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Abstract 
 

Fatty acids, in the form of triglycerides, are the main constituent of the class of 

dietary lipids. They not only serve as a source of energy but can also act as potent 

regulators of gene transcription. It is well accepted that an energy rich diet 

characterized by high intakes of dietary fat is linked to the dramatic increase in 

the prevalence of obesity in both developed and developing countries in the last 

several decades. Obese individuals are at increased risk of developing the 

metabolic syndrome, a cluster of metabolic abnormalities that ultimately increase 

the risk of developing vascular diseases and type 2 diabetes. Many studies have 

been performed to uncover the role of fatty acids on gene expression in different 

organs, but integrative studies in different organs over time driven by high 

throughput data are lacking. Therefore, we first aimed to develop integrative 

approaches on the level of individual genes but also pathways using genome-wide 

transcriptomics datasets of mouse liver and small intestine that are related to 

fatty acid sensing transcription factor peroxisome proliferator activated receptor 

alpha (PPARα). We also aimed to uncover the behavior of PPARα target genes and 

their corresponding biological functions in a short time series experiment, and 

integrated and modeled the influence of different levels of dietary fat and the 

time dependency on transcriptomics datasets obtained from several organs by 

developing system level approaches.  

We developed an integrative statistical approach that properly adjusted for 

multiple testing while integrating data from two experiments, and was driven by 

biological inference. By quantifying pathway activities in different mouse tissues 

over time and subsequent integration by partial least squares path model, we 

found that the induced pathways at early time points are the main drivers for the 

induced pathways at late time points. In addition, using a time course microarray 

study of rat hepatocytes, we found that most of the PPARα target genes at early 

stage are involved in lipid metabolism-related processes and their expression level 

could be modeled using a quadratic regression function. In this study, we also 

found that the transcription factors NR2F, CREB, EREF and RXR might work 

together with PPARα in the regulation of genes involved in lipid metabolism. By 

integrating time and dose dependent gene expression data of mouse liver and 

white adipose tissue (WAT), we found a set of time-dose dependent genes in liver 

and WAT including potential signaling proteins secreted from WAT that may 



 

 

induce metabolic changes in liver, thereby contributing to the pathogenesis of 

obesity. 

Taken together, in this thesis integrative statistical approaches are presented that 

were applied to a variety of datasets related to metabolism of fatty acids. Results 

that were obtained provide a better understanding of the function of the fatty 

acid-sensor PPAR, and identified a set of secreted proteins that may be 

important for organ cross talk during the development of diet induced obesity. 
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Fatty acids and PPARα 
 
Fatty acids are the most important macronutrient components for mammals that 

function as a fuel in the cell to provide energy. After digestion and absorption of 

dietary fat in the small intestine, chylomicrons are formed that are packaged with 

triacylglycerol (TG), cholesterol esters, phospholipids, free cholesterol, and 

apoproteins [1]. Chylomicrons are then secreted by the intestinal epithelial cells 

and transported via the lymphatic system to the blood. The chylomicrons then 

circulate throughout the blood stream and reaches capillaries where LPL 

(lipoprotein lipase) captures these particles and hydrolyzes the TG. As a result 

tissues such as the adipose tissue and muscle take up the free fatty acids (FFA), 

which are then converted into cellular energy. Excess FFAs may cause obesity and 

its associated diseases like type 2 diabetes mellitus, dyslipidemia, atherosclerosis, 

hypertension and hepatic steatosis [2,3]. If adipose tissues exceed their capacity 

to store the FFA as TG, then it may travel to the liver where it may cause NAFLD 

(nonalcoholic fatty liver disease) [4,5]. The chylomicron remnants that remain 

after the hydrolysis of TG ultimately travel to the liver (Figure 1). 

 

 

Figure 1: Digestion and metabolism of dietary fat 
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The FFAs derived from dietary fat, or any synthetic component, enter the cell and 

can bind specific transcription factors after which gene expression can be 

activated or suppressed [6]. The peroxisome proliferator-activated receptors 

(PPARs, NR1C) [7] is a family of transcription factors which are activated by dietary 

fatty acids. There are three PPAR isotypes: PPARα (NR1C1), PPAR δ (also called β) 

(NR1C2) and PPAR γ (NR1C3). All are targets for treating type 2 diabetes, 

dyslipidemia and obesity [8]. Fatty acids and their derivatives bind to PPARα with 

the greatest attraction [9]. Every PPAR heterodimerizes with the retinoid X 

receptor (RXR) and subsequently binds to specific regions on the DNA of target 

genes [10,11]. Since early 1990s, when the peroxisome PPARα was discovered, 

the function of PPARα has been studied broadly [12]. Currently PPARα is well-

known for its control of metabolism in response to diet. PPARα is highly expressed 

in tissues with a high catabolic rate such as the liver, kidneys, heart, intestine and 

skeletal muscle [13,14]. The identification PPARα target genes have concentrated 

mostly on cellular lipid metabolism in the context of the hepatocyte.  

A comprehensive expression profiling analysis of PPARα dependent regulation of 

hepatic lipid metabolism was done by [15], using the synthetic ligand WY14643. 

They found that the role of PPARα in hepatic lipid metabolism was much more 

extensive than previously envisioned and uncovered novel PPARα regulated genes 

and pathways, after 24 hours and 5 days exposure to WY14643. A genome wide 

analysis of PPARα activation in murine small intestine was performed by [16]. 

They showed that PPARα influences the immune and inflammatory response in 

the mouse intestine, which may be of particular importance for the development 

of fortified food and valuable for patients with inflammatory bowel diseases. A 

comparative analysis of gene regulation by the transcription factor PPARα 

between mouse and human was conducted by [17], they showed that PPARα 

regulates a mostly divergent set of genes in mouse and human hepatocytes. 

Taken together, PPARα is considered a crucial fatty acid sensor that mediates 

effects of numerous fatty acids and its derivatives on gene expression and 

therefore is a master regulator of lipid metabolism in mouse and human [18]. 

Although much is already known about the PPARs, still gaps in our knowledge 

remain. The biological role of PPARα, its target genes, pathways and biological 

processes have merely been investigated at only one or two time points after 

activation in isolated systems (tissues). However, no studies have been performed 

to integrate and model the different time points- and tissue-related gene 
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expression data. Therefore, system approaches are needed to integrate and 

model different datasets of PPARα dependently regulated genes and pathways at 

different time points, as well as with different dietary fat doses to explore the 

more functional behavior of dietary fat among the different organs. By applying 

microarray tools one can collect whole genome information and then multivariate 

statistical analytical tools can be applied to get better insights in the biological 

function. 

 

Multivariate data analysis 
 
A microarray study provides expression data on thousands of genes 

simultaneously in several conditions. Basically this can be considered as 

multivariate data. To find out differentially expressed genes and then to evaluate 

the association between them and other (supplementary) information (internal or 

external factors), univariate and multivariate analysis approaches can be applied. 

This kind of association and research can be performed not only at the level of 

individual genes, but also at the level of groups of genes and at the level of 

tissues. In biological sciences, researchers collect lots of data to fully explore their 

study. A main purpose of microarray data analysis is the identification of 

differentially expressed genes and corresponding biological processes. To this end 

mainly univariate techniques are utilized for hypothesis testing; these include 

Student’s t-test, F test, ANOVA or mixed models have been applied for each gene. 

Transcriptomics data involve many tested genes (variables) and the control of the 

false positives rate is not enough, besides, there are not enough replications to 

obtain good estimations.  

Generally, in an experiment with small number of replications for each gene, 

variances can be poorly estimated and therefore the results of the classical t- or F 

statistics can lead to an increase of false positives. However, it is well noticed that 

genes do not act alone; therefore, there is mutual information within microarray 

data that could be used to improve variances estimates. Borrowing information 

from the collective of genes can assist in the inference about each individual gene. 

Tusher et al developed a modification of the t-statistic by adding a constant in its 

denominator which improves the estimation of the variance, the method is 
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known as significance analysis of microarrays (SAM) [19]. Another method is 

known as linear models for microarrays data (LIMMA), and is based on empirical 

Bayes approach taking moderated t-statistic [20]. Recently, the package limma is 

one of the most used programs for microarray data [21]. To analyze factorial time 

course microarrays data with capturing dynamic gene expression profiles, the 

time course analysis of variance (TANOVA) method can be applied [22]. For 

pathway level analysis, several methods have already developed and the most 

used programs are gene set enrichment analysis (GSEA) [23], DAVID [24,25] and 

Ingenuity Pathway Analysis (IPA) [26]. The multiple testing problem is one of the 

most challenging topic in microarray data as well. To handle the false discovery 

rate, many methods have already developed but the most useful method was 

developed by [27].  

 

To adjust the relationships between genes in each pathway, still proper and 

suitable methods need to be discovered. The univariate techniques assume that 

genes are independent, but in reality this is not the case. Furthermore, the 

univariate methods are not able to handle the relationships between several 

genes (responses), therefore, multivariate statistical techniques are becoming 

popular to perceive the more explorative analysis in systems biology [28]. For 

instance, the multivariate statistical software package FactoMinerR [29] is a 

powerful tool to handle and analyze several groups of datasets which based on 

principal component analysis (PCA), factor analysis (FA) or partial least squares 

(PLS). PCA is a dimension reduced approach which produces a set of orthogonal 

principal components (linear combinations of original variables) to account for the 

maximum variation of the data. Observing then the loading plot of the top 

principal components one can find out the most influential genes/variables. The 

more absolute value of loading indicates that the corresponding gene is more 

important or influential. Of course, it is important to see in which treatment 

groups the influential genes are located. For this, one can compare the parallel 

comparison between the score plot (individual plot) and the loading plot 

(correlation circle). The genes and the samples/group(s) located in the same 

quadrant shows the importance of the genes in that samples/group(s).  

Like PCA, FA also involves the description of a set of observed variables in terms of 

a reduced number of latent variables which is known as explanatory factor 

analysis (EFA). The main difference between PCA and FA is that PCA represents 
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the latent variables as functions of the original variables whereas FA represents 

the observed variables as function of the factors or latent variables. Usually the 

use of PCA or EFA appeals more to an explanatory data analysis perspective 

whereas FA is also considered as a model building approach and hypothesis 

testing which is known as confirmatory factor analysis (CFA). However, PCA or FA 

cannot handle the causal relationships as well as more noisy and numerous 

predictor variables between the two or more groups (blocks) of variables. To 

overcome this problem, partial least squares path model (PLSPM) [30,31] was 

developed using partial least squares (PLS) [32,33] to structural equation 

modeling (SEM) which is also known as SEM-PLS or soft modeling. The PLSPM or 

soft modeling does not depend on any distribution pattern and a few cases can 

suffice [34]. Furthermore, it is a components based approach and robust against 

missing values, misspecification and multicollinearity problems. The maximum 

likelihood method in SEM is known as SEM-ML or hard modeling. It is a covariance 

based approach and depends on a specific distribution pattern and need more 

cases [35]. PLS has widely been used in high-dimensional genomic data [36,37] to 

find out the influential genes that highly correlate with the response variable(s) 

and recently PLSPM has also been applied for genome wide association studies 

[38]. The PLSPM is able to handle several groups of data to identify inter- and 

intra- relationships based on inner and outer measurement model respectively, 

and it can be applied for microarray data in multivariate pathway levels. Applying 

several multivariate statistical tools in the different microarray experiments to 

elucidate the biological relation between organs may enable the generation of 

new hypotheses in biology. 

 

 

Systems Biology 
 

Systems biology is a holistic approach merging various experimental data, from 

the genome, proteome and metabolism in single cells and organs with the use of 

computational methods and predictive mathematical models [39,40]. Recently, 

systems biology has been referred to as a ‘burgeoning field’ [41] and ‘executable 

biology’ [42]. At first, a systems approach to biology was predicated on theoretical 

considerations of complex systems. Wiener introduced mathematical models of 
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complex systems control and communication in the 1940s [43]. In the 1960s and 

1970s, Biochemical Systems Theory and Metabolic Control Theory were 

attempted to create simple mathematical models of biological systems [44]. 

However, such systems level approaches were not able to handle to connect the 

experimental molecules; molecules could be gene, modules/pathways, organs etc. 

In 1990s various omics platforms were developed to collect quantitative 

molecular data [45]. In 2002, Kitano mentioned that one should examine the 

structure and dynamics of cellular and organismal function instead of isolated 

parts of cell and organ to understand biological systems and this may have an 

impact on the future of medicine [46]. The combination of computational, 

experimental and observational enquiry in systems biology is highly relevant to 

drug discovery [47]. Basically, from 2002 the modern systems biology has started 

its modeling and network in different parts of the research. In order to 

understand biological systems, Aderem mentioned three basic concepts: 

emergence, robustness, and modularity. The details of these three concepts are 

mentioned in [48]. Systems biology is the combination of omics measurements, 

bioinformatics, statistics, metabolic engineering, computational sciences and 

mathematics. It is an attempt to detect a more integrated and hierarchical pattern 

that facilitates to build new biological pathways and networks at the cellular level 

[49].   

 

Top-down and Bottom-up systems biology 

In systems biology, two distinct approaches have evolved (i) bottom-up systems 

biology, namely computationally-based systems biology [50,51]  and (ii) top-down 

systems biology, namely data-driven systems biology [51,52].  

The bottom-up systems biology depends on computational modeling and 

simulation tools. The ultimate targets of bottom-up approach are to integrate and 

formulate the molecules in order to predict systems behavior and to combine 

pathway models into a global model for the entire systems under consideration.  

The top-down approach mainly utilizes datasets that are mined in a discovery 

manner for new knowledge using a variety of bioinformatics and statistical tools. 

This inductive approach aims to determine new molecular mechanisms employing 

integrated data acquisition and analysis based on correlation [53]. Data-driven 

systems biology [54] has attempted to develop a more applied methodology for 

systems biological analysis. In this approach, researchers have been used a variety 
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of omics platforms with sophisticated statistical and bioinformatics tools to 

transform the discovery process in complex relationships among genetic, 

genomic, proteomic and metabolic pathway and networks. Recently, Martins dos 

Santos et al mentioned in their review of systems biology of the gut that systems 

biology is an integrated, modular modeling framework that cross-links top-down 

and bottom-up approaches for the various levels of biological organs [55].  

 

Regulatory network and modeling 

Generally systems biology handles three major topics (i) dynamic modeling of 

biological systems [56], (ii) reconstruction of regulatory networks [57] and (iii) 

integration as well as molecular interaction [58]. The keystone of systems 

biological research is mostly the focus on molecular interaction and this can easily 

be analyzed and visualized by tools such as Cytoscape [59] and R-spider [60]. 

Recently, an application of graph theory and network theory of biology has 

proven to be a powerful approach to gain insights into biological complexity and 

the advancement of systems biology [61]. Regulatory network analysis provides a 

powerful tool for describing complex systems, their components and their 

interactions in order to identify their topology, as well as the structures and 

functions of the components in broad way. This approach has been successfully 

applied to the representation of various systems in different kinds of data, such as 

in engineering and technology [62], life sciences [63,64], and social studies [65]. 

Xu et al identified and verified critical components of a transcriptional network 

directing lipogenesis, lipid trafficking and surfactant homeostasis in the mouse 

lung [66]. 

 

Biological types of data can be related to one another. In the Gaggle Genome 

Browser [67], heterogeneous data are joined by their location on the genome to 

create information-rich visualizations yielding transcription and its regulation. 

Systems biology is a rising consciousness of the composite dynamics of existing 

systems. Some computational methods have already been developed that can 

deal with the nonlinearity in signaling pathways in relationships between 

genotypes and phenotypes [68]. Although systems biology tends to focus on 

molecular networks, it utilizes analytic techniques designed to account for 

mounting properties arising from the background, flexibility and plasticity of the 
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function [69] in signaling pathways that contribute to disease phenotypes and 

treatment awareness.  

Regulatory networks are the most emerging part of the systems biology. These 

are modeled as graphs, where nodes can be a gene/protein/module and directed 

edges represent transcriptional regulatory interactions. The reconstructions of 

these networks identify the spatial and temporal regulatory interactions between 

transcription factors (TFs) and their targets [70]. For exploiting the causal gene-

gene temporal relationships, time series gene expression data are essential. These 

provide the dynamical properties of the molecular networks. Time-series gene 

expression data can also help to detect the dynamical properties of molecular 

networks, by exploiting the causal gene-gene temporal relationships. In the recent 

literature several dynamic models, such as TimeDelay-ARACNE [71]; ARACNE [72]; 

Dynamic Bayesian Networks [73]; Hidden Markov Model [74]; Ordinary 

Differential Equations [75,76]; and pattern signal processing approaches [77] have 

been proposed for reconstructing regulatory networks from time-course gene 

expression data.  

 

Computational models of intracellular networks as well as a quantitative 

predictive model of gene expression are a foundation of systems biology.  The 

Dialogue on Reverse Engineering Assessment and Methods (DREAM) project is 

working with the current state of systems biology modeling and it organizes 

reverse-engineering challenges to infer the connectivity of the molecular 

networks underlying the measurements, or related reverse-engineering [78-80]. 

Researchers have developed various methods/algorithms to figure out the 

structure of different biological and artificial networks [81]. Recently, high-

throughput experimental techniques have resulted in rapid accumulation of a 

wide range of omics data of various forms, providing in-depth understanding of 

biological processes. It is widely renowned that systems and network biology has 

the potential to increase our understanding of how nutrition influences metabolic 

pathways and homeostasis and how this regulation is disturbed in a diet-related 

diseases. 

 

Nutritional systems biology (NSB) 

Systems biological analysis with focusing on nutrition is known as nutritional 

systems biology. After a nutrient or other dietary component enters a cell, it may 
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influence gene expression by activation of specific transcription factors [6]. These 

TFs are therefore also called nutrient sensors. As a result metabolism may be 

modified. So it’s important to understand this whole process- how it works and 

what the influences on the function of the living beings are. This process can be 

modulated by a number of internal (disease) or external (environmental) factors. 

Also important to consider is the association between omics data and these 

internal or external factors [82] as well as multilevel computational models [83] 

that integrates physiological mechanisms and different space-time scales related 

data. In order to see the nutrient control of eukaryote cell growth, Gutteridge et 

al conducted a comprehensive study  of transcriptome, proteome and metabolism 

responses of chemostat cultures of the yeast and in four different nutrient-

limiting conditions [84]. Every omics dataset represents the complexities of 

nutrition, physiology and cell biology. These datasets have been acquired and 

analyzed to get insight on the biological processes such as homeostasis, disease 

onset and optimal nutrition. For instance, even at the cellular level, simple 

pathways are highly interconnected [50,85]. The emergence of systems biology is 

also referred to as pathway, network, or integrative biology [46,49]. The aim of 

understanding the behavior of the system is to see as a whole rather than the 

behavior of the individual components [86-88]. Systems biology is the integrated 

approach for studying biological systems at the level of cells, organs or organisms 

by measuring and integrating genomics, proteomics and metabolomics data [89]. 

Furthermore, it’s also useful to find out the promoter/transcription factor binding 

sites (TFBS) associations [90], which so far has been most successful in the yeast 

system [91]. 

 

The potential of systems biology is to provide a new dynamic for investigating 

personalized medicine and nutrition [92]. Systems biology has opened up a new 

outlook in our understanding of complex biological systems together with 

information technology, bioinformatics, statistical knowledge, and mathematical 

models. The expansion and use of omics platforms, particularly transcriptomics, 

proteomics and metabolomics, was discussed in detail by [93]. Transcriptome and 

proteome analyses were conducted by [94] to identify the fundamental molecular 

changes in hepatic lipid metabolism in zinc-deficient rats. They provided evidence 

for a rather complex regulatory network of zinc-dependent alterations in hepatic 



                                                                                                                                  Chapter 1 

 

21 

 

metabolism. An integrated analysis to identifying molecular effects of diet was 

done by [95] using transcriptome data from three tissues (liver, muscle and 

adipose tissue) of mice with metabolic disease. They used low-density lipoprotein 

receptor-deficient (Ldlr -/-) mice which were fed a high fat diet to mimic a 

westernized diet. The diets were supplemented with herring. Transcriptome data 

was collected from the above three organs with some phenotype measurements 

(body composition, plasma lipids and aortic lesion). They found that the effect of 

diet on metabolic function in different tissues shows very clear effects that have 

implication for disease development. 

A systems approach to identify early molecular signatures predicting genetic risk 

to metabolic diseases (Type 2 diabetes and obesity) using two strains of mice was 

done by [96]. They integrated different metabolic characterization, gene 

expression, protein-protein interaction networks, RT-PCR and flow cytometry data 

of adipose, skeletal muscle, and liver tissue of diabetes-prone C57BL/6NTac mice 

and diabetes-resistant 129S6/SvEvTac mice at 6 weeks and 6 months of age. They 

found that insulin resistance in mice with differential susceptibility to diabetes 

and metabolic syndrome is preceded by differences in the inflammatory response 

of adipose tissue.  

A study to the pathogenesis of obesity-related nonalcoholic fatty liver disease 

(NAFLD) [2] using reverse phase protein microarrays (RPA) for multiplexed cell 

signaling analysis of adipose tissue from patients with NAFLD was done by [97]. 

They found that PKC (protein kinase C) delta, AKT (protein kinase B), and SHC 

phosphorylation changes occur in patients with simple steatosis. They also found 

that the amounts of cleaved caspase 9 and pp90RSK S380 were positively 

correlated in patients with nonalcoholic steatohepatitis (NASH) using Pearson 

correlation coefficient and specific insulin pathway signaling events are altered in 

the adipose tissue of patients with NASH compared with patients with non-

progressive forms of NAFLD. 

 

Metabolomics of the interaction between PPARα and age in the PPARα -null 

mouse was done by [98]. They used a combined (1)H nuclear magnetic resonance 

(NMR) spectroscopy and gas chromatography-mass spectrometry metabolomics 

approach to examine metabolism in the liver, heart, skeletal muscle and adipose 

tissue in PPARα -null mice and wild-type controls during ageing between 3 and 13 

months. Their metabolomics study, using multivariate statistical techniques: 
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partial least squares (PLS) and partial least squares discriminate analysis (PLS-DA), 

demonstrated that a loss of PPARα results in a marked reduction in hepatic 

glucose/glycogen and subsequent hepatic steatosis with age.  

 

It is important to know the association/integration among the nutrients/diets, 

transcriptomics, proteomics, metabolomics and phenotypes such as weight and 

disease status etc. The following Figure 2 shows an overview of such integration 

among the different kinds of data. This kind of study belongs to the top-down 

systems biology to detect the association among the multi datasets using 

multivariate data mining techniques. 

 

 

Figure 2: Integrate different omics datasets with phenotypes. 

 

To identify the association between transcriptomics and proteomics data, the R 

package mixOmics can be applied by using regularized canonical correlation or 

sparse partial least squares [99]. Another way to integrate different datasets is by 

using the FactoMineR package [100], that is based on multiple factor analysis. In 

this package, one can handle different sets of high-throughput data with 

supplementary variables (e.g., plasma measurements, weight status etc.) To 
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uncover the causal relationships among the different blocks of variables partial 

least squares path model is very well known in chemometrics, econometrics and 

sociological data, and its relevance for the analysis of high throughput biological 

data such as microarray data is being reported [38,101]. This is a multivariate 

technique to collect the path coefficients and the loadings of the variables, and it 

is easy to analyze by plspm package [30] in R program. 

 

Dynamic modeling of gene expression and gene regulatory network are the most 

useful terms in the field of systems biology. But it is also important to build meta 

gene modeling as well meta gene network using systems biological techniques to 

elucidate how biological process evolve over time instead of individual gene. This 

kind of meta gene or eigen gene modeling and network can be done using some 

data reduction technique like PCA (principal component analysis) to find out meta 

gene expression in different homogeneous genes cluster or modules. Afterwards, 

some models, for instance: statistical (linear or non-linear regression model), 

kinetic or mechanistic model can be built by repeated approach as well as meta 

gene network. These kinds of analyses can also be done for protein or 

metabolites. The types of models completely depend on data and the objectives 

of the research. Prifti et al developed an R package FunNet as well as web based 

tools to explore the transcriptional network on gene co-expression based on 

correlation [102]. But their approach does not cover the causal relationship 

between the gene co-expression networks; therefore, after creating meta gene 

expression by multivariate techniques the causal meta gene network can be done 

by TDARACNE [71]. 

 

Software tools 

In order to implement the different approaches in the different fields, we need 

software and statistical tools. Of course, researchers like to analyze their data 

using valid tools that are freely available. Many software tools are available and 

almost every week some new tools are coming in this area. Among them some are 

easy to handle by biologists, some are free and some are not free. In this limited 

overview (Table 1), we list some useful software tools, mostly R packages 

(because these are free and easy to handle) and its function that are related to 

systems biological analyses. Some of these tools have already discussed above. 
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Table 1: Some useful and related software tools in the systems biological field 

 

Software Function Reference 

Top-down 

TDARACNE ( R package) 
Reverse engineering of gene network from time 

course data 
[71] 

GeneTS ( R package) 
Gene association network based on an empirical 

Bayes approach. 
[103] 

VAR network ( R code) 
Causal networks based on the vector autoregressive 

(VAR) process. 
[77] 

pcalg (R package) 

Standard and robust estimation of the equivalence 

class of a Directed Acyclic Graph (DAG) via the PC-

Algorithm. Predicting causal effects in large-scale 

systems from observational data. 

[104] 

Deal (R package) 
Bayesian networks with continuous and/or discrete 

variables can be learned and compared from data. 
[105] 

BNArray (R package) 
Constructing gene regulatory networks 

from microarray data by using Bayesian network 
[106] 

rHVDM (R package) 
Hidden variable dynamic modeling to predict the 

activity and targets of a transcription factor 
[107] 

SysNet 
For interactive analysis of molecular expression 

information in systems biology based on correlation 
[108] 

PathVisio Presenting and exploring biological pathways  [109] 

Cytoscape* 
Integrate models of biomolecular interaction 

networks and visualization tool. 
[59] 

payao 

It is a community-based, collaborative web service 

platform for gene-regulatory and biochemical 

pathway model creation 

[110] 

MetNet 

Enable to visualize, statistically analyze and model a 

metabolic and regulatory network map of 

Arabidopsis, combined with gene expression 

profiling data. 

[111] 
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VitisNet 
"Omics" integration through grapevine molecular 

networks 
[112] 

GeneNet (R package) Gene network based on partial correlation  [113] 

MetNetGE 
Visualization tool that organizes biological networks 

according to a hierarchical ontology structure 
[114] 

FactoMineR* (R 

package) 

Able to handle multifactor data as well as to ingrate 

between them using multivariate statistical tools 
[100] 

integrOmics /mixOmics 

(R package) 

Integrate two different datasets like transcriptomics 

and proteomics. 
[99] 

Simca-p 
Able to handle multivariate normal and non-normal 

data by using PCA and PLS techniques 
[115] 

Unscrambler 

Able to handle multivariate data as well as to 

integrate between them using different kinds of 

statistical tools 

[116] 

Plspm* (R package) 
Handle several groups of multivariate data with 

causal relationships. 
[117] 

FunNet (R package as 

well as web based tool) 

Transcriptional network ( gene co-expression based 

on correlation) 
[102] 

Minet (R package) 
Transcriptional network (gene to gene based on 

mutual information) 
[118] 

GeneAnswers  (R 

package) 

Provide an integrated tool for biological or medical 

interpretation of the given one or more groups of 

genes 

[119] 

CoGAPS (R package) 
To identify patterns and biological process activity in 

transcriptomic data 
[120] 

iPath Visualize the metabolic pathways [121] 

R spider* Pathway network based on KEGG and Reactome [60] 

Ingenuity* 
Pathway analysis and visualization of the interaction 

among the molecules 
[26] 

Genomatix* 
Transcription factor binding sites and promoter 

analysis 
[122] 

Bottom-up 

Celldesigner A modeling tool of biochemical networks [123] 

SBML (Matlab tool box) Facilitates importing and exporting models [124] 
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represented in the Systems Biology Markup 

Language (SBML) 

Inferelator (R code) 
Gene regulatory network based on sigmoidal, or 

Logistic model with the help of kinetic equation. 
[125] 

COPASI 
For simulation and analysis of biochemical networks 

and their dynamics based ODE 

[126] 

 

DIPSBC 
Data integration platform for systems biology 

collaborations by XML  data format 
[127] 

*Used in this thesis 

 

The primary purpose of many biological research projects is to identify the 

gene(s), protein(s) or molecule(s) that are potentially related to a certain 

biological problem (disease). Once a list of potential target genes has been found 

using the proper statistical methods, the next task is to see the pathways or 

networks where these genes are significantly over-represented or not. Besides 

these, another most important thing is to visualize the output, for instance: gene-

gene interactions, protein-protein interactions, pathway networks, metabolic 

pathways, visualize multivariate data and their interpretation to get better insight 

of biological function which leads to create another hypothesis. Recently, 

Ghelenborg et al have nicely been discussed  how to visualize of omics data for 

systems biology [128]. 

