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Abstract. Sound spatially distributed rainfall fields includ-
ing a proper spatial and temporal error structure are of key
interest for hydrologists to force hydrological models and to
identify uncertainties in the simulated and forecasted catch-
ment response. The current paper presents a temporally co-
herent error identification method based on time-dependent
multivariate spatial conditional simulations, which are con-
ditioned on preceding simulations. A sensitivity analysis and
real-world experiment are carried out within the hilly region
of the Belgian Ardennes. Precipitation fields are simulated
for pixels of 10 km× 10 km resolution. Uncertainty analyses
in the simulated fields focus on (1) the number of previous
simulation hours on which the new simulation is conditioned,
(2) the advection speed of the rainfall event, (3) the size of the
catchment considered, and (4) the rain gauge density within
the catchment. The results for a sensitivity analysis show
for typical advection speeds> 20 km h−1, no uncertainty is
added in terms of across ensemble spread when conditioned
on more than one or two previous hourly simulations. How-
ever, for the real-world experiment, additional uncertainty
can still be added when conditioning on a larger number of
previous simulations. This is because for actual precipitation
fields, the dynamics exhibit a larger spatial and temporal vari-
ability. Moreover, by thinning the observation network with
50 %, the added uncertainty increases only slightly and the
cross-validation shows that the simulations at the unobserved
locations are unbiased. Finally, the first-order autocorrelation
coefficients show clear temporal coherence in the time se-
ries of the areal precipitation using the time-dependent mul-
tivariate conditional simulations, which was not the case us-

ing the time-independent univariate conditional simulations.
The presented work can be easily implemented within a hy-
drological calibration and data assimilation framework and
can be used as an improvement over currently used simplis-
tic approaches to perturb the interpolated point or spatially
distributed precipitation estimates.

1 Introduction

Precipitation is the most dominant input term determining
the hydrological response at the catchment scale (Beven,
2001). Historically, spatial precipitation information was ob-
tained by rain gauge measurements based on point scale
estimates. However, during the last decades, application of
weather radar at larger scales has improved our understand-
ing of the spatial and temporal properties of rainfall even fur-
ther. Unfortunately, precipitation estimates by weather radar
are prone to errors (e.g.Seo et al., 1999; Steiner et al., 1999;
Krajewski and Smith, 2002; Seo and Breidenbach, 2002;
Germann et al., 2009; Hazenberg et al., 2011). To date, this
implies that operational nowcasting/forecasting systems have
to make use of rain gauge information to mitigate the er-
rors in radar rainfall estimates (e.g.Schuurmans et al., 2007;
Goudenhoofdt and Delobbe, 2009; Cole and Moore, 2009).
As such, rain gauges remain an important tool for the deriva-
tion of unbiased spatially distributed rainfall estimates.

To obtain sound spatially distributed rainfall information
from rain gauge observations, these devices generally are
interpolated to appropriate spatial and temporal resolutions,

Published by Copernicus Publications on behalf of the European Geosciences Union.



3420 O. Rakovec et al.: Hourly precipitation ensemble generator

depending on the hydrological purpose. Among interpolation
methods, geostatistical techniques (like kriging) are popular.
These methods take into account information about the spa-
tial variation within an area and provide both a mean rainfall
as well as an associated error estimate (Webster and Oliver,
2001; Schuurmans and Bierkens, 2007). These errors in areal
rainfall are of key interest for hydrologists because they
can be used to estimate uncertainties in catchment response.
An evaluation of those errors in a spatially lumped manner
has been discussed, for example, byZawadzki(1973) and
Willems (2001). We refer toVillarini et al. (2008) andCiach
and Krajewski(2006) and references cited therein, for anal-
yses of different spatial and temporal sampling errors from
a rain gauge perspective.

Nevertheless, kriging is prone to smooth local variability
of rainfall. Further away from observation points, high (low)
values tend to be underestimated (overestimated) (Goovaerts,
1997). These biases decrease the usability of kriging in ap-
plications sensitive to extreme values (Goovaerts, 1997),
such as within spatially distributed rainfall-runoff modelling
(Bivand et al., 2008).

Sound spatial and temporal estimates of precipitation and
its corresponding uncertainty are of key interest for both sci-
entific and applied hydrological studies (Liu et al., 2012).
The generation of an ensemble, which is a finite and dis-
crete number of spatial realisations over time, is able to re-
alise this goal. A common practice in hydrological data as-
similation applications to obtain ensembles is to perturb the
interpolated point or spatially distributed estimates by Gaus-
sian white noise with a standard deviation ranging between
15–50 % of the observed precipitation (e.g.Pauwels and De
Lannoy, 2006; Weerts and El Serafy, 2006). Although this
approach leads to hydrological model simulations with wide
discharge uncertainty bands, the realisations are not very
realistic from a hydro-meteorological perspective, because
of a lack in coherent temporal evolution of each individual
precipitation realisation.

Sound spatially distributed rainfall fields including
a proper spatial error structure can be obtained by condi-
tional simulation. Unlike interpolation this technique pro-
vides both the best local estimate and ensures that reali-
sations match the sample statistics and are conditional on
neighbouring estimates. In other words, conditional sim-
ulations provide proper information about the spatial un-
certainty (Goovaerts, 1997). Several hydrological studies
have applied conditional simulations at daily (e.g.Clark
and Slater, 2006; Schuurmans, 2008; Vischel et al., 2009;
Grimes and Pardo-Iguzquiza, 2010) and at hourly time steps
(AghaKouchak et al., 2010; Renard et al., 2011).

