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Abstract

It has been hypothesised that, at non-limiting water oxygen conditions, voluntary feed intake (FI) in fish is limited by the maximal phys-

iological capacity of oxygen use (i.e. an ‘oxystatic control of FI in fish’). This implies that fish will adjust FI when fed diets differing in

oxygen demand, resulting in identical oxygen consumption. Therefore, FI, digestible energy (DE) intake, energy balance and oxygen con-

sumption were monitored at non-limiting water oxygen conditions in Nile tilapia fed diets with contrasting macronutrient composition.

Diets were formulated in a 2 £ 2 factorial design in order to create contrasts in oxygen demand: two ratios of digestible protein

(DP):DE (‘high’ v. ‘low’); and a contrast in the type of non-protein energy source (‘starch’ v. ‘fat’). Triplicate groups of tilapia were fed

each diet twice daily to satiation for 48 d. FI (g DM/kg0·8 per d) was significantly lower (9·5 %) in tilapia fed the starch diets relative to

the fat diets. The DP:DE ratio affected DE intakes (P,0·05), being 11 % lower with ‘high’ than with ‘low’ DP:DE ratio diets, which was

in line with the 11·9 % higher oxygen demand of these diets. Indeed, DE intakes of fish showed an inverse linear relationship with dietary

oxygen demand (DOD; R 2 0·81, P,0·001). As hypothesised (‘oxystatic’ theory), oxygen consumption of fish was identical among three out

of the four diets. Altogether, these results demonstrate the involvement of metabolic oxygen use and DOD in the control of FI in tilapia.

Key words: Feed intake: Oxygen consumption: Non-protein energy sources: Energy balance: Fish

Voluntary feed intake (FI) in fish, as in other animals, is con-

trolled by a complex combination of nutritional, physiological

and environmental factors(1). It has frequently been suggested

that FI is controlled to maintain a relatively constant digestible

energy (DE) intake, i.e. to meet the DE requirements(2–6).

However, a few studies in fish have suggested the involvement

of other nutritional factors in the control of FI(7,8). Studies that

verify the importance of other well-known regulatory mechan-

isms of FI in mammals, such as glucostatic(9) or lipostatic

control(10), either lead to an ambiguous conclusion or show

a lesser impact in fish(7,11) than in terrestrial animals. The

effect of non-protein energy (NPE) source (fat and starch)

on FI in fish is unclear(12) and has not been systematically

assessed at least at a similar digestible protein (DP):DE ratio

and DE content of diets.

Among the abiotic factors, dissolved oxygen (DO), pH and

NH3 are recognised to affect FI in fish(13). The effect of the

availability of oxygen on FI has been relatively well documen-

ted. Several studies have demonstrated that FI in fish

decreases linearly with declining water DO content(14–17).

The minimum DO level at which metabolic oxygen demand

in fish limits FI is termed as incipient DO (iDO). Thus,

*Corresponding author: J. W. Schrama, fax þ31 317 483937, email johan.schrama@wur.nl

Abbreviations: ADC, apparent digestibility coefficient; BUN, branchial and urinary nitrogen; DE, digestible energy; DF, digestible fat intake; DN, digestible

nitrogen intake; DO, dissolved oxygen; DOD, dietary oxygen demand; DP, digestible protein; FF, faecal fat loss; FGR, feed:gain ratio; FI, feed intake; FIABS,

absolute feed intake; FIMBW, metabolic body weight feed intake; FN, faecal nitrogen loss; GE, gross energy intake; GF, gross fat intake; GN, gross nitrogen

intake; HP, high digestible protein:digestible energy ratio; HPF, high digestible protein:digestible energy ratio diet with fat as non-protein energy source;

HPS, high digestible protein:digestible energy ratio diet with starch as non-protein energy source; iDO, incipient dissolved oxygen; LP, low digestible

protein:digestible energy ratio; LPF, low digestible protein:digestible energy ratio diet with fat as non-protein energy source; LPS, low digestible

protein:digestible energy ratio diet with starch as non-protein energy source; ME, metabolisable energy intake; NPE, non-protein energy; RE, retained

energy; REp, retained energy as protein; RF, retained fat; RN, retained nitrogen.
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below the iDO, FI depends on the DO concentration of water,

whereas above the iDO, FI is independent of water DO con-

centration. Recent studies in Nile tilapia(8) and rainbow trout

(S. Saravanan et al., unpublished results) under non-limiting

DO showed differences in DE intake, when fish were fed to

satiation with diets differing in NPE source (starch v. fat). In

addition, total heat production (considered theoretically as

oxygen consumption) was found to be similar despite their

difference in DE intake and retained energy (RE). These

data suggest that the difference in FI between the dietary

groups might be caused by limitations in maximum oxygen

uptake or by metabolic oxygen demand as induced by nutri-

ent processing. Since the amount of oxygen required to

metabolise dietary macronutrients depends on whether they

are used for growth (protein, fat or glycogen) or the pro-

duction of ATP(18,19), feeding diets with different macronutri-

ent compositions results in different levels of metabolic or

dietary oxygen demand (DOD), being defined here as the

amount of oxygen (in mg) consumed per unit of DE (kJ DE)

intake. In terrestrial vertebrates, evidence on the role of

oxygen as a regulatory factor in the control of FI has been

studied at various levels such as oxygen efficiency of the

whole animal(20,21) or oxidative metabolism in the liver(22) or

hypothalamus(23), whereas the link between oxygen use and

voluntary FI has not been considered in fish nutrition.

It has been postulated that, at non-limiting water DO con-

ditions, FI in fish may be limited by the maximal physiological

capacity of oxygen use (for growth and maintenance). In

order to verify this hypothesis, voluntary FI and oxygen con-

sumption were monitored in Nile tilapia fed diets with con-

trasting macronutrient composition at non-limiting water DO

conditions. The objective of the present study is to verify the

existence of an ‘oxystatic control of FI in fish’, i.e. intakes of

diets with different oxygen demands are controlled by a

physiological limit in metabolic oxygen use. If the hypothesis

holds true, then fish will adjust intakes according to differ-

ences in DOD.

Experimental methods

All procedures involving animals were carried out in accord-

ance with the Dutch law on experimental animals and were

approved by the Wageningen University Animal Experimental

Committee.

