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Abstract—Autonomous navigation of a robot in an agricul-
tural field is a challenge as the robot is in an environment
with many sources of noise. This includes noise due to uneven
terrain, varying shapes, sizes and colors of the plants, imprecise
sensor measurements and effects due to wheel-slippage. The
drawback of current navigation systems in use in agriculture
is the lack of robustness against such noise. In this study
we present a robust vision-based navigation method based on
probabilistic methods. The focus is on navigation through a corn
field. Here the robot has to navigate along the rows of the crops,
detect the end of the rows, navigate in the headland and return
in another row. A Particle Filter based navigation method is
used based on a novel measurement model. This model results
in an image from the particle state vector that allows the user to
compare the observed image with the actual field conditions. In
this way the noise is incorporated into the posterior distribution
of the particle filter. The study shows that the new method
accurately estimates the robot-environment state by means of a
field experiment in which the robot navigates through the field
using the particle filter.

I. INTRODUCTION

In recent years robots are being used for automating sev-

eral agricultural operations including harvesting [1], scouting

[2] and weed control [3], [4]. A desired quality of such robots

is the ability to navigate autonomously without manual

intervention. Most of the existing systems are vision based

which include [5]–[7].

As most crops are cultivated in rows, research in au-

tonomous navigation in agriculture has focused on navigation

systems that operate within rows of plants. A crucial compo-

nent of such a navigation system is the ability to detect the

rows. This problem is addressed by extracting line features

from the image representing the plant rows which are used

as navigation cues to steer the robot. A commonly used

method for extracting lines is the Hough transform [8]–[10].

The Hough transform, however, is not robust to uncertainty

in the environment and fails to extract the ‘correct’ lines,

leading to navigation failure. Although, additional heuristics

may improve the results [11], [12] it is insufficient to account

for the uncertainty in the environment. The main problem

of the Hough transform as well as of other line extraction

methods is its failure in line extraction procedures that leads

to problems in navigation from which the algorithm cannot
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recover. Moreover, adaptation to curved or irregular plant

rows is not straightforward.

In this research we address autonomous navigation of a

field robot from a probabilistic perspective. It is an extension

of the work in [13]. Due to irregularity in field conditions,

any line extraction procedure is likely to fail at some

point. For that reason it will be beneficial if the navigation

algorithm has the property to recover from such failures.

We adopt a framework proposed by [14] where we use a

particle filter to track multiple hypotheses about the position

of the rows and the location of the robot relative to them. In

this framework, the state of the robot and the field at time

t is represented by a probability distribution P(Xt |Z1:t ,U1:t)
where Xt characterizes the state of the robot and the field with

which it interacts via its sensor, Z1:t represents the sensor

measurements up to time t and U1:t the controls applied to

the robot up to time t. The particle filter algorithm estimates

P(Xt |Z1:t ,U1:t) by maintaining a set of samples from the

distribution called particles. The set is updated at each time

step based on the current measurement Zt . Commonly, Zt
represents extracted line features from the camera image.

The feature extraction process itself, however, introduces

uncertainty that cannot be handled within the particle filter

framework. To address this problem this paper introduces

model images from the particles that are used as predictions.

We compare these predictions with the actual measurement

Zt to update the probability distribution.

The paper is organized as follows. Section II describes

the essential components of the robot hardware relevant to

the presented work. Sections III and IV describe the field

in which the robot operates and the local world of the robot

(based on the camera view) within it, respectively. Section V

details the overall navigation of the robot. In section VI, we

give the details of the image-based particle filter algorithm.

Section VII describes the image processing steps used to

obtain Zt and finally section VIII shows some results.

II. ROBOT HARDWARE

The robot that is employed in this study consists of a

chassis with three wheels. It has an actuated front wheel

as the steering wheel that is affected by commands from

a control program by means of a CAN-bus and it has two

rear wheels that do not have the ability to steer. All wheel

units are equipped with incremental encoders to measure the

rotational speed. In addition, the front wheel unit is equipped

with an angle sensor to measure the steering angle. The

driving speed of each wheel depends upon the target speed

of the control point, the location of the wheel with respect

to the control point and the turning radius.
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The robot senses the field by means of a downward-

looking camera (uEye UI-1220 SE, IDS Imaging Develop-

ment Systems GmbH, Obersulm, Germany) with a 2.4 mm,

186 degrees field-of-view lens CF2420 (Lensation GmbH,

Karlsruhe, Germany) that is mounted at a height of 1.65 m.

