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ABSTRACT 16 

Rift Valley fever virus (RVFV), an emerging arthropod-borne pathogen, has a broad host and 17 

cell tropism. Here we report that the glycosaminoglycan heparan sulfate, abundantly present 18 

on the surface of most animal cells, is required for efficient entry of RVFV. Entry was 19 

significantly reduced by preincubating the virus inoculum with highly-sulfated heparin, by 20 

enzymatic removal of heparan sulfate from cells and in cells genetically deficient in heparan 21 

sulfate synthesis. 22 

  23 



MAIN TEXT 24 

Rift Valley fever virus (RVFV) belongs to the Phlebovirus genus of the Bunyaviridae family. Its 25 

negative-stranded tripartite RNA genome is encapsidated by nucleocapsid protein and is surrounded 26 

by a lipid-containing envelop which is derived from the trans-Golgi network (36). Two membrane-27 

anchored viral glycoproteins, Gn and Gc, assemble into capsomers that cover the viral surface 28 

following a T=12 icosahedral symmetry (12, 19). The glycoproteins mediate host cell attachment of the 29 

virus and its subsequent entry into the cell (36). A 78-kDa glycoprotein of unknown function, which is 30 

an N-terminally extended version of Gn, has been reported as a third structural glycoprotein, present 31 

only in minute amounts in the viral envelop (21, 39).  32 

RVFV is responsible for severe epidemics among ruminants in Africa and on the Arabian Peninsula, 33 

manifested by abortion storms and high mortality among young animals. The virus is transmitted by a 34 

wide variety of mosquito vectors. After introduction into the body by the bite of an infected mosquito, 35 

the virus can spread and infect different organs including the brain (32). Humans can also be infected 36 

of which a small percentage develops severe disease (31, 36). Apart from mosquitoes, ruminants and 37 

humans, a wide variety of animal hosts can be infected with RVFV including nonhuman primates, 38 

rodents and pets (11, 18). The virus also efficiently infects a large collection of different cell types in 39 

vitro (Fig. S1). The broad host, tissue and cell tropism of RVFV suggests the involvement of a 40 

common cell surface attachment factor to be utilized by RVFV to establish infection. 41 

To initiate entry into the cell, viruses need to interact with a cellular receptor, which is sometimes 42 

preceded by binding to a primary attachment factor (30). The cell surface structures which facilitate 43 

entry of bunyaviruses remain largely unknown, although some receptors have been described. Beta3 44 

integrins and nucleolin have been reported to be involved in attachment of Hantavirus and Crimean-45 

Congo hemorrhagic fever virus (genus Nairovirus), respectively (14, 42). DC-SIGN, a C-type lectin 46 

primarily restricted to interstitial dendritic cells and certain tissue macrophages (33), has been 47 

identified as a receptor for some Phleboviruses including RVFV (29). The broad cell tropism of RVFV, 48 

however, suggests that other receptors are important for virus entry into cells that lack DC-SIGN 49 

expression.    50 

All eukaryotic cells are covered by a dense and diverse array of carbohydrates. These sugars are 51 

essential for many different biological processes (40). It is not surprising that many viruses have 52 



evolved to use these ubiquitous and accessible surface glycans as part of their strategy to infect cells 53 

(26). Two types of glycans, sialylated glycans (SG) and glycosaminoglycans (GAGs), have been 54 

particularly reported to play a role in virus entry. For example, influenza viruses specifically binds SGs, 55 

while dengue virus (7) and adenovirus (34) interact with GAGs to facilitate entry. Merkel cell 56 

polyomavirus has been reported to use both SGs and GAGs for entry (37).   57 

We started to study the involvement of SGs and GAGs in RVFV entry by using a collection of Chinese 58 

hamster ovary (CHO) cell mutants with specific genetic deficiencies in glycan synthesis (Table S1) 59 

(22). Thus, CHO lec1 and 15B (16, 38) mutants are incapable of synthesizing complex N-linked 60 

glycans, while the CHO lec2 mutant cells express sialic acid-free N- and O-linked glycans (9). The 61 

