4 mM) are within the range of values

reported earlier in rainbow trout(54) or sea bass(55). The

higher plasma acetoacetate in trout fed the MCT-rich diet

(HF-CO) was, however, not associated with a reduced food

intake (corrected for the metabolic body weight of the fish).

This might be related to the fact that NEFA represents a

more relevant energy fuel for fish brain than ketone

bodies(55). The question whether higher levels of ketone

bodies induced by higher MCT levels repress food intake

warrants, however, further investigation in rainbow trout and

other teleosts.

Another interesting point concerns the fasted (46 h) plasma

glucose levels, being higher in trout fed the HF diets com-

pared with LF diets, particularly with the HF-CO diet. Since

the HF diets contained 10 % less starch than the LF diets, circu-

lating glucose was expected to be lower in HF-fed trout at 7

and 46 h after the meal. The opposite trend between dietary

starch and postprandial glucose may reflect impaired glucose

tolerance, as found in mammals fed high dietary lipid(56). This

observation deserves specific attention, especially considering

the poor glucose utilisation and prolonged postprandial

hyperglycaemia in rainbow trout(57) and the development of

metabolic disorders associated with impaired food intake

regulation in mammals chronically fed HF diets(56).

The present 15-week feeding study shows that a dietary

supply of MCT, in the form of CO, does not reduce food

intake in rainbow trout. In contrast to observations in terres-

trial vertebrates, which attributed the satiating effect of CO

to the rapid oxidation and low retention of C12, rainbow

trout was found to deposit a large part and elongate/

desaturate some of the C12 to longer-chain fatty acids rather

than readily oxidise it, which may explain the failure of

MCT in creating a satiety effect in rainbow trout.
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31. Gélineau A, Corraze G, Boujard T, et al. (2001) Relation
between dietary lipid level and voluntary feed intake,
growth, nutrient gain, lipid deposition and hepatic lipogen-
esis in rainbow trout. Reprod Nutr Dev 41, 487–503.

32. Yamamoto T, Shima T, Unuma T, et al. (2000) Voluntary
intake of diets with varying digestible energy contents and
energy sources, by juvenile rainbow trout Oncorhynchus
mykiss, using self-feeders. Fish Sci 66, 528–534.

33. Geurden I, Gondouin E, Rimbach M, et al. (2006) The eva-
luation of energy intake adjustments and preferences
in juvenile rainbow trout fed increasing amounts of lipid.
Physiol Behav 88, 325–332.

34. Moran TH & Kinzig KP (2004) Gastrointestinal satiety signals
II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol
286, 183–188.

35. Volkoff H, Canosa LF, Unniappan S, et al. (2005) Neuro-
peptides and the control of food intake in fish. Gen Comp
Endocrinol 142, 3–19.

36. Gelineau A & Boujard T (2001) Oral administration of
cholecystokinin receptor antagonists increase feed intake
in rainbow trout. J Fish Biol 58, 716–724.

37. Jensen H, Rourke IJ, Moller M, et al. (2001) Identification
and distribution of CCK-related peptides and mRNAs in the
rainbow trout, Oncorhynchus mykiss. Biochim Biophys Acta
1517, 190–201.

38. Murashita K, Fukada H, Hosokawa H, et al. (2006)
Cholecystokinin and peptide Y in yellowtail (Seriola
quinqueradiata): molecular cloning, real-time quantitative
RT-PCR, and response to feeding and fasting. Gen Comp
Endocrinol 145, 287–297.

39. Murashita K, Kurokawa T, Nilsen TO, et al. (2009) Ghrelin,
cholecystokinin, and peptide YY in Atlantic salmon (Salmo
salar): molecular cloning and tissue expression. Gen Comp
Endocrinol 160, 223–235.

40. Jonsson E, Forsman A, Einarsdottir IE, et al. (2006) Circu-
lating levels of cholecystokinin and gastrin-releasing peptide
in rainbow trout fed different diets. Gen Comp Endocrinol
148, 187–194.