The most of the packages and software in the above list are useful for both top-

down and bottom-up approaches. CellDesigner, SBML, and COPASI are very useful 

for kinetic/mechanistic modeling. CellDesigner [123] is very handy to draw 

pathway/biological model and to produce SBML file, afterwards this SBML file can 

be used to simulate model and predicting by COPASI [126]. 
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Perspectives 
 
Until the end of last century, no significant developments occurred in the area of 

systems biology, although some modeling approach were conducted in 1960s and 

70s. Initially, it was meant only in biological area. Recently, this concept is applied 

by other research fields as well, such as ecology, sociology, and medicine. In the 

eve of this century, some significant reviews and studies were published with 

software tools and approaches in systems biological field. However, it’s not 

enough yet to uncover the function of whole organ in the livings beings. To 

integrate different datasets, it’s very essential to use the proper statistical tools. 

Here we mentioned some well-known statistical tools for univariate and 

multivariate data analysis of microarray studies. Some PPARα related articles also 

discussed in this overview to know the function of this transcription factor on the 

gene expression in different organs of mice. Especially, here we focused on the 

top-down systems biological literature on nutritional studies as well as some 

useful analytical software tools for systems biological analyses.  

Based on literature, we may conclude that very few integrative analyses were 

performed by top-down systems biological approach focusing transcriptomics 

data of dietary fat in different organs or integrating omics data. Still more ideas 

and studies are necessary to reveal the function of nutrition in whole living 

beings. Here, we mentioned a schematic overview to integrate not only different 

omics data related with the nutrients but also with phenotype data. Besides the 

interaction among the transcriptomics, proteomics, metabolism and phenotypes, 

we need to know their behavior over time. Therefore, it would be more 

meaningful to produce such kind of omics data over time to reveal the evolution 

of nutritional components in the living beings. Still the research in nutritional 

systems biological is at its infancy, so many things need to be explored this aspect. 

However, this overview might be given us some clue to analyze nutritional 

systems biological analysis in future. 
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Aim and outline of this thesis 
 

Although the function of the fatty acid sensor PPARα has been extensively studied 

at the level of different organs, less is known about the systems-wide functional 

implications of PPARα activation for metabolic health and plasticity of organs as 

well as its behavior over time under nutritional relevant conditions. Since the 

average Western diet, but also that increasingly more in developing countries, 

contains high amounts of fat, a comprehensive systems-wide understanding of 

the role of fatty acid-sensing mechanisms such as PPARα is of great importance 

[46,49,92]. Applying or developing NSB approaches might help to interpret new 

experimental nutrigenomics data on transcriptional responses to dietary fat and 

may provide better insight into the biological implications of fat-specific responses 

in different metabolic organs as relevant for homeostasis, metabolic plasticity and 

prevention of metabolic diseases such as morbid obesity or diabetes type 2 [6] . 

 

The aim of the research described in this thesis was to integrate and model 

different organ-specific transcriptomics datasets related to lipid-sensing by 

nutritional systems biological approaches, especially to characterize the function 

of PPARα. 

 

The different effect sizes (Fold Changes, i.e., mean differences between treatment 

and control groups) in experiments are a big challenge in the analysis of high 

throughput genomics studies and, therefore, in chapter 2 an integrated statistical 

approach is presented to identify transcription factor target genes from 

transcriptomics data across different experiments. Chapter 3 deals with the 

integration and modeling of multivariate data, an important challenge in top-

down systems biology. An approach to characterize a pathway score and to 

integrate different time course and organ specific transcriptomics data by a path 

model are described here. In chapter 4 characterization and modeling of acute 

effects of PPARα activation in rat liver cells is investigated. In chapter 5, we 

focused to detect the time and dose dependently regulated genes in liver and 

white adipose tissue during the development of high-fat diet induced obesity in 

mice. Moreover, we studied the correlation of these genes with the different 

plasma factors (glucose, leptin, adiponectin, resistin, Il6 and tPAI-1) and weight 
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status indicators (BW at start of intervention, BW at section, BW gain, absolute 

liver weight, and relative liver weight). Finally, the general discussion and 

conclusions are presented in chapter 6. 
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Abstract 
  
An effective strategy to elucidate the signal transduction cascades activated by a 

transcription factor is to compare the transcriptional profiles of wild type and 

transcription factor knockout models. Many statistical tests have been proposed 

for analyzing gene expression data, but most tests are based on pair-wise 

comparisons. Since the analysis of microarrays involves the testing of multiple 

hypotheses within one study, it is generally accepted that one should control for 

false positives by the false discovery rate (FDR). However, it has been reported 

that this may be an inappropriate metric for comparing data across different 

experiments. Here we propose an approach that addresses the above mentioned 

problem by the simultaneous testing and integration of three hypotheses 

(contrasts) using the cell means ANOVA model. These three contrasts test for the 

effect of a treatment in wild type, gene knockout, and globally over all 

experimental groups. We illustrate our approach on microarray experiments that 

focused on the identification of candidate target genes and biological processes 

governed by the fatty acid sensing transcription factor PPARα in liver. Compared 

to the often applied FDR-based across experiment comparison, our approach 

identified a conservative but less noisy set of candidate genes with similar 

sensitivity and specificity. However, our method had the advantage of properly 

adjusting for multiple testing while integrating data from two experiments, and 

was driven by biological inference. Taken together, in this study we present a 

simple, yet efficient strategy to compare differential expression of genes across 

experiments while controlling for multiple hypotheses testing.  
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Introduction 
 
Genome-wide transcriptional profiling, or transcriptomics, is extensively used to 

study how cells respond to certain stimuli or to diagnose and predict clinical 

outcomes [129-132]. Transcription factors (TFs) are the key effectors which 

control gene expression. From a variety of research fields, including nutrition 

sciences, there is a major interest in characterizing the genes and networks that 

are controlled by transcription factors. Advances in genome-wide expression 

profiling methodologies and the availability of model systems offered new, 

powerful tools to address this [6,133-138]. 

An effective strategy to elucidate the signal transduction cascades activated by 

transcription factors is through transcriptional profiling. Transcription profiling can 

be applied on gain- and loss-of-function TF mutants, and changes in global gene 

expression that are associated with the various phenotypes could then be used 

for a comprehensive understanding of TF function [133,134,138-140]. To this end, 

transcription factor target genes have to be efficiently and accurately identified 

from the transcriptomics dataset. It is important to realize that from a biological 

perspective, TF target genes are only those genes that do significantly respond 

upon treatment with a potent agonist or gain of function, in wild type but not 

mutant (knockout) models. However, from a statistical inference point of view the 

identification of biological relevant target genes from such 2x2 factorial 

experiments is less straight-forward. 

It is generally accepted that statistical testing is required to reliable identify 

differentially expressed genes (reviewed in e.g. Allison et al [141]). Moreover, 

since the statistical analysis of microarrays involves the testing of multiple 

hypotheses (genes) within one study, it is necessary to control for false positives. 

A frequently used metric to quantify the level of confidence any particular gene is 

differentially expressed, that takes into account multiple testing, is the false 

discovery rate (FDR) [141]. Therefore in many studies a cutoff based on the FDR 

rather than p-value is used to select significantly regulated genes within 

experiments, which subsequently are compared across experiments to identify 

transcription factor target genes. However, Higdon et al [142] reported that the 

use of the FDR and its associated q-value may result in inconsistent and 

misleading interpretation of the comparisons across different experiments, 

especially when the effect sizes of the experiments vary dramatically, as for 
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example is the case when comparing effects of potent agonists in wild type and TF 

knockout models.  

Therefore, the purpose of the work described in the current paper is to present a 

strategy that optimally integrates and controls for multiple hypotheses testing 

using data obtained from two biological systems that respond completely 

different to a treatment. We outline our approach using one of our datasets on 

the mouse peroxisome proliferator-activated receptor alpha (PPARα) [15]. PPARα 

is a TF belonging to the nuclear receptor superfamily, and is activated by a variety 

of compounds, including dietary fatty acids and their derivatives as well as 

synthetic agonists [7,9,143]. 

 

 
Material and Methods 
 
Experimental data 

We illustrate our approach (Figure 1) on one of our publicly available datasets 

(Gene Expression Omnibus (GEO) accession: GSE8295). This dataset was 

generated to identify PPARα target genes in mouse liver [15], and was also used 

by Higdon et al [142] to illustrate the inappropriateness of using the FDR as cut-off 

metric when comparing two transcriptomics experiments with different effect 

sizes. 

Briefly, pure bred wild type (129S1/SvImJ) and PPARα-null (129S4/SvJae-

Pparatm1Gonz/J) mice [144] were fed chow or chow supplemented with 0.1% 

WY14643 (Chemsyn, Lenexa, KS) for 5 days (n = 4 mice per group). WY14643, ({4-

Chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl}sulfanyl)acetic acid (CAS: 

50892-23-4), is a chemical that was developed by the pharmaceutical industry to 

lower serum cholesterol. It is not used in clinical applications, but it is rather used 

as prototype chemical to induce peroxisome proliferation. WY14643 is a highly 

specific and potent agonist for PPAR and is therefore often used in studies on 

this nuclear receptor [12,145]. On the sixth day, mice were anaesthetized and 

livers were excised. Total RNA was prepared using TRIzol reagent (Invitrogen, 

Carlsbad, CA) followed by purification using the RNeasy mini kit (Qiagen, Hilden, 

Germany). RNA integrity was checked by chip analysis (Agilent 2100 Bioanalyzer, 

Agilent Technologies, Amsterdam, the Netherlands) according to the 

manufacturer's instructions. RNA was judged as suitable for array hybridization 
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only if samples exhibited intact bands corresponding to the 18S and 28S ribosomal 

RNA subunits, and displayed no chromosomal peaks or RNA degradation 

products, and had a RNA integrity number (RIN) above 8.0). The Affymetrix 

GeneChip RNA One cycle Amplification Kit (Affymetrix, Santa Clara, CA) was used 

to prepare labeled cRNA from 5 μg of total RNA, which subsequently was 

hybridized on Affymetrix Mouse Genome 430 2.0 plus arrays. The animal study 

was approved by the Local Committee for Care and Use of Laboratory Animals. 

 

Cell Means ANOVA Model 

The dataset on the identification of PPARα target genes in mouse liver has a 2x2 

factorial design; that is factor ‘treatment’ has 2 levels (WY, Control), as has the 

factor ‘genotype’ (wild type, knockout). Analysis of variance (ANOVA) is commonly 

used for analyzing data from experiments with multiple categorical factors 

[146,147]. To appropriately identify candidate PPARα target genes, we propose to 

perform and integrate three comparisons using the cell means ANOVA model 

[148]. For every probeset the model was defined as follows: 

                                                                 Yijk= µij + εijk 

 

where Yijk is the expression of a probeset at ith treatment (1 for WY, 2 for Control) 

in jth strain of genotype (1 for WT, 2 for KO) and kth replication (n=4), µij is the 

mean value of ith treatment and jth strain of each gene, and εijk is a random error 

term which follows normal distribution with mean = 0 and variance = σ2.  

Formally, the definition of a contrast C is expressed below, using the notation µj 

for the jth treatment mean:  
C = c1µ1 + c2 µ 2 + … +cj µ j  + .. .+ck µ k 

Where, c1 + …+ cj +…+ ck =


k

1j

jc =0 

As stated before, from a biological perspective, candidate PPARα target genes are 

only those genes that do significantly respond upon treatment with the potent 

PPARα agonist WY14643 in wild type but not in PPARα knockout mice. Therefore 

three different contrasts (comparisons) from this 2x2 factorial experiment were 
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combined to infer the probesets that were significantly and PPARα-dependently 

regulated. The different contrasts tested were (Table 1): 

Contrast 1: H0: µ11 - µ21=0 versus H1: µ11 - µ21 ≠ 0, returning all probesets regulated 

in the wild type mice by the agonist WY; 

Contrast 2: H0: µ12 - µ22=0 versus H1: µ12 - µ22 ≠ 0, returning all probesets regulated 

in the PPARα knockout mice by the agonist WY; and 

Global Contrast: H0:( µ11 - µ21 ) - (µ12 - µ22 ) = 0 versus H1: ( µ11 - µ21 ) - (µ12 - µ22 )  ≠ 

0, returning the overall differential expressed probesets in wild type versus 

knockout mice groups after treatment with WY compared to control. 

Table 1: The contrasts defining the different hypotheses. 

µij Levels 
Contrast 1 

H0: µ11 -µ21=0 

Contrast 2 

H0: µ12 -µ22=0 

               Global Contrast 

H0:( µ11 - µ21 ) - (µ12 - µ22 ) = 0 

µ11 WY, WT 1 0 1 

µ12 WY, KO 0 1 -1 

µ21 Con, WT -1 0 -1 

µ22 Con, KO 0 -1 1 

 

The PPARα-dependently regulated probesets were then identified by extracting 

those probesets that were only significantly regulated in both Contrast 1 and 

Global Contrast, and subsequently corrected for multiple testing. 

 

Implementation 

All analyses were performed in R [149], using packages from the Bioconductor 

project [150]. Probesets were redefined according to Dai et al [151]. In this study, 

probes were reorganized based on Entrez Gene database, build 36, version 2 

(remapped CDF version 12). Our workflow was as follows (note that since we used 

a remapped chip definition file based on the Entrez Gene database, the terms 

probeset and gene are used interchangeably): 

1. Expression estimates were obtained by GC-robust multiarray (GCRMA) 

normalization, using the empirical Bayes approach to adjust background 

[152].  



Chapter 2 

 
 

 

37 

 

2. For each of the three above-mentioned contrasts, differentially expressed 

probesets (genes) were identified using linear models, as implemented in 

limma [153]. For each contrast probesets were selected based on p <0.05. 

3. Probesets that were common only in Contrast 1 and the combined Global 

Contrast were identified. This set of probesets represented only 

transcription factor regulated genes, and was designated X.  

4. Multiple testing was corrected by using a false discovery rate method 

[27], based on the Global Contrast considering the output of all probesets. 

Probesets in X that satisfied the criterion FDR < 5% were considered to be 

transcription factor target genes. 

 

A schematic overview of our implementation is also given in the Figure 1, and the 

R-code and other required files are available as supplemental material 

(http://www.la-press.com/an-integrated-statistical-approach-to-compare-

transcriptomics-data-acr-article-a3222). 

 
Validation 

To validate our integrated approach, obtained results (Figure 2) were compared 

to results from the across experiment comparison (Figure 3) using two sets of 

well-established PPARα target genes obtained from a recent review (Table 1 from 

Rakhshandehroo et al [18]).  

 

http://www.la-press.com/an-integrated-statistical-approach-to-compare-transcriptomics-data-acr-article-a3222
http://www.la-press.com/an-integrated-statistical-approach-to-compare-transcriptomics-data-acr-article-a3222
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Figure 1: Overview of our integrated strategy. After normalization, transcriptome data 

are analyzed for differentially expressed probesets (genes) using three contrasts (comparisons): 

Contrast 1, representing probesets regulated by a specific treatment in wild type mice; Contrast 2, 

representing probesets regulated by the same treatment but in knockout mice, and Global Contrast, 

representing genes differentially regulated by the treatment between the WT and KO mice. 

Biologically irrelevant probesets, i.e., probesets that are also regulated by the treatment in the KO 

mice, are discarded, resulting in a set of probesets called X. To correct for multiple testing, FDR 

values of the probesets in X are calculated using the p-values obtained in Global Contrast for all 

probesets. A robust set of putative target genes regulated by the knocked-out gene is obtained by 

selecting those probesets from X that fulfill a Global Contrast-based FDR cutoff, e.g. FDR <0.05. This 

set can subsequently be divided in up- and down-regulated genes. 
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Figure 2: Application of the integrated approach on PPARα dataset GSE8295. 

Expression estimates were calculated by GCRMA normalization. Differentially expressed probesets 

were identified using three contrasts using p-value <0.05. Contrast 1, representing probesets 

regulated by the specific PPARα agonist WY in wild type mice; Contrast 2, representing probesets 

regulated by WY14643 in PPARα knockout mice, and Global Contrast, representing probesets 

differentially regulated by WY14643 between the WT and PPARα KO mice. Biologically irrelevant 

probesets, i.e., those 854 probesets that were regulated by WY14643 in both WT and PPARα KO 

mice, were discarded, resulting in a set of probesets called X of size 3345 that were only regulated in 

Contrast 1 and Global Contrast. To correct for multiple testing, FDR values (Benjamini Hochberg 

procedure) of the probesets in X were calculated based on the p-values for all probesets obtained in 

Global Contrast. A robust set of candidate PPARα target genes was obtained by selecting those 2432 

probesets from X that had Global Contrast-based FDR value <0.05. This set was divided in 1325 up- 

and 1107 down-regulated probesets. 
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These sets are available as supplemental material. The true positive rate 

(sensitivity) as function of the false positive rate (1-specificity) for different cutoff 

points was plotted for both the across experiment comparisons and our 

integrated approach using the R-library ROCR [154].  

 

 

Figure 3: The FDR based across experiment comparison of PPARα dataset 

GSE8295. Expression estimates were calculated by GCRMA normalization. Differentially expressed 

probesets were identified in each contrast. Using a FDR value < 0.05 criterion, 4324 probesets were 

regulated in the wild type experiment (Contrast 1), whereas 12 genes were changed in the knockout 

experiment (Contrast 2). Of these 12 genes, 10 were also regulated in the wild type experiment. 

Thus, when comparing across experiments with a FDR value cutoff level of 0.05, 4314 genes were 

considered PPARα target genes.  

 

The partial area under the ROC curve was calculated using p=0.2 (thus 1-

specificity = 0.2) as cutoff. This cutoff value was chosen because for the 

identification of transcription factor target genes a high specificity is required 

(>80%) before considering its sensitivity [155]. In addition, the biological features 

that were overrepresented in the lists of candidate PPARα target genes that were 

generated on the basis of both approaches were analyzed with the software tool 

Ontologizer [156], applying the ‘parent-child-union’ (PCU) algorithm and using the 

biological process ontology of Gene Ontology.  
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Results and Discussion 
 
Identification of candidate PPARα target genes 

The application of transcriptomics to compare the effects of specific agonists, 

such as WY14643, in wild type and PPARα knockout mice is a powerful approach 

to identify candidate PPARα target genes [139,140]. However, when comparing 

across different experiments the use of FDR cutoff values may result in 

inconsistent and misleading interpretation of the data [142]. In this study we 

propose a simple yet effective strategy that avoids comparing probesets across 

experiments based on FDR values while still controlling for multiple testing. 

Testing three different hypotheses (contrasts) for each probeset allowed the 

robust identification of transcription factor target genes. Since only the 

interaction effects are of interest for identifying candidate target genes, the cell 

means ANOVA model was used to infer this 2x2 factorial design. 

 

The number of probesets significantly regulated (p<0.05) upon PPARα activation 

by WY14643 in wild type mice (= Contrast 1) equaled to 5458, whereas in PPARα-

/- mice (Contrast 2) this number was only 1540 (Figure 2). Such a large difference 

was expected since the KO mice do not express any functional PPARα. The Global 

Contrast, incorporating expression information for all probesets in all groups, 

identified 4282 significantly regulated probesets (p<0.05) (Figure 2), representing 

genes that from an inferential perspective are differentially regulated by WY 

between the two mouse strains. However, these included genes that for example 

were only regulated in the KO mice, or were regulated in wild type and, although 

to a lesser extent, still in KO mice. To filter out these ‘biological irrelevant’ genes, 

only probesets that were common in Contrast 1 and Global Contrast were 

retained, resulting in a set of 3345 probesets, which was called set X. Thus, this set 

X contained only probesets that from a biological perspective fulfill the criterion 

of being candidate PPARα target genes. To correct for multiple testing, FDR values 

of the 3345 genes in X were calculated based on all 16392 genes in Global 

Contrast, since in this comparison statistical inference was simultaneously 

adjusted for both experiments in wild type and knockout mice. Finally, a robust 

set of PPARα target genes was obtained by selecting those 2432 probesets from 

set X that fulfilled the criterion FDR < 0.05 (Figure 2). Of these, 1325 probesets 

were induced and 1107 probesets were suppressed.  
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For comparison, we also generated a list of candidate PPARα target genes that 

were generated on the basis of directly comparing the wild type and knockout 

experiment using a FDR cutoff (Figure 3). Note that this frequently used approach 

is criticized [142] and that it is in essence identical to the analysis strategy 

published and interpreted by Rakhshandehroo et al [15], except that these 

authors also employed a fold change cutoff. Using a FDR cutoff of 0.05, we 

identified 4324 probesets that were regulated in the wild type experiment 

(Contrast 1), whereas 12 probesets were changed in the knockout experiment 

(Contrast 2). Of these 12 probesets, 10 were also regulated in the wild type 

experiment. Thus, the FDR based comparison of these two experiments identified 

4314 probesets that should be considered PPARα target genes. 

 

The number of FDR based selected probesets was about twice as large as the list 

of probesets obtained using our integrated approach (4314 versus 2432 

probesets). Comparison of these two sets of candidate genes revealed that almost 

all (i.e., 99%) of the probesets obtained by our integrated approach were also 

identified when using a FDR cutoff (Figure 4). This indicates that while Global 

Contrast is more conservative it will identify similar if not identical biological 

features (see also section on validation). 

 

 

Figure 4: Venn diagram of the identified candidate PPAR target genes obtained 

by our integrated approach or the FDR based across experiment comparison of 

PPARα dataset GSE8295. Almost all (99%) of the candidate target genes identified by our 

proposed approach were also identified in the FDR based across experiment comparison.  



Chapter 2 

 
 

 

43 

 

It is important to realize that the results of statistical hypothesis testing are never 

free of error. Two types of error are distinguished: type I error, i.e., rejecting the 

null hypothesis when it is in fact true, and type II error, i.e., not rejecting the null 

hypothesis when in fact the alternative hypothesis is true. In other words, 

occurrence of the former leads to inclusion of false positives whereas the latter 

leads to inclusion of false negatives. Consequently, we cannot exclude that the set 

of 1911 probesets that were discarded by Global Contrast contained false 

negatives that otherwise would have been retained. However, especially within 

the context of genome-wide screening studies for candidate genes, we believe 

that limiting type I error is of primary concern, and that of type II error is of 

secondary importance. Thus, to err on the safe side we prefer to control for false 

positives rather than for false negatives. Moreover, the probesets that were 

discarded by Global Contrast were characterized by a relatively low effect size 

compared to the probesets that were still included. The mean of the absolute 

coefficients (log2 of the fold-change) of the excluded probesets was 0.36 

(equaling to a mean fold change of 1.28), and was 0.87 (mean FC = 1.83) for the 

included probesets. Taken together, we showed that compared to the FDR based 

across experiment comparison our approach identified a conservative set of more 

robustly regulated candidate PPARα target genes. We believe this is advantageous 

because a clear overview of candidate genes and corresponding biological 

processes normally is aimed for.  

 
Validation 

To compare the performance of our integrated approach with that of the FDR 

based across experiments comparison, we first performed sensitivity versus 

specificity analysis. To this end two benchmark sets of well-established PPARα 

target genes were selected from a review that summarized the latest literature on 

this topic [18]. We created two benchmark sets; one set containing only 32 genes, 

and another set containing 189 genes. The smaller benchmark set contained only 

genes that were demonstrated to be bona fide PPARα target genes in both human 

and mouse liver and that do contain a functional PPAR response element (PPRE) 

in the regulatory regions. The larger benchmark set contained all genes that were 

demonstrated to be PPARα-dependently regulated in mouse liver but for which 

no functional PPRE has yet been identified. We next plotted the true positive rate 

(sensitivity) as function of the false positive rate (1-specificity) for different cutoff 
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points for both our integrated approach and the across experiment comparison 

(Figure 5).  

 

Figure 5: Sensitivity versus specificity of our proposed method and the across 

experiment comparison. The sensitivity versus specificity was analyzed using two benchmark 

lists of established PPARα target genes derived from literature. Panel A: ROC curve for both methods 

using a set of 32 benchmark genes that were demonstrated to be PPARα target genes in both human 

and mouse liver and that do contain a functional PPAR response element (PPRE) in the regulatory 

regions. Panel B: ROC curve for both methods using a set of 189 benchmark genes that were 

demonstrated to be PPARα-dependently regulated in mouse liver but for which no functional PPRE 

has been identified yet. Red lines: ROC curves of our integrated approach; Black lines: ROC curves of 

the across experiment comparison. 

 

Even though our approach identified a conservative list of candidate genes, we 

observed that it performed very similar to the across experiment comparison in 

identifying known PPARα target genes, which was also reflected by almost 

identical partial area under the ROC curve (pAUC; p=0.2) for both methods. Values 

were 0.129 and 0.121, respectively for the across experiment comparison and our 

integrated approach when the smaller set of 32 PPARα target genes was used, 

whereas these numbers were 0.128 and 0.124, respectively, for the larger set of 

189 putative PPARα target genes. 

Next we detected and compared the biological features that were 

overrepresented in the lists of candidate PPARα target genes that were either 
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generated by our approach or the across experiment comparison. Enriched 

biological processes were identified by overrepresentation analysis based on 

Gene Ontology (GO) categories, which is a generally accepted procedure to 

achieve this [141]. To this end the software tool Ontologizer was used [156], 

applying the ‘parent-child-union’ (PCU) algorithm. This algorithm takes the graph 

structure of GO into account, thereby reducing false-positive and biologically 

misleading results [157]. We ran the PCU algorithm on the biological process 

ontology of GO. Using the Benjamini-Hochberg correction for multiple testing and 

a cutoff of 0.05, 27 significantly enriched categories (out of 172 annotated 

categories) were returned in the list of 4314 putative PPARα target genes 

obtained by comparing the wild type and knockout experiment (Figure 6A). 

 

Figure 6: Significantly enriched Gene Ontology categories found in the two lists 

of candidate PPARα target genes. Enriched biological processes were identified in the two 

lists of candidate PPARα targets genes generated by the across experiment comparison (panel A), or 

our integrated approach (panel B). All significant probesets identified by the respective 

methodologies were used as input. The ‘parent-child-union’ algorithm was applied followed by the 

Benjamini-Hochberg correction for multiple testing to identify enriched GO categories. In both lists 

the same underlying biology was identified. Abbreviations: NSP: name space (sub ontology), B: 

Biological process. 
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Similarly, using the same criteria 28 significantly enriched categories (out of 169 

annotated categories) were scored in the list of 2432 genes generated by our 

integrated approach (Figure 6B). Twenty-five identified enriched biological 

processes were identical in both sets of genes. As expected, many processes that 

were enriched have been functionally demonstrated to be controlled by PPARα, 

including cellular ketone metabolic process, lipid metabolic process, cellular 

amino acid and derivative metabolic process, peroxisome organization, and 

mitochondrion organization [9,13,158]. Thus, despite the drastically reduced 

number of candidate PPARα target genes identified by our approach, GO 

enrichment analysis demonstrated a very similar functional characterization of 

these genes, again demonstrating the validity of our strategy.  

