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Abstract 

Background 

Current research in network reverse engineering for genetic or metabolic networks very often 

does not include a proper experimental and/or input design. In this paper we address this 

issue in more detail and suggest a method that includes an iterative design of experiments 

based, on the most recent data that become available. The presented approach allows a 

reliable reconstruction of the network and addresses an important issue, i.e., the analysis and 

the propagation of uncertainties as they exist in both the data and in our own knowledge. 

These two types of uncertainties have their immediate ramifications for the uncertainties in 

the parameter estimates and, hence, are taken into account from the very beginning of our 

experimental design. 

Findings 

The method is demonstrated for two small networks that include a genetic network for 

mRNA synthesis and degradation and an oscillatory network describing a molecular network 

underlying adenosine 3‟-5‟ cyclic monophosphate (cAMP) as observed in populations of 

Dyctyostelium cells. In both cases a substantial reduction in parameter uncertainty was 

observed. Extension to larger scale networks is possible but needs a more rigorous parameter 

estimation algorithm that includes sparsity as a constraint in the optimization procedure. 

Conclusion 

We conclude that a careful experiment design very often (but not always) pays off in terms of 

reliability in the inferred network topology. For large scale networks a better parameter 

estimation algorithm is required that includes sparsity as an additional constraint. These 

algorithms are available in the literature and can also be used in an adaptive optimal design 

setting as demonstrated in this paper. 



Findings 

Background 

Recent research in Systems Biology shows that the concept of „network‟ turns out to be 

highly relevant at all levels of biological complexity [1,2]. In a modeling approach based on 

networks, the components of the system under consideration are represented as nodes in a 

graph and the interactions as edges that connect pairs of nodes. The functioning of a network 

is determined by its dynamics, i.e., the evolution in time of the nodes. The nodes usually 

represent the concentrations of some species and their time development is regulated via 

interactions with other species. At the cellular level, regulatory and metabolic networks are 

out spoken examples, but also signaling pathways make use of the network concept. Typical 

examples at the highest complexity levels are predator-prey models and ecological food webs 

which are in use since long. It is remarkable that not only the network concept forms a 

unifying element across all biological aggregation levels, but also the mathematics needed to 

describe the dynamics of the network nodes show great similarities [3]. The central role of 

network modeling in biology implies that network inference is one of the major challenges of 

modern biology. The ultimate aim of network inference is to deduce the structure of the 

network as accurately as possible from data obtained in the experimental practice. To obtain 

the necessary experimental information, one usually perturbs the network in some way, 

hoping that the induced response is useful to be explored in some network inference 

approach. However, if this is not done in a structured way, the harvest might be 

disappointing. In this paper, we consider the question how we could effectively and fast learn 

as much as possible of the network structure by designing the experimental setup in an 

optimal way. It should be realized that the question we put here in a network inference 

context, is in its generality not new, since similar research is at the core of the mathematical 

subdiscipline called„ systems theory‟, e.g., [4], and, more specifically, in the subdiscipline„ 

system identification‟[5]. The fascinating aspect is that insights obtained in the engineering 

practice may also be of great relevance in a life sciences setting. In an engineering context 

this kind of research is usually referred to as „reverse engineering‟. In this paper we also aim 

at connecting the still too much separated realms of scientists in biology and engineering. 

Before getting into details, it is important to remark that network inference may aim at 

different levels of accuracy [6,7]. The lowest level approach leads to a relatively rough 

impression of the network structure. Given the nodes, one uses the data to find out whether a 

coupling exists between any pair of nodes. In mathematical terms, the network is represented 

as a graph with undirected edges and the inter action is not made explicit, e.g., in terms of an 

equation. An undirected edge indicates that the dynamics of the two connected nodes are 

correlated due to some interaction, but the character of this interaction is not pointed out in 

detail. For example, the first node could affect the second one, but the interaction could also 

be the other way around. This case is especially relevant if the data contain steady state levels 