Diets

For the experiment, four iso-energetic diets were formulated

according to a 2 £ 2 factorial design to create contrasts in

DOD between diets (Table 1). The first factor was the

DP:DE ratio, which was changed by modifying the dietary

protein levels, ‘low DP:DE ratio’ (LP diets) v. ‘high DP:DE

ratio’ (HP diets). It is assumed that fish fed diets with the

low DP:DE ratio will have minimal use of protein as energy

source, whereas at the high DP:DE ratio, a substantial

amount of protein will be used as energy source(24). Thus,

the contrast in the DP:DE ratio between diets will cause a

difference in the protein:fat deposition ratio in fish(5), and

thereby generate a difference in DOD. The different DP:DE

ratios (HP diets, 25 mg/kJ; LP diets, 14 mg/kJ) were created

by exchanging an equal proportion (30 %) of protein ingredi-

ent mixture (fishmeal, wheat gluten, soya protein concentrate,

pea protein concentrate and DL-methionine) by an equivalent

amount of energy ingredient mixture (rapeseed oil, fish oil

and gelatinised maize starch).

The second factor was the type of NPE source: ‘starch’ v.

‘fat’. The oxygen demand of dietary starch and fat depends

on whether it is used for ATP production through oxidation

or deposited as an energy store (fat) in the body. The

amount of oxygen required to deposit fat from dietary fat is

lower than that required for lipogenesis from starch(25,26).

Therefore, diets were formulated to contain either starch

(diets HPS and LPS) or fat (diets HPF and LPF) as the major

NPE source at both dietary DP:DE ratios. For the fat diets,

10 % of rapeseed oil was added as the NPE source, whereas

for the starch diets, it was exchanged by 25 % of gelatinised

maize starch, assuming a similar DE content of 10 % rapeseed

oil to that of 25 % gelatinised maize starch. Furthermore, in

order to have identical nutrient and energy density between

these diets, 15 % of cellulose was included in the fat diets.

The final ingredient compositions of the diets are shown in

Table 1. Diets were produced by Research Diet Services.

The ingredient mixture of each diet, excluding the major

part of the oils, were mixed and hammer-milled (Condux

LHM20/16; Hanau) through a 1 mm screen. The diets were

processed by extrusion using a Clextral BC45 laboratory-

scale twin-screw extruder (Clextral) with a 3 mm die, resulting

in a pellet size of about 3 mm. In the HPS and LPS diets, all oils

were added to the mixture before extrusion. In the HPF diet,

6 % of the oils and in the LPF diet, 9·1 % of the oils were added

to the mixture before extrusion. Following extrusion, pellets

were dried in a tray dryer at 708C for 3 h and cooled to ambi-

ent temperature. Finally, the HPF and LPF diets were coated

with the remaining part of the oils (5 and 10 %, respectively)

and stored at 48C.

Fish stock and pre-experimental rearing conditions

A stock of 300 juvenile (mean body weight 5 g) male Nile tila-

pia (NMT Manzala Silver strain) was obtained from a commer-

cial fish breeder (Til Aqua International) and reared at the

experimental facilities (‘De Haar Vissen’) of the Wageningen

University, The Netherlands. Fish were housed in six tanks

(120 litres) at a stocking density of fifty fish per tank. These

tanks were connected to a common water recirculation unit

comprising a trickling filter, a settling tank and a pump.

Initially, fish were fed with a commercial starter feed

(1·0 mm, 57 % crude protein, 15 % crude fat, Skretting, F-10;

MP Pro Aqua Brut) for about 6 weeks and thereafter with

larger feed pellets (2·5 mm, 47 % crude protein, 14 % crude

fat, Skretting, F-1P Classic) until fish reached a body weight

of 40 g. During this pre-experimental period (10 weeks), fish

were hand-fed twice daily with a ration of about 10 g/kg0·8

per d. Fish were kept at optimal rearing conditions

(water flow rate in tank, 6 litres/min; temperature, 288C;

DO,.5 mg/l; photoperiod, 12 h light–12 h dark).

S. Saravanan et al.1520
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Housing facility

The 48-d feeding trial was carried out in the Aquatic Metabolic

Unit of Aquaculture and Fisheries group, Wageningen Univer-

sity, The Netherlands. This metabolic unit consists of twelve

metabolic tanks (90 £ 60 £ 45 cm) in a series connected to a

common water recirculation system consisting of a trickling

filter, an oxygenation unit, a sump, a drum filter (Hydrotech

500w) and a cooling/heating system for maintaining uniform

water quality throughout the study. Water was supplied to

all tanks from a common inlet, thus ensuring identical water

quality and drained through individual tank outlets into the

system. The oxygenation unit maintained the concentration

of DO in water by injecting pure oxygen into the common

inlet, which was regulated by a mass flow controller

(Brooksw Model 5850S; Brooks Instruments) and a micropro-

cessor (Brooksw Read Out and Control Electronics Model

0154; Brooks Instruments). Each metabolic tank was equipped

with a water flow meter (MAGFLOWw MAG 5000; Danfoss

A/S) to regulate and monitor water flow. The volume of

water within the tanks was kept identical (200 litres) by adjust-

ing the standpipe. The water surface of each tank was covered

with a water-resistant floating panel to prevent gas exchange

between water and air. Within the floating panel, a circular

feeding hatch (18·5 cm in diameter) with a removable floating

lid was used to feed the fish. The inlet and outlet of each

metabolic tank were linked to two separate sampling pipe-

lines. One sampling pipe led to an auto-analyser (SANplus-

SYSTEM; Skalar) to continuously measure nitrite, nitrate,

Table 1. Formulation, ingredient composition and analysed nutrient content of the experimen-
tal diets

Diets

HPF HPS LPF LPS

Ingredients (%)
Rapeseed oil 11·0 1·0 14·1 4·1
Gelatinised maize starch* 5·0 30·0 24·29 49·29
Cellulose 15·0 – 15·0 –
Fishmeal† 33·0 33·0 18·0 18·0
Wheat gluten 10·89 10·89 5·94 5·94
Soya protein concentrate 10·89 10·89 5·94 5·94
Pea protein concentrate 10·89 10·89 5·94 5·94
Fish oil‡ – – 5·0 5·0
Calcium carbonate – – 0·36 0·36
Monocalcium phosphate – – 1·8 1·8
Sodium carbonate – – 0·45 0·45
DL-Met 0·33 0·33 0·18 0·18
Diamol§ 2·0 2·0 2·0 2·0
Vitamin–mineral premix{ 1·0 1·0 1·0 1·0