 
 
Conclusions  
 

Taken together, in this study we present a simple, yet efficient strategy to 

compare genes across experiments that controls for multiple testing and is able to 

properly detect differentially expressed genes. Compared to the conventional 

used FDR based across experiment comparison, our approach is more 

conservative and less noisy. Our approach is in particular suitable to identify 

candidate target genes of a transcription factor or signaling route from functional 

genomics experiments, but can be applied to any genomics experiment in which 

the effects of a treatment are compared between two genotypes.  
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Abstract  
 

Systems biology approaches aim to discover biological systems in which the 

components work together and are connected to one another within and 

between organs. These components can be either genes or set of genes or organs. 

The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand activated 

nuclear receptor, which is activated by free fatty acids and their derivatives. Here, 

we propose a nutritional systems biology approach to identify and integrate 

PPARα dependent pathways in mouse liver and small intestine from information 

obtained in different experiments using an array-wise pathway score. We also 

developed a partial least squares path model (PLSPM) to infer the effect of 

pathways’ activities at early time points on late time points. We show that our 

approach enabled the identification of PPARα dependent pathways as well as the 

type of regulation in mouse liver and small intestine, and that acutely induced 

pathways are the main drivers for regulation of pathways after long-term 

activation. Taken together, we show that our proposed methodology successfully 

identifies biological relevant PPARα regulated processes and provides clues on the 

underlying mechanisms. 
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Introduction 
 

The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-

activated transcription factor with diverse functions and is activated by a variety 

of synthetic compounds, including drugs used for the treatment of dyslipidemia 

and type 2 diabetes [13,159,160]. High affinity natural ligands include eicosanoids, 

unsaturated as well as long-chain fatty acids, and their activated derivatives (acyl-

CoA esters) [161-166]. In analogy with other nuclear receptors, when activated, 

PPARα forms obligate heterodimers with the retinoid X receptor and stimulates 

gene expression by binding to peroxisome proliferator response elements (PPREs) 

located in the promoter regions of target genes [13]. For efficient transcriptional 

regulation by PPARα also co-regulators are required. These are molecules that 

assist PPARα to positively or negatively influence the transcription of target genes, 

and thereby comprise an integral part of the transcriptional circuitry [167-169]. 

PPARα is also able to repress transcription by directly interacting with other 

transcription factors and interfere with their signaling pathways, a mechanism 

commonly referred to as transrepression [13,170]. PPARα is expressed in a variety 

of tissues, including liver and small intestine [14,16,171].  

In liver PPARα is critical for the coordinate transcriptional activation of genes 

involved in nutrient metabolism [13,159] and it is suggested that PPARα is an 

important regulator of the hepatic acute phase response [172]. Even though the 

small intestine expresses PPARα at high level and is frequently exposed to high 

levels of PPARα agonists via the diet, the role of PPARα in this organ was not 

investigated until recently. The intestinal PPARα plays an important role, 

governing diverse processes ranging from numerous metabolic pathways and lipid 

handling to the control of apoptosis and cell cycle genes [16]. Thus, although 

PPARα activation and target gene regulation has been studied in a range of 

organs, gaps in our knowledge remain.  

 

In so far as the biological role of PPARα is directly coupled to the function of its 

target genes, probing PPARα-regulated genes via the application of genomics 

tools can greatly improve our understanding of PPAR function. By combining 

transgenic animal models with elaborate microarray analyses, a comprehensive 

understanding of the in vivo role of PPARα can be obtained [139]. As a result 

many PPARα target genes and PPARα responsive pathways have been identified, 
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but it should be noted that these have been determined mainly after relatively 

long-term exposure (5 days and more) to potent PPARα agonists. However, we 

have long term mixed effects by WY activation of PPAR leading to direct and 

indirect activation of numerous pathways. 6h treatment largely will lead to mainly 

PPARα activation.  

  

In the current study, we aimed to model the relation between PPARα responsive 

genes and pathways in mouse liver and intestine using pathway scores. To this 

end, array data was used from acute (6h) and long-term (5d) exposure in 

combination with partial least squares path modeling.  
 
 

Materials and methods 
 

Experimental data 

In this study we used datasets that were generated previously in our laboratory to 

identify PPARα target genes in mouse liver and intestine [15,139,166,173]. Briefly, 

pure bred wild type (129S1/SvImJ) and PPARα-null (129S4/SvJae-Pparatm1Gonz/J) 

mice [144] were dosed by oral gavage with 400 μl of a 0.1% WY14643 suspension 

in 0.5% carboxymethyl cellulose (acute experiment), or fed chow or chow 

supplemented with 0.1% WY14643 (Chemsyn, Lenexa, KS) (long-term 

experiment). WY14643 is a highly specific and potent agonist for PPARα and is 

therefore often used in studies on this nuclear receptor [12,145]. After 6 h (acute 

experiment) or 5 days (long-term experiment), mice were anaesthetized and livers 

and intestines were excised. Total RNA was prepared using TRIzol reagent 

(Invitrogen, Carlsbad, CA) followed by purification using the RNeasy mini kit 

(Qiagen, Hilden, Germany). RNA integrity was checked by chip analysis (Agilent 

2100 Bioanalyzer, Agilent Technologies, Amsterdam, the Netherlands) according 

to the manufacturer's instructions. RNA was judged as suitable for array 

hybridization only if samples exhibited intact bands corresponding to the 18S and 

28S ribosomal RNA subunits, and displayed no chromosomal peaks or RNA 

degradation products, and had a RNA integrity number (RIN) above 8.0). The 

Affymetrix GeneChip RNA One cycle Amplification Kit (Affymetrix, Santa Clara, CA) 

was used to prepare labeled cRNA from 5 μg of total RNA, which subsequently 

was hybridized on Affymetrix Mouse Genome 430 2.0 plus arrays. For each 
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treatment, tissue and time point 4 replicate arrays were performed, so in total 64 

arrays were included in this study. The animal study was approved by the Local 

Committee for Care and Use of Laboratory Animals. 

 

NutriSysPath approach 

It is well known that genes belonging to the same pathway (gene set) are related 

to each other, obviously from a biological but also statistical point of view. A large 

variety of pathway overrepresentation methodology has been published, and 

these include tools such as gene set enrichment analysis (GSEA) [23], MaxMean 

statistic [174], interaction-based gene set analysis (IB-GSA) [175], Hotelling’s T2-

statistic [176], Global Test [177], and so on [178]. A drawback of these 

methodologies is that from a statistical perspective they don’t adjust for 

correlation between the genes [178]. Based on the first eigenvector from singular 

value decomposition that reflects pathway activity level, a method has been 

developed by [179] for pathway analysis, considering the correlation between the 

genes, and applying a t-test or analysis of variance to infer the significantly 

regulated pathways. As an alternative approach we propose to use principal 

component analysis (PCA) in combination with correlation analysis to identify 

‘relevant’ pathways, an approach which we called NutriSysPath (Nutritional 

Systems Biology of Pathway Analysis).  

Gene sets representing Gene Ontology categories, metabolic pathways or 

signaling transduction routes were extracted from well-recognized pathway 

databases (GO, KEGG, NCI, Biocarta, Pfam, Reactome and WikiPathways). A 

reference set of well-established PPARα targets genes was derived from [18]. We 

limited our analyses to gene sets that contained at least 15, and maximally 500 

genes, as very small or very large classes are unlikely to be as informative (either 

too specific or too general) [180]. In total 4588 pathways were included in the 

analysis. For each pathway (gene set), PCA was performed using the expression 

data of all samples. PCA involves a mathematical procedure that transforms a 

number of possibly correlated variables, in this case expression of genes, into a 

smaller number of uncorrelated variables considering the relationships among the 

variables, called principal components (meta genes) [128,181]. The first principal 

component accounts for as highest variation in the dataset. We considered the 

dominant principal component (PC1) as the pathway activity level, as was also 

done by [179]. It should be noted that a pathway activity level, i.e., PC1 score, is 
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calculated for each single sample. Next the correlation of all array-wise pathway 

activity scores with that of the reference set was calculated using the non-

parametric Spearman correlation coefficient and the corresponding p-value. In 

this study, the cut-off point was considered P-value ≤ 10-6 and absolute 

correlation coefficient (r) ≥ 0.90. The non-parametric Spearman correlation was 

used because it is more robust against outliers compared to parametric 

correlation measure [182]. Ultimately, this resulted in a list of pathways that had 

similar behavior as the reference set, and these were used as input for further 

analysis. An overview of this approach is given in Figure 1, and the R code used to 

calculate the pathway activity scores is available as supplemental data.  
 

 

Figure 1:   Overview of the NutriSysPath approach. After normalization the microarray 

data, genes were grouped based on the pathways or gene sets. Principal component analysis was 

applied at each pathway and collected  principal component 1 (PC1) as array wise pathway activity 

level or pathway score. Afterwards, ran the Spearman correlation between the standard gene set or 

reference gene set (PPARα target genes) and all other pathways scores and then identified the 

induced or suppressed pathways. The pathways that were positively correlated with the reference 

gene set were considered as PPARα induced  whereas the negatively correlated pathways were 

considered as suppressed pathways. The similar process was applied at each time point and each 

organ.  
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Implementation of the NutriSysPath approach 

In the current study the NutriSysPath approach was implemented as follows: (i) 

expression estimates were obtained by GC-robust multiarray (GCRMA) 

normalization, using the empirical Bayes approach to adjust for background [152], 

(ii) for each pathway the expression data of contributing genes was extracted, (iii) 

PCA was used to calculate the PC1 score per sample for each pathway [29], and 

(iv) the correlation between PC1 scores for the reference set of well-established 

PPARα target genes and all other pathways was calculated using Spearman 

correlation, and finally pathways that significantly correlated with the reference 

set (p≤10-6, r ≥ |0.90|) were retained. Pathways that had a positive correlation 

with the reference set were considered induced pathways, whereas anti-

correlated pathways represented suppressed pathways. This procedure was 

applied in both organs for both time points. Results were visualized using 

heatmaps, and pathway interaction networks were created in Cytoscape using the 

Enrichment Map plugin [59,183]. 

 

Partial least squares-path model 

Partial least squares-path modeling (PLSPM) proposed by [117] is a multivariate 

data analysis technique which provides a framework for analyzing multiple 

relationships between a set of blocks of variables. The PLS is robust against of 

missing values, model misspecification and violation of the statistical 

assumptions: normality and multicollinearity [184,185]. The PLSPM is an 

extension of the PLS. A detailed explanation about the PLSPM can be found in 

[31,34,117]. We used reflective way in the outer model and PLS regression in the 

inner model of the PLSPM with standardizing manifest variables (pathway scores). 

Analysis was performed in R using the library plspm [30]. In this study, we 

evaluated how PPARα-induced and -suppressed pathways that were regulated at 

120h depended on the pathways regulated at 6h. After calculating the pathway 

scores, pathways were grouped in induced or suppressed pathways depending on 

their correlation with the reference set. Thus, in this study we had 8 groups of 

pathways scores, the groups details were as follows: 

 

Y1=UP_Late_I  ;  all induced pathways in small intestine 120h after intervention. 

Y2=Down_Late_I ;  all suppressed  pathways in small intestine 120h after 

intervention. 
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Y3=Up_Late_L ;  all induced pathways in liver 120h after intervention. 

Y4=Down_Late_L ; all suppressed pathways in liver 120h after intervention. 

X1= Up_Early_L ;  all induced  pathways in liver 6h after intervention. 

X2= Down_Early_L ; all suppressed pathways in liver 6h after intervention. 

X3=Up_Early_I  ;  all induced pathways in small intestine 6h after intervention. 

X4=Down_Early_I ; all suppressed pathways in small intestine 6h after 

intervention. 

The PLSPM thus becomes: 

 

Y1= β1 X1+ β2 X2 + β3 X3 + β4 X4 +β5 Y3+β6 Y4 

Y2= β7 X1+ β8 X2 + β9 X3 + β10 X4 

Y3= β11 X1+ β12 X2 + β13 X3 + β14 X4 

Y4= β15 X1+ β16 X2 + β17 X3 + β18 X4 
 
Where, βs  are the path coefficients. 
 
 

Results 
 

We applied the proposed NutriSysPath approach followed by PLSPM on datasets 

that aimed to identify PPARα target genes in mouse liver and intestine, and which 

were generated previously in our laboratory [15,139,166,173]. After 

normalization, pathway activity scores were calculated for each using PCA as 

indicated in the Methods section. Part of the output is represented in Figure 2. 

The heatmap represents pathway activity scores of the reference set 

(PPARα_targets) and 50 GO categories (rows) of the 16 liver samples that were 

120h after start of the intervention (columns). It is clear that pathway activity 

scores varied within and between experimental groups (Figure 2A). As expected 

the activity score for the reference set was highest in the wild type mice treated 

with WY14643. Some GO categories displayed similar behavior as the reference 

set, whereas others behaved oppositely. In Figure 2B the loading plot for a GO 

category is displayed, which represented the contribution of each gene to the 

pathway score; the higher the loading, the more it contributed. This parameter 

can be used to identify genes that were most responsive to treatment with 

WY14643.  
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Figure 2: Array-wise pathway scores. (A) A sample pathway scores of liver 120h data. 

Yellow and blue colors indicated the high and low pathway scores respectively. Rows were the 
pathways and columns were the samples. (B) The loadings (correlation between the pathway scores 
and gene expressions) of the genes in a pathway. Higher bars indicated the more importance of the 
genes in the pathway. 

 

 

Selected pathways in liver and small intestine at 6h and 120h 

To select the pathways in liver and small intestine that were regulated both after 

acute (6h) and long-term (120h) treatment with WY14643, Spearman correlation 

analysis was performed. Pathways were selected if they highly and significantly 

(anti-)correlated with the reference set (absolute correlation coefficient (r ≥ 0.90, 

p ≤ 10-6). Positively correlated pathways were considered to be induced by PPARα, 

whereas negatively correlated pathways were considered to be suppressed. Using 

these cut-off criteria we found that in small intestine after acute activation PPARα 

induced the activity of 80 pathways, and suppressed the activity of 27 pathways. 

After long-term activation the activity of 131 pathways was increased, and of 99 

suppressed in small intestine. Similarly, acute activation of PPARα resulted in the 

induction resp. suppression of 446 and 723 pathways in liver, and long-term 

activation induced resp. suppressed the activity of 115 and 229 pathways. 
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Pathway interaction networks for the induced pathways after acute a long-term 

activation for both organs are presented in Figure 3.  

 

 
Figure 3A: Interaction map of PPARα induced pathways in small intestine after 

acute and long-term activation. Red and white colors indicate pathways that were induced 

or not by PPARα respectively. The inner circle and outer circle indicated the effects of acute (6h) and 

long-term (120h) activation, respectively. The sizes of the nodes is based on the number of genes 

belonging to the pathway; the bigger the nodes the more genes. Edges indicated the overlapped 

genes between the pathway; the thicker the edge, the more the pathways overlap. The network 

contains 162 nodes (pathways) and 353 edges. 
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Figure 3B: Interaction map of PPARα induced pathways in liver after acute and 

long-term activation. Red and white colors indicate pathways that were induced or not by 

PPARα respectively. The inner circle and outer circle indicated the effects of acute (6h) and long-term 

(120h) activation, respectively. The sizes of the nodes is based on the number of genes belonging to 

the pathway; the bigger the nodes the more genes. Edges indicated the overlapped genes between 

the pathway; the thicker the edge, the more the pathways overlap. The network contains 521 nodes 

(pathways) and 1427 edges. 

 

 

These networks revealed that in small intestine (Figure 3A) many pathways 

related to ‘fatty acid metabolic processes’ were induced at both time points, as 

was ‘peroxisome’ and ‘fatty acid binding’. Other processes such as ‘steroid 

metabolic processes’ and ‘digestion’ were induced only after acute treatment, 

whereas ‘nuclear receptor’, ‘pyruvate’, and ‘xenobiotic response’ were only 

induced after long-term activation.  

Similar to the small intestine, many pathways related to ‘fatty acid metabolic 

processes’ and  ‘peroxisome’ were induced in liver after both acute and long-term 

activation (Figure 3B). In addition to these, many pathways related to 

‘morphogenesis’, ‘cell development’, ‘cell differentiation’ and ‘hormone secretion’ 
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were induced after acute activation. We also observed that some pathways 

related to ‘cell cycle’ and ‘transporter activity processes’ were induced either after 

acute or long term activation. In general we observed for both time points that 

the number of significantly regulated pathways was higher for liver than small 

intestine, which suggested the activity of PPARα in liver is higher than small 

intestine. In total 32 pathways were found to be commonly induced in liver and 

small intestine after acute activation, and this were 50 pathways after long term 

activation. The 20 pathways that were found to be induced in both time points 

and both organs are listed in Table 1, and functionally these reflect ‘fatty acid 

metabolic processes’, ‘fatty acid oxidation’ and ‘peroxisome’. 
 
Table 1: Common 20 PPARα induced pathways in liver and small intestine after 
both acute and long-term activation. 

 
Name Description 

GO:0000038 Very long-chain fatty acid metabolic process 

GO:0006631 Fatty acid metabolic process 

GO:0006633 Fatty acid biosynthetic process 

GO:0006637 Acyl-CoA metabolic process 

GO:0009062 Fatty acid catabolic process 

GO:0019217 Regulation of fatty acid metabolic process 

GO:0019395 Fatty acid oxidation 

GO:0030258 Lipid modification 

GO:0032787 Monocarboxylic acid metabolic process 

GO:0034440 Lipid oxidation 

GO:0035383 Thioester metabolic process 

GO:0044242 Cellular lipid catabolic process 

GO:0046320 Regulation of fatty acid oxidation 

GO:0072329 Monocarboxylic acid catabolic process 

GO:0005777 Peroxisome 

GO:0042579 Microbody 

GO:0033293 Monocarboxylic acid binding 

KEGG_Peroxisome KEGG: Peroxisome 

KEGG_PPAR signaling pathway KEGG: PPAR signaling pathway 

KEGG_Fatty acid metabolism KEGG: Fatty acid metabolism 

GO: Gene Ontology category identifier 
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Partial least squares-path modeling 

To infer causal effects on pathway regulation, a PLSPM was designed that 

integrated the inter-organ regulation after acute and long-term PPARα activation. 

To this end, pathways that included in this study were grouped per time point and 

organ based on pathway scores in blocks of induced or suppressed pathways. This 

resulted in 8 blocks groups of pathways, Up early liver (1807 pathways), Down 

early liver (2781 pathways), Up early intestine (1614 pathways), Down early 

intestine (2974 pathways), Up late liver (1079 pathways), Down late liver (3509 

pathways), Up late intestine (1014 pathways) and Down late intestine (3574 

pathways). We assumed that the pathway activity scores after long-term 

activation were (partially) driven by the pathway activity scores after acute 

activation, and that pathways in intestine and liver could influence each other. 

Next multivariate PLSPM was performed. The path coefficients that were 

obtained indicate how much of the regulation observed after long-term activation 

can be effected by the acute activation. For instance, the path coefficient of the 

model for Up_Early_I -> Up_Late_I was 0.94, and that of Up_Early_L -> Up_Late_I 

was 0.53 (Figure 4). This implies that induced pathways in intestine after long-

term activation were more effected by the acutely induced pathways in intestine 

than in liver.  

 

 
 
Figure 4: PLS-path coefficients (total effects) of PLS- path models for liver and 
small intestine by path-diagram. *path coefficients were significant at 5% level by bootstrap 

simulation. 
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We observed that the path coefficient of the model for Up_Early_I -> Up_Early_L 

was 0.88, indicates that acutely induced pathways in small intestine had a 

significant positive influence on acutely induced pathways in liver.  

Moreover, we found no significant effects of the acutely suppressed pathways in 

intestine on any of the long-term regulated pathways in intestine or liver. We 

noticed that up regulated early pathways in liver had positive path coefficients on 

the up regulated late time point in small intestine (0.53), up regulated late time 

point in liver (0.55). On the other hand, acutely induced pathways in liver 

negatively influenced the long-term regulation of suppressed pathways in small 

intestine and in liver. We also noticed that acutely suppressed pathways in small 

intestine had no significant effect on long-term regulation in liver and small 

intestine. 
 

 

Discussion 
 

A key purpose of systems biology is to provide a systems level understanding by 

integrating, interconnecting and modeling of high-throughput datasets [186]. 

Here we applied this approach to a key nutrient sensing transcription factor and 

its target pathways. Multivariate data such as gene expression data is commonly 

generated in modern biology, and many tools have been developed to analyzed 

and visualize this kind of data [128]. To date many studies have examined the 

effect of PPARα activation using  gene expression profiling or metabolomics (see 

e.g. [17,187,98,179]). However, no systematic comparisons of the whole genome 

effects of PPARα activation in mouse liver and small intestine have been reported. 

Here we presented a systematic comparison on PPARα dependently regulated 

pathways utilizing array-wise pathway scores after acute and long-term activation 

in liver and intestine. Three main conclusions can be drawn from our work. First, 

our data support a more important role of PPARα in mouse liver than in small 

intestine, as is evidenced by larger number of the list of significant pathways that 

were identified by our NutriSysPath approach at both time points. Secondly, 

acutely induced pathways in small intestine are suggested to major influence on 

acutely induced pathways in liver. Third, acutely induced pathways are the main 

drivers for regulation of pathways after long-term activation. To the best of our 

knowledge, we are one of the first to use PLSPM to infer the causal effect of early 
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measurement of the groups of up and down regulated pathways scores on that of 

the late measurements.   

In conclusion, the approach used here allows to analyze different datasets either 

several time points or different omics datasets. When applied on PPARα datasets, 

we obtained new insights on organ-specificity and time-dependency of PPARα 

activation.  
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Supplementary  

 
 

Table S1:  The R code of our approach. 
 
 

# Define some variables 

Expression_File <- "int5_n.txt"  #  the input file where rows are the genes and columns are 

samples/array after normalization. 

GMT_File <- "GO_K_NCI_BIOC_PF_REACT_WIP_Mm_symbol.txt" # File saved via Excel to 

make it square 

 

PCA_Scores_File <- "int_5_pca_score_GMT-n.txt" 

Gene_loadings_Output_File = "Gene_Loadings_int55-n" 

Species_Annotation_Library <- "mouse4302mmentrezg.db" 

Lower_Limit_Extracted_Genes_in_Pathway <- 15  # this number depends on researcher, it can be 

changed 

Upper_Limit_Extracted_Genes_in_Pathway <- 500  # this number depends on researcher, it can be 

changed 

 

 

# Remove extensions; these will be added automatically later on 

# for multiple files 

Gene_loadings_Output_File <- gsub("\\.","_", Gene_loadings_Output_File) 

 

# Load the input file first. 

 

# Assumptions: 

# 1. The first row contains the columns names that is samples/array! 

# 2. The first column contains the gene identifiers! 

##  One can calculate the pathways score per array using our code just replacing there input file. If 

one wants to calculate another species or another  annotation or another choice of  extraction limit, 

s/he has to define it on the  variables. 

x <- as.matrix(read.delim(file=Expression_File, row.names=1)) 

 

# Load the GMT File 

gmt <- read.delim(file=GMT_File, header=F, stringsAsFactors = FALSE) 

pathways <- gmt[,3:dim(gmt)[2]] 

rownames(pathways) <- gmt[,1]  

 

# Load the utilized PCA library 

library(FactoMineR) 

library(Species_Annotation_Library, character.only = T) 

 

# Replace the affy IDs with the symbols (if possible) 

rownames(x) <- make.unique(toupper(mget(rownames(x), get(sprintf("%sSYMBOL", sub(".db", "", 

Species_Annotation_Library))), ifnotfound=NA))) 
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# Open the PDF-file 

pdf(file = paste(Gene_loadings_Output_File, ".pdf", sep=""), paper = "a4r", onefile=TRUE) 

 

# Now extract the genes for each individual pathway 

# We use a loop to do the calculations per pathway 

Count <- 0 

Rejected <- 0; 

Final_loadings_Matrix <- vector("list", length(pathways)) 

for (i in 1:dim(pathways)[1]) 

{ 

  cat(sprintf("pathway %g: %s...", i, rownames(pathways[i,]))) 

 

  # Extract the matrix with the selected pathway intensities 

  Current_Pathway_Indices <- which(nchar(pathways[i,]) > 1) 

  # Some identifiers are not available. Filter them out here... 

  Indices <- match(as.character(pathways[i, Current_Pathway_Indices]), rownames(x)) 

  if (sum(is.na(Indices)) > 0) 

    Current_Pathway_Indices <- c(Current_Pathway_Indices[-which(is.na(Indices))]) 

 

  Number_Of_Valid_Genes_in_Current_Pathway <- length(Current_Pathway_Indices) 

  if ((!(Number_Of_Valid_Genes_in_Current_Pathway < 

Lower_Limit_Extracted_Genes_in_Pathway)) && (!(Number_Of_Valid_Genes_in_Current_Pathway 

> Upper_Limit_Extracted_Genes_in_Pathway))) 

  { 

    cat("Included!\n") 

    Count = Count + 1 

    x.pathway <- x[as.character(pathways[i, Current_Pathway_Indices]),] 

    transposed_matrix <- t(x.pathway) 

    res <- PCA(transposed_matrix, scale.unit=TRUE, graph=FALSE) 

    if (Count == 1) 

    { 

      Final_PCA_Matrix <- as.data.frame(res$ind$coord[,1]) 

      colnames(Final_PCA_Matrix)[Count] <- rownames(pathways)[i] 

    } else { 

      Final_PCA_Matrix <- cbind(Final_PCA_Matrix,  as.data.frame(res$ind$coord[,1])) 

      colnames(Final_PCA_Matrix)[Count] <- rownames(pathways)[i] 

    } 

Final_loadings_Matrix[[Count]] <- as.list(res$var$coord[,1]) 

 

    plot(res$var$coord[,1], main=sprintf("%s (%s)", rownames(pathways)[i], gmt[i,2]), xlab = "Genes 

in pathway", ylab = "loadings (gene contributions)", type="h", xaxt="n", cex.axis=0.75) 

 

    # Define the proper graph labels... 

    labels.genenames <- sprintf("%s (%s)", names(res$var$coord[,1]), pathways[i, 

Current_Pathway_Indices]) 

 

    axis(1, at=1:length(names(res$var$coord[,1])), labels=labels.genenames, las=3, cex.axis=0.2) 

  } else { 

    Rejected <- Rejected + 1 

    cat("Skipped!\n") 
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  } 

} 

 

# Close the PDF-file 

dev.off() 

 

# Write the final file 

cat(sprintf("\nWriting PCA Scores file: %s.\n", PCA_Scores_File)) 

write.table(Final_PCA_Matrix, file = PCA_Scores_File, sep="\t") 

cat("Script has succesfully ended!\n")  

### the end 

#################################################################################

############## 
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Abstract 
  
The peroxisome proliferator activated receptor alpha (PPARα) is a transcription 

factor which is activated by natural and synthetic agonists. Studies in mouse, 

human and rat have shown that PPARα plays an important role in liver and other 

organs. However, little is known on the genes and processes that are acutely 

regulated by PPARα, and how these evolve over time. We therefore performed a 

time-course microarray study in rat hepatocytes to characterize the genome-wide 

effects of acute PPARα activation. In this study, mRNA expressions in rat 

hepatocytes were measured at up to five time points (0, 1, 2, 3, and 4h) upon 

stimulation with WY14643. Including all time points, in total 386 genes were 

significantly induced by WY14643. Already 1h after stimulation, gene expression 

increased, and this stabilized after 3h. Several transcription factor binding sites 

were predicted to be involved with PPARα activation, and these included 

recognition elements for NRF2 and RXR. Many genes were found that followed a 

quadratic model and were involved in lipid metabolic processes. Taken together, 

our systems approach identified a set of similar behaving genes with the evolution 

of gene network over time at early stage in rat hepatocytes and their potential 

common transcription factors with PPARα. This information provides new details 

on the molecular mechanisms involved in PPAR-dependent gene regulation.  
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Introduction 
 
Dietary lipids, one of the main nutritional components, are able to excite their 

own catabolism through a set of nuclear receptors called the peroxisome 

proliferator activated receptors (PPARs) [188,189]. Among the three PPAR 

isoforms that exist (PPARα, PPAR δ (also called β) and PPAR γ), fatty acids bind to 

PPARα with highest affinity [9]. PPARα is highly expressed in tissues with a high 

catabolic rate such as the liver, kidneys, heart, skeletal muscle and small intestine 

[14,139]. PPARα is accountable for control lipid metabolism in many tissues, but 

its role has been best investigated in liver [190]. The liver plays an important role 

in the coordination of lipid metabolism and it actively metabolizes fatty acids as 

fuel. It is responsible for hepatic triglycerides export via synthesis of very low 

density lipoproteins (VLDL). An imbalance between lipid anabolic and catabolic 

processes may lead to triglycerides accumulation and as a consequence of hepatic 

steatosis [17]. Genes encoding peroxisomal and microsomal fatty acid oxidation in 

liver are transcriptionally regulated by PPARα [13,191].  