of the nodes obtained after perturbing the system a considerable number of times, e.g., via a 

knocking out procedure in gene networks. For this case a number of statistical inference 

methods have been developed that yield undirected graphs as outcome [8-11]. The next level 

of accuracy is to strive for a directed graph, in which the edges are arrows. The direction of 

an arrow then indicates a causal relationship [12]. The most sophisticated level is to deduce 

more detailed information on the character of the interactions. One then tries to answer 

questions such as: Is it a promoting or an inhibiting interaction (in regulatory networks), is it 

a linearly increasing, saturating, or decaying interaction (in metabolic networks), etcetera 



[13,14]. In this paper we aim at the third level of accuracy by including the estimation of the 

strengths of interactions. A common procedure to generate data is to perturb the system under 

consideration in a more or less random way. The change in the observed data is then analyzed 

to infer information about its structure. In practice this may lead to very poor results, since it 

is not assured that the chosen perturbation is really useful for inference purposes. In this 

paper we propose to follow a much more advanced approach, in which the perturbations are 

designed such that they contain the optimal amount of information, given the available data. 

This approach also starts with a more or less randomly chosen perturbation, but we show that 

the information from such a first step can be effectively used to design a second perturbation 

that yields enhanced insight in the network structure. So, we maximize in advance the 

information content of the second perturbation, given the insight deduced from the first 

perturbation. This maximization is based on improving the condition number of the so-called 

Fischer Information Matrix of the system. If required, this procedure could be repeated to 

refine the inference results further. 

Our research focuses on networks whose dynamics are described in terms of ordinary 

differential equations (ODE). We assume that it is possible to observe the network while it 

develops in time, so that the data consists of time series of some or all of the network 

components. The general ideas of the present approach are widely applicable and not at all 

restricted to a special type of network or level of complexity. For illustrational purposes we 

will make use of a gene is taken from [15]. This system has been used earlier in several 

studies to explain and illustrate the principles of other inference methods in signaling and 

gene networks [16-18] and turns out to be very useful for this purpose. Next, we apply our 

method to the Laub-Loomis model [19], which describes oscillations in excitable cells of 

Dictyostelium, and show that our new procedure is very effective in reconstructing the 

underlying network, just by slightly perturbing system and observing its recovery to its 

natural oscillatory behavior. 

The paper is organized as follows. In the next section we will first introduce two motivating 

examples in which reconstruction of a directed graph representing the interaction nodes of the 

network is the primary goal. Then we will further elaborate on the details of adaptive optimal 

input design [20] and explain the method. Finally, the methodology will be applied to the two 

motivating examples explained earlier and some results will be presented and discussed. 

Methods 

Two motivating examples 

In this section we introduce two biological systems that will be used later on to illustrate how 

our adaptive optimal design approach works in practice. For both models characteristic 

parameter values are taken from the literature. These values are used to generate artificial 

data and to mimic real practice these data are spoiled by adding noise. The present aim is to 

show how the parameters can be efficiently estimated from the data in an adaptive manner. 

mRNA synthesis and degradation 

Let us consider the well-known Kholodenko case as a motivating example [15]. It consists of 

a small four gene network and the gene activity is reflected by the synthesis and degradation 

of mRNA as follows: 



1 syn,1 deg,1( )x t   &  (1) 

2 syn,2 deg,2( )x t   &  (2) 

3 syn,3 deg,3( )x t   &  (3) 

4 syn,4 deg,4( )x t   &  (4) 

where ( )x t&  stands for differentiation of x(t) with respect to time [h], and the synthesis and 

degradation rates are given by the following non-linear relationships: 
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The values of the parameters in these expressions are presented in Table 1. 