Analysed nutrient content (g/kg DM)
DM (g/kg) 963 931 946 925
Crude protein (N £ 6·25) 534 541 295 299
Crude fat 170 70 232 132
Starch 38 294 234 476
Total carbohydratesk 221 312 399 495
Ash 74 77 73 73
Gross energy (kJ/g)** 23·1 (20·48) 20·8 23·1 (20·51) 20·8

Digestible nutrient content (g/kg DM)
Protein (N £ 6·25) 502 514 279 281
Fat 159 68 209 126
Total carbohydrates 27 270 219 460
DE (kJ/g) 18·6 19·5 18·6 19·5
DP:DE (mg/kJ) 27·0 26·4 15·0 14·4

HPF, high digestible protein (DP):digestible energy (DE) ratio diet with fat as non-protein energy (NPE)
source; HPS, high DP:DE ratio diet with starch as NPE source; LPF, low DP:DE ratio diet with fat as NPE
source; LPS, low DP:DE ratio diet with starch as NPE source.

* Gelatinised maize starch (Merigelw100; Amylum Group).
† Fishmeal (999 LT Fish Meal – crude protein 72 %; Triple Nine Fish protein).
‡ Fish oil (999 Fish Oil; Triple Nine Fish protein).
§ Diamol (acid-insoluble ash, as inert marker for digestibility measurement) – Diamol GM; Franz Bertram.
{Mineral premix composition (to supply, mg/kg feed): 50, Fe (as FeSO4.7H2O); 30, Zn (as ZnSO4.7H2O);

0·1, Co (as CoSO4.7H2O); 10, Cu (as CuSO4.5H2O); 0·5, Se (as Na2SeO3); 20, Mn (as MnSO4.4H2O);
500, Mg (as MgSO4.7H2O); 1, chromium (as CrCl3.6H2O); 2, I (as CaIO3.6H2O). Vitamin premix compo-
sition (to supply, mg/kg feed): 10, thiamin; 10, riboflavin; 20, niacin; 40, pantothenic acid; 10, pyridoxine;
0·2, biotin; 2, folic acid; 0·015, cyanocobalamin; 1500, choline (as choline chloride); 100, ascorbyl phos-
phate; 3, retinyl acetate, 4·8, cholecalciferol (Rovimixw D3-500; DSM, Inc.); 100 I, a-tocopheryl acetate;
10, menadione (as menadione sodium bisulfite, 51 %); 400, inositol; 100, antioxidant BHT (E 321); 1000,
calcium propionate.

kCalculated as follows: total carbohydrates (starch, free sugars and NSP) ¼ 1000 2 (crude protein þ crude
fat þ ash).

** Gross energy value measured including energy from added cellulose; values within parentheses represent
energy value calculated excluding energy from added cellulose (15 %).

Dietary oxygen demand and feed intake of fish 1521
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total-NH3-N, urea and CO2. The other sampling pipe led to a

common measuring hub to continuously measure DO

(WTW-Trioximaticw 700 IQ; WTW GmbH), pH (WTW-SensoLyt

DWw (SEA) 700 IQ; WTW GmbH) and conductivity (WTW

TetraCon325w 700 IQ; WTW GmbH) of water. The oxygen

measurements from each metabolic tank were regulated by

an electromagnetic valve (ASCO model 24/50 6 WFT; ASCO/

Joucomatic), which controlled the water flow from the inlet

and outlet of each tank to the common measuring hub.

These electromagnetic valves were controlled by an algorith-

mic program via a user interface (HTBasic, version 9.5; Trans-

Era Corporation), and the measured values of DO, water flow,

pH and conductivity were automatically recorded in a per-

sonal computer.

In addition, the outlet of each tank was connected to a swirl

separator (44 cm in height, 24·5 cm in diameter; AquaOptima

AS) to collect faeces for the determination of nutrient digest-

ibility. The faeces were collected in a detachable 250 ml

bottle at the bottom of the swirl separator. To minimise the

bacterial decomposition of faeces, the bottle was kept under

ice. During feeding, another set of bottles were used in the

swirl separator to collect the uneaten feed pellets flushed

out from the tanks.

Experimental procedure

At the start of the experiment, 240 fish (mean body weight

40 g) from the stocking tanks (unfed for about 36 h) were

taken out, anaesthetised (0·2 g tricaine methane sulfonate/l

(MS-222, Finquelw; Argent Chemical Laboratories) with 0·4 g

sodium bicarbonate/l as buffer), weighed individually and

randomly distributed among the twelve metabolic tanks

(twenty fish per tank). The respective diets were assigned ran-

domly to triplicate tanks. Then, twenty fish were killed with an

excess dose of anaesthesia (0·8 g tricaine methane sulfonate/l

with 1·6 g sodium bicarbonate/l as buffer) for initial body

composition, kept in plastic bags, sealed and stored at

2208C until further analysis.

During the experimental period (48 d), fish were hand-fed

with their respective diets twice daily to apparent satiation

for an hour (09.00–10.00 and 16.00–17.00 hours). At the end

of each feeding session, the uneaten pellets were collected

and counted to determine FI accurately. Feed fed and uneaten

feed were recorded for each feeding. From the second week

of the trial, 30 min before each feeding, faeces were collected

from the swirl separator and transferred to aluminium trays

and stored at 2208C until further analysis. A representative

sample (50 g) of each diet was collected twice weekly and

stored at 48C.

Fish were kept under optimal water quality parameters

during the entire study period with photoperiod (12 h light–

12 h dark), temperature (27·7 ^ 0·298C), pH (6·8 (SD 0·11)),

DO at tank inlet (8·8 (SD 0·75) mg/l) and outlet (5·6 (SD

0·58) mg/l), conductivity (2821 (SD 99)mS/cm), nitrite (0·02

(SD 0·01) mg N/l), nitrate (85 (SD 0·5) mg N/l) and total-NH3-

N (0·12 (SD 0·06) mg N/l). After 20 d from the start of the

experiment, as the DO level in tank outlets dropped below

5 mg/l, especially during postprandial hours, pure oxygen

was injected into the common inlet until the end of the exper-

iment, in order to ensure sufficient DO availability to the fish.