Hepatocyte performs most important function of the liver including lipid 

metabolism, regulation of urea and production of plasma proteins. To identify the 

temporal gene  expression in toxicology of monolayer cultured rat hepatocytes 

cultures study has been done in 5 different time points (4, 12, 24, 48, and 72h) by 

[192]. In order to identify the effect of WY14643 at different markers of 

inflammation a study has been done by [193] at one time point (8 days) in a rat 

model of ligature-induced periodontitis. Several studies have been performed to 

detect the effect of WY14643 in gene expression level in time, such as: at two 

time points (6h and 120h) in mouse and human hepatocytes by [17], at 3 time 

points (1d, 7d, and 28d) by [194] in mouse liver and in one time point (5d) in 

mouse small intestine by [139]. To detect the effect on the expression of c-met, c-

myc and PPAR-alpha in liver and liver tumors from rats has been done by [195]. 

Another study has been performed by [196] to see the differences between the 

promoting activities of the peroxisome proliferator agonist WY14,643 and 

phenobarbital in rat liver at 3 time points (11, 22, or 54 wk). Recently a study has 

been done by [197] for inferring statin-induced gene regulatory relationships in 

primary human hepatocytes over time (0, 6, 12,24, 48, and 72h). Usually, after 4h 

or 6h it’s difficult to detect the direct effect of a treatment. Therefore, to avoid 
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toxicity and to detect the direct effect of WY14643, it’s necessary to run the 

experiments at early stage. Until now such studies haven’t been performed to 

detect the effect of WY14643 (a strong PPARα agonist) of gene expression in rat 

hepatocytes at early time points using a nutritional systems biological approach. 

To fill this gape, we demonstrated an experiment using rat hepatocytes cell 

culture based on microarray experiments. In this study, we aimed to characterize 

the genome-wide effects of acute PPARα activation by detecting the similar 

behavior genes which are activated by synthetic ligand WY14643, their biological 

functions and network at early stage (0-4h). Overall, the results reveal that PPARα 

regulates a several profiles of genes over time in rat hepatocytes and most of the 

potential genes behave a quadratic model. Furthermore, several common 

transcription factors (TFs) also predict to bind with PPARα, for instance: RXR, 

NR2F, EREF and CREB.  

 
Materials and Methods 
 
Cell culture 

Rat hepatoma FAO cells were grown in DMEM containing 10% fetal bovine serum, 

100U/ml penicillin and 100μg/ml streptomycin. FAO cells were seeded in 6-well 

culture plates at a 70% density. After 24 hrs cells were treated with the PPARα 

agonist WY14643 (5μM) dissolved in DMSO (0.1% v/v). Incubations continued for 

1, 2, 3, 4 hours. At each time point, including t=0 h, cells were harvested for RNA 

isolation from both WY14643 and DMSO treated cells; the latter served as control. 

 

RNA isolation and quality control 

Total RNA was isolated from FAO cells using Trizol reagent (Invitrogen, Brede, the 

Netherlands), followed by total RNA cleanup using RNEasy microkit (Qiagen, 

Venlo, the Netherlands). RNA quantity and quality was assessed 

spectrophotometrically (ND-1000, NanoDrop Technologies, Wilmington, USA) and 

with 6000 Nano chips (Bioanalyzer 2100; Agilent, Amstelveen, The Netherlands), 

respectively. RNA was judged as being suitable for array hybridization only if 

samples showed intact bands corresponding to the 18S and 28S ribosomal RNA 

subunits, displayed no chromosomal peaks or RNA degradation products, and had 

a RIN (RNA integrity number) above 8.0. 
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Microarray experiments and data processing 

The Affymetrix GeneChip RNA One cycle Amplification Kit was used to prepare 

labeled cRNA from 5 μg of total RNA (Affymetrix, Santa Clara). Samples were 

hybridized on Affymetrix GeneChip Rat Genome 230 2.0 arrays. Hybridization, 

washing and scanning of the arrays was performed according to the 

manufacturer’s recommendations. The raw intensity values applying the robust 

multiarray analysis (RMA) pre-processing algorithm [198,199] is not adjusted by 

background correction. Therefore normalized expression estimates were obtained 

from the raw intensity values using the GC-robust multi array (GCRMA) 

normalization, using the empirical Bayes approach to adjust background [152]. 

Probesets were redefined according to Dai et al [151]. In this study probes were 

reorganized based on the Entrez Gene database, build 37, version 1 (remapped 

CDF v14).  

 

Identification of differentially expressed genes 

Differentially expressed genes were determined by time course analysis of 

variance (TANOVA) [22]. TANOVA is a method to evaluate factor effects by 

pooling information across the time course while accounting for multiple testing 

and non-normality of microarray data.  

After detecting differentially expressed genes by TANOVA, these were used for 

two complementary approaches, as depicted in Figure 1.  Firstly, we focused on 

the induced genes on the basis of a fold change cut-off (FC≥1.2). This was done 

since PPAR activation directly results in induced expression of target genes, 

whereas PPAR-dependent suppression of gene expression is known to go 

through indirect mechanisms [170]. Per cumulative time point we performed 

pathway overrepresentation analysis and identification of cis-regulatory modules, 

i.e., combinations of transcription factor binding sites (TFBS). 

Secondly, in a complementary approach we performed unsupervised clustering of 

the genes selected by TANOVA to identify genes that behaved similarly over time. 

This cluster analysis was performed to study the dynamics of the response (i.e., 

early and late response) to identify the corresponding genes. Afterwards, selected 

gene expression clusters were characterized with respect to biological function 

and polynomial model.  
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Figure 1: Overview of the experimental design and our analysis strategy. 

After normalization the mRNA expression, the significant genes were selected by TANOVA. 

Afterwards, the analysis was done in two complementary ways. At first WY14643 induced were 

identified to detect the gene interaction network and to identify cis-regulatory modules (CRM). 

Secondly, a cluster analysis was performed by STEM using the all significant genes to find out the 

similar behavior of genes. The clusters that were mostly overlapped with the selected genes at the 

first step, were selected as final selected clusters. Finally, polynomial regression model was fitted for 

each selected cluster by adjusting parameters. 

 

Clustering 

Clustering or grouping the similar patterns of the gene expressions is a key issue 

to analyze the time series microarray data. Short Time-series Expression Miner 

(STEM) was used in this study to detect set of co-expressed genes [200]. STEM 

was specially designed for the analysis short time series gene expression data. 

This method implements to cluster, compare and visualize such data with its 

integration with the Gene Ontology [201]. The algorithm provides significant 

number of clusters whereas within profile genes are highly correlated according 

to Pearson correlation coefficient (r≥0.80) and correct the multiple tests by FDR. 
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In the STEM clustering method, we also assumed maximum number of model 

profiles is 50 and the maximum unit change in model profiles between time points 

is 2. To find out the effected biological processes, i.e., GO overrepresentation 

analysis for each significant profile, we assumed default option for minimum GO 

level and minimum number of genes and number of samples for randomized 

multiple hypothesis correction. 

 

Modeling 

Gene co-expression clusters were fitted using a polynomial regression model 

taking the average gene expression of the respective cluster. We ran the model 

several times considering different order and then selected the best model based 

on the root mean sum square of error (RMSE) and the adjusted R-square. A small 

RMSE with high adjusted R-square provides the best model for the respective 

cluster. Here, we only fitted the model for the most overlapped significant 

profiles. Fitting regression models was performed to enhance the biological 

interpretation of the gene expression cluster, since these models describe the 

shape of each gene expression cluster as a function of time. As a consequence, 

this provides insight into the underlying processes rather than simply identifying 

significant differences. 

 

Gene interaction network analysis 

Genes that were differentially expressed or co-expressed at several time points 

were used to infer gene interaction networks based on combining metabolic 

pathways from Reactome and KEGG databases using Rspider [60]. Interaction 

networks were visualized in Cytoscape [59].  

 

Transcription factor binding sites  

Identification of cis-regulatory modules (CRMs) in promoter regions of regulated 

genes was performed using the Genomatix software suite [122]. The Genomatix 

software suite is a collection of on-line tools for the retrieval and analyses of well 

annotated promoter sequences. In this study, at first we used Gene2Promoter to 

retrieve the promoter regions of regulated genes. Afterwards, FrameWorker [202] 

was used to identify common patterns of TF binding sites in the promoters.  
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Results 
 
Differentially expressed genes 

A nutritional systems approach, combining several statistical and bioinformatics 

tools, was used in this study to identify the temporal behavior of candidate PPAR 

target genes and their corresponding biological function. After normalizing the 

microarray data, usually the first task is to find out the significantly regulated 

genes. In this study, we performed cross-sectional time-course study with two 

different conditions (Control [DMSO] and WY14643) at different time points. 

Sacrificing the time dependency, one can analyze this kind of data using 

conventional analysis of variance (ANOVA) to infer significantly regulated genes. 

Therefore, to capture the dynamic gene expression profiles, we used TANOVA to 

detect significant genes by pooling information across time points accounting for 

non-normality and multiple testing (FDR). Overall, we found 1177 significant 

genes with FDR-adjusted p-values<0.05. Statistically significant does not always 

indicate biologically relevant. We therefore further refined our dataset by 

including only the genes that at one of each time point was more than or equal to 

1.2-fold increased. This showed that the number of relevant significant genes 

increased over time (Figure 2). Total 79 genes were found common in all four time 

points, which represented highly sensitive genes that rapidly respond to WY14643 

treatment. In total 386 genes were found to be increased in all four time points 

(Figure 2A). The temporal behavior of these 386 genes revealed that especially 

after 2h activation there was a strong response which leveled off at the later time 

points (Figure 2A). Moreover, most of the genes induced after 1h were also 

regulated after 2h, and this trend continued for the later time points (Figure 2B). 
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Figure 2: Differentially expressed genes. (A) Venn diagram of relevant regulated genes 

(FC≥1.2, FDR<0.05) at four time points after stimulation with WY14643. (B) Bar diagram of 

cumulative gene regulation and at the four time points and their overlap. 

 

Gene interaction network based on pathways  

After having identified the genes that were regulated, we next analyzed per time 

point the functional implications of this regulation by analyzing which pathways 

were overrepresented in the sets of regulated genes (Table 1). These results were 

then combined with biochemical data to generate gene interaction networks. 
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Table 1: Pathways overrepresented in the sets of regulated genes 

Pathways 1h  
(t=1h) 

1h+2h 
(t=1 to 2h) 

1h+2h+3h 
(t=1 to 3h) 

1h+2h+3h+4h 
(t=1 to 4h) 

Lipid Metabolic Process 1 1 1 1 

Glycerophospholipid Metabolism  4 5 2 

Fatty Acid Biosynthetic Process   6 3 

Retinal Metabolism  2 2 4 

Valine, Leucine and Isoleucine 
Degradation 

2 5 3 5 

Primary Bile acid Biosynthesis  3 4 6 

Steroid Hormone Biosynthesis  7 8 7 

Response to Glucose Stimulus   9 8 

Histidine Metabolism   10 9 

Lipid catabolic Process  8 11 10 

Regulation of Fatty Acid Oxidation  6   

Transport  9 7 11 

The 1
st

 column indicated the name of the pathways which were found in the gene network. The 

columns 1h, 1h+2h, 1h+2h+3h and 1h+2h+3h+4h were indicated the existence of the pathways and 

their ranking based on the number of input genes in the network for the cumulative time points: 1h, 

1h+2h, 1h+2h+3h and 1h+2h+3h+4h respectively. The number 1 meant the highest in the rank, 2 

meant second highest and so on.  

 

We identified only two pathways that were overrepresented in the genes induced 

after 1h, i.e., lipid metabolic process and valine, leucine and isoleucine 

degradation. This indicated that although a substantial number of genes were 

regulated, they likely were involved in a broad range of biological functions that 

therefore did not reach statistical significance. At later time points more pathways 

were identified, that almost all represent parts of lipid metabolism, and the 

number increased over time. The interaction network generated at 1h expanded 



Chapter 4 

 

 

77 

 

over time and always incorporated lipid metabolic process. The most evolved 

interaction network is presented in Figure 3 (the networks of the individual time 

points are available in the supplemental Figures).  

 

Figure 3: Gene interaction network at t=1 to 4h based on the metabolic 

pathways from Reactome and KEGG databases. The rectangular nodes indicated 

regulated genes; triangles represent intermediate genes used to link regulated genes; edges 

indicated biochemical reactions; and circles indicated chemical compounds that are reaction 

intermediates. Different colors indicated different pathways. 

 

Transcription factor binding sites (TFBS) 

To get more insight in the transcription factors that in addition to PPAR are 

involved in the early induction and evolution of genes functionally related and 

represented by lipid metabolic process, we aimed to identify CRMs, i.e., the 

combinations of transcription factor binding sites, in promoter regions of 

regulated genes. We specifically aimed to identify CRMs since usually co-

regulation of mammalian genes depends on sets of transcription factors rather 
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than individual factors alone [203,204]. Since WY14643 is a specific agonist for 

PPAR, we searched for combinations putative TFBSs that included the TFBS 

V$PERO in co-regulated genes (V$PERO is the name of the PPAR response 

element in the Genomatix database). When promoter regions of five regulated 

genes at 1h that were annotated with lipid metabolic process (Ehhadh, Acot1, 

Acot2, Acot3, Acaa1a) were analyzed for CRMs, we found a framework that 

contained a recognition site termed CLOX in addition to the mandatory PERO 

element (Figure 4A). CLOX represented binding of CLOX and CLOX homology (CDP) 

factors, transcription factors known to be suppress transcription [205]. At 2h, 4 

additional genes annotated with lipid metabolic process were found to be 

regulated (Crat, Acadvl, Hadh and Acaa2), and these were jointly analyzed with 

the 5 genes identified at 1h. By doing so we found two CRMs with 3 frameworks 

containing 3 elements each. The first consisted of binding sites for NR2F (nuclear 

receptor subfamily 2 factors) and HAND (twist subfamily of class B bHLH 

transcription factors) with the mandatory PERO element (Figure 4B). The NR2F 

motif corresponds to binding site for NRF2, which is a TF known to induce 

expression of antioxidant enzymes [206], and the HAND motif is recognized by a 

variety of TFs with basic function that induce transcription. 

 

The second CRM contained RXR (RXR hetrodimer binding sites) and CREB (cAMP-

responsive element binding proteins) together with PERO (Figure 4C). RXR is the 

obligatory heterodimeric partner for PPAR [10], and CREB proteins are 

important intracellular signaling factors [207]. An additional 4 genes (Acadl, 

Hadhb, Acadm and Sgms1) that were regulated at 3h and 4h were subsequently 

added to the analysis. We then found 2 CRMs with 5 major frameworks each 

containing 2 elements. The first one again contained RXR (Figure 4D) and second 

consisted of EREF (estrogen response elements) (Figure 4E) with PERO. 

Interestingly, in the framework identified at 1h the physical distance between two 

TFs was much larger than at the later time points. 
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Figure 4: Cis regulatory modules that were identified genes participating in lipid 

metabolic process at different time points. (A) CRM for 1h, TF CLOX bound with PERO in 

the promoters of Ehhadh, Acot3, and Acot4 genes. (B) CRM-1 for 1h+2h, the TFs NR2F and HAND 

were bound with PERO in the promoters of Sgms1, Acadvl and Acaa2 genes (C) CRM-2 for 1h+2h, the 

TFs RXR and CREB were bound with PERO in the promoters of Acot2, Acadvl and Acaa2 genes. (D) 

CRM-1 for 1h+2h+3h and 1h+2h+3h+4h, the TFs EREF was bound with PERO in the promoters of 

Acot2, Sgms1, Acadvl, Acadm and Hadhb genes (E) CRM-2 for 1h+2h+3h and 1h+2h+3h+4h, the RXR 

transcription factor was bound with PERO in the promoter of Acot2, Sgms1, Acadvl, Acaa2 and 

Acadm genes. In all CRMS the deep purple color indicated the mandatory PERO transcription factor. 

Clustering and modeling  

Time series expression data can be presented using a hierarchy of four systematic 

levels: experimental design, data analysis, pattern recognition and networks. 

Every level deals with a specific biological and computational issues, and also 

A

B C

D E
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provides as a pre-processing step for higher levels in the hierarchy [208]. 

Modeling is the key aspect of systems biology and it can comprise reaction 

models, mechanistic models, statistical models and stochastic models [209]. In the 

current study we aimed to model the evolution of gene expression over time, and 

we therefore used statistical non-linear regression models [210]. Since modeling 

of each individual gene is from a computational perspective challenging, we first 

searched for similar expression profiles using the STEM algorithm in the set of 

1177 genes identified by TANOVA. We found 10 significant clusters (profiles), 

which are presented in Figures S4A and S4B. For example, cluster 1 contained the 

most genes (152), and its temporal pattern showed that expression of genes in 

this cluster increased up to 3h and then remained constant. In contrast, genes 

belonging to cluster 2, first decreased at 1h but the increased up to 3h and then 

remained constant. The other clusters likewise showed different behavior.  

Gene Ontology overrepresentation analysis revealed that genes in cluster 1 were 

functionally involved in cellular lipid metabolic process, fatty acid metabolic 

process, lipid metabolic process, peroxisome, and fatty acid oxidation. No distinct 

biological functions could be associated with the other clusters.  

 

To further characterize the different clusters, we uncovered how many genes 

were overlapped between the selected 386 genes (Figure 2A) and the selected 

clusters (Figure S4B). We found that again most of the overlapped genes were 

found in cluster 1 (132 out of 152), followed by cluster 6 (55 out of 63). We 

observed that 4 clusters out of 10 showed comparatively higher overlap, and 

therefore we investigated their expression pattern by polynomial regression 

model (Figure 5C). To do this, we first calculated the average expression of all 

genes in each of the clusters and then fitted a regression model with different 

orders. Initially a simple regression model was fitted and then the adjusted R-

square and root mean sum of square (RMSE) was calculated, after which this was 

repeated with a 2nd order model, and so on. The model with the highest adjusted 

R-square and the lowest RMSE was selected as a best predictive model. As 

expected, polynomial regression model gives better interpolation and better 

fitted pattern of the clusters than linear regression. We found that cluster 1 was 

best fitted using a quadratic model (R
2 

(adj) = 0.987 and RMSE=0.047), indicating 

that 98.7% of the variation could be explained by the model. Likewise, we found 

that in clusters 2, 6, and 10 were the best fitted as a cubic, quadratic and cubic 



Chapter 4 

 

 

81 

 

model, respectively, with the highest adjusted R-square and the lowest RMSE 

(Figure 5C). The name of the genes with cytogenetic location of the overlapped 

genes in the four selected profiles were presented in the Figure S5.  

 

 
 

Figure 5: Overlapping genes between the selected 386 genes (with FC>1.2 and 

FDR<0.05) and the 10 selected clusters. (A) the selected 386 genes, (B) number of 

overlapping genes for each cluster (Profile) , and (C) the fitted polynomial regression model of the 

four clusters. Profile 1: the fitted model is Ŷ=6.375+0.359*t-0.022*t
2
, R

2
(adj)=0.987 and RMSE=0.047, 

Profile 2: the fitted model is Ŷ=6.469-0.383*t+0.305*t
2
-0.047*t

3
, R

2
(adj)=0.995 and RMSE=0.014 , 

Profile 6: Ŷ=5.704+0.438*t-0.075*t
2
, R

2
(adj)=0.899 and RMSE=0.084 and Profile 10: 

Ŷ=4.984+1.017*t-0.385*t
2
+0.045*t

3
, R

2
(adj)=0.982 and RMSE=0.047. The dashed line indicates the 

95% confidence interval of the fitted model. 

 
 
 
 
 
 
 
 



Characterization and modeling of acute effects of PPARα activation in rat liver cells 

 

 

82 

 

Discussion 
 
Microarray technology has facilitated studies on the details of the gene expression 

data in a comprehensive way [129-132], and it has become a popular high-

throughput screening platform in the area of systems biology [211]. Observing the 

change in expression patterns over time provides detailed information of different 

types of conditions instead of just observing at the terminal points of one or two 

time points [212]. Data from time series microarray experiments allows the 

unbiased comprehensive study of evolution, complex dynamics and interaction of 

regulated [208]. Although time-series microarrays experiments are highly 

relevant, still most temporal microarray data set contain only a limited number of 

time points, and these type of experiments are known as short-time-series data 

[213].  

PPARα governs the expression of a large set of genes and many of which are 

involved in fatty acid metabolism [15,18,166,214]. Although many studies have 

been performed on PPAR regulation, no study has been performed using early 

time points in hepatocytes to identify the kinetics of PPAR activation on target 

genes. Hence, our time-course study in rat hepatocytes represents an important 

advancement in our understanding of PPARα function in hepatocytes. 

A number of general conclusions can be drawn from our work. First, several sets 

of potential direct PPAR target genes were identified in different profiles over 

time and most of them are significantly expressed already 2h after activation. 

Second, some novel candidate TFs were found that jointly with PPAR regulate 

gene expression. Third, lipid metabolic process and valine, leucine and isoleucine 

degradation are the most important PPARα target metabolic pathways. Fourth, 

most of the selected genes followed a quadratic model.  

Genes coding for proteins which are involved in the same step of a metabolic 

pathway, are usually co-regulated and these genes mostly share common 

regulatory elements in their promoter sequences—so-called cis-regulatory 

modules (CRMs) [203,204]. A time course study [197] for inferring statin-induced 

gene regulatory relationships in primary human hepatocytes revealed a novel 

relationships of nuclear receptors NR2C2 and PPARα on CYP3A4. In our study, the 
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results showed that lipid metabolic process is the most important pathways at all-

time points in gene network analysis. Using the genes annotated with this 

functional process, we identified that the NR2F sequence was consistently closely 

located to the PERO recognition site in promoters of Sgms1, Acadvl and Acaa2. 

NR2F is bound by the TF NRF2 which plays an important role in controlling the 

response against oxidants [206]. Since activation of PPAR induces fatty acid 

oxidation, hence increases oxidative stress, this would be expected. For three 

other genes (Acot2, Acadvl and Acaa2) we found RXR binding site closely located 

with PERO. This was envisioned since it is well known that PPAR forms an 

obligatory heterodimer with RXR to function [215,216], and illustrates the 

biological validity of our approach. 

 

The results from the clustering and polynomial regression modeling provide 

insight in the more subtle differences in temporal behavior of gene expression. 

Each gene cluster was reduced to a smaller set of parameters that are less noisy. 

The elimination of inherent variability in the data through the regression modeling 

approach allows a more precise comparison of the expression profiles of the 

various clusters. This enhances the generation of hypothesis on the molecular 

mechanisms that drive the observed gene expression responses [210].  

Taken together, we conclude that our systems approach contributes to a better 

understanding of PPARα function in rat hepatocytes. However, a series of future 

studies are required to investigate the different scientific issues in more detail.  
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Supplementary 

 

Figure S1: Gene network at 1h based on the metabolic pathways from Reactome 

and KEGG databases by Rspider. The rectangle nodes indicated the input genes from our list, 

circles were the compound, triangles were the intermediate genes, the edges indicated the 

biochemical reaction and different colors indicate the different pathways. 

 

Figure S2: Gene network at 1h+2h based on the metabolic pathways from 

Reactome and KEGG databases by Rspider. The rectangle nodes indicated the input genes 

from our list, circles were the compound, triangles were the intermediate genes, the edges indicated 

the biochemical reaction and different colors indicate the different pathways. 
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Figure S3: Gene network at 1h+2h+3h based on the metabolic pathways from 

Reactome and KEGG databases by Rspider. The rectangle nodes indicated the input genes 

from our list, circles were the compound, triangles were the intermediate genes, the edges indicated 

the biochemical reaction and different colors indicate the different pathways. 

 

Figure S4: Clustering standardized WY14643 data of the selected genes by STEM. 

(A) Significant profiles (clusters) were shown by colors. (B) The details profiles of the significant 

profiles. 

Cluster-9 Cluster-10

Cluster-4 Cluster-5

Cluster-6 Cluster-7 Cluster-8

Cluster-1 Cluster-2 Cluster-3
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Figure S5: The genes with cytogenetic location of the overlapped genes in the 

four selected profiles. Cytogenetic locations were found by using ‘rat2302rnentrezg.db’ 

package in R program. 

 

 

 

 

 

 
 
 

Gene Location Gene Location Gene Location Gene Location

Vnn1 1p12 Ttll9 3q41 Lactb2 5q11 Eci1 10q12

Pex3 1p13 Slc27a2 3q36 Acer2 5q32 RGD1307222 10q24

Dact2 1q12 Mybl2 3q42 Calb1 5q13 Aldh3a2 10q22

RGD1359349 1q51 Arhgap11a 3q34 Acot1 6q31 Decr2 10q12
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Hmgcs2 2q34 Pex1 4q13 Slc25a20 8q32 Slc27a1 16p14
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Gene Location
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Pdk4 4q13
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Abstract 
 
Obesity is one of the main health problems world-wide. Excess dietary fat is 

stored in adipose tissue, but it has been suggested that this storage capacity is 

limited. Consequently, adipose tissue failure or dysfunction may drive progression 

of hepatic steatosis toward non-alcoholic steatohepatitis (NAFLD). However, 

knowledge on the functional link between adipose tissue dysfunction and NAFLD 

is currently limited. In this study we aimed to integrate and model the 

relationships between gene expression in white adipose tissue (WAT) and liver, 

weight status indicators as well as different plasma factors during the 

development of diet-induced obesity (DIO) in mice. Multiple factor analysis was 

used to determine the association between gene expressions in WAT and liver 

jointly with body weight gain and selected plasma proteins. Partial least squares-

path modeling (PLSPM) for putative inter-organ signaling was used to reveal 

cause-effect relationships among the different blocks of multivariate 

observations. In both tissues a time and dose dependent effect on gene 

expression was observed that was most pronounced in WAT. A set of genes in 

both tissues and plasma leptin and insulin were found to be positively associated 

with body weight gain during the development of DIO. The PLSPM revealed that 

changes in WAT gene expression encoding for potentially secreted proteins were 

best explained by changes in the weight status indicators. In contrast, changes in 

liver gene expression were best explained by changed expression of potentially 

secreted proteins in WAT. Taken together, we showed that the development of 

DIO resulted in major changes in WAT and hepatic gene expression. The inter-

organ PLSPM model identified a potential set of genes from WAT that may predict 

around 50% of induced metabolic changes in liver, thereby contributing to the 

pathogenesis of obesity.  
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Introduction 
 
A vast body of literature has been published on the association between diet and 

chronic disease risk (see e.g. [217,218]). It is well known that an energy rich diet 

characterized by high intakes of dietary fat has been linked to the dramatic 

increase in the prevalence of obesity in both developed and developing countries 

in the last several decades [217-219]. Obese individuals are at increased risk of 

developing the metabolic syndrome, a cluster of metabolic abnormalities that 

ultimately increase the risk of developing vascular disease and type 2 diabetes 

[220-222]. 

