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Abstract

Background: Intakes of n-3 polyunsaturated fatty acids (PUFAs), especially EPA (C20:5n-3) and DHA (C22:6n-3), are known to
prevent fatal coronary heart disease (CHD). The effects of n-6 PUFAs including arachidonic acid (C20:4n-6), however, remain
unclear. d-5 and d-6 desaturases are rate-limiting enzymes for synthesizing long-chain n-3 and n-6 PUFAs. C20:4n-6 to
C20:3n-6 and C18:3n-6 to C18:2n-6 ratios are markers of endogenous d-5 and d-6 desaturase activities, but have never been
studied in relation to incident CHD. Therefore, the aim of this study was to investigate the relation between these ratios as
well as genotypes of FADS1 rs174547 and CHD incidence.

Methods: We applied a case-cohort design within the CAREMA cohort, a large prospective study among the general Dutch
population followed up for a median of 12.1 years. Fatty acid profile in plasma cholesteryl esters and FADS1 genotype at
baseline were measured in a random subcohort (n = 1323) and incident CHD cases (n = 537). Main outcome measures were
hazard ratios (HRs) of incident CHD adjusted for major CHD risk factors.

Results: The AA genotype of rs174547 was associated with increased plasma levels of C204n-6, C20:5n-3 and C22:6n-3 and
increased d-5 and d-6 desaturase activities, but not with CHD risk. In multivariable adjusted models, high baseline d-5
desaturase activity was associated with reduced CHD risk (P for trend = 0.02), especially among those carrying the high
desaturase activity genotype (AA): HR (95% CI) = 0.35 (0.15–0.81) for comparing the extreme quintiles. High plasma DHA
levels were also associated with reduced CHD risk.

Conclusion: In this prospective cohort study, we observed a reduced CHD risk with an increased C20:4n-6 to C20:3n-6 ratio,
suggesting that d-5 desaturase activity plays a role in CHD etiology. This should be investigated further in other
independent studies.
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Introduction

Polyunsaturated fatty acids (PUFAs) are generally believed to

reduce coronary heart disease (CHD) risk [1,2,3,4]. Intakes of n-

3 PUFAs, especially eicosapentaenoic acid (EPA, C20:5n-3) and

docosahexaenoic acid (DHA, C22:6n-3) present in fish oil, are

confirmed to prevent fatal CHD and sudden cardiac death in

both observational studies and large-scale randomized controlled

trials (RCTs) [1,3]. However, direct evidence for the preventive

effect of n-3 PUFAs on non-fatal CHD was only recently

observed in some, but not all, large-scale RCTs [5,6,7]. The

replacement of saturated fatty acids by n-6 PUFAs protected

against incident CHD in a recent meta-analysis including 8

RCTs [8]. As some of these RCTs also included n-3 PUFAs in

addition to n-6 PUFAs [2,8], the effects specific to n-6 PUFAs,

however, remain unclear.

The fatty acid profile of various biological tissues is often used

as a biomarker of dietary fatty acid intake. Adipose tissue

reflects the intake of past months to years, while erythrocyte

membranes, and plasma or serum phospholipids or cholesteryl

esters reflect the intake of several weeks [9,10,11]. However, the

PUFA profile in biological tissues does not only reflect dietary

intake, but is also strongly dependent on the endogenous

metabolism of PUFAs [10,12]. Therefore, PUFA biomarkers in

biological tissues mirror the internal PUFA exposure that may

be biologically more relevant. Several PUFAs can be endoge-

nously synthesized by a series of alternate desaturation and
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elongation processes [12,13]. The d-5 desaturase and d-6

desaturase are rate-limiting enzymes for synthesizing long-chain

n-3 and n-6 PUFAs (Figure 1) [12,14,15,16]. They are encoded

by the FADS1 and FADS2 genes on chromosome 11 (11q12–

13.1), respectively [12,17]. Potential functional genetic variants

in these genes have been identified including rs174547 [18], and

confirmed in recent genome-wide association studies [19,20,21].

They have an impact on FADS1 mRNA abundance

[22,23,24,25,26], and, as a result, on desaturase activity, plasma

PUFA levels, and endogenous PUFA pools

[18,19,20,21,26,27,28,29]. Since it is impractical to directly

assay the enzyme activities of d-5 and d-6 desaturase in humans

[12,14,15,29], especially in large-scale epidemiological studies,

their activities have traditionally been estimated by using PUFA

product-to-precursor ratios [11,21,27,28].