A gyroscope (Inertia-Link, Microstrain Inc., Williston VT,

USA) provides information about the rotational speed of the

robot. The robot further has a laser scanner (LMS-111, Sick

AG, Waldkirch, Germany) in the front but it is not used in

the current study (Figure 1).

Fig. 1: The top figure shows the robot with the mounted

camera in a field. The bottom figure shows the profile view

of the robot drawn to scale. Clearly visible in the design is

the actuated front wheel that can be steered.

III. MAIZE FIELD

The robot navigates in a field that consists of rows of

maize plants with a well defined headland. These rows may

be either straight, curved or jagged. This also applies to the

path along the headland, which can be either perpendicular

to the plant rows or at an angle to them. Additionally,

there may be gaps within the rows. In general, the rows are

approximately 0.75 m apart, being the distance at which the

seeding took place.

IV. LOCAL WORLD

To ensure that robot navigation is not affected by different

types of row patterns in the field, a rectangular area around

the robot is defined as the local world with the robot at the

centre. Based on the camera view, if the robot is between

the rows, the local world is approximated by two parallel

rows of plants on either side of the robot with finite width

and at a finite distance apart. Usually, the row ends are out

of the camera view. Figure 2a shows the local world in this

situtaion. Similarly, when the robot enters the headland, the

end of rows are in the field of view and the geometry is

modelled as in Figure 2b. The geometry can be characterized

by row width (rw), row distance (rd), end of left row (el)

and end of right row (er), all measured in meters. The robot

is characterized by its main axis along the direction of travel

and a central control point half way between the wheels.

The position of the robot in the local world is given by

robot heading (h) and lateral deviation (l). The robot heading

is the angle between the main axis and the reference axis,

being the line along the centre of the rows, measured in

degrees. Lateral deviation is the distance between the robot’s

control point and the reference axis. Jointly, the parameters

represent the robot-field state vector Xt = (h, l,rw,rd,el,er)
that characterizes the system at a given time t. Successful

navigation of the robot requires accurate estimation of the

state vector at each time step.

Fig. 2: The local world of the robot when it is between the

rows (top) and when it is within the headland (bottom). The

red circle with the arrow represents the robot, with the circle

representing the control point of the robot and the arrow its

heading.



V. NAVIGATION

The task of the robot is to navigate along plant rows, detect

the end of the rows, navigate on the headland and return into

another row. Navigation of the robot is affected by the robot

controller which uses the state vector estimates from the

particle filter (see Section VI). This can be divided into two

distinct situations: navigation between the rows and on the

headland. As long as the robot is between the rows, it follows

the in-row reference line. As soon as it is on the headland,

however, it follows the headland reference line as shown in

Figure 3. In either case the target steering angle of the front

wheel unit is given by γ =−h+ tan−1(−a/b) where h is the

robot heading, a is the perpendicular distance of the robot

from the reference line and b is the target distance along the

reference line. Note that a = l if the robot is between the

rows.

After detecting the end of the row, the robot continues

following the rows until its control point is at a given

distance from the row end. It then makes an on-the-spot

turn to position itself parallel to headland reference line and

continues the headland navigation. Upon reaching the middle

of the next row, it comes to a full stop, makes an on-the-spot

turn to position itself parallel to the rows and starts following

the rows again. Before the robot begins travelling in the new

row, the coordinate system is reset such that the centre of

the current row is the in-row reference line.

An important element of navigation on the headland is

counting how many rows have been crossed. To do so, a

row counter is used that is initially set to zero and is updated

when the lateral deviation (l) of the robot is larger than half

the row distance (rd).

Fig. 3: The target steering angle γ as it is computed by

the controller. Between rows the robot follows the in-row

reference line (dotted line) and within the headland the robot

follows the headland reference line (dashed line).