In healthy situations excess energy is mainly stored as triglycerides in white 

adipose tissue (WAT). However, complications of obesity may in part be traced to 

aberrant storage of lipids in non-adipose tissues, such as liver, which can 

profoundly disturb organ function [223-225]. Moreover, it has been suggested 

that obesity starts to cause metabolic problems only when WAT cannot fully meet 

demands for additional storage of lipids [4,5]. As a consequence, the metabolic 

syndrome is often characterized by non-alcoholic fatty liver disease (NAFLD), 

which therefore is commonly considered as the hepatic manifestation of the 

metabolic syndrome [225,226].  

Recently, it has been well accepted that WAT does not only serve as a storage 

organ, but also has an important endocrine function [225,227]. Adipokines 

secreted from WAT may have an important role in control of metabolism in 

organs other than WAT [228]. A well-known example of such an adipokine is 

leptin, which controls appetite in the central nervous system. Other adipokines 

include adiponectin, resistin, plasminogen activator inhibitor-1 (PAI-1), tumor 

necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and estradiol. Their influence is 

not limited to modulation of metabolism, but includes regulation of inflammatory 

responses and hormone production [225,227]. However, the extent and means of 

inter-organ signaling between WAT and liver remains to be elucidated [228].  

Genome-wide expression profiling allows an unbiased approach to the 

identification of genes regulated by a dietary intervention [6,139]. From the 

perspective of inter-organ communication, in addition to measuring levels of 

known adipokines, identification of potentially secreted factors whose expression 
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is regulated in WAT could identify novel molecules that may play a role during the 

development of diet-induced obesity (DIO) and its complications. 

Therefore, in the present study we investigated the effects of development of DIO 

on gene expression in liver and WAT, and on plasma levels of selected adipokines. 

To this end, mice were fed 4 diets that differed in fat content for up to 12 weeks, 

body weight characteristics and selected adipokines were measured, and liver and 

WAT were subjected to microarray analysis. The various datasets were integrated 

using multivariate statistical tools, and specific focus was given on the interaction 

between WAT and liver by potentially secreted factors. We found that changes in 

weight status indicators mainly explained changes in plasma adipokines and gene 

expression in WAT, but not in liver, and we also identified a set of potentially 

secreted factors in WAT that explained most of the variation in hepatic gene 

expression. 

 
 
Materials and Methods 
 
Ethics statement 

The institutional and national guidelines of the animal experiments were followed 

and the experiment was approved by the Local Committee for Care and Use of 

Laboratory Animals at Wageningen University. 

 

Animals and diets 

The animal study described here was conducted within the framework of the 

European Nutrigenomics Organisation NuGO, and has been described in detail by 

Baccini et al [229]. Briefly, male C57BL/6J mice were obtained from Charles River 

(Maastricht, The Netherlands) at three weeks of age and were housed in pairs. At 

twelve weeks of age, all mice received a low-fat control diet as a run-in for four 

weeks. This control diet contained 10 energy % (10 E%) of fat. After this run-in 

period, at t=0 week, mice were divided in four groups and fed diets containing 45, 

30, 20, or the control diet of 10E % of dietary fat. Palm oil was the main fat source 

in the diets. The only other variable in the diets was the amount of corn starch. 

Mice were culled at the beginning of the study, after one week and four weeks. 
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After four weeks we continued with the 10 E% and 45 E% groups only until week 

12 (n=7 to 10 per group). Body weight and food intake was recorded every week 

starting from t=0. Liver and WAT were harvested and subjected to transcriptomics 

analysis, and plasma samples were analyzed for glucose, insulin and adipokines.  

 

Plasma adipokines and insulin 

Plasma glucose concentrations were determined using a commercial device (Accu-

Chek, Roche, Almere, the Netherlands). Plasma levels of insulin, leptin, resistin, 

monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6), tumor necrosis 

factor alpha (TNF-α), total PAI-1 (tPAI-1), and adiponectin were measured using 

the mouse plasma multiplex Lincoplex Kit and Adiponectin singleplex (Linco 

Research, Nuclilab, Ede, the Netherlands), respectively, according to Van 

Schothorst et al [230] with slight modifications. Briefly, plasma samples were 

diluted 4x in HPE buffer (Sanquin, Amsterdam, the Netherlands) for the multiplex 

analysis and subsequently another 1,000x for the Adiponectin measurements. 

Assays were conducted according to the manufacturer’s protocol and measured 

using the BioPlex X200 system and software (BioRad, Veenendaal, the 

Netherlands). All individual samples were analyzed in duplicate and averaged 

when the difference between the 2 measurements was ≤5%. Plasma levels of 

TNF-α and MCP-1 were below the detection levels of 3 pg/ml and 44 pg/ml, 

respectively, and were therefore not used in this study. 

 

Transcriptome analysis 

High quality total RNA was extracted from liver and white adipose tissue with 

TRIzol reagent (Invitrogen, Carlsbad, CA) and subsequently purified on columns 

with the RNeasy Mini Kit (Qiagen, Venlo, The Netherlands) including DNase 

treatment. RNA integrity was checked on an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Amsterdam, The Netherlands) with 6000 Nano Chips. 

After isolation, RNA was labeled using the Affymetrix One-Cycle Target labeling 

Assay kit (Affymetrix, Santa Clara, CA). Due to the large number of samples, RNA 

labeling was performed in multiple rounds in a complete block design. Samples 

were hybridized on Affymetrix NuGO mouse arrays, washed, stained, and scanned 

on an Affymetrix GeneChip 3000 7G scanner. In total, 186 arrays from 93 mice 

were used in this study. Quality control of the datasets obtained from the scanned 

Affymetrix arrays was performed using Bioconductor packages [150], integrated in 
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an on-line pipeline [231]. Various advanced quality metrics, diagnostic plots, 

pseudo-images and classification methods were applied to ascertain only 

excellent quality arrays were used in the subsequent analyses [232]. An extensive 

description of the applied criteria is available upon request. Probesets were 

redefined according to Dai et al [151] utilizing current genome information. In this 

study probes were reorganized based on the Entrez Gene database, build 37, 

version 1 (remapped CDF v13). As a result, each array assays the expression of 

15,501 unique genes. Normalized expression estimates were obtained from the 

raw intensity values using the GC-robust multi array (GCRMA) normalization, 

using the empirical Bayes approach to adjust background [152]. ComBat [233], an 

empirical Bayes method, was used to correct for the systematic error (batch 

effect) introduced during labeling. Differentially expressed probesets were 

subsequently identified using linear models, applying moderated t-statistics that 

implement intensity-dependent Bayes regularization of standard errors [20,234]. 

Only genes with a fold-change of at least 1.5 and a p-value < 0.01 were considered 

to be significantly regulated. Annotation information regarding biological function 

and cellular location of genes was analyzed through the use of IPA (Ingenuity 

Systems, Redwood City, CA)). The microarray dataset is deposited in the Gene 

Expression Omnibus (GEO) with accession number. 

 

Multivariate data analysis 

Multiple factor analysis (MFA) is an exploratory approach of multivariate data 

analysis to identify the association between two or more groups of sets of 

variables [235,236]. When more than one response variable are measured, 

multivariate data analysis is preferred over univariate data analysis to study how 

all variables are related to one another, and how they work in combination to 

distinguish between the cases on which the responses are made. In the current 

study we used three multivariate data sets; i.e., the transcriptome data from liver 

and WAT, and plasma levels of selected factors. The weight status indicators 

(body weight (BW) at start of intervention, BW at section, BW gain, absolute and 

relative liver weight) were used as supplementary variables. MFA was performed 

in R [149] using the library FactoMineR [29]. Before performing MFA, we filtered 

the transcriptome datasets by including per dataset (tissue) only those genes that 

were significantly different between the 11 dietary groups using ANOVA (limma, 
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moderated F-test, p<0.01). Genes were considered to be associated with 

supplementary variable BW if their absolute correlation coefficient was significant 

(p<0.05) and larger than 0.40.  

 

Partial least squares path modeling 

Partial least squares path modeling (PLSPM) [31,34], also known as structural 

equation modeling by partial least squares approach, is a methodology of 

multivariate data analysis that allows for modeling complex cause-effect 

relationships involving latent (unobserved) and observed variables. Generally 

speaking, these models seek to analyze the underlying causal process that is 

assumed to generate some phenomenon of interest. PLSPM is robust against 

missing values, model misspecification and violation of the statistical assumptions 

regarding normality and multicollinearity [184,185]. Initially, the PLSPM 

methodology was developed to analyze data from the chemometrics, 

econometrics and sociological fields, but more recently it has also been used to 

analyze high-throughput genomics data [36-38]. A detailed explanation on PLSPM 

can be found in [31,34,117]. In the current study PLSPM was used to investigate 

the cause-effect relationships between blocks of multiple regulated genes in 

adipose and liver tissues, plasma factors and weight parameters. Within PLSPM, 

three types of parameters were defined: (i) latent variable scores; representing 

‘Liver Activity’, ‘WAT Activity’, ‘plasma factors’ and ‘weight status’ that were 

operationalized by reflective manifest variables, (ii) path coefficients between the 

endogenous and exogenous latent variables. These were the standardized 

regression coefficients by PLS regression of the output of inner model in PLSPM, 

and (iii) loadings of each block of manifest variables by reflective way; these were 

the output of the outer model and indicated the association between manifest 

and its latent variables. The significance of the path coefficients were analyzed by 

bootstrap sampling technique using 100 bootstrap samples. The contribution to 

coefficient of determination (R2) [34] were calculated for each of the explanatory 

variables for predicting liver and WAT Activities. Analysis was performed in R 

using the library plspm [30].  
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An overview of our analysis strategy is presented in Figure 1.  

 

 
Figure 1: Overview of our analysis strategy. After normalization by GCRMA and correction 

for batch effects, pair-wise comparisons with the reference group (10 E% at week 0 [C0]) were made 

to identify genes in liver and WAT that were regulated during the development of diet-induced 

obesity. For each comparison, genes with moderated p-value <0.01 were considered to be 

significantly regulated. The number of samples for each tissue in each diet group is listed in the table. 

For integrative multiple factor analysis, transcriptome data was first filtered based on p-value<0.01 

of the moderated F-test. These filtered transcriptome datasets were then combined with plasma 

factors (all as active variables) and weight status indicators (as supplementary variables). In 

addition, we also attempted to elucidate the cause-effect relationships between the blocks of 

variables using PLSPM.  

 

Data representation 

Weight and plasma factors are reported as mean (± standard deviation). 

Differences between the mean values of the groups (combination of diet and 

time) were tested for statistical significance by ANOVA with an additional 

Bonferroni post-hoc test (PASW Statistics 17.0 software, Chicago, Illinois). P-

values<0.05 were considered to be statistically significant.  
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Results 
 
Physiological measurements 

To determine the relationship between the hepatic and WAT transcriptome, 

physiological data (weight status indicators) and selected plasma factors during 

the development of DIO, mice were fed four diets containing increasing amounts 

of dietary fat for various time points up to 12 weeks. Mice were killed at the start 

of the diet intervention (10 E% at t=0) served as reference. Compared to the 

reference group, BW at section and as a result also BW gain were significantly 

different in 30 E% and 45 E% at 4 weeks and in 45 E% at 12 weeks (Table 1). These 

results show that body weight increased with energy percentage and time of 

intervention. A similar gain in body weight over time was observed between the 

10 E% and 20 E% as well as 30 E% and 45 E% diet groups. Absolute liver mass was 

only significantly increased in 45 E% at 12 weeks, but this was not reflected in an 

altered liver to BW ratio. Recently, Duval et al [5] have showed that the hormone 

leptin plays an important role in the development of DIO in male C57BL/6J mice. 

Regarding the plasma factors, we only observed significant changes for leptin and 

glucose levels only in the 45 E% group at 12 weeks compared to reference group 

(Table 1).  
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Table 1: Weight status and plasma concentrations per experimental group. 

Groups 

Weight status Plasma factor 

BW at start 

of 

intervention 

(g) 

BW at 

section 

(g) 

BW 

gain 

(g) 

Liver 

Weight 

at 

section 

(g) 

Relative 

liver 

weight 

Adipo-

nectin 

(µg/ml) 

Glucose 

(μmol 

/ml) 

IL6 

(pg/ml) 

Insulin 

(pg/ml) 

Leptin 

(pg/ml) 

Resistin 

(pg/ml) 

tPAI_1 

(pg/ml) 

W0_10 E% 
26.43 

(2.47) 

26.43 

(2.47) 

.00 

(.00) 

.96 

(.12) 

.04 

(.00) 

11.76 

(4.69) 

8.95 

(-1.90) 

36.73 

(68.51) 

212.48 

(83.25) 

486.87 

(271.62) 

1920.29 

(603.31) 

945.10 

(828.41) 

W1_10 E% 
26.84 

(1.98) 

26.66 

(1.64) 

-.18 

(.75) 

.95 

(.13) 

.04 

(.00) 

10.78 

(2.21) 

8.94 

(2.78) 

8.72 

(7.70) 

184.46 

(169.13) 

566.88 

(407.48) 

1364.10 

(765.90) 

739.66 

(623.55) 

W1_20 E% 
26.27 

(1.66) 

27.33 

(1.77) 

1.06 

(.44) 

.97 

(.11) 

.04 

(.01) 

12.64 

(2.28) 

9.44 

(1.85) 

2.88 

(1.41) 

144.39 

(140.02) 

464.99 

(487.19) 

837.25 

(782.97) 

328.26 

(206.50) 

W1_30 E% 
26.33 

(1.39) 

27.83 

(1.69) 

1.50 

(.70) 

1.07 

(.18) 

.04 

(.01) 

12.45 

(3.22) 

10.54 

(2.34) 

8.30 

(3.48) 

237.06 

(136.85) 

1058.33 

(777.94) 

1687.41 

(706.54) 

712.00 

(304.62) 

W1_45 E% 
26.60 

(2.18) 

28.16 

(1.53) 

1.45 

(.74) 

.97 

(.14) 

.03 

(.00) 

13.03 

(4.23) 

9.64 

(2.23) 

13.83 

(16.82) 

270.98 

(126.06) 

1136.03 

(789.03) 

1864.62 

(763.97) 

1043.74 

(955.01) 

W4_10 E% 
26.44 

(1.85) 

27.91 

(1.86) 

1.48 

(.63) 

.97 

(.13) 

.03 

(.00) 

10.68 

(2.65) 

9.49 

(2.30) 

14.40 

(16.96) 

203.60 

(186.19) 

733.80 

(610.11) 

1458.43 

(647.62) 

728.47 

(799.44) 

W4_20 E% 
26.43 

(1.57) 

28.50 

(1.83) 

2.07 

(1.32) 

.91 

(.15) 

.03 

(.00) 

12.32 

(3.21) 

9.66 

(2.70) 

26.93 

(46.47) 

193.87 

(97.19) 

687.02 

(491.72) 

1164.47 

(667.33) 

721.98 

(859.29) 

W4_30 E% 
26.49 

(1.46) 

30.33* 

(2.81) 

3.84* 

(2.63) 

1.07 

(.12) 

.04 

(.00) 

11.92 

(2.28) 

11.78 

(2.33) 

8.21 

(5.19) 

269.05 

(173.17) 

2520.02 

(3820.22) 

1464.78 

(853.19) 

540.66 

(348.83) 

W4_45 E% 
26.26 

(1.70) 

30.58* 

(2.79) 

4.32* 

(2.15) 

1.05 

(.19) 

.03 

(.01) 

8.04 

(1.40) 

11.47 

(2.64) 

10.01 

(9.56) 

351.03 

(154.86) 

3478.59 

(4193.36) 

1729.37 

(839.90) 

674.40 

(315.58) 

W12_10E% 
26.42 

(1.27) 

28.73 

(1.53) 

2.31 

(1.32) 

1.00 

(.08) 

.03 

(.01) 

14.57 

(3.84) 

10.19 

(1.06) 

8.65 

(7.63) 

114.82 

(95.15) 

1054.66 

(1308.49) 

1208.94 

(770.43) 

341.60 

(261.12) 

W12_45E% 
26.25 

(1.53) 

38.89* 

(2.84) 

12.64* 

(2.84) 

1.28* 

(.08) 

.03 

(.00) 

15.41 

(3.58) 

13.11* 

(0.71) 

7.08 

(5.16) 

456.06 

(288.92) 

11423.67* 

(7729.92) 

2215.81 

(1191.53) 

534.25 

(319.49) 

Values are represented as mean (SD), * indicated the group was significantly different from the 
reference group (W0_10E %) at p<0.05 by Bonferroni post hoc test. 

 

Differential gene expressions in liver and WAT 

To identify genes in liver and WAT that were differential expressed during the 

development of DIO, pair-wise comparisons were made for each diet group with 
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the reference. Genes that satisfied the criteria of absolute FC>1.5 and p<0.01 

were considered to be regulated. The numbers of differentially expressed genes in 

all pair-wise comparisons are presented in Table S1.  

Generally speaking, we found that more genes were regulated in WAT than in 

liver. In adipose tissue most differentially expressed genes were identified in the 

45 E% diet group at 12 weeks (Table S1). Remarkably, many genes were found to 

be significantly regulated in WAT in 10 E% group at 12 weeks, and a substantial 

number of these genes also overlapped with 45 E% diet group (Figure S1D). The 

number of differentially expressed genes in the liver was highest in the 45 E% 

group at week 4 and 12 compared with the 10 E% and 20 E% groups. However, 

the overlap of differentially expressed genes was limited. A previous study 

showed that the majority of WAT genes are down regulated by DIO in C57BL/6J 

male mice [237]. In line with these observations we also found that overall most 

of the genes were down regulated in both tissues.  

For both tissues almost no overlap in genes regulated by dietary fat was observed 

at 1 and 4 weeks (Figures S1 and S2). In both tissues most of the differentially 

expressed genes overlapped between the 30 E% and 45 E% groups at week 4 

(Figure S1F and Figure S2F) as well as between 45 E% group at week 4 and week 

12 (Figure S1D and Figure S2D).  

 

Associated genes of both tissues with weight status indicators 

To identify genes and plasma factors that were associated with BW gain, we first 

reduced our liver and WAT transcriptome datasets by including only those genes 

that were significantly different in any of the 11 diet groups (p<0.01, limma 

moderated F-test). Using this criterion we identified 1,421 genes in liver and 5,787 

genes in WAT. Next we applied multiple factor analysis using all samples to reveal 

the associations of gene expression with weight status indicators and plasma 

factors. In this study, we considered liver and WAT gene expression levels and 

plasma factors as active variables, and the weight status indicators as 

supplementary variables.  
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Figure 2: Loading plot of the multiple factor analysis. Visualization of the correlation 

coefficients between the 3 active and 1 supplementary variables and the first 2 principal 

components. Different colors represent the different groups of variables; red: hepatic gene 

expression, green: WAT gene expression, blue: plasma parameters, dashed purple: weight status 

indicators. The first 2 principal components explain ~27% of the variation in the dataset. The 

supplemental variable ‘body weight gain’ is highly positively correlated with a subset of genes 

expressed in liver and WAT, plasma leptin and insulin, and ‘body weight at section’.  

 
 

The loading plot obtained by MFA showed that plasma leptin and insulin levels, 
and to a lesser extent glucose, were positively associated with BW gain and BW at 
section (Figure 2). This was expected since these parameters are known to be 
related to BW and adipose tissue mass [5,238]. On the other hand, plasma levels 
of tPAI-1 and IL6 were highly associated amongst each other, but they did not 
correlate with BW gain, BW at section, and plasma leptin and insulin. 

Since we were interested to identify genes in liver and WAT that play a role in 

DIO, we extracted the genes that were significantly correlated (p<0.05, r>0.4) with 

BW gain. This resulted in the selection of 2,643 genes in WAT, of which 1,037 and 

1,606 genes were positively, resp. negatively associated with BW gain. Similarly, in 
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liver we identified 250 genes that were correlated with BW gain, of which 158 

resp. 92 were positively resp. negatively associated with BW gain.  

 

Time- and dose-dependently regulated genes in liver and WAT 

Next we applied a simple linear regression model for evaluating the time- and 

dose-dependency of gene expression per organ. To this end, the 2,643 resp. 250 

genes identified in the previous step were used as input. At first the average 

expression was calculated for each of these genes in each experimental group. To 

evaluate the time dependency of gene expression, a simple linear regression 

model was run using the average expression of a gene as dependent variable Y 

and time of intervention for each diet as independent variable X. Genes with the 

highest absolute regression coefficients represented genes that were most 

sensitive to time of intervention on each diet, where the positive and negative 

sign of the slope indicated increased resp. decreased expression over time. Since 

we did not have gene expression values for the 20 E% and 30 E% groups at 12 

weeks of intervention, we excluded in the regression analyses all gene expression 

data for this specific time point. To infer the dose-dependency of the time-

dependently regulated genes, a regression model was run that used the slopes of 

the initial regression models (i.e., time-dependency) as a dependent variable and 

the fat content of the diet as independent variable. Regression coefficients of this 

second model thus reflected the time- and dose-dependency of gene regulation. 

 

 

Figure 3: Time and dose dependently regulated genes. Number of time dependently 

regulated genes in A) WAT B) liver for each diet group based on the first 3 time points of diet 

intervention, and C) their dose dependency. Red and green indicated induced resp. suppressed 

expression. For time dependency the absolute threshold for coefficients was arbitrarily set ≥0.10, and 

for dose dependency at ≥0.003.  
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A number of genes were identified in liver and WAT that were dose and time 

dependently regulated (Figure 3). It should be kept in mind that these genes were 

also significantly associated with BW gain since these were initially identified in 

the MFA. Overall, we found that the number of genes regulated during the dietary 

intervention were much larger in WAT than in liver (Figure 3 A and B). Moreover, 

we noticed that more genes were time-dependently regulated in mice that 

received diets with highest amount of fat (30 E% and 45 E% versus 10 E% and 20 

E% groups).  
 

 

Figure 4: Heat map of regression coefficients for top time and dose dependently 

regulated genes in WAT. Top 50 time and dose dependently induced (panel A) and suppressed 

(panel B) genes in WAT identified by regression analysis. Green, black and red colors indicate the 

extent of time dependency, being negative, zero and positive, respectively. The column slope_Fat 

represents the time and dose dependency. 

Gene Slope_10 E% Slope_20 E% Slope_30 E% Slope_45 E% Slope_Fat

Pnpla3 -0.109 0.179 0.221 0.485 0.016

Krt79 -0.077 0.035 0.279 0.401 0.014

Paqr9 -0.172 -0.128 0.129 0.223 0.012

Lep 0.009 0.134 0.236 0.388 0.011

Mosc1 -0.151 -0.084 0.221 0.166 0.010

Dusp10 0.063 0.129 0.201 0.397 0.010

Fgf13 0.118 0.092 0.420 0.388 0.010

Hist2h3c2 0.088 0.116 0.265 0.392 0.009

Lctl -0.056 -0.033 0.222 0.223 0.009

Mmp12 -0.086 -0.047 0.135 0.209 0.009

Sfrp5 0.205 0.170 0.398 0.477 0.009

Lhfpl2 0.004 0.046 0.196 0.298 0.009

1110059M19Rik 0.079 0.176 0.338 0.371 0.009

Mogat2 -0.046 0.056 0.153 0.257 0.009

1100001G20Rik -0.037 -0.018 0.130 0.237 0.008

Mest 0.140 0.071 0.362 0.358 0.008

Hist2h3c1 -0.001 0.028 0.204 0.250 0.008

Myl4 0.022 0.032 0.116 0.278 0.008

Ube2c -0.099 0.016 0.019 0.174 0.007

Thy1 -0.042 0.005 0.104 0.194 0.007

Fam20c 0.021 0.052 0.261 0.231 0.007

Dhcr7 -0.119 -0.027 0.078 0.119 0.007

Slc25a19 -0.132 -0.019 0.055 0.111 0.007

Paqr7 -0.064 0.051 0.134 0.168 0.007

Cdsn -0.079 0.003 0.140 0.137 0.007

Tspan17 -0.032 0.006 0.159 0.174 0.007

Pbk -0.041 -0.047 -0.014 0.184 0.007

Duoxa1 0.002 0.028 0.147 0.212 0.006

Cox7a1 0.001 -0.009 0.183 0.191 0.006

Col15a1 -0.070 -0.001 0.130 0.142 0.006

Pacs2 -0.011 0.065 0.136 0.211 0.006

Crtac1 -0.130 -0.126 0.135 0.040 0.006

Odz4 -0.121 -0.076 -0.013 0.093 0.006

Srpx2 -0.003 0.041 0.145 0.199 0.006

Bcl2l10 -0.064 -0.030 0.033 0.144 0.006

S100a8 0.049 0.043 0.186 0.234 0.006

Cdr2 -0.034 0.009 0.126 0.157 0.006

Pfkfb4 -0.001 0.065 0.200 0.190 0.006

Hspa12a -0.092 -0.003 0.043 0.119 0.006

Unc119 -0.131 -0.063 0.042 0.065 0.006

Spaca1 0.049 0.093 0.169 0.245 0.006

Ccl2 -0.006 0.041 0.008 0.212 0.006

Ccnb2 -0.017 0.016 0.034 0.185 0.006

Itgax -0.017 0.053 0.121 0.180 0.006

Grtp1 -0.052 0.056 0.107 0.149 0.006

Mpdz -0.109 -0.005 0.045 0.092 0.006

Itga7 -0.124 -0.086 -0.003 0.060 0.005

Hspg2 -0.083 -0.014 0.131 0.091 0.005

Hfe -0.063 0.000 0.054 0.129 0.005

Peg3 0.028 0.016 0.024 0.218 0.005

Gene Slope_10 E% Slope_20 E% Slope_30 E% Slope_45 E% Slope_Fat

Cish -0.038 -0.098 -0.234 -0.454 -0.012

Grem2 0.037 0.027 -0.293 -0.236 -0.009

Rgs2 -0.217 -0.051 -0.386 -0.423 -0.008

Acsm3 -0.091 -0.118 -0.312 -0.325 -0.008

Bhlhe40 0.021 -0.079 -0.093 -0.231 -0.007

Rorc -0.015 -0.072 -0.133 -0.241 -0.006

Slc5a6 -0.206 -0.260 -0.293 -0.423 -0.006

Slc43a1 -0.191 -0.184 -0.343 -0.365 -0.006

Chac1 -0.084 -0.205 -0.214 -0.295 -0.006

Gpx3 0.055 0.030 -0.049 -0.124 -0.005

Fam13a -0.106 -0.164 -0.277 -0.282 -0.005

Cyp2f2 -0.138 -0.095 -0.352 -0.270 -0.005

Chchd10 -0.048 -0.138 -0.165 -0.235 -0.005

St6galnac5 -0.091 -0.102 -0.247 -0.239 -0.005

Rassf6 -0.110 -0.088 -0.218 -0.255 -0.005

Cd14 -0.111 -0.077 -0.238 -0.246 -0.005

2210020M01Rik 0.068 0.086 0.004 -0.085 -0.005

Gprasp1 0.125 0.067 0.019 -0.043 -0.005

Mycl1 -0.136 -0.191 -0.258 -0.296 -0.005

Acad10 -0.031 -0.038 -0.144 -0.175 -0.005

2810026P18Rik -0.024 -0.036 -0.201 -0.157 -0.005

Srpx -0.061 -0.013 -0.186 -0.183 -0.005

Mcpt4 0.075 0.108 -0.119 -0.038 -0.005

Snhg1 -0.004 -0.039 -0.083 -0.162 -0.005

Gm129 -0.181 -0.239 -0.229 -0.352 -0.005

Ppl -0.004 -0.022 -0.113 -0.147 -0.004

Lrig3 -0.096 -0.082 -0.185 -0.230 -0.004

Usp54 0.009 -0.016 -0.114 -0.129 -0.004

Irf4 -0.249 -0.206 -0.305 -0.375 -0.004

Steap2 -0.027 0.047 -0.114 -0.134 -0.004

Dmkn 0.097 0.032 0.045 -0.062 -0.004

2810410L24Rik 0.003 -0.050 -0.136 -0.131 -0.004

Scn3b 0.000 -0.066 -0.159 -0.134 -0.004

Itm2a 0.013 0.035 -0.102 -0.099 -0.004

Ddb2 -0.007 0.000 -0.042 -0.140 -0.004

Dpyd 0.049 -0.014 -0.088 -0.086 -0.004

Upk1b -0.002 -0.065 -0.091 -0.146 -0.004

Rsrc2 0.053 0.043 -0.078 -0.065 -0.004

Vegfa -0.060 -0.048 -0.120 -0.183 -0.004

Sft2d3 0.063 0.008 -0.058 -0.070 -0.004

Cpa3 0.008 0.039 -0.193 -0.080 -0.004

Celsr2 -0.029 -0.027 -0.050 -0.161 -0.004

C2 -0.032 -0.017 -0.150 -0.139 -0.004

Bnc1 -0.002 -0.060 -0.249 -0.106 -0.004

NA9 -0.114 -0.047 -0.103 -0.228 -0.004

Tst -0.177 -0.100 -0.267 -0.267 -0.004

Adrb2 -0.271 -0.194 -0.381 -0.357 -0.004

Ddah1 0.313 0.222 0.268 0.159 -0.004

Fmod 0.057 0.044 0.004 -0.070 -0.004

Pdk2 0.010 -0.049 -0.046 -0.131 -0.004

Low
Zero

High

A B
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We observed that more genes were time and dose dependently regulated in WAT 

than in liver (Figure 3C). The top 50 regulated genes in WAT and top 15 regulated 

genes in liver are displayed in Figure 4 and Figure 5, respectively. The complete 

lists of regulated genes in WAT and liver are available in Table S2 and Table S3, 

respectively. Several genes were identified that were known to be regulated 

during the development of DIO, such as Pparg, Lep, Mosc1 and Mest. At the 

functional level, the identified genes in WAT were associated with increased cell 

proliferation, inflammation, and fibrosis. Similarly, genes identified in liver were 

among others involved in lipid metabolism, development of connective tissue, 

steatohepatitis, and liver fibroses, all processes known to be associated with the 

development and progression of hepatic steatosis. Overall, in both tissues most of 

the genes were highly time dependently regulated in 30 E% and 45 E% groups, but 

not in the 10 E% and 20 E% groups.  

