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Abstract 

Background 

The hepatoprotective potential of Phellinus linteus polysaccharide (PLP) extracts has been 

described. However, the molecular mechanism of PLP for the inhibition of liver fibrosis is 

unclear. This study aims to investigate the molecular protein signatures involved in the 

hepatoprotective mechanisms of PLP via a proteomics approach using a thioacetamide 

(TAA)-induced liver fibrosis rat model. 



Methods 

Male Sprague–Dawley rats were divided into three groups of six as follows: Normal group; 

TAA group, in which rats received TAA only; and PLP group, in which rats received PLP 

and TAA. Liver fibrosis was induced in the rats by repeated intraperitoneal injections of TAA 

at a dose of 200 mg/kg body weight twice a week for 4 weeks. PLP was given orally at a dose 

of 50 mg/kg body weight twice a day from the beginning of the TAA treatment until the end 

of the experiment. The development of liver cirrhosis was verified by histological 

examination. Liver proteomes were established by two-dimensional gel electrophoresis. 

Proteins with significantly altered expression levels were identified by matrix-assisted laser 

desorption/ionization-time of flight/time of flight mass spectrometry and the differentially 

expressed proteins were validated by immunohistochemical staining and reverse transcription 

polymerase chain reaction. 

Results 

Histological staining showed a remarkable reduction in liver fibrosis in the rats with PLP 

treatment. A total of 13 differentially expressed proteins including actin, tubulin alpha-1C 

chain, preprohaptoglobin, hemopexin, galectin-5, glutathione S-transferase alpha-4 (GSTA4), 

branched chain keto acid dehydrogenase hterotetrameric E1 subunit alpha (BCKDHA), 

glutathione S-transferase mu (GSTmu); glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH); thiosulfate sulfurtransferase (TFT); betaine-homocysteine S-methyltransferase 1 

(BHMT1); quinoid dihydropteridine reductase (QDPR); ribonuclease UK114 were observed 

between the TAA and PLP groups. These proteins are involved in oxidative stress, heme and 

iron metabolism, cysteine metabolism, and branched-chain amino acid catabolism. 

Conclusion 

The proteomics data indicate that P. linteus may be protective against TAA-induced liver 

fibrosis via regulation of oxidative stress pathways, heat shock pathways, and metabolic 

pathways for amino acids and nucleic acids. 

Background 

Most chronic liver diseases, including viral hepatitis (hepatitis B virus and hepatitis C virus), 

alcoholic liver disease, and biliary diseases [1], ultimately lead to liver fibrosis. Without 

effective treatments at an early stage, reversible liver fibrosis will lead to irreversible 

cirrhosis [2]. Oxidative stress may cause liver damage [3,4], and reducing oxidative stress by 

supplementation with antioxidants is effective for preventing liver fibrogenesis [5]. However, 

evidence for the efficacy of antioxidants, such as vitamin E and superoxide dismutase, in the 

treatment of human liver fibrosis has not been established [6]. 

Phellinus linteus (Berk. et Curt.) Teng, an orange-colored mushroom, belongs to the 

Hymenochaetaceae Basidiomycetes and has been considered useful in preventing and treating 

liver fibrosis and liver cancers owing to its strong anti-inflammatory, antioxidative, 

antiangiogenic, and anticancer properties [7-10]. P. linteus has been used in Chinese 

medicine for the treatment of tumors, menstrual irregularities, and liver-related illnesses [11]. 

Several reports from Korea and Japan have demonstrated that intake of P. linteus for a long 

time may induce spontaneous regression of hepatocellular carcinoma in patients with 



multiple metastases [12,13]. Some in vivo and in vitro studies have also demonstrated that P. 

linteus exerts antitumor effects on hepatocellular carcinoma [14-16]. 

Over the last decade, accumulating evidence suggests that P. linteus may protect the liver 

against fibrosis via its antioxidative property. A study in 2002 demonstrated that an extract of 

P. linteus was able to suppress carbon tetrachloride-induced late liver fibrosis by reducing 

peroxidation products, restoring the activities of catalase and superoxide dismutase, and 

reviving the expression of aerobic respiration enzymes [11]. Shon et al. [11] demonstrated 

that a P. linteus polysaccharide (PLP) fraction was able to inhibit cytochrome P450 isozymes 

in the liver. Furthermore, a retinoic acid derivative isolated from P. linteus was reported to 

decrease transforming growth factor-beta-induced early liver fibrosis by downregulating 

reactive oxygen species generation and suppressing the expression of several proteins [11]. 