The volume of water and water flow were kept constant at

200 litres and 7 litres/min, respectively, in all tanks. Thus, the

rate of replenishment (volume of water/water flow) of the

entire tank water is achieved in about 30 min. The water

was sampled for a duration of 5 min from the common inlet

and outlet of each tank and flushed over the oxygen electrode

for measuring oxygen concentration. Thus, within an hour,

oxygen was measured twice in the common inlet and outlet

of four tanks. Oxygen measurements were performed in a

continuous cycle of 2 d (48 h; from 08.00 to 08.00 hours) in a

set of four tanks consisting of all dietary treatments. Conse-

quently, in 6 d, oxygen measurement was undertaken in all

twelve tanks. This procedure was repeated until the end of

the experiment resulting in five cycles of 48 h oxygen

measurements for each tank. The oxygen electrode was cali-

brated once every week.

At the end of the experiment, fish were starved for about

36 h before handling. Fish from each tank were anaesthetised

and weighed individually for the final body weight. From each

tank, eight fish were randomly sampled for the analysis of the

final body composition and handled in a similar way as the

initial body composition samples.

Analytical procedure

Frozen fish samples were homogenised twice through a

4·5 mm die in a meat mincer (Gastromaschinen, GmbH

model TW-R 70; Feuma) and subsamples were taken immedi-

ately for DM and protein analysis. The rest of the homogen-

ised fish samples and faeces (pooled per tank) were then

freeze-dried and finely ground using a blender. Before fat

analysis, feed and faecal samples were hydrolysed by boiling

for 1 h with 3 M-HCl. The proximate composition of feed, fish

carcass and faeces was analysed in triplicate for DM, protein

(Kjeldahl method), fat (Soxhlet method), ash, acid-insoluble

ash, energy (bomb calorimeter) as described elsewhere(27).

Starch content was determined as glucose, using the amylo-

glucosidase/hexokinase/glucose-6-phosphate dehydrogenase

method after ethanol (40 %) extraction and starch decompo-

sition in dimethylsulfoxide/HCl(28).

Calculations

Weight-gain rate of fish (g/d) was calculated as the difference

between the average individual final (Wf) and initial (Wi) body

weight of fish per tank divided by the duration of the exper-

imental period (t). The geometric mean body weight (WG;

in g) was calculated as
p

(Wi £ Wf). Growth rate of metabolic

body weight (in g/kg0·8 per d) was calculated as (Wf 2 Wi)/

(MBWG £ t), where MBWG is the mean metabolic body

weight of fish (in kg0·8), which was calculated as (WG/

1000)0·8 and t, the duration (days) of the growth study. The

lean body growth of fish (in g/d) was calculated as the differ-

ence between (Wf 2 Wf2fat) and (Wi 2 Wi2fat) divided by (t),

where Wf2fat and Wi-fat are the crude fat content of the final

and initial fish carcass, respectively, expressed on a fresh

S. Saravanan et al.1522
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weight basis. Daily growth coefficient (in %/d) was calculated

as 100 £ (Wf
1/3 2 Wi

1/3)/t.

Daily absolute FI (FIABS; g DM/fish per d) was calculated on

a DM basis as FItot/(n £ t), where FItot is the total FI per tank

(in g DM) over the experimental period corrected for dead fish

and uneaten pellets, n is the number of fish per tank, and t is

the experimental period. FI as-fed (g/fish per d) was calcu-

lated in a similar way as FIABS but on an as-fed basis. FI of

fish expressed as a percentage of body weight (g DM/100 g

fish per d) was calculated as (FIABS/WG) £ 100 and FI per

metabolic body weight (FIMBW; g DM/kg0·8 per d) was calcu-

lated as FIABS/MBWG. The feed:gain ratio (FGR; DM intake/

wet-weight gain) was calculated as FIMBW/MBWG.

Apparent digestibility coefficient (ADC; in %) of DM, pro-

tein, fat, total carbohydrate, gross energy and ash was calcu-

lated for each tank according to Tran-Duy et al.(8), using

acid-insoluble ash as an inert marker. Digestible nutrient

intake (g or kJ/kg0·8 per d) was calculated as FIMBW £

FeedZ £ (ADCZ/100), where FeedZ is the nutrient content in

feed on a DM basis (in g), ADCZ is the apparent digestibility

of nutrients (in %) and Z represents DM, protein, fat, total

carbohydrate, energy and ash.

The parameters of N balance, fat balance and energy bal-

ance were calculated per tank and expressed in mg N/kg0·7

per d, mg/kg0·9 per d and kJ/kg0·8 per d, respectively. The

gross N intake (GN) was calculated as the product of total FI

(g DM/kg0·7 per d) and N content of feed (mg/g). The diges-

tible N intake (DN) was calculated as the product of GN and

ADC of N (%). Faecal N loss (FN) was calculated as the differ-

ence between GN and DN. The retained N (RN) was calcu-

lated as the difference between the N content of the final

and initial fish carcass. Branchial and urinary N loss (BUN)

was calculated as the difference between DN and RN. Par-

ameters of the fat balance were calculated as follows: gross

fat intake (GF) was calculated as the product of total FI (g

DM/kg0·9 per d) and the fat content of feed (mg/g). The diges-

tible fat intake (DF) was calculated as the product of GF and

ADC of fat (%). Faecal fat loss (FF) was calculated as the differ-

ence between GF and DF. The retained fat (RF) was calculated

as the difference between the fat content of the final and initial

fish carcass. Parameters of the energy balance were calculated

as follows: gross energy intake (GE) as the product of FI

(g DM/kg0·8 per d) and the energy content of the diet; DE

intake as the product of GE and ADC of energy; branchial

and urinary energy loss as the product of NH3-N and urea-N

with their corresponding energy value of 24·9 and 22·5 kJ/g

N(29). NH3-N and urea-N were calculated from BUN based

on the measured averaged ratio NH3-N:urea-N excretion of

9:1 over the diets (S. Saravanan et al., unpublished results).

Metabolisable energy intake (ME) as the difference between

DE and branchial and urinary energy loss; RE as the difference

between the energy content of the final and initial fish carcass;

and heat production as the difference between ME and RE; RE

as protein (REp) as the product of retained protein (RN £ 6·25)

and 23·7, where 23·7 is the energy content of 1 g protein(30);

RE as fat as the difference between RE and REp, assuming

total RE only in the form of fat and protein.