CHO pgsA-745 cell mutant (10) is deficient in the synthesis of GAGs. To facilitate our studies, we 62 

made use of the recently developed non-spreading RVFV (here referred to as RVFVns) (25). In 63 

contrast to wild type virus, RVFVns can be handled outside biosafety level-3 facilities, while the 64 

presence of the eGFP gene in the viral genome enables infection to be easily monitored. The mutant 65 

CHO cells, lec1 and 15B, and to a somewhat lesser extent the CHO lec2 cells were as efficiently 66 

infected with RVFVns as the parental wild type cells (pro5 and K1), suggesting that N- and O-linked 67 

SGs play a minor role in virus infection. On the contrary, infection of CHO psgA-745 was dramatically 68 

reduced, indicating that GAGs are important for RVFVns infection (Fig. 1).  69 

GAGs are linear polysaccharides that can be attached to proteins to form proteoglycans. There are 70 

five classes of GAGs, heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), keratan 71 

sulfate, and hyaluronic acid (28). Of these GAGs, HS has been identified as an attachment factor for a 72 

number of viruses and is abundantly expressed on most cell types unlike other GAGs (28). We first 73 

evaluated whether RVFVns infection could be inhibited by including soluble heparin, a GAG analogue 74 

of HS, as a competitor in the inoculum (23). As a control virus we used a non-spreading vesicular 75 

stomatitis virus (here referred to as VSVns), a VSV-ΔG/GFP recombinant virus pseudotyped with its 76 

authentic fusion glycoprotein G (5).  Preincubation of RVFVns with heparin reduced infection on CHO 77 

K1 cells in a dose-dependent manner, whereas for VSVns no such effect was observed (Fig. 2A). To 78 

confirm the involvement of HS in RVFV entry, CHO K1 cells were treated prior to infection for 1 hour at 79 

37°C with different heparinases or chondroitinase to remove HS or CS/DS, respectively, from the cell 80 

surface (Fig. 2B). Enzymatic treatment of CHO K1 cells with heparinase caused a marked increase of 81 

infection with VSVns of more than 2-fold. In contrast, independent of the different heparinases used, 82 



infection of heparinase-treated cells with RVFVns was reduced to about 50%. No effect of 83 

chondroitinase treatment was observed. The reduced infectivity of RVFVns of heparinase-pretreated 84 

cells was confirmed using six different cell lines, while the susceptibility of these cells to VSVns was not 85 

affected (Fig. S2).  86 

To further characterize the interaction between RVFV and highly sulfated HS polysaccharides, we 87 

analysed RVFVns infection of CHO K1 cells passaged in the presence of 50mM sodium chlorate 88 

(NaClO3). NaClO3 is known to inhibit the addition of O-sulfate groups to GAGs (1, 35). Importantly, we 89 

did not observe any apparent changes in growth rate or cell morphology of CHO K1 or A549 cells 90 

cultured for 7 days in the presence of up to 70mM NaClO3 (data not shown). Infection by RVFVns of 91 

CHO K1 or A549 cells maintained in the presence of NaClO3 was dramatically reduced (Fig. 3A and 92 

B), in contrast to infection by VSVns, suggesting that O-sulfation of HS is necessary for efficient 93 

RVFVns infection of both cell lines. 94 

Next we tested the susceptibility of CHO pgsD-677 cells (CHO HS[-]), which are deficient in HS 95 

synthesis (27), to RVFVns and VSVns infection. Compared to its parental CHO K1 cells, infection of 96 

CHO HS(-) cells with RVFVns was greatly reduced (>97%), whereas VSVns infection of these cells was 97 

enhanced (Fig. 4). To confirm HS dependency of RVFV, an autonomously replicating virus was 98 

included in this experiment. This virus expresses the eGFP reporter from its genome, similar to 99 

RVFVns, and was rescued as previously described (25). Also this virus displayed a significantly 100 

reduced infectivity on CHO HS(-) cells. Altogether the observations strongly support an important role 101 

of HS for RVFV infection.   102 

Many viruses have been reported to utilize HS for host cell attachment (reviewed in (28)). Interactions 103 

of viruses with heparan sulfate are often based on electrostatic contacts between the negatively 104 

charged sulfate groups on HS and clusters of basic residues occurring in viral surface proteins. These 105 

clusters often comprise a BBXB or a BBBXXB motif (B, basic amino acid; X, any amino acid) (3). 106 