Although antioxidation is an important mechanism by which P. linteus suppresses liver 

fibrosis, the molecular mechanism of the antioxidative effect of P. linteus is still unclear. To 

date, studies on P. linteus-mediated protection of the liver against injury have only found a 

few target molecules [17]. With the development of proteomics technology, it is possible to 

cover the expression of more proteins acting within a biological context to investigate the 

cellular processes involved in disease pathogenesis with high-throughput and in a quantitative 

manner [18,19]. 

In the present study, we aim to assess the hepatoprotective effects of P. linteus against 

thioacetamide (TAA)-induced liver fibrosis by high-resolution two-dimensional 

polyacrylamide gel electrophoresis (2-DE) coupled with mass spectrometry technology. 

Methods 

Preparation of PLP 

Sang Hwang 125 capsules containing a lyophilized hot water extract of wild-type P. linteus 

were donated by Dr. Frankie Chan (Amazing Grace Health Products Limited Partnership, 

Thailand). Each Sang Hwang capsule contained 400 mg of pure extracts from natural P. 

linteus. The polysaccharides and glucan contents of the P. linteus natural compound are 53–

63% and 24%, respectively, as previously reported by us [20]. This natural compound has 

been shown to possess strong antioxidative and immunomodulatory properties [21]. PLP was 

prepared by dissolving 100 g of freeze-dried powder from Sang Hwang 125 capsules in 1 L 

of distilled water, followed by the addition of 2 L of ethanol (Merck, Germany) at −20°C. 

The precipitated polysaccharides were collected by centrifugation at 3000 × g for 1 h, 

dissolved in a small volume of distilled water, and lyophilized. The resulting powder was 

stored at −20°C until use. 

Animal experiments 

Eight-week-old male Sprague–Dawley rats (weighing approximately 200 g) were obtained 

from Hallym University (Korea). All rats were kept in an animal house under a 12-h/12-h 

light/dark cycle, with controlled temperature and humidity and free access to food and water. 

After 1 week of acclimatization, the rats were arbitrarily divided into three groups: Normal 

group; TAA group, in which rats received TAA only; and PLP group, in which rats received 

PLP and TAA. TAA (Sigma-Aldrich, USA) was intraperitoneally injected at a dose of 200 



mg/kg body weight twice a week for 4 weeks. PLP was given orally at a dose of 50 mg/kg 

body weight twice a day from the beginning of the TAA treatment until the end of the 

experiment. All rats were euthanized after 4 weeks by intraperitoneal injection of 200 mg/kg 

sodium pentobarbital (Sigma-Aldrich, USA). Dissection was carried out, and liver samples 

were fixed in 10% buffered formalin solution (Surgipath, Germany) for histological staining. 

Tissues from the same portion of the liver were collected from the TAA and PLP groups for 

the proteomics analysis. 

The study protocol was approved by the Hallym University, South Korea. Animal care 

complied with institutional guidelines. 

Histological examination of the liver 

The fixed liver tissues were embedded in paraffin and sectioned at 5-μm thickness. For each 

liver sample, the stage of hepatic fibrosis was established. The liver sections were stained 

with Masson’s trichrome (Sigma-Aldrich, USA) and observed under NIKON model SE 

microscope (NIKON, Japan) to evaluate the degree of fibrosis. 

Sample preparation for proteomics analysis 

Liver samples were snap-frozen in liquid nitrogen and stored at −80°C for the proteomics 

analysis. The frozen liver tissue samples from the TAA and PLP groups were disrupted with 

a tissue teaser (Biospec Products, USA) in a lysis buffer containing 25 mM HEPES, pH 7.5, 

150 mM NaCl, 1 mM EDTA disodium salt, 1 mM dithiothreitol (DTT) (USB, USA), 1% 

(v/v) Triton X-100 (USB, USA), and 1% (v/v) Protease Inhibitor Cocktail Set III (Bio-Rad, 

USA). The superfluous salt in the extract was removed by incubation with 20% (w/v) 

trichloroacetic acid (TCA)-acetone solution and 20 mM DTT in acetone (Merck, Germany) 

for 4 hours at −40°C. The protein pellet was obtained by centrifugation at 15,800 × g for 30 

min at 4°C. Excess TCA was removed by three washes with acetone containing 20 mM DTT. 

After air-drying, the protein pellet was resuspended in buffer comprising 7 M urea, 2 M 

thiourea, 100 mM DTT, 5% (v/v) glycerol, and 4% (w/v) 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) (USB, USA), and the 

resulting protein solution was stored at −80°C until 2-DE analysis. The protein concentration 

was determined by the Bradford assay (Bio-Rad, USA). 