Unfortunately, conditional simulations do not primarily
take the temporal evolution of the spatial field into account
(Goovaerts, 1997; Webster and Oliver, 2001; Bivand et al.,
2008). Nevertheless, for precipitation the temporal correla-
tion structure can be an important aspect to be considered
when generating spatial precipitation ensembles. Theoreti-

cally, this can be achieved using spatial conditional simula-
tions which are made conditional on previous simulations.
Neglecting this temporal aspect would lead to underestima-
tion of the overall uncertainty in precipitation ensembles.

The objective of this study is to define a plausible pre-
cipitation ensemble generator using rain gauges to capture
the temporal coherence for each realisation of a sequence
of spatial rainfall fields at an hourly time step. Our analy-
ses focus on the uncertainty in the simulated fields based on
(1) the number of previously simulated hours on which the
new simulation is conditioned, (2) the advection speed of the
rainfall event, (3) the size of the catchment considered and
(4) the rain gauge density within the catchment. Our goal
is to present a technique, which can be easily implemented
within a hydrological data assimilation framework to be used
as an improvement over currently used simplistic approaches
to perturb the interpolated point or spatially distributed esti-
mates. The advantage of having the temporal coherence in
hydrological model states is that it avoids the necessity to
smooth possible extreme state values, which can occur when
neglecting temporal coherence.

2 Material and methods

2.1 Data

Hourly precipitation data are available from 42 automatic
rain gauges situated within the Belgian Ardennes region
(Fig. 1). This moderately hilly terrain with maximum ele-
vations of∼700 m a.m.s.l. is predominantly drained by the
Meuse River and partly by the Rhine River (Berne et al.,
2005; Driessen et al., 2010).

In this paper, we focus on the analysis of three represen-
tative stratiform winter rainfall events as described and anal-
ysed byHazenberg et al.(2011): (1) a fast-moving stratiform
system (22 October 2002), (2) a large-scale stratiform system
(22 December 2002) and (3) a fast-moving frontal stratiform
system (1 January 2003). For a further description of these
events, the reader is referred toHazenberg et al.(2011). The
main characteristics of these events are given in Table1. Ad-
ditionally, the autocorrelation coefficients of the catchment
average precipitation of the Upper Ourthe (1600 km2) for
30 rainy events with a minimum duration of 13 h are pre-
sented in Fig.2. All 30 events were observed during the win-
ter half year, from 1 October 2002 to 31 March 2003. Fig-
ure 2 shows that the temporal memory of the precipitation
is highly significant (decorrelation time between 2 and 3 h)
and that the autocorrelation roughly follows an exponential
decay.

2.2 Geostatistical analysis

The variogram is a geostatistical measure of spatial vari-
ability in terms of the semi-variance over a lag distanceh.
The experimental omnidirectional semi-variogram, which
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Fig. 1. (a) The Meuse River basin upstream of Borgharen
(∼ 21 000 km2), the entrance point into the Netherlands, and its
15 sub-catchments (grey polygons) including the Upper Ourthe,
Amblève and Vesdre sub-catchments (black polygons).(b) Topo-
graphic map of the Belgian Ardennes including the Upper Ourthe
(OU), Amblève (AM) and Vesdre (VE) sub-catchments, the chan-
nel network (blue lines), and rain gauges (plusses). Projection is in
the Universal Transverse Mercator (UTM) 31N coordinate system.
After Hazenberg et al.(2011).

is generally called the variogram, assumes stationarity and
isotropy of the predicted variable. It represents half of the
mean square difference between paired data values (i.c. mea-
sured precipitation) within the same binned lag distanceh:

γ̂ (h) =
1

2 Nh

Nh∑
k=1

(z (xk) − z(xk + h))2 , (1)

whereNh is the number of data observation pairs andz(xk)

andz(xk + h) are the observations separated by the lag dis-
tanceh. Because the experimental variogram is derived only
for several discrete lag distances, a parametric variogram
model has to be fitted in order to obtain continuous estimates
of the semi-variance.

The spherical model is a popular and widely employed
variogram model for rainfall (Berne et al., 2004; Schuur-
mans et al., 2007; van de Beek et al., 2011; Verworn and
Haberlandt, 2011). With only three parameters it is defined
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Fig. 2. Autocorrelation coefficients of the catchment averaged pre-
cipitation of the Upper Ourthe for 30 rainy events between 1 Oc-
tober 2002 and 31 March 2003. The bold black line in the boxplot
is the median, the body of a boxplot shows the interquantile range
(Q75–Q25) and the whiskers represent the sample minima and sam-
ple maxima, unless the extreme value occurs further than 1.5 times
the interquartile range from the box, in which case the outlier is
shown by a dot.

as follows:

γ (h) =

{
c0 + c1

(
3 h
2 a

−
1
2

(
h
a

)3
)

if h ≤ a

c0 + c1 if h > a.
(2)

In Eq. (2), the parameterc0 is the nugget, representing the
semi-variance at distanceh = 0. The parameterc1 is the par-
tial sill, while a represents the range, the distance beyond
which the data are not correlated any more.

Certainly, the choice of variogram model involves some
subjectivity. Since our main interest is to see how the tem-
poral aspect (i.e., the temporal correlation structure) affects
the uncertainty in simulated fields, we decided to keep the
parametrisation as simple as possible. However, since we are
focusing specifically on the added uncertainty that originates
due to the advection of a precipitation cell, we expect these
results not to change radically if another variogram model
would have been chosen. Additionally, the spatial anisotropy
was not considered in the variogram model. Although this is
certainly a relevant issue, it is beyond the scope of the current
study.