Although few prospective cohort studies have investigated

PUFA biomarkers in relation to the incidence of CHD [30], the

relation with PUFA product-to-precursor ratios as markers of

desaturase activities has, to the best of our knowledge, never been

evaluated. In this prospective cohort study, we therefore aim to

investigate whether C20:4n-6 to C20:3n-6 and C18:3n-6 to

C18:2n-6 ratios, as respective markers of d-5 and d-6 desaturase

activity, influence CHD risk.

Materials and Methods

Study Population
We conducted a case-cohort study within the Monitoring

Project on Cardiovascular Disease Risk Factors 1987–1991 [31],

one of the two monitoring studies that were included in the

Cardiovascular Registry Maastricht (CAREMA) study. The

CAREMA study was described in detail before [32,33]. In total,

12,486 men and women, born between 1927 and 1967 and living

in the Maastricht area, participated in the Monitoring Project on

Cardiovascular Disease Risk Factors and had given informed

consent to retrieve information from the municipal population

registries and from the general practitioner and specialist. The

Medical Ethics Committee of the Netherlands Organization for

Applied Scientific Research (TNO) approved the study protocol

and all participants signed an informed consent form.

Cardiological Follow-up
The cardiologic follow-up has been described before [32]. In

brief, 97.6% of the CAREMA members could be found by linking

the cohort to the hospital information system of University

Hospital Maastricht (UHM). They were linked to the cardiology

information system of the Department of Cardiology to obtain

information about the occurrence of myocardial infarction (MI),

unstable angina pectoris (UAP), coronary artery bypass grafting

(CABG), or percutanous transluminal coronary angioplasty

Figure 1. Effect of genotypes of rs174547 on synthesis of PUFAs in the n-3 and n-6 pathways. Measurements of n-3 and n-6
polyunsaturated fatty acid (PUFA) levels in plasma cholesteryl esters in the sub-cohort of CAREMA study (n = 1246, Table 2). The three bars in each of
the smaller plots represent levels of fatty acids (%) in individuals who carry AA, AG and GG genotypes of rs174547, respectively.
doi:10.1371/journal.pone.0041681.g001
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surgery (PTCA). For participants who died, the cause of death was

obtained from Statistics Netherlands. In addition, the CAREMA

cohort was linked to the hospital discharge registry of the UHM to

increase the completeness of the cardiologic follow-up. Follow-up

ended on 31 December 2003 with a median follow-up of 12.1 yrs

(range: 0.0–16.9 yrs).

Subcohort and Incident CHD Selection for Case-cohort
Design

For the present study, participants who were younger than

30 years at baseline (n = 2204), had a history of MI, UAP, CABG,

or PTCA before baseline (n = 118), or were lost to follow-up (n = 2)

were excluded. Thus, the eligible cohort consisted of 10,164

participants. All 620 participants who developed incident CHD

during follow-up (315 MIs, 244 UAPs and 61 CHD deaths) were

included in the case-cohort study. From the eligible cohort, 1483

participants were randomly drawn as a subcohort [34]. By

randomly selecting a subcohort and using the specific statistics for

this type of research design, the results are expected to be

extrapolated to the entire cohort without the need of biomarker

measurements in the entire cohort [11,34,35,36].

Risk Factor Determination
At baseline, all participants filled in a questionnaire on life-

style characteristics, medical history, and parental history of MI.

During a medical examination, information was collected on

blood pressure, height, and weight. In addition, non-fasting blood

samples were collected using EDTA tubes. The blood was

centrifuged for 10 minutes at 1000 rpm and fractioned into

blood plasma, white blood cells and erythrocytes and subse-

quently stored at 220uC. Within three weeks, the plasma

samples were transported to the Lipid Reference Laboratory of

the University Hospital Dijkzigt (LRL) in Rotterdam where the

total and HDL-cholesterol levels were determined using a

CHOD-PAP method [37]. The LRL in Rotterdam is a

permanent member of the International Cholesterol Reference

Method Laboratory Network.

Fatty Acid Determination
Fatty acids from plasma cholesteryl esters were quantified by

gas-liquid chromatography between 2010 and 2011 at the

Department of Human Nutrition of Wageningen University.