Two-dimensional gel electrophoresis 

The 2-DE procedures were performed according to our previous study [22] with some 

modifications. The tissue samples were processed in duplicate and a total of 12 gels (six for 

the TAA group and six for the PLP group) were used. For the first-dimension electrophoresis, 

100-μg protein samples were mixed with 350 μL of rehydration buffer comprising 9.5 M 

urea, 2% (w/v) CHAPS, 0.28% (w/v) DTT, 0.002% (w/v) bromophenol blue (USB, USA) 

and 1% (v/v) immobilized pH gradient buffer (pH 3–10) (Bio-Rad, USA), and then applied to 

an Ettan IPGphor 3 isoelectric focusing electrophoresis system (GE healthcare, USA). The 

samples were rehydrated for 7 h before isoelectric focusing with the following programs: (a) 

linear increase up to 500 V over 1 h; (b) holding at 500 V for 2 h; (c) linear increase up to 

10,000 V over 4 h; (d) linear increase up to 10,000 V over 3 h; and (e) final hold at 10,000 V 

to reach a total of 120,000 V × h. The focused immobilized pH gradient gel strips were 

equilibrated for 15 min in a solution comprising 50 mM Tris–HCl, pH 8.8, 6 M urea, 30% 

(v/v) glycerol, 2% (w/v) sodium dodecyl sulfate (SDS) and 20 mM DTT, followed by 



incubation with the same buffer containing 20 mM iodoacetamide (Sigma-Aldrich, USA) for 

another 15 min. The second-dimension separation was performed by 12.5% SDS 

polyacrylamide gel electrophoresis (PAGE) at a constant current of 30 mA for 30 min, 

followed by a 60-mA current for the rest of the analysis until the bromophenol blue line reach 

the bottom of the gels. 

Image acquisition and analysis 

After the 2-DE, the gels were stained with SYPRO® Ruby Protein Stain (Bio-Rad, USA) 

according to the manufacturer’s protocol. The stained gels were scanned with a Molecular 

Imager PharosFX Plus System (Bio-Rad, USA) and analyzed by PDQuest 8.0 software (Bio-

Rad, USA). Each expression level was calculated as the percentage volume (% vol), and 

exported for statistical analysis. The relative intensities of spots were used for comparison 

between the two groups, and only those spots with significant differences (≥ 1.5-fold increase 

or decrease; P < 0.05) were selected for protein identification. 

Protein identification 

Spots showing differential expression (P < 0.05) between the TAA and PLP groups were sent 

to the Genome Research Centre (The University of Hong Kong, Hong Kong) for protein 

identification. The proteins were digested with sequencing grade modified trypsin (Promega, 

USA) and applied to matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight 

(MALDI-TOF/TOF) mass spectrometer analysis using a 4800 MALDI TOF/TOF Analyzer 

(Applied Biosystems, USA). Matches between the experimental data and mass values 

calculated from a candidate protein were carried out by Mascot search engine (Matrix 

Science, UK) that uses MS data to identify proteins from the NCBInr database with 

taxonomy limited to Rattus norvegicus. The database allowed up to one missed cleavage and 

the mass tolerance was set as 75 ppm peptide limited by fixed modification of 

carbamidomethyl and variable modification of oxidation, with monoisotopic values. Mascot 

reported the molecular weight search (MOWSE) score, which is calculated by −10 × log10 

(P), where P is the probability that the observed match is a random event. The P value is 

limited by the size of the sequence database being searched (limited by taxonomy), the 

conditions, and the settings of trypsin digestion. Each calculated value that falls within a 

given mass tolerance of an experimental value counts as a match. The accepted threshold is 

that an event is significant if it would be expected to occur at random with a frequency of < 

5%. In this study, a protein match with a score of > 71 was regarded as significant. 