The oxygen consumption of the fish was calculated per tank

and expressed as mg O2/kg0·8 per min, adopting the formula

used for calculating NH3 excretion in fish(31): OXt ¼ ((VL £

DC) þ (Ct £ DW))/(t £ Wmean), where OXt is the VO2 of fish

per unit time (mg O2/kg0·8 per min), VL is the volume of

water in the metabolic tank (in litres), DC is the variation in

O2 concentration in the outlet between two consecutive

measurements (Ci 2 Ci2t), Ct is the mean O2 concentration

of the inlet minus the outlet between two consecutive intervals

(Ci 2 Ci2t/2), DW is the water flow per unit time (litres/min),

t is the unit of increment in time (min) between two consecu-

tive oxygen measurements, and Wmean is the average

predicted metabolic body weight of fish (kg0·8) during the

measurement days. Wmean was calculated as (Wp/1000)0·8,

where Wp is the predicted daily body weight of individual

fish, estimated as Wi
(1 –48) þ DFIi

(1–48)/FGRtank, where

DFIi
(1–48) is the daily FI per fish per tank (in g/fish), Wi is

the average initial body weight of fish, i is the ith day of the

experiment, and FGRtank is the feed:gain ratio of each tank

calculated for the entire experimental period.

DOD (mg O2/kJ or mg O2/g) for each diet was calculated by

dividing mean daily oxygen consumption (mg O2/kg0·8 per d)

of fish in each tank by their respective DE (kJ/kg0·8 per d) or

daily dry FI (g DM/kg0·8 per d). Similarly, efficiency of oxygen

utilisation for energy retention (i.e. oxygen efficiency; kJ RE/

mg O2 consumed) was calculated by dividing RE (kJ/kg0·8

per d) of fish within each tank by their respective mean

daily oxygen consumption (mg O2/kg0·8 per d).

Statistical procedures

Statistical analyses were performed using SAS 9.1 (SAS Insti-

tute). The homogeneity of variances among the groups was

checked by Levene’s F test (PROC ANOVA). All variables

met the assumption of equal variances (P.0·05). The par-

ameters related to FI, oxygen consumption, growth and nutri-

ent utilisation were subjected to a two-way ANOVA in order to

test the effect of DP:DE ratio, type of NPE and their interaction

(PROC GLM). Normal distribution of the residuals was verified

using the Kolmogorov–Smirnov test (PROC UNIVARIATE).

The total digestible carbohydrate intake and RF overruled

the assumption of normal distribution (P,0·05) and logarith-

mic data transformation satisfied the assumptions. When

the interaction between DP:DE and NPE was significant

(P,0·05), comparison of means was performed using the

Tukey–Kramer test. A linear regression (PROC REG) analysed

the relationship between DOD or oxygen efficiency and DE

intake of each treatment unit.

Results

Growth

The survival of the fish during the experimental period was

above 98 % and did not differ among the dietary treatments

(P.0·05). Data on growth and feed utilisation of the fish

over the entire study period are reported in Table 2. The

mean initial body weight was not different among the dietary

groups (P.0·05). The mean final body weights were higher
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for fish fed with fat as NPE (P,0·02), as was the growth rate

expressed per unit metabolic body weight, being 9·3 % higher

in fish fed the fat diets relative to the starch diets. A similar

trend was observed for the overall growth rate (daily growth

coefficient) or lean body growth. While growth parameters

were not affected by the DP:DE ratio of the diet (P.0·05),

the FGR was significantly improved in fish fed the high

DP:DE ratio diets (P,0·01). Similarly, the protein efficiency

ratio was affected by the dietary DP:DE ratio (P,0·001) with

higher efficiency in the LP diets than in the HP diets. There

were no interaction effects between the DP:DE ratio and

NPE on any of the growth parameters.

Feed intake and digestible nutrient intake

FI and digestible nutrient intake of Nile tilapia are shown in

Table 3. FI (expressed as-fed, ABS, percentage and MBW of

fish) was affected by the type of NPE source (P,0·03) and

to a lesser extent by the DP:DE ratio (P¼0·07), which disap-

peared when FI was expressed on a DM basis. Although not

significantly different, fish fed the LP diets had approximately

6 % higher FI than the HP diets. On the other hand, tilapia fed

diets containing starch as the main NPE had a significantly

reduced FI (9·5 %) compared with those fed the fat diets.

Digestible DM, protein, fat and total carbohydrate (without

cellulose) intakes were affected by both DP:DE ratio and

NPE of the diets (P,0·02). As expected by the experimental

design, DP intake was 41 % lower with the LP diets than

with the HP diets. Digestible fat and carbohydrate intakes

were also affected by both DP:DE ratio and NPE of the diets

(P,0·001). In contrast to digestible macronutrient intakes,

DE intake was not affected by the source of NPE (P.0·05),

but was affected by the dietary DP:DE ratio, being higher at

Table 2. Growth performance of Nile tilapia fed the experimental diets for 48 d (n 3)

(Mean values with their standard errors)

Diets P

HPF HPS LPF LPS SEM DP:DE ratio NPE DP:DE£ NPE

Growth period (d) 48 48 48 48 – – – –
Tanks (n) 3 3 3 3 – – – –
Fish per tank (n) 20 20 20 20 – – – –
Initial body weight (g) 40·6 40·1 40·6 41·0 0·50 0·386 0·945 0·397
Final body weight (g) 240·8 213·7 249·8 221·0 8·41 0·360 0·010 0·927
Growth

Weight-gain rate (g/d) 4·2 3·6 4·4 3·8 0·18 0·392 0·011 0·887
GRMBW (g/kg0·8 per d) 26·6 24·3 27·3 24·6 0·80 0·503 0·014 0·801
Lean growth (g/d) 3·6 3·2 3·5 3·1 0·14 0·635 0·016 0·909
DGC (%/d) 5·8 5·3 6·0 5·4 0·16 0·471 0·013 0·848
FGR 0·88 0·89 0·92 0·93 0·010 0·003 0·432 0·995
PER* (%) 2·12 2·08 3·69 3·60 0·032 ,0·001 0·088 0·554

HPF, high digestible protein (DP):digestible energy (DE) ratio diet with fat as non-protein energy (NPE) source; HPS, high DP:DE ratio diet with starch
as NPE source; LPF, low DP:DE ratio diet with fat as NPE source; LPS, low DP:DE ratio diet with starch as NPE source; GRMBW, growth expressed
in metabolic body weight; DGC, daily growth coefficient; FGR, feed:gain ratio; PER, protein efficiency ratio.

* PER ¼ wet weight gain:protein intake.