Figure 3 shows two examples of the experimental vari-
ogram as well as the fitted spherical model for two con-
secutive hours on 22 December 2002. Note that the unit of
semivariance is in mm instead of mm2. This is because the
quantitative statistical measures, which are employed in this
study, are particularly suitable for normally distributed data.
However, rainfall by nature does not follow a Gaussian dis-
tribution at shorter time scales. Therefore, a pragmatic and
popular solution to overcome this problem is to transform
the rainfall data such that their distribution approaches a
Gaussian distribution. As such, rainfall data are square-root
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Table 1.Characteristics of three representative rainfall events.

Starting time Duration Speeda Meanb St. dev.c

[h] [km h−1
] [mm] [mm]

22 Oct 2002 10 54 12.2 7
22 Dec 2002 10 21 16.3 3.9
1 Jan 2003 10 33 17.5 5

a The advection speed for the three precipitation events was obtained by
estimating the mean speed of the precipitation system during the event. We
identified the precipitation system based on observed volumetric radar data for
which the reflectivity exceeded 7 dBZ (∼ 0.1mm h−1). b Mean of the
precipitation sums for all 42 rain gauges.c Standard deviation of the
42 precipitation sums.

transformed (Schuurmans et al., 2007; van de Beek et al.,
2011).

Additionally, Eq. (1) can be extended for the time-
dependent multivariate case, which relates spatial depen-
dency between two variableszp andzq (subindices “p” and
“q” stand for the time steps) and yields the cross variogram:

γ̂pq(h) =
1

2 Nh

Nh∑
k=1

[(
zp (xk) − zp (xk + h)

)
(
zq (xk) − zq (xk + h)

)]
. (3)

This property is defined as half the expectation of the prod-
uct of the increments of two variables (Wackernagel, 2003).
Obviously, ifzp = zq =z, then Eq. (3) reduces to Eq. (1). Fig-
ure3 shows an example of an experimental cross-variogram
and the fitted spherical model. Interpretations of direct and
cross-variograms will be discussed in Sect.3.1.

The gstat R package function fit.lmc() was employed to
fit the direct and cross variogram models using weighted
least square fitting (Pebesma, 2004). The default method uses
weightsNh/h2. The initial model parameters of the spherical
variogram model were set as follows:c1 = 0.1 mm,a = 70 km
and c0 = 0.02 mm. Function fit.lmc() also ensures that the
system is positive definite (Pebesma, 2004).

2.3 Conditional simulation

Conditional simulation is a geostatistical method, which gen-
erates multiple realisations that all reasonably match the sam-
ple statistics (variogram model) and exactly match the condi-
tioning data (Goovaerts, 1997). As such, conditional simula-
tion is a useful tool to model and quantify spatial uncertainty
of a variable such as precipitation (e.g.Clark and Slater,
2006; Schuurmans, 2008; Vischel et al., 2009; AghaKouchak
et al., 2010; Grimes and Pardo-Iguzquiza, 2010; Renard
et al., 2011). Time-independent univariate conditional sim-
ulations depend on the spatial observations by rain gauges
for a given simulation hour. However, by performing time-
dependent multivariate conditional simulations, it becomes
possible to simulate rainfall fields conditional on both pre-
viously simulated precipitation fields as well as on the rain-

A

C B

Fig. 3. Two examples of an experimental variogram (black circles)
and the fitted spherical variogram model (red curve) of square-root
transformed rain gauge observations on 22 December 2002 for two
consecutive hours (A and B). (C) Experimental cross-variogram
(circles) and fitted spherical cross-variogram model corresponding
to (A) and(B).

fall observations by rain gauges. This approach enables to
introduce temporal coherence for each simulated grid point
over time.

In the current study, the gstat R package (Pebesma, 2004;
Rossiter, 2007; R Development Core Team, 2011) was used
to simulate conditional precipitation fields. For a comprehen-
sive overview of the theory behind conditional (sequential
Gaussian) simulations we refer toGoovaerts(1997). Here,
only a brief summary is presented:

Initially, a normal transformation of rainfall data is carried
out. Then, the simulation is performed on the transformed
dataset according to following steps (Goovaerts, 1997):

1. A random path throughout all the grid nodes is defined,
where all nodes are visited only once.

2. At each grid note, given the variogram model, a random
number is drawn from a Gaussian distribution with pa-
rameters equal to the kriging prediction and variance.
This number is added to the dataset used to condition
the subsequently simulated grid nodes.

3. After an estimate is obtained for all grid nodes, the
back-transformation of the simulated normal values to
the original rainfall distribution is performed.

By performing these steps, one time-independent univariate
ensemble realisation per time step is generated. Other reali-
sations can be obtained using different random paths over the
simulation grid domain.

For the purpose of computational stability, we further fo-
cus on rainy periods, which are defined as a cluster of con-
secutive rainy hours, for which each individual hour satisfies
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a minimal intensity condition. More specifically, the mean of
all rain gauge observations should have at least a minimum
value of 0.1 mm and the maximum individual observation
has to exceed 0.5 mm. Additionally, to prevent computational
instability, rain gauges with zero rainfall are set to a small
value of 0.05 mm.

Then, time-dependent multivariate conditional simulations
are carried out for each rainy period according to the follow-
ing steps:

1. Initially, N ensemble realisations conditional on the rain
gauge data and the variogram model are simulated for
the first hour of each rainy period (time-independent
univariate conditional simulation).

2. For the following simulation hours, the multivariate
simulation for realisationj and timet is conditioned
on: (a) rain gauge observations at timet given the fitted
direct variogram model and (b) previously simulated re-
alisationsj at times (t −1,. . . ,t −M), whereM is simu-
lation memory, given the cross-variogram models. This
means that the observed precipitation by rain gauges at
times (t − 1,. . . ,t − M) is substituted by the simulated
fields, which encounter all the points of the entire simu-
lation grid.