Western blot analysis for validation of differentially expressed proteins 

Western blot analysis was employed to validate the proteomic data. Liver protein extracts 

were mixed with sample buffer (62.5 mM Tris–HCl, pH 6.8, 25% (v/v) glycerol, 2% (w/v) 

SDS, 350 mM DTT, and 0.01% (w/v) bromophenol blue) at a ratio of 1:1 and incubated in 

boiling water for 5 min. Aliquots of the samples (30 mg of protein) were separated by 

electrophoresis in 12.5% SDS-PAGE gels at constant voltage (120 V) and then transferred to 

polyvinylidene difluoride membranes (GE Healthcare, USA) using a TE77 PWR Semi-dry 

Transfer Unit (GE Healthcare, USA). The membranes were blocked with 5% (w/v) non-fat 

dry milk in phosphate buffer saline overnight at 4°C. The membrane was incubated with 

primary antibodies: anti-haptoglobin (1:1000), anti-hemopexin (1:1000;), anti-hemoglobin 

(1:1000), anti-GSTA4 (1:500), and anti-GSTmu (1:1000) (Abcam, USA) for one hour and 

then incubated with their corresponding secondary horseradish peroxidase-conjugated 



antibodies (Bio-Rad, USA) for another one hour. The blots were washed five times with 

0.05% Tween-20 in phosphate buffer saline between steps. Proteins were detected with an 

enhanced chemiluminescence system (GE Healthcare, USA) and the band intensity was 

measured with the Quantity One software (Bio-Rad, USA). 

Reverse transcription polymerase chain reaction 

Reverse transcription polymerase chain reaction (RT-PCR) was employed to verify the 

differentially expressed proteins identified by the proteomics analysis. Total RNA was 

extracted from liver samples in the TAA and PLP groups using TRIzol® (Invitrogen, USA). 

Aliquots of the total RNA (5 μg) were reverse-transcribed with Super Script III (Invitrogen, 

USA) in the presence of oligodeoxythymidylic acid primers (Sigma-Aldrich, USA) according 

to the manufacturer’s instructions. PCR was performed with an iCycler Thermal Cycler (Bio-

Rad, USA). cDNA (0.5 μL) were used for each PCR amplification in a total reaction volume 

of 15 μL using iQ SYBR Green Super Mix (Bio-Rad, USA), and all reactions were 

performed in duplicate. A total of 11 genes were examined, including ribonuclease UK114, 

hemopexin, preprohaptoglobin, glutathione S-transferase alpha-4 (Gsta4), branched chain 

keto acid dehydrogenase heterotetrameric E1 subunit alpha (Bckdha), glyceraldehyde-3-

phosphate dehydrogenase (Gapdh), haptoglobin, thiosulfate sulfurtransferase (Tft), betaine-

homocysteine S-methyltransferase 1 (Bhmt1), quinoid dihydropteridine reductase (Qdpr), and 

dihydrofolate reductase (Dhfr) because they showed significantly different expression levels 

in the 2-DE proteomics analysis, plus ubiquitin C as an internal control. The primers in Table 

1 were used for the PCR with mentioned annealing temperature. The amplification was 

initiated by 4 min denaturation at 94 °C for 1 cycle, followed by 30 cycles at 94°C for 30 s, 

specially annealing temperature of each gene for 30 s, and 72°C for 1 min using a Bio-Rad 

Icycler PCR thermocycler 96 well thermal thermo cycler (Bio-Rad, USA). After the last 

cycle of amplification, samples were incubated for 7 min at 72°C. The PCR products were 

examined in 1% agarose gels stained with 0.01% SYBR® Safe DNA Gel Stain (Invitrogen, 

USA) and analyzed using Quantity One software (Bio-Rad, USA). 

Table 1 Primers used for the PCR analyses 

Gene Primer sequence (5’-3’) Fragment size (bp) Annealing temperature (°C) 

Preprohaptoglobin F
1
: TGCCTATCTGCCTGCCTTC 316 58 

R
2
: GTGTCCTCCTCCGTGTCAT 

Hemopexin F: AAGCCAGACTCAGATGTAA 479 55 

R: AAGCAGTAGTAGCGTTCA 

Gsta4 F: GGACCTGATGATGATGATTATC 446 54 

R: TATCTTGCCTCTGGAATGC 

Bckdha F: AGCGTCACTTCGTCACCATT 547 60 

R: GCCTTCTCCTGTTCCTCATCC 

Bhmt F: CAGACACCTTCCTACCTCAG 281 52 

R: CAGTTCACACCGACAATGG 

Dhfr F: CTTGACGGCACTCTAAGC 304 52 

R: CTCCTTGTGGTGGTTCCT 

Qdpr F: GATGTGGTGGAGAATGAAGAGG 241 56 

R: AGTGGCTAGAGATGGTGGATG 

Gapdh F: CATGACCACAGTCCATGCCATC 451 60 



R: CACCCTGTTGCTGTAGCCATATTC 

Uk114 F: GCATGTCGTCAATAATCAGA 443 54 

R: CTCCAGAGTCAGCATCAG 

Tft F: GGTTCATCAGGTGCTCTATCG 311 58 

R: CCAGGTCGTCTCCATCGTATA 

Ubiquitin C F: TGGAGGTCGAGCCCAGTGTTA 105 58 

R: CCCAAGAACAAGCACAAGAAGGGCT 
1
F: Forword 

2
R: Reverse 

Statistical analysis 

All data are presented as the mean ± standard deviation (SD). The significance of differences 

in data between the groups was determined by one-way analysis of variance followed by the 

Tukey test for equality of variances using SPSS 17.0 (IBM, USA). Differences were 

considered statistically significant at P < 0.05. 