Table 3. Feed intake (FI), digestible nutrient intake (on DM basis, except DM) of Nile tilapia and dietary oxygen demand (DOD) of the experimental
diets (n 3)

(Mean values with their standard errors)

Diets P

HPF HPS LPF LPS SEM DP:DE ratio NPE DP:DE£ NPE

FI
FI as-fed (g/fish per d) 3·8 3·4 4·2 3·8 0·17 0·064 0·038 0·745
FIABS (g DM/fish per d) 3·7 3·2 4·0 3·5 0·16 0·100 0·015 0·839
FIPCT (g DM/100 g fish per d) 3·7 3·5 4·0 3·7 0·11 0·069 0·028 0·727
FIMBW (g DM/kg0·8 per d) 23·4 21·5 25·1 22·8 0·74 0·074 0·023 0·759

Digestible nutrient intake (g or kJ/kg0·8 per d)
DM 16·8 19·0 18·5 20·5 0·48 0·010 0·002 0·787
Protein 11·7 11·1 7·0 6·4 0·21 ,0·001 0·018 0·912
Fat 3·7 1·5 5·2 2·9 0·13 ,0·001 ,0·001 0·684
Total carbohydrate 0·6 5·8 5·5 10·5 0·16 ,0·001 ,0·001 0·551
Ash 0·67 0·69 0·75 0·76 0·015 0·001 0·319 0·754
Energy 435 420 468 446 11·8 0·035 0·156 0·775

DOD
mg O2/g DM intake 366 399 311 365 8·3 ,0·001 ,0·001 0·265
mg O2/kJ DE intake 19·7 20·5 16·7 18·7 0·37 ,0·001 0·005 0·163

HPF, high digestible protein (DP):digestible energy (DE) ratio diet with fat as non-protein energy (NPE) source; HPS, high DP:DE ratio diet with starch as NPE source; LPF,
low DP:DE ratio diet with fat as NPE source; LPS, low DP:DE ratio diet with starch as NPE source; FIABS, absolute FI; FIPCT, FI expressed in percentage body weight of
fish; FIMBW, FI expressed in metabolic body weight.
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the low DP:DE ratio than at the high DP:DE ratio (P,0·05).

There was no interaction between the effect of DP:DE ratio

and NPE on any of the observed FI and digestible nutrient

intake variables (P.0·05).

Oxygen consumption

The oxygen consumption (mg O2/kg0·8 per min) of Nile tilapia

(Fig. 1), affected by both DP:DE ratio and NPE of the diet

(P,0·01), showed a significant interaction between the two

effects (P¼0·01). The multiple means comparison (Tukey’s

test) showed that except for the LPF (5·4 (SD 0·14)) diet group,

oxygen consumption was similar in the other three diet

groups (HPF, 5·9 (SD 0·05); HPS, 6·0 (SD 0·04); LPS, 5·8 (SD 0·04)).

Dietary oxygen demand

The DOD of the diets expressed both on DM and DE intake

(Table 3) was influenced by the DP:DE ratio and the NPE of

the diet (P,0·01). The HP diets induced an 11 % higher

oxygen demand than the LP diets. Similarly, the starch diets

led to an 11 and 7 % higher oxygen demand per unit DM

and DE intake, respectively, compared with the fat diets. No

interaction effect was observed for DOD. Intriguingly, DE

intake showed a significant inverse linear relationship

(R 2 0·81) with DOD of the diets (Fig. 2). Fish fed the LPF

diet with the lowest DOD had highest DE intakes, followed

by the LPS, HPF and HPS groups.

Body composition

The initial and final whole-body compositions of tilapia are

presented in Table 4. The dietary DP:DE ratio had a significant

effect on the final body composition of tilapia. A similar effect

was observed for the dietary NPE source, except for DM and

gross energy content where no effect was found (P.0·05).

The fat content of fish fed the LP diets was 37 % higher than

fish fed the HP diets. Consequently, LP-fed fish had about

19 % higher energy deposit per unit body weight compared

with HP-fed fish. There was no interaction effect between

the DP:DE ratio and NPE on the final body composition,

except for the protein content (P,0·05).

Nitrogen, fat and energy balance

N, fat and energy balances are shown in Table 5. All par-

ameters of the N balance (GN, FN, DN, BUN and RN) were

affected by the DP:DE ratio of the diets (P,0·02) and,

except for RN (P¼0·063), also by NPE (P,0·02). GN and

DN intake was about 41 % lower with the LP diets compared

with the HP diets. The HP diets resulted in higher FN

(33·5 %) and BUN (59 %) than the LP diets. RN represented

37 and 58 % in terms of DN intake in the HP and LP diets,

respectively. GN, DN and RN were 7·1, 6·7 and 6·2 % higher,

respectively, in fish fed the fat diets compared with the

starch diets. No interaction effect between NPE and the

DP:DE ratio was observed except for FN (P,0·05).

Variables of the fat balance (GF, FF, DF and RF) were

affected by the DP:DE ratio and the NPE of the diet

(P,0·01) without interaction, except for FF. RF was signifi-

cantly (P,0·05) different between the HP and LP groups,

being about 30 % higher in the LP diet group compared with

the HP diet group. The RF/DF (i.e. fat efficiency) was found

to be above 1 for the starch diet groups (2·0, HPS; 1·5, LPS)

and close to 1 for the fat diet groups.

The DP:DE ratio of the diet had no effect on GE, FE and

heat production (P.0·05), but affected DE and ME intakes

being about 11 % higher in fish fed the LP diets relative to

the HP diets. On the other hand, the source of NPE did not

affect DE and ME intakes, but showed a lesser effect on

REp (P¼0·063). Although ME intakes of fish fed the starch

and fat diets were found to be similar, the higher RE with

the fat diets resulted in a 10 % lower heat production than

with the starch diets. There was no interaction between the

DP:DE ratio and the NPE of the diet on any of the energy bal-

ance parameters (P.0·05).
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Fig. 1. Effect of the diets on oxygen consumption (mg O2/kg0·8 per min) of

Nile tilapia. Values are means (n 3), with standard deviations represented by

vertical bars. a,b Mean values with unlike letters were significantly different

(P,0·05). HPF, high digestible protein (DP):digestible energy (DE) ratio diet

with fat as non-protein energy (NPE) source; HPS, high DP:DE ratio diet with

starch as NPE source; LPF, low DP:DE ratio diet with fat as NPE source;

LPS, low DP:DE ratio diet with starch as NPE source.
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Fig. 2. Relationship between dietary oxygen demand (DOD) and digestible

energy (DE) intake of Nile tilapia fed diets differing in digestible protein

(DP):DE ratio and non-protein energy (NPE) source. For every unit increase

in DOD, DE intake of Nile tilapia would decrease by 14·4 kJ (n 12; P,0·001).

y ¼ 713 2 14·4x; R 2 0·81. HPF (W), high DP:DE ratio diet with fat as NPE

source; HPS (X), high DP:DE ratio diet with starch as NPE source; LPF (D),

low DP:DE ratio diet with fat as NPE source; LPS (O), low DP:DE ratio diet

with starch as NPE source.
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Discussion

Indispensable criteria

The following two main criteria need to be fulfilled to investi-

gate the possible role of DOD on FI regulation: (1) the

availability of DO from water should not be limiting for the

fish and (2) the experimental diets should generate differences

in oxygen demand in the species concerned.