VI. PARTICLE FILTER

The robot-field state vector, denoted by Xt =
(h, l,rw,rd,el,er) characterizes the state of the robot in the

field at any given time. The robot can be considered as a

dynamical system in which the state changes at every time

step and where the values of the state vector are uncertain

due to inherent irregularities in the field conditions. Several

sources of uncertainty can be distinguished, in particular

uneven terrain conditions, inconsistent field structure and

varying shape, size and colour of the plants. Additional

uncertainty is due to errors in sensor measurements and

hardware related errors like wheel-slippage or controller

and actuator noise. To deal with all this uncertainty we

represent the state of a system at any given time as a

probability distribution P(Xt |Z1:t ,U1:t) where Z1:t is the

set of measurements made by the robot up to time t and

U1:t is the set of controls applied to the robot to affect the

state evolution up to time t. It is also called the posterior

distribution. Stated this way, the posterior distribution has

to be inferred at each time step t. This inference problem is

shown graphically in Figure 4.

Ut−1 Ut Ut+1

· · · Xt−1 Xt Xt+1 · · ·

Zt−1 Zt Zt+1

Fig. 4: Graphical representation of the inference problem for

P(Xt |Z1:t ,U1:t). The nodes labeled Xt ,Zt and Ut represent the

state, measurement and controls at time t, respectively.

Inference of the posterior distribution is carried out by

means of a particle filter algorithm. The key idea of particle

filters is to represent the posterior distribution by a set

of random samples drawn from this distribution, called

particles. These particles are recursively updated as a new

measurement Zt is acquired. The algorithm consists of two

steps: prediction and update. In the prediction step the new

values of the particles are calculated based on the current

value and the motion model of the robot that we will discuss

in the next section. In the update step the predicted values

are evaluated for their consistency with the measurement Zt
and importance weight assigned to them. Subsequently, the

particles are re-sampled according to their (normalized) im-

portance weights to yield the posterior distribution. Formally,

it is given by

p(Xt |Z1:t ,U1:t) =
p(Zt |Xt )p(Xt |Xt−1,Ut )

p(Zt |Z1:t−1)
p(Xt−1|Z1:t−1,U1:t−1)

(1)

where, p(Zt |Xt) represents the update step and is given by

the measurement model (also called the likelihood model),

p(Xt |Xt−1,Ut) represents the prediction step and is given by

the motion model, p(Zt |Z1:t−1) is the normalizing constant,

and p(Xt−1|Z1:t−1,U1:t−1) is the posterior distribution at

previous time step t− 1. Details of the measurement model

will also be discussed below. The specific form of equation



1 is indicative of the recursive nature of the particle filter

where the posterior at previous time step is updated by

multiplying it with the motion model and the measurement

model obtained from the current time step.

A. MOTION MODEL

The motion model describes how the state vector changes

from one time step to another. Here we assume that the

distribution of the initial state (X0 at t = 0) of the robot is

known, and that the gyroscope and wheel encoders on the

robot provide the control information Ut = (dx,dh) where

dx is the displacement of the robot along its heading and dh

is the turning angle of the robot. The motion model is then

given by

ht = ht−1+ dh+ εh

lt = lt−1+ dx sin(ht−1+ dh)+ εl

rwt = rwt−1+ εrw

rdt = rdt−1+ εrd

elt = elt−1− dx cos(ht−1+ dh)+ εel

ert = ert−1− dx cos(ht−1+ dh)+ εer (2)

where εh,εl ,εrw,εrd ,εel ,εer are independent Gaussian

noise applied to the corresponding state variables.

A complication arises because the end of the rows is

frequently not in view of the robot’s camera. According to

the motion model, the values of el and er are constantly

decreased. When the end of row is not in robot’s view, the

el and er values should not be decreased. This situation is

dealt with by re-initializing el and er in a fraction of particles

at regular intervals.

B. MEASUREMENT MODEL

The measurement Zt is a binary image of size m = r× c

pixels which is obtained after processing the camera image.

The details of the image processing steps are given in section

VII. Pixels with value one (zi = 1) indicate plants; pixels with

value zero (zi = 0) indicate soil. The measurement model for

Zt depends on a model image. The model image is a binary

image constructed from a particle. The model image consists

of two regions: the in-row region and the out-row region. The

in-row region is the predicted location of the plant rows and

is a region with a high probability of having plants present.

The out-row region is the region with a lower probability.