Results 

Histological assessment of liver fibrosis 

TAA treatment of rats for 4 weeks resulted in liver fibrosis, which was characterized by 

alterations in the quality of the hepatic extracellular matrix (Figure 1B&C), compared with 

the livers of rats in the Normal group (Figure 1A). Extended collagen deposition and large 

septa of the hepatic lobules were observed after 4 weeks of TAA treatment (Figure 1B). In 

addition, lymphoid infiltration was observed around the central and portal veins in the TAA-

treated livers. PLP treatment markedly reduced the severity of the fibrosis and inflammation 

induced by TAA (Figure 1C). 

Figure 1 Photomicrographs of rat livers. The livers were sectioned at 5-μm thickness and 

the sections were stained with Masson’s trichrome. A: Normal group. B: TAA group. C: PLP 

group. Extended collagen deposition and large septa of the hepatic lobules are observed in the 

TAA-treated liver (B) compared with the normal liver (A). In addition, lymphoid infiltration 

is observed around the central and portal veins in the TAA-treated liver. PLP treatment 

markedly reduces the severity of the fibrosis and inflammation induced by TAA (C) 

Identification of protein spots on 2-DE gels 

On each 2-DE gel, nearly 1000 individual protein spots were detected, and 13 spots with 

notable changes found by the PDQuest software between the PLP and TAA groups were 

identified by MS (Figure 2, Table 2). The proteins with increased expression levels in the 

PLP group compared with the TAA group included actin cytoplasmic 2, tubulin alpha-1C 

chain, galectin-5, BCKDHA, DHFR, preprohaptoglobin, GSTA4, QDPR, GAPDH, and TFT. 

The proteins with decreased expression levels in the PLP group compared with the TAA 

group were hemopexin, ribonuclease UK114, and BHMT1. 

Figure 2 Representative 2-DE gel maps of the liver proteomes of rats in the TAA (A) 

and PLP (B) groups 



Table 2 Differentially expressed liver proteins between the TAA-induced liver fibrosis rats in the PLP and TAA groups 

Spot No.
1
 Protein name GenInfo 

identifier
2
 

Protein 

score
3
 

Expression quantity 

(×10
2
) TAA 

Expression quantity 

(×10
2
) PLP 

Expression change 

(PLP/TAA) 

P pI
4
 Mr (kDa)

4
 

1011 actin, cytoplasmic 2 gi|4501887 65 62.6 ± 24.5 97.1 ± 13.0 1.6 0.012 5.31 42.1 

1619 tubulin alpha-1C chain gi|58865558 254 29.4 ± 13.0 55.4 ± 14.0 1.9 0.014 4.96 50.6 

3802 hemopexin gi|122065203 262 100.5 ± 34.1 61.4 ± 15.4 −1.6 0.028 7.58 52.0 

5011 galectin-5 gi|785053 120 11.5 ± 9.5 75.3 ± 44.9 6.5 0.028 6.95 15.5 

5514 Bckdha protein gi|59808237 88 41.3 ± 9.1 61.0 ± 11.5 1.5 0.008 6.4 37.6 

7113 dihydrofolate reductase gi|18426814 100 49.3 ± 14.7 73.8 ± 14.0 1.5 0.015 6.77 21.7 

7126 Glutathione S-transferase alpha-4 gi|157820217 67 15.1 ± 7.6 28.9 ± 11.3 1.9 0.033 6.77 25.6 

7203 preprohaptoglobin gi|204657 75 54.8 ± 20.6 92.5 ± 16.2 1.7 0.005 7.16 30.4 

8005 ribonuclease UK114 gi|47168636 159 172.2 ± 69.2 78.9 ± 45.1 −2.2 0.020 7.79 14.4 