2.4 Mathematical notation

Throughout this paper, the following notations are used.
A time series of rainfall realisations at then-th pixel to be
simulated is defined using the following matrix:

Rn,m
j,t =


R1,1 R1,2 · · · R1,T

R2,1 R2,2 · · · R2,T

...
...

. . .
...

RJ,1 RJ,2 · · · RJ,T

 (4)

wherem is the simulation memory scenario,j is an index
of the ensemble realisation andt stands for time.J is the
ensemble size andT is the duration of the rainy period.

In general, two types of approaches can be used to disen-
tangle the uncertainty in variability. The first way of look-
ing at one precipitation realisation is to evaluate and quantify
its corresponding statistics for the whole rainfall event. The
variability of a single realisation over time during an event
(bold line in Fig.4), giving rise to uncertainty in the accumu-
lated rainfall, is a typical source of uncertainty dealt with by
hydrometeorologists (e.g.Mandapaka et al., 2010; Kirstet-
ter et al., 2010), catchment hydrologists and rainfall-runoff
modellers (e.g.Brauer et al., 2011). An alternative approach
is to quantify the uncertainty across the ensemble for each
individual time step (� in Fig. 4), which is more of inter-
est for hydrologists employing Kalman filtering approaches
in flood forecasting (e.g.Weerts and El Serafy, 2006; Clark
et al., 2008).

Having defined theR matrix according to Eq. (4), we can
derive the first two central moments ofR from two different
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Fig. 4.Two types of evaluating the statistics of precipitation ensem-
bles: hydrological event-based approach (bold line for one ensemble
realisation) and data assimilation across-ensemble approach (� for
one time instant).

perspectives: (1) across-ensemble (having indexJ , Eqs.5
and 6) and (2) event-based (along the time axis having in-
dexT , Eqs. 7 and 8):

µ̂J,t [R] =
1

J

J∑
j=1

Rj,t (5)

σ̂ 2
J,t [R] =

1

J

J∑
j=1

(
Rj,t − µ̂J,t [R]

)2 (6)

µ̂T ,j [R] =
1

T

T∑
t=1

Rj,t (7)

σ̂ 2
T ,j [R] =

1

T

T∑
t=1

(
Rj,t − µ̂T ,j [R]

)2
. (8)

The uncertainty within the precipitation ensemble can be ex-
pressed by the coefficient of variation (CV), the ratio of the
standard deviation of the dataset to its mean, which repre-
sents a normalised dispersion and enables comparison be-
tween the generated ensembles for different scenarios (e.g.
Wackernagel, 2003):

CV =
σ̂

µ̂
. (9)
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2.5 Experimental setup

2.5.1 Interpretation of direct and cross variograms

To understand how the direct and cross-variograms reflect
the differences in spatial variability between different pre-
cipitation fields, two examples of experimental and modelled
variograms are analysed for the case of a synthetic circular-
shaped rainfall cell moving over a 145 km× 145 km grid
with 1 km× 1 km resolution (Fig.5). As part of this case, the
effect of rain gauge density on the experimental and mod-
elled variograms is addressed and includes sampling either
from all 21 025 grid pixels (a very dense synthetic obser-
vation network) or using only the 42 rain gauge pixels (ac-
tual real-world network). As such, both the impacts of using
a sparse gauge network and of temporal correlation can be
identified.

2.5.2 Conditional simulations: sensitivity analysis

Next in this study, sensitivity analyses are carried out for a
number of scenarios, which enable one to obtain better un-
derstanding of individual contributions of uncertainty in the
synthetic simulated fields. The sensitivity analyses encom-
pass four aspects:

1. Time: eight types of simulations with, given the time lag,
simulation memories of 0–7 h.

2. Advection speed: five synthetic circular-shaped rainfall
cells with an area of about 4100 km2 (72.5 km diame-
ter), an intensity of 2 mm h−1 and moving at different
advection speeds of 6, 8, 11, 17, 25 km h−1 over the
simulation domain (Fig.5). The duration of the rainfall
events is 18, 12, 9, 6 and 4 h, respectively. As such, the
dimensions of these synthetic rainfall cells are similar
to those observed within the region (Hazenberg et al.,
2011).

3. Area: six synthetic nested sub-catchments over which
the analysis is carried out (Fig.6a).

4. Observation density: three types of rain gauge densities
(Fig. 6b): (1) the actual observation network consists
27 rain gauges, (2) the reduced network has 14 rain
gauges and (3) the complete synthetic network has
100 rain gauges. Removal of the rain gauges from the
actual observation network follows a method (Gouden-
hoofdt and Delobbe, 2009), which keeps the spatial
distribution of remaining gauges as uniform as possi-
ble. First, the sum of the inverse distances between the
four nearest gauges is calculated for each gauge and
then half of the gauges with the highest values are re-
moved. The complete synthetic network for the catch-
ment’s pixels without any real rain gauge is obtained by
randomly drawing x- and y-coordinates from a uniform
distribution.
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Fig. 5.Sensitivity analysis. Five synthetic rainfall events of circular
shape with an intensity of 2 mm h−1 and advection speeds of 6, 8,
11, 17, 25 km h−1 and durations of 18, 12, 9, 6 and 4 h, respec-
tively (from top panel to bottom panel) over a 145 km× 145 km
grid with 1 km× 1 km resolution. The figures show precipitation
sums. The plusses are rain gauges and the dashed box delineates
the 100 km× 100 km simulation domain.
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(a) (b)

Fig. 6. (a)Six nested “sub-catchments” with increasing catchment areas. Rain gauges are indicated by plusses.(b) Three types of rain gauge
densities: dots (N = 100), red pluses (N = 27) and squares (N = 14). Extent of figure corresponds to the black dashed box in Fig.5 and the
grey lines show the 10 km× 10 km grid resolution.