When analysing the complete M segment-encoded polypeptide sequence of the RVFV used in this 107 

study (strain 35/74, GenBank accession number JF784387.1), we identified two overlapping BBBXXB 108 

HS binding motifs (116-RCERRRDAK-124) in the pre-Gn region of the 78-kDa protein while no HS 109 

binding motifs were identified in the Gn or Gc protein sequence. The 78-kDa protein is considered to 110 

be a minor structural glycoprotein (39) and is apparently dispensable: RVFV recombinants lacking the 111 



pre-Gn region display wild-type growth kinetics in cell culture calling into question whether the basic 112 

amino acid motifs in the protein indeed contribute to HS binding (15, 41). Alternatively, other linear or 113 

non-linear arrangements of basic residues in Gn and/or Gc may create an HS binding motif in the 114 

tertiary structures of these glycoproteins (13, 17). Clearly, the identification of the HS binding site on 115 

the viral surface requires further study.  116 

HS dependency has for some viruses been shown to be acquired after repetitive virus passage in cell 117 

culture through the acquisition of single or multiple amino acid  substitutions in the surface 118 

glycoproteins, creating a positively charged HS-binding motif (6, 8, 20, 24). The RVFV strain 35/74 has 119 

been isolated from the liver of a sheep that died during an RVFV outbreak in the Free State province 120 

of South Africa in 1974. The virus was amplified in suckling mouse brain and passaged three times in 121 

BHK-21 cells (25). To study the possible acquisition of a HS-binding motif during these procedures the 122 

M segment encoded polypeptide sequence was aligned with those of four RVFV isolates that had 123 

been directly sequenced from serum or organ material of infected animals (2, 4). This analysis did not 124 

reveal the presence of additional basic amino acids in the 35/74 sequence (Table S2), indicating that 125 

the requirement for HS for efficient entry of the RVFV used in this study is not likely the result of cell 126 

culture adaptation.  127 

Although infection of RVFV in the GAG- and HS-deficient CHO cells was dramatically reduced we 128 

observed residual infection of both cell lines. It remains to be determined whether this infection in the 129 

absence of HS is explained by the binding of RVFV to another, unidentified attachment factor or 130 

receptor present on these cells. 131 
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FIGURE LEGENDS 240 

 241 

FIG 1. RVFVns infection is drastically reduced in the absence of GAGs. The CHO 15B and CHO 745 242 

mutant cells derived from the CHO K1 cell line and the CHO lec1 and CHO lec2 mutant cells derived 243 

from the CHO Pro5 cell line were cultured in Ham's F-12K medium (Invitrogen) supplemented with 244 

10% fetal calf serum (FCS). Subconfluent monolayers were infected with RVFVns at different moi’s 245 

(0.12 and 0.6). Twenty hours post infection (hpi) the cells were washed once with PBS and prepared 246 

for fluorescence microscopy (A) or FACS analysis (B). (A) Cells were fixed with 3.7% formaldehyde in 247 

phosphate buffered saline (PBS) for 20 minutes at room temperature and representative pictures were 248 

taken using the EVOS fl microscope (AMG, magnification 4x; data shown refer to infections at moi of 249 

0.6). Nuclei were counterstained with DAPI. MOCK represents mock-infected cells. (B) Cells were 250 

trypsinized and fixed with 3.7% formaldehyde in PBS for 20 minutes at room temperature and RVFVns 251 

infected (GFP-positive) cells were quantified by FACS (FACS Calibur). Graphical data shown are 252 

normalized to the infectivity of CHO K1 or CHO Pro5 cells and are representative of two independent 253 

experiments performed in triplicate. Significant differences between conditions are indicated (ANOVA-254 