8110 quinoid dihydropteridine reductase, 

isoform CRA_c 

gi|149047263 135 83.7 ± 22.3 128.5± 25.5 1.5 0.009 9.69 27.9 

8207 betaine-homocysteine S-

methyltransferase 1 

gi|13540663 142 128.6 ± 42.6 65.1 ± 12 −2.0 0.006 8.02 45.4 

8305 glyceraldehyde-3-phosphate 

dehydrogenase 

gi|8393418 130 141.6 ± 69.1 225.8± 44.3 1.6 0.035 8.14 36.1 

9308 thiosulfate sulfurtransferase gi|57528682 256 63.8 ± 15.7 99.7 ± 22.8 1.6 0.010 7.71 33.6 
1
Spot no.: automatically assigned by the PDQuest software 

2
GenInfo identifier: sequence identification number assigned by GenBank 

3
Protein score: generated by the MS identification system 

4
Mr and pI: relative molecular mass (Mr) and isoelectric point (pI) generated by the MS system 



Western blot analysis for validation of differentially expressed proteins in the 

proteomics analysis 

Owning to the limitations of anti-rat protein antibodies, many of the identified differentially 

expressed proteins could not be measured by western blot analysis. Haptoglobin, hemopexin, 

heat-shock protein 70 (HSP70), and GSTA4 were successfully measured and used to validate 

the results obtained in the proteomic analysis. The western blot results were in general 

agreement with the differentially expressed proteins obtained in the proteomic analysis. As 

shown in Figure 3, the level of hemopexin (P = 0.049) was lower and the levels of 

haptoglobin (P = 0.042) and GSTA4 (P = 0.040) were much higher in the PLP group 

compared with the TAA group. The levels of hemoglobin (P = 0.047) and HSP70 (P = 0.041) 

were higher in the PLP group than in the TAA group. GSTmu did not show a significant 

difference in the western blot analysis. 

Figure 3 Western blot measurements of the haptoglobin, hemopexin, GSTA4, 

hemoglobin, HSP70, and GSTmu expression levels in the TAA-induced fibrotic livers 

with and without PLP treatment. The protein expression levels are presented as means ± 

SD (N = 6). *P < 0.05 vs. the TAA group 

Quantitative RT-PCR for gene expression analysis 

To investigate whether the expression changes of the identified proteins occurred at the 

transcriptional level, we determined the mRNA expression changes of these proteins by 

semiquantitative RT-PCR. As shown in Figure 4, the mRNA expression of many of the 

identified genes changed in a similar tendency as their protein expression change showed in 

2D proteomic results, suggesting that the effects of P. linteus were exerted at the protein 

expression level, i.e. focused on the translation and post-translation steps. Haptoglobin, 

BCKDHA, and BHMT showed significant differences between the TAA and PLP groups. 

Figure 4 Semiquantitative RT-PCR analyses of the effects of PLP on the gene 

expression changes of significantly altered proteins during TAA-induced liver fibrosis. 
The mRNA expression levels are presented as means ± SD (N = 6). *P < 0.05,**P < 0.01 vs. 

the TAA group 

Discussion 

The present study demonstrates that a natural product derived from P. linteus was able to 

protect against liver fibrosis induced in rats by chronic insult with TAA. The 

histopathological data clearly showed a reduction in collagen accumulation in the liver with 

PLP treatment. The present study thus supports the earlier findings that P. linteus possesses 

the capability to suppress liver injury [17,23] and exhibits strong and specific inhibitory 

activities to reduce peroxidation products and increase antioxidant enzymes in the liver 

[17,23]. 

By using a 2-DE gel proteomics approach, we identified 13 differentially expressed hepatic 

proteins in the TAA-induced liver fibrosis rats in response to PLP treatment. Of these, 10 

proteins showed increased expression and three proteins showed reduced expression, and the 

expression changes ranged from ±1.5-fold to ±2.5-fold (Figure 5). When these proteins are 

categorized according to their biochemical and physiological functions, we found 



associations with oxidative responses, molecular chaperones, heme and iron metabolism, 

cysteine metabolism, branched-chain amino acid metabolism, energy metabolism, and 

glutathione metabolites (Table 3). Among these 13 proteins, the regulation of hemopexin, 

preprohaptoglobin, GSTA4, BHMT, BCKDHA, QDPR, DHFR, and galectin-5 expression 

could be important in the protective effects of P. linteus against liver fibrosis. 