41. Benson RSP, Sidhu SS, Jones MN, et al. (2002) Fatty acid sig-
nalling in a mouse enteroendocrine cell line involves fatty
acid aggregates rather than free fatty acids. J Physiol 538,
121–131.

42. Feltrin KL, Little TJ, Meyer JH, et al. (2008) Comparative
effects of intraduodenal infusions of lauric and oleic acids
on antropyloroduodenal motility, plasma cholecystokinin
and peptide YY, appetite, and energy intake in healthy
men. Am J Clin Nutr 87, 1181–1187.

43. Hopman WPM, Jansen J, Rosenbusch G, et al. (1984) Effect of
equimolar amounts of long-chain triglycerides and medium-
chain triglycerides on plasma cholecystokinin and gallblad-
der contraction. Am J Clin Nutr 39, 356–359.

44. Sarda P, Lepage G, Roy CC, et al. (1987) Storage of medium-
chain triglycerides in adipose-tissue of orally fed infants.
Am J Clin Nutr 45, 399–405.

45. Clark SD (2000) Polyunsaturated fatty acid regulation of
gene transcription: a mechanism to improve energy balance
and insulin resistance. Br J Nutr 83, 59–66.

46. Waters KM & Ntambi JM (1996) Polyunsaturated fatty acids
inhibit hepatic stearoyl-CoA desaturase-1 gene in diabetic
mice. Lipids 31, S33–S36.

47. Pfeuffer M & Schrezenmeir J (2002) Milk lipids in diet and
health – medium chain fatty acids (MCFA). Bull Int Dairy
Fed 377, 32–42.

48. Sargent JR, Henderson RJ & Tocher DR (2002) The lipids.
In Fish Nutrition, pp. 182–246 [ JE Halver and RW Hardy,
editors ]. San Diego, CA: Academic Press.

49. Gutieres S, Damon M, Panserat S, et al. (2003) Cloning and
tissue distribution of a carnitine palmitoyltransferase I gene
in rainbow trout (Oncorhynchus mykiss). Comp Biochem
Physiol 135B, 139–151.

A. C. Figueiredo-Silva et al.1724

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n



50. Morash AJ, Le Moine CMR & McClelland GB (2010) Genome
duplication events have led to a diversification in the CPT I
gene family in fish. Am J Physiol Regul Integr Comp Physiol
299, R579–R589.

51. Polakof S, Medale F, Skiba-Cassy S, et al. (2010) Molecular
regulation of lipid metabolism in liver and muscle of rain-
bow trout subjected to acute and chronic insulin treatments.
Domest Anim Endocrinol 39, 26–33.

52. Morash AJ, Bureau DP & McClelland GB (2009) Effects
of dietary fatty acid composition on the regulation of
carnitine palmitoyltransferase (CPT) I in rainbow trout
(Oncorhynchus mykiss). Comp Biochem Physiol 152B,
85–93.

53. Henderson RJ & Sargent JR (1985) Chain-length specificities
of mitochondrial and peroxisimal [beta]-oxidation of fatty

acids in livers of rainbow trout (Salmo gairdneri). Comp Bio-
chem Physiol 82B, 79–85.

54. Phillips JW & Hird FJR (1977) Ketogenesis in vertebrate
livers. Comp Biochem Physiol 57B, 133–138.

55. Zammit VA & Newsholme EA (1979) Activities of enzymes of
fat and ketone-body metabolism and effects of starvation on
blood-concentrations of glucose and fat fuels in teleosts and
elasmobranch fish. Biochem J 184, 313–322.

56. Miesel A, Muller H, Thermann M, et al. (2010) Overfeeding-
induced obesity in spontaneously hypertensive rats: an
animal model of the human metabolic syndrome. Ann
Nutr Metab 56, 127–142.

57. Enes P, Panserat S, Kaushik S, et al. (2009) Nutritional regu-
lation of hepatic glucose metabolism in fish. Fish Physiol
Biochem 35, 519–539.

Long-term effects of feeding medium-chain TAG 1725

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n