The case and non-case samples were evenly distributed among

the different batches and the assay sequence within each batch

was random. The solid-phase extraction method was used to

separate the cholesteryl ester fraction from total plasma lipid

extracts. Fatty acid methyl esters were prepared by incubating

isolated cholesteryl esters with acidified methanol. Peak retention

times and area percentages of total fatty acids were identified by

using known cholesteryl ester standards (mixture of FAME

components from Sigma (MO) and NuChek (MN)) and analyzed

with the Agilent Technologies ChemStation software (Agilent,

Amstelveen, The Netherlands). For certain fatty acids, the values

were too low to be reliably detected in some subjects, and ‘‘0’’

was assigned to their values. Interassay coefficients of variance in

fatty acids in plasma cholesteryl esters were 1.68% for C16:0,

1.01% for C18:2n-6, 1.88% for C20:4n-6, and 5.02% for

C22:6n-3, respectively. Fatty acid product-to-precursor ratios

were calculated, i.e. C20:4n-6 to C20:3n-6 to reflect d-5

desaturase activity, and C18:3n-6 to C18:2n-6 to reflect d-6

desaturase activity (Figure 1). The 20 subjects with a ‘‘0’’ value

for C20:3n-6 were not included in the analyses for the C20:4n-6

to C20:3n-6 ratio, reflecting d-5 desaturase activity. Information

on plasma fatty acids was available on 1323 subcohort members

and 537 CHD cases.

DNA Extraction and Genotyping
DNA was extracted from the white blood cell fraction (buffy

coats), using a standard procedure [38]. The resulting DNA pellet

was dissolved in TE buffer and DNA concentrations were

determined using the Nanodrop ND1000 Spectrophotometer.

The single nucleotide polymorphism (SNP) of rs174547 in the

FADS1 gene was selected based on its association with blood

cholesterol and triglyceride levels in a genome-wide association

study [23]. This SNP is in high linkage disequilibrium (D9 = 1 and

r2$0.8) with several other SNPs around the FADS1 and FADS2

gene region, which have an impact on mRNA abundance of

FADS1 [22,23,24,25], desaturase activity, plasma PUFA levels,

and endogenous PUFA pools [18,19,20,21,26,27,28,29].

Rs174547 was genotyped entirely independent of case and non-

case status using the iPLEX Gold chemistry of Sequenom’s

MassARRAY platform (San Diego, CA) at the Leiden University

Medical Center. Sequenom’s MassARRAYH Assay Design 3.1

Software was used for SNP assay design, and Sequenom’s

SpectroTyper 4.0 software was used to call genotypes automat-

ically, followed by manual review. The total genotyping success

rate was 93%. Among the subjects who were measured for plasma

fatty acid levels, information on rs174547 genotype was available

for 1246 subcohort members and 492 CHD cases. The genotype

distribution was consistent with Hardy-Weinberg equilibrium

expectations.

Statistical Analysis
Generalized linear models adjusted for age and sex were used

to study the relations of rs174547 genotypes with PUFAs and

PUFA ratios. Cox proportional hazards models adapted for the

case-cohort design according to the Prentice’s method [35] were

used to calculate hazard ratios (HRs) as measures for relative risk

[36]. All the major predictors satisfied the proportional hazard

assumption (data not shown). We estimated hazard ratios for

quintiles of fatty acids (expressed as the percentage of total fatty

acids present in the chromatogram) and ratios of C20:4n-6 to

C20:3n-6 and C18:3n-6 to C18:2n-6 based on subcohort

distributions, and the respective lowest quintile was used as

reference. The base models included age and sex. Additional

models were further adjusted for covariates from the Third

Report of the National Cholesterol Education Program Expert

Panel on Detection, Evaluation, and Treatment of High Blood

Cholesterol in Adults (ATP III) risk score based on the

Framingham cohort (current smoking, systolic blood pressure,

hypertensive medication use, total and HDL cholesterol levels)

with the addition of a history of diabetes [39]. The models were

also further adjusted for the total percentage of n-3 PUFAs or n-

6 PUFAs in plasma cholesteryl esters where necessary. Additional

covariates studied were parental history of MI, alcohol use and

physical activity. The significance of a linear trend across

quintiles of fatty acids and ratios of C20:4n-6 to C20:3n-6 and

C18:3n-6 to C18:2n-6 was examined by including the exposure

as a continuous variable in the model. Potential interactions

between continuous ratios of C20:4n-6 to C20:3n-6 and C18:3n-

6 to C18:2n-6 and dichotomized rs174547 genotype (homozy-

gous major allele carriers vs. minor allele carriers) were tested by

including interaction terms into the model. Statistical significance

was considered to be met with a P value ,0.05 and all testing

was 2-sided. All statistical analyses were performed with SAS

version 9.1 software (SAS Institute, Cary, NC).