Table 1 Parameter values mRNA synthesis and degradation 

V1s = 5 A14 = 4 K14a = 1.6 K12i = 0.5 n12 = 1 V1d = 200 K1d = 30 

V2s = 3.5 A24 = 4 K24a = 1.6 n32 = 2 n14 = 2 V2d = 500 K2d = 60 

V3s = 3 A32 = 5 K32a = 1.5 K31i = 0.7 n31 = 1 V3d = 150 K3d = 10 

V4s = 4 A43 = 2 K43a = 0.15 K12i = 0.5 n43 = 2 V4d = 500 K4d = 50 

In the following table the parameter values for them RNA model are specified in detail. 

These values were taken from [15] 



For simplicity we start by assuming that each time an experiment starts them RNA 

transcription and degradation rates are in equilibrium, i.e. there is a steady state for all four 

states in the model. This means        1 2 3 4 0x t x t x t x t   & & & & . Furthermore, we assume, 

just as in the original paper, that we can influence the maximum transcription rates 

{Vis,i=1,…,4} thereby silencing the synthesis of mRNA at will. In other words, the maximum 

transcription rates represent an input signal that we can manipulate (or perturb) in such a way 

that information regarding the structure of the network is revealed through the stimulus-

response data. An interesting (and challenging) aspect is that, in practice, it is not known 

what the exact values of the input signals are. Put differently, the (constant) input stimuli (or 

excitation signals) are in this case a natural part of the identification problem and these values 

are included in the parameter estimation problem. The ODE system in equations (1)–(12) can 

be written in the general form 

 x f x, ,u&  (13) 

Here, x is the state vector x = (x1,x2,x3,x4)
T
 , u is the vector containing the inputs, so u = 

(V1s,V2s,V3s,V4s)
T
 ,θ is the vector containing the remaining parameters in Table 1, and f is the 

vector valued function defined in equations (5)–(12). 

If we linearise the above equations and evaluate the resulting equations at the steady state xss 

a linear state space model is obtained that reads as 

 
 

d x
A x B ut

dt


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(14) 

where δx(t) and δu are now the deviations from the steady state xss and the corresponding 

(steady) input uss that maintains this steady state. The matrix A in equation (14) contains the 

so-called interaction coefficients of the network and these correspond to a directed graph 

where there is an interaction from node j to node i if the corresponding matrix element aij ≠ 0. 

We note that, of course, this linearisation is a local property that depends on our choice of the 

linearisation point in state space where we derive the linear system (14). However, it is 

important to realize that, if nodes i and j are not connected, the matrix A has zeros at 

positions ij and ji, regardless of the linearisation point that is used (!). The question of optimal 

experimental design now comes down to choosing the entries of the vector δu in such a way 

that matrix pair [A,B] can be estimated in an optimal manner. 

Laub-Loomis model–the no-input case 

A well-known example of an oscillating network in systems biology is Laub-Loomis‟ model 

of the molecular network underlying adenosine3‟-5‟-cyclic monophosphate (cAMP) as 

observed in populations of Dyctyostelium cells [19]. The model incorporates changes in the 

activities of cAMP and consists of a set of seven ordinary differential equations (one for each 

state) that reads 

 1 1 7 2 1 2 x t k x k x x &  (15) 

 2 3 5 4 2x t k x k x &  (16) 



 3 5 7 6 2 3  x t k x k x x &
 

(17) 

 4 7 8 3 4  x t k k x x &  (18) 

 5 9 10 4 5x t k k x x &
 

(19) 

 6 11 1 12 6x t k x k x &
 

(20) 

 7 13 6 14 7x t k x k x&
 

(21) 

where the parameter values for the constants {ki,i=1,…,14} are given in Table 2. For these 

parameter values the system shows oscillating behavior. 