These aspects are considered as follows. Initially, the syn-
thetic circular-shaped rainfall cell with constant intensity
is advected over the catchment at five different advection
speeds. The three types of rain gauge densities are used to
sample the synthetic rainfall. Then, these synthetic point ob-
servations are employed in the simulations of the spatial rain-
fall fields. Both temporal and spatial correlations, which need
to be taken into account, are expressed by the variogram
models. Finally, the generated rainfall fields are analysed for
different simulation memories and catchment sizes. By car-
rying out such a sensitivity analysis of a very simplistic rain-
fall cell with known spatial statistics, constant rainfall inten-
sity and known advection speed, we are able to eliminate sev-
eral sources of uncertainty which would arise with the real-
world data. The purpose of this sensitivity analysis is to ob-
tain a better understanding of the spatial and temporal scales
involved in the rainfall-runoff transformation before turning
to the real-world case.

Because of the higher computational costs of the time-
dependent multivariate conditional simulations at high res-
olution grids, the simulation domain is reduced for that pur-
pose to 100 km× 100 km with a 10 km× 10 km raster reso-
lution (dashed box in Fig.5). The analysis includes 24 en-
semble realisations and the length of the rainy periods varies
between 4 and 18 h, depending on the advection speed.

2.5.3 Conditional simulations: real-world experiment

Finally, the real-world experiment will focus on the three
events described byHazenberg et al.(2011) (see Sect.2.1).
For these events, the impact of time and area as described
in Sect.2.5.2are analysed using the actual observation net-
work (27 rain gauges). Moreover, to verify the accuracy of
the method at unobserved locations, cross-validation is car-
ried out by thinning the observation network with 50 %.

3 Results

3.1 Interpretation of direct and cross variograms

Empirical and modelled spherical direct and cross-
variograms (Sect.2.2) are calculated for two cases of a syn-
thetic circular-shaped rainfall event with an intensity of
2 mm h−1. The first case consists of two rain fields (see 1
and 2 in Fig.7), which are complementary. The second case
consists of four advected rainfall fields (Fig.7, right panel).
The intersection of the third and the fourth rainfall field
(Fig. 7, right panel) yields exactly half of the rainfall area.
Since the third and the fifth rainfall fields are tangent, the
intersection of the fourth and the fifth rainfall field covers
around 28 % of the rainfall area (Glassner, 1998). Moreover,
the intersection of the fifth and the sixth rainfall field yields
again exactly half of the rainfall area. We chose a rather
small circular-shaped rainfall cell with a 36 km diameter, to
minimise the impact of boundary effects.

Figure8a and b show the direct and cross-variograms of
the two complementary rainfall fields in Fig.7 (left and
middle panels). These have been square-root transformed,
for the two sampling densities: a dense synthetic network
(21 025 points covering all raster pixels) and the real world
network (42 rain gauges). We can observe that the two di-
rect variograms are identical and symmetrical with respect
to their cross-variogram. This holds for both sampling den-
sities. As expected, the real-world rain gauge network has
a larger sill and a larger scatter in the empirical variograms
than the much denser synthetic observation network.

For the advected cell of Fig.7 (right panel), the direct and
cross-variograms are shown in Fig.8c and d. For a decreas-
ing intersected area between the two rainfall fields, the fitted
spherical sills decrease proportionally using the dense syn-
thetic network (Table2). Zero overlapping area (i.e., three
combinations: rainfall fields 3 and 5, 3 and 6, 4 and 6),

www.hydrol-earth-syst-sci.net/16/3419/2012/ Hydrol. Earth Syst. Sci., 16, 3419–3434, 2012
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Fig. 7. Sensitivity analysis. Circular-shaped rainfall events consisting of six rainfall fields 1–6. Raster resolution is 1 km× 1 km. Plusses
show the rain gauges and black line delineates the Upper Ourthe, Amblève and Vesdre catchments.

(a) (b)

(c) (d)

Fig. 8. Sensitivity analysis. Direct and cross-variograms for rainfall fields 1 and 2 (Fig.7) derived from all grid points(a) and only the rain
gauge grid points(b). Direct and cross-variograms for rainfall fields 3–6 (Fig.7) derived from all the grid points(c) and only the rain gauge
grid points(d). Grey vertical line shows the range corresponding to twice the diameter of the rainfall circle.
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Table 2. Sensitivity analysis. Fitted sills (mm) using the spheri-
cal model for direct and cross-variograms for rainfall fields 3–6
(see Fig.7) derived for the dense synthetic observation network
(Fig. 8c).

Rainfall field

R
ai

nf
al

lfi
el

d 3 4 5 6
3 0.31
4 0.16 0.32
5 −0.03 0.08 0.33
6 −0.03 −0.03 0.16 0.31

gives a sill of about zero. For the real-world network similar
behaviour can be observed, although the scatter in the fit-
ted models through the empirical variograms is much larger.
Note that even though the circular-shaped rainfall cell is
identical for all rainfall fields, the shape of the empirical var-
iograms differs from each other, because the rain gauge con-
figuration is not spatially uniform and effectively changes for
each rainfall field.