 

 

Figure 5: Heat map of regression coefficients for top time and dose dependently 

regulated genes in liver. Top 15 time and dose dependently induced (panel A) and suppressed 

(panel B) genes in liver identified by regression analysis. Green, black and red colors indicate the 

extent of time dependency, being negative, zero and positive, respectively. The column slope_Fat 

represents the time and dose dependency. 

 

Results of the PLS-path model 

Next we investigated the association and cause-effect relationships between the 

two transcriptome datasets, plasma factors and weight status indicators through 

PLSPM (Figure 6). We assumed that latent variables ‘WAT Activity’ and ‘Liver 

Lo
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Gene Slope_10 E% Slope_20 E% Slope_30 E% Slope_45 E% Slope_Fat

9030619P08Rik -0.177 -0.182 0.043 0.233 0.013

Gpr98 -0.028 -0.038 0.125 0.247 0.009

Cfd 0.042 0.047 0.200 0.310 0.008

Mvk -0.084 -0.054 -0.035 0.173 0.007

Tlcd2 -0.021 0.020 0.090 0.223 0.007

Fitm1 0.136 0.091 0.302 0.308 0.006

Olig1 0.052 0.112 0.259 0.218 0.005

Aatk 0.015 0.015 0.143 0.171 0.005

0610012H03Rik -0.028 0.004 0.055 0.143 0.005

Trhde -0.063 0.048 0.097 0.118 0.005

Cebpe 0.062 0.060 0.129 0.206 0.004

Pparg 0.020 -0.016 0.200 0.128 0.004

2510049J12Rik -0.052 -0.033 0.014 0.097 0.004

Isoc2b -0.035 0.024 0.077 0.117 0.004

Psmb9 -0.002 0.067 0.096 0.154 0.004

Gene Slope_10 E% Slope_20 E% Slope_30 E% Slope_45 E% Slope_Fat

Serpina4-ps1 -0.219 -0.200 -0.197 -0.456 -0.007

Ugcg 0.016 -0.006 -0.075 -0.167 -0.005

Cd9 0.037 -0.015 -0.056 -0.128 -0.005

2810474O19Rik -0.049 -0.054 -0.084 -0.196 -0.004

Rnf145 -0.025 -0.043 -0.042 -0.173 -0.004

Slc16a1 0.080 -0.035 -0.024 -0.083 -0.004

Gpr110 -0.022 -0.016 -0.144 -0.139 -0.004

Ugt2b38 -0.013 0.031 -0.107 -0.122 -0.004

Plin5 0.034 -0.089 -0.022 -0.132 -0.004

Elovl6 -0.106 -0.081 -0.105 -0.227 -0.004

Mat2a -0.002 -0.022 -0.052 -0.128 -0.004

4833442J19Rik -0.077 -0.096 -0.065 -0.214 -0.004

Wsb1 -0.223 -0.100 -0.285 -0.297 -0.004

Chac1 -0.147 -0.102 -0.244 -0.225 -0.003

Cpsf6 -0.083 -0.060 -0.093 -0.181 -0.003
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Activity‘ in the PLS path model were reflected by the expression levels of selected 

genes in all conditions as determined by the microarrays. For WAT the set of dose 

and time dependently regulated genes was further filtered to include 69 

potentially secreted genes only (Table S4), whereas for liver we used the 

expression data of all 53 dose and time dependent genes. The refinement for 

WAT on extracellular location was done since we hypothesized that cross talk 

between adipose and liver tissue could only occur through secreted factors. All 

plasma and body weight measurements were used as manifest variables for the 

latent variable ‘plasma status’ and ‘weight status’. The fitted PLSPM inner model 

revealed that the latent variable ‘WAT Activity’ was more affected by ‘weight 

status’ (path coefficient = 0.63) than ‘plasma status’ (coefficient = 0.30). ‘Liver 

Activity’, in turn, was predicted to be more modulated by ‘WAT Activity’ 

(coefficient = 0.44) than by ‘plasma status’ (coefficient = 0.34) or ‘weight status’ 

(coefficient = 0.10). Thus, these outcomes indicated that especially an increase in 

‘weight status’ would result in an increased ‘WAT Activity’. Likewise, in particular 

an increase in ‘weight status’ was suggested to result in an increased ‘plasma 

status’. The outcomes from the outer (measurement) model revealed that the 

manifest variables ‘BW at section’ (loading=0.97), ‘BW gain’ (0.96) and ‘absolute 

liver weight’ (0.79) correlated highly with their latent variable ‘Weight status’. In 

contrast, ‘relative liver weight’ (-0.06) and ‘BW at start of intervention’ (0.15) only 

very weakly correlated with ‘Weight status’. For latent variable ‘plasma factors’ 

we found a high correlation with plasma levels of leptin (0.93), glucose (0.77) and 

insulin (0.76). Along the same line, a set of potentially secreted genes could be 

identified that highly correlated with the latent variable ‘WAT Activity’. Top 

positively correlated genes included Serpinf1, Lep, Col6a2, Mest and Fgf13, 

whereas Ctf1, Iqcb1 and Grem2 were among the most negatively correlated 

genes. Similarly, a subset of genes was found that highly (anti-) correlated with 

the latent variable ‘Liver Activity’ ( Figure 6 and Table S4). 
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Figure 6: PLS-path model for time and dose dependently regulated genes in WAT 

and liver, plasma factors and weight indicators. The fitted PLS path model resulted in a 

good overall fit (absolute=0.52 and inner model=0.81). Indirect effects are shown in parentheses. The 

total effect of each of the path coefficient was significant at 5% level of significance as determined by 

bootstrap sampling. The plasma factors data was transformed by taking the natural logarithm, and 

all datasets were standardized when building the model. For WAT and liver genes, absolute loadings 

greater than 0.60 are presented in the figure. The complete list is available as Table S4. For weight 

status and plasma factors all the indicators are presented. 

 

Next we checked the proportion of variability in the data set that could be 

accounted for by the model. The highest proportion of variation could be 

explained by the latent variable ‘WAT Activity’ (R2 =0.70), followed by ‘Liver 

Activity’ (R2 =0.64). Moreover, ‘WAT Activity’ was the most important variable in 
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Resistin

Adiponectin

0.76

0.93
-0.04 0.14

0.56

0.11

0.44

0.10(0.57)

0.34(0.19)

0.71

0.63 (0.19)

0.30

Weight

Status

Loadings Genes

0.93 Serpinf1

0.91 Lep

0.91 Col6a2

0.90 1100001G20Rik

0.90 Reep5

0.89 Mest

0.89 Fgf13

0.88 Col6a1

0.86 Tmem45b

0.86 Col5a1

0.85 Metrn

0.84 Pcolce2

0.84 Cfb

0.84 Col4a2

0.83 Col5a3

0.82 Col6a3

0.82 Fam20c

0.81 Fstl3

0.80 Prelp

0.80 Col5a2

0.80 Col18a1

0.80 Ccl2

0.80 Lipf

0.79 Mmp12

0.78 Col15a1

0.78 Col1a2

0.77 Col4a1

0.76 Fbn1

0.76 Igfals

0.76 Sod3

0.75 Timp1

0.73 Lox

0.73 Bmp3

0.72 Fstl1

0.71 Orm1

0.70 Adamts2

0.70 Ncan

0.66 Angptl1

0.65 Il1rn

0.65 Inhbb

0.64 Lrg1

0.62 Wisp2

-0.61 Fgl2

-0.65 Gpx3

-0.66 Wfdc1

-0.67 Adamtsl1

-0.73 Grem2

-0.78 Cp

-0.80 Iqcb1

-0.80 2010011I20Rik

-0.80 Ctf1

Genes Loadings

Cebpe 0.83

Fitm1 0.82

Isoc2b 0.80

9030617O03Rik 0.80

Olig1 0.78

1810058I24Rik 0.77

Psmb9 0.77

BC026585 0.76

0610012H03Rik 0.75

Oma1 0.74

Pparg 0.74

Nudt2 0.74

D730039F16Rik 0.73

Cfd 0.72

Tlcd2 0.69

Invs 0.68

Mvk 0.67

S100a10 0.63

Tbc1d7 0.63

2510049J12Rik 0.62

Aatk 0.61

Serpina4-ps1 -0.61

Slc16a1 -0.63

Mat2a -0.68

Wsb1 -0.72

4833442J19Rik -0.75

R2 =0.64
R2 =0.70

R2 =0.40
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the prediction of ‘Liver Activity’, contributing to 50.9% of the R2 (Table 2), 

followed by ‘plasma factors’ (38.1%), whereas ‘weight status’ had a very low 

contribution on the prediction of ‘Liver Activity’. On the other hand, ‘weight 

status’ (71.2%) was the most important variable in the prediction of ‘WAT 

Activity’, which suggested that weight status (especially BW gain) is an important 

determinant of gene expression in WAT during the development of DIO. 

Table 2: Explanation of ‘Liver Activity’ and ‘WAT Activity’ 

‘Liver Activity’ 

Explanatory variables 
for Liver 

Path Coefficient Correlation Contribution to R
2 

(%) 

Weight Status 0.10 0.683 10.9 

Plasma Factors 0.34 0.697 38.1 

WAT Activity 0.44 0.722 50.9 

‘WAT Activity’ 

Explanatory variables 
for WAT 

Path Coefficient Correlation Contribution to R
2 

(%) 

Weight Status 0.63 0.813 71.2 

Plasma Factors 0.30 0.691 28.9 

 
From a biological perspective the results of the PLSPM analysis thus suggested 

that an increased gene expression profile in WAT can be mainly attributed to an 

increase in BW and to a lesser extent to changes in plasma factors. In turn, in this 

model the increased levels of potentially secreted gene products in WAT, such as 

leptin, are the main effectors of gene expression in the liver. 

 
 
Discussion 
 
C57BL/6J mice fed a high fat diet at different time points represent a popular 

animal model for human obesity and insulin resistance [239]. Nonalcoholic fatty 

liver disease (NAFLD) is strongly linked to obesity, and it has been suggested that 

proteins secreted from adipose tissue may be incriminated in the etiology of 
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NAFLD [228]. Moreover, it has been reported that a tight relationship exists 

between adipose tissue dysfunction and the pathogenesis of NAFLD [4,5,228], and 

previous work of our group pointed out several novel potential predictive 

biomarkers for NASH [5]. We extend this work in the current study, and found 

that changes in weight status indicators mainly explained changes in plasma 

adipokines and gene expression in WAT, but not in liver. Moreover, we also 

identified a set of potentially secreted factors in WAT that explained most of the 

variation in hepatic gene expression. 

As expected, high-fat feeding induced body weight and adipose tissue mass that 

increased over time. This was also reflected in changes in gene expression that 

were more pronounced in adipose tissue than in liver. However, the most 

noticeable effects were observed in the 30 E% and 45 E% groups, and not in the 

20 E% group. MFA analysis identified genes in WAT and liver that correlated with 

body weight gain. Several of these are already known to be regulated during DIO, 

such as Leptin and Pparg. At the functional level, the identified genes in liver were 

among others involved in lipid metabolism, development of connective tissue, 

steatohepatitis, and liver fibroses, all processes known to be associated with the 

development and progression of hepatic steatosis. Similarly, genes identified in 

WAT were associated with increased cell proliferation, inflammation, and fibrosis.  

To identify potential causal relationships among the dose-time dependently 

regulated secreted WAT genes, liver genes, weight status indicators and plasma 

factors, we developed an inter-organ model that was analyzed by PLSPM. The 

PLSPM is a suitable multivariate statistical approach to handle multi-blocks of 

measurements and to the best of our knowledge we are one of the first to apply 

PLSPM to integrate and build a model for use with several transcriptomics and 

phenotypes related datasets. Related to our work is a study performed by Nock et 

al [240] that used structural equation modeling to define the genetic 

determinants of metabolic syndrome. Usually structural equation modeling with 

maximum likelihood (SEM-ML) approach [35] has been used to analyze multi 

block datasets, but it depends on a specific distribution pattern and needs more 

cases than variables. It is also known as hard modeling. On the other hand, a soft 

modeling technique such as PLSPM [31,34,117] does not depend on any specific 

distributional pattern and is superior for data sets that consist of fewer cases than 
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variables. In practice, omics experiments usually comprise of fewer cases than 

variables, are noisy, and suffer by multicollinearity. Therefore, the PLSPM can be 

used as a suitable approach for this kind of data. Recently, the concept of PLSPM 

has also been used by Xue et al [38] in their genetic association study. However, it 

should be realized that some biological mechanisms hidden in the gene 

expression data may not be revealed by PLSPM analysis. We have analyzed only 

linear relations among gene expression patterns, thus excluding non-linear 

relations which would need to be studied with extensions of the methods we 

used. 

 

The partial least squares path model fitted in this study gives a good overall fit 

with significant path coefficients. We found that the activity of WAT played the 

most important contribution in the prediction of liver gene expression. On the 

other hand, the weight status played the largest role to predict the WAT gene 

expression, as was expected [42]. We also observed that liver genes were causally 

highly influenced by putatively secreted WAT genes that were dose and time 

dependently regulated, followed by plasma factors. In addition, the outcomes of 

PLSPM also showed that the weight status played a more important role on 

changes in WAT gene expression and plasma factors than hepatic gene 

expression. The plasma factors were found to be higher influential variables on 

changes in WAT gene expression than on hepatic gene expression.  

 

In conclusion, we conclude that (i) dietary fat and time of intervention have a 

pronounced effect on WAT and liver as indicated by dose and time dependent 

changes in gene expression, (ii) the plasma factors leptin and glucose are 

associated with BW gain and are also associated with most of the positive 

changed time and dose dependent genes, and (iii) our data support the existence 

of a strong relationship between liver and WAT gene expression, followed by 

changes in plasma factors, including adipokines. All together, we conclude that 

the WAT gene expression profile predicts around 50% of liver gene expression 

profile. We also point out a set of liver genes that are strongly associated with a 

set of WAT secreted genes. The findings of this study give new insights on the 

exact role of WAT during the development of obesity and its effects on liver.  
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Supplementary 
Figures 
 

 
Figure S1: Venn plots representing the overlap among regulated genes per diet 

group in WAT. A-D: evolution of WAT gene regulation over time per diet group. E-G: dose-

dependency of WAT gene regulation. Genes were considered to be regulated if the absolute FC was 

larger than 1.5 and p<0.01. 

 

 
 
Figure S2: Venn plots representing the overlap among regulated genes per diet 
group in liver. A-D: evolution of hepatic gene regulation over time per diet group. E-G: dose-

dependency of hepatic gene regulation. Genes were considered to be regulated if the absolute FC 
was larger than 1.5 and p<0.01. 
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Tables 
 

Table S1: Number of regulated gene per diet group compared to the reference 
group. 

 
 1 Week 4 Weeks 12 Weeks Overlap 

Gene Liver Gene Up Down Gene Up Down Gene Up Down 

Fat 
E% 

 

10% 15 11 4 50 25 25 5 1 4 0 

20% 23 13 10 9 3 6  1 

30% 12 6 6 44 23 21  2 

45% 36 15 21 60 25 35 46 33 13 5 

Overlap Gene 0   3   0    

 WAT   

Fat 
E% 

 

10% 31 19 12 86 55 31 1675 933 742 1 

20% 20 9 11 26 10 16  1 

30% 40 18 22 193 75 118  26 

45%    58 38 20 225 114 111 1620 733 887 43 

Overlap Gene     1   8   672    

 
 

Table S2: Time and dose dependent genes in liver associated with BW gain. 
Entrez Gene (Liver) Slope_10 E% Slope_20 E% Slope_30 E% Slope_45 E% Slope_Fat 

110794 Cebpe 0.062 0.060 0.129 0.206 0.004 

68680 Fitm1 0.136 0.091 0.302 0.308 0.006 

67441 Isoc2b -0.035 0.024 0.077 0.117 0.004 

217830 9030617O03Rik -0.048 -0.001 0.029 0.085 0.004 

50914 Olig1 0.052 0.112 0.259 0.218 0.005 

67705 1810058I24Rik 0.079 0.068 0.114 0.165 0.003 

16912 Psmb9 -0.002 0.067 0.096 0.154 0.004 

226527 BC026585 0.003 0.045 0.059 0.101 0.003 

74088 0610012H03Rik -0.028 0.004 0.055 0.143 0.005 

67013 Oma1 -0.032 0.028 0.036 0.095 0.003 

19016 Pparg 0.020 -0.016 0.200 0.128 0.004 

66401 Nudt2 -0.056 -0.010 0.007 0.058 0.003 

77996 D730039F16Rik -0.011 0.038 0.026 0.127 0.004 

11537 Cfd 0.042 0.047 0.200 0.310 0.008 

380712 Tlcd2 -0.021 0.020 0.090 0.223 0.007 

16348 Invs -0.020 -0.007 0.029 0.073 0.003 

17855 Mvk -0.084 -0.054 -0.035 0.173 0.007 

20194 S100a10 -0.035 0.012 0.056 0.099 0.004 

67046 Tbc1d7 0.018 0.018 0.113 0.115 0.003 

70291 2510049J12Rik -0.052 -0.033 0.014 0.097 0.004 

11302 Aatk 0.015 0.015 0.143 0.171 0.005 

103140 Gstt3 -0.097 0.037 0.018 0.019 0.003 

53901 Rcan2 0.050 0.008 0.158 0.157 0.004 

110789 Gpr98 -0.028 -0.038 0.125 0.247 0.009 

13009 Csrp3 -0.016 -0.022 -0.040 0.089 0.003 

105892 9030619P08Rik -0.177 -0.182 0.043 0.233 0.013 

11761 Aox1 0.075 0.070 0.206 0.165 0.003 

15957 Ifit1 0.081 0.070 0.086 0.198 0.003 

237553 Trhde -0.063 0.048 0.097 0.118 0.005 

216551 1110067D22Rik 0.047 0.009 0.076 0.150 0.003 

56219 Extl1 -0.018 0.035 0.072 0.103 0.003 

68043 N6amt2 -0.014 0.032 0.023 0.110 0.003 

80860 Ghdc 0.013 0.008 0.094 0.088 0.003 

70028 Dopey2 -0.031 0.064 0.075 0.094 0.003 

67246 2810474O19Rik -0.049 -0.054 -0.084 -0.196 -0.004 
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74315 Rnf145 -0.025 -0.043 -0.042 -0.173 -0.004 

170439 Elovl6 -0.106 -0.081 -0.105 -0.227 -0.004 

77596 Gpr110 -0.022 -0.016 -0.144 -0.139 -0.004 

545487 Gm14439 0.009 0.000 -0.079 -0.072 -0.003 

69065 Chac1 -0.147 -0.102 -0.244 -0.225 -0.003 

66968 Plin5 0.034 -0.089 -0.022 -0.132 -0.004 

268822 Adck5 0.084 0.018 0.000 -0.018 -0.003 

75710 Rbm12 -0.049 -0.017 -0.077 -0.133 -0.003 

100559 Ugt2b38 -0.013 0.031 -0.107 -0.122 -0.004 

13211 Dhx9 0.012 -0.048 -0.092 -0.078 -0.003 

22234 Ugcg 0.016 -0.006 -0.075 -0.167 -0.005 

12527 Cd9 0.037 -0.015 -0.056 -0.128 -0.005 

432508 Cpsf6 -0.083 -0.060 -0.093 -0.181 -0.003 

321018 Serpina4-ps1 -0.219 -0.200 -0.197 -0.456 -0.007 

20501 Slc16a1 0.080 -0.035 -0.024 -0.083 -0.004 

232087 Mat2a -0.002 -0.022 -0.052 -0.128 -0.004 

78889 Wsb1 -0.223 -0.100 -0.285 -0.297 -0.004 

320204 4833442J19Rik -0.077 -0.096 -0.065 -0.214 -0.004 

 

 
Table S3: Time and dose dependent genes in WAT associated with BW gain 

Entrez Gene (WAT) Slope_10 E% Slope_20 E% Slope_30 E% Slope_45 E% Slope_Fat 

116939 Pnpla3 -0.109 0.179 0.221 0.485 0.016 

223917 Krt79 -0.077 0.035 0.279 0.401 0.014 

75552 Paqr9 -0.172 -0.128 0.129 0.223 0.012 

16846 Lep 0.009 0.134 0.236 0.388 0.011 

66112 Mosc1 -0.151 -0.084 0.221 0.166 0.010 

63953 Dusp10 0.063 0.129 0.201 0.397 0.010 

14168 Fgf13 0.118 0.092 0.420 0.388 0.010 

97114 Hist2h3c2 0.088 0.116 0.265 0.392 0.009 

235435 Lctl -0.056 -0.033 0.222 0.223 0.009 

17381 Mmp12 -0.086 -0.047 0.135 0.209 0.009 

54612 Sfrp5 0.205 0.170 0.398 0.477 0.009 

218454 Lhfpl2 0.004 0.046 0.196 0.298 0.009 

68800 1110059M19Rik 0.079 0.176 0.338 0.371 0.009 

233549 Mogat2 -0.046 0.056 0.153 0.257 0.009 

66107 1100001G20Rik -0.037 -0.018 0.130 0.237 0.008 

17294 Mest 0.140 0.071 0.362 0.358 0.008 

15077 Hist2h3c1 -0.001 0.028 0.204 0.250 0.008 

17896 Myl4 0.022 0.032 0.116 0.278 0.008 

68612 Ube2c -0.099 0.016 0.019 0.174 0.007 

21838 Thy1 -0.042 0.005 0.104 0.194 0.007 

80752 Fam20c 0.021 0.052 0.261 0.231 0.007 

13360 Dhcr7 -0.119 -0.027 0.078 0.119 0.007 

67283 Slc25a19 -0.132 -0.019 0.055 0.111 0.007 

71904 Paqr7 -0.064 0.051 0.134 0.168 0.007 

386463 Cdsn -0.079 0.003 0.140 0.137 0.007 

74257 Tspan17 -0.032 0.006 0.159 0.174 0.007 

52033 Pbk -0.041 -0.047 -0.014 0.184 0.007 

213696 Duoxa1 0.002 0.028 0.147 0.212 0.006 

12865 Cox7a1 0.001 -0.009 0.183 0.191 0.006 

12819 Col15a1 -0.070 -0.001 0.130 0.142 0.006 

21789 Pacs2 -0.011 0.065 0.136 0.211 0.006 

72832 Crtac1 -0.130 -0.126 0.135 0.040 0.006 

23966 Odz4 -0.121 -0.076 -0.013 0.093 0.006 

68792 Srpx2 -0.003 0.041 0.145 0.199 0.006 

12049 Bcl2l10 -0.064 -0.030 0.033 0.144 0.006 

20201 S100a8 0.049 0.043 0.186 0.234 0.006 

12585 Cdr2 -0.034 0.009 0.126 0.157 0.006 

270198 Pfkfb4 -0.001 0.065 0.200 0.190 0.006 

73442 Hspa12a -0.092 -0.003 0.043 0.119 0.006 

22248 Unc119 -0.131 -0.063 0.042 0.065 0.006 

67652 Spaca1 0.049 0.093 0.169 0.245 0.006 

20296 Ccl2 -0.006 0.041 0.008 0.212 0.006 
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12442 Ccnb2 -0.017 0.016 0.034 0.185 0.006 