FADS1 and CHD Risk
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Results

The general characteristics of the study population by

subcohort-case status are shown in Table 1. As expected, cases

were older, more frequently male, had higher blood pressure and

total cholesterol levels, lower HDL cholesterol levels, smoked more

often, and more often reported to have diabetes and a parental

history of MI.

Carrying the minor G allele of rs174547 was associated with

higher levels of substrates for desaturases (C18:2n-6, C20:3n-6,

and C18:3n-3) and lower levels of products from desaturases

(C18:3n-6, C20:4n-6, C20:5n-3, and C22:6n-3) in the plasma

cholesteryl esters. Consequently, lower C20:4n-6 to C20:3n-6 and

C18:3n-6 to C18:2n-6 ratios, as markers of d-5 and d-6 desaturase

activity, respectively, were observed in carriers of the G allele as

compared to those with the AA genotype (Table 2 and Figure 1).

A high baseline C20:4n-6 to C20:3n-6 ratio was associated with

reduced CHD risk (Table 3). A 30% reduction in CHD risk was

observed among the participants in the second, third, fourth and

fifth quintile of C20:4n-6 to C20:3n-6 ratio compared with those

in the first quintile after adjustment for age, sex, systolic blood

pressure, hypertensive medication use, current smoking, diabetes,

total cholesterol, and high-density lipoprotein cholesterol (P for

trend = 0.02). Although the statistical interaction between

rs174547 and d-5 desaturase activity was not significant

(P = 0.56), the protective effect of high d-5 desaturase activity

was mainly confined to subjects with the AA genotype (Table S1).

In this group, the effect was stronger with a 65% risk reduction for

the subjects in the fifth quintile compared with the first quintile (P

for trend = 0.02). Rs174547 itself was not associated with CHD

risk, the age- and sex-adjusted HR per G-allele being 0.99 (95%

CI 0.84–1.16, Table S2).

No association was observed between d-6 desaturase activity

and CHD risk (Table 3), also not after stratification by rs174547

genotype (data not shown).

The results for the four n-6 PUFAs that determine d-5 and d-6

desaturase activity are shown in Table S3. No associations with

CHD were observed for the C20 precursor (C20:3n-6) and

product (C20:4n-6, arachidonic acid) of d-5 desaturase (Figure 1),

or for the C18 precursor (C18:2n-6, linoleic acid) and product

(C18:3n-6) of d-6 desaturase (Figure 1) after adjustment for age,

sex, systolic blood pressure, hypertensive medication use, current

smoking, diabetes, total cholesterol, and high-density lipoprotein

cholesterol (P for trend .0.16).

Regarding the n-3 PUFAs affected by desaturases, a significant

inverse association was observed between C22:6n-3 (DHA) and

CHD risk. This association became stronger after adjustment for

plasma total and HDL cholesterol levels, and the percentages of n-

6 PUFA in plasma cholesteryl esters (P for trend = 0.027, Table

S4). The proportion of plasma C20:5n-3 (EPA) was not associated

with incident CHD (P for trend = 0.724, Table S4). No association

Table 1. Baseline characteristics of sub-cohort subjects and cases of incident coronary heart disease in the CAREMA cohort study1.

Subcohort
(n = 1323)2 Cases (n = 537) Crude HR (95% CI)3 Adjusted HR (95% CI)4

Age (y) 45.268.5 49.767.3 1.07 (1.06–1.09) 1.05 (1.04–1.07)

Male sex 608 (46.0%) 392 (73.0%) 3.34 (2.69–4.15) 2.22 (1.66–2.99)

Total cholesterol (mmol/L) 5.761.1 6.461.2 1.71 (1.56–1.87) 1.42 (1.26–1.60)

HDL cholesterol (mmol/L) 1.260.3 1.060.2 0.04 (0.03–0.06) 0.09 (0.05–0.16)

Systolic blood pressure (mmHg) 119.2614.9 128.0616.9 1.03 (1.02–1.04) 1.02 (1.01–1.03)