3.2 Conditional simulations: sensitivity analysis

As a first example, the impact of advection speed and the
number of hours used as part of the conditional simulation
was identified for the setup presented in Fig.5. As such,
precipitation is sampled by the real-world rain gauge net-
work (N = 27 in Fig. 6), while a total of up to eight hours
are used as part of the simulation memory (0–7 h). An ex-
ample of such a simulation for one pixel is shown in Fig.9.
We can observe that for the time-independent univariate case
(i.e., conditioned on 0 h of previously simulated fields), there
is no consistency for ensemble realisations over time, since
no information between individual time steps is taken into
account. However, for the time-dependent multivariate cases
(i.e., conditioned on 1–7 h of previously simulated fields),
the temporal consistency for ensemble realisations becomes
more clear. Overall, the spread in simulated precipitation in-
creases when a larger number of previously simulated fields
is included as part of the simulations.

From the event-based perspective (see bold line in Fig.4),
the scatter plots between the simulated mean precipitation
over time (̂µT ,j ) and the corresponding standard deviation
(σ̂T ,j ) for the first four ensemble realisations are shown in
Fig. 10 separately, wherêµT ,j and σ̂T ,j are plotted for all
the individual pixels within the 4900 km2 catchment (see
Fig. 6b). The panels indicate that the spread inµ̂T ,j grad-
ually increases from the time-independent univariate condi-
tional simulation to the most complex time-dependent mul-
tivariate scenario. This is in agreement with the simulation
results shown in Fig.9. Because we are not only interested in
the mean simulated values, but also in their temporal variabil-
ity, standard deviations are plotted against the correspond-
ing means (Fig.11). The slope of the fitted linear regres-
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Fig. 9. Sensitivity analysis. Precipitation ensemble (24 realisations
in grey, from which two realisations are shown in red and blue) for
eight types of simulation scenarios given a simulation memoryM

of 0–7 h, for a pixel located in the centre of the simulation domain.
Black line stands for the synthetic rain gauge observation. Rainfall
scenario for the advection speed of 6 km h−1 (see Fig.5).

sion line represents the mean temporal coefficient of varia-
tion. The coefficients of variation are gradually decreasing
for longer simulation memories, which indicates lower tem-
poral variability and larger temporal coherence for longer
simulation memories.

For the across-ensemble perspective (see� in Fig. 4), the
scatter plots between simulated mean precipitation across-
ensemble (̂µJ,t ) and their corresponding standard deviations
(σ̂J,t ) for the four time steps (t = 7, 8, 9, 10) are shown in
Fig. 11, whereµ̂J,t and σ̂J,t are plotted for all individual
pixels within the 4900 km2 catchment. The figures reflect
a rather constant spread in̂µJ,t for all simulation memo-
ries during those four time steps. Nevertheless, the fitted
coefficients of variation are gradually increasing for longer
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Fig. 10.Sensitivity analysis. Scatter plot ofµ̂T ,j andσ̂T ,j with fit-
ted coefficients of variations (CVT ) for four ensemble realisations,
an advection speed of 6 km h−1 and a catchment area of 4900 km2.
Different points in each panel are for individual points (pixels) of
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Fig. 11.Sensitivity analysis. Scatter plot ofµ̂J,t andσ̂J,t with fit-
ted coefficients of variations (CVJ ) for four time steps, an advec-
tion speed of 6 km h−1 and a catchment area of 4900 km2. Different
points in each panel are for individual points (pixels) of the catch-
ment.

simulation memories. This is in line with the higher ensem-
ble spread for longer simulation memories (see Fig.9).

Since the purpose of this paper is to assess the impact
of precipitation uncertainty estimation across the ensemble
(i.e., µ̂J,t vs. σ̂J,t ), which is of key interest especially for
hydrological data assimilation applications, the next step is
to evaluate it in a lumped manner over all time steps. This
was done by overlapping the individual sub-plots (partially
depicted fort = 7, 8, 9, 10 in Fig.11) for all time steps. An
example is shown in Fig.12, where the coefficients of varia-
tion increase with rainfall simulations conditioned on longer
simulation memories.
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Fig. 12.Sensitivity analysis. Scatter plotµ̂J,t andσ̂J,t lumped over
time with fitted coefficients of variations (CVJ ) for the rainfall sce-
nario with an advection speed of 6 km h−1 (see Fig.5) and a catch-
ment area of 4900 km2. Different points in the panel are for individ-
ual points (pixels) of the catchment.
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Fig. 13.Sensitivity analysis. Coefficient of variation (CVJ ) for dif-
ferent catchment sizes and advection speeds.
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Table 3. Sensitivity analysis. Fitted y-intercept and horizontal
asymptote values of coefficients of variation (CVJ , in Fig. 13) for
different rain gauge networks (Fig.6b).

Number Horizontal
of gauges y-intercept asymptote

14 0.5 1
27 0.45 0.9

100 0.4 0.7

The behaviour of the coefficients of variation (CVJ ) for
individual catchment sizes, advection speeds and simulation
memories is summarised in Fig.13. We can observe that for a
larger advection speed the coefficient of variation rises faster
and approaches its upper level earlier than for slower mov-
ing systems. Note that for the faster events, with advection
speeds of 25 and 17 km h−1 lasting four and six hours, re-
spectively (Fig.5), the coefficients of variation can be ob-
tained only up to the three and five previously simulated
hours. Additionally, the catchment size does not have a large
influence on the coefficients of variation except for very
small catchment sizes consisting of only few pixels, where
the estimation is significantly affected by sampling uncer-
tainty. Because small catchments are nested, most variability
is smoothed out for larger catchments sizes.