Table 2 Parameter values Laub–Loomis 

k1 = 2.0 k2 = 0.9 k3 = 2.5 k4 = 1.5 k5 = 0.6 k6 = 0.8 k7 = 1.0 

k8 = 1.3 k9 = 0.3 k10 = 0.8 k11 = 0.7 k12 = 4.9 k13 = 23 k14 = 4.5 

In the following table the parameter values for the cAMP model are specified in detail. These 

values were taken from [19] 

In the first motivating example we used the maximum synthesis rates as system inputs. Here, 

we assume that this oscillatory system can be perturbed by kicking it out its steady limit 

cycle. Since this cycle is asymptotically stable, the system will converge back to it. It is just 

the way in which this return happens, that provides us with the additional (and necessary) 

information to estimate the network structure. The linearised version of the Laub-Loomis 

model reads 

 
 

d x
A x t

dt




 
(22) 

If we allow a Dirac pulse, we simulate a sudden change in the state vector values so that the 

system is „kicked‟ from its steady oscillation and needs to recover from this „shock‟, 

returning (after some time) to its initial oscillatory behavior. Put differently, in mathematical 

terms we allow „inputs‟ to be of the form bδ (t), where b is a vector with dimensions equal to 

the state vector x(t), so that 

 
   

d x
A x bt t

dt


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(23) 

If we assume the perturbation δu to be a Dirac delta function (or better, a δ-distribution), the 

question of optimal experimental design now becomes one of finding the values of the entries 

in the vector b that yield an optimal estimate A, i.e., an estimate Â with lowest possible 

uncertainty bounds. 

Parameter estimation– towards adaptive experimental design 

For a given choice of our input perturbation, e.g., δu in our first motivating example that 

contains four silencing-percentages for each of them RNA synthesis processes, we now 

perform a simple step response experiment for each of the four inputs {ui (t),i=1…4} and this 



yields an observation record of mRNA concentrations. In Figure 1 we see an example of such 

data that includes 20% error in the observed mRNA concentrations after a random relative 

perturbation (between−50% and 50%) of all input parameters {Vis, i = 1,…,4} in the original 

(non-linear) model. 

Figure 1 Time series data of a step response for the Kholodenko network model. Time 

series for the variables x1,…,x4 in equations (1)–(4) after a random perturbation of the 

parameter V1s. We can clearly observe step-response curves in these data 

Since there are four parameters{Vis, i = 1,…,4}, there are four „inputs‟ at our disposal that we 

can use as perturbation candidates. In the following we assume that four separate 

perturbations of all inputs are generated with random values between −50% and 50% of the 

steady state input values contained in the vector xss (that corresponds to the initial steady state 

uss). 

Schmidt et al. [16], inspired by the methods and results of [15], applied linear regression to 

data obtained by virtual experiments using the original system model as a simulation tool. 

Based on calculated deviations from the steady state xss a linear regression formula was 

obtained with the coefficients of matrices A and B as unknowns. Schmidt successfully 

computed the interaction coefficients, including the unknown input perturbations, from step-

response data. For clarity it is noted that the step-response data represents the dynamic 

transient behavior from one steady state to another steady state. This is different from the 

approach presented by Steinke and co-workers [21], where an interesting statistical 

methodology was applied with the same idea of iterative experimental design in mind, but for 

the steady states only, i.e. with no dynamic transient behavior included. 

It should further be noted that the regression method applied here only works for relatively 

small scale problems in which the number of states is not too large. This is mainly because of 

the limitations in the applied parameter estimation method (see below for details) which 

easily introduces identifiability problems for large scale networks where the number of 

parameters to be estimated in the Jacobi matrix is simply too large. The disadvantage of 

ordinary least squares estimation, however, can be remedied for larger scale networks by 

more advanced parameter estimation algorithms that include sparsity of the network as an 

additional constraint (see e.g. [22] for a convex linear-programming approach.) 

A discretized version of the linear model (14) with sampling interval Δt=tk+1− tk reads 

     x 1 x uk k k  
 

(24) 
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with (see e.g. [4]) 
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In summary the parameter estimation method proceeds as follows: 

Step 1. Collect N observations of the state vector x in the original non-linear model (13) with 

a sampling interval Δt. Subtract the steady state xss from these observations. 

Step 2. Calculate the difference between consecutive time instances of the obtained 

measurements in step (1) and stack these differences in a (n × (N − 1)) matrix M with n the 

dimension of the state vector x and N the number of data points. 