Hypertensive medication use 67 (5.1%) 58 (10.8%) 2.34 (1.63–3.35) 1.27 (0.79–2.05)

Diabetes mellitus 13 (1.0%) 20 (3.7%) 5.33 (2.74–10.36) 2.83 (1.39–5.78)

Current smoking 551 (41.8%) 304 (56.7%) 1.81 (1.49–2.21) 1.72 (1.33–2.22)

Parental history of MI 452 (34.3%) 228 (42.5%) 1.40 (1.14–1.71) 1.51 (1.16–1.95)

1Data are expressed as mean 6 SD or n (%) unless otherwise indicated. HDL: high-density lipoprotein; MI: myocardial infarction; and HR (95% CI): hazard ratio and 95%
confidence interval.
2Including 84 cases.
3Hazard ratios were calculated per unit increase in total cholesterol, HDL cholesterol, and systolic blood pressure, and for the presence of the categorical traits.
4All variables were added into one multivariable Cox proportional hazards model.
doi:10.1371/journal.pone.0041681.t001

Table 2. Association of rs174547 in FADS1 with baseline
PUFAs in plasma cholesteryl esters and desaturase activities in
the sub-cohort (n = 1246)1.

PUFA Rs174547 P value2

AA (545) AG (569) GG (132)

n-6 PUFA

C18:2n-6 (%) 44.3060.272 44.8860.26 46.6060.54 7.4861024

C18:3n-6 (%) 0.6060.009 0.4860.009 0.4060.019 6.87610228

C20:3n-6 (%) 0.4260.005 0.4360.005 0.4460.010 0.051

C20:4n-6 (%) 4.2960.05 3.5660.05 2.8960.09 3.92610246

n-3 PUFA

C18:3n-3 (%) 0.4060.005 0.4160.005 0.4560.010 3.2861024

C18:4n-3 (%)3 0.1860.007 0.1860.007 0.1760.014 0.708

C20:5n-3 (%) 0.5660.01 0.4660.01 0.4060.03 8.7161028

C22:6n-3 (%) 0.3460.006 0.3160.006 0.3060.013 0.005

d-54 10.6560.09 8.5960.09 6.8660.19 6.40610285

d-64 0.01460.0002 0.01160.0002 0.00960.0005 2.51610227

177 subjects in the subcohort had missing values for rs174547. PUFAs:
polyunsaturated fatty acids.
2General linear models were used, and all values are mean 6 SEM, adjusted for
age and sex.
3Only few subjects were successfully measured (AA = 161, AG = 185, and
GG = 42).
4d-5 and d-6 desaturase activities were assessed by the ratio of C20:4n-6 to
C20:3n-6 and C18:3n-6 to C18:2n-6 in plasma cholesteryl esters, respectively.
doi:10.1371/journal.pone.0041681.t002
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was observed between C18:3n-3 (a-linolenic acid) and CHD risk

(data not shown). To explore whether there is any independent

effect of C20:4n-6 to C20:3n-6 ratio on CHD beyond DHA, we

additionally adjusted the models in Table 3 for percentages of

DHA. The association between C20:4n-6 to C20:3n-6 ratio and

CHD risk attenuated, but remained highly significant, especially

among the AA carriers of rs174547 (HR:95% CI = 0.44:0.19–1.04

for comparing the extreme quintiles, Table S1).

Additional adjustment for parental history of MI, alcohol use or

physical activity did not materially change any of the aforemen-

tioned associations (data not shown).

Discussion

In this prospective cohort study, we observed an inverse

association between C20:4n-6 to C20:3n-6 ratio, as the marker

of d-5 desaturase activity, and incident CHD risk, but no

association with C18:3n-6 to C18:2n-6 ratio, as the marker of d-

6 desaturase activity. This association was partly mediated by

DHA. Furthermore we confirmed associations of rs174547 in the

FADS1 gene with plasma PUFA levels and C20:4n-6 to C20:3n-6

ratio [18,19,20,21,27,28]. Consistent with the established cardio-

vascular protective effects of n-3 PUFAs [1,3], and especially tissue

DHA [4,30], high DHA in plasma cholesteryl esters was associated

with a reduced CHD risk. However, no association was observed

between arachidonic acid or other n-6 PUFAs related to d-5 or d-6

desaturase activity in plasma cholesteryl esters and CHD risk.