16411 Itgax -0.017 0.053 0.121 0.180 0.006 

66790 Grtp1 -0.052 0.056 0.107 0.149 0.006 

17475 Mpdz -0.109 -0.005 0.045 0.092 0.006 

16404 Itga7 -0.124 -0.086 -0.003 0.060 0.005 

15530 Hspg2 -0.083 -0.014 0.131 0.091 0.005 

15216 Hfe -0.063 0.000 0.054 0.129 0.005 

18616 Peg3 0.028 0.016 0.024 0.218 0.005 

16803 Lbp 0.032 0.085 0.192 0.210 0.005 

12534 Cdk1 -0.024 -0.038 0.016 0.155 0.005 

216343 Tph2 -0.086 -0.032 0.027 0.099 0.005 

70083 Metrn -0.055 0.012 0.058 0.133 0.005 

67800 Dgat2 -0.101 -0.028 0.068 0.077 0.005 

59126 Nek6 -0.064 0.006 0.084 0.117 0.005 

77032 2610029I01Rik 0.002 0.029 0.098 0.178 0.005 

20210 Saa3 -0.041 0.029 0.077 0.144 0.005 

105892 9030619P08Rik 0.003 0.033 0.111 0.176 0.005 

20167 Rtn2 -0.031 0.032 0.091 0.149 0.005 

79221 Hdac9 -0.070 -0.029 0.038 0.105 0.005 

18430 Oxtr 0.027 0.081 0.209 0.189 0.005 

16835 Ldlr 0.005 0.058 0.129 0.178 0.005 

14086 Fscn1 -0.056 -0.001 0.088 0.113 0.005 

20379 Sfrp4 -0.008 0.010 0.076 0.160 0.005 

53313 Atp2a3 -0.013 0.053 0.090 0.167 0.005 

53867 Col5a3 -0.061 -0.029 0.059 0.103 0.005 

12575 Cdkn1a 0.000 0.037 0.068 0.176 0.005 

14118 Fbn1 0.008 0.020 0.066 0.176 0.005 

23796 Aplnr -0.026 -0.010 0.023 0.143 0.005 

53601 Pcdh12 0.014 0.062 0.078 0.188 0.005 

116847 Prelp -0.018 0.041 0.135 0.140 0.005 

17314 Mgmt -0.086 0.000 0.049 0.085 0.005 

14733 Gpc1 0.111 0.142 0.291 0.254 0.005 

257635 Sdsl -0.031 -0.005 0.114 0.117 0.005 

12832 Col5a2 -0.040 0.000 -0.016 0.137 0.005 

67717 Lipf -0.028 0.018 0.100 0.129 0.005 

12035 Bcat1 -0.019 0.019 0.071 0.142 0.005 

110075 Bmp3 0.168 0.084 0.220 0.293 0.005 

72899 Macrod2 0.016 0.172 0.050 0.224 0.005 

74186 Ccdc3 -0.065 0.011 0.047 0.101 0.005 

29818 Hspb7 0.099 0.170 0.251 0.255 0.005 

67956 Setd8 -0.069 -0.044 0.052 0.078 0.005 

110208 Pgd -0.092 -0.031 0.043 0.062 0.005 

29815 Bcar3 -0.042 -0.006 0.091 0.103 0.004 

22403 Wisp2 -0.014 0.001 0.052 0.138 0.004 

76561 Snx7 -0.099 -0.013 -0.024 0.074 0.004 

17200 Mc2r -0.084 -0.048 -0.004 0.070 0.004 

231070 Insig1 -0.072 -0.081 0.001 0.068 0.004 

17345 Mki67 -0.039 -0.022 0.023 0.111 0.004 

74107 Cep55 -0.036 0.012 -0.010 0.131 0.004 

235135 Tmem45b 0.002 0.066 0.151 0.149 0.004 

14211 Smc2 -0.028 0.031 0.012 0.139 0.004 

18391 Sigmar1 -0.062 -0.016 0.044 0.087 0.004 

18162 Npr3 0.025 0.067 0.140 0.170 0.004 

75572 Acyp2 -0.060 -0.036 0.033 0.083 0.004 

19713 Ret 0.101 0.138 0.159 0.254 0.004 

11501 Adam8 -0.051 0.044 0.077 0.108 0.004 

217431 Pqlc3 -0.068 -0.019 0.005 0.085 0.004 

109042 Prkcdbp -0.007 0.045 0.081 0.143 0.004 

72433 Rab38 -0.045 0.012 0.062 0.103 0.004 

12428 Ccna2 -0.026 -0.044 0.046 0.104 0.004 

228966 Ppp1r3d -0.103 0.051 -0.007 0.078 0.004 

72713 Angptl1 -0.071 -0.023 0.036 0.070 0.004 

20250 Scd2 -0.010 0.038 0.176 0.115 0.004 

72033 Tsc22d2 0.000 0.018 0.069 0.139 0.004 

54219 Cd320 -0.052 -0.010 0.009 0.095 0.004 

239463 Fam83a -0.071 -0.046 0.047 0.059 0.004 
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102294 Cyp4v3 0.048 0.084 0.157 0.180 0.004 

18405 Orm1 -0.047 -0.066 0.063 0.066 0.004 

69071 Tmem97 0.004 -0.043 0.046 0.122 0.004 

85308 Fam158a -0.094 0.009 -0.015 0.067 0.004 

72169 Trim29 0.020 -0.011 0.108 0.134 0.004 

11799 Birc5 -0.003 0.013 0.020 0.140 0.004 

76905 Lrg1 -0.056 0.026 -0.015 0.104 0.004 

20148 Dhrs3 -0.075 -0.025 -0.030 0.074 0.004 

21857 Timp1 0.016 0.011 0.112 0.135 0.004 

12831 Col5a1 -0.061 -0.010 0.003 0.082 0.004 

22642 Rab7l1 -0.018 0.047 0.073 0.125 0.004 

20317 Serpinf1 -0.025 0.018 0.078 0.108 0.004 

66469 2810405K02Rik -0.025 0.033 0.038 0.121 0.004 

16948 Lox 0.005 0.040 0.045 0.147 0.004 

13197 Gadd45a 0.105 0.111 0.141 0.237 0.004 

13476 Reep5 -0.047 -0.002 0.054 0.085 0.004 

67399 Pdlim7 0.208 0.202 0.194 0.345 0.004 

58996 Arhgap23 -0.031 0.010 0.070 0.099 0.004 

56496 Tspan6 0.061 0.057 0.196 0.168 0.004 

78372 Snrnp25 0.045 0.064 0.151 0.165 0.004 

12835 Col6a3 -0.067 -0.017 -0.003 0.071 0.004 

13038 Ctsk -0.090 0.038 -0.040 0.077 0.004 

16795 Large -0.101 -0.019 -0.007 0.041 0.004 

101437 Dhx32 -0.051 0.006 0.032 0.085 0.004 

12505 Cd44 -0.032 -0.028 0.022 0.091 0.004 

231123 Haus3 -0.114 -0.070 0.052 0.001 0.004 

12834 Col6a2 -0.013 0.028 0.049 0.120 0.004 

93726 Ear11 -0.005 0.015 0.091 0.115 0.004 

66240 Kcne1l -0.014 0.013 0.044 0.116 0.004 

237847 Rtn4rl1 -0.006 0.068 0.111 0.126 0.004 

16005 Igfals -0.146 -0.114 -0.072 -0.020 0.004 

67103 Ptgr1 0.161 0.185 0.108 0.310 0.004 

71452 Ankrd40 -0.055 -0.031 0.050 0.062 0.004 

17534 Mrc2 -0.055 -0.009 0.017 0.076 0.004 

107173 Gpr137 -0.019 0.020 0.081 0.102 0.004 

73379 Dcbld2 -0.063 -0.018 0.005 0.066 0.004 

17909 Myo10 -0.006 0.028 0.117 0.108 0.004 

12579 Cdkn2b -0.091 -0.037 -0.068 0.048 0.004 

12827 Col4a2 -0.053 -0.021 0.021 0.068 0.004 

20419 Shcbp1 -0.051 -0.043 -0.011 0.068 0.003 

66531 2310061C15Rik -0.018 -0.013 0.051 0.094 0.003 

114601 Ehbp1l1 0.036 -0.002 0.110 0.132 0.003 

19362 Rad51ap1 -0.030 -0.018 -0.033 0.097 0.003 

19348 Kif20a -0.047 -0.021 0.022 0.070 0.003 

14265 Fmr1 0.034 0.026 0.105 0.139 0.003 

11749 Anxa6 0.000 0.018 0.066 0.115 0.003 

75939 4930579G24Rik -0.003 0.043 0.002 0.133 0.003 

235497 Leo1 0.041 0.065 0.110 0.157 0.003 

94187 Zfp423 -0.057 0.024 0.071 0.066 0.003 

239436 Aard 0.041 0.045 0.075 0.157 0.003 

16324 Inhbb 0.003 0.055 0.127 0.117 0.003 

107373 Fam111a -0.058 0.007 -0.026 0.078 0.003 

53886 Cdkl2 -0.013 0.026 0.054 0.107 0.003 

15460 Hr -0.017 0.029 0.153 0.085 0.003 

77772 Dcst1 -0.036 -0.003 0.004 0.087 0.003 

107995 Cdc20 0.044 -0.007 0.023 0.150 0.003 

210808 9030625A04Rik -0.048 -0.021 0.013 0.067 0.003 

20657 Sod3 -0.019 0.009 0.076 0.089 0.003 

17161 Maoa -0.063 -0.020 -0.096 0.075 0.003 

26876 Adh4 -0.041 -0.010 0.047 0.067 0.003 

70546 Zdhhc2 0.031 -0.001 0.106 0.121 0.003 

83554 Fstl3 0.030 0.027 0.146 0.122 0.003 

235587 Parp3 -0.061 -0.015 -0.002 0.057 0.003 

226143 Cyp2c44 -0.039 0.037 0.083 0.077 0.003 

381903 Alg8 -0.018 0.010 0.080 0.087 0.003 

67468 Mmd -0.042 -0.028 0.029 0.062 0.003 

56401 Lepre1 -0.087 -0.021 -0.019 0.036 0.003 
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67041 Oxct1 -0.057 -0.016 0.028 0.053 0.003 

75590 Dusp9 0.058 0.048 0.176 0.144 0.003 

234729 Vac14 -0.047 -0.045 -0.003 0.058 0.003 

67260 Lass4 -0.013 -0.003 0.017 0.097 0.003 

67087 Ctnnbip1 -0.031 0.011 0.100 0.069 0.003 

16403 Itga6 -0.027 -0.012 0.031 0.079 0.003 

212111 Inpp5a -0.044 -0.001 0.024 0.069 0.003 

14314 Fstl1 -0.015 -0.018 0.016 0.089 0.003 

67486 Polr3g -0.051 -0.024 0.020 0.055 0.003 

66427 Cyb5b -0.018 0.009 0.072 0.084 0.003 

56437 Rrad -0.025 0.020 0.040 0.088 0.003 

72759 Tmem135 -0.066 -0.029 0.018 0.040 0.003 

103733 Tubg1 -0.116 -0.058 -0.042 -0.002 0.003 

212898 Dse 0.009 0.043 -0.006 0.132 0.003 

76820 Fam49a -0.032 0.016 -0.027 0.091 0.003 

434077 Gm5578 -0.027 0.017 0.068 0.075 0.003 

217830 9030617O03Rik -0.068 -0.014 -0.002 0.043 0.003 

110542 Amhr2 -0.014 0.001 0.035 0.088 0.003 

80909 Gatsl2 0.016 0.032 0.080 0.114 0.003 

12615 Cenpa -0.027 0.004 0.016 0.080 0.003 

13004 Ncan -0.032 -0.014 0.069 0.059 0.003 

73569 Vgll3 0.149 0.156 0.175 0.251 0.003 

69573 2310016C08Rik 0.081 0.046 0.107 0.169 0.003 

70472 Atad2 -0.050 -0.038 0.032 0.043 0.003 

208624 Alg3 0.023 0.012 0.119 0.105 0.003 

72349 Dusp3 -0.022 -0.010 0.002 0.081 0.003 

63993 Slc5a7 0.011 0.010 0.089 0.099 0.003 

12826 Col4a1 -0.045 -0.010 -0.013 0.064 0.003 

72345 Fam123b -0.046 0.038 -0.015 0.079 0.003 

76477 Pcolce2 -0.029 0.004 0.026 0.075 0.003 

12822 Col18a1 0.011 0.078 0.050 0.129 0.003 

16181 Il1rn -0.020 0.002 0.154 0.055 0.003 

99730 Taf13 -0.003 0.026 0.030 0.102 0.003 

12523 Cd84 -0.103 -0.035 -0.078 0.017 0.003 

15945 Cxcl10 0.039 0.039 0.043 0.140 0.003 

21991 Tpi1 -0.030 0.008 0.043 0.070 0.003 

237253 Lrp11 0.012 0.022 0.026 0.114 0.003 

108116 Slco3a1 -0.001 0.019 0.034 0.100 0.003 

22031 Traf3 0.039 0.041 0.130 0.123 0.003 

19038 Ppic 0.000 0.027 0.060 0.097 0.003 

67196 Ube2t -0.014 0.004 -0.040 0.098 0.003 

68549 Sgol2 -0.020 0.008 0.023 0.081 0.003 

68177 Ebpl -0.057 0.016 -0.007 0.058 0.003 

14251 Flot1 -0.048 0.010 0.023 0.056 0.003 

72333 Palld 0.062 0.079 0.091 0.161 0.003 

232599 Gm4876 -0.015 -0.020 0.011 0.077 0.003 

14962 Cfb -0.007 -0.006 0.028 0.085 0.003 

104718 Ttc7b -0.006 -0.003 0.086 0.075 0.003 

108000 Cenpf -0.019 -0.018 0.031 0.070 0.003 

69094 Tmem160 -0.022 0.005 0.068 0.067 0.003 

66508 2400001E08Rik -0.035 0.023413 0.059 0.063 0.003 

72119 Tpx2 -0.027 -0.043 -0.014 0.063 0.003 

74241 Chpf -0.024 0.000 0.065 0.064 0.003 

17916 Myo1f -0.061 -0.021 -0.046 0.047 0.003 

211548 Nomo1 -0.043 -0.037 0.058 0.035 0.003 

67046 Tbc1d7 -0.002 0.055 0.087 0.095 0.003 

106795 Tcf19 -0.052 -0.034 -0.017 0.042 0.003 

12843 Col1a2 -0.025 0.012 0.018 0.075 0.003 

192193 Edem1 -0.004 0.000 0.048 0.082 0.003 

20716 Bptf -0.047 -0.017 0.002 0.048 0.003 

235043 Tmem205 -0.028 -0.001 0.041 0.062 0.003 

13605 Ect2 0.035 0.022 0.036 0.125 0.003 

380711 Rap1gap2 0.058 0.090 0.099 0.155 0.003 

232201 Arhgap25 -0.088 -0.038 -0.031 0.011 0.003 

67739 Slc48a1 -0.007 0.010 0.074 0.077 0.003 

13178 Dck 0.003 0.027 -0.041 0.114 0.003 



Chapter 5 

 

113 

 

17855 Mvk -0.074 -0.042 -0.002 0.016 0.003 

12038 Bche -0.113 -0.060 -0.073 -0.010 0.003 

20198 S100a4 -0.020 0.037 0.003 0.087 0.003 

27214 Dbf4 -0.038 -0.005 -0.081 0.075 0.003 

72709 C1qtnf6 -0.004 0.005 0.060 0.079 0.003 

23934 Ly6h -0.002 0.080 0.123 0.093 0.003 

216974 Proca1 -0.124 -0.100 -0.099 -0.029 0.003 

19360 Rad50 0.005 0.017 0.059 0.089 0.003 

27029 Sgsh -0.041 -0.059 -0.010 0.039 0.003 

17769 Mthfr 0.038 0.131 0.090 0.150 0.003 

74198 Dtx2 0.003 0.028 0.020 0.099 0.003 

217946 Cdca7l 0.000 -0.016 0.091 0.067 0.003 

109594 Lmo1 0.012 0.005 0.066 0.090 0.003 

330260 Pon2 -0.021 0.009 0.021 0.071 0.003 

211480 Kcnj14 0.005 -0.007 0.008 0.091 0.003 

72607 Usp13 -0.005 0.006 0.041 0.079 0.003 

16874 Lhx6 0.042 -0.020 0.047 0.110 0.003 

12772 Ccr2 -0.010 0.009 -0.056 0.095 0.003 

21672 Adamts2 -0.039 -0.001 -0.034 0.063 0.003 

68043 N6amt2 -0.001 0.032 0.055 0.088 0.003 

20878 Aurka -0.003 -0.016 0.031 0.075 0.003 

12833 Col6a1 0.015 0.039 0.058 0.103 0.003 

72017 Cyb5r1 0.015 0.030 0.068 0.098 0.003 

50909 C1ra -0.031 -0.040 -0.141 -0.102 -0.003 

16497 Kcnab1 -0.002 -0.034 -0.105 -0.081 -0.003 

23808 Ash2l -0.002 -0.020 -0.048 -0.088 -0.003 

56072 Lgals12 -0.098 -0.109 -0.157 -0.180 -0.003 

66599 Rdm1 0.020 0.022 -0.040 -0.058 -0.003 

19152 Prtn3 -0.115 -0.017 -0.229 -0.150 -0.003 

269473 Lrig2 0.037 0.021 -0.035 -0.046 -0.003 

14782 Gsr -0.005 -0.015 -0.048 -0.093 -0.003 

212073 4831426I19Rik -0.181 -0.258 -0.255 -0.284 -0.003 

232236 C130022K22Rik -0.060 -0.086 -0.140 -0.145 -0.003 

13982 Esr1 -0.026 -0.033 -0.068 -0.114 -0.003 

212943 Fam46a -0.141 -0.101 -0.157 -0.219 -0.003 

329470 Accs -0.028 -0.009 -0.088 -0.104 -0.003 

270110 Irf2bp2 0.021 -0.074 -0.056 -0.090 -0.003 

59014 Rrs1 -0.008 -0.026 -0.068 -0.098 -0.003 

320299 Iqcb1 0.011 0.000 -0.085 -0.069 -0.003 

22361 Vnn1 0.120 0.028 0.023 0.013 -0.003 

235441 Usp3 0.024 0.035 -0.069 -0.050 -0.003 

234564 AU018778 -0.069 -0.088 -0.194 -0.147 -0.003 

66869 Zfp869 0.055 0.045 -0.030 -0.028 -0.003 

75750 Slc10a6 -0.134 -0.094 -0.204 -0.203 -0.003 

235050 Zfp810 -0.024 -0.028 -0.148 -0.098 -0.003 

12552 Cdh11 0.047 0.054 -0.088 -0.022 -0.003 

218820 Zfp503 0.015 0.022 -0.131 -0.052 -0.003 

217082 Hlf -0.052 -0.036 -0.092 -0.137 -0.003 

13019 Ctf1 -0.026 -0.032 -0.058 -0.120 -0.003 

93834 Peli2 -0.013 -0.049 -0.106 -0.105 -0.003 

53320 Folh1 0.255 0.198 0.234 0.141 -0.003 

67866 Wfdc1 0.020 0.017 -0.028 -0.071 -0.003 

20568 Slpi -0.049 -0.079 -0.149 -0.139 -0.003 

16601 Klf9 -0.161 -0.102 -0.250 -0.224 -0.003 

21422 Tcfcp2 0.066 0.033 -0.015 -0.030 -0.003 

106042 Prickle1 0.042 0.006 -0.056 -0.052 -0.003 

99887 Tmem56 0.055 0.119 -0.015 -0.011 -0.003 

73451 Zfp763 0.029 0.030 -0.044 -0.058 -0.003 

213393 8430408G22Rik -0.284 -0.192 -0.279 -0.357 -0.003 

242608 Podn -0.066 -0.067 -0.152 -0.152 -0.003 

12298 Cacnb4 0.051 0.032 0.004 -0.048 -0.003 

225372 Apbb3 -0.056 -0.045 -0.107 -0.145 -0.003 

270035 Letm2 -0.014 -0.023 -0.098 -0.104 -0.003 

106821 AI314976 0.054 0.012 -0.033 -0.047 -0.003 

78329 2310010J17Rik 0.010 -0.036 -0.097 -0.088 -0.003 

20563 Slit2 0.038 0.050 -0.033 -0.048 -0.003 

13078 Cyp1b1 0.094 0.108 -0.009 0.015 -0.003 
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75705 Eif4b 0.018 0.011 -0.001 -0.086 -0.003 

19260 Ptpn22 0.215 0.078 0.174 0.073 -0.003 

65099 Irak1bp1 -0.036 -0.033 -0.108 -0.126 -0.003 

56448 Cyp2d22 -0.106 -0.050 -0.147 -0.184 -0.003 

66966 Trit1 -0.123 -0.132 -0.180 -0.220 -0.003 

107227 Macrod1 -0.033 -0.013 -0.067 -0.125 -0.003 

75909 Tmem49 -0.046 -0.040 -0.086 -0.142 -0.003 

320405 Cadps2 -0.055 -0.029 -0.076 -0.149 -0.003 

66277 Klf15 -0.147 -0.145 -0.235 -0.235 -0.003 

434234 2610020H08Rik -0.118 -0.149 -0.243 -0.210 -0.003 

16169 Il15ra -0.067 -0.102 -0.151 -0.169 -0.003 

11622 Ahr 0.011 0.014 -0.069 -0.081 -0.003 

18626 Per1 -0.179 -0.175 -0.172 -0.288 -0.003 

100647 Upk3b -0.034 -0.092 -0.214 -0.126 -0.003 

230903 Fbxo44 0.015 -0.001 -0.047 -0.087 -0.003 

76454 Fbxo31 -0.129 -0.061 -0.223 -0.197 -0.003 

16392 Isl1 0.002 -0.091 -0.229 -0.092 -0.003 

20377 Sfrp1 0.092 0.108 0.027 0.001 -0.003 

66300 Prr24 0.052 0.038 0.007 -0.053 -0.003 

230751 Oscp1 -0.108 -0.095 -0.158 -0.203 -0.003 

665033 Gm7455 0.013 0.045 -0.124 -0.061 -0.003 

104582 Rprml -0.045 -0.079 -0.058 -0.165 -0.003 

78892 Crispld2 0.015 0.042 -0.066 -0.071 -0.003 

268417 Zkscan17 -0.070 -0.051 -0.120 -0.167 -0.003 

12808 Cobl 0.067 0.043 0.015 -0.045 -0.003 

20442 St3gal1 -0.082 -0.135 -0.228 -0.185 -0.003 

18595 Pdgfra 0.041 0.034 -0.040 -0.061 -0.003 

20512 Slc1a3 -0.087 -0.115 -0.213 -0.186 -0.003 

12870 Cp -0.014 -0.050 -0.057 -0.132 -0.003 

18619 Penk 0.033 0.048 -0.029 -0.065 -0.003 

68695 Hddc3 -0.009 -0.058 -0.108 -0.121 -0.003 

93737 Pard6g -0.157 -0.129 -0.236 -0.248 -0.003 

272428 Acsm5 -0.175 -0.162 -0.284 -0.265 -0.003 

14313 Fst 0.014 -0.004 -0.095 -0.087 -0.003 

13488 Drd1a -0.076 -0.038 -0.214 -0.153 -0.003 

74080 Nmnat3 -0.070 -0.064 -0.160 -0.169 -0.003 

101488 Slco2b1 -0.089 -0.076 -0.170 -0.189 -0.003 

244421 Lonrf1 -0.021 -0.038 -0.050 -0.141 -0.003 

74155 Errfi1 -0.072 -0.043 -0.104 -0.177 -0.003 

16548 Khk 0.057 0.080 0.025 -0.051 -0.003 

13170 Dbp -0.147 -0.155 -0.160 -0.270 -0.003 

77739 Adamtsl1 0.031 0.086 -0.099 -0.048 -0.003 

216505 Pik3ip1 -0.013 -0.046 -0.142 -0.124 -0.004 

109828 C7 0.038 0.099 -0.044 -0.052 -0.004 

14190 Fgl2 0.062 0.076 -0.109 -0.027 -0.004 

70503 Ddo -0.027 -0.094 -0.037 -0.176 -0.004 

15483 Hsd11b1 -0.064 -0.054 -0.137 -0.176 -0.004 

67378 Bbs2 0.051 0.016 -0.011 -0.078 -0.004 

14872 Gstt2 -0.031 -0.041 -0.093 -0.152 -0.004 

192199 Rspo1 0.036 0.012 -0.069 -0.081 -0.004 

214804 Syde2 -0.095 -0.089 -0.198 -0.203 -0.004 

67225 Rnpc3 0.006 0.020 -0.094 -0.101 -0.004 

328330 D130037M23Rik 0.057 0.033 -0.062 -0.059 -0.004 

68939 Rasl11b 0.014 -0.044 -0.103 -0.114 -0.004 

67017 2010011I20Rik -0.022 -0.068 -0.116 -0.151 -0.004 

18604 Pdk2 0.010 -0.049 -0.046 -0.131 -0.004 

14264 Fmod 0.057 0.044 0.004 -0.070 -0.004 

69219 Ddah1 0.313 0.222 0.268 0.159 -0.004 

11555 Adrb2 -0.271 -0.194 -0.381 -0.357 -0.004 

22117 Tst -0.177 -0.100 -0.267 -0.267 -0.004 

12173 Bnc1 -0.002 -0.060 -0.249 -0.106 -0.004 

12263 C2 -0.032 -0.017 -0.150 -0.139 -0.004 

53883 Celsr2 -0.029 -0.027 -0.050 -0.161 -0.004 

12873 Cpa3 0.008 0.039 -0.193 -0.080 -0.004 

67158 Sft2d3 0.063 0.008 -0.058 -0.070 -0.004 

22339 Vegfa -0.060 -0.048 -0.120 -0.183 -0.004 
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20860 Rsrc2 0.053 0.043 -0.078 -0.065 -0.004 

22268 Upk1b -0.002 -0.065 -0.091 -0.146 -0.004 

99586 Dpyd 0.049 -0.014 -0.088 -0.086 -0.004 

107986 Ddb2 -0.007 0.000 -0.042 -0.140 -0.004 

16431 Itm2a 0.013 0.035 -0.102 -0.099 -0.004 

235281 Scn3b 0.000 -0.066 -0.159 -0.134 -0.004 

100042332 2810410L24Rik 0.003 -0.050 -0.136 -0.131 -0.004 

73712 Dmkn 0.097 0.032 0.045 -0.062 -0.004 

74051 Steap2 -0.027 0.047 -0.114 -0.134 -0.004 

16364 Irf4 -0.249 -0.206 -0.305 -0.375 -0.004 

78787 Usp54 0.009 -0.016 -0.114 -0.129 -0.004 

320398 Lrig3 -0.096 -0.082 -0.185 -0.230 -0.004 

19041 Ppl -0.004 -0.022 -0.113 -0.147 -0.004 

229599 Gm129 -0.181 -0.239 -0.229 -0.352 -0.005 

83673 Snhg1 -0.004 -0.039 -0.083 -0.162 -0.005 

17227 Mcpt4 0.075 0.108 -0.119 -0.038 -0.005 

51795 Srpx -0.061 -0.013 -0.186 -0.183 -0.005 

72655 2810026P18Rik -0.024 -0.036 -0.201 -0.157 -0.005 

71985 Acad10 -0.031 -0.038 -0.144 -0.175 -0.005 

16918 Mycl1 -0.136 -0.191 -0.258 -0.296 -0.005 

67298 Gprasp1 0.125 0.067 0.019 -0.043 -0.005 

66528 2210020M01Rik 0.068 0.086 0.004 -0.085 -0.005 

12475 Cd14 -0.111 -0.077 -0.238 -0.246 -0.005 

73246 Rassf6 -0.110 -0.088 -0.218 -0.255 -0.005 

26938 St6galnac5 -0.091 -0.102 -0.247 -0.239 -0.005 

103172 Chchd10 -0.048 -0.138 -0.165 -0.235 -0.005 

13107 Cyp2f2 -0.138 -0.095 -0.352 -0.270 -0.005 

58909 Fam13a -0.106 -0.164 -0.277 -0.282 -0.005 

14778 Gpx3 0.055 0.030 -0.049 -0.124 -0.005 

69065 Chac1 -0.084 -0.205 -0.214 -0.295 -0.006 

72401 Slc43a1 -0.191 -0.184 -0.343 -0.365 -0.006 

330064 Slc5a6 -0.206 -0.260 -0.293 -0.423 -0.006 

19885 Rorc -0.015 -0.072 -0.133 -0.241 -0.006 

20893 Bhlhe40 0.021 -0.079 -0.093 -0.231 -0.007 

20216 Acsm3 -0.091 -0.118 -0.312 -0.325 -0.008 

19735 Rgs2 -0.217 -0.051 -0.386 -0.423 -0.008 

23893 Grem2 0.037 0.027 -0.293 -0.236 -0.009 

12700 Cish -0.038 -0.098 -0.234 -0.454 -0.012 
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Table S4: Loadings of the PLS path model for time and dose dependent genes in 
liver and WAT. 