The aforementioned examples were based on the real-
world rain gauge network (N = 27). When the number of
rain gauges is decreased to the half of its original density
(N = 14), the general shape of the fitted spherical variogram
through the estimated coefficients of variation remains very
similar. However, both y-intercept and horizontal asymptote
values become higher (Table3). This indicates a slight in-
crease in the across-ensemble variability. For a dense syn-
thetic network (N = 100) the opposite occurs. Both the y-
intercept and horizontal asymptote values decrease, which
means a lower across-ensemble variability. These results sug-
gest that the method is rather robust. Additionally, the effect
of thinning the observation network on the mean simulated
error is provided in the following section, where the cross-
validation at unobserved locations is carried out for the real-
world experiment.

3.3 Conditional simulations: real-world experiment

The real rain gauge observations have been analysed within
the same conditional simulation framework as was done
within the sensitivity analysis. The resulting coefficients of
variation (CVJ ) for the different catchment sizes and sim-
ulation memories are shown in Fig.14. They correspond
well with the sensitivity analysis. For the two fast-moving
systems (22 October 2002 and 1 January 2003), there is a
steep increase in the across-ensemble spread (CVJ ), which
becomes more or less steady after simulation memories of
1–2 h. This means that no further uncertainty is added to sim-
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Fig. 14.Real-world experiment. Coefficient of variation (CVJ ) for
different catchment sizes and three rainfall events.

ulated precipitation fields by conditioning on more than two
hours of previous simulations. For a large-scale stratiform
system (22 December 2002) moving very slowly, a gentle
rise in CVJ is observed. For this event, the horizontal asymp-
tote is reached when a simulation memory of>5 h is taken
into account. Moreover, these values of CVJ are consider-
ably smaller than for the faster systems.

To verify the accuracy of the presented method, cross-
validation was carried out in the terms of the mean error.
The mean error is defined as the difference between the
rain gauge observation and the corresponding across ensem-
ble mean (̂µJ,t , Eq. 5). The rain gauge observations em-
ployed in the validation were independent from the data used
for simulation. To simulate the precipitation fields, 14 rain
gauges out of the complete observation network of 27 rain
gauges were used (Fig.6b). The remaining 13 rain gauges
were kept for validation and their mean errors were calcu-
lated for all time steps and for all eight simulation memories
(dashed histograms in Fig.15). Additionally, we compared
these validation mean errors with the simulation mean errors
at the same 13 locations. These simulation mean errors were
obtained by simulating precipitation fields using all 27 rain
gauges (grey histograms in Fig.15). Figure15 shows that
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Fig. 15. Validation for three real-world events: a) 22 October 2002, b) 22 December 2002 and c) 1 Jan-
uary 2003. Histograms of the validation mean errors at 13 rain gauges (dashed histograms). Histograms
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42

Fig. 15.Validation for three real-world events for simulation memories ranging from 0 to 7 h:(a) 22 October 2002,(b) 22 December 2002
and(c) 1 January 2003. Histograms of the validation mean errors at 13 rain gauges (dashed histograms). Histograms of the simulation mean
errors for the same 13 rain gauges (grey histograms).

the validation mean errors at the unobserved locations are
unbiased and have a consistent behaviour over all simula-
tion memories (dashed histograms in Fig.15). Furthermore,
the histograms of the validation mean errors have smaller
peaks than the mean errors of the simulated precipitation
fields. This increase in uncertainty is to be expected, because
in the validation only half of the rain gauge data are used
to simulate spatial precipitation fields. Note that the spread
in histograms agrees well with the corresponding standard
deviations shown in Table1.

4 Synthesis and discussion

The overall temporal correlation structure of the simulated
precipitation field can be quantified using the first order au-
tocorrelation coefficientr1h, which expresses the correlation
of a precipitation time series for a time lag of 1 h. Figure16
shows box plots ofr1h for time series of areal precipitation
for different catchment sizes and simulation memories. For
a robust investigation of the autocorrelation, it is preferable
to have long time series. Therefore, we decided to use the
data for the slowest synthetic event with a duration of 18 h
(see Fig.5). It can be observed thatr1h increases when mov-
ing from time-independent univariate (M = 0) to the time-
dependent multivariate conditional simulations (M = 1–7 h).
Nevertheless, the major difference between the univariate

simulations (grey boxplots in Fig.16) and the multivariate
simulations (white boxplots in Fig.16) decreases for larger
catchments. This is a direct result of the relatively small size
of the rain cell with respect to the catchment area.

The across-ensemble uncertainty was quantified using
the lumped CVJ , and its shape for both the sensitivity
analysis (Fig.13) as well as the real-world experiment
(Fig. 14) clearly resembles the shape of the spherical var-
iogram (Eq.2). By fitting the spherical model, the range
can be obtained, which represents a simulation memory
threshold of the system, after which no additional precipi-
tation uncertainty is added by including more previous in-
formation. The fitting of the range is done using the gstat
R package (Pebesma, 2004) and is an analogy to the method
explained in Sect.2.2.

For the sensitivity analysis, this leads to a nonlinear rela-
tion between the advection speed and its corresponding fitted
range [h] (Fig.17):

Range× Speed≈ 50 km. (10)

This result indicates that for typical advection speeds
(> 20 km h−1) no uncertainty in terms of across-ensemble
spread is added to the simulated precipitation fields by con-
ditioning it on more than two previous hourly simulations.