Step 3. Take Mn as the 2
nd

 until the last column of M and take Mo as the 1
st
 until the last but 

one column of M. Here, the subscripts n and o stand for new and old to denote a cause-effect 

relation between the matrices Mn and Mo. 

Step 4. Augment the matrix Mo with a (1 × (N − 1)) row of 1‟s. This is to estimate the input 

sequence {Δu(k) = Γu(k),k = 0,…,N− 1}. Denote the resulting augmented matrix with Ma. 

Step 5. An estimate of the matrices Φ and Γ is now calculated via linear regression (see [16]) 

as 

1

n a a a
ˆ ˆ( ) M M (M M )T T     (28) 

Step 6. Translate the discrete time result [ ˆ ˆ  ] back to continuous-time (see e.g. the 

standard textbook [23]), yielding the estimates ̂  and B̂ . 

At this point it should be mentioned that the familiar parameter estimation method in the 

above does not explicitly include any analysis of the uncertainty in the parameter estimates 

obtained, although this is of course an important measure of the quality of the parameter 

estimates that have been obtained using the simple regression formulae (28). Our goal in the 

current paper is to perform model based experiments that minimize the uncertainty bounds on 

the parameter estimates „on-the-fly‟. To explain best what we mean with this the reader is 

referred to Figure 2 in which the adaptive optimal input design methodology is depicted as an 

iterative loop. Starting with an initial random perturbation/experiment one moves on to a first 

parameter estimate [ ̂ , B̂ ] of the Jacobi matrices [A, B]following the 6-step procedure out 

lined in the above. Since at this point an approximate model is available, one can progress by 

designing a new perturbation/experiment in such a way that a norm of the so-called Fisher 

Information Matrix (FIM) is optimized. The FIM incorporates the parametric output 

sensitivities 
( ; )dy t

d




,where y is the output vector which, in the two case studies discussed in 

this paper equals the state vector x since all states are assumed measurable with measurement 

error ∈(k), (k=1,…,N), that is assumed to be sampled from a Gaussian white noise sequence 

with co-variance matrix Q. We note that the parametric output sensitivity 
( ; )dy t

d




 can be 

calculated via the original state space model (13) (see e.g.[20]) through simple differentiation 

of the state equations with respect to the parameter vector θ. The FIM represents a measure of 

the information content of the given input-output data with regard to the parameter values of 

the parameters θ in the model. We choose to minimize the so-called modified E-norm of the 

FIM [24], which is defined as the ratio of the maximum eigenvalue of the FIM by its 

minimum eigenvalue, i.e., 
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where tf marks the duration (final time) of our experiment and where we have denoted with ̂  

the fact that the FIM can only be calculated based upon the best knowledge we have available 

of the parameter values and not based upon the true values θ*. In practice this optimization 

can be performed crudely by evaluating a large number, say N = 1000, of random 

perturbations (through simulation of the approximate model (13) with the pair [ ˆ ˆ, B ]) and 

evaluate the modified E-criterium for each of these perturbations. Once the N performances 

have been calculated we choose the perturbation that is associated with the minimum of the N 

modified E-criteria. For clarity we note that optimizing the FIM with regard to some norm 

can be seen as away to better condition the matrix inversion in equation (28). For information 

rich experiments the matrix Ma Ma
T
 can be shown to be better conditioned and, hence, the 

inversion is less prone to numerical errors that can easily result in case of a badly condition 

matrix. 