Liver WAT* 

Entrez ID Loadings Entrez ID Loadings Entrez ID Loadings Entrez ID Loadings 

110794 Cebpe 0.83 67246 
2810474O19Ri

k 
-0.45 20317 Serpinf1 0.93 19152 Prtn3 -0.26 

68680 Fitm1 0.82 74315 Rnf145 -0.47 16846 Lep 0.91 17227 Mcpt4 -0.26 

67441 Isoc2b 0.80 170439 Elovl6 -0.53 12834 Col6a2 0.91 12873 Cpa3 -0.26 

217830 9030617O03Rik 0.80 77596 Gpr110 -0.53 66107 1100001G20Rik 0.90 73712 Dmkn -0.26 

50914 Olig1 0.78 545487 Gm14439 -0.54 13476 Reep5 0.90 50909 C1ra -0.32 

67705 1810058I24Rik 0.77 69065 Chac1 -0.56 17294 Mest 0.89 14313 Fst -0.37 

16912 Psmb9 0.77 66968 Plin5 -0.57 14168 Fgf13 0.89 22339 Vegfa -0.43 

226527 BC026585 0.76 268822 Adck5 -0.58 12833 Col6a1 0.88 12263 C2 -0.48 

74088 0610012H03Rik 0.75 75710 Rbm12 -0.58 
23513

5 
Tmem45b 0.86 56072 Lgals12 -0.50 

67013 Oma1 0.74 100559 Ugt2b38 -0.58 12831 Col5a1 0.86 109828 C7 -0.54 

19016 Pparg 0.74 13211 Dhx9 -0.58 70083 Metrn 0.85 18619 Penk -0.55 

66401 Nudt2 0.74 22234 Ugcg -0.59 76477 Pcolce2 0.84 20563 Slit2 -0.56 

77996 D730039F16Rik 0.73 12527 Cd9 -0.60 14962 Cfb 0.84 14264 Fmod -0.58 

11537 Cfd 0.72 432508 Cpsf6 -0.60 12827 Col4a2 0.84 230751 Oscp1 -0.58 

380712 Tlcd2 0.69 321018 Serpina4-ps1 -0.61 53867 Col5a3 0.83 14190 Fgl2 -0.61 

16348 Invs 0.68 20501 Slc16a1 -0.63 12835 Col6a3 0.82 14778 Gpx3 -0.65 

17855 Mvk 0.67 232087 Mat2a -0.68 80752 Fam20c 0.82 67866 Wfdc1 -0.66 

20194 S100a10 0.63 78889 Wsb1 -0.72 83554 Fstl3 0.81 77739 Adamtsl1 -0.67 

67046 Tbc1d7 0.63 320204 4833442J19Rik -0.75 
11684

7 
Prelp 0.80 23893 Grem2 -0.73 

70291 2510049J12Rik 0.62 
   

12832 Col5a2 0.80 12870 Cp -0.78 

11302 Aatk 0.61 
   

12822 Col18a1 0.80 320299 Iqcb1 -0.80 

103140 Gstt3 0.60 
   

20296 Ccl2 0.80 67017 2010011I20Rik -0.80 

53901 Rcan2 0.59 
   

67717 Lipf 0.80 13019 Ctf1 -0.80 

110789 Gpr98 0.58 
   

17381 Mmp12 0.79 
   

13009 Csrp3 0.57 
   

12819 Col15a1 0.78 
   

105892 9030619P08Rik 0.56 
   

12843 Col1a2 0.78 
   

11761 Aox1 0.54 
   

12826 Col4a1 0.77 
   

15957 Ifit1 0.54 
   

14118 Fbn1 0.76 
   

237553 Trhde 0.51 
   

16005 Igfals 0.76 
   

216551 1110067D22Rik 0.51 
   

20657 Sod3 0.76 
   

56219 Extl1 0.51 
   

21857 Timp1 0.75 
   

68043 N6amt2 0.48 
   

16948 Lox 0.73 
   

80860 Ghdc 0.45 
   

11007
5 

Bmp3 0.73 
   

70028 Dopey2 0.43 
   

14314 Fstl1 0.72 
   

      
18405 Orm1 0.71 

   

      
21672 Adamts2 0.70 

   

      
13004 Ncan 0.70 

   

      
72713 Angptl1 0.66 

   

      
16181 Il1rn 0.65 

   

      
16324 Inhbb 0.65 

   

      
76905 Lrg1 0.64 

   

      
22403 Wisp2 0.62 

   

      
20210 Saa3 0.59 

   

      
72832 Crtac1 0.56 

   

      
15945 Cxcl10 0.51 

   

      
69071 Tmem97 0.35 

   
*For WAT  dose-time dependent genes were categorized and only genes encoding secreted proteins were analyzed. 
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Carbohydrate, protein and fat are the major nutritional components of living 

beings and these are the major metabolic fuel sources for the body. If the intake 

of metabolic fuels is greater than energy expenditure, the surplus is stored, largely 

as triacylglycerol in adipose tissue followed by in liver, leading to the development 

of obesity and its associated diseases. The products of the digestion and 

absorption of these carbohydrate, protein and fat are mainly glucose, amino 

acids, and fatty acids and mono-acyl glycerol respectively. All the products are 

metabolized to a common product, acetyl-CoA, which is oxidized by the citric acid 

cycle. Fatty acids are the major substrate. In this thesis we only focused on fat and 

its function in liver, small intestine and white adipose tissue over time as well as 

on their integration. To do these, we performed intervention studies with diets 

differing in the amount of fat, and also used a synthetic ligand (WY14643) to 

specifically activate the peroxisome proliferator-activated receptor alpha (PPAR) 

[17,139,140,241-243]. PPARα is a ligand activated transcription factor with diverse 

function and is activated by several synthetic compounds [7,9,13,18,143]. High 

affinity natural ligands include eicosanoids, unsaturated as well as long-chain fatty 

acids, and their activated derivatives (acyl-CoA esters) [161,162,164,166]. 

Moreover, it has been demonstrated that PPARα is the major regulator of the 

effects of dietary fatty acids on gene expression in liver [166]. Since early 1990s, 

when PPARα was discovered, its function has been studied broadly [12]. Several 

studies have been performed as well in last two decades; however such studies 

haven’t been performed to integrate the function of PPARα in different organs 

over time by a nutritional systems biological (NSB) approach. Therefore in this 

study we aimed to integrate different transcriptomics data by NSB approach, 

especially to characterize the function of PPARα in different organs. NSB is the 

integrated approach for studying phenotypic variation and constructs prevalent 

models of cellular organization and function [6,46]. It also seeks to uncover how 

nutrition influences metabolic pathways and homeostasis [89].  

 

Systems biology is a holistic approach that combines the knowledge of the 

different disciplines, such as biology, computer science, mathematics, statistics, 

physics and bioinformatics. Several methods and tools have already been 

developed to analyze and integrate high throughput omics data, the so-called top-

down systems biology and model driven analysis, the so-called bottom-up 

systems biology. In chapter 1 we reported an overview of systems biology and 
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discussed several statistical analytical approaches and software tools. Statistical 

tools are the most important to analyze all kinds of data. Depending on the data, 

design and research questions of the study, different statistical tools can be 

applied. Therefore, it’s very essential to apply proper statistical tools and 

approaches in the proper design of the study. Whole genome microarray 

experiments are an essential part in genomics studies [129] and it produces 

thousands of gene expression in different experimental conditions. Many 

statistical tests and methods have been proposed for analyzing such data. Most 

tests are based on pairwise comparisons, however, the analysis of microarrays 

involves the testing of multiple hypotheses within one study, and it is usually 

known that one should control for false positives. Generally, a frequently used 

technique named is false discovery rate (FDR). However, the use of the FDR may 

be inconsistent and misleading interpretation of the comparisons across different 

experiments, especially when the effect sizes of the experiments vary 

dramatically, for instance, the case when comparing effects of potent agonists in 

wild type and transcription factor knockout models [142]. Therefore, we proposed 

an integrated statistical approach to identify transcription factor target genes 

from transcriptomics experiments by testing and integrating three hypotheses 

(contrasts) in cell means model of ANOVA (chapter 2). The three contrasts are 

based on the effect of a treatment in wild type, gene knockout, and globally over 

all experimental groups. We illustrated our approach  using one of our datasets on 

the mouse [15] that focused on the identification of target genes and biological 

processes governed by the fatty acid sensing transcription factor PPARα in liver, 

however our approach is also applicable to experiments with similar kind of 

design. The advantage of our method is that it properly adjusts for multiple 

testing while integrating data from two experiments, and it is driven by biological 

inference.  

 

Integration is the key term in nutritional systems biology. Usually, fatty acids 

resulting from the dietary fat or synthetic ligand in small intestine are absorbed 

via the lymphatic system or directly through the hepatic portal vein. Fatty acids 

may be oxidized to acetyl-CoA (-oxidation) or esterified with glycerol, forming 

triacylglycerol in the liver which is stored in adipose tissue as the body’s main fuel 

reserve. This shows that there is a clear link between small intestine and liver. To 

uncover nutritional systems biology of fat in mouse liver and small intestine, we 
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integrated transcriptomics data of PPAR activation in mouse liver and small 

intestine at the pathway level (chapter 3). To do this, we used WY14643 treated 

wild type and knock out microarray experimental data at 6h and 120h in mouse 

liver and small intestine [15,139,166,173]. At first, we developed an approach to 

collect array-wise pathway activity level by principal component analysis (PCA). 

PCA is able to reduce the dimension to create orthogonal components from the 

correlated genes. As we know in nature genes are correlated of each other, 

therefore to adjust their relationship is important to analyze the data in the 

pathway level. Since first principal component (PC) contains the most of the 

information of the data, therefore, we considered PC1 score as the pathway 

activity level or pathway score. We also developed the R code to automate the 

pathway score. If one has the list of pathway with gene names, then adjusting the 

corrected input files, it’s very convenient to automate the calculation of pathway 

scores. We assumed that if any pathway is positively associated with a reference 

gene set, in our case known PPARα target genes, then it is considered an activated 

pathway of PPARα and if negatively associated with the reference gene set then 

it’s a suppressed pathway. To find out the association we used Spearman 

correlation coefficients. We found that more pathways were regulated in liver 

than in small intestine. Afterwards, we visualized the overlapping pathways from 

the 6h (early) and 120h (late) time points experiments in mouse liver and small 

intestine to observe the temporal effects of PPAR activation. Finally, a partial 

least squares path model (PLSPM) was analyzed to identify how regulation at late 

time points was influenced by the early regulated pathways, and what the 

importance of organ cross talk might be. We show that our approach enabled the 

identification of PPARα dependent pathways as well as the type of regulation in 

mouse liver and small intestine, and that acutely induced pathways are the main 

drivers for regulation of pathways after long-term activation. 

 

The partial least squares (PLS) method was originally developed by [32,33] and 

was used to analyze multivariate data in chemometrics, econometrics and 

sociological fields. Recently, it has also been widely used in high-throughput 

genomics data as a versatile tool [36,37]. However, the PLS approach can’t handle 

multi block datasets. Therefore, PLS-path model (PLSPM) was developed by 

[31,34]. The PLSPM is an extension of PLS to handle multi block datasets to 

elucidate the causal relation among the different groups of data that includes 
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existing/prior knowledge. It is an alternate approach of structural equation 

modeling with maximum likelihood (SEM-ML) [35]. The PLSPM is also known as 

soft modeling because it doesn’t depend on any distributional pattern and doesn’t 

need more cases than variables. It is also robust against misspecification and 

multicollinearity problems. On the other hand, SEM-ML is known as hard 

modeling because it depends on distributional pattern and needs more cases than 

variables [34]. Recently, PLSPM has been used by [38] in their genome wide 

association study. Since in general the omics data are noisy and less number of 

cases than variables, therefore, PLSPM (soft modeling) can be used as a suitable 

approach for integrating and modeling multi-blocks datasets in top-down systems 

biology. To the best of our knowledge we are one of the first to apply PLSPM to 

integrate and deduce causal relationships from transcriptomics datasets based on 

existing knowledge. 

 

Time-series microarrays experiments are essential to biologists for interpreting 

the nature of biological systems over time to several research groups [208,213]. 

The change in expression patterns over time provides profound information 

instead of just observing at the terminal points of one or two time points [212]. 

Although many studies have been performed on PPARα regulation using 

transcriptome analysis, most of them incorporate only a single measurement in 

time, which often is in the order of days [139]. No study has been performed 

using early time points in hepatocytes to identify the kinetics of PPARα activation 

on target genes. This is of particular relevance for nutrition, since the natural 

activators of PPARα are rapidly metabolized. As a result, it can be envisioned that 

only for a limited time the concentrations of these agonists are sufficiently high 

levels. In other words, nutritional ligands are only briefly able to activate PPARα 

mediated gene expression. It is therefore of relevance to investigate the short-

term effects of PPARα activation in a time series experiment. We therefore aimed 

in this study to characterize the genome-wide effects of acute PPARα activation 

by detecting similar behaving genes, and analyze their biological functions, gene 

interaction network and transcription factor binding sites at early stage (chapter 

4). Overall, the results reveal that PPARα regulates a several profiles of genes over 

time in rat hepatocytes and most of the potential genes behave a quadratic 

model. Furthermore, several common transcription factors (TFs) were also 

predicted to bind together with PPARα, for instance: RXR, NR2F, EREF and CREB. 



General discussion                                                                                                                                                                                                                                                   

 

124 

 

Finally we showed the expansion of the gene interaction networks over time. 

Taken together, our study contributed important advancement in our 

understanding of PPARα function for nutrition in hepatocytes. 

 

Besides in liver and small intestine, lipids also play an important role in white 

adipose tissue (WAT). It has been suggested that obesity starts to cause metabolic 

problems only when WAT cannot fully meet demands for additional storage of 

lipids, which may contribute to the etiology of nonalcoholic fatty liver disease 

(NAFLD) [2,4,5]. This indicates that there is a clear link between WAT and liver or 

other organ where extra fat can store resulting obesity and its associated 

diseases, also called lipotoxicity [225]. Using the concept of integration in top-

down systems biology, we used gene expression data from liver and WAT of mice 

that were subjected to diet-induced obesity. This data was integrated with data 

on plasma factors and weight status indicators (chapter 5). We identified sets of 

time- and dose-dependently induced genes in liver and WAT, and more genes 

were found to be regulated in WAT than in liver. We observed that most of the 

identified genes in liver involved in lipid metabolism, development of connective 

tissue, steatohepatitis, and liver fibroses, all processes known to be associated 

with the development and progression of hepatic steatosis. Likewise, genes 

identified in WAT were associated with increased cell proliferation, inflammation 

and fibrosis. Analysis by PLSPM showed that plasma factors (Leptin, Insulin, 

Glucose and Resistin) and the potential secreted proteins by WAT, such as leptin, 

Serpinf1, Mest, and Fgf13 etc. may regulate the gene expression in liver. The 

model also revealed that the potential set of genes from WAT that may predict 

around 50% of liver gene expression profile. Overall, the findings of this study give 

new insights on the role of WAT during the development of obesity and its effects 

on liver. 

Taken together, we conclude that our developed approaches reported in this 

thesis are useful alternative ways to analyze multivariate transcriptomics datasets. 

When implemented in easy accessible analysis platform, such as MADMAX [231], 

this will promote the use of the developed approaches.  
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Summary 
 

 

Several metabolic disorders including visceral obesity, insulin resistance, 

hypertension and dyslipidaemia, which increase the risk of cardiovascular diseases 

and diabetes are the main problems in the developed countries and are rising 

ones in the developing countries. These metabolic diseases are often associated 

with excess fat in the body. Nutritional systems biology of fat and fatty acids can 

enable the investigation of the relationship between genes and nutrients by 

integrating the organs and time specific data. One of the nuclear receptor super 

families, peroxisome proliferator activated receptors (PPARs), plays an important 

role in sensing nutrients and facilitating their effects on gene expression. PPARα is 

one of them and it is an important transcription factor which is activated by free 

fatty acids and their derivatives. It is mainly involved in the regulation of lipid 

metabolism and storage as well as regulation of inflammation and immunity. 

Therefore it is highly interesting to identify the effect of fat via PPARα by 

developing proper statistical tools and nutritional systems biological approaches. 

Nutritional systems biology is a new biological research field where several 

biological levels are monitored by several ways. The aim of nutritional systems 

biology is to discover biological systems where the components work together 

and they are connected to one another within an organ and between organs. The 

components can be genes or set of genes or organs. It is essential to detect the 

proper transcription factor target genes by combining activation experiments 

performed in wild type and knockout mice. It is reported that most tests are 

based on pairwise comparisons in separate experiments and therefore adjusting 

the false discovery rate may interpret incorrectly because of a huge different in 

the effect sizes across experiments. Therefore, at first we aimed to develop an 

integrated statistical approach in chapter 2. We conclude that our integrated 

statistical approach successfully detect the transcription factor target genes with 

correcting for the multiple testing problem. 

Analysis of gene expression data at the level of pathways is an important 

approach to unravel the biological function that is hidden in high throughput 

transcriptomics studies. We therefore developed a strategy to calculate pathway 
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activity level per arrays (chapter 3). Moreover, this data was used to study 

relationships between acute and long-term effects of PPARα activation in 

intestine and liver. We found that PPARα played a more important role in liver 

than in intestine, and that acutely induced pathways are the main drivers for 

regulation of pathways after long-term activation.  

It is also relevant to uncover the evolution of gene expression and their function 

after acute PPARα activation. Several studies have been performed to see the 

effect of treatment with the highly-specific PPARα agonist WY14643 after 

relatively long time, but no study has been performed at earlier stages to detect 

the direct effects of PPARα activation. Therefore, we conducted an experiment 

using rat hepatocytes cell cultured at 5 early time points (0, 1, 2, 3, and 4h) to 

identify the direct effect of WY14643 in chapter 4. We found that most of the 

acutely regulated genes were involved in lipid metabolism and they followed a 

quadratic pattern over time. We also found that transcription factors NR2F, CREB, 

EREF and RXR were closely bound with PERO in the genes involved in lipid 

metabolism process and these TFs may be bound with PPARα. The results also 

revealed that the gene interaction networks were expanded over time. Taken 

together the time course study provides different sets of similar behaving genes 

with their potential common transcription factors with PPARα. 

It is well known that excess dietary fat is stored in adipose tissue, but it has been 

suggested that this storage capacity is limited. Subsequently, adipose tissue 

failure or dysfunction may drive progression of hepatic steatosis toward non-

alcoholic steatohepatitis (NAFLD). However, knowledge on the functional link 

between adipose tissue dysfunction and NAFLD is currently limited. Therefore, in 

chapter 5 we aimed to find out the relationships between gene expression in liver 

and white adipose tissue (WAT), weight status as well as different plasma factors 

in terms of the time and dose dependent effects of dietary fat during the 

development of obesity in C57BL/6J mice by developing a partial least squares- 

path model (PLSPM). We found that the exchange of carbohydrate for fat in the 

diet induces major changes in gene expression in both liver and WAT. Our analysis 

identified a set of potential signaling proteins secreted from WAT that may induce 

metabolic changes in liver, thereby contributing to the pathogenesis of obesity. 
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Taken together, our studies have further detailed the role of dietary fat on the 

transcriptome in small intestine, liver and white adipose tissue. To identify the 

detailed effects of dietary fat at the level of a whole organism, additional studies 

are required that integrate transcriptomics, proteomics, metabolomics datasets 

and phenotypes over time. The works of this thesis provide new approaches to 

integrate multiple datasets related to lipid homeostasis. 
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Samenvatting 
 

Verschillende metabole afwijkingen, zoals overgewicht, insulineongevoeligheid, 

hoge bloeddruk en dyslipidemie, verhogen het risico op hart- en vaatziekten en 

diabetes; komen steeds vaker voor in zowel de westerse samenleving alsook in 

ontwikkelingslanden. Genoemde metabole ziekten zijn vaak geassocieerd met de 

aanwezigheid van overtollig vet in het lichaam. Systeembiologie is de wetenschap 

die biologische systemen als geheel bestudeerd en heeft als primair doel het 

kwantitatief achterhalen hoe moleculen, cellen en organen samenwerken om 

biologische processen te laten verlopen. Door de vooruitgang in de ‘omics’ 

disciplines komen steeds meer gegevens beschikbaar die geïntegreerd zullen 

worden in voorspellende modellen. In dit proefschrift worden systeembiologische 

benaderingen beschreven die als uiteindelijk doel hebben om de tijdsafhankelijke 

relatie tussen voeding, activiteit van genen in weefsels en fysiologische 

parameters te integreren. Dit heet nutritionele systeembiologie. In dit proefschrift 

hebben we ons gericht op de effecten van vet en vetzuren uit de voeding op de 

dunne darm en lever met speciale aandacht voor de rol van de transcriptiefactor 

PPAR hierin. Hiertoe zijn voedingsstudies uitgevoerd met gewone muizen (wild 

type muizen) en muizen die geen functioneel PPAR hebben (PPAR knockout 

muizen), waarna de activiteit van alle 20.000 genen in de darm en de lever 

bepaald is met behulp van microarrays. Deze gegevens zijn vervolgens 

geïntegreerd met resultaten van andere kwantitatieve metingen door gebruik te 

maken van voorspellende multivariate statistische modellen. 

Het is essentieel om op de juiste manier relevante genen te identificeren in grote 

datasets. Daartoe is onder andere de waarde van de zgn. false discovery rate 

(FDR) van belang. Deze FDR geeft aan wat de kans is dat er een vals-positief 

resultaat is opgepikt tijdens het analyseren van genexpressie data. Een 

veelgebruikte benadering om doelgenen van transcriptiefactoren te vinden is het 

vergelijken van genexpressieprofielen tussen wild type en knockout muizen voor 

en na activatie. Echter, de meeste statistische benaderingen die hiervoor gebruikt 

worden zijn gebaseerd op het combineren van resultaten uit paarsgewijze 

vergelijkingen van separate experimenten. Omdat de grootte van het effect van 

een behandeling per definitie verschilt tussen wild type en knockout muizen, is 
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het gebruik van de FDR als selectiecriterium voor paarsgewijze vergelijkingen niet 

geschikt. In hoofdstuk 2 stelden we een geïntegreerde benadering voor om 

relevante genen op biologisch alsook statistisch juiste manier te identificeren. Met 

behulp van gegevens van wild type en PPAR knockout muizen lieten we 

vervolgens zien dat onze geïntegreerde statistische benadering met succes juiste 

PPAR doelgenen detecteert waarbij ook wordt gecorrigeerd voor de kans op het 

includeren van vals positieven.  

Analyse van genexpressie data op het niveau van metabole en signaaltransductie 

routes is een veelgebruikte en gevoelige manier om functionele informatie die in 

genexpressieprofielen verborgen is te ontrafelen. We hebben daarom een 

strategie ontwikkeld om per array de activiteit van deze metabole en 

signaaltransductie routes te kunnen berekenen (hoofdstuk 3). Deze resultaten zijn 

verder gebruikt om relaties tussen acute (6 uur) en lange termijn (5 dagen) 

effecten van PPARα-stimulatie in de darmen en de lever te bestuderen. Wij 

vonden dat PPARα een belangrijkere rol in de lever speelde dan in de darmen. Na 

toepassing van ‘partial least squares- path modeling’ (PLSPM) vonden we dat 

acuut geactiveerde metabole en signaaltransductie routes de belangrijkste 

aanstuurders waren voor de activiteit van deze routes na langdurige stimulatie.  

Om een zo compleet mogelijk inzicht te krijgen in de rol van PPAR is het ook van 

belang om de ontwikkeling van genexpressie en hun corresponderende functie te 

ontdekken na een acute stimulatie van PPARα. Hoewel er diverse studies zijn 

gepubliceerd die het effect van behandeling met de specifieke PPARα agonist 

WY14643 na relatief lange tijd bestuderen, zijn er tot nu toe geen studies 

uitgevoerd die de directe, acute effecten van PPARα stimulatie analyseerden. 

Daarom hebben we in een experiment ratten hepatocyten gekweekt en hebben 

we na 5 vroege tijdstippen (0, 1, 2, 3 en 4 uur) na stimulatie met WY14643 

genexpressieprofielen verzameld om de directe PPAR stimulatie te bestuderen. 

Deze studie staat beschreven in hoofdstuk 4. Wij vonden dat het merendeel van 

de acuut geïnduceerde genen betrokken waren bij het metabolisme van vetten, 

en dat de expressieprofielen van deze genen een kwadratische patroon volgden in 

de tijd. Ook identificeerden we diverse transcriptiefactoren, zoals NRF2, CREB, 

EREF en RXR, die waarschijnlijk een rol speelden bij de acute inductie van genen 
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betrokken bij het vetmetabolisme. De resultaten lieten ook zien dat de gen-gen 

interactienetwerken uitgebreider werden in verloop van de tijd.  

Het is bekend dat overtollig vet uit de voeding wordt opgeslagen in het 

vetweefsel, maar het is ook gesuggereerd dat deze opslagcapaciteit beperkt is. 

Vervolgens kan het niet goed functioneren of zelfs falen van het vetweefsel leiden 

tot progressie van vervetting van de lever en tot niet-alcoholische steatohepatitis 

(NAFLD). Er is echter weinig bekend over de functionele verbinding tussen 

vetweefsel dysfunctie en NAFLD. In hoofdstuk 5 hebben we de relatie 

gemodelleerd tussen genexpressie in wit vetweefsel en de lever, gewicht status 

alsmede verschillende plasma factoren op het vlak van de tijd- en de dosis-

afhankelijke effecten van vet in de voeding tijdens de ontwikkeling van obesitas in 

muizen. Hiertoe hebben weer PLSPM toegepast. We vonden dat de het wisselen 

van koolhydraten voor vet in het dieet resulteert in grote veranderingen in 

genexpressie in zowel de lever als vetweefsel. Onze analyse identificeerde een lijst 

van mogelijke signaaleiwitten die worden afgescheiden door het vetweefsel en 

die kunnen leiden tot veranderingen in de stofwisseling in de lever, en op die 

manier bijdragen tot de negatieve effecten van overgewicht op de lever.  

Samengevat hebben de studies beschreven in dit proefschrift de rol van vet in de 

voeding op de genexpressieprofielen in de dunne darm, lever en wit vetweefsel 

verder ontrafeld. Om de gedetailleerde effecten van vet in de voeding op het 

niveau van een volledig organisme te identificeren, zijn aanvullende studies nodig 

waarbij transcriptomics-, proteomics-, en metabolomics datasets en fenotypen 

geïntegreerd worden in de tijd. De inhoud van dit proefschrift leidt tot nieuwe 

benaderingen om meerdere datasets die verband houden met lipide homeostase 

te kunnen integreren. 
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NMG scientific meeting, WUR (every week) 
Stat-advice meeting as an advisor, HNE (every month) 
PhD Tour 2009, Denmark, Sweden and Finland, Division of Human Nutrition. 18 Oct-31 Oct, 2009, 
(oral and poster) 
Research retreat 2011, HNE, WUR 
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