We need to bear in mind, however, that the synthetic case
analysed here is the most simplistic example of a precipi-
tation cell, which assumes a known and constant advection
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speed, has a rather small dimension, and results in a constant
rainfall intensity. For real-world examples, on the other hand,
a much higher spatial and temporal variability in the dynam-
ics of precipitation systems can be expected. This means that
the effective ranges of previous information are expected to
increase. This corresponds well with the results obtained for
the real-world experiment, which are shown in Fig.17. To
quantify the apparent uncertainty in the fitted ranges for the
three real rainfall events, the values of the ranges for 80 %,

90 % and 100 % of the partial sills are shown. For the large-
scale stratiform system (red triangles), the fitted ranges vary
around 5–7 h, which is considerably longer than for the two
faster systems. This can be caused by the combination of
(1) the gentle increase and in general lower values of coeffi-
cient of variation, which are about half of the values for the
two remaining events (recall Fig.14) and (2) the size of the
observed precipitation system, which for the real-world case
has a larger dimension. Because of this latter property, we re-
peated the sensitivity analysis for rainfall cells with twice the
original diameter size, which made its area four times larger.
For these cases, indeed a larger coefficient of 63 km is ob-
tained (grey line in Fig.17). Finally, when we refer back to
Fig.2, which shows the exponential decay of the autocorrela-
tion of the areal precipitation estimates, we can conclude that
considering a simulation memory of about two to three hours
is relevant for the presented stratiform winter rainfall events.

Overall, for the time-dependent multivariate conditional
simulations with longer simulation memories, we observed
a larger across-ensemble spread. The commonly defined
time-independent rainfall perturbations used for the hydro-
logical data assimilation applications have noise errors with
a standard deviation up to 50 % of the observed precipita-
tion (e.g.Pauwels and De Lannoy, 2006; Weerts and El Ser-
afy, 2006). This corresponds well with our simulations, in
which the maximum slope of the fitted coefficients of vari-
ation is about 0.5 (Fig.11). However, in comparison with
the aforementioned references, we were able to additionally
capture the temporal coherence for each realisation in space.

Moreover, conditional simulation methods increase com-
putational costs quite dramatically in comparison with inter-
polation methods. Fortunately, this problem can be partly cir-
cumvented by decreasing the temporal (1t [min]) or spatial
(1r [km]) resolution of the simulation model. From an ap-
plied hydrological point of view, an hourly time step is usu-
ally recommended for regions with an area of∼10 000 km2
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(Berne et al., 2004). Moreover, the choice for a rather coarse
10 km× 10 km grid resolution, as was chosen in this study,
can be supported by the analysis carried out byBerne et al.
(2004), who reported the spatial rainfall resolution to be
4.5

√
1t , which yields a decorrelation distance of about

35 km for1t = 60 min.
A limiting factor of this study can be that the spatial

anisotropy of the rainfall field as well as the local topog-
raphy were not considered. Additionally, we did not use
other sources of precipitation measurements, such as weather
radar. Therefore, obtaining precipitation ensembles from
radar remains an important continuation of this study. The
main benefit of using radar is that one obtains much more in-
formation on the spatial characteristics of both the precipita-
tion field and type (Hazenberg et al., 2011). It is then possible
to take two different approaches: (1) the rain gauge perspec-
tive, where we imagine that that the weather radar data is
only used to provide information on where it rains and which
gauges are specifically to be used to generate a variogram
(since they belong to the same region), (2) the radar perspec-
tive, where the gauges are used to correct the radar for any re-
maining bias, while the uncertainty in the precipitation field
is obtained from the volumetric radar information. We will
present some ideas on these issues and approaches related to
these issues in future publications.

5 Summary and conclusions

In this paper, a rain gauge precipitation ensemble generator
at hourly time step using time-dependent multivariate condi-
tional simulations, which were made conditional on previous
simulations back in time was developed. As such, a plausible
way to generate temporal correlation structures for precipita-
tion for each realisation over time was introduced. Next, we
identified the uncertainty and the temporal correlation struc-
tures in the simulated fields based on (1) the number of pre-
vious simulation hours on which the new simulation is con-
ditioned, (2) the advection speed of the rainfall event, (3) the
size of the catchment considered and (4) the rain gauge den-
sity within the catchment.

The sensitivity analysis shows that for typical advection
speeds of> 20 km h−1 no uncertainty in terms of across-
ensemble spread lumped over time (expressed using the co-
efficient of variation) is added to simulated precipitation
fields by conditioning them on more than one or two previ-
ous hourly simulations. In the real-world experiment, which
exhibits a larger spatial and temporal variability, the time-
dependent simulations require somewhat longer simulation
memories. Additionally, by halving the observation network,
i.e., using 14 rain gauges, the uncertainty in the sensitiv-
ity analysis increases only slightly. Furthermore, the cross-
validation shows that the simulations at unobserved loca-
tions are unbiased and have a consistent behaviour over all
simulation memories. Finally, the first-order autocorrelation

coefficient indicated the presence of temporal coherence in
the time series of the areal precipitation using the time-
dependent multivariate conditional simulation in compari-
son with the time-independent univariate conditional simu-
lations. Nevertheless, this coherence was found to decrease
with increased catchment area.

The presented technique to generate spatial precipitation
ensembles can be easily implemented within a hydrologi-
cal data assimilation framework to be used as an improve-
ment over currently used simplistic approaches to perturb
the interpolated point or spatially distributed estimates (as
referred to in the introduction). As shown, using the time-
dependent rainfall simulations with at least one hour of sim-
ulation memory, but preferably longer, we were able to reach
this goal and obtain precipitation ensembles with tempo-
ral correlation structures that are plausible from a hydro-
meteorological perspective. Therefore, the corresponding
simulated spatially distributed model states produced by that
rainfall ensemble should inherit this temporal aspect. The ad-
vantage of having the temporal coherence in model states is
that it eliminates the need to smooth possible extreme state
values, which can be the case when neglecting it. A hy-
drological application of the presented spatial precipitation
ensemble generator is presented byRakovec et al.(2012).
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