Figure 2 The adaptive input design loop. Figure 2 represents the adaptive input design 

methodology as presented in this paper in a flow-chart 

Having thus progressed to the bottom-right circle in Figure 2, we continue to apply the 

„optimal‟ perturbation to the real system, yielding an additional set of observations that can 

now be used for a second parameter estimation exercise. We have now turned full circle and 

can start again with an improved estimate of the system [A, B], i.e. [ 1 1ˆ ˆ, B ]. Several 

iterations of the loop in Figure 2 will now yield parameter estimates that have been inferred 

from an increasingly rich set of observations. In other words, we have maximized the 

information content of the model parameters to the best of our (current) knowledge of the 

network as to converge rapidly to the true parameter values contained in the matrix-pair [A, 

B]. Through minimization of the uncertainty bounds on the parameter estimates via optimal 

input design a better conditioned parameter estimation problem is gained and this is highly 

preferred above the ad-hoc approach where random perturbations are used as an experimental 

„design‟. Although the above methodology (and more specifically the parameter estimates 

that are obtained using simple linear regression as in [16]) can only be used for relatively 

small networks, the adaptive input design approach can easily be extended to larger scale 

problems if other parameter estimation algorithms are utilized that can better handle larger 

scale networks (see e.g. [22] for a linear-programming approach to the parameter estimation 

problem for large networks). The message we would like to convey in the current paper is not 

about a parameter estimation algorithm, but about utilizing such an algorithm in the best 

possible way as to obtain reliable parameter estimates. 

Results 

Kholodenko case study 

On the basis of a random perturbation (with maximum perturbations of 50% for all four 

maximum transcription rates in the original non-linear model) we obtained artificial time 



series for all four components of x, i.e. the four mRNA concentrations, with a time-interval 

ΔT = 1 minute and for a length of 0.5hr, so that N = 30. We added 5% noise on these 

readouts. Furthermore, we assumed the matrix B to be diagonal. This implies that the 

perturbations δu influence the corresponding mRNA state directly. The first data sets were 

generated by performing 5 random perturbation experiments in a row and estimating the 

matrix A from these 5 experiments, yielding an estimate for Â that is summarized in equation 

(33). The numerical values for Â (deduced from 5 random experiments) together with their 

true values are: 

6.45 2.92 0.00 2.54

0.00 8.17 0.00 3.93

2.31 2.80 14.46 0.00

0.00 0.00 10.22 9.74

  
 


 
  
 

 

A =  (31) 

7.15 2.53 1.69 3.20

0.78 8.19 0.039 5.83
ˆ

1.51 1.63 8.59 0.23

1.74 1.65 0.37 8.56

   
 
 
 
  
 
  

A =  (32) 

The idea is now to try to improve the parameter estimates by performing an input design 

based on the model (13) with the initial estimates ̂  and B̂  that we obtained using the first 

data set–meaning that we used the first of the 5 random experiments to find a first estimate Â 

for an input design for the second experiment. We then applied this procedure sequentially, 

i.e. the “optimal” input found from the input design was fed to the original non-linear system 

model to create a new data set and this data set was again used to estimate Â, resulting in a 

second estimate of the Jacobi matrix, etc. This procedure was repeated until 5 experiments 

(using OID for the second to fifth experiment) were computed. The final values for the matrix 

entries in Â were found to be: 

6.50 3.14 1.36 2.43

0.68 7.66 3.20 3.15
ˆ

3.05 3.91 15.18 0.26

0.91 1.45 10.25 9.54

  
 


 
  
 

  

A =  (33) 

These results have also been included in Figure 3 which shows a comparison between the 

final estimate of the two approaches (OID and random). As to better get insight in the success 

rate of OID we repeated the above procedure 150 times. In Figure 4 a comparison of the two 

methods is presented in a graph to see the difference in performance. Each point in this graph 

represents a pair of sum-of-squared-errors (of the parameters in the Jacobi matrix)for an 

optimal input design (y-coordinate) versus a random design (x-coordinate) series of 5 

experiments in a row, repeated for 150 trials. The line y = x separates the two cases and we 

found that for 82% of the 150 pairs (Random Design, OID), the OID results were better, i.e. 

the y-coordinate was smaller than the x-coordinate. Apparently, random design can still be 

better than OID in 18% of the cases and this can be understood since a wrong first estimate Â 

in the first OID experiment means that we design inputs based on erroneous information that 

points us in the wrong direction for designing a better experiment. These results corroborate 



with the fact that if we reduce the measurement uncertainties on the sensors, OID becomes 

even better than Random Design because it has a better starting point in the series of 5 

experiments. More specifically, after reducing the measurement error to only 1%, the success 

rate of OID versus Random was 91%. 