It is well documented in many fish species that a reduction

in the concentration of water oxygen lowers FI(14–17). The

mean iDO concentration inside the tank for Nile tilapia has

recently been reported to be 2·6 and 5·0 mg/l for small

(60–100 g) and big (200–270 g) fish, respectively(32), below

which FI decreases. Cho(33), however, underlined the import-

ance of considering the rate of replenishment of oxygen per

unit time (mg/l per s) rather than the mean oxygen concen-

tration inside the tank. In the present study, oxygen was

kept at an average of 8·8 mg/l in the inlet water and 5·6 mg/l

in the outlet water, indicating a DO concentration higher

than 5·6 mg/l inside the tank. This concentration, together

with the 30 min total replenishments, ensured sufficient

oxygen availability for the fish (40–250 g) throughout the

experiment.

Table 4. Effect of the digestible protein (DP):digestible energy (DE) ratio of the diet and the non-protein energy (NPE) source
(fat v. starch) on final body composition (on fresh weight basis) of Nile tilapia (n 3)

(Least square mean values with their standard errors)

Final body composition

Diets P

Initial body composition HPF HPS LPF LPS SEM DP:DE ratio NPE DP:DE£ NPE

DM (g/kg) 243 307 299 347 333 5·2 ,0·001 0·067 0·563
Protein (g/kg) 154 153a 161b 143c 143c 1·4 ,0·001 0·019 0·038
Fat (g/kg) 56 124 109 166 153 4·9 ,0·001 0·019 0·777
Ash (g/kg) 34 32 29 33 32 0·7 0·016 0·024 0·469
Energy (kJ/g) 5·6 8·5 8·1 10·1 9·6 0·2 ,0·001 0·100 0·919

HPF, high DP:DE ratio diet with fat as NPE source; HPS, high DP:DE ratio diet with starch as NPE source; LPF, low DP:DE ratio diet with fat as NPE source;
LPS, low DP:DE ratio diet with starch as NPE source.

a,b,c Least square means within a row with unlike superscript letters were significantly different and assigned only if the interaction effect was significant (P,0·05).

Table 5. Nitrogen, fat and energy balance in Nile tilapia fed the four experimental diets for 48 d (n 3)

(Least square mean values with their standard errors)

Diets P

HPF HPS LPF LPS SEM DP:DE ratio NPE DP:DE£ NPE

N balance (mg N/kg0·7 per d)
GN 1587 1470 944 864 32·1 ,0·001 0·015 0·575
FN 97a 72b 52c 55c 3·9 ,0·001 0·019 0·009
DN 1490 1398 891 809 28·6 ,0·001 0·016 0·858
BUN 975 901 403 371 17·1 ,0·001 0·014 0·256
RN 515 497 488 439 15·0 0·022 0·054 0·329
RN:DN 0·35 0·36 0·55 0·54 – – – –

Fat balance (mg/kg0·9 per d)
GF 5007 1924 7347 3821 192·8 ,0·001 ,0·001 0·284
FF 250a 59b 598c 151ab 33·6 ,0·001 ,0·001 0·005
DF 4692 1849 6595 3630 152·9 ,0·001 ,0·001 0·701
RF 4634 3719 6453 5462 279·8 ,0·001 0·005 0·625
RF:DF 0·99 2·01 0·98 1·50 – – – –

Energy balance (kJ/kg0·8 per d)
GE 541 449 582 475 16·8 0·081 ,0·001 0·666
FE 106 29 114 29 5·5 0·515 ,0·001 0·479
DE 435 420 468 446 11·8 0·035 0·156 0·775
BUE 30 28 12 12 0·5 ,0·001 0·017 0·276
ME 404 392 456 435 11·4 0·003 0·175 0·729
H 163 180 157 175 6·0 0·335 0·020 0·982
RE 241 211 298 260 11·0 0·001 0·015 0·713
REp 96 93 91 82 2·7 0·016 0·063 0·297
REf 145 118 207 178 8·8 ,0·001 0·012 0·893

HPF, high digestible protein (DP):digestible energy (DE) ratio diet with fat as non-protein energy (NPE) source; HPS, high DP:DE ratio diet with starch as NPE
source; LPF, low DP:DE ratio diet with fat as NPE source; LPS, low DP:DE ratio diet with starch as NPE source; GN, gross nitrogen intake; FN, faecal nitro-
gen loss; DN, digestible nitrogen intake; BUN, branchial and urinary nitrogen loss; RN, retained nitrogen; GF, gross fat intake; FF, faecal fat loss; DF, digesti-
ble fat intake; RF, retained fat; RF:DF, fat efficiency; GE, gross energy intake; FE, faecal energy loss; DE, digestible energy intake; BUE, branchial and
urinary energy loss; ME, metabolisable energy intake; H, heat production; RE, retained energy; REp, retained energy as protein; REf, retained energy as fat.

a,b,c Least square means within a row with unlike superscript letters were significantly different and assigned only if the interaction effect was significant
(P,0·05).
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As intended, the diets generated differences in DOD (kJ/g

DM or DE intake), related to both the DP:DE ratio

(HP . LP) and the NPE source (starch . fat). The metabolic

fate of a specific dietary nutrient for energy production

depends on the relative proportions of energy-yielding nutri-

ents and on the nutritional status of the fish. The high

oxygen demand for the HP diets agrees with post-feeding

oxygen consumption data reported in fish fed high-protein

diets(34,35) and also with the use of protein for ATP production

in fish(36). The low oxygen demand in tilapia fed the high-fat

diets, as observed in other studies(33,37), suggests that the

majority of the dietary fat was used for fat deposition rather

than for ATP production, as reflected by their higher level of

body adiposity. In terms of ATP (oxygen) demand, the for-

mation of fat from dietary lipids is considered to be less

expensive than from either starch or protein(25,26), which

probably explains the increase in DOD observed following

the replacement of fat by starch as NPE source.