Bonferroni) with *** corresponding to p<0.001. Error bars represent SD. 255 

 256 

FIG 2. RVFVns infection is decreased in the presence of heparin and after enzymatic removal of 257 

heparan sulfate from the cell surface. (A) RVFVns and VSVns were incubated with different 258 

concentrations of soluble heparin (MPBio) for 10 minutes at room temperature in culture medium, prior 259 

to infection of CHO K1 cells. At 8 (VSVns) or 20 (RVFVns) hpi, infection was quantified by FACS as 260 

described for Fig. 1. The data shown correspond to a representative set of two independent 261 

experiments performed in triplicate. (B) GAGs were enzymatically removed from the cell surface of 262 

CHO K1 cells. Chondroitinase ABC (specific for chondroitin and dermatan sulphate), heparinase I 263 

(specific for heparin and highly sulfated domains), heparinase II (specific for heparin and heparan 264 

sulfate) and heparinase III (specific for heparan sulfate), all purchased at Sigma, were dissolved in 265 

resuspension buffer (20 mM HEPES, pH 7.5, 50 mM NaCl, 4 mM CaCl2 and 0.01% BSA). Dilutions 266 

were prepared in digestion buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 4 mM CaCl2 and 0.1% 267 

BSA). CHO K1 cells were treated for 1 hour at 37°C with heparinase I, II or III, a combination of them, 268 

or with chondroitinase at the indicated concentrations. The cells were washed twice with culture 269 



medium, and then incubated with RVFVns or VSVns for 30 minutes at 37°C. The cells were washed 270 

twice with culture medium and further incubated in culture medium at 37°C for 8 (VSVns) or 20 271 

(RVFVns) hours after which infection was quantified by FACS as described for Fig. 1. Data were 272 

obtained from two independent experiments performed in duplicate. Significant differences between 273 

conditions are indicated (ANOVA-Bonferroni) with *** corresponding to p<0.001. Error bars represent 274 

SD. 275 

 276 

FIG 3. RVFVns infection strongly depends on sulfation of heparan sulfate. (A) CHO K1 cells were 277 

passaged twice in culture medium containing 50 mM NaClO3 (Sigma) and subsequently cultured in the 278 

presence of 50mM sodium chlorate, or in chlorate-free culture medium for 30 or 8 hours prior to 279 

infection, to reverse the chlorate effect. Twenty hours post infection, cells were analysed by 280 

fluorescence microscopy or FACS as described for Fig. 1. Graphical data shown are normalized and 281 

are representative of two individual experiments performed in triplet. (B) A549 cells were cultured in 282 

DMEM (Invitrogen) supplemented with 10% fetal calf serum (FCS). CHO K1 or A549 cells were 283 

passaged twice in culture medium containing 50 mM NaClO3 (Sigma) and subsequently cultured in the 284 

presence of 50mM sodium chlorate (NaClO3 (+)), or in chlorate-free culture medium (NaClO3 (-)) for 8 285 

hours prior to inoculation with RVFVns or VSVns at the indicated moi. Eight (VSVns) or twenty (RVFVns)  286 

hours post infection, cells were analysed by fluorescence microscopy or FACS as described for Fig. 1. 287 

Significant differences between conditions are indicated (ANOVA-Bonferroni, *** = p<0.001). Error 288 

bars represent SD. 289 

 290 

FIG 4. Entry of RVFVGFP in GAG-deficient CHO cells is inefficient due to the lack of heparan sulfate. 291 

Mutant CHO cells pgsD-677 (HS[-], able to express all GAGs except for heparan sulfate) and pgsA-292 

745 (CHO GAG[-], deficient in expression of all GAGs), and the parental CHO K1 cells were 293 

inoculated with RVFVns, VSVns or RVFVGFP. At 8 (VSVns), 10 (RVFVGFP) or 20 (RVFVns)  hpi, cells were 294 

analysed by fluorescence microscopy and quantified for GFP expressing RVFV infected cells. 295 

Graphical data shown are normalized to the infectivity of CHO K1. Significant differences between 296 

conditions are indicated (ANOVA-Bonferroni) with *** corresponding to p<0.001. Error bars represent 297 

SD. 298 