Figure 3 Parameter estimates drawn from a random perturbation experiment and an 

optimized perturbation experiment. Parameter estimates (and true values) for a random 

and an optimized experiment that was designed on the basis of the first estimate of A. The 

sixteen parameters are all entries in the Jacobian matrix A. We observe a substantial 

improvement of the parameter estimates once model based design was performed 

Figure 4 Comparison plot of Random Design versus Optimal Input Design (OID). This 

graph shows the sum-of-squared-errors in the parameters (Jacobi matrix entries) for 150 runs 

of our algorithm for a series of 5 experiments. Each run is a point in this graph with 

coordinates (Random, OID) where Random stands for the sum-of-squared-errors for the 

Random run and OID stands for the sum-of-squared-errors for the OID run that started with 

the same initial estimate of the matrix A that was obtained in the first random experiment 

Laub-loomis case study 

The Laub-Loomis case study presents us with a far more challenging problem in comparison 

to the Kholondenko case study. This is mainly because in this particular case study 49 entries 

in the Jacobi matrix have to be estimated with linear regression, which is a large number. 

Furthermore, the non-linearity of the model introduces additional difficulties. It is therefore 

required to use relatively small perturbations in the initial condition x(0) as to not divert too 

far from the linearity assumption that underpins the linearized perturbation model. Since 

small perturbations are difficult to trace back if the noise on the data is too high, we are 

certainly limited in our possibilities. 

To perturb the oscillatory Laub-Loomis model we apply a „shock‟-effect to each of the 

entries in the state vector x(t) at time t = 0 and observe how the system recovers to its normal 

oscillatory behavior. An example of data from a random initial perturbation are presented in 

Figure 5. For the sampling interval of this observation record we assumed Δt to be 0.1 hr. 

Furthermore, the data set includes 20% artificial noise on the deviated observations, i.e. the 

observed value xobs minus its nominal value xnom where the nominal value refers to an 

unperturbed oscillatory behavior. It can be observed in Figure 5 that a recovery of the initial 

perturbation to a „steady‟ oscillatory behavior (solid lines in figure) is present. 

Figure 5 Response of the Laub-Loom is model for a random initial perturbation. 

Oscillatory behavior after a random initial perturbation. The solid lines represent unperturbed 

behavior while the dotted lines represent oscillations due to a small perturbation in the initial 

condition 

We found in the initial run that the estimated parameter values are still far off from the true 

parameter values. In order to find better estimates these initial estimates are now used for the 

next experimental design. Hereto the model (22) was evaluated for 250 random perturbations 

and for each of those 250 (virtual) experiments a modified E-criterion for the FIM was 

calculated. Taking the minimal value of these E-criteria lead to an improved perturbation that 

was subsequently applied to the real system (15)–(21). The second data-set was then used in a 

second parameter estimation exercise and OID procedure was repeated another time so that 3 



experiments in total were used. In Figure 6 we see the final estimation results after 1 random 

and 2 OID experiments. These are compared with a complete random experiment series of 3 

experiments in total. Again, we see an improved parameter estimation result–almost all 

parameter estimates are closer to their true values in comparison with the random parameter 

estimation result. 

Figure 6 Parameter estimates drawn from an optimized perturbation experiment. 