Common genetic variants (including rs174547) in the FADS

gene region have been associated with plasma lipid levels (total,

LDL and HDL cholesterol, triglycerides, phospholipids and

sphingolipids) [19,21,23,40,41], glycemic traits (fasting glucose

and beta-cell function) [26], and resting heart rate [42] in recent

genome-wide association studies. However, none of them have

been associated with CHD risk directly [40,43]. This was also the

case in our relatively large prospective study. In contrast, when

using the estimated d-5 desaturase activity based on the fatty acid

proportion in plasma cholesteryl esters, we found a significant

inverse association with incident CHD. This seems contradictory,

as a strong association between rs174547 genotypes and estimated

d-5 desaturase activities was observed. However, the reduced risk

was already observed with relatively low d-5 desaturase activities

(the second quintile) and remained constant over the following

quintiles. Therefore, the majority of the participants with the GG

genotype of rs174547 might have sufficient d-5 desaturase activity

to protect them from CHD. This might explain why no association

between rs174547 genotypes and CHD risk was found. Both

rs174547 genotypes and C20:4n-6 to C20:3n-6 ratio reflect

endogenous d-5 desaturase activity, but from two different

perspectives. The former can be regarded as the desaturase effect

conferred by a single common genetic variant in the FADS1 gene

[20,26,27,28,29], and the latter as an approximate estimation of

full desaturase activity [21,27,28]. Their combination might

provide the most accurate estimate of d-5 desaturase activity.

This might explain the stronger CHD risk reduction with high d-5

desaturase activity in the subjects who inherited the AA genotype.

The exact biological mechanisms that link d-5 desaturase

activity with CHD risk are still not well understood. Arachidonic

acid, EPA, and DHA are currently considered to be potentially

involved directly in the pathogenesis of CHD through thrombotic,

inflammatory, arrhythmic and/or lipid regulatory pathways

[1,3,12,13,44,45,46]. d-5 Desaturase is the key enzyme synthesiz-

ing these PUFAs, while d-6 desaturase is important at the

beginning of the n-3 and n-6 PUFA synthetic pathways [14,15].

Therefore, it is biologically plausible that CHD risk could be

influenced by d-5 desaturase activity, but not by d-6 desaturase

activity [12,13] as was shown in our data. The non-significance of

Table 3. Association between baseline d-5 and d-6 desaturase activity and incident coronary heart disease (CHD).

Quintile of d-5 desaturase activity1
P value for
trend2

First (6.45) Second (7.93) Third (9.07) Fourth (10.32) Fifth (12.52)

Incident CHD, n 155 117 94 93 67

Model 13 1 0.70 (0.51–0.97) 0.60 (0.42–0.83) 0.60 (0.43–0.83) 0.49 (0.34–0.70) ,0.0001

Model 24 1 0.75 (0.54–1.06) 0.66 (0.46–0.94) 0.57 (0.39–0.82) 0.51 (0.35–0.75) ,0.0001

Model 35 1 0.68 (0.47–0.98) 0.66 (0.45–0.96) 0.69 (0.46–1.01) 0.68 (0.45–1.02) 0.0249

Model 46 1 0.71 (0.49–1.03) 0.70 (0.48–1.04) 0.74 (0.50–1.09) 0.77 (0.50–1.18) 0.1114

Quintile of d-6 desaturase activity1 P value for
trend2

First (0.0055)Second (0.0084) Third (0.0104) Fourth (0.0132) Fifth (0.019)

Incident CHD, n 92 99 93 122 131

Model 13 1 0.99 (0.69–1.42) 0.87 (0.60–1.25) 1.09 (0.76–1.55) 1.03 (0.73–1.45) 0.606

Model 24 1 1.03 (0.70–1.51) 0.89 (0.61–1.31) 1.07 (0.73–1.58) 0.93 (0.63–1.36) 0.627

Model 35 1 1.07 (0.71–1.63) 0.86 (0.55–1.33) 1.11 (0.73–1.69) 0.96 (0.63–1.47) 0.897