Control of feed intake

FI in several fish species, including Nile tilapia, has been

found to be regulated by the dietary DE level in order to main-

tain a constant DE intake irrespective of the diet composition,

provided all essential nutrients are present in adequate

amounts and in the right proportions(2–6,38). In the case of a

very low dietary DE density, FI can be limited by the excessive

bulk relative to the stomach volume induced by the physical

characteristics of the feed(39). However, some studies have

reported an increase in stomach volume to allow increased

DM intakes as shown in rainbow trout (35 % over a 10-week

period)(40), and in plaice(41). In the present study, tilapia fed

the LP diets compared with the HP diets with similar DE con-

centration displayed an 11 % higher DE intake. The present

finding that tilapia did not adjust FI for constant DE intake is

in line with observations in other studies(7,35,42,43), showing

the absence of dietary DE intake compensations, and hence

suggests a role of factors other than DE in the control of FI.

A possible adjustment to make up for the low protein

supply in the LP diets is one explanation for this.

Some studies in mammals have suggested that an animal

seeks to eat until it reaches the maximum protein deposition

as determined by its genetic growth potential(44,45). Also,

some studies in fish have proposed that FI is controlled in

order to achieve the maximal protein growth rather than to

fulfil the daily energy needs(7,46,47). If it is indeed the maximal

growth potential that determines FI, one would expect to have

similar lean body growth, irrespective of the diet composition.

In contrast, the results of the present study showed differences

in lean growth and RN between the fish groups, which does

not comply with the above claims.

As in mammals, reduced FI in fish fed high-fat diets

has been attributed to increased adiposity or high body fat

contents(48–52). In the present study, high growth (growth

rate expressed per kg metabolic body weight) in the fat

groups resulted from the high deposition of body fat (lipid

gain), as seen in other fish species fed high levels of dietary

fat(12,53,54). However, tilapia fed either the HPF or LPF diet

did not reduce FI. On the contrary, these groups in fact had

a higher FI, despite their high body fat content. Similar obser-

vations have been made in other fish such as turbot(55) and

rainbow trout(7). The present results suggest that FI in Nile tila-

pia is not related to adiposity, which suggest the need for

further studies on the lipostatic control of FI in poikilotherms.

Our previous observations showing different DE intakes

concurrent with similar heat production in Nile tilapia(8) and

rainbow trout (S. Saravanan et al., unpublished results)

suggest that DE intake might be limited and thus controlled

by either constraints in the physiological capacity of oxygen

uptake or metabolic oxygen use by the fish. This forms the

basis of the proposed oxystatic theory, which to our knowl-

edge has never been considered before in fish. The concept

of the ‘oxystatic control of FI in fish’ tested here assumes

that (maximal) FI is limited by the (maximal) capacity of

oxygen use in the fish. In this view, it is expected to find simi-

lar oxygen consumption if fish are fed to satiation with diets

differing in macronutrient composition. Thus, changes in

DOD (by changing the macronutrient composition) are

expected to induce differences in FI. Indeed, in the present

study, the amount of oxygen consumed per unit metabolic

body weight was similar for three out of the four diets. As

such, the reduced DE intakes of fish fed the HP diets, which

had a higher DOD than the LP diets but which resulted in

equal oxygen consumption by the fish, possibly stem from

physiological constraints in oxygen use, in line with the ‘oxy-

static control of FI in fish’. Also in mammals, high levels of

dietary protein have been reported to produce a higher

satiating effect than fat(22,56,57), which has been attributed

to their limited storage capacity and hence their (obligatory)

partitioning towards oxidation. Interestingly, tilapia fed the

LPF diet, however, consumed a lower amount of oxygen

than fish from the other three dietary treatments. Moreover,

tilapia fed this low oxygen-demanding diet displayed the

highest FI. According to the oxystatic theory, LPF-fed fish
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Fig. 3. Relationship between oxygen efficiency and digestible energy (DE)

intake of Nile tilapia fed diets differing in digestible protein (DP):DE ratio and

non-protein energy (NPE) source. The DE intake of tilapia increases linearly

with increasing efficiency of oxygen utilisation for energy retention (n 12;

P,0·001). y ¼ 323 þ 3897x; R 2 0·74. HPF (W), high DP:DE ratio diet with

fat as NPE source; HPS (X), high DP:DE ratio diet with starch as NPE

source; LPF (D), low DP:DE ratio diet with fat as NPE source; LPS (O), low

DP:DE ratio diet with starch as NPE source; RE, retained energy.
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could have eaten more since oxygen consumption did not

reach its upper limit. As such, it is believed that FI in tilapia

fed the LPF diet was limited by other constraints of physical

(stomach capacity) or metabolic (lipid/protein gain) origin

rather than by the maximum capacity of oxygen use.

The present data demonstrate that DE intake in tilapia is not

only significantly related to the DOD, but also to the amount

of energy retained per unit of oxygen consumed (Figs. 2

and 3). DE intakes decreased with increasing DOD but also

increased linearly with increasing oxygen efficiency (i.e.

amount of energy retained per unit of oxygen consumed).

This parallels the finding in ruminants that ME increases with

increasing oxygen efficiency(20). Based on these observations

in ruminants, Ketelaars & Tolkamp(20,21) postulated the

‘oxygen efficiency theory’ in the control of FI. According to

this theory, FI entails both benefits (energy gain) and costs

(measured as oxygen consumption) to the animal, which strives

to optimise its FI close to the value of maximum efficiency of

oxygen utilisation for energy gain. The present results, how-

ever, do not allow us to conclude whether FI in Nile tilapia is

regulated as a function of (maximising) oxygen efficiency or by

a limit set by the (maximum) capacity of oxygen use by the fish.

In summary, the FI of Nile tilapia was related to dietary

macronutrient-induced changes in oxygen demand. As such,

even under normoxic conditions, oxygen consumption of

fish appears to play a role in the dietary control of FI in tilapia.

Further studies are warranted to explore other environmental

and nutritional factors affecting oxygen use in fish and their

metabolic implications in regulating FI in fish.
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