Parameter estimates (and true values) for a random experiment and an optimized experiment 

that was designed on the basis of the first estimate of A. The parameters are all entries in the 

Jacobian matrix A. We again observe improvement of the parameter estimates once model 

based design was performed 

The above procedure of simulating three experiments and apply random design versus OID 

was then repeated 100 times as to better compare the OID approach to a completely random 

approach. In Figure 7 we see a comparison graph for pairs (OID, Random) together with the 

line y = x that represents the line of equal performance. From the 100 trials (of three 

experiments each) we found that 74% of the OID results were better than a completely 

random design. In addition the average sum-of-squared-errors of the estimates of the entries 

in the Jacobi matrix were 214 for OID and 745 for the random experimental design, meaning 

that, on average, in this particular case OID performs three times better in terms of average 

uncertainty on the parameter estimates. This is certainly significant, even more after realizing 

that the Jacobi matrix is time-varying and 49 estimates need to be recovered from the noised 

at a provided. We also tried other noise-levels and sampling frequencies and found that when 

the noise on the data increases to 50% or more, there is no distinction between the random 

design and OID visible. Clearly, the signal to noise ratio is so low in these cases that the 

parameter estimation algorithm cannot recover more information from the data on the basis 

of OID. But in such cases where the noise levels are just too high, clearly, there is not much 

to be gained from any approach since the information content of the data set is so low. 

Figure 7 Comparison plot of Random Design versus Optimal Input Design (OID). This 

graph shows the sum-of-squared-errors in the parameters (Jacobi matrix entries) for 100 runs 

of our algorithm for a series of 3 experiments. Each run is a point in this graph with 

coordinates (Random, OID) where Random stands for the sum-of-squared-errors for the 

Random run and OID stands for the sum-of-squared-errors for the OID run that started with 

the same initial estimate of the matrix A that was obtained in the first random experiment 

Discussion and conclusions 

Adaptive optimal experimental design is a natural approach for the recovery of the 

connections in an interaction network based on a limited number of experiments. Clearly, the 

methodology as presented in this paper yields promising results as was demonstrated in two 

case studies. The idea we have pursued is that adaptive or sequential input design closes the 

model identification loop of experimentation and subsequent calibration of the model, 

intelligently taking in to account the most recent knowledge that is available. More 

specifically, this means that the most recent parameter estimate of the Jacobi matrix pair [A, 

B] are used for subsequent analysis of the uncertainty propagation in the network. An 

essential feature proposed in our methodology (and also demonstrated in two case studies) is 

that model based experiments are now prominently included in the loop and here with the 

best knowledge that is available, i.e. the most recent estimate [ ˆ ˆ, B ] of the parameter vector 



θ. This yields a more carefully designed parameter estimation problem that allows a more 

reliable network reconstruction. 

One could argue that the linearized system introduces limitations since, of course, the 

matrices A and B depend on the linearization point chosen. Especially if the Jacobi matrix 

structure changes significantly (in terms of zeros and non-zeros) this can introduce a problem. 

A remedy would then be to repeat the algorithm for different values of the state vector x. 

However, we emphasize that if there is no connection between node i and j in the network 

then regardless of the linearization point there will always be a zero in the ij
th

 entry. If, 

therefore, a zero is present in more than one linearization point, the chances are increasingly 

high that there is indeed no connection between node i and j in the network structure. Our 

approach contributes to the field of systems biology where the recovery of networks based on 

stimulus-response data is a central topic that has already caught a lot of attention [6,7]. In 

systems engineering, model based experimentation has matured substantially but here the 

design is usually developed for recovery of a set of model parameters in the original non-

linear model structure and not for network inference, see e.g. [20] where the input design is 

formulated in a recursive manner, meaning that the data and subsequent planning of a new 

experiment are processed/analysed on-line. Of course, the results presented in the current 

paper do not include large scale networks with several hundreds of differential equations. 

But, then, this is not our main message. Rather, we have shown that OID based on dynamic 

time series of simple perturbation experiments leads to a better overall performance of the 

parameter estimation algorithm. In addition, the idea of adaptive input design may very well 

be combined with parameter estimation algorithms that are especially geared for such large 

scale problems and we think this will almost certainly improve the efficiency of subsequent 

experimentation and calibration as a means to unravel the underlying structure in a network 

model of a biological system. 
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