1d-5 and d-6 desaturase activities were assessed by the ratio of C20:4n-6 to C20:3n-6 and the ratio of C18:3n-6 to C18:2n-6 in plasma cholesteryl esters, respectively and
median ratios in each quintile are listed between brackets.
2From models with desaturase activity included as a continuous variable.
3Model 1 was adjusted for age and sex.
4Model 2 was adjusted for age, sex, systolic blood pressure, hypertensive medication use, current smoking, and diabetes.
5Model 3 was adjusted for all covariates in model 2, total cholesterol, and high-density lipoprotein cholesterol.
6Model 4 was adjusted for all covariates in model 3 and percentages of C22:6n-3 (DHA) in plasma cholesteryl esters.
doi:10.1371/journal.pone.0041681.t003
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d-6 desaturase activity on CHD risk is perhaps, also compatible

with the reported normal viability and life span of d-6 desaturase

knockout mice [47]. Increased d-5 desaturase activity might

contribute to the intracellular increase of EPA and especially

arachidonic acid levels [16]. In non-fish eating populations,

arachidonic acid is the predominant tissue very-long-chain PUFA,

reaching 80% of the total very-long-chain PUFA [30,44]. Despite

the potential pro-coagulant and pro-inflammatory effects of

increased exposures to arachidonic acid and its derived eicosanoid

metabolites [2,13,44,45,46,48,49], there is no evidence of

increased CHD risk with < 5–7 times habitual arachidonic acid

intake based on short-term small-scale controlled feeding studies

[2,50,51,52,53,54]. Tissue arachidonic acid levels are generally

not associated with CHD risk [30]. This was supported by our

finding based on the fatty acid profile in plasma cholesteryl esters,

which suggests that arachidonic acid does not mediate the

observed association between C20:4n-6 to C20:3n-6 ratio, as the

marker of d-5 desaturase activity, and CHD risk.

Increased d-5 desaturase activity (C20:4n-6 to C20:3n-6 ratio)

was associated with increased plasma levels of EPA and DHA.

Our results showed that a possible protective effect of increased d-

5 desaturase activity on CHD may partly be mediated by

increased endogenous exposure to DHA. The observation that

increased DHA levels associated with increased d-5 desaturase

activity protect against CHD is consistent with the established

cardiovascular protective effect of increased n-3 PUFA exposure

(EPA and/or DHA) [1,3]. Accumulating evidence from observa-

tional studies suggests that DHA might be more protective for

CHD than EPA [4,30], which is consistent with our findings.

However, EPA and DHA are usually correlated with each other in

tissues, and their potential effects cannot be easily discerned. More

research on this issue is therefore warranted. In addition to blood

triglyceride lowering and HDL cholesterol increasing effects of

EPA and DHA, n-3 PUFAs have long been observed to have anti-

thrombotic, anti-inflammatory, anti-arrhythmic, and blood pres-

sure-lowering effects in humans even though the underlying

mechanisms for these effects are incompletely understood

[1,3,12,13,46]. Interestingly, the protective effects on fatal CHD

and sudden cardiac death have been shown to level off with a

modest intake of EPA and/or DHA (250 mg/day), and little

additional benefit was observed with higher intakes [1]. This is also

consistent with our results for C20:4n-6 to C20:3n-6 ratio as the

marker of d-5 desaturase activity. Nevertheless, there might be

other unidentified pleiotropic cardiovascular protective effects of

increased d-5 desaturase activity. For example, these desaturases

are also significantly expressed in immune cells [55,56] that play

important roles in atherosclerotic CHD progression.

Our results should be interpreted in the context of several

limitations. First, our analyses were based on a single baseline

measurement of fatty acid levels in plasma cholesteryl esters that

may not accurately reflect long-term fatty acid exposures.

However, we did detect the established protective effect of DHA

against CHD [1,3,4,12,13,30]. Second, we estimated d-5 and d-6

desaturase activities based on n-6 PUFAs, while d-5 and d-6

desaturases are not only involved in n-6 PUFA conversion, but

also in n-3 PUFA conversion. However, in comparison to n-6

PUFA conversion, the amount of n-3 PUFA conversion is

relatively small [16], which should not have affected our results.

Third, other potential unmeasured environmental or physiological

factors could have confounded the observed associations. Howev-

er, the relatively large magnitude of the protective effect of

increased d-5 desaturase activity relative to the effect of other risk

factors for CHD makes confounding with other unknown risk

factors unlikely. Finally, our models that included total and HDL

cholesterol may have been over-adjusted, as these are probably

intermediates in the metabolic pathway between desaturase and

CHD risk (Note S1).

In conclusion, in this prospective cohort study, we observed a

reduced CHD risk with increased C20:4n-6 to C20:3n-6 ratio that

was partly mediated by DHA. These results suggest that d-5

desaturase activity plays a role in protecting us from CHD.
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