Figure 5 Effects of PLP on the expression changes of significantly altered proteins 

involved in TAA-induced liver fibrosis (PLP/TAA) 

Table 3 Major biofunctions of the identified proteins 

Protein name Subcellular location Major functions 

Anti-oxidant effects   

hemopexin Extracellular region The highest binding affinity for 

heme, iron metabolism 

preprohaptoglobin Extracellular region The highest binding affinity for 

hemoglobin 

glutathione S-transferase alpha-4 (GSTA4) Cytoplasm GSH-related detoxification 

betaine-homocysteine S-methyltransferase 1 

(BHMT1) 

Cytoplasm cysteine metabolism and GSH 

synthesis regulation 

Bckdha protein Mitochondrion matrix Branched-chain amino acids 

catabolism 

Liver amelioration   

dihydrofolate reductase (DHFR) Cytoplasm Synthesis of nucleic acid 

precursors 

quinoid dihydropteridine reductase (QDPR) Cytoplasm. Synaptosome Tetrahydrobiopterin recycle, 

amino acid metabolism 

glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) 

Cytoplasm. Nucleus. Glucose metabolism, initiation 

of apoptosis 

ribonuclease UK114 Mitochondrion. Cytoplasm. 

Nucleus. Peroxisome 

Translational inhibition 

galectin-5 Cytoplasm Cell surface of rat 

reticulocytes and erythrocytes 

Erythrocyte differentiation and 

reticulocyte maturation 

The proteomic data showed that the expression of preprohaptoglobin was 1.7-fold higher 

while that of hemopexin was 1.6-fold lower in the PLP group compared with the TAA group. 

The expression changes of these two proteins were validated by western blot analysis (Figure 

3). The increase in hemopexin and decrease in haptoglobin are potential markers for fibrosis 

because of their involvement in the regulation of liver iron homeostasis [24]. The aspect of 

whether the protective effect of PLP against the TAA-induced liver fibrosis occurred via the 

regulation of iron homeostasis cannot be concluded in the present study, because the liver and 

serum iron concentrations were not determined. In a previous study, chelation of ferrous ions 

by P. linteus was described, and PLP was able to protect hepatocytes against iron overload-

mediated oxidative stress [21]. Iron homeostasis regulation has been suggested as a potential 

PLP treatment target in liver fibrosis [25]. 

Glutathione (GSH) plays an important role in cellular detoxification, because it effectively 

scavenges free radicals and other reactive oxygen species. In GSH-related antioxidative 

detoxification, glutathione S-transferases (GSTs) play central role; GSTA4 plays a role in the 



cellular defense against oxidative stress and lipid oxidation during liver injury [26]. Dwivedi 

et al. [27] demonstrated that mGSTA4 null (−/−) mice showed much quicker and greater 

carbon tetrachloride-induced hepatotoxicity than wild-type (+/+) mice. In the present study, 

the expression of GSTA4 was 1.9-fold higher in the PLP group than in the TAA group, and 

the change was confirmed by western blot analysis. The upregulated expression of GSTA4 

might protect the liver against the injury and oxidative stress induced by TAA. However, the 

western blot analysis did not show a significant change in GSTmu between the PLP and TAA 

groups. These results could arise through non-specificity of the antibody for GSTmu or 

because GSTA4 was likely to be regulated by P. linteus. 

The expression of BHMT was 2-fold lower in the PLP group than in the TAA group, 

suggesting that homocysteine was inclined to be converted to cysteine in the transsulfuration 

reaction, generating more cysteine for GSH synthesis. P. linteus may promote the 

accumulation of substrates for GSH synthesis, cysteine and glutamate [28], by regulating the 

expression levels of BHMT and BCKDHA [29]. BHMT reduces the conversion of 

homocysteine to cysteine by catalyzing the remethylation of homocysteine back to 

methionine [30]. 

Branched-chain amino acid (BCAA) catabolism is an important intercellular source of 

glutamate [31]. The branched-chain α-keto acid dehydrogenase (BCKD) complex is the rate-

limiting enzyme for the whole BCAA catabolism. The Bckdha gene encodes the E1 α subunit 

of the BCKD [32]. The expression of BCKDHA was 1.5-fold higher in the PLP group than in 

the TAA group, suggesting that more glutamate was generated for GSH synthesis in the PLP 

group. 

Several proteins that showed higher expression in the PLP group are involved in amino acid 

metabolism and nucleic acid metabolism. These include BCKDHA (1.5-fold), QDPR (1.6-

fold), and DHFR (1.5-fold). In clinical treatment of liver diseases, supplementation with 

BCAAs is considered useful to relieve protein malnutrition [33,34]. QDPR is an enzyme that 

takes part in the tetrahydrobiopterin recycling pathway, and tetrahydrobiopterin is the 

precursor of phenylalanine and tyrosine [35]. The higher expression of QDPR in the PLP 

group suggests that PLP may expedite protein and nucleic acid synthesis in the fibrotic liver. 