The likelihood function assigns an importance weight to the

model image-based on how well it ‘agrees’ with the observed

image. The importance weights are used in the re-sampling

step.

VII. IMAGE PROCESSING

The steps during image processing to obtain the mea-

surement image Zt are illustrated in Figure 5 that shows

the transformation of the input image at various processing

stages. The input image (Figure 3a) captured by the camera is

of size width×height = 752×480 pixels where height is in

the travelling direction and width is perpendicular to it. The

Fig. 5: Transformation of the input image during different

image processing steps, from the input image (a), through

the undistorted image (b), the clipped image (c) and the

excess-green image (d) towards the final binary image after

thresholding (e)

first processing step corrects the barrel distortion in the input

image resulting in the undistorted image (Figure 3b). This

image is then clipped to a size of 40× 70 pixels such that

only the two rows adjacent to the robot remain. The clipped

image (Figure 3c) is subsequently converted to an excess-

green image (Figure 3d) by applying the transformation I =
(−R+2G−B)/3. Finally, by thresholding the measurement

image is obtained (Figure 3e). The image processing method

depends on the plants being green. Specifically, the excess-

green transformation exploits the colour contrast between

maize plants and the soil. It can be extended to plants not

as green as maize by adjusting the coefficients of the colour

channels.

When the robot is between the rows the clipped image

is ‘long’ in the sense that the image width is less than the

image height. This ensures that only the essential information

captured by the camera is retained to accurately determine

the orientation of the rows. In the headland, however, a

‘wide’ image ensures that enough of the row is visible to

determine its orientation accurately (see Figure 6). Hence,

the second image processing step is different when the robot

is in the headland to get a clipped image of size 105× 60

pixels.

VIII. RESULTS

In this section we present some results. At each time

step, the mean of the posterior distribution X̂t is used as the

estimate of the state Xt at time t. Figure 7 shows examples

of the estimate superimposed on the observation Zt . Pixels

in red indicate the estimated plant rows and the pixels in

green are the observed rows. As we see in Figure 7a, the

estimate is consistent with the observation when the robot is

in between the rows. Likewise, Figure 7b shows the accurate

detection of the row ends when the robot is in the headland.



Fig. 6: Clipped image in the headland. The image is ‘wide’

relative to clipped image when the robot is between the rows

Fig. 7: Model image of the mean particle superimposed on

the observed image when the robot is between the rows (top)

and when the robot is in the headland (bottom).

Figure 8 shows results of a single run by the robot within

a maize field. An image sequence is collected that consisted

of all images captured at a rate of 10 Hz starting from the

beginning of a single row to the end of that row where an

image in the sequence corresponds to a time step t in the

particle filter. For every image in the sequence, the estimate

of the system state is compared with the ground truth that is

obtained manually. Figure 8a shows the plot of robot heading

(in degrees) against time t where the blue curve represents

the estimated values and the red curve represents the ground

truth values. As we can see, the particle filter accurately
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Fig. 8: The result of particle filter estimate of heading (top)

and lateral deviation (bottom) for one robot run along with

the manually estimated values. The red curve is the ground

truth and the blue curve is the particle filter estimate.

estimates the robot heading with respect to the plant rows.

Similarly, Figure 8b shows the plot of lateral deviation (in

meters) against time t. The figures indicate that there is

greater variation in robot heading than in lateral deviation.

This is because of the system design. That is, change in

lateral deviation can only be affected through a combination

of rotation and translation. Also, the front wheel constantly

receives steering signals from the controller and thus have

greater susceptibility to controller and actuator noise.

IX. DISCUSSION

Field experiments showed that the robot was able to

navigate without manual intervention until the batteries were

empty. Experiments were carried out in fields from young

plants of 5cm to plants of over 50cm, in straight rows

and curved rows. These experiments showed that the new

image-based particle filter is robust to different types of

uncertainties in the field.

When the plants were too big or when the soil between the

rows is covered with weeds, the measurement image consists

of only plants. In this situation the algorithm fails because it



is difficult to extract the rows. We intend to address this

problem in future research by integrating the laser range

sensor data to the particle filter algorithm. By combining both

camera and laser range data we hope to widen the operating

conditions of the navigation system.
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