DHFR is important for regulating the cellular amount of tetrahydrofolate, which is essential 

for purine and thymidylate synthesis [36,37]. The higher expression of DHFR in the PLP 

group indicates that PLP may aid in the regeneration of liver injury. The expression of 

ribonuclease UK114, a translational inhibitor mostly present in the liver and kidney, was 2.2-

fold lower in the PLP group, meeting the requirement for protein synthesis for liver 

regeneration. In a clinical study, downregulation of ribonuclease UK114 was observed in 

human hepatocellular carcinoma [38]. 

GAPDH catalyzes a step of glycolysis. The expression of GAPDH was 1.6-fold higher in the 

PLP group, suggesting a higher energy requirement for liver amelioration. Several studies 

have illustrated that GAPDH may work in non-metabolic processes, such as transcription 

regulation [39] and apoptosis initiation [40,41]. This may be another reason for the 

upregulation of GAPDH in the PLP group. 

Galectins comprise a family of evolutionarily conserved glycan-binding proteins that take 

part in acute and chronic inflammation [42,43]. Galectin-5 contributes to erythrocyte 

differentiation and reticulocyte maturation, but its function in liver injury remains unclear 



[44,45]. The much higher expression of galectin-5 in the PLP group suggests that PLP may 

promote erythropoiesis, inflammation regulation, and liver regeneration. 

Based on the proteomics data, we propose that the antioxidant pathway, iron metabolism 

pathway, and metabolic regulation of amino acids and nucleic acids are a few key networks 

involved in the hepatoprotective effect of PLP against TAA (Figure 6). Our western blot 

analyses further indicated that the PLP-mediated protection against TAA-induced hepatic 

injury involves the heat shock pathway. HSP70 has a crucial cytoprotective function 

mediated by its function as a molecular chaperone. A high level of HSP70 is a stress marker 

for liver injury [46,47]. The aspect of whether the reduced level of HSP70 represented a less 

inflammatory state of the TAA-treated liver with PLP treatment awaits confirmation by 

functional proteomics analyses in future studies. 

Figure 6 Proposed mechanistic pathways for the protective effect of PLP against TAA-

induced liver fibrosis in rats. Liver proteins with significant expression changes detected by 

the 2-DE proteomics analysis are used to construct the possible pathways. These include the 

antioxidant system, iron metabolism regulation pathways (haptoglobin, hemopexin), and 

amino acid and nucleic acid metabolic pathways (homocysteine, BHMT, GSTA4). Upward 

arrowheads indicate upregulation or increasing, and downward arrowheads indicate 

downregulation or decreasing. BCAAs: branched-chain amino acids; BCKAs: branched-

chain α-keto acids; BC acyl-CoA: branched-chain acyl-CoA 

Conclusion 

The present study has demonstrated that PLP can protect rats against TAA-induced liver 

fibrosis in at least two possible ways: 1) protection of the liver against oxidative stress, 

especially by scavenging of iron-related free radicals; and 2) regulation of the metabolism of 

amino acids and nucleic acids for liver amelioration. Our findings provide novel molecular 

mechanisms for the protective effects of P. linteus against liver fibrosis. 

Abbreviation 

PLP, Phellinus linteus polysaccharide; TAA, Thioacetamide; 2-DE, Two-dimensional 

polyacrylamide gel electrophoresis; MALDI-TOF/TOF MS, Matrix-assisted laser 

desorption/ionization-time-of-flight/time-of-flight mass spectrometry; RT-PCR, Reverse 

transcription polymerase chain reaction; GSTA4, Glutathione S-transferase alpha-4; 

BCKDHA, Branched chain keto acid dehydrogenase heterotetrameric E1 subunit alpha; 

GSTmu, Glutathione S-transferase mu; GAPDH, Glyceraldehyde-3-phosphate 

dehydrogenase; TFT, Thiosulfate sulfurtransferase; BHMT1, Betaine-homocysteine S-

methyltransferase 1; QDPR, Quinoid dihydropteridine reductase; DTT, Dithiothreitol; TCA, 

Trichloroacetic acid; CHAPS, 3-[(3-cholamidopropyl)dimethylammonio]-1-

propanesulfonate; SDS, Sodium dodecyl sulfate; PAGE, Polyacrylamide gel electrophoresis; 

MOWSE, Molecular weight search; DHFR, Dihydrofolate reductase; HSP70, Heat shock 

protein 70; GSH, Glutathione; GSTs, Glutathione S-transferases; BCAA, Branched-chain 
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